1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the targeting of the Machinelegalizer class for 10 /// AMDGPU. 11 /// \todo This should be generated by TableGen. 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPULegalizerInfo.h" 15 16 #include "AMDGPU.h" 17 #include "AMDGPUGlobalISelUtils.h" 18 #include "AMDGPUInstrInfo.h" 19 #include "AMDGPUTargetMachine.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "llvm/ADT/ScopeExit.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 25 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/IntrinsicsAMDGPU.h" 29 30 #define DEBUG_TYPE "amdgpu-legalinfo" 31 32 using namespace llvm; 33 using namespace LegalizeActions; 34 using namespace LegalizeMutations; 35 using namespace LegalityPredicates; 36 using namespace MIPatternMatch; 37 38 // Hack until load/store selection patterns support any tuple of legal types. 39 static cl::opt<bool> EnableNewLegality( 40 "amdgpu-global-isel-new-legality", 41 cl::desc("Use GlobalISel desired legality, rather than try to use" 42 "rules compatible with selection patterns"), 43 cl::init(false), 44 cl::ReallyHidden); 45 46 static constexpr unsigned MaxRegisterSize = 1024; 47 48 // Round the number of elements to the next power of two elements 49 static LLT getPow2VectorType(LLT Ty) { 50 unsigned NElts = Ty.getNumElements(); 51 unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); 52 return Ty.changeElementCount(ElementCount::getFixed(Pow2NElts)); 53 } 54 55 // Round the number of bits to the next power of two bits 56 static LLT getPow2ScalarType(LLT Ty) { 57 unsigned Bits = Ty.getSizeInBits(); 58 unsigned Pow2Bits = 1 << Log2_32_Ceil(Bits); 59 return LLT::scalar(Pow2Bits); 60 } 61 62 /// \returs true if this is an odd sized vector which should widen by adding an 63 /// additional element. This is mostly to handle <3 x s16> -> <4 x s16>. This 64 /// excludes s1 vectors, which should always be scalarized. 65 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) { 66 return [=](const LegalityQuery &Query) { 67 const LLT Ty = Query.Types[TypeIdx]; 68 if (!Ty.isVector()) 69 return false; 70 71 const LLT EltTy = Ty.getElementType(); 72 const unsigned EltSize = EltTy.getSizeInBits(); 73 return Ty.getNumElements() % 2 != 0 && 74 EltSize > 1 && EltSize < 32 && 75 Ty.getSizeInBits() % 32 != 0; 76 }; 77 } 78 79 static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx) { 80 return [=](const LegalityQuery &Query) { 81 const LLT Ty = Query.Types[TypeIdx]; 82 return Ty.getSizeInBits() % 32 == 0; 83 }; 84 } 85 86 static LegalityPredicate isWideVec16(unsigned TypeIdx) { 87 return [=](const LegalityQuery &Query) { 88 const LLT Ty = Query.Types[TypeIdx]; 89 const LLT EltTy = Ty.getScalarType(); 90 return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2; 91 }; 92 } 93 94 static LegalizeMutation oneMoreElement(unsigned TypeIdx) { 95 return [=](const LegalityQuery &Query) { 96 const LLT Ty = Query.Types[TypeIdx]; 97 const LLT EltTy = Ty.getElementType(); 98 return std::make_pair(TypeIdx, 99 LLT::fixed_vector(Ty.getNumElements() + 1, EltTy)); 100 }; 101 } 102 103 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) { 104 return [=](const LegalityQuery &Query) { 105 const LLT Ty = Query.Types[TypeIdx]; 106 const LLT EltTy = Ty.getElementType(); 107 unsigned Size = Ty.getSizeInBits(); 108 unsigned Pieces = (Size + 63) / 64; 109 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces; 110 return std::make_pair( 111 TypeIdx, 112 LLT::scalarOrVector(ElementCount::getFixed(NewNumElts), EltTy)); 113 }; 114 } 115 116 // Increase the number of vector elements to reach the next multiple of 32-bit 117 // type. 118 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) { 119 return [=](const LegalityQuery &Query) { 120 const LLT Ty = Query.Types[TypeIdx]; 121 122 const LLT EltTy = Ty.getElementType(); 123 const int Size = Ty.getSizeInBits(); 124 const int EltSize = EltTy.getSizeInBits(); 125 const int NextMul32 = (Size + 31) / 32; 126 127 assert(EltSize < 32); 128 129 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize; 130 return std::make_pair(TypeIdx, LLT::fixed_vector(NewNumElts, EltTy)); 131 }; 132 } 133 134 static LLT getBitcastRegisterType(const LLT Ty) { 135 const unsigned Size = Ty.getSizeInBits(); 136 137 LLT CoercedTy; 138 if (Size <= 32) { 139 // <2 x s8> -> s16 140 // <4 x s8> -> s32 141 return LLT::scalar(Size); 142 } 143 144 return LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32); 145 } 146 147 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) { 148 return [=](const LegalityQuery &Query) { 149 const LLT Ty = Query.Types[TypeIdx]; 150 return std::make_pair(TypeIdx, getBitcastRegisterType(Ty)); 151 }; 152 } 153 154 static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx) { 155 return [=](const LegalityQuery &Query) { 156 const LLT Ty = Query.Types[TypeIdx]; 157 unsigned Size = Ty.getSizeInBits(); 158 assert(Size % 32 == 0); 159 return std::make_pair( 160 TypeIdx, LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32)); 161 }; 162 } 163 164 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) { 165 return [=](const LegalityQuery &Query) { 166 const LLT QueryTy = Query.Types[TypeIdx]; 167 return QueryTy.isVector() && QueryTy.getSizeInBits() < Size; 168 }; 169 } 170 171 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) { 172 return [=](const LegalityQuery &Query) { 173 const LLT QueryTy = Query.Types[TypeIdx]; 174 return QueryTy.isVector() && QueryTy.getSizeInBits() > Size; 175 }; 176 } 177 178 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) { 179 return [=](const LegalityQuery &Query) { 180 const LLT QueryTy = Query.Types[TypeIdx]; 181 return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0; 182 }; 183 } 184 185 static bool isRegisterSize(unsigned Size) { 186 return Size % 32 == 0 && Size <= MaxRegisterSize; 187 } 188 189 static bool isRegisterVectorElementType(LLT EltTy) { 190 const int EltSize = EltTy.getSizeInBits(); 191 return EltSize == 16 || EltSize % 32 == 0; 192 } 193 194 static bool isRegisterVectorType(LLT Ty) { 195 const int EltSize = Ty.getElementType().getSizeInBits(); 196 return EltSize == 32 || EltSize == 64 || 197 (EltSize == 16 && Ty.getNumElements() % 2 == 0) || 198 EltSize == 128 || EltSize == 256; 199 } 200 201 static bool isRegisterType(LLT Ty) { 202 if (!isRegisterSize(Ty.getSizeInBits())) 203 return false; 204 205 if (Ty.isVector()) 206 return isRegisterVectorType(Ty); 207 208 return true; 209 } 210 211 // Any combination of 32 or 64-bit elements up the maximum register size, and 212 // multiples of v2s16. 213 static LegalityPredicate isRegisterType(unsigned TypeIdx) { 214 return [=](const LegalityQuery &Query) { 215 return isRegisterType(Query.Types[TypeIdx]); 216 }; 217 } 218 219 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) { 220 return [=](const LegalityQuery &Query) { 221 const LLT QueryTy = Query.Types[TypeIdx]; 222 if (!QueryTy.isVector()) 223 return false; 224 const LLT EltTy = QueryTy.getElementType(); 225 return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32; 226 }; 227 } 228 229 // If we have a truncating store or an extending load with a data size larger 230 // than 32-bits, we need to reduce to a 32-bit type. 231 static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx) { 232 return [=](const LegalityQuery &Query) { 233 const LLT Ty = Query.Types[TypeIdx]; 234 return !Ty.isVector() && Ty.getSizeInBits() > 32 && 235 Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits(); 236 }; 237 } 238 239 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we 240 // handle some operations by just promoting the register during 241 // selection. There are also d16 loads on GFX9+ which preserve the high bits. 242 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, 243 bool IsLoad) { 244 switch (AS) { 245 case AMDGPUAS::PRIVATE_ADDRESS: 246 // FIXME: Private element size. 247 return ST.enableFlatScratch() ? 128 : 32; 248 case AMDGPUAS::LOCAL_ADDRESS: 249 return ST.useDS128() ? 128 : 64; 250 case AMDGPUAS::GLOBAL_ADDRESS: 251 case AMDGPUAS::CONSTANT_ADDRESS: 252 case AMDGPUAS::CONSTANT_ADDRESS_32BIT: 253 // Treat constant and global as identical. SMRD loads are sometimes usable for 254 // global loads (ideally constant address space should be eliminated) 255 // depending on the context. Legality cannot be context dependent, but 256 // RegBankSelect can split the load as necessary depending on the pointer 257 // register bank/uniformity and if the memory is invariant or not written in a 258 // kernel. 259 return IsLoad ? 512 : 128; 260 default: 261 // Flat addresses may contextually need to be split to 32-bit parts if they 262 // may alias scratch depending on the subtarget. 263 return 128; 264 } 265 } 266 267 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, 268 const LegalityQuery &Query) { 269 const LLT Ty = Query.Types[0]; 270 271 // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD 272 const bool IsLoad = Query.Opcode != AMDGPU::G_STORE; 273 274 unsigned RegSize = Ty.getSizeInBits(); 275 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits(); 276 unsigned AlignBits = Query.MMODescrs[0].AlignInBits; 277 unsigned AS = Query.Types[1].getAddressSpace(); 278 279 // All of these need to be custom lowered to cast the pointer operand. 280 if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 281 return false; 282 283 // Do not handle extending vector loads. 284 if (Ty.isVector() && MemSize != RegSize) 285 return false; 286 287 // TODO: We should be able to widen loads if the alignment is high enough, but 288 // we also need to modify the memory access size. 289 #if 0 290 // Accept widening loads based on alignment. 291 if (IsLoad && MemSize < Size) 292 MemSize = std::max(MemSize, Align); 293 #endif 294 295 // Only 1-byte and 2-byte to 32-bit extloads are valid. 296 if (MemSize != RegSize && RegSize != 32) 297 return false; 298 299 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 300 return false; 301 302 switch (MemSize) { 303 case 8: 304 case 16: 305 case 32: 306 case 64: 307 case 128: 308 break; 309 case 96: 310 if (!ST.hasDwordx3LoadStores()) 311 return false; 312 break; 313 case 256: 314 case 512: 315 // These may contextually need to be broken down. 316 break; 317 default: 318 return false; 319 } 320 321 assert(RegSize >= MemSize); 322 323 if (AlignBits < MemSize) { 324 const SITargetLowering *TLI = ST.getTargetLowering(); 325 if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, 326 Align(AlignBits / 8))) 327 return false; 328 } 329 330 return true; 331 } 332 333 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so 334 // workaround this. Eventually it should ignore the type for loads and only care 335 // about the size. Return true in cases where we will workaround this for now by 336 // bitcasting. 337 static bool loadStoreBitcastWorkaround(const LLT Ty) { 338 if (EnableNewLegality) 339 return false; 340 341 const unsigned Size = Ty.getSizeInBits(); 342 if (Size <= 64) 343 return false; 344 if (!Ty.isVector()) 345 return true; 346 347 LLT EltTy = Ty.getElementType(); 348 if (EltTy.isPointer()) 349 return true; 350 351 unsigned EltSize = EltTy.getSizeInBits(); 352 return EltSize != 32 && EltSize != 64; 353 } 354 355 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query) { 356 const LLT Ty = Query.Types[0]; 357 return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query) && 358 !loadStoreBitcastWorkaround(Ty); 359 } 360 361 /// Return true if a load or store of the type should be lowered with a bitcast 362 /// to a different type. 363 static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty, 364 const LLT MemTy) { 365 const unsigned MemSizeInBits = MemTy.getSizeInBits(); 366 const unsigned Size = Ty.getSizeInBits(); 367 if (Size != MemSizeInBits) 368 return Size <= 32 && Ty.isVector(); 369 370 if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty)) 371 return true; 372 373 // Don't try to handle bitcasting vector ext loads for now. 374 return Ty.isVector() && (!MemTy.isVector() || MemTy == Ty) && 375 (Size <= 32 || isRegisterSize(Size)) && 376 !isRegisterVectorElementType(Ty.getElementType()); 377 } 378 379 /// Return true if we should legalize a load by widening an odd sized memory 380 /// access up to the alignment. Note this case when the memory access itself 381 /// changes, not the size of the result register. 382 static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy, 383 unsigned AlignInBits, unsigned AddrSpace, 384 unsigned Opcode) { 385 unsigned SizeInBits = MemoryTy.getSizeInBits(); 386 // We don't want to widen cases that are naturally legal. 387 if (isPowerOf2_32(SizeInBits)) 388 return false; 389 390 // If we have 96-bit memory operations, we shouldn't touch them. Note we may 391 // end up widening these for a scalar load during RegBankSelect, since there 392 // aren't 96-bit scalar loads. 393 if (SizeInBits == 96 && ST.hasDwordx3LoadStores()) 394 return false; 395 396 if (SizeInBits >= maxSizeForAddrSpace(ST, AddrSpace, Opcode)) 397 return false; 398 399 // A load is known dereferenceable up to the alignment, so it's legal to widen 400 // to it. 401 // 402 // TODO: Could check dereferenceable for less aligned cases. 403 unsigned RoundedSize = NextPowerOf2(SizeInBits); 404 if (AlignInBits < RoundedSize) 405 return false; 406 407 // Do not widen if it would introduce a slow unaligned load. 408 const SITargetLowering *TLI = ST.getTargetLowering(); 409 bool Fast = false; 410 return TLI->allowsMisalignedMemoryAccessesImpl( 411 RoundedSize, AddrSpace, Align(AlignInBits / 8), 412 MachineMemOperand::MOLoad, &Fast) && 413 Fast; 414 } 415 416 static bool shouldWidenLoad(const GCNSubtarget &ST, const LegalityQuery &Query, 417 unsigned Opcode) { 418 if (Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic) 419 return false; 420 421 return shouldWidenLoad(ST, Query.MMODescrs[0].MemoryTy, 422 Query.MMODescrs[0].AlignInBits, 423 Query.Types[1].getAddressSpace(), Opcode); 424 } 425 426 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_, 427 const GCNTargetMachine &TM) 428 : ST(ST_) { 429 using namespace TargetOpcode; 430 431 auto GetAddrSpacePtr = [&TM](unsigned AS) { 432 return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); 433 }; 434 435 const LLT S1 = LLT::scalar(1); 436 const LLT S8 = LLT::scalar(8); 437 const LLT S16 = LLT::scalar(16); 438 const LLT S32 = LLT::scalar(32); 439 const LLT S64 = LLT::scalar(64); 440 const LLT S128 = LLT::scalar(128); 441 const LLT S256 = LLT::scalar(256); 442 const LLT S512 = LLT::scalar(512); 443 const LLT MaxScalar = LLT::scalar(MaxRegisterSize); 444 445 const LLT V2S8 = LLT::fixed_vector(2, 8); 446 const LLT V2S16 = LLT::fixed_vector(2, 16); 447 const LLT V4S16 = LLT::fixed_vector(4, 16); 448 449 const LLT V2S32 = LLT::fixed_vector(2, 32); 450 const LLT V3S32 = LLT::fixed_vector(3, 32); 451 const LLT V4S32 = LLT::fixed_vector(4, 32); 452 const LLT V5S32 = LLT::fixed_vector(5, 32); 453 const LLT V6S32 = LLT::fixed_vector(6, 32); 454 const LLT V7S32 = LLT::fixed_vector(7, 32); 455 const LLT V8S32 = LLT::fixed_vector(8, 32); 456 const LLT V9S32 = LLT::fixed_vector(9, 32); 457 const LLT V10S32 = LLT::fixed_vector(10, 32); 458 const LLT V11S32 = LLT::fixed_vector(11, 32); 459 const LLT V12S32 = LLT::fixed_vector(12, 32); 460 const LLT V13S32 = LLT::fixed_vector(13, 32); 461 const LLT V14S32 = LLT::fixed_vector(14, 32); 462 const LLT V15S32 = LLT::fixed_vector(15, 32); 463 const LLT V16S32 = LLT::fixed_vector(16, 32); 464 const LLT V32S32 = LLT::fixed_vector(32, 32); 465 466 const LLT V2S64 = LLT::fixed_vector(2, 64); 467 const LLT V3S64 = LLT::fixed_vector(3, 64); 468 const LLT V4S64 = LLT::fixed_vector(4, 64); 469 const LLT V5S64 = LLT::fixed_vector(5, 64); 470 const LLT V6S64 = LLT::fixed_vector(6, 64); 471 const LLT V7S64 = LLT::fixed_vector(7, 64); 472 const LLT V8S64 = LLT::fixed_vector(8, 64); 473 const LLT V16S64 = LLT::fixed_vector(16, 64); 474 475 std::initializer_list<LLT> AllS32Vectors = 476 {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, 477 V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32}; 478 std::initializer_list<LLT> AllS64Vectors = 479 {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64}; 480 481 const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); 482 const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); 483 const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT); 484 const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); 485 const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS); 486 const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); 487 const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); 488 489 const LLT CodePtr = FlatPtr; 490 491 const std::initializer_list<LLT> AddrSpaces64 = { 492 GlobalPtr, ConstantPtr, FlatPtr 493 }; 494 495 const std::initializer_list<LLT> AddrSpaces32 = { 496 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr 497 }; 498 499 const std::initializer_list<LLT> FPTypesBase = { 500 S32, S64 501 }; 502 503 const std::initializer_list<LLT> FPTypes16 = { 504 S32, S64, S16 505 }; 506 507 const std::initializer_list<LLT> FPTypesPK16 = { 508 S32, S64, S16, V2S16 509 }; 510 511 const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32; 512 513 // s1 for VCC branches, s32 for SCC branches. 514 getActionDefinitionsBuilder(G_BRCOND).legalFor({S1, S32}); 515 516 // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more 517 // elements for v3s16 518 getActionDefinitionsBuilder(G_PHI) 519 .legalFor({S32, S64, V2S16, S16, V4S16, S1, S128, S256}) 520 .legalFor(AllS32Vectors) 521 .legalFor(AllS64Vectors) 522 .legalFor(AddrSpaces64) 523 .legalFor(AddrSpaces32) 524 .legalIf(isPointer(0)) 525 .clampScalar(0, S16, S256) 526 .widenScalarToNextPow2(0, 32) 527 .clampMaxNumElements(0, S32, 16) 528 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 529 .scalarize(0); 530 531 if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) { 532 // Full set of gfx9 features. 533 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 534 .legalFor({S32, S16, V2S16}) 535 .minScalar(0, S16) 536 .clampMaxNumElements(0, S16, 2) 537 .widenScalarToNextMultipleOf(0, 32) 538 .maxScalar(0, S32) 539 .scalarize(0); 540 541 getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT, G_SADDSAT, G_SSUBSAT}) 542 .legalFor({S32, S16, V2S16}) // Clamp modifier 543 .minScalarOrElt(0, S16) 544 .clampMaxNumElements(0, S16, 2) 545 .scalarize(0) 546 .widenScalarToNextPow2(0, 32) 547 .lower(); 548 } else if (ST.has16BitInsts()) { 549 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 550 .legalFor({S32, S16}) 551 .minScalar(0, S16) 552 .widenScalarToNextMultipleOf(0, 32) 553 .maxScalar(0, S32) 554 .scalarize(0); 555 556 // Technically the saturating operations require clamp bit support, but this 557 // was introduced at the same time as 16-bit operations. 558 getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT}) 559 .legalFor({S32, S16}) // Clamp modifier 560 .minScalar(0, S16) 561 .scalarize(0) 562 .widenScalarToNextPow2(0, 16) 563 .lower(); 564 565 // We're just lowering this, but it helps get a better result to try to 566 // coerce to the desired type first. 567 getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT}) 568 .minScalar(0, S16) 569 .scalarize(0) 570 .lower(); 571 } else { 572 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 573 .legalFor({S32}) 574 .widenScalarToNextMultipleOf(0, 32) 575 .clampScalar(0, S32, S32) 576 .scalarize(0); 577 578 if (ST.hasIntClamp()) { 579 getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT}) 580 .legalFor({S32}) // Clamp modifier. 581 .scalarize(0) 582 .minScalarOrElt(0, S32) 583 .lower(); 584 } else { 585 // Clamp bit support was added in VI, along with 16-bit operations. 586 getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT}) 587 .minScalar(0, S32) 588 .scalarize(0) 589 .lower(); 590 } 591 592 // FIXME: DAG expansion gets better results. The widening uses the smaller 593 // range values and goes for the min/max lowering directly. 594 getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT}) 595 .minScalar(0, S32) 596 .scalarize(0) 597 .lower(); 598 } 599 600 getActionDefinitionsBuilder( 601 {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM}) 602 .customFor({S32, S64}) 603 .clampScalar(0, S32, S64) 604 .widenScalarToNextPow2(0, 32) 605 .scalarize(0); 606 607 auto &Mulh = getActionDefinitionsBuilder({G_UMULH, G_SMULH}) 608 .legalFor({S32}) 609 .maxScalarOrElt(0, S32); 610 611 if (ST.hasVOP3PInsts()) { 612 Mulh 613 .clampMaxNumElements(0, S8, 2) 614 .lowerFor({V2S8}); 615 } 616 617 Mulh 618 .scalarize(0) 619 .lower(); 620 621 // Report legal for any types we can handle anywhere. For the cases only legal 622 // on the SALU, RegBankSelect will be able to re-legalize. 623 getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) 624 .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16}) 625 .clampScalar(0, S32, S64) 626 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 627 .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0)) 628 .widenScalarToNextPow2(0) 629 .scalarize(0); 630 631 getActionDefinitionsBuilder({G_UADDO, G_USUBO, 632 G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) 633 .legalFor({{S32, S1}, {S32, S32}}) 634 .minScalar(0, S32) 635 // TODO: .scalarize(0) 636 .lower(); 637 638 getActionDefinitionsBuilder(G_BITCAST) 639 // Don't worry about the size constraint. 640 .legalIf(all(isRegisterType(0), isRegisterType(1))) 641 .lower(); 642 643 644 getActionDefinitionsBuilder(G_CONSTANT) 645 .legalFor({S1, S32, S64, S16, GlobalPtr, 646 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) 647 .legalIf(isPointer(0)) 648 .clampScalar(0, S32, S64) 649 .widenScalarToNextPow2(0); 650 651 getActionDefinitionsBuilder(G_FCONSTANT) 652 .legalFor({S32, S64, S16}) 653 .clampScalar(0, S16, S64); 654 655 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE}) 656 .legalIf(isRegisterType(0)) 657 // s1 and s16 are special cases because they have legal operations on 658 // them, but don't really occupy registers in the normal way. 659 .legalFor({S1, S16}) 660 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 661 .clampScalarOrElt(0, S32, MaxScalar) 662 .widenScalarToNextPow2(0, 32) 663 .clampMaxNumElements(0, S32, 16); 664 665 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({PrivatePtr}); 666 667 // If the amount is divergent, we have to do a wave reduction to get the 668 // maximum value, so this is expanded during RegBankSelect. 669 getActionDefinitionsBuilder(G_DYN_STACKALLOC) 670 .legalFor({{PrivatePtr, S32}}); 671 672 getActionDefinitionsBuilder(G_GLOBAL_VALUE) 673 .customIf(typeIsNot(0, PrivatePtr)); 674 675 getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({CodePtr}); 676 677 auto &FPOpActions = getActionDefinitionsBuilder( 678 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE}) 679 .legalFor({S32, S64}); 680 auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS}) 681 .customFor({S32, S64}); 682 auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV) 683 .customFor({S32, S64}); 684 685 if (ST.has16BitInsts()) { 686 if (ST.hasVOP3PInsts()) 687 FPOpActions.legalFor({S16, V2S16}); 688 else 689 FPOpActions.legalFor({S16}); 690 691 TrigActions.customFor({S16}); 692 FDIVActions.customFor({S16}); 693 } 694 695 auto &MinNumMaxNum = getActionDefinitionsBuilder({ 696 G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE}); 697 698 if (ST.hasVOP3PInsts()) { 699 MinNumMaxNum.customFor(FPTypesPK16) 700 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 701 .clampMaxNumElements(0, S16, 2) 702 .clampScalar(0, S16, S64) 703 .scalarize(0); 704 } else if (ST.has16BitInsts()) { 705 MinNumMaxNum.customFor(FPTypes16) 706 .clampScalar(0, S16, S64) 707 .scalarize(0); 708 } else { 709 MinNumMaxNum.customFor(FPTypesBase) 710 .clampScalar(0, S32, S64) 711 .scalarize(0); 712 } 713 714 if (ST.hasVOP3PInsts()) 715 FPOpActions.clampMaxNumElements(0, S16, 2); 716 717 FPOpActions 718 .scalarize(0) 719 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 720 721 TrigActions 722 .scalarize(0) 723 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 724 725 FDIVActions 726 .scalarize(0) 727 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 728 729 getActionDefinitionsBuilder({G_FNEG, G_FABS}) 730 .legalFor(FPTypesPK16) 731 .clampMaxNumElements(0, S16, 2) 732 .scalarize(0) 733 .clampScalar(0, S16, S64); 734 735 if (ST.has16BitInsts()) { 736 getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR}) 737 .legalFor({S32, S64, S16}) 738 .scalarize(0) 739 .clampScalar(0, S16, S64); 740 } else { 741 getActionDefinitionsBuilder(G_FSQRT) 742 .legalFor({S32, S64}) 743 .scalarize(0) 744 .clampScalar(0, S32, S64); 745 746 if (ST.hasFractBug()) { 747 getActionDefinitionsBuilder(G_FFLOOR) 748 .customFor({S64}) 749 .legalFor({S32, S64}) 750 .scalarize(0) 751 .clampScalar(0, S32, S64); 752 } else { 753 getActionDefinitionsBuilder(G_FFLOOR) 754 .legalFor({S32, S64}) 755 .scalarize(0) 756 .clampScalar(0, S32, S64); 757 } 758 } 759 760 getActionDefinitionsBuilder(G_FPTRUNC) 761 .legalFor({{S32, S64}, {S16, S32}}) 762 .scalarize(0) 763 .lower(); 764 765 getActionDefinitionsBuilder(G_FPEXT) 766 .legalFor({{S64, S32}, {S32, S16}}) 767 .narrowScalarFor({{S64, S16}}, changeTo(0, S32)) 768 .scalarize(0); 769 770 getActionDefinitionsBuilder(G_FSUB) 771 // Use actual fsub instruction 772 .legalFor({S32}) 773 // Must use fadd + fneg 774 .lowerFor({S64, S16, V2S16}) 775 .scalarize(0) 776 .clampScalar(0, S32, S64); 777 778 // Whether this is legal depends on the floating point mode for the function. 779 auto &FMad = getActionDefinitionsBuilder(G_FMAD); 780 if (ST.hasMadF16() && ST.hasMadMacF32Insts()) 781 FMad.customFor({S32, S16}); 782 else if (ST.hasMadMacF32Insts()) 783 FMad.customFor({S32}); 784 else if (ST.hasMadF16()) 785 FMad.customFor({S16}); 786 FMad.scalarize(0) 787 .lower(); 788 789 auto &FRem = getActionDefinitionsBuilder(G_FREM); 790 if (ST.has16BitInsts()) { 791 FRem.customFor({S16, S32, S64}); 792 } else { 793 FRem.minScalar(0, S32) 794 .customFor({S32, S64}); 795 } 796 FRem.scalarize(0); 797 798 // TODO: Do we need to clamp maximum bitwidth? 799 getActionDefinitionsBuilder(G_TRUNC) 800 .legalIf(isScalar(0)) 801 .legalFor({{V2S16, V2S32}}) 802 .clampMaxNumElements(0, S16, 2) 803 // Avoid scalarizing in cases that should be truly illegal. In unresolvable 804 // situations (like an invalid implicit use), we don't want to infinite loop 805 // in the legalizer. 806 .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0)) 807 .alwaysLegal(); 808 809 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) 810 .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, 811 {S32, S1}, {S64, S1}, {S16, S1}}) 812 .scalarize(0) 813 .clampScalar(0, S32, S64) 814 .widenScalarToNextPow2(1, 32); 815 816 // TODO: Split s1->s64 during regbankselect for VALU. 817 auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) 818 .legalFor({{S32, S32}, {S64, S32}, {S16, S32}}) 819 .lowerIf(typeIs(1, S1)) 820 .customFor({{S32, S64}, {S64, S64}}); 821 if (ST.has16BitInsts()) 822 IToFP.legalFor({{S16, S16}}); 823 IToFP.clampScalar(1, S32, S64) 824 .minScalar(0, S32) 825 .scalarize(0) 826 .widenScalarToNextPow2(1); 827 828 auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) 829 .legalFor({{S32, S32}, {S32, S64}, {S32, S16}}) 830 .customFor({{S64, S32}, {S64, S64}}) 831 .narrowScalarFor({{S64, S16}}, changeTo(0, S32)); 832 if (ST.has16BitInsts()) 833 FPToI.legalFor({{S16, S16}}); 834 else 835 FPToI.minScalar(1, S32); 836 837 FPToI.minScalar(0, S32) 838 .widenScalarToNextPow2(0, 32) 839 .scalarize(0) 840 .lower(); 841 842 // Lower roundeven into G_FRINT 843 getActionDefinitionsBuilder({G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN}) 844 .scalarize(0) 845 .lower(); 846 847 if (ST.has16BitInsts()) { 848 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 849 .legalFor({S16, S32, S64}) 850 .clampScalar(0, S16, S64) 851 .scalarize(0); 852 } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { 853 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 854 .legalFor({S32, S64}) 855 .clampScalar(0, S32, S64) 856 .scalarize(0); 857 } else { 858 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 859 .legalFor({S32}) 860 .customFor({S64}) 861 .clampScalar(0, S32, S64) 862 .scalarize(0); 863 } 864 865 getActionDefinitionsBuilder(G_PTR_ADD) 866 .legalIf(all(isPointer(0), sameSize(0, 1))) 867 .scalarize(0) 868 .scalarSameSizeAs(1, 0); 869 870 getActionDefinitionsBuilder(G_PTRMASK) 871 .legalIf(all(sameSize(0, 1), typeInSet(1, {S64, S32}))) 872 .scalarSameSizeAs(1, 0) 873 .scalarize(0); 874 875 auto &CmpBuilder = 876 getActionDefinitionsBuilder(G_ICMP) 877 // The compare output type differs based on the register bank of the output, 878 // so make both s1 and s32 legal. 879 // 880 // Scalar compares producing output in scc will be promoted to s32, as that 881 // is the allocatable register type that will be needed for the copy from 882 // scc. This will be promoted during RegBankSelect, and we assume something 883 // before that won't try to use s32 result types. 884 // 885 // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg 886 // bank. 887 .legalForCartesianProduct( 888 {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) 889 .legalForCartesianProduct( 890 {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}); 891 if (ST.has16BitInsts()) { 892 CmpBuilder.legalFor({{S1, S16}}); 893 } 894 895 CmpBuilder 896 .widenScalarToNextPow2(1) 897 .clampScalar(1, S32, S64) 898 .scalarize(0) 899 .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1))); 900 901 getActionDefinitionsBuilder(G_FCMP) 902 .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase) 903 .widenScalarToNextPow2(1) 904 .clampScalar(1, S32, S64) 905 .scalarize(0); 906 907 // FIXME: fpow has a selection pattern that should move to custom lowering. 908 auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2}); 909 if (ST.has16BitInsts()) 910 Exp2Ops.legalFor({S32, S16}); 911 else 912 Exp2Ops.legalFor({S32}); 913 Exp2Ops.clampScalar(0, MinScalarFPTy, S32); 914 Exp2Ops.scalarize(0); 915 916 auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW}); 917 if (ST.has16BitInsts()) 918 ExpOps.customFor({{S32}, {S16}}); 919 else 920 ExpOps.customFor({S32}); 921 ExpOps.clampScalar(0, MinScalarFPTy, S32) 922 .scalarize(0); 923 924 getActionDefinitionsBuilder(G_FPOWI) 925 .clampScalar(0, MinScalarFPTy, S32) 926 .lower(); 927 928 // The 64-bit versions produce 32-bit results, but only on the SALU. 929 getActionDefinitionsBuilder(G_CTPOP) 930 .legalFor({{S32, S32}, {S32, S64}}) 931 .clampScalar(0, S32, S32) 932 .clampScalar(1, S32, S64) 933 .scalarize(0) 934 .widenScalarToNextPow2(0, 32) 935 .widenScalarToNextPow2(1, 32); 936 937 // The hardware instructions return a different result on 0 than the generic 938 // instructions expect. The hardware produces -1, but these produce the 939 // bitwidth. 940 getActionDefinitionsBuilder({G_CTLZ, G_CTTZ}) 941 .scalarize(0) 942 .clampScalar(0, S32, S32) 943 .clampScalar(1, S32, S64) 944 .widenScalarToNextPow2(0, 32) 945 .widenScalarToNextPow2(1, 32) 946 .custom(); 947 948 // The 64-bit versions produce 32-bit results, but only on the SALU. 949 getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF}) 950 .legalFor({{S32, S32}, {S32, S64}}) 951 .clampScalar(0, S32, S32) 952 .clampScalar(1, S32, S64) 953 .scalarize(0) 954 .widenScalarToNextPow2(0, 32) 955 .widenScalarToNextPow2(1, 32); 956 957 // S64 is only legal on SALU, and needs to be broken into 32-bit elements in 958 // RegBankSelect. 959 getActionDefinitionsBuilder(G_BITREVERSE) 960 .legalFor({S32, S64}) 961 .clampScalar(0, S32, S64) 962 .scalarize(0) 963 .widenScalarToNextPow2(0); 964 965 if (ST.has16BitInsts()) { 966 getActionDefinitionsBuilder(G_BSWAP) 967 .legalFor({S16, S32, V2S16}) 968 .clampMaxNumElements(0, S16, 2) 969 // FIXME: Fixing non-power-of-2 before clamp is workaround for 970 // narrowScalar limitation. 971 .widenScalarToNextPow2(0) 972 .clampScalar(0, S16, S32) 973 .scalarize(0); 974 975 if (ST.hasVOP3PInsts()) { 976 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS}) 977 .legalFor({S32, S16, V2S16}) 978 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 979 .clampMaxNumElements(0, S16, 2) 980 .minScalar(0, S16) 981 .widenScalarToNextPow2(0) 982 .scalarize(0) 983 .lower(); 984 } else { 985 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS}) 986 .legalFor({S32, S16}) 987 .widenScalarToNextPow2(0) 988 .minScalar(0, S16) 989 .scalarize(0) 990 .lower(); 991 } 992 } else { 993 // TODO: Should have same legality without v_perm_b32 994 getActionDefinitionsBuilder(G_BSWAP) 995 .legalFor({S32}) 996 .lowerIf(scalarNarrowerThan(0, 32)) 997 // FIXME: Fixing non-power-of-2 before clamp is workaround for 998 // narrowScalar limitation. 999 .widenScalarToNextPow2(0) 1000 .maxScalar(0, S32) 1001 .scalarize(0) 1002 .lower(); 1003 1004 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS}) 1005 .legalFor({S32}) 1006 .minScalar(0, S32) 1007 .widenScalarToNextPow2(0) 1008 .scalarize(0) 1009 .lower(); 1010 } 1011 1012 getActionDefinitionsBuilder(G_INTTOPTR) 1013 // List the common cases 1014 .legalForCartesianProduct(AddrSpaces64, {S64}) 1015 .legalForCartesianProduct(AddrSpaces32, {S32}) 1016 .scalarize(0) 1017 // Accept any address space as long as the size matches 1018 .legalIf(sameSize(0, 1)) 1019 .widenScalarIf(smallerThan(1, 0), 1020 [](const LegalityQuery &Query) { 1021 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 1022 }) 1023 .narrowScalarIf(largerThan(1, 0), 1024 [](const LegalityQuery &Query) { 1025 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 1026 }); 1027 1028 getActionDefinitionsBuilder(G_PTRTOINT) 1029 // List the common cases 1030 .legalForCartesianProduct(AddrSpaces64, {S64}) 1031 .legalForCartesianProduct(AddrSpaces32, {S32}) 1032 .scalarize(0) 1033 // Accept any address space as long as the size matches 1034 .legalIf(sameSize(0, 1)) 1035 .widenScalarIf(smallerThan(0, 1), 1036 [](const LegalityQuery &Query) { 1037 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 1038 }) 1039 .narrowScalarIf( 1040 largerThan(0, 1), 1041 [](const LegalityQuery &Query) { 1042 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 1043 }); 1044 1045 getActionDefinitionsBuilder(G_ADDRSPACE_CAST) 1046 .scalarize(0) 1047 .custom(); 1048 1049 const auto needToSplitMemOp = [=](const LegalityQuery &Query, 1050 bool IsLoad) -> bool { 1051 const LLT DstTy = Query.Types[0]; 1052 1053 // Split vector extloads. 1054 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits(); 1055 unsigned AlignBits = Query.MMODescrs[0].AlignInBits; 1056 1057 if (MemSize < DstTy.getSizeInBits()) 1058 MemSize = std::max(MemSize, AlignBits); 1059 1060 if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize) 1061 return true; 1062 1063 const LLT PtrTy = Query.Types[1]; 1064 unsigned AS = PtrTy.getAddressSpace(); 1065 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 1066 return true; 1067 1068 // Catch weird sized loads that don't evenly divide into the access sizes 1069 // TODO: May be able to widen depending on alignment etc. 1070 unsigned NumRegs = (MemSize + 31) / 32; 1071 if (NumRegs == 3) { 1072 if (!ST.hasDwordx3LoadStores()) 1073 return true; 1074 } else { 1075 // If the alignment allows, these should have been widened. 1076 if (!isPowerOf2_32(NumRegs)) 1077 return true; 1078 } 1079 1080 if (AlignBits < MemSize) { 1081 const SITargetLowering *TLI = ST.getTargetLowering(); 1082 return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, 1083 Align(AlignBits / 8)); 1084 } 1085 1086 return false; 1087 }; 1088 1089 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32; 1090 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16; 1091 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8; 1092 1093 // TODO: Refine based on subtargets which support unaligned access or 128-bit 1094 // LDS 1095 // TODO: Unsupported flat for SI. 1096 1097 for (unsigned Op : {G_LOAD, G_STORE}) { 1098 const bool IsStore = Op == G_STORE; 1099 1100 auto &Actions = getActionDefinitionsBuilder(Op); 1101 // Explicitly list some common cases. 1102 // TODO: Does this help compile time at all? 1103 Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, S32, GlobalAlign32}, 1104 {V2S32, GlobalPtr, V2S32, GlobalAlign32}, 1105 {V4S32, GlobalPtr, V4S32, GlobalAlign32}, 1106 {S64, GlobalPtr, S64, GlobalAlign32}, 1107 {V2S64, GlobalPtr, V2S64, GlobalAlign32}, 1108 {V2S16, GlobalPtr, V2S16, GlobalAlign32}, 1109 {S32, GlobalPtr, S8, GlobalAlign8}, 1110 {S32, GlobalPtr, S16, GlobalAlign16}, 1111 1112 {S32, LocalPtr, S32, 32}, 1113 {S64, LocalPtr, S64, 32}, 1114 {V2S32, LocalPtr, V2S32, 32}, 1115 {S32, LocalPtr, S8, 8}, 1116 {S32, LocalPtr, S16, 16}, 1117 {V2S16, LocalPtr, S32, 32}, 1118 1119 {S32, PrivatePtr, S32, 32}, 1120 {S32, PrivatePtr, S8, 8}, 1121 {S32, PrivatePtr, S16, 16}, 1122 {V2S16, PrivatePtr, S32, 32}, 1123 1124 {S32, ConstantPtr, S32, GlobalAlign32}, 1125 {V2S32, ConstantPtr, V2S32, GlobalAlign32}, 1126 {V4S32, ConstantPtr, V4S32, GlobalAlign32}, 1127 {S64, ConstantPtr, S64, GlobalAlign32}, 1128 {V2S32, ConstantPtr, V2S32, GlobalAlign32}}); 1129 Actions.legalIf( 1130 [=](const LegalityQuery &Query) -> bool { 1131 return isLoadStoreLegal(ST, Query); 1132 }); 1133 1134 // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to 1135 // 64-bits. 1136 // 1137 // TODO: Should generalize bitcast action into coerce, which will also cover 1138 // inserting addrspacecasts. 1139 Actions.customIf(typeIs(1, Constant32Ptr)); 1140 1141 // Turn any illegal element vectors into something easier to deal 1142 // with. These will ultimately produce 32-bit scalar shifts to extract the 1143 // parts anyway. 1144 // 1145 // For odd 16-bit element vectors, prefer to split those into pieces with 1146 // 16-bit vector parts. 1147 Actions.bitcastIf( 1148 [=](const LegalityQuery &Query) -> bool { 1149 return shouldBitcastLoadStoreType(ST, Query.Types[0], 1150 Query.MMODescrs[0].MemoryTy); 1151 }, bitcastToRegisterType(0)); 1152 1153 if (!IsStore) { 1154 // Widen suitably aligned loads by loading extra bytes. The standard 1155 // legalization actions can't properly express widening memory operands. 1156 Actions.customIf([=](const LegalityQuery &Query) -> bool { 1157 return shouldWidenLoad(ST, Query, G_LOAD); 1158 }); 1159 } 1160 1161 // FIXME: load/store narrowing should be moved to lower action 1162 Actions 1163 .narrowScalarIf( 1164 [=](const LegalityQuery &Query) -> bool { 1165 return !Query.Types[0].isVector() && 1166 needToSplitMemOp(Query, Op == G_LOAD); 1167 }, 1168 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1169 const LLT DstTy = Query.Types[0]; 1170 const LLT PtrTy = Query.Types[1]; 1171 1172 const unsigned DstSize = DstTy.getSizeInBits(); 1173 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits(); 1174 1175 // Split extloads. 1176 if (DstSize > MemSize) 1177 return std::make_pair(0, LLT::scalar(MemSize)); 1178 1179 if (!isPowerOf2_32(DstSize)) { 1180 // We're probably decomposing an odd sized store. Try to split 1181 // to the widest type. TODO: Account for alignment. As-is it 1182 // should be OK, since the new parts will be further legalized. 1183 unsigned FloorSize = PowerOf2Floor(DstSize); 1184 return std::make_pair(0, LLT::scalar(FloorSize)); 1185 } 1186 1187 if (DstSize > 32 && (DstSize % 32 != 0)) { 1188 // FIXME: Need a way to specify non-extload of larger size if 1189 // suitably aligned. 1190 return std::make_pair(0, LLT::scalar(32 * (DstSize / 32))); 1191 } 1192 1193 unsigned MaxSize = maxSizeForAddrSpace(ST, 1194 PtrTy.getAddressSpace(), 1195 Op == G_LOAD); 1196 if (MemSize > MaxSize) 1197 return std::make_pair(0, LLT::scalar(MaxSize)); 1198 1199 unsigned Align = Query.MMODescrs[0].AlignInBits; 1200 return std::make_pair(0, LLT::scalar(Align)); 1201 }) 1202 .fewerElementsIf( 1203 [=](const LegalityQuery &Query) -> bool { 1204 return Query.Types[0].isVector() && 1205 needToSplitMemOp(Query, Op == G_LOAD); 1206 }, 1207 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1208 const LLT DstTy = Query.Types[0]; 1209 const LLT PtrTy = Query.Types[1]; 1210 1211 LLT EltTy = DstTy.getElementType(); 1212 unsigned MaxSize = maxSizeForAddrSpace(ST, 1213 PtrTy.getAddressSpace(), 1214 Op == G_LOAD); 1215 1216 // FIXME: Handle widened to power of 2 results better. This ends 1217 // up scalarizing. 1218 // FIXME: 3 element stores scalarized on SI 1219 1220 // Split if it's too large for the address space. 1221 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits(); 1222 if (MemSize > MaxSize) { 1223 unsigned NumElts = DstTy.getNumElements(); 1224 unsigned EltSize = EltTy.getSizeInBits(); 1225 1226 if (MaxSize % EltSize == 0) { 1227 return std::make_pair( 1228 0, LLT::scalarOrVector( 1229 ElementCount::getFixed(MaxSize / EltSize), EltTy)); 1230 } 1231 1232 unsigned NumPieces = MemSize / MaxSize; 1233 1234 // FIXME: Refine when odd breakdowns handled 1235 // The scalars will need to be re-legalized. 1236 if (NumPieces == 1 || NumPieces >= NumElts || 1237 NumElts % NumPieces != 0) 1238 return std::make_pair(0, EltTy); 1239 1240 return std::make_pair( 1241 0, LLT::fixed_vector(NumElts / NumPieces, EltTy)); 1242 } 1243 1244 // FIXME: We could probably handle weird extending loads better. 1245 if (DstTy.getSizeInBits() > MemSize) 1246 return std::make_pair(0, EltTy); 1247 1248 unsigned EltSize = EltTy.getSizeInBits(); 1249 unsigned DstSize = DstTy.getSizeInBits(); 1250 if (!isPowerOf2_32(DstSize)) { 1251 // We're probably decomposing an odd sized store. Try to split 1252 // to the widest type. TODO: Account for alignment. As-is it 1253 // should be OK, since the new parts will be further legalized. 1254 unsigned FloorSize = PowerOf2Floor(DstSize); 1255 return std::make_pair( 1256 0, LLT::scalarOrVector( 1257 ElementCount::getFixed(FloorSize / EltSize), EltTy)); 1258 } 1259 1260 // Need to split because of alignment. 1261 unsigned Align = Query.MMODescrs[0].AlignInBits; 1262 if (EltSize > Align && 1263 (EltSize / Align < DstTy.getNumElements())) { 1264 return std::make_pair( 1265 0, LLT::fixed_vector(EltSize / Align, EltTy)); 1266 } 1267 1268 // May need relegalization for the scalars. 1269 return std::make_pair(0, EltTy); 1270 }) 1271 .minScalar(0, S32) 1272 .narrowScalarIf(isWideScalarExtLoadTruncStore(0), changeTo(0, S32)) 1273 .widenScalarToNextPow2(0) 1274 .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0)) 1275 .lower(); 1276 } 1277 1278 // FIXME: Unaligned accesses not lowered. 1279 auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) 1280 .legalForTypesWithMemDesc({{S32, GlobalPtr, S8, 8}, 1281 {S32, GlobalPtr, S16, 2 * 8}, 1282 {S32, LocalPtr, S8, 8}, 1283 {S32, LocalPtr, S16, 16}, 1284 {S32, PrivatePtr, S8, 8}, 1285 {S32, PrivatePtr, S16, 16}, 1286 {S32, ConstantPtr, S8, 8}, 1287 {S32, ConstantPtr, S16, 2 * 8}}) 1288 .legalIf( 1289 [=](const LegalityQuery &Query) -> bool { 1290 return isLoadStoreLegal(ST, Query); 1291 }); 1292 1293 if (ST.hasFlatAddressSpace()) { 1294 ExtLoads.legalForTypesWithMemDesc( 1295 {{S32, FlatPtr, S8, 8}, {S32, FlatPtr, S16, 16}}); 1296 } 1297 1298 // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to 1299 // 64-bits. 1300 // 1301 // TODO: Should generalize bitcast action into coerce, which will also cover 1302 // inserting addrspacecasts. 1303 ExtLoads.customIf(typeIs(1, Constant32Ptr)); 1304 1305 ExtLoads.clampScalar(0, S32, S32) 1306 .widenScalarToNextPow2(0) 1307 .lower(); 1308 1309 auto &Atomics = getActionDefinitionsBuilder( 1310 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, 1311 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, 1312 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, 1313 G_ATOMICRMW_UMIN}) 1314 .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, 1315 {S64, GlobalPtr}, {S64, LocalPtr}, 1316 {S32, RegionPtr}, {S64, RegionPtr}}); 1317 if (ST.hasFlatAddressSpace()) { 1318 Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); 1319 } 1320 1321 auto &Atomic = getActionDefinitionsBuilder(G_ATOMICRMW_FADD); 1322 if (ST.hasLDSFPAtomicAdd()) { 1323 Atomic.legalFor({{S32, LocalPtr}, {S32, RegionPtr}}); 1324 if (ST.hasGFX90AInsts()) 1325 Atomic.legalFor({{S64, LocalPtr}}); 1326 } 1327 if (ST.hasAtomicFaddInsts()) 1328 Atomic.legalFor({{S32, GlobalPtr}}); 1329 1330 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output 1331 // demarshalling 1332 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG) 1333 .customFor({{S32, GlobalPtr}, {S64, GlobalPtr}, 1334 {S32, FlatPtr}, {S64, FlatPtr}}) 1335 .legalFor({{S32, LocalPtr}, {S64, LocalPtr}, 1336 {S32, RegionPtr}, {S64, RegionPtr}}); 1337 // TODO: Pointer types, any 32-bit or 64-bit vector 1338 1339 // Condition should be s32 for scalar, s1 for vector. 1340 getActionDefinitionsBuilder(G_SELECT) 1341 .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, GlobalPtr, 1342 LocalPtr, FlatPtr, PrivatePtr, 1343 LLT::fixed_vector(2, LocalPtr), 1344 LLT::fixed_vector(2, PrivatePtr)}, 1345 {S1, S32}) 1346 .clampScalar(0, S16, S64) 1347 .scalarize(1) 1348 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 1349 .fewerElementsIf(numElementsNotEven(0), scalarize(0)) 1350 .clampMaxNumElements(0, S32, 2) 1351 .clampMaxNumElements(0, LocalPtr, 2) 1352 .clampMaxNumElements(0, PrivatePtr, 2) 1353 .scalarize(0) 1354 .widenScalarToNextPow2(0) 1355 .legalIf(all(isPointer(0), typeInSet(1, {S1, S32}))); 1356 1357 // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can 1358 // be more flexible with the shift amount type. 1359 auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) 1360 .legalFor({{S32, S32}, {S64, S32}}); 1361 if (ST.has16BitInsts()) { 1362 if (ST.hasVOP3PInsts()) { 1363 Shifts.legalFor({{S16, S16}, {V2S16, V2S16}}) 1364 .clampMaxNumElements(0, S16, 2); 1365 } else 1366 Shifts.legalFor({{S16, S16}}); 1367 1368 // TODO: Support 16-bit shift amounts for all types 1369 Shifts.widenScalarIf( 1370 [=](const LegalityQuery &Query) { 1371 // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a 1372 // 32-bit amount. 1373 const LLT ValTy = Query.Types[0]; 1374 const LLT AmountTy = Query.Types[1]; 1375 return ValTy.getSizeInBits() <= 16 && 1376 AmountTy.getSizeInBits() < 16; 1377 }, changeTo(1, S16)); 1378 Shifts.maxScalarIf(typeIs(0, S16), 1, S16); 1379 Shifts.clampScalar(1, S32, S32); 1380 Shifts.clampScalar(0, S16, S64); 1381 Shifts.widenScalarToNextPow2(0, 16); 1382 1383 getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT}) 1384 .minScalar(0, S16) 1385 .scalarize(0) 1386 .lower(); 1387 } else { 1388 // Make sure we legalize the shift amount type first, as the general 1389 // expansion for the shifted type will produce much worse code if it hasn't 1390 // been truncated already. 1391 Shifts.clampScalar(1, S32, S32); 1392 Shifts.clampScalar(0, S32, S64); 1393 Shifts.widenScalarToNextPow2(0, 32); 1394 1395 getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT}) 1396 .minScalar(0, S32) 1397 .scalarize(0) 1398 .lower(); 1399 } 1400 Shifts.scalarize(0); 1401 1402 for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { 1403 unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; 1404 unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; 1405 unsigned IdxTypeIdx = 2; 1406 1407 getActionDefinitionsBuilder(Op) 1408 .customIf([=](const LegalityQuery &Query) { 1409 const LLT EltTy = Query.Types[EltTypeIdx]; 1410 const LLT VecTy = Query.Types[VecTypeIdx]; 1411 const LLT IdxTy = Query.Types[IdxTypeIdx]; 1412 const unsigned EltSize = EltTy.getSizeInBits(); 1413 return (EltSize == 32 || EltSize == 64) && 1414 VecTy.getSizeInBits() % 32 == 0 && 1415 VecTy.getSizeInBits() <= MaxRegisterSize && 1416 IdxTy.getSizeInBits() == 32; 1417 }) 1418 .bitcastIf(all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltNarrowerThan(VecTypeIdx, 32)), 1419 bitcastToVectorElement32(VecTypeIdx)) 1420 //.bitcastIf(vectorSmallerThan(1, 32), bitcastToScalar(1)) 1421 .bitcastIf( 1422 all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltWiderThan(VecTypeIdx, 64)), 1423 [=](const LegalityQuery &Query) { 1424 // For > 64-bit element types, try to turn this into a 64-bit 1425 // element vector since we may be able to do better indexing 1426 // if this is scalar. If not, fall back to 32. 1427 const LLT EltTy = Query.Types[EltTypeIdx]; 1428 const LLT VecTy = Query.Types[VecTypeIdx]; 1429 const unsigned DstEltSize = EltTy.getSizeInBits(); 1430 const unsigned VecSize = VecTy.getSizeInBits(); 1431 1432 const unsigned TargetEltSize = DstEltSize % 64 == 0 ? 64 : 32; 1433 return std::make_pair( 1434 VecTypeIdx, 1435 LLT::fixed_vector(VecSize / TargetEltSize, TargetEltSize)); 1436 }) 1437 .clampScalar(EltTypeIdx, S32, S64) 1438 .clampScalar(VecTypeIdx, S32, S64) 1439 .clampScalar(IdxTypeIdx, S32, S32) 1440 .clampMaxNumElements(VecTypeIdx, S32, 32) 1441 // TODO: Clamp elements for 64-bit vectors? 1442 // It should only be necessary with variable indexes. 1443 // As a last resort, lower to the stack 1444 .lower(); 1445 } 1446 1447 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) 1448 .unsupportedIf([=](const LegalityQuery &Query) { 1449 const LLT &EltTy = Query.Types[1].getElementType(); 1450 return Query.Types[0] != EltTy; 1451 }); 1452 1453 for (unsigned Op : {G_EXTRACT, G_INSERT}) { 1454 unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; 1455 unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; 1456 1457 // FIXME: Doesn't handle extract of illegal sizes. 1458 getActionDefinitionsBuilder(Op) 1459 .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32))) 1460 // FIXME: Multiples of 16 should not be legal. 1461 .legalIf([=](const LegalityQuery &Query) { 1462 const LLT BigTy = Query.Types[BigTyIdx]; 1463 const LLT LitTy = Query.Types[LitTyIdx]; 1464 return (BigTy.getSizeInBits() % 32 == 0) && 1465 (LitTy.getSizeInBits() % 16 == 0); 1466 }) 1467 .widenScalarIf( 1468 [=](const LegalityQuery &Query) { 1469 const LLT BigTy = Query.Types[BigTyIdx]; 1470 return (BigTy.getScalarSizeInBits() < 16); 1471 }, 1472 LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) 1473 .widenScalarIf( 1474 [=](const LegalityQuery &Query) { 1475 const LLT LitTy = Query.Types[LitTyIdx]; 1476 return (LitTy.getScalarSizeInBits() < 16); 1477 }, 1478 LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) 1479 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1480 .widenScalarToNextPow2(BigTyIdx, 32); 1481 1482 } 1483 1484 auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR) 1485 .legalForCartesianProduct(AllS32Vectors, {S32}) 1486 .legalForCartesianProduct(AllS64Vectors, {S64}) 1487 .clampNumElements(0, V16S32, V32S32) 1488 .clampNumElements(0, V2S64, V16S64) 1489 .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16)); 1490 1491 if (ST.hasScalarPackInsts()) { 1492 BuildVector 1493 // FIXME: Should probably widen s1 vectors straight to s32 1494 .minScalarOrElt(0, S16) 1495 // Widen source elements and produce a G_BUILD_VECTOR_TRUNC 1496 .minScalar(1, S32); 1497 1498 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1499 .legalFor({V2S16, S32}) 1500 .lower(); 1501 BuildVector.minScalarOrElt(0, S32); 1502 } else { 1503 BuildVector.customFor({V2S16, S16}); 1504 BuildVector.minScalarOrElt(0, S32); 1505 1506 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1507 .customFor({V2S16, S32}) 1508 .lower(); 1509 } 1510 1511 BuildVector.legalIf(isRegisterType(0)); 1512 1513 // FIXME: Clamp maximum size 1514 getActionDefinitionsBuilder(G_CONCAT_VECTORS) 1515 .legalIf(all(isRegisterType(0), isRegisterType(1))) 1516 .clampMaxNumElements(0, S32, 32) 1517 .clampMaxNumElements(1, S16, 2) // TODO: Make 4? 1518 .clampMaxNumElements(0, S16, 64); 1519 1520 // TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse 1521 // pre-legalize. 1522 if (ST.hasVOP3PInsts()) { 1523 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR) 1524 .customFor({V2S16, V2S16}) 1525 .lower(); 1526 } else 1527 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower(); 1528 1529 // Merge/Unmerge 1530 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { 1531 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; 1532 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; 1533 1534 auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { 1535 const LLT Ty = Query.Types[TypeIdx]; 1536 if (Ty.isVector()) { 1537 const LLT &EltTy = Ty.getElementType(); 1538 if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512) 1539 return true; 1540 if (!isPowerOf2_32(EltTy.getSizeInBits())) 1541 return true; 1542 } 1543 return false; 1544 }; 1545 1546 auto &Builder = getActionDefinitionsBuilder(Op) 1547 .legalIf(all(isRegisterType(0), isRegisterType(1))) 1548 .lowerFor({{S16, V2S16}}) 1549 .lowerIf([=](const LegalityQuery &Query) { 1550 const LLT BigTy = Query.Types[BigTyIdx]; 1551 return BigTy.getSizeInBits() == 32; 1552 }) 1553 // Try to widen to s16 first for small types. 1554 // TODO: Only do this on targets with legal s16 shifts 1555 .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16) 1556 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) 1557 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1558 .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32), 1559 elementTypeIs(1, S16)), 1560 changeTo(1, V2S16)) 1561 // Clamp the little scalar to s8-s256 and make it a power of 2. It's not 1562 // worth considering the multiples of 64 since 2*192 and 2*384 are not 1563 // valid. 1564 .clampScalar(LitTyIdx, S32, S512) 1565 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) 1566 // Break up vectors with weird elements into scalars 1567 .fewerElementsIf( 1568 [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); }, 1569 scalarize(0)) 1570 .fewerElementsIf( 1571 [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); }, 1572 scalarize(1)) 1573 .clampScalar(BigTyIdx, S32, MaxScalar); 1574 1575 if (Op == G_MERGE_VALUES) { 1576 Builder.widenScalarIf( 1577 // TODO: Use 16-bit shifts if legal for 8-bit values? 1578 [=](const LegalityQuery &Query) { 1579 const LLT Ty = Query.Types[LitTyIdx]; 1580 return Ty.getSizeInBits() < 32; 1581 }, 1582 changeTo(LitTyIdx, S32)); 1583 } 1584 1585 Builder.widenScalarIf( 1586 [=](const LegalityQuery &Query) { 1587 const LLT Ty = Query.Types[BigTyIdx]; 1588 return !isPowerOf2_32(Ty.getSizeInBits()) && 1589 Ty.getSizeInBits() % 16 != 0; 1590 }, 1591 [=](const LegalityQuery &Query) { 1592 // Pick the next power of 2, or a multiple of 64 over 128. 1593 // Whichever is smaller. 1594 const LLT &Ty = Query.Types[BigTyIdx]; 1595 unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); 1596 if (NewSizeInBits >= 256) { 1597 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); 1598 if (RoundedTo < NewSizeInBits) 1599 NewSizeInBits = RoundedTo; 1600 } 1601 return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); 1602 }) 1603 // Any vectors left are the wrong size. Scalarize them. 1604 .scalarize(0) 1605 .scalarize(1); 1606 } 1607 1608 // S64 is only legal on SALU, and needs to be broken into 32-bit elements in 1609 // RegBankSelect. 1610 auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG) 1611 .legalFor({{S32}, {S64}}); 1612 1613 if (ST.hasVOP3PInsts()) { 1614 SextInReg.lowerFor({{V2S16}}) 1615 // Prefer to reduce vector widths for 16-bit vectors before lowering, to 1616 // get more vector shift opportunities, since we'll get those when 1617 // expanded. 1618 .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16)); 1619 } else if (ST.has16BitInsts()) { 1620 SextInReg.lowerFor({{S32}, {S64}, {S16}}); 1621 } else { 1622 // Prefer to promote to s32 before lowering if we don't have 16-bit 1623 // shifts. This avoid a lot of intermediate truncate and extend operations. 1624 SextInReg.lowerFor({{S32}, {S64}}); 1625 } 1626 1627 SextInReg 1628 .scalarize(0) 1629 .clampScalar(0, S32, S64) 1630 .lower(); 1631 1632 getActionDefinitionsBuilder({G_ROTR, G_ROTL}) 1633 .scalarize(0) 1634 .lower(); 1635 1636 // TODO: Only Try to form v2s16 with legal packed instructions. 1637 getActionDefinitionsBuilder(G_FSHR) 1638 .legalFor({{S32, S32}}) 1639 .lowerFor({{V2S16, V2S16}}) 1640 .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16)) 1641 .scalarize(0) 1642 .lower(); 1643 1644 if (ST.hasVOP3PInsts()) { 1645 getActionDefinitionsBuilder(G_FSHL) 1646 .lowerFor({{V2S16, V2S16}}) 1647 .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16)) 1648 .scalarize(0) 1649 .lower(); 1650 } else { 1651 getActionDefinitionsBuilder(G_FSHL) 1652 .scalarize(0) 1653 .lower(); 1654 } 1655 1656 getActionDefinitionsBuilder(G_READCYCLECOUNTER) 1657 .legalFor({S64}); 1658 1659 getActionDefinitionsBuilder(G_FENCE) 1660 .alwaysLegal(); 1661 1662 getActionDefinitionsBuilder({G_SMULO, G_UMULO}) 1663 .scalarize(0) 1664 .minScalar(0, S32) 1665 .lower(); 1666 1667 getActionDefinitionsBuilder({G_SBFX, G_UBFX}) 1668 .legalFor({{S32, S32}, {S64, S32}}) 1669 .clampScalar(1, S32, S32) 1670 .clampScalar(0, S32, S64) 1671 .widenScalarToNextPow2(0) 1672 .scalarize(0); 1673 1674 getActionDefinitionsBuilder({ 1675 // TODO: Verify V_BFI_B32 is generated from expanded bit ops 1676 G_FCOPYSIGN, 1677 1678 G_ATOMIC_CMPXCHG_WITH_SUCCESS, 1679 G_ATOMICRMW_NAND, 1680 G_ATOMICRMW_FSUB, 1681 G_READ_REGISTER, 1682 G_WRITE_REGISTER, 1683 1684 G_SADDO, G_SSUBO, 1685 1686 // TODO: Implement 1687 G_FMINIMUM, G_FMAXIMUM}).lower(); 1688 1689 getActionDefinitionsBuilder({G_MEMCPY, G_MEMCPY_INLINE, G_MEMMOVE, G_MEMSET}) 1690 .lower(); 1691 1692 getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE, 1693 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD, 1694 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE}) 1695 .unsupported(); 1696 1697 getLegacyLegalizerInfo().computeTables(); 1698 verify(*ST.getInstrInfo()); 1699 } 1700 1701 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper, 1702 MachineInstr &MI) const { 1703 MachineIRBuilder &B = Helper.MIRBuilder; 1704 MachineRegisterInfo &MRI = *B.getMRI(); 1705 1706 switch (MI.getOpcode()) { 1707 case TargetOpcode::G_ADDRSPACE_CAST: 1708 return legalizeAddrSpaceCast(MI, MRI, B); 1709 case TargetOpcode::G_FRINT: 1710 return legalizeFrint(MI, MRI, B); 1711 case TargetOpcode::G_FCEIL: 1712 return legalizeFceil(MI, MRI, B); 1713 case TargetOpcode::G_FREM: 1714 return legalizeFrem(MI, MRI, B); 1715 case TargetOpcode::G_INTRINSIC_TRUNC: 1716 return legalizeIntrinsicTrunc(MI, MRI, B); 1717 case TargetOpcode::G_SITOFP: 1718 return legalizeITOFP(MI, MRI, B, true); 1719 case TargetOpcode::G_UITOFP: 1720 return legalizeITOFP(MI, MRI, B, false); 1721 case TargetOpcode::G_FPTOSI: 1722 return legalizeFPTOI(MI, MRI, B, true); 1723 case TargetOpcode::G_FPTOUI: 1724 return legalizeFPTOI(MI, MRI, B, false); 1725 case TargetOpcode::G_FMINNUM: 1726 case TargetOpcode::G_FMAXNUM: 1727 case TargetOpcode::G_FMINNUM_IEEE: 1728 case TargetOpcode::G_FMAXNUM_IEEE: 1729 return legalizeMinNumMaxNum(Helper, MI); 1730 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1731 return legalizeExtractVectorElt(MI, MRI, B); 1732 case TargetOpcode::G_INSERT_VECTOR_ELT: 1733 return legalizeInsertVectorElt(MI, MRI, B); 1734 case TargetOpcode::G_SHUFFLE_VECTOR: 1735 return legalizeShuffleVector(MI, MRI, B); 1736 case TargetOpcode::G_FSIN: 1737 case TargetOpcode::G_FCOS: 1738 return legalizeSinCos(MI, MRI, B); 1739 case TargetOpcode::G_GLOBAL_VALUE: 1740 return legalizeGlobalValue(MI, MRI, B); 1741 case TargetOpcode::G_LOAD: 1742 case TargetOpcode::G_SEXTLOAD: 1743 case TargetOpcode::G_ZEXTLOAD: 1744 return legalizeLoad(Helper, MI); 1745 case TargetOpcode::G_FMAD: 1746 return legalizeFMad(MI, MRI, B); 1747 case TargetOpcode::G_FDIV: 1748 return legalizeFDIV(MI, MRI, B); 1749 case TargetOpcode::G_UDIV: 1750 case TargetOpcode::G_UREM: 1751 case TargetOpcode::G_UDIVREM: 1752 return legalizeUnsignedDIV_REM(MI, MRI, B); 1753 case TargetOpcode::G_SDIV: 1754 case TargetOpcode::G_SREM: 1755 case TargetOpcode::G_SDIVREM: 1756 return legalizeSignedDIV_REM(MI, MRI, B); 1757 case TargetOpcode::G_ATOMIC_CMPXCHG: 1758 return legalizeAtomicCmpXChg(MI, MRI, B); 1759 case TargetOpcode::G_FLOG: 1760 return legalizeFlog(MI, B, numbers::ln2f); 1761 case TargetOpcode::G_FLOG10: 1762 return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f); 1763 case TargetOpcode::G_FEXP: 1764 return legalizeFExp(MI, B); 1765 case TargetOpcode::G_FPOW: 1766 return legalizeFPow(MI, B); 1767 case TargetOpcode::G_FFLOOR: 1768 return legalizeFFloor(MI, MRI, B); 1769 case TargetOpcode::G_BUILD_VECTOR: 1770 return legalizeBuildVector(MI, MRI, B); 1771 case TargetOpcode::G_CTLZ: 1772 case TargetOpcode::G_CTTZ: 1773 return legalizeCTLZ_CTTZ(MI, MRI, B); 1774 default: 1775 return false; 1776 } 1777 1778 llvm_unreachable("expected switch to return"); 1779 } 1780 1781 Register AMDGPULegalizerInfo::getSegmentAperture( 1782 unsigned AS, 1783 MachineRegisterInfo &MRI, 1784 MachineIRBuilder &B) const { 1785 MachineFunction &MF = B.getMF(); 1786 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1787 const LLT S32 = LLT::scalar(32); 1788 1789 assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS); 1790 1791 if (ST.hasApertureRegs()) { 1792 // FIXME: Use inline constants (src_{shared, private}_base) instead of 1793 // getreg. 1794 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 1795 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 1796 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 1797 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 1798 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 1799 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 1800 unsigned Encoding = 1801 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 1802 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 1803 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 1804 1805 Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 1806 1807 B.buildInstr(AMDGPU::S_GETREG_B32) 1808 .addDef(GetReg) 1809 .addImm(Encoding); 1810 MRI.setType(GetReg, S32); 1811 1812 auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1); 1813 return B.buildShl(S32, GetReg, ShiftAmt).getReg(0); 1814 } 1815 1816 Register QueuePtr = MRI.createGenericVirtualRegister( 1817 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1818 1819 if (!loadInputValue(QueuePtr, B, AMDGPUFunctionArgInfo::QUEUE_PTR)) 1820 return Register(); 1821 1822 // Offset into amd_queue_t for group_segment_aperture_base_hi / 1823 // private_segment_aperture_base_hi. 1824 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 1825 1826 // TODO: can we be smarter about machine pointer info? 1827 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1828 MachineMemOperand *MMO = MF.getMachineMemOperand( 1829 PtrInfo, 1830 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 1831 MachineMemOperand::MOInvariant, 1832 LLT::scalar(32), commonAlignment(Align(64), StructOffset)); 1833 1834 Register LoadAddr; 1835 1836 B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset); 1837 return B.buildLoad(S32, LoadAddr, *MMO).getReg(0); 1838 } 1839 1840 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast( 1841 MachineInstr &MI, MachineRegisterInfo &MRI, 1842 MachineIRBuilder &B) const { 1843 MachineFunction &MF = B.getMF(); 1844 1845 const LLT S32 = LLT::scalar(32); 1846 Register Dst = MI.getOperand(0).getReg(); 1847 Register Src = MI.getOperand(1).getReg(); 1848 1849 LLT DstTy = MRI.getType(Dst); 1850 LLT SrcTy = MRI.getType(Src); 1851 unsigned DestAS = DstTy.getAddressSpace(); 1852 unsigned SrcAS = SrcTy.getAddressSpace(); 1853 1854 // TODO: Avoid reloading from the queue ptr for each cast, or at least each 1855 // vector element. 1856 assert(!DstTy.isVector()); 1857 1858 const AMDGPUTargetMachine &TM 1859 = static_cast<const AMDGPUTargetMachine &>(MF.getTarget()); 1860 1861 if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) { 1862 MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST)); 1863 return true; 1864 } 1865 1866 if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1867 // Truncate. 1868 B.buildExtract(Dst, Src, 0); 1869 MI.eraseFromParent(); 1870 return true; 1871 } 1872 1873 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1874 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1875 uint32_t AddrHiVal = Info->get32BitAddressHighBits(); 1876 1877 // FIXME: This is a bit ugly due to creating a merge of 2 pointers to 1878 // another. Merge operands are required to be the same type, but creating an 1879 // extra ptrtoint would be kind of pointless. 1880 auto HighAddr = B.buildConstant( 1881 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal); 1882 B.buildMerge(Dst, {Src, HighAddr}); 1883 MI.eraseFromParent(); 1884 return true; 1885 } 1886 1887 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 1888 assert(DestAS == AMDGPUAS::LOCAL_ADDRESS || 1889 DestAS == AMDGPUAS::PRIVATE_ADDRESS); 1890 unsigned NullVal = TM.getNullPointerValue(DestAS); 1891 1892 auto SegmentNull = B.buildConstant(DstTy, NullVal); 1893 auto FlatNull = B.buildConstant(SrcTy, 0); 1894 1895 // Extract low 32-bits of the pointer. 1896 auto PtrLo32 = B.buildExtract(DstTy, Src, 0); 1897 1898 auto CmpRes = 1899 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0)); 1900 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0)); 1901 1902 MI.eraseFromParent(); 1903 return true; 1904 } 1905 1906 if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS) 1907 return false; 1908 1909 if (!ST.hasFlatAddressSpace()) 1910 return false; 1911 1912 auto SegmentNull = 1913 B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS)); 1914 auto FlatNull = 1915 B.buildConstant(DstTy, TM.getNullPointerValue(DestAS)); 1916 1917 Register ApertureReg = getSegmentAperture(SrcAS, MRI, B); 1918 if (!ApertureReg.isValid()) 1919 return false; 1920 1921 auto CmpRes = 1922 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0)); 1923 1924 // Coerce the type of the low half of the result so we can use merge_values. 1925 Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0); 1926 1927 // TODO: Should we allow mismatched types but matching sizes in merges to 1928 // avoid the ptrtoint? 1929 auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg}); 1930 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull); 1931 1932 MI.eraseFromParent(); 1933 return true; 1934 } 1935 1936 bool AMDGPULegalizerInfo::legalizeFrint( 1937 MachineInstr &MI, MachineRegisterInfo &MRI, 1938 MachineIRBuilder &B) const { 1939 Register Src = MI.getOperand(1).getReg(); 1940 LLT Ty = MRI.getType(Src); 1941 assert(Ty.isScalar() && Ty.getSizeInBits() == 64); 1942 1943 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1944 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1945 1946 auto C1 = B.buildFConstant(Ty, C1Val); 1947 auto CopySign = B.buildFCopysign(Ty, C1, Src); 1948 1949 // TODO: Should this propagate fast-math-flags? 1950 auto Tmp1 = B.buildFAdd(Ty, Src, CopySign); 1951 auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign); 1952 1953 auto C2 = B.buildFConstant(Ty, C2Val); 1954 auto Fabs = B.buildFAbs(Ty, Src); 1955 1956 auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2); 1957 B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2); 1958 MI.eraseFromParent(); 1959 return true; 1960 } 1961 1962 bool AMDGPULegalizerInfo::legalizeFceil( 1963 MachineInstr &MI, MachineRegisterInfo &MRI, 1964 MachineIRBuilder &B) const { 1965 1966 const LLT S1 = LLT::scalar(1); 1967 const LLT S64 = LLT::scalar(64); 1968 1969 Register Src = MI.getOperand(1).getReg(); 1970 assert(MRI.getType(Src) == S64); 1971 1972 // result = trunc(src) 1973 // if (src > 0.0 && src != result) 1974 // result += 1.0 1975 1976 auto Trunc = B.buildIntrinsicTrunc(S64, Src); 1977 1978 const auto Zero = B.buildFConstant(S64, 0.0); 1979 const auto One = B.buildFConstant(S64, 1.0); 1980 auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero); 1981 auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc); 1982 auto And = B.buildAnd(S1, Lt0, NeTrunc); 1983 auto Add = B.buildSelect(S64, And, One, Zero); 1984 1985 // TODO: Should this propagate fast-math-flags? 1986 B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add); 1987 return true; 1988 } 1989 1990 bool AMDGPULegalizerInfo::legalizeFrem( 1991 MachineInstr &MI, MachineRegisterInfo &MRI, 1992 MachineIRBuilder &B) const { 1993 Register DstReg = MI.getOperand(0).getReg(); 1994 Register Src0Reg = MI.getOperand(1).getReg(); 1995 Register Src1Reg = MI.getOperand(2).getReg(); 1996 auto Flags = MI.getFlags(); 1997 LLT Ty = MRI.getType(DstReg); 1998 1999 auto Div = B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags); 2000 auto Trunc = B.buildIntrinsicTrunc(Ty, Div, Flags); 2001 auto Neg = B.buildFNeg(Ty, Trunc, Flags); 2002 B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags); 2003 MI.eraseFromParent(); 2004 return true; 2005 } 2006 2007 static MachineInstrBuilder extractF64Exponent(Register Hi, 2008 MachineIRBuilder &B) { 2009 const unsigned FractBits = 52; 2010 const unsigned ExpBits = 11; 2011 LLT S32 = LLT::scalar(32); 2012 2013 auto Const0 = B.buildConstant(S32, FractBits - 32); 2014 auto Const1 = B.buildConstant(S32, ExpBits); 2015 2016 auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false) 2017 .addUse(Hi) 2018 .addUse(Const0.getReg(0)) 2019 .addUse(Const1.getReg(0)); 2020 2021 return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023)); 2022 } 2023 2024 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc( 2025 MachineInstr &MI, MachineRegisterInfo &MRI, 2026 MachineIRBuilder &B) const { 2027 const LLT S1 = LLT::scalar(1); 2028 const LLT S32 = LLT::scalar(32); 2029 const LLT S64 = LLT::scalar(64); 2030 2031 Register Src = MI.getOperand(1).getReg(); 2032 assert(MRI.getType(Src) == S64); 2033 2034 // TODO: Should this use extract since the low half is unused? 2035 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 2036 Register Hi = Unmerge.getReg(1); 2037 2038 // Extract the upper half, since this is where we will find the sign and 2039 // exponent. 2040 auto Exp = extractF64Exponent(Hi, B); 2041 2042 const unsigned FractBits = 52; 2043 2044 // Extract the sign bit. 2045 const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31); 2046 auto SignBit = B.buildAnd(S32, Hi, SignBitMask); 2047 2048 const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1); 2049 2050 const auto Zero32 = B.buildConstant(S32, 0); 2051 2052 // Extend back to 64-bits. 2053 auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit}); 2054 2055 auto Shr = B.buildAShr(S64, FractMask, Exp); 2056 auto Not = B.buildNot(S64, Shr); 2057 auto Tmp0 = B.buildAnd(S64, Src, Not); 2058 auto FiftyOne = B.buildConstant(S32, FractBits - 1); 2059 2060 auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32); 2061 auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne); 2062 2063 auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0); 2064 B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1); 2065 MI.eraseFromParent(); 2066 return true; 2067 } 2068 2069 bool AMDGPULegalizerInfo::legalizeITOFP( 2070 MachineInstr &MI, MachineRegisterInfo &MRI, 2071 MachineIRBuilder &B, bool Signed) const { 2072 2073 Register Dst = MI.getOperand(0).getReg(); 2074 Register Src = MI.getOperand(1).getReg(); 2075 2076 const LLT S64 = LLT::scalar(64); 2077 const LLT S32 = LLT::scalar(32); 2078 2079 assert(MRI.getType(Src) == S64); 2080 2081 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 2082 auto ThirtyTwo = B.buildConstant(S32, 32); 2083 2084 if (MRI.getType(Dst) == S64) { 2085 auto CvtHi = Signed ? B.buildSITOFP(S64, Unmerge.getReg(1)) 2086 : B.buildUITOFP(S64, Unmerge.getReg(1)); 2087 2088 auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0)); 2089 auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false) 2090 .addUse(CvtHi.getReg(0)) 2091 .addUse(ThirtyTwo.getReg(0)); 2092 2093 // TODO: Should this propagate fast-math-flags? 2094 B.buildFAdd(Dst, LdExp, CvtLo); 2095 MI.eraseFromParent(); 2096 return true; 2097 } 2098 2099 assert(MRI.getType(Dst) == S32); 2100 2101 auto One = B.buildConstant(S32, 1); 2102 2103 MachineInstrBuilder ShAmt; 2104 if (Signed) { 2105 auto ThirtyOne = B.buildConstant(S32, 31); 2106 auto X = B.buildXor(S32, Unmerge.getReg(0), Unmerge.getReg(1)); 2107 auto OppositeSign = B.buildAShr(S32, X, ThirtyOne); 2108 auto MaxShAmt = B.buildAdd(S32, ThirtyTwo, OppositeSign); 2109 auto LS = B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {S32}, 2110 /*HasSideEffects=*/false) 2111 .addUse(Unmerge.getReg(1)); 2112 auto LS2 = B.buildSub(S32, LS, One); 2113 ShAmt = B.buildUMin(S32, LS2, MaxShAmt); 2114 } else 2115 ShAmt = B.buildCTLZ(S32, Unmerge.getReg(1)); 2116 auto Norm = B.buildShl(S64, Src, ShAmt); 2117 auto Unmerge2 = B.buildUnmerge({S32, S32}, Norm); 2118 auto Adjust = B.buildUMin(S32, One, Unmerge2.getReg(0)); 2119 auto Norm2 = B.buildOr(S32, Unmerge2.getReg(1), Adjust); 2120 auto FVal = Signed ? B.buildSITOFP(S32, Norm2) : B.buildUITOFP(S32, Norm2); 2121 auto Scale = B.buildSub(S32, ThirtyTwo, ShAmt); 2122 B.buildIntrinsic(Intrinsic::amdgcn_ldexp, ArrayRef<Register>{Dst}, 2123 /*HasSideEffects=*/false) 2124 .addUse(FVal.getReg(0)) 2125 .addUse(Scale.getReg(0)); 2126 MI.eraseFromParent(); 2127 return true; 2128 } 2129 2130 // TODO: Copied from DAG implementation. Verify logic and document how this 2131 // actually works. 2132 bool AMDGPULegalizerInfo::legalizeFPTOI(MachineInstr &MI, 2133 MachineRegisterInfo &MRI, 2134 MachineIRBuilder &B, 2135 bool Signed) const { 2136 2137 Register Dst = MI.getOperand(0).getReg(); 2138 Register Src = MI.getOperand(1).getReg(); 2139 2140 const LLT S64 = LLT::scalar(64); 2141 const LLT S32 = LLT::scalar(32); 2142 2143 const LLT SrcLT = MRI.getType(Src); 2144 assert((SrcLT == S32 || SrcLT == S64) && MRI.getType(Dst) == S64); 2145 2146 unsigned Flags = MI.getFlags(); 2147 2148 // The basic idea of converting a floating point number into a pair of 32-bit 2149 // integers is illustrated as follows: 2150 // 2151 // tf := trunc(val); 2152 // hif := floor(tf * 2^-32); 2153 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2154 // hi := fptoi(hif); 2155 // lo := fptoi(lof); 2156 // 2157 auto Trunc = B.buildIntrinsicTrunc(SrcLT, Src, Flags); 2158 MachineInstrBuilder Sign; 2159 if (Signed && SrcLT == S32) { 2160 // However, a 32-bit floating point number has only 23 bits mantissa and 2161 // it's not enough to hold all the significant bits of `lof` if val is 2162 // negative. To avoid the loss of precision, We need to take the absolute 2163 // value after truncating and flip the result back based on the original 2164 // signedness. 2165 Sign = B.buildAShr(S32, Src, B.buildConstant(S32, 31)); 2166 Trunc = B.buildFAbs(S32, Trunc, Flags); 2167 } 2168 MachineInstrBuilder K0, K1; 2169 if (SrcLT == S64) { 2170 K0 = B.buildFConstant(S64, 2171 BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000))); 2172 K1 = B.buildFConstant(S64, 2173 BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000))); 2174 } else { 2175 K0 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000))); 2176 K1 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000))); 2177 } 2178 2179 auto Mul = B.buildFMul(SrcLT, Trunc, K0, Flags); 2180 auto FloorMul = B.buildFFloor(SrcLT, Mul, Flags); 2181 auto Fma = B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags); 2182 2183 auto Hi = (Signed && SrcLT == S64) ? B.buildFPTOSI(S32, FloorMul) 2184 : B.buildFPTOUI(S32, FloorMul); 2185 auto Lo = B.buildFPTOUI(S32, Fma); 2186 2187 if (Signed && SrcLT == S32) { 2188 // Flip the result based on the signedness, which is either all 0s or 1s. 2189 Sign = B.buildMerge(S64, {Sign, Sign}); 2190 // r := xor({lo, hi}, sign) - sign; 2191 B.buildSub(Dst, B.buildXor(S64, B.buildMerge(S64, {Lo, Hi}), Sign), Sign); 2192 } else 2193 B.buildMerge(Dst, {Lo, Hi}); 2194 MI.eraseFromParent(); 2195 2196 return true; 2197 } 2198 2199 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper, 2200 MachineInstr &MI) const { 2201 MachineFunction &MF = Helper.MIRBuilder.getMF(); 2202 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2203 2204 const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE || 2205 MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE; 2206 2207 // With ieee_mode disabled, the instructions have the correct behavior 2208 // already for G_FMINNUM/G_FMAXNUM 2209 if (!MFI->getMode().IEEE) 2210 return !IsIEEEOp; 2211 2212 if (IsIEEEOp) 2213 return true; 2214 2215 return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized; 2216 } 2217 2218 bool AMDGPULegalizerInfo::legalizeExtractVectorElt( 2219 MachineInstr &MI, MachineRegisterInfo &MRI, 2220 MachineIRBuilder &B) const { 2221 // TODO: Should move some of this into LegalizerHelper. 2222 2223 // TODO: Promote dynamic indexing of s16 to s32 2224 2225 // FIXME: Artifact combiner probably should have replaced the truncated 2226 // constant before this, so we shouldn't need 2227 // getConstantVRegValWithLookThrough. 2228 Optional<ValueAndVReg> MaybeIdxVal = 2229 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2230 if (!MaybeIdxVal) // Dynamic case will be selected to register indexing. 2231 return true; 2232 const int64_t IdxVal = MaybeIdxVal->Value.getSExtValue(); 2233 2234 Register Dst = MI.getOperand(0).getReg(); 2235 Register Vec = MI.getOperand(1).getReg(); 2236 2237 LLT VecTy = MRI.getType(Vec); 2238 LLT EltTy = VecTy.getElementType(); 2239 assert(EltTy == MRI.getType(Dst)); 2240 2241 if (IdxVal < VecTy.getNumElements()) 2242 B.buildExtract(Dst, Vec, IdxVal * EltTy.getSizeInBits()); 2243 else 2244 B.buildUndef(Dst); 2245 2246 MI.eraseFromParent(); 2247 return true; 2248 } 2249 2250 bool AMDGPULegalizerInfo::legalizeInsertVectorElt( 2251 MachineInstr &MI, MachineRegisterInfo &MRI, 2252 MachineIRBuilder &B) const { 2253 // TODO: Should move some of this into LegalizerHelper. 2254 2255 // TODO: Promote dynamic indexing of s16 to s32 2256 2257 // FIXME: Artifact combiner probably should have replaced the truncated 2258 // constant before this, so we shouldn't need 2259 // getConstantVRegValWithLookThrough. 2260 Optional<ValueAndVReg> MaybeIdxVal = 2261 getConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI); 2262 if (!MaybeIdxVal) // Dynamic case will be selected to register indexing. 2263 return true; 2264 2265 int64_t IdxVal = MaybeIdxVal->Value.getSExtValue(); 2266 Register Dst = MI.getOperand(0).getReg(); 2267 Register Vec = MI.getOperand(1).getReg(); 2268 Register Ins = MI.getOperand(2).getReg(); 2269 2270 LLT VecTy = MRI.getType(Vec); 2271 LLT EltTy = VecTy.getElementType(); 2272 assert(EltTy == MRI.getType(Ins)); 2273 2274 if (IdxVal < VecTy.getNumElements()) 2275 B.buildInsert(Dst, Vec, Ins, IdxVal * EltTy.getSizeInBits()); 2276 else 2277 B.buildUndef(Dst); 2278 2279 MI.eraseFromParent(); 2280 return true; 2281 } 2282 2283 bool AMDGPULegalizerInfo::legalizeShuffleVector( 2284 MachineInstr &MI, MachineRegisterInfo &MRI, 2285 MachineIRBuilder &B) const { 2286 const LLT V2S16 = LLT::fixed_vector(2, 16); 2287 2288 Register Dst = MI.getOperand(0).getReg(); 2289 Register Src0 = MI.getOperand(1).getReg(); 2290 LLT DstTy = MRI.getType(Dst); 2291 LLT SrcTy = MRI.getType(Src0); 2292 2293 if (SrcTy == V2S16 && DstTy == V2S16 && 2294 AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask())) 2295 return true; 2296 2297 MachineIRBuilder HelperBuilder(MI); 2298 GISelObserverWrapper DummyObserver; 2299 LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder); 2300 return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized; 2301 } 2302 2303 bool AMDGPULegalizerInfo::legalizeSinCos( 2304 MachineInstr &MI, MachineRegisterInfo &MRI, 2305 MachineIRBuilder &B) const { 2306 2307 Register DstReg = MI.getOperand(0).getReg(); 2308 Register SrcReg = MI.getOperand(1).getReg(); 2309 LLT Ty = MRI.getType(DstReg); 2310 unsigned Flags = MI.getFlags(); 2311 2312 Register TrigVal; 2313 auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi); 2314 if (ST.hasTrigReducedRange()) { 2315 auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags); 2316 TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false) 2317 .addUse(MulVal.getReg(0)) 2318 .setMIFlags(Flags).getReg(0); 2319 } else 2320 TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0); 2321 2322 Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ? 2323 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos; 2324 B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false) 2325 .addUse(TrigVal) 2326 .setMIFlags(Flags); 2327 MI.eraseFromParent(); 2328 return true; 2329 } 2330 2331 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy, 2332 MachineIRBuilder &B, 2333 const GlobalValue *GV, 2334 int64_t Offset, 2335 unsigned GAFlags) const { 2336 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 2337 // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered 2338 // to the following code sequence: 2339 // 2340 // For constant address space: 2341 // s_getpc_b64 s[0:1] 2342 // s_add_u32 s0, s0, $symbol 2343 // s_addc_u32 s1, s1, 0 2344 // 2345 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2346 // a fixup or relocation is emitted to replace $symbol with a literal 2347 // constant, which is a pc-relative offset from the encoding of the $symbol 2348 // operand to the global variable. 2349 // 2350 // For global address space: 2351 // s_getpc_b64 s[0:1] 2352 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 2353 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 2354 // 2355 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2356 // fixups or relocations are emitted to replace $symbol@*@lo and 2357 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 2358 // which is a 64-bit pc-relative offset from the encoding of the $symbol 2359 // operand to the global variable. 2360 // 2361 // What we want here is an offset from the value returned by s_getpc 2362 // (which is the address of the s_add_u32 instruction) to the global 2363 // variable, but since the encoding of $symbol starts 4 bytes after the start 2364 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 2365 // small. This requires us to add 4 to the global variable offset in order to 2366 // compute the correct address. Similarly for the s_addc_u32 instruction, the 2367 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 2368 // instruction. 2369 2370 LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2371 2372 Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg : 2373 B.getMRI()->createGenericVirtualRegister(ConstPtrTy); 2374 2375 MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET) 2376 .addDef(PCReg); 2377 2378 MIB.addGlobalAddress(GV, Offset + 4, GAFlags); 2379 if (GAFlags == SIInstrInfo::MO_NONE) 2380 MIB.addImm(0); 2381 else 2382 MIB.addGlobalAddress(GV, Offset + 12, GAFlags + 1); 2383 2384 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass); 2385 2386 if (PtrTy.getSizeInBits() == 32) 2387 B.buildExtract(DstReg, PCReg, 0); 2388 return true; 2389 } 2390 2391 bool AMDGPULegalizerInfo::legalizeGlobalValue( 2392 MachineInstr &MI, MachineRegisterInfo &MRI, 2393 MachineIRBuilder &B) const { 2394 Register DstReg = MI.getOperand(0).getReg(); 2395 LLT Ty = MRI.getType(DstReg); 2396 unsigned AS = Ty.getAddressSpace(); 2397 2398 const GlobalValue *GV = MI.getOperand(1).getGlobal(); 2399 MachineFunction &MF = B.getMF(); 2400 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2401 2402 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 2403 if (!MFI->isModuleEntryFunction() && 2404 !GV->getName().equals("llvm.amdgcn.module.lds")) { 2405 const Function &Fn = MF.getFunction(); 2406 DiagnosticInfoUnsupported BadLDSDecl( 2407 Fn, "local memory global used by non-kernel function", MI.getDebugLoc(), 2408 DS_Warning); 2409 Fn.getContext().diagnose(BadLDSDecl); 2410 2411 // We currently don't have a way to correctly allocate LDS objects that 2412 // aren't directly associated with a kernel. We do force inlining of 2413 // functions that use local objects. However, if these dead functions are 2414 // not eliminated, we don't want a compile time error. Just emit a warning 2415 // and a trap, since there should be no callable path here. 2416 B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2417 B.buildUndef(DstReg); 2418 MI.eraseFromParent(); 2419 return true; 2420 } 2421 2422 // TODO: We could emit code to handle the initialization somewhere. 2423 if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) { 2424 const SITargetLowering *TLI = ST.getTargetLowering(); 2425 if (!TLI->shouldUseLDSConstAddress(GV)) { 2426 MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO); 2427 return true; // Leave in place; 2428 } 2429 2430 if (AS == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) { 2431 Type *Ty = GV->getValueType(); 2432 // HIP uses an unsized array `extern __shared__ T s[]` or similar 2433 // zero-sized type in other languages to declare the dynamic shared 2434 // memory which size is not known at the compile time. They will be 2435 // allocated by the runtime and placed directly after the static 2436 // allocated ones. They all share the same offset. 2437 if (B.getDataLayout().getTypeAllocSize(Ty).isZero()) { 2438 // Adjust alignment for that dynamic shared memory array. 2439 MFI->setDynLDSAlign(B.getDataLayout(), *cast<GlobalVariable>(GV)); 2440 LLT S32 = LLT::scalar(32); 2441 auto Sz = 2442 B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {S32}, false); 2443 B.buildIntToPtr(DstReg, Sz); 2444 MI.eraseFromParent(); 2445 return true; 2446 } 2447 } 2448 2449 B.buildConstant( 2450 DstReg, 2451 MFI->allocateLDSGlobal(B.getDataLayout(), *cast<GlobalVariable>(GV))); 2452 MI.eraseFromParent(); 2453 return true; 2454 } 2455 2456 const Function &Fn = MF.getFunction(); 2457 DiagnosticInfoUnsupported BadInit( 2458 Fn, "unsupported initializer for address space", MI.getDebugLoc()); 2459 Fn.getContext().diagnose(BadInit); 2460 return true; 2461 } 2462 2463 const SITargetLowering *TLI = ST.getTargetLowering(); 2464 2465 if (TLI->shouldEmitFixup(GV)) { 2466 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0); 2467 MI.eraseFromParent(); 2468 return true; 2469 } 2470 2471 if (TLI->shouldEmitPCReloc(GV)) { 2472 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32); 2473 MI.eraseFromParent(); 2474 return true; 2475 } 2476 2477 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2478 Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy); 2479 2480 LLT LoadTy = Ty.getSizeInBits() == 32 ? PtrTy : Ty; 2481 MachineMemOperand *GOTMMO = MF.getMachineMemOperand( 2482 MachinePointerInfo::getGOT(MF), 2483 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 2484 MachineMemOperand::MOInvariant, 2485 LoadTy, Align(8)); 2486 2487 buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32); 2488 2489 if (Ty.getSizeInBits() == 32) { 2490 // Truncate if this is a 32-bit constant adrdess. 2491 auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO); 2492 B.buildExtract(DstReg, Load, 0); 2493 } else 2494 B.buildLoad(DstReg, GOTAddr, *GOTMMO); 2495 2496 MI.eraseFromParent(); 2497 return true; 2498 } 2499 2500 static LLT widenToNextPowerOf2(LLT Ty) { 2501 if (Ty.isVector()) 2502 return Ty.changeElementCount( 2503 ElementCount::getFixed(PowerOf2Ceil(Ty.getNumElements()))); 2504 return LLT::scalar(PowerOf2Ceil(Ty.getSizeInBits())); 2505 } 2506 2507 bool AMDGPULegalizerInfo::legalizeLoad(LegalizerHelper &Helper, 2508 MachineInstr &MI) const { 2509 MachineIRBuilder &B = Helper.MIRBuilder; 2510 MachineRegisterInfo &MRI = *B.getMRI(); 2511 GISelChangeObserver &Observer = Helper.Observer; 2512 2513 Register PtrReg = MI.getOperand(1).getReg(); 2514 LLT PtrTy = MRI.getType(PtrReg); 2515 unsigned AddrSpace = PtrTy.getAddressSpace(); 2516 2517 if (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 2518 LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2519 auto Cast = B.buildAddrSpaceCast(ConstPtr, PtrReg); 2520 Observer.changingInstr(MI); 2521 MI.getOperand(1).setReg(Cast.getReg(0)); 2522 Observer.changedInstr(MI); 2523 return true; 2524 } 2525 2526 if (MI.getOpcode() != AMDGPU::G_LOAD) 2527 return false; 2528 2529 Register ValReg = MI.getOperand(0).getReg(); 2530 LLT ValTy = MRI.getType(ValReg); 2531 2532 MachineMemOperand *MMO = *MI.memoperands_begin(); 2533 const unsigned ValSize = ValTy.getSizeInBits(); 2534 const LLT MemTy = MMO->getMemoryType(); 2535 const Align MemAlign = MMO->getAlign(); 2536 const unsigned MemSize = MemTy.getSizeInBits(); 2537 const unsigned AlignInBits = 8 * MemAlign.value(); 2538 2539 // Widen non-power-of-2 loads to the alignment if needed 2540 if (shouldWidenLoad(ST, MemTy, AlignInBits, AddrSpace, MI.getOpcode())) { 2541 const unsigned WideMemSize = PowerOf2Ceil(MemSize); 2542 2543 // This was already the correct extending load result type, so just adjust 2544 // the memory type. 2545 if (WideMemSize == ValSize) { 2546 MachineFunction &MF = B.getMF(); 2547 2548 MachineMemOperand *WideMMO = 2549 MF.getMachineMemOperand(MMO, 0, WideMemSize / 8); 2550 Observer.changingInstr(MI); 2551 MI.setMemRefs(MF, {WideMMO}); 2552 Observer.changedInstr(MI); 2553 return true; 2554 } 2555 2556 // Don't bother handling edge case that should probably never be produced. 2557 if (ValSize > WideMemSize) 2558 return false; 2559 2560 LLT WideTy = widenToNextPowerOf2(ValTy); 2561 2562 Register WideLoad; 2563 if (!WideTy.isVector()) { 2564 WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0); 2565 B.buildTrunc(ValReg, WideLoad).getReg(0); 2566 } else { 2567 // Extract the subvector. 2568 2569 if (isRegisterType(ValTy)) { 2570 // If this a case where G_EXTRACT is legal, use it. 2571 // (e.g. <3 x s32> -> <4 x s32>) 2572 WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0); 2573 B.buildExtract(ValReg, WideLoad, 0); 2574 } else { 2575 // For cases where the widened type isn't a nice register value, unmerge 2576 // from a widened register (e.g. <3 x s16> -> <4 x s16>) 2577 B.setInsertPt(B.getMBB(), ++B.getInsertPt()); 2578 WideLoad = Helper.widenWithUnmerge(WideTy, ValReg); 2579 B.setInsertPt(B.getMBB(), MI.getIterator()); 2580 B.buildLoadFromOffset(WideLoad, PtrReg, *MMO, 0); 2581 } 2582 } 2583 2584 MI.eraseFromParent(); 2585 return true; 2586 } 2587 2588 return false; 2589 } 2590 2591 bool AMDGPULegalizerInfo::legalizeFMad( 2592 MachineInstr &MI, MachineRegisterInfo &MRI, 2593 MachineIRBuilder &B) const { 2594 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2595 assert(Ty.isScalar()); 2596 2597 MachineFunction &MF = B.getMF(); 2598 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2599 2600 // TODO: Always legal with future ftz flag. 2601 // FIXME: Do we need just output? 2602 if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals()) 2603 return true; 2604 if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals()) 2605 return true; 2606 2607 MachineIRBuilder HelperBuilder(MI); 2608 GISelObserverWrapper DummyObserver; 2609 LegalizerHelper Helper(MF, DummyObserver, HelperBuilder); 2610 return Helper.lowerFMad(MI) == LegalizerHelper::Legalized; 2611 } 2612 2613 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg( 2614 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2615 Register DstReg = MI.getOperand(0).getReg(); 2616 Register PtrReg = MI.getOperand(1).getReg(); 2617 Register CmpVal = MI.getOperand(2).getReg(); 2618 Register NewVal = MI.getOperand(3).getReg(); 2619 2620 assert(AMDGPU::isFlatGlobalAddrSpace(MRI.getType(PtrReg).getAddressSpace()) && 2621 "this should not have been custom lowered"); 2622 2623 LLT ValTy = MRI.getType(CmpVal); 2624 LLT VecTy = LLT::fixed_vector(2, ValTy); 2625 2626 Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0); 2627 2628 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG) 2629 .addDef(DstReg) 2630 .addUse(PtrReg) 2631 .addUse(PackedVal) 2632 .setMemRefs(MI.memoperands()); 2633 2634 MI.eraseFromParent(); 2635 return true; 2636 } 2637 2638 bool AMDGPULegalizerInfo::legalizeFlog( 2639 MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const { 2640 Register Dst = MI.getOperand(0).getReg(); 2641 Register Src = MI.getOperand(1).getReg(); 2642 LLT Ty = B.getMRI()->getType(Dst); 2643 unsigned Flags = MI.getFlags(); 2644 2645 auto Log2Operand = B.buildFLog2(Ty, Src, Flags); 2646 auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted); 2647 2648 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags); 2649 MI.eraseFromParent(); 2650 return true; 2651 } 2652 2653 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI, 2654 MachineIRBuilder &B) const { 2655 Register Dst = MI.getOperand(0).getReg(); 2656 Register Src = MI.getOperand(1).getReg(); 2657 unsigned Flags = MI.getFlags(); 2658 LLT Ty = B.getMRI()->getType(Dst); 2659 2660 auto K = B.buildFConstant(Ty, numbers::log2e); 2661 auto Mul = B.buildFMul(Ty, Src, K, Flags); 2662 B.buildFExp2(Dst, Mul, Flags); 2663 MI.eraseFromParent(); 2664 return true; 2665 } 2666 2667 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI, 2668 MachineIRBuilder &B) const { 2669 Register Dst = MI.getOperand(0).getReg(); 2670 Register Src0 = MI.getOperand(1).getReg(); 2671 Register Src1 = MI.getOperand(2).getReg(); 2672 unsigned Flags = MI.getFlags(); 2673 LLT Ty = B.getMRI()->getType(Dst); 2674 const LLT S16 = LLT::scalar(16); 2675 const LLT S32 = LLT::scalar(32); 2676 2677 if (Ty == S32) { 2678 auto Log = B.buildFLog2(S32, Src0, Flags); 2679 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2680 .addUse(Log.getReg(0)) 2681 .addUse(Src1) 2682 .setMIFlags(Flags); 2683 B.buildFExp2(Dst, Mul, Flags); 2684 } else if (Ty == S16) { 2685 // There's no f16 fmul_legacy, so we need to convert for it. 2686 auto Log = B.buildFLog2(S16, Src0, Flags); 2687 auto Ext0 = B.buildFPExt(S32, Log, Flags); 2688 auto Ext1 = B.buildFPExt(S32, Src1, Flags); 2689 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2690 .addUse(Ext0.getReg(0)) 2691 .addUse(Ext1.getReg(0)) 2692 .setMIFlags(Flags); 2693 2694 B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags); 2695 } else 2696 return false; 2697 2698 MI.eraseFromParent(); 2699 return true; 2700 } 2701 2702 // Find a source register, ignoring any possible source modifiers. 2703 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) { 2704 Register ModSrc = OrigSrc; 2705 if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) { 2706 ModSrc = SrcFNeg->getOperand(1).getReg(); 2707 if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2708 ModSrc = SrcFAbs->getOperand(1).getReg(); 2709 } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2710 ModSrc = SrcFAbs->getOperand(1).getReg(); 2711 return ModSrc; 2712 } 2713 2714 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI, 2715 MachineRegisterInfo &MRI, 2716 MachineIRBuilder &B) const { 2717 2718 const LLT S1 = LLT::scalar(1); 2719 const LLT S64 = LLT::scalar(64); 2720 Register Dst = MI.getOperand(0).getReg(); 2721 Register OrigSrc = MI.getOperand(1).getReg(); 2722 unsigned Flags = MI.getFlags(); 2723 assert(ST.hasFractBug() && MRI.getType(Dst) == S64 && 2724 "this should not have been custom lowered"); 2725 2726 // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) 2727 // is used instead. However, SI doesn't have V_FLOOR_F64, so the most 2728 // efficient way to implement it is using V_FRACT_F64. The workaround for the 2729 // V_FRACT bug is: 2730 // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 2731 // 2732 // Convert floor(x) to (x - fract(x)) 2733 2734 auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false) 2735 .addUse(OrigSrc) 2736 .setMIFlags(Flags); 2737 2738 // Give source modifier matching some assistance before obscuring a foldable 2739 // pattern. 2740 2741 // TODO: We can avoid the neg on the fract? The input sign to fract 2742 // shouldn't matter? 2743 Register ModSrc = stripAnySourceMods(OrigSrc, MRI); 2744 2745 auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff)); 2746 2747 Register Min = MRI.createGenericVirtualRegister(S64); 2748 2749 // We don't need to concern ourselves with the snan handling difference, so 2750 // use the one which will directly select. 2751 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2752 if (MFI->getMode().IEEE) 2753 B.buildFMinNumIEEE(Min, Fract, Const, Flags); 2754 else 2755 B.buildFMinNum(Min, Fract, Const, Flags); 2756 2757 Register CorrectedFract = Min; 2758 if (!MI.getFlag(MachineInstr::FmNoNans)) { 2759 auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags); 2760 CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0); 2761 } 2762 2763 auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags); 2764 B.buildFAdd(Dst, OrigSrc, NegFract, Flags); 2765 2766 MI.eraseFromParent(); 2767 return true; 2768 } 2769 2770 // Turn an illegal packed v2s16 build vector into bit operations. 2771 // TODO: This should probably be a bitcast action in LegalizerHelper. 2772 bool AMDGPULegalizerInfo::legalizeBuildVector( 2773 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2774 Register Dst = MI.getOperand(0).getReg(); 2775 const LLT S32 = LLT::scalar(32); 2776 assert(MRI.getType(Dst) == LLT::fixed_vector(2, 16)); 2777 2778 Register Src0 = MI.getOperand(1).getReg(); 2779 Register Src1 = MI.getOperand(2).getReg(); 2780 assert(MRI.getType(Src0) == LLT::scalar(16)); 2781 2782 auto Merge = B.buildMerge(S32, {Src0, Src1}); 2783 B.buildBitcast(Dst, Merge); 2784 2785 MI.eraseFromParent(); 2786 return true; 2787 } 2788 2789 // Legalize ctlz/cttz to ffbh/ffbl instead of the default legalization to 2790 // ctlz/cttz_zero_undef. This allows us to fix up the result for the zero input 2791 // case with a single min instruction instead of a compare+select. 2792 bool AMDGPULegalizerInfo::legalizeCTLZ_CTTZ(MachineInstr &MI, 2793 MachineRegisterInfo &MRI, 2794 MachineIRBuilder &B) const { 2795 Register Dst = MI.getOperand(0).getReg(); 2796 Register Src = MI.getOperand(1).getReg(); 2797 LLT DstTy = MRI.getType(Dst); 2798 LLT SrcTy = MRI.getType(Src); 2799 2800 unsigned NewOpc = MI.getOpcode() == AMDGPU::G_CTLZ 2801 ? AMDGPU::G_AMDGPU_FFBH_U32 2802 : AMDGPU::G_AMDGPU_FFBL_B32; 2803 auto Tmp = B.buildInstr(NewOpc, {DstTy}, {Src}); 2804 B.buildUMin(Dst, Tmp, B.buildConstant(DstTy, SrcTy.getSizeInBits())); 2805 2806 MI.eraseFromParent(); 2807 return true; 2808 } 2809 2810 // Check that this is a G_XOR x, -1 2811 static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI) { 2812 if (MI.getOpcode() != TargetOpcode::G_XOR) 2813 return false; 2814 auto ConstVal = getConstantVRegSExtVal(MI.getOperand(2).getReg(), MRI); 2815 return ConstVal && *ConstVal == -1; 2816 } 2817 2818 // Return the use branch instruction, otherwise null if the usage is invalid. 2819 static MachineInstr * 2820 verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br, 2821 MachineBasicBlock *&UncondBrTarget, bool &Negated) { 2822 Register CondDef = MI.getOperand(0).getReg(); 2823 if (!MRI.hasOneNonDBGUse(CondDef)) 2824 return nullptr; 2825 2826 MachineBasicBlock *Parent = MI.getParent(); 2827 MachineInstr *UseMI = &*MRI.use_instr_nodbg_begin(CondDef); 2828 2829 if (isNot(MRI, *UseMI)) { 2830 Register NegatedCond = UseMI->getOperand(0).getReg(); 2831 if (!MRI.hasOneNonDBGUse(NegatedCond)) 2832 return nullptr; 2833 2834 // We're deleting the def of this value, so we need to remove it. 2835 UseMI->eraseFromParent(); 2836 2837 UseMI = &*MRI.use_instr_nodbg_begin(NegatedCond); 2838 Negated = true; 2839 } 2840 2841 if (UseMI->getParent() != Parent || UseMI->getOpcode() != AMDGPU::G_BRCOND) 2842 return nullptr; 2843 2844 // Make sure the cond br is followed by a G_BR, or is the last instruction. 2845 MachineBasicBlock::iterator Next = std::next(UseMI->getIterator()); 2846 if (Next == Parent->end()) { 2847 MachineFunction::iterator NextMBB = std::next(Parent->getIterator()); 2848 if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use. 2849 return nullptr; 2850 UncondBrTarget = &*NextMBB; 2851 } else { 2852 if (Next->getOpcode() != AMDGPU::G_BR) 2853 return nullptr; 2854 Br = &*Next; 2855 UncondBrTarget = Br->getOperand(0).getMBB(); 2856 } 2857 2858 return UseMI; 2859 } 2860 2861 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B, 2862 const ArgDescriptor *Arg, 2863 const TargetRegisterClass *ArgRC, 2864 LLT ArgTy) const { 2865 MCRegister SrcReg = Arg->getRegister(); 2866 assert(Register::isPhysicalRegister(SrcReg) && "Physical register expected"); 2867 assert(DstReg.isVirtual() && "Virtual register expected"); 2868 2869 Register LiveIn = getFunctionLiveInPhysReg(B.getMF(), B.getTII(), SrcReg, *ArgRC, 2870 ArgTy); 2871 if (Arg->isMasked()) { 2872 // TODO: Should we try to emit this once in the entry block? 2873 const LLT S32 = LLT::scalar(32); 2874 const unsigned Mask = Arg->getMask(); 2875 const unsigned Shift = countTrailingZeros<unsigned>(Mask); 2876 2877 Register AndMaskSrc = LiveIn; 2878 2879 if (Shift != 0) { 2880 auto ShiftAmt = B.buildConstant(S32, Shift); 2881 AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0); 2882 } 2883 2884 B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift)); 2885 } else { 2886 B.buildCopy(DstReg, LiveIn); 2887 } 2888 2889 return true; 2890 } 2891 2892 bool AMDGPULegalizerInfo::loadInputValue( 2893 Register DstReg, MachineIRBuilder &B, 2894 AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2895 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2896 const ArgDescriptor *Arg; 2897 const TargetRegisterClass *ArgRC; 2898 LLT ArgTy; 2899 std::tie(Arg, ArgRC, ArgTy) = MFI->getPreloadedValue(ArgType); 2900 2901 if (!Arg) { 2902 assert(ArgType == AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 2903 // The intrinsic may appear when we have a 0 sized kernarg segment, in which 2904 // case the pointer argument may be missing and we use null. 2905 B.buildConstant(DstReg, 0); 2906 return true; 2907 } 2908 2909 if (!Arg->isRegister() || !Arg->getRegister().isValid()) 2910 return false; // TODO: Handle these 2911 return loadInputValue(DstReg, B, Arg, ArgRC, ArgTy); 2912 } 2913 2914 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin( 2915 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, 2916 AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2917 if (!loadInputValue(MI.getOperand(0).getReg(), B, ArgType)) 2918 return false; 2919 2920 MI.eraseFromParent(); 2921 return true; 2922 } 2923 2924 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI, 2925 MachineRegisterInfo &MRI, 2926 MachineIRBuilder &B) const { 2927 Register Dst = MI.getOperand(0).getReg(); 2928 LLT DstTy = MRI.getType(Dst); 2929 LLT S16 = LLT::scalar(16); 2930 LLT S32 = LLT::scalar(32); 2931 LLT S64 = LLT::scalar(64); 2932 2933 if (DstTy == S16) 2934 return legalizeFDIV16(MI, MRI, B); 2935 if (DstTy == S32) 2936 return legalizeFDIV32(MI, MRI, B); 2937 if (DstTy == S64) 2938 return legalizeFDIV64(MI, MRI, B); 2939 2940 return false; 2941 } 2942 2943 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B, 2944 Register DstDivReg, 2945 Register DstRemReg, 2946 Register X, 2947 Register Y) const { 2948 const LLT S1 = LLT::scalar(1); 2949 const LLT S32 = LLT::scalar(32); 2950 2951 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2952 // algorithm used here. 2953 2954 // Initial estimate of inv(y). 2955 auto FloatY = B.buildUITOFP(S32, Y); 2956 auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {FloatY}); 2957 auto Scale = B.buildFConstant(S32, BitsToFloat(0x4f7ffffe)); 2958 auto ScaledY = B.buildFMul(S32, RcpIFlag, Scale); 2959 auto Z = B.buildFPTOUI(S32, ScaledY); 2960 2961 // One round of UNR. 2962 auto NegY = B.buildSub(S32, B.buildConstant(S32, 0), Y); 2963 auto NegYZ = B.buildMul(S32, NegY, Z); 2964 Z = B.buildAdd(S32, Z, B.buildUMulH(S32, Z, NegYZ)); 2965 2966 // Quotient/remainder estimate. 2967 auto Q = B.buildUMulH(S32, X, Z); 2968 auto R = B.buildSub(S32, X, B.buildMul(S32, Q, Y)); 2969 2970 // First quotient/remainder refinement. 2971 auto One = B.buildConstant(S32, 1); 2972 auto Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y); 2973 if (DstDivReg) 2974 Q = B.buildSelect(S32, Cond, B.buildAdd(S32, Q, One), Q); 2975 R = B.buildSelect(S32, Cond, B.buildSub(S32, R, Y), R); 2976 2977 // Second quotient/remainder refinement. 2978 Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y); 2979 if (DstDivReg) 2980 B.buildSelect(DstDivReg, Cond, B.buildAdd(S32, Q, One), Q); 2981 2982 if (DstRemReg) 2983 B.buildSelect(DstRemReg, Cond, B.buildSub(S32, R, Y), R); 2984 } 2985 2986 // Build integer reciprocal sequence arounud V_RCP_IFLAG_F32 2987 // 2988 // Return lo, hi of result 2989 // 2990 // %cvt.lo = G_UITOFP Val.lo 2991 // %cvt.hi = G_UITOFP Val.hi 2992 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo 2993 // %rcp = G_AMDGPU_RCP_IFLAG %mad 2994 // %mul1 = G_FMUL %rcp, 0x5f7ffffc 2995 // %mul2 = G_FMUL %mul1, 2**(-32) 2996 // %trunc = G_INTRINSIC_TRUNC %mul2 2997 // %mad2 = G_FMAD %trunc, -(2**32), %mul1 2998 // return {G_FPTOUI %mad2, G_FPTOUI %trunc} 2999 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B, 3000 Register Val) { 3001 const LLT S32 = LLT::scalar(32); 3002 auto Unmerge = B.buildUnmerge(S32, Val); 3003 3004 auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0)); 3005 auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1)); 3006 3007 auto Mad = B.buildFMAD(S32, CvtHi, // 2**32 3008 B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo); 3009 3010 auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad}); 3011 auto Mul1 = 3012 B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc))); 3013 3014 // 2**(-32) 3015 auto Mul2 = 3016 B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000))); 3017 auto Trunc = B.buildIntrinsicTrunc(S32, Mul2); 3018 3019 // -(2**32) 3020 auto Mad2 = B.buildFMAD(S32, Trunc, 3021 B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1); 3022 3023 auto ResultLo = B.buildFPTOUI(S32, Mad2); 3024 auto ResultHi = B.buildFPTOUI(S32, Trunc); 3025 3026 return {ResultLo.getReg(0), ResultHi.getReg(0)}; 3027 } 3028 3029 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B, 3030 Register DstDivReg, 3031 Register DstRemReg, 3032 Register Numer, 3033 Register Denom) const { 3034 const LLT S32 = LLT::scalar(32); 3035 const LLT S64 = LLT::scalar(64); 3036 const LLT S1 = LLT::scalar(1); 3037 Register RcpLo, RcpHi; 3038 3039 std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom); 3040 3041 auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi}); 3042 3043 auto Zero64 = B.buildConstant(S64, 0); 3044 auto NegDenom = B.buildSub(S64, Zero64, Denom); 3045 3046 auto MulLo1 = B.buildMul(S64, NegDenom, Rcp); 3047 auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1); 3048 3049 auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1); 3050 Register MulHi1_Lo = UnmergeMulHi1.getReg(0); 3051 Register MulHi1_Hi = UnmergeMulHi1.getReg(1); 3052 3053 auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo); 3054 auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1)); 3055 auto Add1_HiNc = B.buildAdd(S32, RcpHi, MulHi1_Hi); 3056 auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi}); 3057 3058 auto MulLo2 = B.buildMul(S64, NegDenom, Add1); 3059 auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2); 3060 auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2); 3061 Register MulHi2_Lo = UnmergeMulHi2.getReg(0); 3062 Register MulHi2_Hi = UnmergeMulHi2.getReg(1); 3063 3064 auto Zero32 = B.buildConstant(S32, 0); 3065 auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo); 3066 auto Add2_HiC = 3067 B.buildUAdde(S32, S1, Add1_HiNc, MulHi2_Hi, Add1_Lo.getReg(1)); 3068 auto Add2_Hi = B.buildUAdde(S32, S1, Add2_HiC, Zero32, Add2_Lo.getReg(1)); 3069 auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi}); 3070 3071 auto UnmergeNumer = B.buildUnmerge(S32, Numer); 3072 Register NumerLo = UnmergeNumer.getReg(0); 3073 Register NumerHi = UnmergeNumer.getReg(1); 3074 3075 auto MulHi3 = B.buildUMulH(S64, Numer, Add2); 3076 auto Mul3 = B.buildMul(S64, Denom, MulHi3); 3077 auto UnmergeMul3 = B.buildUnmerge(S32, Mul3); 3078 Register Mul3_Lo = UnmergeMul3.getReg(0); 3079 Register Mul3_Hi = UnmergeMul3.getReg(1); 3080 auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo); 3081 auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1)); 3082 auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi); 3083 auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi}); 3084 3085 auto UnmergeDenom = B.buildUnmerge(S32, Denom); 3086 Register DenomLo = UnmergeDenom.getReg(0); 3087 Register DenomHi = UnmergeDenom.getReg(1); 3088 3089 auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi); 3090 auto C1 = B.buildSExt(S32, CmpHi); 3091 3092 auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo); 3093 auto C2 = B.buildSExt(S32, CmpLo); 3094 3095 auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi); 3096 auto C3 = B.buildSelect(S32, CmpEq, C2, C1); 3097 3098 // TODO: Here and below portions of the code can be enclosed into if/endif. 3099 // Currently control flow is unconditional and we have 4 selects after 3100 // potential endif to substitute PHIs. 3101 3102 // if C3 != 0 ... 3103 auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo); 3104 auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1)); 3105 auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1)); 3106 auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi}); 3107 3108 auto One64 = B.buildConstant(S64, 1); 3109 auto Add3 = B.buildAdd(S64, MulHi3, One64); 3110 3111 auto C4 = 3112 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi)); 3113 auto C5 = 3114 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo)); 3115 auto C6 = B.buildSelect( 3116 S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4); 3117 3118 // if (C6 != 0) 3119 auto Add4 = B.buildAdd(S64, Add3, One64); 3120 auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo); 3121 3122 auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1)); 3123 auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1)); 3124 auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi}); 3125 3126 // endif C6 3127 // endif C3 3128 3129 if (DstDivReg) { 3130 auto Sel1 = B.buildSelect( 3131 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3); 3132 B.buildSelect(DstDivReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), 3133 Sel1, MulHi3); 3134 } 3135 3136 if (DstRemReg) { 3137 auto Sel2 = B.buildSelect( 3138 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2); 3139 B.buildSelect(DstRemReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), 3140 Sel2, Sub1); 3141 } 3142 } 3143 3144 bool AMDGPULegalizerInfo::legalizeUnsignedDIV_REM(MachineInstr &MI, 3145 MachineRegisterInfo &MRI, 3146 MachineIRBuilder &B) const { 3147 Register DstDivReg, DstRemReg; 3148 switch (MI.getOpcode()) { 3149 default: 3150 llvm_unreachable("Unexpected opcode!"); 3151 case AMDGPU::G_UDIV: { 3152 DstDivReg = MI.getOperand(0).getReg(); 3153 break; 3154 } 3155 case AMDGPU::G_UREM: { 3156 DstRemReg = MI.getOperand(0).getReg(); 3157 break; 3158 } 3159 case AMDGPU::G_UDIVREM: { 3160 DstDivReg = MI.getOperand(0).getReg(); 3161 DstRemReg = MI.getOperand(1).getReg(); 3162 break; 3163 } 3164 } 3165 3166 const LLT S64 = LLT::scalar(64); 3167 const LLT S32 = LLT::scalar(32); 3168 const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs(); 3169 Register Num = MI.getOperand(FirstSrcOpIdx).getReg(); 3170 Register Den = MI.getOperand(FirstSrcOpIdx + 1).getReg(); 3171 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3172 3173 if (Ty == S32) 3174 legalizeUnsignedDIV_REM32Impl(B, DstDivReg, DstRemReg, Num, Den); 3175 else if (Ty == S64) 3176 legalizeUnsignedDIV_REM64Impl(B, DstDivReg, DstRemReg, Num, Den); 3177 else 3178 return false; 3179 3180 MI.eraseFromParent(); 3181 return true; 3182 } 3183 3184 bool AMDGPULegalizerInfo::legalizeSignedDIV_REM(MachineInstr &MI, 3185 MachineRegisterInfo &MRI, 3186 MachineIRBuilder &B) const { 3187 const LLT S64 = LLT::scalar(64); 3188 const LLT S32 = LLT::scalar(32); 3189 3190 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3191 if (Ty != S32 && Ty != S64) 3192 return false; 3193 3194 const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs(); 3195 Register LHS = MI.getOperand(FirstSrcOpIdx).getReg(); 3196 Register RHS = MI.getOperand(FirstSrcOpIdx + 1).getReg(); 3197 3198 auto SignBitOffset = B.buildConstant(S32, Ty.getSizeInBits() - 1); 3199 auto LHSign = B.buildAShr(Ty, LHS, SignBitOffset); 3200 auto RHSign = B.buildAShr(Ty, RHS, SignBitOffset); 3201 3202 LHS = B.buildAdd(Ty, LHS, LHSign).getReg(0); 3203 RHS = B.buildAdd(Ty, RHS, RHSign).getReg(0); 3204 3205 LHS = B.buildXor(Ty, LHS, LHSign).getReg(0); 3206 RHS = B.buildXor(Ty, RHS, RHSign).getReg(0); 3207 3208 Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg; 3209 switch (MI.getOpcode()) { 3210 default: 3211 llvm_unreachable("Unexpected opcode!"); 3212 case AMDGPU::G_SDIV: { 3213 DstDivReg = MI.getOperand(0).getReg(); 3214 TmpDivReg = MRI.createGenericVirtualRegister(Ty); 3215 break; 3216 } 3217 case AMDGPU::G_SREM: { 3218 DstRemReg = MI.getOperand(0).getReg(); 3219 TmpRemReg = MRI.createGenericVirtualRegister(Ty); 3220 break; 3221 } 3222 case AMDGPU::G_SDIVREM: { 3223 DstDivReg = MI.getOperand(0).getReg(); 3224 DstRemReg = MI.getOperand(1).getReg(); 3225 TmpDivReg = MRI.createGenericVirtualRegister(Ty); 3226 TmpRemReg = MRI.createGenericVirtualRegister(Ty); 3227 break; 3228 } 3229 } 3230 3231 if (Ty == S32) 3232 legalizeUnsignedDIV_REM32Impl(B, TmpDivReg, TmpRemReg, LHS, RHS); 3233 else 3234 legalizeUnsignedDIV_REM64Impl(B, TmpDivReg, TmpRemReg, LHS, RHS); 3235 3236 if (DstDivReg) { 3237 auto Sign = B.buildXor(Ty, LHSign, RHSign).getReg(0); 3238 auto SignXor = B.buildXor(Ty, TmpDivReg, Sign).getReg(0); 3239 B.buildSub(DstDivReg, SignXor, Sign); 3240 } 3241 3242 if (DstRemReg) { 3243 auto Sign = LHSign.getReg(0); // Remainder sign is the same as LHS 3244 auto SignXor = B.buildXor(Ty, TmpRemReg, Sign).getReg(0); 3245 B.buildSub(DstRemReg, SignXor, Sign); 3246 } 3247 3248 MI.eraseFromParent(); 3249 return true; 3250 } 3251 3252 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI, 3253 MachineRegisterInfo &MRI, 3254 MachineIRBuilder &B) const { 3255 Register Res = MI.getOperand(0).getReg(); 3256 Register LHS = MI.getOperand(1).getReg(); 3257 Register RHS = MI.getOperand(2).getReg(); 3258 uint16_t Flags = MI.getFlags(); 3259 LLT ResTy = MRI.getType(Res); 3260 3261 const MachineFunction &MF = B.getMF(); 3262 bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath || 3263 MI.getFlag(MachineInstr::FmAfn); 3264 3265 if (!AllowInaccurateRcp) 3266 return false; 3267 3268 if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) { 3269 // 1 / x -> RCP(x) 3270 if (CLHS->isExactlyValue(1.0)) { 3271 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 3272 .addUse(RHS) 3273 .setMIFlags(Flags); 3274 3275 MI.eraseFromParent(); 3276 return true; 3277 } 3278 3279 // -1 / x -> RCP( FNEG(x) ) 3280 if (CLHS->isExactlyValue(-1.0)) { 3281 auto FNeg = B.buildFNeg(ResTy, RHS, Flags); 3282 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 3283 .addUse(FNeg.getReg(0)) 3284 .setMIFlags(Flags); 3285 3286 MI.eraseFromParent(); 3287 return true; 3288 } 3289 } 3290 3291 // x / y -> x * (1.0 / y) 3292 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false) 3293 .addUse(RHS) 3294 .setMIFlags(Flags); 3295 B.buildFMul(Res, LHS, RCP, Flags); 3296 3297 MI.eraseFromParent(); 3298 return true; 3299 } 3300 3301 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV64(MachineInstr &MI, 3302 MachineRegisterInfo &MRI, 3303 MachineIRBuilder &B) const { 3304 Register Res = MI.getOperand(0).getReg(); 3305 Register X = MI.getOperand(1).getReg(); 3306 Register Y = MI.getOperand(2).getReg(); 3307 uint16_t Flags = MI.getFlags(); 3308 LLT ResTy = MRI.getType(Res); 3309 3310 const MachineFunction &MF = B.getMF(); 3311 bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath || 3312 MI.getFlag(MachineInstr::FmAfn); 3313 3314 if (!AllowInaccurateRcp) 3315 return false; 3316 3317 auto NegY = B.buildFNeg(ResTy, Y); 3318 auto One = B.buildFConstant(ResTy, 1.0); 3319 3320 auto R = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false) 3321 .addUse(Y) 3322 .setMIFlags(Flags); 3323 3324 auto Tmp0 = B.buildFMA(ResTy, NegY, R, One); 3325 R = B.buildFMA(ResTy, Tmp0, R, R); 3326 3327 auto Tmp1 = B.buildFMA(ResTy, NegY, R, One); 3328 R = B.buildFMA(ResTy, Tmp1, R, R); 3329 3330 auto Ret = B.buildFMul(ResTy, X, R); 3331 auto Tmp2 = B.buildFMA(ResTy, NegY, Ret, X); 3332 3333 B.buildFMA(Res, Tmp2, R, Ret); 3334 MI.eraseFromParent(); 3335 return true; 3336 } 3337 3338 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI, 3339 MachineRegisterInfo &MRI, 3340 MachineIRBuilder &B) const { 3341 if (legalizeFastUnsafeFDIV(MI, MRI, B)) 3342 return true; 3343 3344 Register Res = MI.getOperand(0).getReg(); 3345 Register LHS = MI.getOperand(1).getReg(); 3346 Register RHS = MI.getOperand(2).getReg(); 3347 3348 uint16_t Flags = MI.getFlags(); 3349 3350 LLT S16 = LLT::scalar(16); 3351 LLT S32 = LLT::scalar(32); 3352 3353 auto LHSExt = B.buildFPExt(S32, LHS, Flags); 3354 auto RHSExt = B.buildFPExt(S32, RHS, Flags); 3355 3356 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3357 .addUse(RHSExt.getReg(0)) 3358 .setMIFlags(Flags); 3359 3360 auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags); 3361 auto RDst = B.buildFPTrunc(S16, QUOT, Flags); 3362 3363 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 3364 .addUse(RDst.getReg(0)) 3365 .addUse(RHS) 3366 .addUse(LHS) 3367 .setMIFlags(Flags); 3368 3369 MI.eraseFromParent(); 3370 return true; 3371 } 3372 3373 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions 3374 // to enable denorm mode. When 'Enable' is false, disable denorm mode. 3375 static void toggleSPDenormMode(bool Enable, 3376 MachineIRBuilder &B, 3377 const GCNSubtarget &ST, 3378 AMDGPU::SIModeRegisterDefaults Mode) { 3379 // Set SP denorm mode to this value. 3380 unsigned SPDenormMode = 3381 Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue(); 3382 3383 if (ST.hasDenormModeInst()) { 3384 // Preserve default FP64FP16 denorm mode while updating FP32 mode. 3385 uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue(); 3386 3387 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2); 3388 B.buildInstr(AMDGPU::S_DENORM_MODE) 3389 .addImm(NewDenormModeValue); 3390 3391 } else { 3392 // Select FP32 bit field in mode register. 3393 unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE | 3394 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 3395 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 3396 3397 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32) 3398 .addImm(SPDenormMode) 3399 .addImm(SPDenormModeBitField); 3400 } 3401 } 3402 3403 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI, 3404 MachineRegisterInfo &MRI, 3405 MachineIRBuilder &B) const { 3406 if (legalizeFastUnsafeFDIV(MI, MRI, B)) 3407 return true; 3408 3409 Register Res = MI.getOperand(0).getReg(); 3410 Register LHS = MI.getOperand(1).getReg(); 3411 Register RHS = MI.getOperand(2).getReg(); 3412 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 3413 AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode(); 3414 3415 uint16_t Flags = MI.getFlags(); 3416 3417 LLT S32 = LLT::scalar(32); 3418 LLT S1 = LLT::scalar(1); 3419 3420 auto One = B.buildFConstant(S32, 1.0f); 3421 3422 auto DenominatorScaled = 3423 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 3424 .addUse(LHS) 3425 .addUse(RHS) 3426 .addImm(0) 3427 .setMIFlags(Flags); 3428 auto NumeratorScaled = 3429 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 3430 .addUse(LHS) 3431 .addUse(RHS) 3432 .addImm(1) 3433 .setMIFlags(Flags); 3434 3435 auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3436 .addUse(DenominatorScaled.getReg(0)) 3437 .setMIFlags(Flags); 3438 auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags); 3439 3440 // FIXME: Doesn't correctly model the FP mode switch, and the FP operations 3441 // aren't modeled as reading it. 3442 if (!Mode.allFP32Denormals()) 3443 toggleSPDenormMode(true, B, ST, Mode); 3444 3445 auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags); 3446 auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags); 3447 auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags); 3448 auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags); 3449 auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags); 3450 auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags); 3451 3452 if (!Mode.allFP32Denormals()) 3453 toggleSPDenormMode(false, B, ST, Mode); 3454 3455 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false) 3456 .addUse(Fma4.getReg(0)) 3457 .addUse(Fma1.getReg(0)) 3458 .addUse(Fma3.getReg(0)) 3459 .addUse(NumeratorScaled.getReg(1)) 3460 .setMIFlags(Flags); 3461 3462 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 3463 .addUse(Fmas.getReg(0)) 3464 .addUse(RHS) 3465 .addUse(LHS) 3466 .setMIFlags(Flags); 3467 3468 MI.eraseFromParent(); 3469 return true; 3470 } 3471 3472 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI, 3473 MachineRegisterInfo &MRI, 3474 MachineIRBuilder &B) const { 3475 if (legalizeFastUnsafeFDIV64(MI, MRI, B)) 3476 return true; 3477 3478 Register Res = MI.getOperand(0).getReg(); 3479 Register LHS = MI.getOperand(1).getReg(); 3480 Register RHS = MI.getOperand(2).getReg(); 3481 3482 uint16_t Flags = MI.getFlags(); 3483 3484 LLT S64 = LLT::scalar(64); 3485 LLT S1 = LLT::scalar(1); 3486 3487 auto One = B.buildFConstant(S64, 1.0); 3488 3489 auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3490 .addUse(LHS) 3491 .addUse(RHS) 3492 .addImm(0) 3493 .setMIFlags(Flags); 3494 3495 auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags); 3496 3497 auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false) 3498 .addUse(DivScale0.getReg(0)) 3499 .setMIFlags(Flags); 3500 3501 auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags); 3502 auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags); 3503 auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags); 3504 3505 auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3506 .addUse(LHS) 3507 .addUse(RHS) 3508 .addImm(1) 3509 .setMIFlags(Flags); 3510 3511 auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags); 3512 auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags); 3513 auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags); 3514 3515 Register Scale; 3516 if (!ST.hasUsableDivScaleConditionOutput()) { 3517 // Workaround a hardware bug on SI where the condition output from div_scale 3518 // is not usable. 3519 3520 LLT S32 = LLT::scalar(32); 3521 3522 auto NumUnmerge = B.buildUnmerge(S32, LHS); 3523 auto DenUnmerge = B.buildUnmerge(S32, RHS); 3524 auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0); 3525 auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1); 3526 3527 auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1), 3528 Scale1Unmerge.getReg(1)); 3529 auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1), 3530 Scale0Unmerge.getReg(1)); 3531 Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0); 3532 } else { 3533 Scale = DivScale1.getReg(1); 3534 } 3535 3536 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false) 3537 .addUse(Fma4.getReg(0)) 3538 .addUse(Fma3.getReg(0)) 3539 .addUse(Mul.getReg(0)) 3540 .addUse(Scale) 3541 .setMIFlags(Flags); 3542 3543 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false) 3544 .addUse(Fmas.getReg(0)) 3545 .addUse(RHS) 3546 .addUse(LHS) 3547 .setMIFlags(Flags); 3548 3549 MI.eraseFromParent(); 3550 return true; 3551 } 3552 3553 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI, 3554 MachineRegisterInfo &MRI, 3555 MachineIRBuilder &B) const { 3556 Register Res = MI.getOperand(0).getReg(); 3557 Register LHS = MI.getOperand(2).getReg(); 3558 Register RHS = MI.getOperand(3).getReg(); 3559 uint16_t Flags = MI.getFlags(); 3560 3561 LLT S32 = LLT::scalar(32); 3562 LLT S1 = LLT::scalar(1); 3563 3564 auto Abs = B.buildFAbs(S32, RHS, Flags); 3565 const APFloat C0Val(1.0f); 3566 3567 auto C0 = B.buildConstant(S32, 0x6f800000); 3568 auto C1 = B.buildConstant(S32, 0x2f800000); 3569 auto C2 = B.buildConstant(S32, FloatToBits(1.0f)); 3570 3571 auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags); 3572 auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags); 3573 3574 auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags); 3575 3576 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3577 .addUse(Mul0.getReg(0)) 3578 .setMIFlags(Flags); 3579 3580 auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags); 3581 3582 B.buildFMul(Res, Sel, Mul1, Flags); 3583 3584 MI.eraseFromParent(); 3585 return true; 3586 } 3587 3588 // Expand llvm.amdgcn.rsq.clamp on targets that don't support the instruction. 3589 // FIXME: Why do we handle this one but not other removed instructions? 3590 // 3591 // Reciprocal square root. The clamp prevents infinite results, clamping 3592 // infinities to max_float. D.f = 1.0 / sqrt(S0.f), result clamped to 3593 // +-max_float. 3594 bool AMDGPULegalizerInfo::legalizeRsqClampIntrinsic(MachineInstr &MI, 3595 MachineRegisterInfo &MRI, 3596 MachineIRBuilder &B) const { 3597 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 3598 return true; 3599 3600 Register Dst = MI.getOperand(0).getReg(); 3601 Register Src = MI.getOperand(2).getReg(); 3602 auto Flags = MI.getFlags(); 3603 3604 LLT Ty = MRI.getType(Dst); 3605 3606 const fltSemantics *FltSemantics; 3607 if (Ty == LLT::scalar(32)) 3608 FltSemantics = &APFloat::IEEEsingle(); 3609 else if (Ty == LLT::scalar(64)) 3610 FltSemantics = &APFloat::IEEEdouble(); 3611 else 3612 return false; 3613 3614 auto Rsq = B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty}, false) 3615 .addUse(Src) 3616 .setMIFlags(Flags); 3617 3618 // We don't need to concern ourselves with the snan handling difference, since 3619 // the rsq quieted (or not) so use the one which will directly select. 3620 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 3621 const bool UseIEEE = MFI->getMode().IEEE; 3622 3623 auto MaxFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics)); 3624 auto ClampMax = UseIEEE ? B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) : 3625 B.buildFMinNum(Ty, Rsq, MaxFlt, Flags); 3626 3627 auto MinFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics, true)); 3628 3629 if (UseIEEE) 3630 B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags); 3631 else 3632 B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags); 3633 MI.eraseFromParent(); 3634 return true; 3635 } 3636 3637 static unsigned getDSFPAtomicOpcode(Intrinsic::ID IID) { 3638 switch (IID) { 3639 case Intrinsic::amdgcn_ds_fadd: 3640 return AMDGPU::G_ATOMICRMW_FADD; 3641 case Intrinsic::amdgcn_ds_fmin: 3642 return AMDGPU::G_AMDGPU_ATOMIC_FMIN; 3643 case Intrinsic::amdgcn_ds_fmax: 3644 return AMDGPU::G_AMDGPU_ATOMIC_FMAX; 3645 default: 3646 llvm_unreachable("not a DS FP intrinsic"); 3647 } 3648 } 3649 3650 bool AMDGPULegalizerInfo::legalizeDSAtomicFPIntrinsic(LegalizerHelper &Helper, 3651 MachineInstr &MI, 3652 Intrinsic::ID IID) const { 3653 GISelChangeObserver &Observer = Helper.Observer; 3654 Observer.changingInstr(MI); 3655 3656 MI.setDesc(ST.getInstrInfo()->get(getDSFPAtomicOpcode(IID))); 3657 3658 // The remaining operands were used to set fields in the MemOperand on 3659 // construction. 3660 for (int I = 6; I > 3; --I) 3661 MI.RemoveOperand(I); 3662 3663 MI.RemoveOperand(1); // Remove the intrinsic ID. 3664 Observer.changedInstr(MI); 3665 return true; 3666 } 3667 3668 bool AMDGPULegalizerInfo::getImplicitArgPtr(Register DstReg, 3669 MachineRegisterInfo &MRI, 3670 MachineIRBuilder &B) const { 3671 uint64_t Offset = 3672 ST.getTargetLowering()->getImplicitParameterOffset( 3673 B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT); 3674 LLT DstTy = MRI.getType(DstReg); 3675 LLT IdxTy = LLT::scalar(DstTy.getSizeInBits()); 3676 3677 Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy); 3678 if (!loadInputValue(KernargPtrReg, B, 3679 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR)) 3680 return false; 3681 3682 // FIXME: This should be nuw 3683 B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0)); 3684 return true; 3685 } 3686 3687 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI, 3688 MachineRegisterInfo &MRI, 3689 MachineIRBuilder &B) const { 3690 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 3691 if (!MFI->isEntryFunction()) { 3692 return legalizePreloadedArgIntrin(MI, MRI, B, 3693 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 3694 } 3695 3696 Register DstReg = MI.getOperand(0).getReg(); 3697 if (!getImplicitArgPtr(DstReg, MRI, B)) 3698 return false; 3699 3700 MI.eraseFromParent(); 3701 return true; 3702 } 3703 3704 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI, 3705 MachineRegisterInfo &MRI, 3706 MachineIRBuilder &B, 3707 unsigned AddrSpace) const { 3708 Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B); 3709 auto Unmerge = B.buildUnmerge(LLT::scalar(32), MI.getOperand(2).getReg()); 3710 Register Hi32 = Unmerge.getReg(1); 3711 3712 B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg); 3713 MI.eraseFromParent(); 3714 return true; 3715 } 3716 3717 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 3718 // offset (the offset that is included in bounds checking and swizzling, to be 3719 // split between the instruction's voffset and immoffset fields) and soffset 3720 // (the offset that is excluded from bounds checking and swizzling, to go in 3721 // the instruction's soffset field). This function takes the first kind of 3722 // offset and figures out how to split it between voffset and immoffset. 3723 std::pair<Register, unsigned> 3724 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B, 3725 Register OrigOffset) const { 3726 const unsigned MaxImm = 4095; 3727 Register BaseReg; 3728 unsigned ImmOffset; 3729 const LLT S32 = LLT::scalar(32); 3730 MachineRegisterInfo &MRI = *B.getMRI(); 3731 3732 std::tie(BaseReg, ImmOffset) = 3733 AMDGPU::getBaseWithConstantOffset(MRI, OrigOffset); 3734 3735 // If BaseReg is a pointer, convert it to int. 3736 if (MRI.getType(BaseReg).isPointer()) 3737 BaseReg = B.buildPtrToInt(MRI.getType(OrigOffset), BaseReg).getReg(0); 3738 3739 // If the immediate value is too big for the immoffset field, put the value 3740 // and -4096 into the immoffset field so that the value that is copied/added 3741 // for the voffset field is a multiple of 4096, and it stands more chance 3742 // of being CSEd with the copy/add for another similar load/store. 3743 // However, do not do that rounding down to a multiple of 4096 if that is a 3744 // negative number, as it appears to be illegal to have a negative offset 3745 // in the vgpr, even if adding the immediate offset makes it positive. 3746 unsigned Overflow = ImmOffset & ~MaxImm; 3747 ImmOffset -= Overflow; 3748 if ((int32_t)Overflow < 0) { 3749 Overflow += ImmOffset; 3750 ImmOffset = 0; 3751 } 3752 3753 if (Overflow != 0) { 3754 if (!BaseReg) { 3755 BaseReg = B.buildConstant(S32, Overflow).getReg(0); 3756 } else { 3757 auto OverflowVal = B.buildConstant(S32, Overflow); 3758 BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0); 3759 } 3760 } 3761 3762 if (!BaseReg) 3763 BaseReg = B.buildConstant(S32, 0).getReg(0); 3764 3765 return std::make_pair(BaseReg, ImmOffset); 3766 } 3767 3768 /// Update \p MMO based on the offset inputs to a raw/struct buffer intrinsic. 3769 void AMDGPULegalizerInfo::updateBufferMMO(MachineMemOperand *MMO, 3770 Register VOffset, Register SOffset, 3771 unsigned ImmOffset, Register VIndex, 3772 MachineRegisterInfo &MRI) const { 3773 Optional<ValueAndVReg> MaybeVOffsetVal = 3774 getConstantVRegValWithLookThrough(VOffset, MRI); 3775 Optional<ValueAndVReg> MaybeSOffsetVal = 3776 getConstantVRegValWithLookThrough(SOffset, MRI); 3777 Optional<ValueAndVReg> MaybeVIndexVal = 3778 getConstantVRegValWithLookThrough(VIndex, MRI); 3779 // If the combined VOffset + SOffset + ImmOffset + strided VIndex is constant, 3780 // update the MMO with that offset. The stride is unknown so we can only do 3781 // this if VIndex is constant 0. 3782 if (MaybeVOffsetVal && MaybeSOffsetVal && MaybeVIndexVal && 3783 MaybeVIndexVal->Value == 0) { 3784 uint64_t TotalOffset = MaybeVOffsetVal->Value.getZExtValue() + 3785 MaybeSOffsetVal->Value.getZExtValue() + ImmOffset; 3786 MMO->setOffset(TotalOffset); 3787 } else { 3788 // We don't have a constant combined offset to use in the MMO. Give up. 3789 MMO->setValue((Value *)nullptr); 3790 } 3791 } 3792 3793 /// Handle register layout difference for f16 images for some subtargets. 3794 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B, 3795 MachineRegisterInfo &MRI, 3796 Register Reg, 3797 bool ImageStore) const { 3798 const LLT S16 = LLT::scalar(16); 3799 const LLT S32 = LLT::scalar(32); 3800 LLT StoreVT = MRI.getType(Reg); 3801 assert(StoreVT.isVector() && StoreVT.getElementType() == S16); 3802 3803 if (ST.hasUnpackedD16VMem()) { 3804 auto Unmerge = B.buildUnmerge(S16, Reg); 3805 3806 SmallVector<Register, 4> WideRegs; 3807 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3808 WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0)); 3809 3810 int NumElts = StoreVT.getNumElements(); 3811 3812 return B.buildBuildVector(LLT::fixed_vector(NumElts, S32), WideRegs) 3813 .getReg(0); 3814 } 3815 3816 if (ImageStore && ST.hasImageStoreD16Bug()) { 3817 if (StoreVT.getNumElements() == 2) { 3818 SmallVector<Register, 4> PackedRegs; 3819 Reg = B.buildBitcast(S32, Reg).getReg(0); 3820 PackedRegs.push_back(Reg); 3821 PackedRegs.resize(2, B.buildUndef(S32).getReg(0)); 3822 return B.buildBuildVector(LLT::fixed_vector(2, S32), PackedRegs) 3823 .getReg(0); 3824 } 3825 3826 if (StoreVT.getNumElements() == 3) { 3827 SmallVector<Register, 4> PackedRegs; 3828 auto Unmerge = B.buildUnmerge(S16, Reg); 3829 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3830 PackedRegs.push_back(Unmerge.getReg(I)); 3831 PackedRegs.resize(6, B.buildUndef(S16).getReg(0)); 3832 Reg = B.buildBuildVector(LLT::fixed_vector(6, S16), PackedRegs).getReg(0); 3833 return B.buildBitcast(LLT::fixed_vector(3, S32), Reg).getReg(0); 3834 } 3835 3836 if (StoreVT.getNumElements() == 4) { 3837 SmallVector<Register, 4> PackedRegs; 3838 Reg = B.buildBitcast(LLT::fixed_vector(2, S32), Reg).getReg(0); 3839 auto Unmerge = B.buildUnmerge(S32, Reg); 3840 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3841 PackedRegs.push_back(Unmerge.getReg(I)); 3842 PackedRegs.resize(4, B.buildUndef(S32).getReg(0)); 3843 return B.buildBuildVector(LLT::fixed_vector(4, S32), PackedRegs) 3844 .getReg(0); 3845 } 3846 3847 llvm_unreachable("invalid data type"); 3848 } 3849 3850 return Reg; 3851 } 3852 3853 Register AMDGPULegalizerInfo::fixStoreSourceType( 3854 MachineIRBuilder &B, Register VData, bool IsFormat) const { 3855 MachineRegisterInfo *MRI = B.getMRI(); 3856 LLT Ty = MRI->getType(VData); 3857 3858 const LLT S16 = LLT::scalar(16); 3859 3860 // Fixup illegal register types for i8 stores. 3861 if (Ty == LLT::scalar(8) || Ty == S16) { 3862 Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0); 3863 return AnyExt; 3864 } 3865 3866 if (Ty.isVector()) { 3867 if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) { 3868 if (IsFormat) 3869 return handleD16VData(B, *MRI, VData); 3870 } 3871 } 3872 3873 return VData; 3874 } 3875 3876 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI, 3877 MachineRegisterInfo &MRI, 3878 MachineIRBuilder &B, 3879 bool IsTyped, 3880 bool IsFormat) const { 3881 Register VData = MI.getOperand(1).getReg(); 3882 LLT Ty = MRI.getType(VData); 3883 LLT EltTy = Ty.getScalarType(); 3884 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 3885 const LLT S32 = LLT::scalar(32); 3886 3887 VData = fixStoreSourceType(B, VData, IsFormat); 3888 Register RSrc = MI.getOperand(2).getReg(); 3889 3890 MachineMemOperand *MMO = *MI.memoperands_begin(); 3891 const int MemSize = MMO->getSize(); 3892 3893 unsigned ImmOffset; 3894 3895 // The typed intrinsics add an immediate after the registers. 3896 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3897 3898 // The struct intrinsic variants add one additional operand over raw. 3899 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3900 Register VIndex; 3901 int OpOffset = 0; 3902 if (HasVIndex) { 3903 VIndex = MI.getOperand(3).getReg(); 3904 OpOffset = 1; 3905 } else { 3906 VIndex = B.buildConstant(S32, 0).getReg(0); 3907 } 3908 3909 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3910 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3911 3912 unsigned Format = 0; 3913 if (IsTyped) { 3914 Format = MI.getOperand(5 + OpOffset).getImm(); 3915 ++OpOffset; 3916 } 3917 3918 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 3919 3920 std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset); 3921 updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI); 3922 3923 unsigned Opc; 3924 if (IsTyped) { 3925 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : 3926 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT; 3927 } else if (IsFormat) { 3928 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 : 3929 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT; 3930 } else { 3931 switch (MemSize) { 3932 case 1: 3933 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE; 3934 break; 3935 case 2: 3936 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT; 3937 break; 3938 default: 3939 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE; 3940 break; 3941 } 3942 } 3943 3944 auto MIB = B.buildInstr(Opc) 3945 .addUse(VData) // vdata 3946 .addUse(RSrc) // rsrc 3947 .addUse(VIndex) // vindex 3948 .addUse(VOffset) // voffset 3949 .addUse(SOffset) // soffset 3950 .addImm(ImmOffset); // offset(imm) 3951 3952 if (IsTyped) 3953 MIB.addImm(Format); 3954 3955 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3956 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3957 .addMemOperand(MMO); 3958 3959 MI.eraseFromParent(); 3960 return true; 3961 } 3962 3963 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI, 3964 MachineRegisterInfo &MRI, 3965 MachineIRBuilder &B, 3966 bool IsFormat, 3967 bool IsTyped) const { 3968 // FIXME: Verifier should enforce 1 MMO for these intrinsics. 3969 MachineMemOperand *MMO = *MI.memoperands_begin(); 3970 const LLT MemTy = MMO->getMemoryType(); 3971 const LLT S32 = LLT::scalar(32); 3972 3973 Register Dst = MI.getOperand(0).getReg(); 3974 Register RSrc = MI.getOperand(2).getReg(); 3975 3976 // The typed intrinsics add an immediate after the registers. 3977 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3978 3979 // The struct intrinsic variants add one additional operand over raw. 3980 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3981 Register VIndex; 3982 int OpOffset = 0; 3983 if (HasVIndex) { 3984 VIndex = MI.getOperand(3).getReg(); 3985 OpOffset = 1; 3986 } else { 3987 VIndex = B.buildConstant(S32, 0).getReg(0); 3988 } 3989 3990 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3991 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3992 3993 unsigned Format = 0; 3994 if (IsTyped) { 3995 Format = MI.getOperand(5 + OpOffset).getImm(); 3996 ++OpOffset; 3997 } 3998 3999 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 4000 unsigned ImmOffset; 4001 4002 LLT Ty = MRI.getType(Dst); 4003 LLT EltTy = Ty.getScalarType(); 4004 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 4005 const bool Unpacked = ST.hasUnpackedD16VMem(); 4006 4007 std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset); 4008 updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI); 4009 4010 unsigned Opc; 4011 4012 if (IsTyped) { 4013 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : 4014 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT; 4015 } else if (IsFormat) { 4016 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : 4017 AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT; 4018 } else { 4019 switch (MemTy.getSizeInBits()) { 4020 case 8: 4021 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE; 4022 break; 4023 case 16: 4024 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT; 4025 break; 4026 default: 4027 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD; 4028 break; 4029 } 4030 } 4031 4032 Register LoadDstReg; 4033 4034 bool IsExtLoad = 4035 (!IsD16 && MemTy.getSizeInBits() < 32) || (IsD16 && !Ty.isVector()); 4036 LLT UnpackedTy = Ty.changeElementSize(32); 4037 4038 if (IsExtLoad) 4039 LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32); 4040 else if (Unpacked && IsD16 && Ty.isVector()) 4041 LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy); 4042 else 4043 LoadDstReg = Dst; 4044 4045 auto MIB = B.buildInstr(Opc) 4046 .addDef(LoadDstReg) // vdata 4047 .addUse(RSrc) // rsrc 4048 .addUse(VIndex) // vindex 4049 .addUse(VOffset) // voffset 4050 .addUse(SOffset) // soffset 4051 .addImm(ImmOffset); // offset(imm) 4052 4053 if (IsTyped) 4054 MIB.addImm(Format); 4055 4056 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 4057 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 4058 .addMemOperand(MMO); 4059 4060 if (LoadDstReg != Dst) { 4061 B.setInsertPt(B.getMBB(), ++B.getInsertPt()); 4062 4063 // Widen result for extending loads was widened. 4064 if (IsExtLoad) 4065 B.buildTrunc(Dst, LoadDstReg); 4066 else { 4067 // Repack to original 16-bit vector result 4068 // FIXME: G_TRUNC should work, but legalization currently fails 4069 auto Unmerge = B.buildUnmerge(S32, LoadDstReg); 4070 SmallVector<Register, 4> Repack; 4071 for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I) 4072 Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0)); 4073 B.buildMerge(Dst, Repack); 4074 } 4075 } 4076 4077 MI.eraseFromParent(); 4078 return true; 4079 } 4080 4081 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI, 4082 MachineIRBuilder &B, 4083 bool IsInc) const { 4084 unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC : 4085 AMDGPU::G_AMDGPU_ATOMIC_DEC; 4086 B.buildInstr(Opc) 4087 .addDef(MI.getOperand(0).getReg()) 4088 .addUse(MI.getOperand(2).getReg()) 4089 .addUse(MI.getOperand(3).getReg()) 4090 .cloneMemRefs(MI); 4091 MI.eraseFromParent(); 4092 return true; 4093 } 4094 4095 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) { 4096 switch (IntrID) { 4097 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 4098 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 4099 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP; 4100 case Intrinsic::amdgcn_raw_buffer_atomic_add: 4101 case Intrinsic::amdgcn_struct_buffer_atomic_add: 4102 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD; 4103 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 4104 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 4105 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB; 4106 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 4107 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 4108 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN; 4109 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 4110 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 4111 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN; 4112 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 4113 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 4114 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX; 4115 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 4116 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 4117 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX; 4118 case Intrinsic::amdgcn_raw_buffer_atomic_and: 4119 case Intrinsic::amdgcn_struct_buffer_atomic_and: 4120 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND; 4121 case Intrinsic::amdgcn_raw_buffer_atomic_or: 4122 case Intrinsic::amdgcn_struct_buffer_atomic_or: 4123 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR; 4124 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 4125 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 4126 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR; 4127 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 4128 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 4129 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC; 4130 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 4131 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 4132 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC; 4133 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 4134 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 4135 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP; 4136 case Intrinsic::amdgcn_buffer_atomic_fadd: 4137 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 4138 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 4139 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD; 4140 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 4141 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 4142 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN; 4143 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 4144 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 4145 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX; 4146 default: 4147 llvm_unreachable("unhandled atomic opcode"); 4148 } 4149 } 4150 4151 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI, 4152 MachineIRBuilder &B, 4153 Intrinsic::ID IID) const { 4154 const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap || 4155 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap; 4156 const bool HasReturn = MI.getNumExplicitDefs() != 0; 4157 4158 Register Dst; 4159 4160 int OpOffset = 0; 4161 if (HasReturn) { 4162 // A few FP atomics do not support return values. 4163 Dst = MI.getOperand(0).getReg(); 4164 } else { 4165 OpOffset = -1; 4166 } 4167 4168 Register VData = MI.getOperand(2 + OpOffset).getReg(); 4169 Register CmpVal; 4170 4171 if (IsCmpSwap) { 4172 CmpVal = MI.getOperand(3 + OpOffset).getReg(); 4173 ++OpOffset; 4174 } 4175 4176 Register RSrc = MI.getOperand(3 + OpOffset).getReg(); 4177 const unsigned NumVIndexOps = (IsCmpSwap ? 8 : 7) + HasReturn; 4178 4179 // The struct intrinsic variants add one additional operand over raw. 4180 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 4181 Register VIndex; 4182 if (HasVIndex) { 4183 VIndex = MI.getOperand(4 + OpOffset).getReg(); 4184 ++OpOffset; 4185 } else { 4186 VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0); 4187 } 4188 4189 Register VOffset = MI.getOperand(4 + OpOffset).getReg(); 4190 Register SOffset = MI.getOperand(5 + OpOffset).getReg(); 4191 unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm(); 4192 4193 MachineMemOperand *MMO = *MI.memoperands_begin(); 4194 4195 unsigned ImmOffset; 4196 std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset); 4197 updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, *B.getMRI()); 4198 4199 auto MIB = B.buildInstr(getBufferAtomicPseudo(IID)); 4200 4201 if (HasReturn) 4202 MIB.addDef(Dst); 4203 4204 MIB.addUse(VData); // vdata 4205 4206 if (IsCmpSwap) 4207 MIB.addReg(CmpVal); 4208 4209 MIB.addUse(RSrc) // rsrc 4210 .addUse(VIndex) // vindex 4211 .addUse(VOffset) // voffset 4212 .addUse(SOffset) // soffset 4213 .addImm(ImmOffset) // offset(imm) 4214 .addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 4215 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 4216 .addMemOperand(MMO); 4217 4218 MI.eraseFromParent(); 4219 return true; 4220 } 4221 4222 /// Turn a set of s16 typed registers in \p AddrRegs into a dword sized 4223 /// vector with s16 typed elements. 4224 static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, 4225 SmallVectorImpl<Register> &PackedAddrs, 4226 unsigned ArgOffset, 4227 const AMDGPU::ImageDimIntrinsicInfo *Intr, 4228 bool IsA16, bool IsG16) { 4229 const LLT S16 = LLT::scalar(16); 4230 const LLT V2S16 = LLT::fixed_vector(2, 16); 4231 auto EndIdx = Intr->VAddrEnd; 4232 4233 for (unsigned I = Intr->VAddrStart; I < EndIdx; I++) { 4234 MachineOperand &SrcOp = MI.getOperand(ArgOffset + I); 4235 if (!SrcOp.isReg()) 4236 continue; // _L to _LZ may have eliminated this. 4237 4238 Register AddrReg = SrcOp.getReg(); 4239 4240 if ((I < Intr->GradientStart) || 4241 (I >= Intr->GradientStart && I < Intr->CoordStart && !IsG16) || 4242 (I >= Intr->CoordStart && !IsA16)) { 4243 // Handle any gradient or coordinate operands that should not be packed 4244 AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0); 4245 PackedAddrs.push_back(AddrReg); 4246 } else { 4247 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D, 4248 // derivatives dx/dh and dx/dv are packed with undef. 4249 if (((I + 1) >= EndIdx) || 4250 ((Intr->NumGradients / 2) % 2 == 1 && 4251 (I == static_cast<unsigned>(Intr->GradientStart + 4252 (Intr->NumGradients / 2) - 1) || 4253 I == static_cast<unsigned>(Intr->GradientStart + 4254 Intr->NumGradients - 1))) || 4255 // Check for _L to _LZ optimization 4256 !MI.getOperand(ArgOffset + I + 1).isReg()) { 4257 PackedAddrs.push_back( 4258 B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)}) 4259 .getReg(0)); 4260 } else { 4261 PackedAddrs.push_back( 4262 B.buildBuildVector( 4263 V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()}) 4264 .getReg(0)); 4265 ++I; 4266 } 4267 } 4268 } 4269 } 4270 4271 /// Convert from separate vaddr components to a single vector address register, 4272 /// and replace the remaining operands with $noreg. 4273 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, 4274 int DimIdx, int NumVAddrs) { 4275 const LLT S32 = LLT::scalar(32); 4276 4277 SmallVector<Register, 8> AddrRegs; 4278 for (int I = 0; I != NumVAddrs; ++I) { 4279 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 4280 if (SrcOp.isReg()) { 4281 AddrRegs.push_back(SrcOp.getReg()); 4282 assert(B.getMRI()->getType(SrcOp.getReg()) == S32); 4283 } 4284 } 4285 4286 int NumAddrRegs = AddrRegs.size(); 4287 if (NumAddrRegs != 1) { 4288 // Above 8 elements round up to next power of 2 (i.e. 16). 4289 if (NumAddrRegs > 8 && !isPowerOf2_32(NumAddrRegs)) { 4290 const int RoundedNumRegs = NextPowerOf2(NumAddrRegs); 4291 auto Undef = B.buildUndef(S32); 4292 AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0)); 4293 NumAddrRegs = RoundedNumRegs; 4294 } 4295 4296 auto VAddr = 4297 B.buildBuildVector(LLT::fixed_vector(NumAddrRegs, 32), AddrRegs); 4298 MI.getOperand(DimIdx).setReg(VAddr.getReg(0)); 4299 } 4300 4301 for (int I = 1; I != NumVAddrs; ++I) { 4302 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 4303 if (SrcOp.isReg()) 4304 MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister); 4305 } 4306 } 4307 4308 /// Rewrite image intrinsics to use register layouts expected by the subtarget. 4309 /// 4310 /// Depending on the subtarget, load/store with 16-bit element data need to be 4311 /// rewritten to use the low half of 32-bit registers, or directly use a packed 4312 /// layout. 16-bit addresses should also sometimes be packed into 32-bit 4313 /// registers. 4314 /// 4315 /// We don't want to directly select image instructions just yet, but also want 4316 /// to exposes all register repacking to the legalizer/combiners. We also don't 4317 /// want a selected instrution entering RegBankSelect. In order to avoid 4318 /// defining a multitude of intermediate image instructions, directly hack on 4319 /// the intrinsic's arguments. In cases like a16 addreses, this requires padding 4320 /// now unnecessary arguments with $noreg. 4321 bool AMDGPULegalizerInfo::legalizeImageIntrinsic( 4322 MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer, 4323 const AMDGPU::ImageDimIntrinsicInfo *Intr) const { 4324 4325 const unsigned NumDefs = MI.getNumExplicitDefs(); 4326 const unsigned ArgOffset = NumDefs + 1; 4327 bool IsTFE = NumDefs == 2; 4328 // We are only processing the operands of d16 image operations on subtargets 4329 // that use the unpacked register layout, or need to repack the TFE result. 4330 4331 // TODO: Do we need to guard against already legalized intrinsics? 4332 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 4333 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 4334 4335 MachineRegisterInfo *MRI = B.getMRI(); 4336 const LLT S32 = LLT::scalar(32); 4337 const LLT S16 = LLT::scalar(16); 4338 const LLT V2S16 = LLT::fixed_vector(2, 16); 4339 4340 unsigned DMask = 0; 4341 4342 // Check for 16 bit addresses and pack if true. 4343 LLT GradTy = 4344 MRI->getType(MI.getOperand(ArgOffset + Intr->GradientStart).getReg()); 4345 LLT AddrTy = 4346 MRI->getType(MI.getOperand(ArgOffset + Intr->CoordStart).getReg()); 4347 const bool IsG16 = GradTy == S16; 4348 const bool IsA16 = AddrTy == S16; 4349 4350 int DMaskLanes = 0; 4351 if (!BaseOpcode->Atomic) { 4352 DMask = MI.getOperand(ArgOffset + Intr->DMaskIndex).getImm(); 4353 if (BaseOpcode->Gather4) { 4354 DMaskLanes = 4; 4355 } else if (DMask != 0) { 4356 DMaskLanes = countPopulation(DMask); 4357 } else if (!IsTFE && !BaseOpcode->Store) { 4358 // If dmask is 0, this is a no-op load. This can be eliminated. 4359 B.buildUndef(MI.getOperand(0)); 4360 MI.eraseFromParent(); 4361 return true; 4362 } 4363 } 4364 4365 Observer.changingInstr(MI); 4366 auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); }); 4367 4368 unsigned NewOpcode = NumDefs == 0 ? 4369 AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD; 4370 4371 // Track that we legalized this 4372 MI.setDesc(B.getTII().get(NewOpcode)); 4373 4374 // Expecting to get an error flag since TFC is on - and dmask is 0 Force 4375 // dmask to be at least 1 otherwise the instruction will fail 4376 if (IsTFE && DMask == 0) { 4377 DMask = 0x1; 4378 DMaskLanes = 1; 4379 MI.getOperand(ArgOffset + Intr->DMaskIndex).setImm(DMask); 4380 } 4381 4382 if (BaseOpcode->Atomic) { 4383 Register VData0 = MI.getOperand(2).getReg(); 4384 LLT Ty = MRI->getType(VData0); 4385 4386 // TODO: Allow atomic swap and bit ops for v2s16/v4s16 4387 if (Ty.isVector()) 4388 return false; 4389 4390 if (BaseOpcode->AtomicX2) { 4391 Register VData1 = MI.getOperand(3).getReg(); 4392 // The two values are packed in one register. 4393 LLT PackedTy = LLT::fixed_vector(2, Ty); 4394 auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1}); 4395 MI.getOperand(2).setReg(Concat.getReg(0)); 4396 MI.getOperand(3).setReg(AMDGPU::NoRegister); 4397 } 4398 } 4399 4400 unsigned CorrectedNumVAddrs = Intr->NumVAddrs; 4401 4402 // Optimize _L to _LZ when _L is zero 4403 if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 4404 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode)) { 4405 const ConstantFP *ConstantLod; 4406 4407 if (mi_match(MI.getOperand(ArgOffset + Intr->LodIndex).getReg(), *MRI, 4408 m_GFCst(ConstantLod))) { 4409 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 4410 // Set new opcode to _lz variant of _l, and change the intrinsic ID. 4411 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 4412 AMDGPU::getImageDimInstrinsicByBaseOpcode(LZMappingInfo->LZ, 4413 Intr->Dim); 4414 4415 // The starting indexes should remain in the same place. 4416 --CorrectedNumVAddrs; 4417 4418 MI.getOperand(MI.getNumExplicitDefs()) 4419 .setIntrinsicID(static_cast<Intrinsic::ID>(NewImageDimIntr->Intr)); 4420 MI.RemoveOperand(ArgOffset + Intr->LodIndex); 4421 Intr = NewImageDimIntr; 4422 } 4423 } 4424 } 4425 4426 // Optimize _mip away, when 'lod' is zero 4427 if (AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode)) { 4428 int64_t ConstantLod; 4429 if (mi_match(MI.getOperand(ArgOffset + Intr->MipIndex).getReg(), *MRI, 4430 m_ICst(ConstantLod))) { 4431 if (ConstantLod == 0) { 4432 // TODO: Change intrinsic opcode and remove operand instead or replacing 4433 // it with 0, as the _L to _LZ handling is done above. 4434 MI.getOperand(ArgOffset + Intr->MipIndex).ChangeToImmediate(0); 4435 --CorrectedNumVAddrs; 4436 } 4437 } 4438 } 4439 4440 // Rewrite the addressing register layout before doing anything else. 4441 if (BaseOpcode->Gradients && !ST.hasG16() && (IsA16 != IsG16)) { 4442 // 16 bit gradients are supported, but are tied to the A16 control 4443 // so both gradients and addresses must be 16 bit 4444 return false; 4445 } 4446 4447 if (IsA16 && !ST.hasA16()) { 4448 // A16 not supported 4449 return false; 4450 } 4451 4452 if (IsA16 || IsG16) { 4453 if (Intr->NumVAddrs > 1) { 4454 SmallVector<Register, 4> PackedRegs; 4455 4456 packImage16bitOpsToDwords(B, MI, PackedRegs, ArgOffset, Intr, IsA16, 4457 IsG16); 4458 4459 // See also below in the non-a16 branch 4460 const bool UseNSA = ST.hasNSAEncoding() && PackedRegs.size() >= 3 && 4461 PackedRegs.size() <= ST.getNSAMaxSize(); 4462 4463 if (!UseNSA && PackedRegs.size() > 1) { 4464 LLT PackedAddrTy = LLT::fixed_vector(2 * PackedRegs.size(), 16); 4465 auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs); 4466 PackedRegs[0] = Concat.getReg(0); 4467 PackedRegs.resize(1); 4468 } 4469 4470 const unsigned NumPacked = PackedRegs.size(); 4471 for (unsigned I = Intr->VAddrStart; I < Intr->VAddrEnd; I++) { 4472 MachineOperand &SrcOp = MI.getOperand(ArgOffset + I); 4473 if (!SrcOp.isReg()) { 4474 assert(SrcOp.isImm() && SrcOp.getImm() == 0); 4475 continue; 4476 } 4477 4478 assert(SrcOp.getReg() != AMDGPU::NoRegister); 4479 4480 if (I - Intr->VAddrStart < NumPacked) 4481 SrcOp.setReg(PackedRegs[I - Intr->VAddrStart]); 4482 else 4483 SrcOp.setReg(AMDGPU::NoRegister); 4484 } 4485 } 4486 } else { 4487 // If the register allocator cannot place the address registers contiguously 4488 // without introducing moves, then using the non-sequential address encoding 4489 // is always preferable, since it saves VALU instructions and is usually a 4490 // wash in terms of code size or even better. 4491 // 4492 // However, we currently have no way of hinting to the register allocator 4493 // that MIMG addresses should be placed contiguously when it is possible to 4494 // do so, so force non-NSA for the common 2-address case as a heuristic. 4495 // 4496 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 4497 // allocation when possible. 4498 const bool UseNSA = ST.hasNSAEncoding() && CorrectedNumVAddrs >= 3 && 4499 CorrectedNumVAddrs <= ST.getNSAMaxSize(); 4500 4501 if (!UseNSA && Intr->NumVAddrs > 1) 4502 convertImageAddrToPacked(B, MI, ArgOffset + Intr->VAddrStart, 4503 Intr->NumVAddrs); 4504 } 4505 4506 int Flags = 0; 4507 if (IsA16) 4508 Flags |= 1; 4509 if (IsG16) 4510 Flags |= 2; 4511 MI.addOperand(MachineOperand::CreateImm(Flags)); 4512 4513 if (BaseOpcode->Store) { // No TFE for stores? 4514 // TODO: Handle dmask trim 4515 Register VData = MI.getOperand(1).getReg(); 4516 LLT Ty = MRI->getType(VData); 4517 if (!Ty.isVector() || Ty.getElementType() != S16) 4518 return true; 4519 4520 Register RepackedReg = handleD16VData(B, *MRI, VData, true); 4521 if (RepackedReg != VData) { 4522 MI.getOperand(1).setReg(RepackedReg); 4523 } 4524 4525 return true; 4526 } 4527 4528 Register DstReg = MI.getOperand(0).getReg(); 4529 LLT Ty = MRI->getType(DstReg); 4530 const LLT EltTy = Ty.getScalarType(); 4531 const bool IsD16 = Ty.getScalarType() == S16; 4532 const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1; 4533 4534 // Confirm that the return type is large enough for the dmask specified 4535 if (NumElts < DMaskLanes) 4536 return false; 4537 4538 if (NumElts > 4 || DMaskLanes > 4) 4539 return false; 4540 4541 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes; 4542 const LLT AdjustedTy = 4543 Ty.changeElementCount(ElementCount::getFixed(AdjustedNumElts)); 4544 4545 // The raw dword aligned data component of the load. The only legal cases 4546 // where this matters should be when using the packed D16 format, for 4547 // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>, 4548 LLT RoundedTy; 4549 4550 // S32 vector to to cover all data, plus TFE result element. 4551 LLT TFETy; 4552 4553 // Register type to use for each loaded component. Will be S32 or V2S16. 4554 LLT RegTy; 4555 4556 if (IsD16 && ST.hasUnpackedD16VMem()) { 4557 RoundedTy = 4558 LLT::scalarOrVector(ElementCount::getFixed(AdjustedNumElts), 32); 4559 TFETy = LLT::fixed_vector(AdjustedNumElts + 1, 32); 4560 RegTy = S32; 4561 } else { 4562 unsigned EltSize = EltTy.getSizeInBits(); 4563 unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32; 4564 unsigned RoundedSize = 32 * RoundedElts; 4565 RoundedTy = LLT::scalarOrVector( 4566 ElementCount::getFixed(RoundedSize / EltSize), EltSize); 4567 TFETy = LLT::fixed_vector(RoundedSize / 32 + 1, S32); 4568 RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32; 4569 } 4570 4571 // The return type does not need adjustment. 4572 // TODO: Should we change s16 case to s32 or <2 x s16>? 4573 if (!IsTFE && (RoundedTy == Ty || !Ty.isVector())) 4574 return true; 4575 4576 Register Dst1Reg; 4577 4578 // Insert after the instruction. 4579 B.setInsertPt(*MI.getParent(), ++MI.getIterator()); 4580 4581 // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x 4582 // s16> instead of s32, we would only need 1 bitcast instead of multiple. 4583 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy; 4584 const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32; 4585 4586 Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy); 4587 4588 MI.getOperand(0).setReg(NewResultReg); 4589 4590 // In the IR, TFE is supposed to be used with a 2 element struct return 4591 // type. The intruction really returns these two values in one contiguous 4592 // register, with one additional dword beyond the loaded data. Rewrite the 4593 // return type to use a single register result. 4594 4595 if (IsTFE) { 4596 Dst1Reg = MI.getOperand(1).getReg(); 4597 if (MRI->getType(Dst1Reg) != S32) 4598 return false; 4599 4600 // TODO: Make sure the TFE operand bit is set. 4601 MI.RemoveOperand(1); 4602 4603 // Handle the easy case that requires no repack instructions. 4604 if (Ty == S32) { 4605 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg); 4606 return true; 4607 } 4608 } 4609 4610 // Now figure out how to copy the new result register back into the old 4611 // result. 4612 SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg); 4613 4614 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs; 4615 4616 if (ResultNumRegs == 1) { 4617 assert(!IsTFE); 4618 ResultRegs[0] = NewResultReg; 4619 } else { 4620 // We have to repack into a new vector of some kind. 4621 for (int I = 0; I != NumDataRegs; ++I) 4622 ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy); 4623 B.buildUnmerge(ResultRegs, NewResultReg); 4624 4625 // Drop the final TFE element to get the data part. The TFE result is 4626 // directly written to the right place already. 4627 if (IsTFE) 4628 ResultRegs.resize(NumDataRegs); 4629 } 4630 4631 // For an s16 scalar result, we form an s32 result with a truncate regardless 4632 // of packed vs. unpacked. 4633 if (IsD16 && !Ty.isVector()) { 4634 B.buildTrunc(DstReg, ResultRegs[0]); 4635 return true; 4636 } 4637 4638 // Avoid a build/concat_vector of 1 entry. 4639 if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) { 4640 B.buildBitcast(DstReg, ResultRegs[0]); 4641 return true; 4642 } 4643 4644 assert(Ty.isVector()); 4645 4646 if (IsD16) { 4647 // For packed D16 results with TFE enabled, all the data components are 4648 // S32. Cast back to the expected type. 4649 // 4650 // TODO: We don't really need to use load s32 elements. We would only need one 4651 // cast for the TFE result if a multiple of v2s16 was used. 4652 if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) { 4653 for (Register &Reg : ResultRegs) 4654 Reg = B.buildBitcast(V2S16, Reg).getReg(0); 4655 } else if (ST.hasUnpackedD16VMem()) { 4656 for (Register &Reg : ResultRegs) 4657 Reg = B.buildTrunc(S16, Reg).getReg(0); 4658 } 4659 } 4660 4661 auto padWithUndef = [&](LLT Ty, int NumElts) { 4662 if (NumElts == 0) 4663 return; 4664 Register Undef = B.buildUndef(Ty).getReg(0); 4665 for (int I = 0; I != NumElts; ++I) 4666 ResultRegs.push_back(Undef); 4667 }; 4668 4669 // Pad out any elements eliminated due to the dmask. 4670 LLT ResTy = MRI->getType(ResultRegs[0]); 4671 if (!ResTy.isVector()) { 4672 padWithUndef(ResTy, NumElts - ResultRegs.size()); 4673 B.buildBuildVector(DstReg, ResultRegs); 4674 return true; 4675 } 4676 4677 assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16); 4678 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32; 4679 4680 // Deal with the one annoying legal case. 4681 const LLT V3S16 = LLT::fixed_vector(3, 16); 4682 if (Ty == V3S16) { 4683 padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1); 4684 auto Concat = B.buildConcatVectors(LLT::fixed_vector(6, 16), ResultRegs); 4685 B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat); 4686 return true; 4687 } 4688 4689 padWithUndef(ResTy, RegsToCover - ResultRegs.size()); 4690 B.buildConcatVectors(DstReg, ResultRegs); 4691 return true; 4692 } 4693 4694 bool AMDGPULegalizerInfo::legalizeSBufferLoad( 4695 LegalizerHelper &Helper, MachineInstr &MI) const { 4696 MachineIRBuilder &B = Helper.MIRBuilder; 4697 GISelChangeObserver &Observer = Helper.Observer; 4698 4699 Register Dst = MI.getOperand(0).getReg(); 4700 LLT Ty = B.getMRI()->getType(Dst); 4701 unsigned Size = Ty.getSizeInBits(); 4702 MachineFunction &MF = B.getMF(); 4703 4704 Observer.changingInstr(MI); 4705 4706 if (shouldBitcastLoadStoreType(ST, Ty, LLT::scalar(Size))) { 4707 Ty = getBitcastRegisterType(Ty); 4708 Helper.bitcastDst(MI, Ty, 0); 4709 Dst = MI.getOperand(0).getReg(); 4710 B.setInsertPt(B.getMBB(), MI); 4711 } 4712 4713 // FIXME: We don't really need this intermediate instruction. The intrinsic 4714 // should be fixed to have a memory operand. Since it's readnone, we're not 4715 // allowed to add one. 4716 MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD)); 4717 MI.RemoveOperand(1); // Remove intrinsic ID 4718 4719 // FIXME: When intrinsic definition is fixed, this should have an MMO already. 4720 // TODO: Should this use datalayout alignment? 4721 const unsigned MemSize = (Size + 7) / 8; 4722 const Align MemAlign(4); 4723 MachineMemOperand *MMO = MF.getMachineMemOperand( 4724 MachinePointerInfo(), 4725 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 4726 MachineMemOperand::MOInvariant, 4727 MemSize, MemAlign); 4728 MI.addMemOperand(MF, MMO); 4729 4730 // There are no 96-bit result scalar loads, but widening to 128-bit should 4731 // always be legal. We may need to restore this to a 96-bit result if it turns 4732 // out this needs to be converted to a vector load during RegBankSelect. 4733 if (!isPowerOf2_32(Size)) { 4734 if (Ty.isVector()) 4735 Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0); 4736 else 4737 Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0); 4738 } 4739 4740 Observer.changedInstr(MI); 4741 return true; 4742 } 4743 4744 // TODO: Move to selection 4745 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI, 4746 MachineRegisterInfo &MRI, 4747 MachineIRBuilder &B) const { 4748 if (!ST.isTrapHandlerEnabled() || 4749 ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 4750 return legalizeTrapEndpgm(MI, MRI, B); 4751 4752 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(&ST)) { 4753 switch (*HsaAbiVer) { 4754 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 4755 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 4756 return legalizeTrapHsaQueuePtr(MI, MRI, B); 4757 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 4758 return ST.supportsGetDoorbellID() ? 4759 legalizeTrapHsa(MI, MRI, B) : 4760 legalizeTrapHsaQueuePtr(MI, MRI, B); 4761 } 4762 } 4763 4764 llvm_unreachable("Unknown trap handler"); 4765 } 4766 4767 bool AMDGPULegalizerInfo::legalizeTrapEndpgm( 4768 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 4769 B.buildInstr(AMDGPU::S_ENDPGM).addImm(0); 4770 MI.eraseFromParent(); 4771 return true; 4772 } 4773 4774 bool AMDGPULegalizerInfo::legalizeTrapHsaQueuePtr( 4775 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 4776 // Pass queue pointer to trap handler as input, and insert trap instruction 4777 // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi 4778 Register LiveIn = 4779 MRI.createGenericVirtualRegister(LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 4780 if (!loadInputValue(LiveIn, B, AMDGPUFunctionArgInfo::QUEUE_PTR)) 4781 return false; 4782 4783 Register SGPR01(AMDGPU::SGPR0_SGPR1); 4784 B.buildCopy(SGPR01, LiveIn); 4785 B.buildInstr(AMDGPU::S_TRAP) 4786 .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap)) 4787 .addReg(SGPR01, RegState::Implicit); 4788 4789 MI.eraseFromParent(); 4790 return true; 4791 } 4792 4793 bool AMDGPULegalizerInfo::legalizeTrapHsa( 4794 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 4795 B.buildInstr(AMDGPU::S_TRAP) 4796 .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap)); 4797 MI.eraseFromParent(); 4798 return true; 4799 } 4800 4801 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic( 4802 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 4803 // Is non-HSA path or trap-handler disabled? then, report a warning 4804 // accordingly 4805 if (!ST.isTrapHandlerEnabled() || 4806 ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 4807 DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(), 4808 "debugtrap handler not supported", 4809 MI.getDebugLoc(), DS_Warning); 4810 LLVMContext &Ctx = B.getMF().getFunction().getContext(); 4811 Ctx.diagnose(NoTrap); 4812 } else { 4813 // Insert debug-trap instruction 4814 B.buildInstr(AMDGPU::S_TRAP) 4815 .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap)); 4816 } 4817 4818 MI.eraseFromParent(); 4819 return true; 4820 } 4821 4822 bool AMDGPULegalizerInfo::legalizeBVHIntrinsic(MachineInstr &MI, 4823 MachineIRBuilder &B) const { 4824 MachineRegisterInfo &MRI = *B.getMRI(); 4825 const LLT S16 = LLT::scalar(16); 4826 const LLT S32 = LLT::scalar(32); 4827 4828 Register DstReg = MI.getOperand(0).getReg(); 4829 Register NodePtr = MI.getOperand(2).getReg(); 4830 Register RayExtent = MI.getOperand(3).getReg(); 4831 Register RayOrigin = MI.getOperand(4).getReg(); 4832 Register RayDir = MI.getOperand(5).getReg(); 4833 Register RayInvDir = MI.getOperand(6).getReg(); 4834 Register TDescr = MI.getOperand(7).getReg(); 4835 4836 if (!ST.hasGFX10_AEncoding()) { 4837 DiagnosticInfoUnsupported BadIntrin(B.getMF().getFunction(), 4838 "intrinsic not supported on subtarget", 4839 MI.getDebugLoc()); 4840 B.getMF().getFunction().getContext().diagnose(BadIntrin); 4841 return false; 4842 } 4843 4844 const bool IsA16 = MRI.getType(RayDir).getElementType().getSizeInBits() == 16; 4845 const bool Is64 = MRI.getType(NodePtr).getSizeInBits() == 64; 4846 const unsigned NumVDataDwords = 4; 4847 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 4848 const bool UseNSA = 4849 ST.hasNSAEncoding() && NumVAddrDwords <= ST.getNSAMaxSize(); 4850 const unsigned BaseOpcodes[2][2] = { 4851 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 4852 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 4853 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 4854 int Opcode; 4855 if (UseNSA) { 4856 Opcode = 4857 AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10NSA, 4858 NumVDataDwords, NumVAddrDwords); 4859 } else { 4860 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 4861 AMDGPU::MIMGEncGfx10Default, NumVDataDwords, 4862 PowerOf2Ceil(NumVAddrDwords)); 4863 } 4864 assert(Opcode != -1); 4865 4866 SmallVector<Register, 12> Ops; 4867 if (Is64) { 4868 auto Unmerge = B.buildUnmerge({S32, S32}, NodePtr); 4869 Ops.push_back(Unmerge.getReg(0)); 4870 Ops.push_back(Unmerge.getReg(1)); 4871 } else { 4872 Ops.push_back(NodePtr); 4873 } 4874 Ops.push_back(RayExtent); 4875 4876 auto packLanes = [&Ops, &S32, &B] (Register Src) { 4877 auto Unmerge = B.buildUnmerge({S32, S32, S32, S32}, Src); 4878 Ops.push_back(Unmerge.getReg(0)); 4879 Ops.push_back(Unmerge.getReg(1)); 4880 Ops.push_back(Unmerge.getReg(2)); 4881 }; 4882 4883 packLanes(RayOrigin); 4884 if (IsA16) { 4885 auto UnmergeRayDir = B.buildUnmerge({S16, S16, S16, S16}, RayDir); 4886 auto UnmergeRayInvDir = B.buildUnmerge({S16, S16, S16, S16}, RayInvDir); 4887 Register R1 = MRI.createGenericVirtualRegister(S32); 4888 Register R2 = MRI.createGenericVirtualRegister(S32); 4889 Register R3 = MRI.createGenericVirtualRegister(S32); 4890 B.buildMerge(R1, {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)}); 4891 B.buildMerge(R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)}); 4892 B.buildMerge(R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)}); 4893 Ops.push_back(R1); 4894 Ops.push_back(R2); 4895 Ops.push_back(R3); 4896 } else { 4897 packLanes(RayDir); 4898 packLanes(RayInvDir); 4899 } 4900 4901 if (!UseNSA) { 4902 // Build a single vector containing all the operands so far prepared. 4903 LLT OpTy = LLT::fixed_vector(Ops.size(), 32); 4904 Register MergedOps = B.buildMerge(OpTy, Ops).getReg(0); 4905 Ops.clear(); 4906 Ops.push_back(MergedOps); 4907 } 4908 4909 auto MIB = B.buildInstr(AMDGPU::G_AMDGPU_INTRIN_BVH_INTERSECT_RAY) 4910 .addDef(DstReg) 4911 .addImm(Opcode); 4912 4913 for (Register R : Ops) { 4914 MIB.addUse(R); 4915 } 4916 4917 MIB.addUse(TDescr) 4918 .addImm(IsA16 ? 1 : 0) 4919 .cloneMemRefs(MI); 4920 4921 MI.eraseFromParent(); 4922 return true; 4923 } 4924 4925 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper, 4926 MachineInstr &MI) const { 4927 MachineIRBuilder &B = Helper.MIRBuilder; 4928 MachineRegisterInfo &MRI = *B.getMRI(); 4929 4930 // Replace the use G_BRCOND with the exec manipulate and branch pseudos. 4931 auto IntrID = MI.getIntrinsicID(); 4932 switch (IntrID) { 4933 case Intrinsic::amdgcn_if: 4934 case Intrinsic::amdgcn_else: { 4935 MachineInstr *Br = nullptr; 4936 MachineBasicBlock *UncondBrTarget = nullptr; 4937 bool Negated = false; 4938 if (MachineInstr *BrCond = 4939 verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) { 4940 const SIRegisterInfo *TRI 4941 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4942 4943 Register Def = MI.getOperand(1).getReg(); 4944 Register Use = MI.getOperand(3).getReg(); 4945 4946 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4947 4948 if (Negated) 4949 std::swap(CondBrTarget, UncondBrTarget); 4950 4951 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4952 if (IntrID == Intrinsic::amdgcn_if) { 4953 B.buildInstr(AMDGPU::SI_IF) 4954 .addDef(Def) 4955 .addUse(Use) 4956 .addMBB(UncondBrTarget); 4957 } else { 4958 B.buildInstr(AMDGPU::SI_ELSE) 4959 .addDef(Def) 4960 .addUse(Use) 4961 .addMBB(UncondBrTarget); 4962 } 4963 4964 if (Br) { 4965 Br->getOperand(0).setMBB(CondBrTarget); 4966 } else { 4967 // The IRTranslator skips inserting the G_BR for fallthrough cases, but 4968 // since we're swapping branch targets it needs to be reinserted. 4969 // FIXME: IRTranslator should probably not do this 4970 B.buildBr(*CondBrTarget); 4971 } 4972 4973 MRI.setRegClass(Def, TRI->getWaveMaskRegClass()); 4974 MRI.setRegClass(Use, TRI->getWaveMaskRegClass()); 4975 MI.eraseFromParent(); 4976 BrCond->eraseFromParent(); 4977 return true; 4978 } 4979 4980 return false; 4981 } 4982 case Intrinsic::amdgcn_loop: { 4983 MachineInstr *Br = nullptr; 4984 MachineBasicBlock *UncondBrTarget = nullptr; 4985 bool Negated = false; 4986 if (MachineInstr *BrCond = 4987 verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) { 4988 const SIRegisterInfo *TRI 4989 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4990 4991 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4992 Register Reg = MI.getOperand(2).getReg(); 4993 4994 if (Negated) 4995 std::swap(CondBrTarget, UncondBrTarget); 4996 4997 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4998 B.buildInstr(AMDGPU::SI_LOOP) 4999 .addUse(Reg) 5000 .addMBB(UncondBrTarget); 5001 5002 if (Br) 5003 Br->getOperand(0).setMBB(CondBrTarget); 5004 else 5005 B.buildBr(*CondBrTarget); 5006 5007 MI.eraseFromParent(); 5008 BrCond->eraseFromParent(); 5009 MRI.setRegClass(Reg, TRI->getWaveMaskRegClass()); 5010 return true; 5011 } 5012 5013 return false; 5014 } 5015 case Intrinsic::amdgcn_kernarg_segment_ptr: 5016 if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) { 5017 // This only makes sense to call in a kernel, so just lower to null. 5018 B.buildConstant(MI.getOperand(0).getReg(), 0); 5019 MI.eraseFromParent(); 5020 return true; 5021 } 5022 5023 return legalizePreloadedArgIntrin( 5024 MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 5025 case Intrinsic::amdgcn_implicitarg_ptr: 5026 return legalizeImplicitArgPtr(MI, MRI, B); 5027 case Intrinsic::amdgcn_workitem_id_x: 5028 return legalizePreloadedArgIntrin(MI, MRI, B, 5029 AMDGPUFunctionArgInfo::WORKITEM_ID_X); 5030 case Intrinsic::amdgcn_workitem_id_y: 5031 return legalizePreloadedArgIntrin(MI, MRI, B, 5032 AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 5033 case Intrinsic::amdgcn_workitem_id_z: 5034 return legalizePreloadedArgIntrin(MI, MRI, B, 5035 AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 5036 case Intrinsic::amdgcn_workgroup_id_x: 5037 return legalizePreloadedArgIntrin(MI, MRI, B, 5038 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 5039 case Intrinsic::amdgcn_workgroup_id_y: 5040 return legalizePreloadedArgIntrin(MI, MRI, B, 5041 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 5042 case Intrinsic::amdgcn_workgroup_id_z: 5043 return legalizePreloadedArgIntrin(MI, MRI, B, 5044 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 5045 case Intrinsic::amdgcn_dispatch_ptr: 5046 return legalizePreloadedArgIntrin(MI, MRI, B, 5047 AMDGPUFunctionArgInfo::DISPATCH_PTR); 5048 case Intrinsic::amdgcn_queue_ptr: 5049 return legalizePreloadedArgIntrin(MI, MRI, B, 5050 AMDGPUFunctionArgInfo::QUEUE_PTR); 5051 case Intrinsic::amdgcn_implicit_buffer_ptr: 5052 return legalizePreloadedArgIntrin( 5053 MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 5054 case Intrinsic::amdgcn_dispatch_id: 5055 return legalizePreloadedArgIntrin(MI, MRI, B, 5056 AMDGPUFunctionArgInfo::DISPATCH_ID); 5057 case Intrinsic::amdgcn_fdiv_fast: 5058 return legalizeFDIVFastIntrin(MI, MRI, B); 5059 case Intrinsic::amdgcn_is_shared: 5060 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS); 5061 case Intrinsic::amdgcn_is_private: 5062 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS); 5063 case Intrinsic::amdgcn_wavefrontsize: { 5064 B.buildConstant(MI.getOperand(0), ST.getWavefrontSize()); 5065 MI.eraseFromParent(); 5066 return true; 5067 } 5068 case Intrinsic::amdgcn_s_buffer_load: 5069 return legalizeSBufferLoad(Helper, MI); 5070 case Intrinsic::amdgcn_raw_buffer_store: 5071 case Intrinsic::amdgcn_struct_buffer_store: 5072 return legalizeBufferStore(MI, MRI, B, false, false); 5073 case Intrinsic::amdgcn_raw_buffer_store_format: 5074 case Intrinsic::amdgcn_struct_buffer_store_format: 5075 return legalizeBufferStore(MI, MRI, B, false, true); 5076 case Intrinsic::amdgcn_raw_tbuffer_store: 5077 case Intrinsic::amdgcn_struct_tbuffer_store: 5078 return legalizeBufferStore(MI, MRI, B, true, true); 5079 case Intrinsic::amdgcn_raw_buffer_load: 5080 case Intrinsic::amdgcn_struct_buffer_load: 5081 return legalizeBufferLoad(MI, MRI, B, false, false); 5082 case Intrinsic::amdgcn_raw_buffer_load_format: 5083 case Intrinsic::amdgcn_struct_buffer_load_format: 5084 return legalizeBufferLoad(MI, MRI, B, true, false); 5085 case Intrinsic::amdgcn_raw_tbuffer_load: 5086 case Intrinsic::amdgcn_struct_tbuffer_load: 5087 return legalizeBufferLoad(MI, MRI, B, true, true); 5088 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 5089 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 5090 case Intrinsic::amdgcn_raw_buffer_atomic_add: 5091 case Intrinsic::amdgcn_struct_buffer_atomic_add: 5092 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 5093 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 5094 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 5095 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 5096 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 5097 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 5098 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 5099 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 5100 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 5101 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 5102 case Intrinsic::amdgcn_raw_buffer_atomic_and: 5103 case Intrinsic::amdgcn_struct_buffer_atomic_and: 5104 case Intrinsic::amdgcn_raw_buffer_atomic_or: 5105 case Intrinsic::amdgcn_struct_buffer_atomic_or: 5106 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 5107 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 5108 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 5109 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 5110 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 5111 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 5112 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 5113 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 5114 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 5115 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 5116 case Intrinsic::amdgcn_buffer_atomic_fadd: 5117 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 5118 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 5119 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 5120 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 5121 return legalizeBufferAtomic(MI, B, IntrID); 5122 case Intrinsic::amdgcn_atomic_inc: 5123 return legalizeAtomicIncDec(MI, B, true); 5124 case Intrinsic::amdgcn_atomic_dec: 5125 return legalizeAtomicIncDec(MI, B, false); 5126 case Intrinsic::trap: 5127 return legalizeTrapIntrinsic(MI, MRI, B); 5128 case Intrinsic::debugtrap: 5129 return legalizeDebugTrapIntrinsic(MI, MRI, B); 5130 case Intrinsic::amdgcn_rsq_clamp: 5131 return legalizeRsqClampIntrinsic(MI, MRI, B); 5132 case Intrinsic::amdgcn_ds_fadd: 5133 case Intrinsic::amdgcn_ds_fmin: 5134 case Intrinsic::amdgcn_ds_fmax: 5135 return legalizeDSAtomicFPIntrinsic(Helper, MI, IntrID); 5136 case Intrinsic::amdgcn_image_bvh_intersect_ray: 5137 return legalizeBVHIntrinsic(MI, B); 5138 default: { 5139 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 5140 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 5141 return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr); 5142 return true; 5143 } 5144 } 5145 5146 return true; 5147 } 5148