1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the targeting of the Machinelegalizer class for 10 /// AMDGPU. 11 /// \todo This should be generated by TableGen. 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPULegalizerInfo.h" 15 16 #include "AMDGPU.h" 17 #include "AMDGPUGlobalISelUtils.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 24 #include "llvm/CodeGen/TargetOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/Debug.h" 30 31 #define DEBUG_TYPE "amdgpu-legalinfo" 32 33 using namespace llvm; 34 using namespace LegalizeActions; 35 using namespace LegalizeMutations; 36 using namespace LegalityPredicates; 37 using namespace MIPatternMatch; 38 39 // Hack until load/store selection patterns support any tuple of legal types. 40 static cl::opt<bool> EnableNewLegality( 41 "amdgpu-global-isel-new-legality", 42 cl::desc("Use GlobalISel desired legality, rather than try to use" 43 "rules compatible with selection patterns"), 44 cl::init(false), 45 cl::ReallyHidden); 46 47 static constexpr unsigned MaxRegisterSize = 1024; 48 49 // Round the number of elements to the next power of two elements 50 static LLT getPow2VectorType(LLT Ty) { 51 unsigned NElts = Ty.getNumElements(); 52 unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); 53 return Ty.changeNumElements(Pow2NElts); 54 } 55 56 // Round the number of bits to the next power of two bits 57 static LLT getPow2ScalarType(LLT Ty) { 58 unsigned Bits = Ty.getSizeInBits(); 59 unsigned Pow2Bits = 1 << Log2_32_Ceil(Bits); 60 return LLT::scalar(Pow2Bits); 61 } 62 63 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) { 64 return [=](const LegalityQuery &Query) { 65 const LLT Ty = Query.Types[TypeIdx]; 66 return Ty.isVector() && 67 Ty.getNumElements() % 2 != 0 && 68 Ty.getElementType().getSizeInBits() < 32 && 69 Ty.getSizeInBits() % 32 != 0; 70 }; 71 } 72 73 static LegalityPredicate isWideVec16(unsigned TypeIdx) { 74 return [=](const LegalityQuery &Query) { 75 const LLT Ty = Query.Types[TypeIdx]; 76 const LLT EltTy = Ty.getScalarType(); 77 return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2; 78 }; 79 } 80 81 static LegalizeMutation oneMoreElement(unsigned TypeIdx) { 82 return [=](const LegalityQuery &Query) { 83 const LLT Ty = Query.Types[TypeIdx]; 84 const LLT EltTy = Ty.getElementType(); 85 return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy)); 86 }; 87 } 88 89 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) { 90 return [=](const LegalityQuery &Query) { 91 const LLT Ty = Query.Types[TypeIdx]; 92 const LLT EltTy = Ty.getElementType(); 93 unsigned Size = Ty.getSizeInBits(); 94 unsigned Pieces = (Size + 63) / 64; 95 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces; 96 return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy)); 97 }; 98 } 99 100 // Increase the number of vector elements to reach the next multiple of 32-bit 101 // type. 102 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) { 103 return [=](const LegalityQuery &Query) { 104 const LLT Ty = Query.Types[TypeIdx]; 105 106 const LLT EltTy = Ty.getElementType(); 107 const int Size = Ty.getSizeInBits(); 108 const int EltSize = EltTy.getSizeInBits(); 109 const int NextMul32 = (Size + 31) / 32; 110 111 assert(EltSize < 32); 112 113 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize; 114 return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy)); 115 }; 116 } 117 118 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) { 119 return [=](const LegalityQuery &Query) { 120 const LLT Ty = Query.Types[TypeIdx]; 121 unsigned Size = Ty.getSizeInBits(); 122 123 LLT CoercedTy; 124 if (Size <= 32) { 125 // <2 x s8> -> s16 126 // <4 x s8> -> s32 127 CoercedTy = LLT::scalar(Size); 128 } else 129 CoercedTy = LLT::scalarOrVector(Size / 32, 32); 130 131 return std::make_pair(TypeIdx, CoercedTy); 132 }; 133 } 134 135 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) { 136 return [=](const LegalityQuery &Query) { 137 const LLT QueryTy = Query.Types[TypeIdx]; 138 return QueryTy.isVector() && QueryTy.getSizeInBits() < Size; 139 }; 140 } 141 142 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) { 143 return [=](const LegalityQuery &Query) { 144 const LLT QueryTy = Query.Types[TypeIdx]; 145 return QueryTy.isVector() && QueryTy.getSizeInBits() > Size; 146 }; 147 } 148 149 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) { 150 return [=](const LegalityQuery &Query) { 151 const LLT QueryTy = Query.Types[TypeIdx]; 152 return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0; 153 }; 154 } 155 156 static bool isRegisterSize(unsigned Size) { 157 return Size % 32 == 0 && Size <= MaxRegisterSize; 158 } 159 160 static bool isRegisterVectorElementType(LLT EltTy) { 161 const int EltSize = EltTy.getSizeInBits(); 162 return EltSize == 16 || EltSize % 32 == 0; 163 } 164 165 static bool isRegisterVectorType(LLT Ty) { 166 const int EltSize = Ty.getElementType().getSizeInBits(); 167 return EltSize == 32 || EltSize == 64 || 168 (EltSize == 16 && Ty.getNumElements() % 2 == 0) || 169 EltSize == 128 || EltSize == 256; 170 } 171 172 static bool isRegisterType(LLT Ty) { 173 if (!isRegisterSize(Ty.getSizeInBits())) 174 return false; 175 176 if (Ty.isVector()) 177 return isRegisterVectorType(Ty); 178 179 return true; 180 } 181 182 // Any combination of 32 or 64-bit elements up the maximum register size, and 183 // multiples of v2s16. 184 static LegalityPredicate isRegisterType(unsigned TypeIdx) { 185 return [=](const LegalityQuery &Query) { 186 return isRegisterType(Query.Types[TypeIdx]); 187 }; 188 } 189 190 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) { 191 return [=](const LegalityQuery &Query) { 192 const LLT QueryTy = Query.Types[TypeIdx]; 193 if (!QueryTy.isVector()) 194 return false; 195 const LLT EltTy = QueryTy.getElementType(); 196 return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32; 197 }; 198 } 199 200 static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) { 201 return [=](const LegalityQuery &Query) { 202 const LLT Ty = Query.Types[TypeIdx]; 203 return !Ty.isVector() && Ty.getSizeInBits() > 32 && 204 Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits(); 205 }; 206 } 207 208 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we 209 // handle some operations by just promoting the register during 210 // selection. There are also d16 loads on GFX9+ which preserve the high bits. 211 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, 212 bool IsLoad) { 213 switch (AS) { 214 case AMDGPUAS::PRIVATE_ADDRESS: 215 // FIXME: Private element size. 216 return 32; 217 case AMDGPUAS::LOCAL_ADDRESS: 218 return ST.useDS128() ? 128 : 64; 219 case AMDGPUAS::GLOBAL_ADDRESS: 220 case AMDGPUAS::CONSTANT_ADDRESS: 221 case AMDGPUAS::CONSTANT_ADDRESS_32BIT: 222 // Treat constant and global as identical. SMRD loads are sometimes usable for 223 // global loads (ideally constant address space should be eliminated) 224 // depending on the context. Legality cannot be context dependent, but 225 // RegBankSelect can split the load as necessary depending on the pointer 226 // register bank/uniformity and if the memory is invariant or not written in a 227 // kernel. 228 return IsLoad ? 512 : 128; 229 default: 230 // Flat addresses may contextually need to be split to 32-bit parts if they 231 // may alias scratch depending on the subtarget. 232 return 128; 233 } 234 } 235 236 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, 237 const LegalityQuery &Query, 238 unsigned Opcode) { 239 const LLT Ty = Query.Types[0]; 240 241 // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD 242 const bool IsLoad = Opcode != AMDGPU::G_STORE; 243 244 unsigned RegSize = Ty.getSizeInBits(); 245 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 246 unsigned Align = Query.MMODescrs[0].AlignInBits; 247 unsigned AS = Query.Types[1].getAddressSpace(); 248 249 // All of these need to be custom lowered to cast the pointer operand. 250 if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 251 return false; 252 253 // TODO: We should be able to widen loads if the alignment is high enough, but 254 // we also need to modify the memory access size. 255 #if 0 256 // Accept widening loads based on alignment. 257 if (IsLoad && MemSize < Size) 258 MemSize = std::max(MemSize, Align); 259 #endif 260 261 // Only 1-byte and 2-byte to 32-bit extloads are valid. 262 if (MemSize != RegSize && RegSize != 32) 263 return false; 264 265 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 266 return false; 267 268 switch (MemSize) { 269 case 8: 270 case 16: 271 case 32: 272 case 64: 273 case 128: 274 break; 275 case 96: 276 if (!ST.hasDwordx3LoadStores()) 277 return false; 278 break; 279 case 256: 280 case 512: 281 // These may contextually need to be broken down. 282 break; 283 default: 284 return false; 285 } 286 287 assert(RegSize >= MemSize); 288 289 if (Align < MemSize) { 290 const SITargetLowering *TLI = ST.getTargetLowering(); 291 if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8)) 292 return false; 293 } 294 295 return true; 296 } 297 298 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so 299 // workaround this. Eventually it should ignore the type for loads and only care 300 // about the size. Return true in cases where we will workaround this for now by 301 // bitcasting. 302 static bool loadStoreBitcastWorkaround(const LLT Ty) { 303 if (EnableNewLegality) 304 return false; 305 306 const unsigned Size = Ty.getSizeInBits(); 307 if (Size <= 64) 308 return false; 309 if (!Ty.isVector()) 310 return true; 311 unsigned EltSize = Ty.getElementType().getSizeInBits(); 312 return EltSize != 32 && EltSize != 64; 313 } 314 315 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query, 316 unsigned Opcode) { 317 const LLT Ty = Query.Types[0]; 318 return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query, Opcode) && 319 !loadStoreBitcastWorkaround(Ty); 320 } 321 322 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_, 323 const GCNTargetMachine &TM) 324 : ST(ST_) { 325 using namespace TargetOpcode; 326 327 auto GetAddrSpacePtr = [&TM](unsigned AS) { 328 return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); 329 }; 330 331 const LLT S1 = LLT::scalar(1); 332 const LLT S16 = LLT::scalar(16); 333 const LLT S32 = LLT::scalar(32); 334 const LLT S64 = LLT::scalar(64); 335 const LLT S128 = LLT::scalar(128); 336 const LLT S256 = LLT::scalar(256); 337 const LLT S512 = LLT::scalar(512); 338 const LLT MaxScalar = LLT::scalar(MaxRegisterSize); 339 340 const LLT V2S16 = LLT::vector(2, 16); 341 const LLT V4S16 = LLT::vector(4, 16); 342 343 const LLT V2S32 = LLT::vector(2, 32); 344 const LLT V3S32 = LLT::vector(3, 32); 345 const LLT V4S32 = LLT::vector(4, 32); 346 const LLT V5S32 = LLT::vector(5, 32); 347 const LLT V6S32 = LLT::vector(6, 32); 348 const LLT V7S32 = LLT::vector(7, 32); 349 const LLT V8S32 = LLT::vector(8, 32); 350 const LLT V9S32 = LLT::vector(9, 32); 351 const LLT V10S32 = LLT::vector(10, 32); 352 const LLT V11S32 = LLT::vector(11, 32); 353 const LLT V12S32 = LLT::vector(12, 32); 354 const LLT V13S32 = LLT::vector(13, 32); 355 const LLT V14S32 = LLT::vector(14, 32); 356 const LLT V15S32 = LLT::vector(15, 32); 357 const LLT V16S32 = LLT::vector(16, 32); 358 const LLT V32S32 = LLT::vector(32, 32); 359 360 const LLT V2S64 = LLT::vector(2, 64); 361 const LLT V3S64 = LLT::vector(3, 64); 362 const LLT V4S64 = LLT::vector(4, 64); 363 const LLT V5S64 = LLT::vector(5, 64); 364 const LLT V6S64 = LLT::vector(6, 64); 365 const LLT V7S64 = LLT::vector(7, 64); 366 const LLT V8S64 = LLT::vector(8, 64); 367 const LLT V16S64 = LLT::vector(16, 64); 368 369 std::initializer_list<LLT> AllS32Vectors = 370 {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, 371 V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32}; 372 std::initializer_list<LLT> AllS64Vectors = 373 {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64}; 374 375 const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); 376 const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); 377 const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT); 378 const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); 379 const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS); 380 const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); 381 const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); 382 383 const LLT CodePtr = FlatPtr; 384 385 const std::initializer_list<LLT> AddrSpaces64 = { 386 GlobalPtr, ConstantPtr, FlatPtr 387 }; 388 389 const std::initializer_list<LLT> AddrSpaces32 = { 390 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr 391 }; 392 393 const std::initializer_list<LLT> FPTypesBase = { 394 S32, S64 395 }; 396 397 const std::initializer_list<LLT> FPTypes16 = { 398 S32, S64, S16 399 }; 400 401 const std::initializer_list<LLT> FPTypesPK16 = { 402 S32, S64, S16, V2S16 403 }; 404 405 const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32; 406 407 setAction({G_BRCOND, S1}, Legal); // VCC branches 408 setAction({G_BRCOND, S32}, Legal); // SCC branches 409 410 // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more 411 // elements for v3s16 412 getActionDefinitionsBuilder(G_PHI) 413 .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256}) 414 .legalFor(AllS32Vectors) 415 .legalFor(AllS64Vectors) 416 .legalFor(AddrSpaces64) 417 .legalFor(AddrSpaces32) 418 .clampScalar(0, S32, S256) 419 .widenScalarToNextPow2(0, 32) 420 .clampMaxNumElements(0, S32, 16) 421 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 422 .legalIf(isPointer(0)); 423 424 if (ST.hasVOP3PInsts()) { 425 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 426 .legalFor({S32, S16, V2S16}) 427 .clampScalar(0, S16, S32) 428 .clampMaxNumElements(0, S16, 2) 429 .scalarize(0) 430 .widenScalarToNextPow2(0, 32); 431 } else if (ST.has16BitInsts()) { 432 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 433 .legalFor({S32, S16}) 434 .clampScalar(0, S16, S32) 435 .scalarize(0) 436 .widenScalarToNextPow2(0, 32); 437 } else { 438 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 439 .legalFor({S32}) 440 .clampScalar(0, S32, S32) 441 .scalarize(0); 442 } 443 444 // FIXME: Not really legal. Placeholder for custom lowering. 445 getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_SREM, G_UREM}) 446 .customFor({S32, S64}) 447 .clampScalar(0, S32, S64) 448 .widenScalarToNextPow2(0, 32) 449 .scalarize(0); 450 451 getActionDefinitionsBuilder({G_UMULH, G_SMULH}) 452 .legalFor({S32}) 453 .clampScalar(0, S32, S32) 454 .scalarize(0); 455 456 // Report legal for any types we can handle anywhere. For the cases only legal 457 // on the SALU, RegBankSelect will be able to re-legalize. 458 getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) 459 .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16}) 460 .clampScalar(0, S32, S64) 461 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 462 .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0)) 463 .widenScalarToNextPow2(0) 464 .scalarize(0); 465 466 getActionDefinitionsBuilder({G_UADDO, G_USUBO, 467 G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) 468 .legalFor({{S32, S1}, {S32, S32}}) 469 .minScalar(0, S32) 470 // TODO: .scalarize(0) 471 .lower(); 472 473 getActionDefinitionsBuilder(G_BITCAST) 474 // Don't worry about the size constraint. 475 .legalIf(all(isRegisterType(0), isRegisterType(1))) 476 .lower(); 477 478 479 getActionDefinitionsBuilder(G_CONSTANT) 480 .legalFor({S1, S32, S64, S16, GlobalPtr, 481 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) 482 .clampScalar(0, S32, S64) 483 .widenScalarToNextPow2(0) 484 .legalIf(isPointer(0)); 485 486 getActionDefinitionsBuilder(G_FCONSTANT) 487 .legalFor({S32, S64, S16}) 488 .clampScalar(0, S16, S64); 489 490 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE}) 491 .legalIf(isRegisterType(0)) 492 // s1 and s16 are special cases because they have legal operations on 493 // them, but don't really occupy registers in the normal way. 494 .legalFor({S1, S16}) 495 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 496 .clampScalarOrElt(0, S32, MaxScalar) 497 .widenScalarToNextPow2(0, 32) 498 .clampMaxNumElements(0, S32, 16); 499 500 setAction({G_FRAME_INDEX, PrivatePtr}, Legal); 501 502 // If the amount is divergent, we have to do a wave reduction to get the 503 // maximum value, so this is expanded during RegBankSelect. 504 getActionDefinitionsBuilder(G_DYN_STACKALLOC) 505 .legalFor({{PrivatePtr, S32}}); 506 507 getActionDefinitionsBuilder(G_GLOBAL_VALUE) 508 .unsupportedFor({PrivatePtr}) 509 .custom(); 510 setAction({G_BLOCK_ADDR, CodePtr}, Legal); 511 512 auto &FPOpActions = getActionDefinitionsBuilder( 513 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE}) 514 .legalFor({S32, S64}); 515 auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS}) 516 .customFor({S32, S64}); 517 auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV) 518 .customFor({S32, S64}); 519 520 if (ST.has16BitInsts()) { 521 if (ST.hasVOP3PInsts()) 522 FPOpActions.legalFor({S16, V2S16}); 523 else 524 FPOpActions.legalFor({S16}); 525 526 TrigActions.customFor({S16}); 527 FDIVActions.customFor({S16}); 528 } 529 530 auto &MinNumMaxNum = getActionDefinitionsBuilder({ 531 G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE}); 532 533 if (ST.hasVOP3PInsts()) { 534 MinNumMaxNum.customFor(FPTypesPK16) 535 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 536 .clampMaxNumElements(0, S16, 2) 537 .clampScalar(0, S16, S64) 538 .scalarize(0); 539 } else if (ST.has16BitInsts()) { 540 MinNumMaxNum.customFor(FPTypes16) 541 .clampScalar(0, S16, S64) 542 .scalarize(0); 543 } else { 544 MinNumMaxNum.customFor(FPTypesBase) 545 .clampScalar(0, S32, S64) 546 .scalarize(0); 547 } 548 549 if (ST.hasVOP3PInsts()) 550 FPOpActions.clampMaxNumElements(0, S16, 2); 551 552 FPOpActions 553 .scalarize(0) 554 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 555 556 TrigActions 557 .scalarize(0) 558 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 559 560 FDIVActions 561 .scalarize(0) 562 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 563 564 getActionDefinitionsBuilder({G_FNEG, G_FABS}) 565 .legalFor(FPTypesPK16) 566 .clampMaxNumElements(0, S16, 2) 567 .scalarize(0) 568 .clampScalar(0, S16, S64); 569 570 if (ST.has16BitInsts()) { 571 getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR}) 572 .legalFor({S32, S64, S16}) 573 .scalarize(0) 574 .clampScalar(0, S16, S64); 575 } else { 576 getActionDefinitionsBuilder(G_FSQRT) 577 .legalFor({S32, S64}) 578 .scalarize(0) 579 .clampScalar(0, S32, S64); 580 581 if (ST.hasFractBug()) { 582 getActionDefinitionsBuilder(G_FFLOOR) 583 .customFor({S64}) 584 .legalFor({S32, S64}) 585 .scalarize(0) 586 .clampScalar(0, S32, S64); 587 } else { 588 getActionDefinitionsBuilder(G_FFLOOR) 589 .legalFor({S32, S64}) 590 .scalarize(0) 591 .clampScalar(0, S32, S64); 592 } 593 } 594 595 getActionDefinitionsBuilder(G_FPTRUNC) 596 .legalFor({{S32, S64}, {S16, S32}}) 597 .scalarize(0) 598 .lower(); 599 600 getActionDefinitionsBuilder(G_FPEXT) 601 .legalFor({{S64, S32}, {S32, S16}}) 602 .lowerFor({{S64, S16}}) // FIXME: Implement 603 .scalarize(0); 604 605 getActionDefinitionsBuilder(G_FSUB) 606 // Use actual fsub instruction 607 .legalFor({S32}) 608 // Must use fadd + fneg 609 .lowerFor({S64, S16, V2S16}) 610 .scalarize(0) 611 .clampScalar(0, S32, S64); 612 613 // Whether this is legal depends on the floating point mode for the function. 614 auto &FMad = getActionDefinitionsBuilder(G_FMAD); 615 if (ST.hasMadF16() && ST.hasMadMacF32Insts()) 616 FMad.customFor({S32, S16}); 617 else if (ST.hasMadMacF32Insts()) 618 FMad.customFor({S32}); 619 else if (ST.hasMadF16()) 620 FMad.customFor({S16}); 621 FMad.scalarize(0) 622 .lower(); 623 624 // TODO: Do we need to clamp maximum bitwidth? 625 getActionDefinitionsBuilder(G_TRUNC) 626 .legalIf(isScalar(0)) 627 .legalFor({{V2S16, V2S32}}) 628 .clampMaxNumElements(0, S16, 2) 629 // Avoid scalarizing in cases that should be truly illegal. In unresolvable 630 // situations (like an invalid implicit use), we don't want to infinite loop 631 // in the legalizer. 632 .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0)) 633 .alwaysLegal(); 634 635 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) 636 .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, 637 {S32, S1}, {S64, S1}, {S16, S1}}) 638 .scalarize(0) 639 .clampScalar(0, S32, S64) 640 .widenScalarToNextPow2(1, 32); 641 642 // TODO: Split s1->s64 during regbankselect for VALU. 643 auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) 644 .legalFor({{S32, S32}, {S64, S32}, {S16, S32}}) 645 .lowerFor({{S32, S64}}) 646 .lowerIf(typeIs(1, S1)) 647 .customFor({{S64, S64}}); 648 if (ST.has16BitInsts()) 649 IToFP.legalFor({{S16, S16}}); 650 IToFP.clampScalar(1, S32, S64) 651 .scalarize(0) 652 .widenScalarToNextPow2(1); 653 654 auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) 655 .legalFor({{S32, S32}, {S32, S64}, {S32, S16}}) 656 .customFor({{S64, S64}}); 657 if (ST.has16BitInsts()) 658 FPToI.legalFor({{S16, S16}}); 659 else 660 FPToI.minScalar(1, S32); 661 662 FPToI.minScalar(0, S32) 663 .scalarize(0) 664 .lower(); 665 666 getActionDefinitionsBuilder(G_INTRINSIC_ROUND) 667 .scalarize(0) 668 .lower(); 669 670 if (ST.has16BitInsts()) { 671 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 672 .legalFor({S16, S32, S64}) 673 .clampScalar(0, S16, S64) 674 .scalarize(0); 675 } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { 676 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 677 .legalFor({S32, S64}) 678 .clampScalar(0, S32, S64) 679 .scalarize(0); 680 } else { 681 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 682 .legalFor({S32}) 683 .customFor({S64}) 684 .clampScalar(0, S32, S64) 685 .scalarize(0); 686 } 687 688 // FIXME: Clamp offset operand. 689 getActionDefinitionsBuilder(G_PTR_ADD) 690 .legalIf(isPointer(0)) 691 .scalarize(0); 692 693 getActionDefinitionsBuilder(G_PTRMASK) 694 .legalIf(typeInSet(1, {S64, S32})) 695 .minScalar(1, S32) 696 .maxScalarIf(sizeIs(0, 32), 1, S32) 697 .maxScalarIf(sizeIs(0, 64), 1, S64) 698 .scalarize(0); 699 700 auto &CmpBuilder = 701 getActionDefinitionsBuilder(G_ICMP) 702 // The compare output type differs based on the register bank of the output, 703 // so make both s1 and s32 legal. 704 // 705 // Scalar compares producing output in scc will be promoted to s32, as that 706 // is the allocatable register type that will be needed for the copy from 707 // scc. This will be promoted during RegBankSelect, and we assume something 708 // before that won't try to use s32 result types. 709 // 710 // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg 711 // bank. 712 .legalForCartesianProduct( 713 {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) 714 .legalForCartesianProduct( 715 {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}); 716 if (ST.has16BitInsts()) { 717 CmpBuilder.legalFor({{S1, S16}}); 718 } 719 720 CmpBuilder 721 .widenScalarToNextPow2(1) 722 .clampScalar(1, S32, S64) 723 .scalarize(0) 724 .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1))); 725 726 getActionDefinitionsBuilder(G_FCMP) 727 .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase) 728 .widenScalarToNextPow2(1) 729 .clampScalar(1, S32, S64) 730 .scalarize(0); 731 732 // FIXME: fpow has a selection pattern that should move to custom lowering. 733 auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2}); 734 if (ST.has16BitInsts()) 735 Exp2Ops.legalFor({S32, S16}); 736 else 737 Exp2Ops.legalFor({S32}); 738 Exp2Ops.clampScalar(0, MinScalarFPTy, S32); 739 Exp2Ops.scalarize(0); 740 741 auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW}); 742 if (ST.has16BitInsts()) 743 ExpOps.customFor({{S32}, {S16}}); 744 else 745 ExpOps.customFor({S32}); 746 ExpOps.clampScalar(0, MinScalarFPTy, S32) 747 .scalarize(0); 748 749 // The 64-bit versions produce 32-bit results, but only on the SALU. 750 getActionDefinitionsBuilder(G_CTPOP) 751 .legalFor({{S32, S32}, {S32, S64}}) 752 .clampScalar(0, S32, S32) 753 .clampScalar(1, S32, S64) 754 .scalarize(0) 755 .widenScalarToNextPow2(0, 32) 756 .widenScalarToNextPow2(1, 32); 757 758 // The hardware instructions return a different result on 0 than the generic 759 // instructions expect. The hardware produces -1, but these produce the 760 // bitwidth. 761 getActionDefinitionsBuilder({G_CTLZ, G_CTTZ}) 762 .scalarize(0) 763 .clampScalar(0, S32, S32) 764 .clampScalar(1, S32, S64) 765 .widenScalarToNextPow2(0, 32) 766 .widenScalarToNextPow2(1, 32) 767 .lower(); 768 769 // The 64-bit versions produce 32-bit results, but only on the SALU. 770 getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF}) 771 .legalFor({{S32, S32}, {S32, S64}}) 772 .clampScalar(0, S32, S32) 773 .clampScalar(1, S32, S64) 774 .scalarize(0) 775 .widenScalarToNextPow2(0, 32) 776 .widenScalarToNextPow2(1, 32); 777 778 getActionDefinitionsBuilder(G_BITREVERSE) 779 .legalFor({S32}) 780 .clampScalar(0, S32, S32) 781 .scalarize(0); 782 783 if (ST.has16BitInsts()) { 784 getActionDefinitionsBuilder(G_BSWAP) 785 .legalFor({S16, S32, V2S16}) 786 .clampMaxNumElements(0, S16, 2) 787 // FIXME: Fixing non-power-of-2 before clamp is workaround for 788 // narrowScalar limitation. 789 .widenScalarToNextPow2(0) 790 .clampScalar(0, S16, S32) 791 .scalarize(0); 792 793 if (ST.hasVOP3PInsts()) { 794 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 795 .legalFor({S32, S16, V2S16}) 796 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 797 .clampMaxNumElements(0, S16, 2) 798 .minScalar(0, S16) 799 .widenScalarToNextPow2(0) 800 .scalarize(0) 801 .lower(); 802 } else { 803 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 804 .legalFor({S32, S16}) 805 .widenScalarToNextPow2(0) 806 .minScalar(0, S16) 807 .scalarize(0) 808 .lower(); 809 } 810 } else { 811 // TODO: Should have same legality without v_perm_b32 812 getActionDefinitionsBuilder(G_BSWAP) 813 .legalFor({S32}) 814 .lowerIf(scalarNarrowerThan(0, 32)) 815 // FIXME: Fixing non-power-of-2 before clamp is workaround for 816 // narrowScalar limitation. 817 .widenScalarToNextPow2(0) 818 .maxScalar(0, S32) 819 .scalarize(0) 820 .lower(); 821 822 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 823 .legalFor({S32}) 824 .minScalar(0, S32) 825 .widenScalarToNextPow2(0) 826 .scalarize(0) 827 .lower(); 828 } 829 830 getActionDefinitionsBuilder(G_INTTOPTR) 831 // List the common cases 832 .legalForCartesianProduct(AddrSpaces64, {S64}) 833 .legalForCartesianProduct(AddrSpaces32, {S32}) 834 .scalarize(0) 835 // Accept any address space as long as the size matches 836 .legalIf(sameSize(0, 1)) 837 .widenScalarIf(smallerThan(1, 0), 838 [](const LegalityQuery &Query) { 839 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 840 }) 841 .narrowScalarIf(largerThan(1, 0), 842 [](const LegalityQuery &Query) { 843 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 844 }); 845 846 getActionDefinitionsBuilder(G_PTRTOINT) 847 // List the common cases 848 .legalForCartesianProduct(AddrSpaces64, {S64}) 849 .legalForCartesianProduct(AddrSpaces32, {S32}) 850 .scalarize(0) 851 // Accept any address space as long as the size matches 852 .legalIf(sameSize(0, 1)) 853 .widenScalarIf(smallerThan(0, 1), 854 [](const LegalityQuery &Query) { 855 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 856 }) 857 .narrowScalarIf( 858 largerThan(0, 1), 859 [](const LegalityQuery &Query) { 860 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 861 }); 862 863 getActionDefinitionsBuilder(G_ADDRSPACE_CAST) 864 .scalarize(0) 865 .custom(); 866 867 const auto needToSplitMemOp = [=](const LegalityQuery &Query, 868 bool IsLoad) -> bool { 869 const LLT DstTy = Query.Types[0]; 870 871 // Split vector extloads. 872 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 873 unsigned Align = Query.MMODescrs[0].AlignInBits; 874 875 if (MemSize < DstTy.getSizeInBits()) 876 MemSize = std::max(MemSize, Align); 877 878 if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize) 879 return true; 880 881 const LLT PtrTy = Query.Types[1]; 882 unsigned AS = PtrTy.getAddressSpace(); 883 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 884 return true; 885 886 // Catch weird sized loads that don't evenly divide into the access sizes 887 // TODO: May be able to widen depending on alignment etc. 888 unsigned NumRegs = (MemSize + 31) / 32; 889 if (NumRegs == 3) { 890 if (!ST.hasDwordx3LoadStores()) 891 return true; 892 } else { 893 // If the alignment allows, these should have been widened. 894 if (!isPowerOf2_32(NumRegs)) 895 return true; 896 } 897 898 if (Align < MemSize) { 899 const SITargetLowering *TLI = ST.getTargetLowering(); 900 return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8); 901 } 902 903 return false; 904 }; 905 906 const auto shouldWidenLoadResult = [=](const LegalityQuery &Query, 907 unsigned Opc) -> bool { 908 unsigned Size = Query.Types[0].getSizeInBits(); 909 if (isPowerOf2_32(Size)) 910 return false; 911 912 if (Size == 96 && ST.hasDwordx3LoadStores()) 913 return false; 914 915 unsigned AddrSpace = Query.Types[1].getAddressSpace(); 916 if (Size >= maxSizeForAddrSpace(ST, AddrSpace, Opc)) 917 return false; 918 919 unsigned Align = Query.MMODescrs[0].AlignInBits; 920 unsigned RoundedSize = NextPowerOf2(Size); 921 return (Align >= RoundedSize); 922 }; 923 924 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccess() ? 0 : 32; 925 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccess() ? 0 : 16; 926 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccess() ? 0 : 8; 927 928 // TODO: Refine based on subtargets which support unaligned access or 128-bit 929 // LDS 930 // TODO: Unsupported flat for SI. 931 932 for (unsigned Op : {G_LOAD, G_STORE}) { 933 const bool IsStore = Op == G_STORE; 934 935 auto &Actions = getActionDefinitionsBuilder(Op); 936 // Explicitly list some common cases. 937 // TODO: Does this help compile time at all? 938 Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32}, 939 {V2S32, GlobalPtr, 64, GlobalAlign32}, 940 {V4S32, GlobalPtr, 128, GlobalAlign32}, 941 {S64, GlobalPtr, 64, GlobalAlign32}, 942 {V2S64, GlobalPtr, 128, GlobalAlign32}, 943 {V2S16, GlobalPtr, 32, GlobalAlign32}, 944 {S32, GlobalPtr, 8, GlobalAlign8}, 945 {S32, GlobalPtr, 16, GlobalAlign16}, 946 947 {S32, LocalPtr, 32, 32}, 948 {S64, LocalPtr, 64, 32}, 949 {V2S32, LocalPtr, 64, 32}, 950 {S32, LocalPtr, 8, 8}, 951 {S32, LocalPtr, 16, 16}, 952 {V2S16, LocalPtr, 32, 32}, 953 954 {S32, PrivatePtr, 32, 32}, 955 {S32, PrivatePtr, 8, 8}, 956 {S32, PrivatePtr, 16, 16}, 957 {V2S16, PrivatePtr, 32, 32}, 958 959 {S32, ConstantPtr, 32, GlobalAlign32}, 960 {V2S32, ConstantPtr, 64, GlobalAlign32}, 961 {V4S32, ConstantPtr, 128, GlobalAlign32}, 962 {S64, ConstantPtr, 64, GlobalAlign32}, 963 {V2S32, ConstantPtr, 32, GlobalAlign32}}); 964 Actions.legalIf( 965 [=](const LegalityQuery &Query) -> bool { 966 return isLoadStoreLegal(ST, Query, Op); 967 }); 968 969 // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to 970 // 64-bits. 971 // 972 // TODO: Should generalize bitcast action into coerce, which will also cover 973 // inserting addrspacecasts. 974 Actions.customIf(typeIs(1, Constant32Ptr)); 975 976 // Turn any illegal element vectors into something easier to deal 977 // with. These will ultimately produce 32-bit scalar shifts to extract the 978 // parts anyway. 979 // 980 // For odd 16-bit element vectors, prefer to split those into pieces with 981 // 16-bit vector parts. 982 Actions.bitcastIf( 983 [=](const LegalityQuery &Query) -> bool { 984 const LLT Ty = Query.Types[0]; 985 const unsigned Size = Ty.getSizeInBits(); 986 987 if (Size != Query.MMODescrs[0].SizeInBits) 988 return Size <= 32 && Ty.isVector(); 989 990 if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty)) 991 return true; 992 return Ty.isVector() && (Size <= 32 || isRegisterSize(Size)) && 993 !isRegisterVectorElementType(Ty.getElementType()); 994 }, bitcastToRegisterType(0)); 995 996 Actions 997 .customIf(typeIs(1, Constant32Ptr)) 998 // Widen suitably aligned loads by loading extra elements. 999 .moreElementsIf([=](const LegalityQuery &Query) { 1000 const LLT Ty = Query.Types[0]; 1001 return Op == G_LOAD && Ty.isVector() && 1002 shouldWidenLoadResult(Query, Op); 1003 }, moreElementsToNextPow2(0)) 1004 .widenScalarIf([=](const LegalityQuery &Query) { 1005 const LLT Ty = Query.Types[0]; 1006 return Op == G_LOAD && !Ty.isVector() && 1007 shouldWidenLoadResult(Query, Op); 1008 }, widenScalarOrEltToNextPow2(0)) 1009 .narrowScalarIf( 1010 [=](const LegalityQuery &Query) -> bool { 1011 return !Query.Types[0].isVector() && 1012 needToSplitMemOp(Query, Op == G_LOAD); 1013 }, 1014 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1015 const LLT DstTy = Query.Types[0]; 1016 const LLT PtrTy = Query.Types[1]; 1017 1018 const unsigned DstSize = DstTy.getSizeInBits(); 1019 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 1020 1021 // Split extloads. 1022 if (DstSize > MemSize) 1023 return std::make_pair(0, LLT::scalar(MemSize)); 1024 1025 if (!isPowerOf2_32(DstSize)) { 1026 // We're probably decomposing an odd sized store. Try to split 1027 // to the widest type. TODO: Account for alignment. As-is it 1028 // should be OK, since the new parts will be further legalized. 1029 unsigned FloorSize = PowerOf2Floor(DstSize); 1030 return std::make_pair(0, LLT::scalar(FloorSize)); 1031 } 1032 1033 if (DstSize > 32 && (DstSize % 32 != 0)) { 1034 // FIXME: Need a way to specify non-extload of larger size if 1035 // suitably aligned. 1036 return std::make_pair(0, LLT::scalar(32 * (DstSize / 32))); 1037 } 1038 1039 unsigned MaxSize = maxSizeForAddrSpace(ST, 1040 PtrTy.getAddressSpace(), 1041 Op == G_LOAD); 1042 if (MemSize > MaxSize) 1043 return std::make_pair(0, LLT::scalar(MaxSize)); 1044 1045 unsigned Align = Query.MMODescrs[0].AlignInBits; 1046 return std::make_pair(0, LLT::scalar(Align)); 1047 }) 1048 .fewerElementsIf( 1049 [=](const LegalityQuery &Query) -> bool { 1050 return Query.Types[0].isVector() && 1051 needToSplitMemOp(Query, Op == G_LOAD); 1052 }, 1053 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1054 const LLT DstTy = Query.Types[0]; 1055 const LLT PtrTy = Query.Types[1]; 1056 1057 LLT EltTy = DstTy.getElementType(); 1058 unsigned MaxSize = maxSizeForAddrSpace(ST, 1059 PtrTy.getAddressSpace(), 1060 Op == G_LOAD); 1061 1062 // FIXME: Handle widened to power of 2 results better. This ends 1063 // up scalarizing. 1064 // FIXME: 3 element stores scalarized on SI 1065 1066 // Split if it's too large for the address space. 1067 if (Query.MMODescrs[0].SizeInBits > MaxSize) { 1068 unsigned NumElts = DstTy.getNumElements(); 1069 unsigned EltSize = EltTy.getSizeInBits(); 1070 1071 if (MaxSize % EltSize == 0) { 1072 return std::make_pair( 1073 0, LLT::scalarOrVector(MaxSize / EltSize, EltTy)); 1074 } 1075 1076 unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize; 1077 1078 // FIXME: Refine when odd breakdowns handled 1079 // The scalars will need to be re-legalized. 1080 if (NumPieces == 1 || NumPieces >= NumElts || 1081 NumElts % NumPieces != 0) 1082 return std::make_pair(0, EltTy); 1083 1084 return std::make_pair(0, 1085 LLT::vector(NumElts / NumPieces, EltTy)); 1086 } 1087 1088 // FIXME: We could probably handle weird extending loads better. 1089 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 1090 if (DstTy.getSizeInBits() > MemSize) 1091 return std::make_pair(0, EltTy); 1092 1093 unsigned EltSize = EltTy.getSizeInBits(); 1094 unsigned DstSize = DstTy.getSizeInBits(); 1095 if (!isPowerOf2_32(DstSize)) { 1096 // We're probably decomposing an odd sized store. Try to split 1097 // to the widest type. TODO: Account for alignment. As-is it 1098 // should be OK, since the new parts will be further legalized. 1099 unsigned FloorSize = PowerOf2Floor(DstSize); 1100 return std::make_pair( 1101 0, LLT::scalarOrVector(FloorSize / EltSize, EltTy)); 1102 } 1103 1104 // Need to split because of alignment. 1105 unsigned Align = Query.MMODescrs[0].AlignInBits; 1106 if (EltSize > Align && 1107 (EltSize / Align < DstTy.getNumElements())) { 1108 return std::make_pair(0, LLT::vector(EltSize / Align, EltTy)); 1109 } 1110 1111 // May need relegalization for the scalars. 1112 return std::make_pair(0, EltTy); 1113 }) 1114 .minScalar(0, S32); 1115 1116 if (IsStore) 1117 Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32)); 1118 1119 // TODO: Need a bitcast lower option? 1120 Actions 1121 .widenScalarToNextPow2(0) 1122 .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0)); 1123 } 1124 1125 auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) 1126 .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8}, 1127 {S32, GlobalPtr, 16, 2 * 8}, 1128 {S32, LocalPtr, 8, 8}, 1129 {S32, LocalPtr, 16, 16}, 1130 {S32, PrivatePtr, 8, 8}, 1131 {S32, PrivatePtr, 16, 16}, 1132 {S32, ConstantPtr, 8, 8}, 1133 {S32, ConstantPtr, 16, 2 * 8}}); 1134 if (ST.hasFlatAddressSpace()) { 1135 ExtLoads.legalForTypesWithMemDesc( 1136 {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}}); 1137 } 1138 1139 ExtLoads.clampScalar(0, S32, S32) 1140 .widenScalarToNextPow2(0) 1141 .unsupportedIfMemSizeNotPow2() 1142 .lower(); 1143 1144 auto &Atomics = getActionDefinitionsBuilder( 1145 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, 1146 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, 1147 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, 1148 G_ATOMICRMW_UMIN}) 1149 .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, 1150 {S64, GlobalPtr}, {S64, LocalPtr}}); 1151 if (ST.hasFlatAddressSpace()) { 1152 Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); 1153 } 1154 1155 if (ST.hasLDSFPAtomics()) { 1156 getActionDefinitionsBuilder(G_ATOMICRMW_FADD) 1157 .legalFor({{S32, LocalPtr}}); 1158 } 1159 1160 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output 1161 // demarshalling 1162 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG) 1163 .customFor({{S32, GlobalPtr}, {S64, GlobalPtr}, 1164 {S32, FlatPtr}, {S64, FlatPtr}}) 1165 .legalFor({{S32, LocalPtr}, {S64, LocalPtr}, 1166 {S32, RegionPtr}, {S64, RegionPtr}}); 1167 // TODO: Pointer types, any 32-bit or 64-bit vector 1168 1169 // Condition should be s32 for scalar, s1 for vector. 1170 getActionDefinitionsBuilder(G_SELECT) 1171 .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, 1172 GlobalPtr, LocalPtr, FlatPtr, PrivatePtr, 1173 LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1, S32}) 1174 .clampScalar(0, S16, S64) 1175 .scalarize(1) 1176 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 1177 .fewerElementsIf(numElementsNotEven(0), scalarize(0)) 1178 .clampMaxNumElements(0, S32, 2) 1179 .clampMaxNumElements(0, LocalPtr, 2) 1180 .clampMaxNumElements(0, PrivatePtr, 2) 1181 .scalarize(0) 1182 .widenScalarToNextPow2(0) 1183 .legalIf(all(isPointer(0), typeInSet(1, {S1, S32}))); 1184 1185 // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can 1186 // be more flexible with the shift amount type. 1187 auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) 1188 .legalFor({{S32, S32}, {S64, S32}}); 1189 if (ST.has16BitInsts()) { 1190 if (ST.hasVOP3PInsts()) { 1191 Shifts.legalFor({{S16, S16}, {V2S16, V2S16}}) 1192 .clampMaxNumElements(0, S16, 2); 1193 } else 1194 Shifts.legalFor({{S16, S16}}); 1195 1196 // TODO: Support 16-bit shift amounts for all types 1197 Shifts.widenScalarIf( 1198 [=](const LegalityQuery &Query) { 1199 // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a 1200 // 32-bit amount. 1201 const LLT ValTy = Query.Types[0]; 1202 const LLT AmountTy = Query.Types[1]; 1203 return ValTy.getSizeInBits() <= 16 && 1204 AmountTy.getSizeInBits() < 16; 1205 }, changeTo(1, S16)); 1206 Shifts.maxScalarIf(typeIs(0, S16), 1, S16); 1207 Shifts.clampScalar(1, S32, S32); 1208 Shifts.clampScalar(0, S16, S64); 1209 Shifts.widenScalarToNextPow2(0, 16); 1210 } else { 1211 // Make sure we legalize the shift amount type first, as the general 1212 // expansion for the shifted type will produce much worse code if it hasn't 1213 // been truncated already. 1214 Shifts.clampScalar(1, S32, S32); 1215 Shifts.clampScalar(0, S32, S64); 1216 Shifts.widenScalarToNextPow2(0, 32); 1217 } 1218 Shifts.scalarize(0); 1219 1220 for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { 1221 unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; 1222 unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; 1223 unsigned IdxTypeIdx = 2; 1224 1225 getActionDefinitionsBuilder(Op) 1226 .customIf([=](const LegalityQuery &Query) { 1227 const LLT EltTy = Query.Types[EltTypeIdx]; 1228 const LLT VecTy = Query.Types[VecTypeIdx]; 1229 const LLT IdxTy = Query.Types[IdxTypeIdx]; 1230 return (EltTy.getSizeInBits() == 16 || 1231 EltTy.getSizeInBits() % 32 == 0) && 1232 VecTy.getSizeInBits() % 32 == 0 && 1233 VecTy.getSizeInBits() <= MaxRegisterSize && 1234 IdxTy.getSizeInBits() == 32; 1235 }) 1236 .clampScalar(EltTypeIdx, S32, S64) 1237 .clampScalar(VecTypeIdx, S32, S64) 1238 .clampScalar(IdxTypeIdx, S32, S32); 1239 } 1240 1241 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) 1242 .unsupportedIf([=](const LegalityQuery &Query) { 1243 const LLT &EltTy = Query.Types[1].getElementType(); 1244 return Query.Types[0] != EltTy; 1245 }); 1246 1247 for (unsigned Op : {G_EXTRACT, G_INSERT}) { 1248 unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; 1249 unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; 1250 1251 // FIXME: Doesn't handle extract of illegal sizes. 1252 getActionDefinitionsBuilder(Op) 1253 .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32))) 1254 // FIXME: Multiples of 16 should not be legal. 1255 .legalIf([=](const LegalityQuery &Query) { 1256 const LLT BigTy = Query.Types[BigTyIdx]; 1257 const LLT LitTy = Query.Types[LitTyIdx]; 1258 return (BigTy.getSizeInBits() % 32 == 0) && 1259 (LitTy.getSizeInBits() % 16 == 0); 1260 }) 1261 .widenScalarIf( 1262 [=](const LegalityQuery &Query) { 1263 const LLT BigTy = Query.Types[BigTyIdx]; 1264 return (BigTy.getScalarSizeInBits() < 16); 1265 }, 1266 LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) 1267 .widenScalarIf( 1268 [=](const LegalityQuery &Query) { 1269 const LLT LitTy = Query.Types[LitTyIdx]; 1270 return (LitTy.getScalarSizeInBits() < 16); 1271 }, 1272 LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) 1273 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1274 .widenScalarToNextPow2(BigTyIdx, 32); 1275 1276 } 1277 1278 auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR) 1279 .legalForCartesianProduct(AllS32Vectors, {S32}) 1280 .legalForCartesianProduct(AllS64Vectors, {S64}) 1281 .clampNumElements(0, V16S32, V32S32) 1282 .clampNumElements(0, V2S64, V16S64) 1283 .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16)); 1284 1285 if (ST.hasScalarPackInsts()) { 1286 BuildVector 1287 // FIXME: Should probably widen s1 vectors straight to s32 1288 .minScalarOrElt(0, S16) 1289 // Widen source elements and produce a G_BUILD_VECTOR_TRUNC 1290 .minScalar(1, S32); 1291 1292 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1293 .legalFor({V2S16, S32}) 1294 .lower(); 1295 BuildVector.minScalarOrElt(0, S32); 1296 } else { 1297 BuildVector.customFor({V2S16, S16}); 1298 BuildVector.minScalarOrElt(0, S32); 1299 1300 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1301 .customFor({V2S16, S32}) 1302 .lower(); 1303 } 1304 1305 BuildVector.legalIf(isRegisterType(0)); 1306 1307 // FIXME: Clamp maximum size 1308 getActionDefinitionsBuilder(G_CONCAT_VECTORS) 1309 .legalIf(isRegisterType(0)); 1310 1311 // TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse 1312 // pre-legalize. 1313 if (ST.hasVOP3PInsts()) { 1314 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR) 1315 .customFor({V2S16, V2S16}) 1316 .lower(); 1317 } else 1318 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower(); 1319 1320 // Merge/Unmerge 1321 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { 1322 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; 1323 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; 1324 1325 auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { 1326 const LLT Ty = Query.Types[TypeIdx]; 1327 if (Ty.isVector()) { 1328 const LLT &EltTy = Ty.getElementType(); 1329 if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512) 1330 return true; 1331 if (!isPowerOf2_32(EltTy.getSizeInBits())) 1332 return true; 1333 } 1334 return false; 1335 }; 1336 1337 auto &Builder = getActionDefinitionsBuilder(Op) 1338 .lowerFor({{S16, V2S16}}) 1339 .lowerIf([=](const LegalityQuery &Query) { 1340 const LLT BigTy = Query.Types[BigTyIdx]; 1341 return BigTy.getSizeInBits() == 32; 1342 }) 1343 // Try to widen to s16 first for small types. 1344 // TODO: Only do this on targets with legal s16 shifts 1345 .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16) 1346 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) 1347 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1348 .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32), 1349 elementTypeIs(1, S16)), 1350 changeTo(1, V2S16)) 1351 // Clamp the little scalar to s8-s256 and make it a power of 2. It's not 1352 // worth considering the multiples of 64 since 2*192 and 2*384 are not 1353 // valid. 1354 .clampScalar(LitTyIdx, S32, S512) 1355 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) 1356 // Break up vectors with weird elements into scalars 1357 .fewerElementsIf( 1358 [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); }, 1359 scalarize(0)) 1360 .fewerElementsIf( 1361 [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); }, 1362 scalarize(1)) 1363 .clampScalar(BigTyIdx, S32, MaxScalar); 1364 1365 if (Op == G_MERGE_VALUES) { 1366 Builder.widenScalarIf( 1367 // TODO: Use 16-bit shifts if legal for 8-bit values? 1368 [=](const LegalityQuery &Query) { 1369 const LLT Ty = Query.Types[LitTyIdx]; 1370 return Ty.getSizeInBits() < 32; 1371 }, 1372 changeTo(LitTyIdx, S32)); 1373 } 1374 1375 Builder.widenScalarIf( 1376 [=](const LegalityQuery &Query) { 1377 const LLT Ty = Query.Types[BigTyIdx]; 1378 return !isPowerOf2_32(Ty.getSizeInBits()) && 1379 Ty.getSizeInBits() % 16 != 0; 1380 }, 1381 [=](const LegalityQuery &Query) { 1382 // Pick the next power of 2, or a multiple of 64 over 128. 1383 // Whichever is smaller. 1384 const LLT &Ty = Query.Types[BigTyIdx]; 1385 unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); 1386 if (NewSizeInBits >= 256) { 1387 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); 1388 if (RoundedTo < NewSizeInBits) 1389 NewSizeInBits = RoundedTo; 1390 } 1391 return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); 1392 }) 1393 .legalIf([=](const LegalityQuery &Query) { 1394 const LLT &BigTy = Query.Types[BigTyIdx]; 1395 const LLT &LitTy = Query.Types[LitTyIdx]; 1396 1397 if (BigTy.isVector() && BigTy.getSizeInBits() < 32) 1398 return false; 1399 if (LitTy.isVector() && LitTy.getSizeInBits() < 32) 1400 return false; 1401 1402 return BigTy.getSizeInBits() % 16 == 0 && 1403 LitTy.getSizeInBits() % 16 == 0 && 1404 BigTy.getSizeInBits() <= MaxRegisterSize; 1405 }) 1406 // Any vectors left are the wrong size. Scalarize them. 1407 .scalarize(0) 1408 .scalarize(1); 1409 } 1410 1411 // S64 is only legal on SALU, and needs to be broken into 32-bit elements in 1412 // RegBankSelect. 1413 auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG) 1414 .legalFor({{S32}, {S64}}); 1415 1416 if (ST.hasVOP3PInsts()) { 1417 SextInReg.lowerFor({{V2S16}}) 1418 // Prefer to reduce vector widths for 16-bit vectors before lowering, to 1419 // get more vector shift opportunities, since we'll get those when 1420 // expanded. 1421 .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16)); 1422 } else if (ST.has16BitInsts()) { 1423 SextInReg.lowerFor({{S32}, {S64}, {S16}}); 1424 } else { 1425 // Prefer to promote to s32 before lowering if we don't have 16-bit 1426 // shifts. This avoid a lot of intermediate truncate and extend operations. 1427 SextInReg.lowerFor({{S32}, {S64}}); 1428 } 1429 1430 SextInReg 1431 .scalarize(0) 1432 .clampScalar(0, S32, S64) 1433 .lower(); 1434 1435 getActionDefinitionsBuilder(G_FSHR) 1436 .legalFor({{S32, S32}}) 1437 .scalarize(0) 1438 .lower(); 1439 1440 getActionDefinitionsBuilder(G_READCYCLECOUNTER) 1441 .legalFor({S64}); 1442 1443 getActionDefinitionsBuilder({ 1444 // TODO: Verify V_BFI_B32 is generated from expanded bit ops 1445 G_FCOPYSIGN, 1446 1447 G_ATOMIC_CMPXCHG_WITH_SUCCESS, 1448 G_READ_REGISTER, 1449 G_WRITE_REGISTER, 1450 1451 G_SADDO, G_SSUBO, 1452 1453 // TODO: Implement 1454 G_FMINIMUM, G_FMAXIMUM, 1455 G_FSHL 1456 }).lower(); 1457 1458 getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE, 1459 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD, 1460 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE}) 1461 .unsupported(); 1462 1463 computeTables(); 1464 verify(*ST.getInstrInfo()); 1465 } 1466 1467 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper, 1468 MachineInstr &MI) const { 1469 MachineIRBuilder &B = Helper.MIRBuilder; 1470 MachineRegisterInfo &MRI = *B.getMRI(); 1471 GISelChangeObserver &Observer = Helper.Observer; 1472 1473 switch (MI.getOpcode()) { 1474 case TargetOpcode::G_ADDRSPACE_CAST: 1475 return legalizeAddrSpaceCast(MI, MRI, B); 1476 case TargetOpcode::G_FRINT: 1477 return legalizeFrint(MI, MRI, B); 1478 case TargetOpcode::G_FCEIL: 1479 return legalizeFceil(MI, MRI, B); 1480 case TargetOpcode::G_INTRINSIC_TRUNC: 1481 return legalizeIntrinsicTrunc(MI, MRI, B); 1482 case TargetOpcode::G_SITOFP: 1483 return legalizeITOFP(MI, MRI, B, true); 1484 case TargetOpcode::G_UITOFP: 1485 return legalizeITOFP(MI, MRI, B, false); 1486 case TargetOpcode::G_FPTOSI: 1487 return legalizeFPTOI(MI, MRI, B, true); 1488 case TargetOpcode::G_FPTOUI: 1489 return legalizeFPTOI(MI, MRI, B, false); 1490 case TargetOpcode::G_FMINNUM: 1491 case TargetOpcode::G_FMAXNUM: 1492 case TargetOpcode::G_FMINNUM_IEEE: 1493 case TargetOpcode::G_FMAXNUM_IEEE: 1494 return legalizeMinNumMaxNum(Helper, MI); 1495 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1496 return legalizeExtractVectorElt(MI, MRI, B); 1497 case TargetOpcode::G_INSERT_VECTOR_ELT: 1498 return legalizeInsertVectorElt(MI, MRI, B); 1499 case TargetOpcode::G_SHUFFLE_VECTOR: 1500 return legalizeShuffleVector(MI, MRI, B); 1501 case TargetOpcode::G_FSIN: 1502 case TargetOpcode::G_FCOS: 1503 return legalizeSinCos(MI, MRI, B); 1504 case TargetOpcode::G_GLOBAL_VALUE: 1505 return legalizeGlobalValue(MI, MRI, B); 1506 case TargetOpcode::G_LOAD: 1507 return legalizeLoad(MI, MRI, B, Observer); 1508 case TargetOpcode::G_FMAD: 1509 return legalizeFMad(MI, MRI, B); 1510 case TargetOpcode::G_FDIV: 1511 return legalizeFDIV(MI, MRI, B); 1512 case TargetOpcode::G_UDIV: 1513 case TargetOpcode::G_UREM: 1514 return legalizeUDIV_UREM(MI, MRI, B); 1515 case TargetOpcode::G_SDIV: 1516 case TargetOpcode::G_SREM: 1517 return legalizeSDIV_SREM(MI, MRI, B); 1518 case TargetOpcode::G_ATOMIC_CMPXCHG: 1519 return legalizeAtomicCmpXChg(MI, MRI, B); 1520 case TargetOpcode::G_FLOG: 1521 return legalizeFlog(MI, B, numbers::ln2f); 1522 case TargetOpcode::G_FLOG10: 1523 return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f); 1524 case TargetOpcode::G_FEXP: 1525 return legalizeFExp(MI, B); 1526 case TargetOpcode::G_FPOW: 1527 return legalizeFPow(MI, B); 1528 case TargetOpcode::G_FFLOOR: 1529 return legalizeFFloor(MI, MRI, B); 1530 case TargetOpcode::G_BUILD_VECTOR: 1531 return legalizeBuildVector(MI, MRI, B); 1532 default: 1533 return false; 1534 } 1535 1536 llvm_unreachable("expected switch to return"); 1537 } 1538 1539 Register AMDGPULegalizerInfo::getSegmentAperture( 1540 unsigned AS, 1541 MachineRegisterInfo &MRI, 1542 MachineIRBuilder &B) const { 1543 MachineFunction &MF = B.getMF(); 1544 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1545 const LLT S32 = LLT::scalar(32); 1546 1547 assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS); 1548 1549 if (ST.hasApertureRegs()) { 1550 // FIXME: Use inline constants (src_{shared, private}_base) instead of 1551 // getreg. 1552 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 1553 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 1554 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 1555 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 1556 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 1557 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 1558 unsigned Encoding = 1559 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 1560 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 1561 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 1562 1563 Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 1564 1565 B.buildInstr(AMDGPU::S_GETREG_B32) 1566 .addDef(GetReg) 1567 .addImm(Encoding); 1568 MRI.setType(GetReg, S32); 1569 1570 auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1); 1571 return B.buildShl(S32, GetReg, ShiftAmt).getReg(0); 1572 } 1573 1574 Register QueuePtr = MRI.createGenericVirtualRegister( 1575 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1576 1577 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1578 if (!loadInputValue(QueuePtr, B, &MFI->getArgInfo().QueuePtr)) 1579 return Register(); 1580 1581 // Offset into amd_queue_t for group_segment_aperture_base_hi / 1582 // private_segment_aperture_base_hi. 1583 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 1584 1585 // TODO: can we be smarter about machine pointer info? 1586 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1587 MachineMemOperand *MMO = MF.getMachineMemOperand( 1588 PtrInfo, 1589 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 1590 MachineMemOperand::MOInvariant, 1591 4, commonAlignment(Align(64), StructOffset)); 1592 1593 Register LoadAddr; 1594 1595 B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset); 1596 return B.buildLoad(S32, LoadAddr, *MMO).getReg(0); 1597 } 1598 1599 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast( 1600 MachineInstr &MI, MachineRegisterInfo &MRI, 1601 MachineIRBuilder &B) const { 1602 MachineFunction &MF = B.getMF(); 1603 1604 const LLT S32 = LLT::scalar(32); 1605 Register Dst = MI.getOperand(0).getReg(); 1606 Register Src = MI.getOperand(1).getReg(); 1607 1608 LLT DstTy = MRI.getType(Dst); 1609 LLT SrcTy = MRI.getType(Src); 1610 unsigned DestAS = DstTy.getAddressSpace(); 1611 unsigned SrcAS = SrcTy.getAddressSpace(); 1612 1613 // TODO: Avoid reloading from the queue ptr for each cast, or at least each 1614 // vector element. 1615 assert(!DstTy.isVector()); 1616 1617 const AMDGPUTargetMachine &TM 1618 = static_cast<const AMDGPUTargetMachine &>(MF.getTarget()); 1619 1620 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1621 if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) { 1622 MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST)); 1623 return true; 1624 } 1625 1626 if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1627 // Truncate. 1628 B.buildExtract(Dst, Src, 0); 1629 MI.eraseFromParent(); 1630 return true; 1631 } 1632 1633 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1634 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1635 uint32_t AddrHiVal = Info->get32BitAddressHighBits(); 1636 1637 // FIXME: This is a bit ugly due to creating a merge of 2 pointers to 1638 // another. Merge operands are required to be the same type, but creating an 1639 // extra ptrtoint would be kind of pointless. 1640 auto HighAddr = B.buildConstant( 1641 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal); 1642 B.buildMerge(Dst, {Src, HighAddr}); 1643 MI.eraseFromParent(); 1644 return true; 1645 } 1646 1647 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 1648 assert(DestAS == AMDGPUAS::LOCAL_ADDRESS || 1649 DestAS == AMDGPUAS::PRIVATE_ADDRESS); 1650 unsigned NullVal = TM.getNullPointerValue(DestAS); 1651 1652 auto SegmentNull = B.buildConstant(DstTy, NullVal); 1653 auto FlatNull = B.buildConstant(SrcTy, 0); 1654 1655 // Extract low 32-bits of the pointer. 1656 auto PtrLo32 = B.buildExtract(DstTy, Src, 0); 1657 1658 auto CmpRes = 1659 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0)); 1660 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0)); 1661 1662 MI.eraseFromParent(); 1663 return true; 1664 } 1665 1666 if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS) 1667 return false; 1668 1669 if (!ST.hasFlatAddressSpace()) 1670 return false; 1671 1672 auto SegmentNull = 1673 B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS)); 1674 auto FlatNull = 1675 B.buildConstant(DstTy, TM.getNullPointerValue(DestAS)); 1676 1677 Register ApertureReg = getSegmentAperture(SrcAS, MRI, B); 1678 if (!ApertureReg.isValid()) 1679 return false; 1680 1681 auto CmpRes = 1682 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0)); 1683 1684 // Coerce the type of the low half of the result so we can use merge_values. 1685 Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0); 1686 1687 // TODO: Should we allow mismatched types but matching sizes in merges to 1688 // avoid the ptrtoint? 1689 auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg}); 1690 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull); 1691 1692 MI.eraseFromParent(); 1693 return true; 1694 } 1695 1696 bool AMDGPULegalizerInfo::legalizeFrint( 1697 MachineInstr &MI, MachineRegisterInfo &MRI, 1698 MachineIRBuilder &B) const { 1699 Register Src = MI.getOperand(1).getReg(); 1700 LLT Ty = MRI.getType(Src); 1701 assert(Ty.isScalar() && Ty.getSizeInBits() == 64); 1702 1703 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1704 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1705 1706 auto C1 = B.buildFConstant(Ty, C1Val); 1707 auto CopySign = B.buildFCopysign(Ty, C1, Src); 1708 1709 // TODO: Should this propagate fast-math-flags? 1710 auto Tmp1 = B.buildFAdd(Ty, Src, CopySign); 1711 auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign); 1712 1713 auto C2 = B.buildFConstant(Ty, C2Val); 1714 auto Fabs = B.buildFAbs(Ty, Src); 1715 1716 auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2); 1717 B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2); 1718 return true; 1719 } 1720 1721 bool AMDGPULegalizerInfo::legalizeFceil( 1722 MachineInstr &MI, MachineRegisterInfo &MRI, 1723 MachineIRBuilder &B) const { 1724 1725 const LLT S1 = LLT::scalar(1); 1726 const LLT S64 = LLT::scalar(64); 1727 1728 Register Src = MI.getOperand(1).getReg(); 1729 assert(MRI.getType(Src) == S64); 1730 1731 // result = trunc(src) 1732 // if (src > 0.0 && src != result) 1733 // result += 1.0 1734 1735 auto Trunc = B.buildIntrinsicTrunc(S64, Src); 1736 1737 const auto Zero = B.buildFConstant(S64, 0.0); 1738 const auto One = B.buildFConstant(S64, 1.0); 1739 auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero); 1740 auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc); 1741 auto And = B.buildAnd(S1, Lt0, NeTrunc); 1742 auto Add = B.buildSelect(S64, And, One, Zero); 1743 1744 // TODO: Should this propagate fast-math-flags? 1745 B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add); 1746 return true; 1747 } 1748 1749 static MachineInstrBuilder extractF64Exponent(unsigned Hi, 1750 MachineIRBuilder &B) { 1751 const unsigned FractBits = 52; 1752 const unsigned ExpBits = 11; 1753 LLT S32 = LLT::scalar(32); 1754 1755 auto Const0 = B.buildConstant(S32, FractBits - 32); 1756 auto Const1 = B.buildConstant(S32, ExpBits); 1757 1758 auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false) 1759 .addUse(Const0.getReg(0)) 1760 .addUse(Const1.getReg(0)); 1761 1762 return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023)); 1763 } 1764 1765 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc( 1766 MachineInstr &MI, MachineRegisterInfo &MRI, 1767 MachineIRBuilder &B) const { 1768 const LLT S1 = LLT::scalar(1); 1769 const LLT S32 = LLT::scalar(32); 1770 const LLT S64 = LLT::scalar(64); 1771 1772 Register Src = MI.getOperand(1).getReg(); 1773 assert(MRI.getType(Src) == S64); 1774 1775 // TODO: Should this use extract since the low half is unused? 1776 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 1777 Register Hi = Unmerge.getReg(1); 1778 1779 // Extract the upper half, since this is where we will find the sign and 1780 // exponent. 1781 auto Exp = extractF64Exponent(Hi, B); 1782 1783 const unsigned FractBits = 52; 1784 1785 // Extract the sign bit. 1786 const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31); 1787 auto SignBit = B.buildAnd(S32, Hi, SignBitMask); 1788 1789 const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1); 1790 1791 const auto Zero32 = B.buildConstant(S32, 0); 1792 1793 // Extend back to 64-bits. 1794 auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit}); 1795 1796 auto Shr = B.buildAShr(S64, FractMask, Exp); 1797 auto Not = B.buildNot(S64, Shr); 1798 auto Tmp0 = B.buildAnd(S64, Src, Not); 1799 auto FiftyOne = B.buildConstant(S32, FractBits - 1); 1800 1801 auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32); 1802 auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne); 1803 1804 auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0); 1805 B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1); 1806 return true; 1807 } 1808 1809 bool AMDGPULegalizerInfo::legalizeITOFP( 1810 MachineInstr &MI, MachineRegisterInfo &MRI, 1811 MachineIRBuilder &B, bool Signed) const { 1812 1813 Register Dst = MI.getOperand(0).getReg(); 1814 Register Src = MI.getOperand(1).getReg(); 1815 1816 const LLT S64 = LLT::scalar(64); 1817 const LLT S32 = LLT::scalar(32); 1818 1819 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); 1820 1821 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 1822 1823 auto CvtHi = Signed ? 1824 B.buildSITOFP(S64, Unmerge.getReg(1)) : 1825 B.buildUITOFP(S64, Unmerge.getReg(1)); 1826 1827 auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0)); 1828 1829 auto ThirtyTwo = B.buildConstant(S32, 32); 1830 auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false) 1831 .addUse(CvtHi.getReg(0)) 1832 .addUse(ThirtyTwo.getReg(0)); 1833 1834 // TODO: Should this propagate fast-math-flags? 1835 B.buildFAdd(Dst, LdExp, CvtLo); 1836 MI.eraseFromParent(); 1837 return true; 1838 } 1839 1840 // TODO: Copied from DAG implementation. Verify logic and document how this 1841 // actually works. 1842 bool AMDGPULegalizerInfo::legalizeFPTOI( 1843 MachineInstr &MI, MachineRegisterInfo &MRI, 1844 MachineIRBuilder &B, bool Signed) const { 1845 1846 Register Dst = MI.getOperand(0).getReg(); 1847 Register Src = MI.getOperand(1).getReg(); 1848 1849 const LLT S64 = LLT::scalar(64); 1850 const LLT S32 = LLT::scalar(32); 1851 1852 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); 1853 1854 unsigned Flags = MI.getFlags(); 1855 1856 auto Trunc = B.buildIntrinsicTrunc(S64, Src, Flags); 1857 auto K0 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0x3df0000000000000))); 1858 auto K1 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0xc1f0000000000000))); 1859 1860 auto Mul = B.buildFMul(S64, Trunc, K0, Flags); 1861 auto FloorMul = B.buildFFloor(S64, Mul, Flags); 1862 auto Fma = B.buildFMA(S64, FloorMul, K1, Trunc, Flags); 1863 1864 auto Hi = Signed ? 1865 B.buildFPTOSI(S32, FloorMul) : 1866 B.buildFPTOUI(S32, FloorMul); 1867 auto Lo = B.buildFPTOUI(S32, Fma); 1868 1869 B.buildMerge(Dst, { Lo, Hi }); 1870 MI.eraseFromParent(); 1871 1872 return true; 1873 } 1874 1875 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper, 1876 MachineInstr &MI) const { 1877 MachineFunction &MF = Helper.MIRBuilder.getMF(); 1878 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1879 1880 const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE || 1881 MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE; 1882 1883 // With ieee_mode disabled, the instructions have the correct behavior 1884 // already for G_FMINNUM/G_FMAXNUM 1885 if (!MFI->getMode().IEEE) 1886 return !IsIEEEOp; 1887 1888 if (IsIEEEOp) 1889 return true; 1890 1891 return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized; 1892 } 1893 1894 bool AMDGPULegalizerInfo::legalizeExtractVectorElt( 1895 MachineInstr &MI, MachineRegisterInfo &MRI, 1896 MachineIRBuilder &B) const { 1897 // TODO: Should move some of this into LegalizerHelper. 1898 1899 // TODO: Promote dynamic indexing of s16 to s32 1900 1901 // FIXME: Artifact combiner probably should have replaced the truncated 1902 // constant before this, so we shouldn't need 1903 // getConstantVRegValWithLookThrough. 1904 Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough( 1905 MI.getOperand(2).getReg(), MRI); 1906 if (!IdxVal) // Dynamic case will be selected to register indexing. 1907 return true; 1908 1909 Register Dst = MI.getOperand(0).getReg(); 1910 Register Vec = MI.getOperand(1).getReg(); 1911 1912 LLT VecTy = MRI.getType(Vec); 1913 LLT EltTy = VecTy.getElementType(); 1914 assert(EltTy == MRI.getType(Dst)); 1915 1916 if (IdxVal->Value < VecTy.getNumElements()) 1917 B.buildExtract(Dst, Vec, IdxVal->Value * EltTy.getSizeInBits()); 1918 else 1919 B.buildUndef(Dst); 1920 1921 MI.eraseFromParent(); 1922 return true; 1923 } 1924 1925 bool AMDGPULegalizerInfo::legalizeInsertVectorElt( 1926 MachineInstr &MI, MachineRegisterInfo &MRI, 1927 MachineIRBuilder &B) const { 1928 // TODO: Should move some of this into LegalizerHelper. 1929 1930 // TODO: Promote dynamic indexing of s16 to s32 1931 1932 // FIXME: Artifact combiner probably should have replaced the truncated 1933 // constant before this, so we shouldn't need 1934 // getConstantVRegValWithLookThrough. 1935 Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough( 1936 MI.getOperand(3).getReg(), MRI); 1937 if (!IdxVal) // Dynamic case will be selected to register indexing. 1938 return true; 1939 1940 Register Dst = MI.getOperand(0).getReg(); 1941 Register Vec = MI.getOperand(1).getReg(); 1942 Register Ins = MI.getOperand(2).getReg(); 1943 1944 LLT VecTy = MRI.getType(Vec); 1945 LLT EltTy = VecTy.getElementType(); 1946 assert(EltTy == MRI.getType(Ins)); 1947 1948 if (IdxVal->Value < VecTy.getNumElements()) 1949 B.buildInsert(Dst, Vec, Ins, IdxVal->Value * EltTy.getSizeInBits()); 1950 else 1951 B.buildUndef(Dst); 1952 1953 MI.eraseFromParent(); 1954 return true; 1955 } 1956 1957 bool AMDGPULegalizerInfo::legalizeShuffleVector( 1958 MachineInstr &MI, MachineRegisterInfo &MRI, 1959 MachineIRBuilder &B) const { 1960 const LLT V2S16 = LLT::vector(2, 16); 1961 1962 Register Dst = MI.getOperand(0).getReg(); 1963 Register Src0 = MI.getOperand(1).getReg(); 1964 LLT DstTy = MRI.getType(Dst); 1965 LLT SrcTy = MRI.getType(Src0); 1966 1967 if (SrcTy == V2S16 && DstTy == V2S16 && 1968 AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask())) 1969 return true; 1970 1971 MachineIRBuilder HelperBuilder(MI); 1972 GISelObserverWrapper DummyObserver; 1973 LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder); 1974 return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized; 1975 } 1976 1977 bool AMDGPULegalizerInfo::legalizeSinCos( 1978 MachineInstr &MI, MachineRegisterInfo &MRI, 1979 MachineIRBuilder &B) const { 1980 1981 Register DstReg = MI.getOperand(0).getReg(); 1982 Register SrcReg = MI.getOperand(1).getReg(); 1983 LLT Ty = MRI.getType(DstReg); 1984 unsigned Flags = MI.getFlags(); 1985 1986 Register TrigVal; 1987 auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi); 1988 if (ST.hasTrigReducedRange()) { 1989 auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags); 1990 TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false) 1991 .addUse(MulVal.getReg(0)) 1992 .setMIFlags(Flags).getReg(0); 1993 } else 1994 TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0); 1995 1996 Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ? 1997 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos; 1998 B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false) 1999 .addUse(TrigVal) 2000 .setMIFlags(Flags); 2001 MI.eraseFromParent(); 2002 return true; 2003 } 2004 2005 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy, 2006 MachineIRBuilder &B, 2007 const GlobalValue *GV, 2008 int64_t Offset, 2009 unsigned GAFlags) const { 2010 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 2011 // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered 2012 // to the following code sequence: 2013 // 2014 // For constant address space: 2015 // s_getpc_b64 s[0:1] 2016 // s_add_u32 s0, s0, $symbol 2017 // s_addc_u32 s1, s1, 0 2018 // 2019 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2020 // a fixup or relocation is emitted to replace $symbol with a literal 2021 // constant, which is a pc-relative offset from the encoding of the $symbol 2022 // operand to the global variable. 2023 // 2024 // For global address space: 2025 // s_getpc_b64 s[0:1] 2026 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 2027 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 2028 // 2029 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2030 // fixups or relocations are emitted to replace $symbol@*@lo and 2031 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 2032 // which is a 64-bit pc-relative offset from the encoding of the $symbol 2033 // operand to the global variable. 2034 // 2035 // What we want here is an offset from the value returned by s_getpc 2036 // (which is the address of the s_add_u32 instruction) to the global 2037 // variable, but since the encoding of $symbol starts 4 bytes after the start 2038 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 2039 // small. This requires us to add 4 to the global variable offset in order to 2040 // compute the correct address. 2041 2042 LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2043 2044 Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg : 2045 B.getMRI()->createGenericVirtualRegister(ConstPtrTy); 2046 2047 MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET) 2048 .addDef(PCReg); 2049 2050 MIB.addGlobalAddress(GV, Offset + 4, GAFlags); 2051 if (GAFlags == SIInstrInfo::MO_NONE) 2052 MIB.addImm(0); 2053 else 2054 MIB.addGlobalAddress(GV, Offset + 4, GAFlags + 1); 2055 2056 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass); 2057 2058 if (PtrTy.getSizeInBits() == 32) 2059 B.buildExtract(DstReg, PCReg, 0); 2060 return true; 2061 } 2062 2063 bool AMDGPULegalizerInfo::legalizeGlobalValue( 2064 MachineInstr &MI, MachineRegisterInfo &MRI, 2065 MachineIRBuilder &B) const { 2066 Register DstReg = MI.getOperand(0).getReg(); 2067 LLT Ty = MRI.getType(DstReg); 2068 unsigned AS = Ty.getAddressSpace(); 2069 2070 const GlobalValue *GV = MI.getOperand(1).getGlobal(); 2071 MachineFunction &MF = B.getMF(); 2072 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2073 2074 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 2075 if (!MFI->isEntryFunction()) { 2076 const Function &Fn = MF.getFunction(); 2077 DiagnosticInfoUnsupported BadLDSDecl( 2078 Fn, "local memory global used by non-kernel function", MI.getDebugLoc(), 2079 DS_Warning); 2080 Fn.getContext().diagnose(BadLDSDecl); 2081 2082 // We currently don't have a way to correctly allocate LDS objects that 2083 // aren't directly associated with a kernel. We do force inlining of 2084 // functions that use local objects. However, if these dead functions are 2085 // not eliminated, we don't want a compile time error. Just emit a warning 2086 // and a trap, since there should be no callable path here. 2087 B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2088 B.buildUndef(DstReg); 2089 MI.eraseFromParent(); 2090 return true; 2091 } 2092 2093 // TODO: We could emit code to handle the initialization somewhere. 2094 if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) { 2095 const SITargetLowering *TLI = ST.getTargetLowering(); 2096 if (!TLI->shouldUseLDSConstAddress(GV)) { 2097 MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO); 2098 return true; // Leave in place; 2099 } 2100 2101 B.buildConstant( 2102 DstReg, 2103 MFI->allocateLDSGlobal(B.getDataLayout(), *cast<GlobalVariable>(GV))); 2104 MI.eraseFromParent(); 2105 return true; 2106 } 2107 2108 const Function &Fn = MF.getFunction(); 2109 DiagnosticInfoUnsupported BadInit( 2110 Fn, "unsupported initializer for address space", MI.getDebugLoc()); 2111 Fn.getContext().diagnose(BadInit); 2112 return true; 2113 } 2114 2115 const SITargetLowering *TLI = ST.getTargetLowering(); 2116 2117 if (TLI->shouldEmitFixup(GV)) { 2118 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0); 2119 MI.eraseFromParent(); 2120 return true; 2121 } 2122 2123 if (TLI->shouldEmitPCReloc(GV)) { 2124 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32); 2125 MI.eraseFromParent(); 2126 return true; 2127 } 2128 2129 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2130 Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy); 2131 2132 MachineMemOperand *GOTMMO = MF.getMachineMemOperand( 2133 MachinePointerInfo::getGOT(MF), 2134 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 2135 MachineMemOperand::MOInvariant, 2136 8 /*Size*/, Align(8)); 2137 2138 buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32); 2139 2140 if (Ty.getSizeInBits() == 32) { 2141 // Truncate if this is a 32-bit constant adrdess. 2142 auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO); 2143 B.buildExtract(DstReg, Load, 0); 2144 } else 2145 B.buildLoad(DstReg, GOTAddr, *GOTMMO); 2146 2147 MI.eraseFromParent(); 2148 return true; 2149 } 2150 2151 bool AMDGPULegalizerInfo::legalizeLoad( 2152 MachineInstr &MI, MachineRegisterInfo &MRI, 2153 MachineIRBuilder &B, GISelChangeObserver &Observer) const { 2154 LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2155 auto Cast = B.buildAddrSpaceCast(ConstPtr, MI.getOperand(1).getReg()); 2156 Observer.changingInstr(MI); 2157 MI.getOperand(1).setReg(Cast.getReg(0)); 2158 Observer.changedInstr(MI); 2159 return true; 2160 } 2161 2162 bool AMDGPULegalizerInfo::legalizeFMad( 2163 MachineInstr &MI, MachineRegisterInfo &MRI, 2164 MachineIRBuilder &B) const { 2165 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2166 assert(Ty.isScalar()); 2167 2168 MachineFunction &MF = B.getMF(); 2169 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2170 2171 // TODO: Always legal with future ftz flag. 2172 // FIXME: Do we need just output? 2173 if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals()) 2174 return true; 2175 if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals()) 2176 return true; 2177 2178 MachineIRBuilder HelperBuilder(MI); 2179 GISelObserverWrapper DummyObserver; 2180 LegalizerHelper Helper(MF, DummyObserver, HelperBuilder); 2181 return Helper.lowerFMad(MI) == LegalizerHelper::Legalized; 2182 } 2183 2184 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg( 2185 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2186 Register DstReg = MI.getOperand(0).getReg(); 2187 Register PtrReg = MI.getOperand(1).getReg(); 2188 Register CmpVal = MI.getOperand(2).getReg(); 2189 Register NewVal = MI.getOperand(3).getReg(); 2190 2191 assert(SITargetLowering::isFlatGlobalAddrSpace( 2192 MRI.getType(PtrReg).getAddressSpace()) && 2193 "this should not have been custom lowered"); 2194 2195 LLT ValTy = MRI.getType(CmpVal); 2196 LLT VecTy = LLT::vector(2, ValTy); 2197 2198 Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0); 2199 2200 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG) 2201 .addDef(DstReg) 2202 .addUse(PtrReg) 2203 .addUse(PackedVal) 2204 .setMemRefs(MI.memoperands()); 2205 2206 MI.eraseFromParent(); 2207 return true; 2208 } 2209 2210 bool AMDGPULegalizerInfo::legalizeFlog( 2211 MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const { 2212 Register Dst = MI.getOperand(0).getReg(); 2213 Register Src = MI.getOperand(1).getReg(); 2214 LLT Ty = B.getMRI()->getType(Dst); 2215 unsigned Flags = MI.getFlags(); 2216 2217 auto Log2Operand = B.buildFLog2(Ty, Src, Flags); 2218 auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted); 2219 2220 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags); 2221 MI.eraseFromParent(); 2222 return true; 2223 } 2224 2225 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI, 2226 MachineIRBuilder &B) const { 2227 Register Dst = MI.getOperand(0).getReg(); 2228 Register Src = MI.getOperand(1).getReg(); 2229 unsigned Flags = MI.getFlags(); 2230 LLT Ty = B.getMRI()->getType(Dst); 2231 2232 auto K = B.buildFConstant(Ty, numbers::log2e); 2233 auto Mul = B.buildFMul(Ty, Src, K, Flags); 2234 B.buildFExp2(Dst, Mul, Flags); 2235 MI.eraseFromParent(); 2236 return true; 2237 } 2238 2239 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI, 2240 MachineIRBuilder &B) const { 2241 Register Dst = MI.getOperand(0).getReg(); 2242 Register Src0 = MI.getOperand(1).getReg(); 2243 Register Src1 = MI.getOperand(2).getReg(); 2244 unsigned Flags = MI.getFlags(); 2245 LLT Ty = B.getMRI()->getType(Dst); 2246 const LLT S16 = LLT::scalar(16); 2247 const LLT S32 = LLT::scalar(32); 2248 2249 if (Ty == S32) { 2250 auto Log = B.buildFLog2(S32, Src0, Flags); 2251 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2252 .addUse(Log.getReg(0)) 2253 .addUse(Src1) 2254 .setMIFlags(Flags); 2255 B.buildFExp2(Dst, Mul, Flags); 2256 } else if (Ty == S16) { 2257 // There's no f16 fmul_legacy, so we need to convert for it. 2258 auto Log = B.buildFLog2(S16, Src0, Flags); 2259 auto Ext0 = B.buildFPExt(S32, Log, Flags); 2260 auto Ext1 = B.buildFPExt(S32, Src1, Flags); 2261 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2262 .addUse(Ext0.getReg(0)) 2263 .addUse(Ext1.getReg(0)) 2264 .setMIFlags(Flags); 2265 2266 B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags); 2267 } else 2268 return false; 2269 2270 MI.eraseFromParent(); 2271 return true; 2272 } 2273 2274 // Find a source register, ignoring any possible source modifiers. 2275 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) { 2276 Register ModSrc = OrigSrc; 2277 if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) { 2278 ModSrc = SrcFNeg->getOperand(1).getReg(); 2279 if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2280 ModSrc = SrcFAbs->getOperand(1).getReg(); 2281 } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2282 ModSrc = SrcFAbs->getOperand(1).getReg(); 2283 return ModSrc; 2284 } 2285 2286 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI, 2287 MachineRegisterInfo &MRI, 2288 MachineIRBuilder &B) const { 2289 2290 const LLT S1 = LLT::scalar(1); 2291 const LLT S64 = LLT::scalar(64); 2292 Register Dst = MI.getOperand(0).getReg(); 2293 Register OrigSrc = MI.getOperand(1).getReg(); 2294 unsigned Flags = MI.getFlags(); 2295 assert(ST.hasFractBug() && MRI.getType(Dst) == S64 && 2296 "this should not have been custom lowered"); 2297 2298 // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) 2299 // is used instead. However, SI doesn't have V_FLOOR_F64, so the most 2300 // efficient way to implement it is using V_FRACT_F64. The workaround for the 2301 // V_FRACT bug is: 2302 // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 2303 // 2304 // Convert floor(x) to (x - fract(x)) 2305 2306 auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false) 2307 .addUse(OrigSrc) 2308 .setMIFlags(Flags); 2309 2310 // Give source modifier matching some assistance before obscuring a foldable 2311 // pattern. 2312 2313 // TODO: We can avoid the neg on the fract? The input sign to fract 2314 // shouldn't matter? 2315 Register ModSrc = stripAnySourceMods(OrigSrc, MRI); 2316 2317 auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff)); 2318 2319 Register Min = MRI.createGenericVirtualRegister(S64); 2320 2321 // We don't need to concern ourselves with the snan handling difference, so 2322 // use the one which will directly select. 2323 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2324 if (MFI->getMode().IEEE) 2325 B.buildFMinNumIEEE(Min, Fract, Const, Flags); 2326 else 2327 B.buildFMinNum(Min, Fract, Const, Flags); 2328 2329 Register CorrectedFract = Min; 2330 if (!MI.getFlag(MachineInstr::FmNoNans)) { 2331 auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags); 2332 CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0); 2333 } 2334 2335 auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags); 2336 B.buildFAdd(Dst, OrigSrc, NegFract, Flags); 2337 2338 MI.eraseFromParent(); 2339 return true; 2340 } 2341 2342 // Turn an illegal packed v2s16 build vector into bit operations. 2343 // TODO: This should probably be a bitcast action in LegalizerHelper. 2344 bool AMDGPULegalizerInfo::legalizeBuildVector( 2345 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2346 Register Dst = MI.getOperand(0).getReg(); 2347 const LLT S32 = LLT::scalar(32); 2348 assert(MRI.getType(Dst) == LLT::vector(2, 16)); 2349 2350 Register Src0 = MI.getOperand(1).getReg(); 2351 Register Src1 = MI.getOperand(2).getReg(); 2352 assert(MRI.getType(Src0) == LLT::scalar(16)); 2353 2354 auto Merge = B.buildMerge(S32, {Src0, Src1}); 2355 B.buildBitcast(Dst, Merge); 2356 2357 MI.eraseFromParent(); 2358 return true; 2359 } 2360 2361 // Return the use branch instruction, otherwise null if the usage is invalid. 2362 static MachineInstr *verifyCFIntrinsic(MachineInstr &MI, 2363 MachineRegisterInfo &MRI, 2364 MachineInstr *&Br, 2365 MachineBasicBlock *&UncondBrTarget) { 2366 Register CondDef = MI.getOperand(0).getReg(); 2367 if (!MRI.hasOneNonDBGUse(CondDef)) 2368 return nullptr; 2369 2370 MachineBasicBlock *Parent = MI.getParent(); 2371 MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef); 2372 if (UseMI.getParent() != Parent || 2373 UseMI.getOpcode() != AMDGPU::G_BRCOND) 2374 return nullptr; 2375 2376 // Make sure the cond br is followed by a G_BR, or is the last instruction. 2377 MachineBasicBlock::iterator Next = std::next(UseMI.getIterator()); 2378 if (Next == Parent->end()) { 2379 MachineFunction::iterator NextMBB = std::next(Parent->getIterator()); 2380 if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use. 2381 return nullptr; 2382 UncondBrTarget = &*NextMBB; 2383 } else { 2384 if (Next->getOpcode() != AMDGPU::G_BR) 2385 return nullptr; 2386 Br = &*Next; 2387 UncondBrTarget = Br->getOperand(0).getMBB(); 2388 } 2389 2390 return &UseMI; 2391 } 2392 2393 Register AMDGPULegalizerInfo::insertLiveInCopy(MachineIRBuilder &B, 2394 MachineRegisterInfo &MRI, 2395 Register LiveIn, 2396 Register PhyReg) const { 2397 assert(PhyReg.isPhysical() && "Physical register expected"); 2398 2399 // Insert the live-in copy, if required, by defining destination virtual 2400 // register. 2401 // FIXME: It seems EmitLiveInCopies isn't called anywhere? 2402 if (!MRI.getVRegDef(LiveIn)) { 2403 // FIXME: Should have scoped insert pt 2404 MachineBasicBlock &OrigInsBB = B.getMBB(); 2405 auto OrigInsPt = B.getInsertPt(); 2406 2407 MachineBasicBlock &EntryMBB = B.getMF().front(); 2408 EntryMBB.addLiveIn(PhyReg); 2409 B.setInsertPt(EntryMBB, EntryMBB.begin()); 2410 B.buildCopy(LiveIn, PhyReg); 2411 2412 B.setInsertPt(OrigInsBB, OrigInsPt); 2413 } 2414 2415 return LiveIn; 2416 } 2417 2418 Register AMDGPULegalizerInfo::getLiveInRegister(MachineIRBuilder &B, 2419 MachineRegisterInfo &MRI, 2420 Register PhyReg, LLT Ty, 2421 bool InsertLiveInCopy) const { 2422 assert(PhyReg.isPhysical() && "Physical register expected"); 2423 2424 // Get or create virtual live-in regester 2425 Register LiveIn = MRI.getLiveInVirtReg(PhyReg); 2426 if (!LiveIn) { 2427 LiveIn = MRI.createGenericVirtualRegister(Ty); 2428 MRI.addLiveIn(PhyReg, LiveIn); 2429 } 2430 2431 // When the actual true copy required is from virtual register to physical 2432 // register (to be inserted later), live-in copy insertion from physical 2433 // to register virtual register is not required 2434 if (!InsertLiveInCopy) 2435 return LiveIn; 2436 2437 return insertLiveInCopy(B, MRI, LiveIn, PhyReg); 2438 } 2439 2440 const ArgDescriptor *AMDGPULegalizerInfo::getArgDescriptor( 2441 MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2442 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2443 const ArgDescriptor *Arg; 2444 const TargetRegisterClass *RC; 2445 std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType); 2446 if (!Arg) { 2447 LLVM_DEBUG(dbgs() << "Required arg register missing\n"); 2448 return nullptr; 2449 } 2450 return Arg; 2451 } 2452 2453 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B, 2454 const ArgDescriptor *Arg) const { 2455 if (!Arg->isRegister() || !Arg->getRegister().isValid()) 2456 return false; // TODO: Handle these 2457 2458 Register SrcReg = Arg->getRegister(); 2459 assert(SrcReg.isPhysical() && "Physical register expected"); 2460 assert(DstReg.isVirtual() && "Virtual register expected"); 2461 2462 MachineRegisterInfo &MRI = *B.getMRI(); 2463 2464 LLT Ty = MRI.getType(DstReg); 2465 Register LiveIn = getLiveInRegister(B, MRI, SrcReg, Ty); 2466 2467 if (Arg->isMasked()) { 2468 // TODO: Should we try to emit this once in the entry block? 2469 const LLT S32 = LLT::scalar(32); 2470 const unsigned Mask = Arg->getMask(); 2471 const unsigned Shift = countTrailingZeros<unsigned>(Mask); 2472 2473 Register AndMaskSrc = LiveIn; 2474 2475 if (Shift != 0) { 2476 auto ShiftAmt = B.buildConstant(S32, Shift); 2477 AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0); 2478 } 2479 2480 B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift)); 2481 } else { 2482 B.buildCopy(DstReg, LiveIn); 2483 } 2484 2485 return true; 2486 } 2487 2488 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin( 2489 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, 2490 AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2491 2492 const ArgDescriptor *Arg = getArgDescriptor(B, ArgType); 2493 if (!Arg) 2494 return false; 2495 2496 if (!loadInputValue(MI.getOperand(0).getReg(), B, Arg)) 2497 return false; 2498 2499 MI.eraseFromParent(); 2500 return true; 2501 } 2502 2503 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI, 2504 MachineRegisterInfo &MRI, 2505 MachineIRBuilder &B) const { 2506 Register Dst = MI.getOperand(0).getReg(); 2507 LLT DstTy = MRI.getType(Dst); 2508 LLT S16 = LLT::scalar(16); 2509 LLT S32 = LLT::scalar(32); 2510 LLT S64 = LLT::scalar(64); 2511 2512 if (legalizeFastUnsafeFDIV(MI, MRI, B)) 2513 return true; 2514 2515 if (DstTy == S16) 2516 return legalizeFDIV16(MI, MRI, B); 2517 if (DstTy == S32) 2518 return legalizeFDIV32(MI, MRI, B); 2519 if (DstTy == S64) 2520 return legalizeFDIV64(MI, MRI, B); 2521 2522 return false; 2523 } 2524 2525 static Register buildDivRCP(MachineIRBuilder &B, Register Src) { 2526 const LLT S32 = LLT::scalar(32); 2527 2528 auto Cvt0 = B.buildUITOFP(S32, Src); 2529 auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Cvt0}); 2530 auto FPUIntMaxPlus1 = B.buildFConstant(S32, BitsToFloat(0x4f800000)); 2531 auto Mul = B.buildFMul(S32, RcpIFlag, FPUIntMaxPlus1); 2532 return B.buildFPTOUI(S32, Mul).getReg(0); 2533 } 2534 2535 void AMDGPULegalizerInfo::legalizeUDIV_UREM32Impl(MachineIRBuilder &B, 2536 Register DstReg, 2537 Register Num, 2538 Register Den, 2539 bool IsDiv) const { 2540 const LLT S1 = LLT::scalar(1); 2541 const LLT S32 = LLT::scalar(32); 2542 2543 // RCP = URECIP(Den) = 2^32 / Den + e 2544 // e is rounding error. 2545 auto RCP = buildDivRCP(B, Den); 2546 2547 // RCP_LO = mul(RCP, Den) 2548 auto RCP_LO = B.buildMul(S32, RCP, Den); 2549 2550 // RCP_HI = mulhu (RCP, Den) */ 2551 auto RCP_HI = B.buildUMulH(S32, RCP, Den); 2552 2553 // NEG_RCP_LO = -RCP_LO 2554 auto Zero = B.buildConstant(S32, 0); 2555 auto NEG_RCP_LO = B.buildSub(S32, Zero, RCP_LO); 2556 2557 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 2558 auto CmpRcpHiZero = B.buildICmp(CmpInst::ICMP_EQ, S1, RCP_HI, Zero); 2559 auto ABS_RCP_LO = B.buildSelect(S32, CmpRcpHiZero, NEG_RCP_LO, RCP_LO); 2560 2561 // Calculate the rounding error from the URECIP instruction 2562 // E = mulhu(ABS_RCP_LO, RCP) 2563 auto E = B.buildUMulH(S32, ABS_RCP_LO, RCP); 2564 2565 // RCP_A_E = RCP + E 2566 auto RCP_A_E = B.buildAdd(S32, RCP, E); 2567 2568 // RCP_S_E = RCP - E 2569 auto RCP_S_E = B.buildSub(S32, RCP, E); 2570 2571 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 2572 auto Tmp0 = B.buildSelect(S32, CmpRcpHiZero, RCP_A_E, RCP_S_E); 2573 2574 // Quotient = mulhu(Tmp0, Num)stmp 2575 auto Quotient = B.buildUMulH(S32, Tmp0, Num); 2576 2577 // Num_S_Remainder = Quotient * Den 2578 auto Num_S_Remainder = B.buildMul(S32, Quotient, Den); 2579 2580 // Remainder = Num - Num_S_Remainder 2581 auto Remainder = B.buildSub(S32, Num, Num_S_Remainder); 2582 2583 // Remainder_GE_Den = Remainder >= Den 2584 auto Remainder_GE_Den = B.buildICmp(CmpInst::ICMP_UGE, S1, Remainder, Den); 2585 2586 // Remainder_GE_Zero = Num >= Num_S_Remainder; 2587 auto Remainder_GE_Zero = B.buildICmp(CmpInst::ICMP_UGE, S1, 2588 Num, Num_S_Remainder); 2589 2590 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 2591 auto Tmp1 = B.buildAnd(S1, Remainder_GE_Den, Remainder_GE_Zero); 2592 2593 // Calculate Division result: 2594 2595 // Quotient_A_One = Quotient + 1 2596 auto One = B.buildConstant(S32, 1); 2597 auto Quotient_A_One = B.buildAdd(S32, Quotient, One); 2598 2599 // Quotient_S_One = Quotient - 1 2600 auto Quotient_S_One = B.buildSub(S32, Quotient, One); 2601 2602 // Div = (Tmp1 ? Quotient_A_One : Quotient) 2603 auto Div = B.buildSelect(S32, Tmp1, Quotient_A_One, Quotient); 2604 2605 // Div = (Remainder_GE_Zero ? Div : Quotient_S_One) 2606 if (IsDiv) { 2607 B.buildSelect(DstReg, Remainder_GE_Zero, Div, Quotient_S_One); 2608 } else { 2609 Div = B.buildSelect(S32, Remainder_GE_Zero, Div, Quotient_S_One); 2610 2611 // Calculate Rem result: 2612 auto Remainder_S_Den = B.buildSub(S32, Remainder, Den); 2613 2614 // Remainder_A_Den = Remainder + Den 2615 auto Remainder_A_Den = B.buildAdd(S32, Remainder, Den); 2616 2617 // Rem = (Tmp1 ? Remainder_S_Den : Remainder) 2618 auto Rem = B.buildSelect(S32, Tmp1, Remainder_S_Den, Remainder); 2619 2620 // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den) 2621 B.buildSelect(DstReg, Remainder_GE_Zero, Rem, Remainder_A_Den); 2622 } 2623 } 2624 2625 bool AMDGPULegalizerInfo::legalizeUDIV_UREM32(MachineInstr &MI, 2626 MachineRegisterInfo &MRI, 2627 MachineIRBuilder &B) const { 2628 const bool IsDiv = MI.getOpcode() == AMDGPU::G_UDIV; 2629 Register DstReg = MI.getOperand(0).getReg(); 2630 Register Num = MI.getOperand(1).getReg(); 2631 Register Den = MI.getOperand(2).getReg(); 2632 legalizeUDIV_UREM32Impl(B, DstReg, Num, Den, IsDiv); 2633 MI.eraseFromParent(); 2634 return true; 2635 } 2636 2637 // Build integer reciprocal sequence arounud V_RCP_IFLAG_F32 2638 // 2639 // Return lo, hi of result 2640 // 2641 // %cvt.lo = G_UITOFP Val.lo 2642 // %cvt.hi = G_UITOFP Val.hi 2643 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo 2644 // %rcp = G_AMDGPU_RCP_IFLAG %mad 2645 // %mul1 = G_FMUL %rcp, 0x5f7ffffc 2646 // %mul2 = G_FMUL %mul1, 2**(-32) 2647 // %trunc = G_INTRINSIC_TRUNC %mul2 2648 // %mad2 = G_FMAD %trunc, -(2**32), %mul1 2649 // return {G_FPTOUI %mad2, G_FPTOUI %trunc} 2650 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B, 2651 Register Val) { 2652 const LLT S32 = LLT::scalar(32); 2653 auto Unmerge = B.buildUnmerge(S32, Val); 2654 2655 auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0)); 2656 auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1)); 2657 2658 auto Mad = B.buildFMAD(S32, CvtHi, // 2**32 2659 B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo); 2660 2661 auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad}); 2662 auto Mul1 = 2663 B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc))); 2664 2665 // 2**(-32) 2666 auto Mul2 = 2667 B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000))); 2668 auto Trunc = B.buildIntrinsicTrunc(S32, Mul2); 2669 2670 // -(2**32) 2671 auto Mad2 = B.buildFMAD(S32, Trunc, 2672 B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1); 2673 2674 auto ResultLo = B.buildFPTOUI(S32, Mad2); 2675 auto ResultHi = B.buildFPTOUI(S32, Trunc); 2676 2677 return {ResultLo.getReg(0), ResultHi.getReg(0)}; 2678 } 2679 2680 void AMDGPULegalizerInfo::legalizeUDIV_UREM64Impl(MachineIRBuilder &B, 2681 Register DstReg, 2682 Register Numer, 2683 Register Denom, 2684 bool IsDiv) const { 2685 const LLT S32 = LLT::scalar(32); 2686 const LLT S64 = LLT::scalar(64); 2687 const LLT S1 = LLT::scalar(1); 2688 Register RcpLo, RcpHi; 2689 2690 std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom); 2691 2692 auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi}); 2693 2694 auto Zero64 = B.buildConstant(S64, 0); 2695 auto NegDenom = B.buildSub(S64, Zero64, Denom); 2696 2697 auto MulLo1 = B.buildMul(S64, NegDenom, Rcp); 2698 auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1); 2699 2700 auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1); 2701 Register MulHi1_Lo = UnmergeMulHi1.getReg(0); 2702 Register MulHi1_Hi = UnmergeMulHi1.getReg(1); 2703 2704 auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo); 2705 auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1)); 2706 auto Add1_HiNc = B.buildAdd(S32, RcpHi, MulHi1_Hi); 2707 auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi}); 2708 2709 auto MulLo2 = B.buildMul(S64, NegDenom, Add1); 2710 auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2); 2711 auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2); 2712 Register MulHi2_Lo = UnmergeMulHi2.getReg(0); 2713 Register MulHi2_Hi = UnmergeMulHi2.getReg(1); 2714 2715 auto Zero32 = B.buildConstant(S32, 0); 2716 auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo); 2717 auto Add2_HiC = 2718 B.buildUAdde(S32, S1, Add1_HiNc, MulHi2_Hi, Add1_Lo.getReg(1)); 2719 auto Add2_Hi = B.buildUAdde(S32, S1, Add2_HiC, Zero32, Add2_Lo.getReg(1)); 2720 auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi}); 2721 2722 auto UnmergeNumer = B.buildUnmerge(S32, Numer); 2723 Register NumerLo = UnmergeNumer.getReg(0); 2724 Register NumerHi = UnmergeNumer.getReg(1); 2725 2726 auto MulHi3 = B.buildUMulH(S64, Numer, Add2); 2727 auto Mul3 = B.buildMul(S64, Denom, MulHi3); 2728 auto UnmergeMul3 = B.buildUnmerge(S32, Mul3); 2729 Register Mul3_Lo = UnmergeMul3.getReg(0); 2730 Register Mul3_Hi = UnmergeMul3.getReg(1); 2731 auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo); 2732 auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1)); 2733 auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi); 2734 auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi}); 2735 2736 auto UnmergeDenom = B.buildUnmerge(S32, Denom); 2737 Register DenomLo = UnmergeDenom.getReg(0); 2738 Register DenomHi = UnmergeDenom.getReg(1); 2739 2740 auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi); 2741 auto C1 = B.buildSExt(S32, CmpHi); 2742 2743 auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo); 2744 auto C2 = B.buildSExt(S32, CmpLo); 2745 2746 auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi); 2747 auto C3 = B.buildSelect(S32, CmpEq, C2, C1); 2748 2749 // TODO: Here and below portions of the code can be enclosed into if/endif. 2750 // Currently control flow is unconditional and we have 4 selects after 2751 // potential endif to substitute PHIs. 2752 2753 // if C3 != 0 ... 2754 auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo); 2755 auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1)); 2756 auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1)); 2757 auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi}); 2758 2759 auto One64 = B.buildConstant(S64, 1); 2760 auto Add3 = B.buildAdd(S64, MulHi3, One64); 2761 2762 auto C4 = 2763 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi)); 2764 auto C5 = 2765 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo)); 2766 auto C6 = B.buildSelect( 2767 S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4); 2768 2769 // if (C6 != 0) 2770 auto Add4 = B.buildAdd(S64, Add3, One64); 2771 auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo); 2772 2773 auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1)); 2774 auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1)); 2775 auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi}); 2776 2777 // endif C6 2778 // endif C3 2779 2780 if (IsDiv) { 2781 auto Sel1 = B.buildSelect( 2782 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3); 2783 B.buildSelect(DstReg, 2784 B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel1, MulHi3); 2785 } else { 2786 auto Sel2 = B.buildSelect( 2787 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2); 2788 B.buildSelect(DstReg, 2789 B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel2, Sub1); 2790 } 2791 } 2792 2793 bool AMDGPULegalizerInfo::legalizeUDIV_UREM(MachineInstr &MI, 2794 MachineRegisterInfo &MRI, 2795 MachineIRBuilder &B) const { 2796 const LLT S64 = LLT::scalar(64); 2797 const LLT S32 = LLT::scalar(32); 2798 const bool IsDiv = MI.getOpcode() == AMDGPU::G_UDIV; 2799 Register DstReg = MI.getOperand(0).getReg(); 2800 Register Num = MI.getOperand(1).getReg(); 2801 Register Den = MI.getOperand(2).getReg(); 2802 LLT Ty = MRI.getType(DstReg); 2803 2804 if (Ty == S32) 2805 legalizeUDIV_UREM32Impl(B, DstReg, Num, Den, IsDiv); 2806 else if (Ty == S64) 2807 legalizeUDIV_UREM64Impl(B, DstReg, Num, Den, IsDiv); 2808 else 2809 return false; 2810 2811 MI.eraseFromParent(); 2812 return true; 2813 2814 } 2815 2816 bool AMDGPULegalizerInfo::legalizeSDIV_SREM(MachineInstr &MI, 2817 MachineRegisterInfo &MRI, 2818 MachineIRBuilder &B) const { 2819 const LLT S64 = LLT::scalar(64); 2820 const LLT S32 = LLT::scalar(32); 2821 2822 Register DstReg = MI.getOperand(0).getReg(); 2823 const LLT Ty = MRI.getType(DstReg); 2824 if (Ty != S32 && Ty != S64) 2825 return false; 2826 2827 const bool IsDiv = MI.getOpcode() == AMDGPU::G_SDIV; 2828 2829 Register LHS = MI.getOperand(1).getReg(); 2830 Register RHS = MI.getOperand(2).getReg(); 2831 2832 auto SignBitOffset = B.buildConstant(S32, Ty.getSizeInBits() - 1); 2833 auto LHSign = B.buildAShr(Ty, LHS, SignBitOffset); 2834 auto RHSign = B.buildAShr(Ty, RHS, SignBitOffset); 2835 2836 LHS = B.buildAdd(Ty, LHS, LHSign).getReg(0); 2837 RHS = B.buildAdd(Ty, RHS, RHSign).getReg(0); 2838 2839 LHS = B.buildXor(Ty, LHS, LHSign).getReg(0); 2840 RHS = B.buildXor(Ty, RHS, RHSign).getReg(0); 2841 2842 Register UDivRem = MRI.createGenericVirtualRegister(Ty); 2843 if (Ty == S32) 2844 legalizeUDIV_UREM32Impl(B, UDivRem, LHS, RHS, IsDiv); 2845 else 2846 legalizeUDIV_UREM64Impl(B, UDivRem, LHS, RHS, IsDiv); 2847 2848 Register Sign; 2849 if (IsDiv) 2850 Sign = B.buildXor(Ty, LHSign, RHSign).getReg(0); 2851 else 2852 Sign = LHSign.getReg(0); // Remainder sign is the same as LHS 2853 2854 UDivRem = B.buildXor(Ty, UDivRem, Sign).getReg(0); 2855 B.buildSub(DstReg, UDivRem, Sign); 2856 2857 MI.eraseFromParent(); 2858 return true; 2859 } 2860 2861 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI, 2862 MachineRegisterInfo &MRI, 2863 MachineIRBuilder &B) const { 2864 Register Res = MI.getOperand(0).getReg(); 2865 Register LHS = MI.getOperand(1).getReg(); 2866 Register RHS = MI.getOperand(2).getReg(); 2867 2868 uint16_t Flags = MI.getFlags(); 2869 2870 LLT ResTy = MRI.getType(Res); 2871 LLT S32 = LLT::scalar(32); 2872 LLT S64 = LLT::scalar(64); 2873 2874 const MachineFunction &MF = B.getMF(); 2875 bool Unsafe = 2876 MF.getTarget().Options.UnsafeFPMath || MI.getFlag(MachineInstr::FmArcp); 2877 2878 if (!MF.getTarget().Options.UnsafeFPMath && ResTy == S64) 2879 return false; 2880 2881 if (!Unsafe && ResTy == S32 && 2882 MF.getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals()) 2883 return false; 2884 2885 if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) { 2886 // 1 / x -> RCP(x) 2887 if (CLHS->isExactlyValue(1.0)) { 2888 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 2889 .addUse(RHS) 2890 .setMIFlags(Flags); 2891 2892 MI.eraseFromParent(); 2893 return true; 2894 } 2895 2896 // -1 / x -> RCP( FNEG(x) ) 2897 if (CLHS->isExactlyValue(-1.0)) { 2898 auto FNeg = B.buildFNeg(ResTy, RHS, Flags); 2899 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 2900 .addUse(FNeg.getReg(0)) 2901 .setMIFlags(Flags); 2902 2903 MI.eraseFromParent(); 2904 return true; 2905 } 2906 } 2907 2908 // x / y -> x * (1.0 / y) 2909 if (Unsafe) { 2910 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false) 2911 .addUse(RHS) 2912 .setMIFlags(Flags); 2913 B.buildFMul(Res, LHS, RCP, Flags); 2914 2915 MI.eraseFromParent(); 2916 return true; 2917 } 2918 2919 return false; 2920 } 2921 2922 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI, 2923 MachineRegisterInfo &MRI, 2924 MachineIRBuilder &B) const { 2925 Register Res = MI.getOperand(0).getReg(); 2926 Register LHS = MI.getOperand(1).getReg(); 2927 Register RHS = MI.getOperand(2).getReg(); 2928 2929 uint16_t Flags = MI.getFlags(); 2930 2931 LLT S16 = LLT::scalar(16); 2932 LLT S32 = LLT::scalar(32); 2933 2934 auto LHSExt = B.buildFPExt(S32, LHS, Flags); 2935 auto RHSExt = B.buildFPExt(S32, RHS, Flags); 2936 2937 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 2938 .addUse(RHSExt.getReg(0)) 2939 .setMIFlags(Flags); 2940 2941 auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags); 2942 auto RDst = B.buildFPTrunc(S16, QUOT, Flags); 2943 2944 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 2945 .addUse(RDst.getReg(0)) 2946 .addUse(RHS) 2947 .addUse(LHS) 2948 .setMIFlags(Flags); 2949 2950 MI.eraseFromParent(); 2951 return true; 2952 } 2953 2954 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions 2955 // to enable denorm mode. When 'Enable' is false, disable denorm mode. 2956 static void toggleSPDenormMode(bool Enable, 2957 MachineIRBuilder &B, 2958 const GCNSubtarget &ST, 2959 AMDGPU::SIModeRegisterDefaults Mode) { 2960 // Set SP denorm mode to this value. 2961 unsigned SPDenormMode = 2962 Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue(); 2963 2964 if (ST.hasDenormModeInst()) { 2965 // Preserve default FP64FP16 denorm mode while updating FP32 mode. 2966 uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue(); 2967 2968 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2); 2969 B.buildInstr(AMDGPU::S_DENORM_MODE) 2970 .addImm(NewDenormModeValue); 2971 2972 } else { 2973 // Select FP32 bit field in mode register. 2974 unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE | 2975 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 2976 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 2977 2978 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32) 2979 .addImm(SPDenormMode) 2980 .addImm(SPDenormModeBitField); 2981 } 2982 } 2983 2984 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI, 2985 MachineRegisterInfo &MRI, 2986 MachineIRBuilder &B) const { 2987 Register Res = MI.getOperand(0).getReg(); 2988 Register LHS = MI.getOperand(1).getReg(); 2989 Register RHS = MI.getOperand(2).getReg(); 2990 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2991 AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode(); 2992 2993 uint16_t Flags = MI.getFlags(); 2994 2995 LLT S32 = LLT::scalar(32); 2996 LLT S1 = LLT::scalar(1); 2997 2998 auto One = B.buildFConstant(S32, 1.0f); 2999 3000 auto DenominatorScaled = 3001 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 3002 .addUse(LHS) 3003 .addUse(RHS) 3004 .addImm(0) 3005 .setMIFlags(Flags); 3006 auto NumeratorScaled = 3007 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 3008 .addUse(LHS) 3009 .addUse(RHS) 3010 .addImm(1) 3011 .setMIFlags(Flags); 3012 3013 auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3014 .addUse(DenominatorScaled.getReg(0)) 3015 .setMIFlags(Flags); 3016 auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags); 3017 3018 // FIXME: Doesn't correctly model the FP mode switch, and the FP operations 3019 // aren't modeled as reading it. 3020 if (!Mode.allFP32Denormals()) 3021 toggleSPDenormMode(true, B, ST, Mode); 3022 3023 auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags); 3024 auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags); 3025 auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags); 3026 auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags); 3027 auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags); 3028 auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags); 3029 3030 if (!Mode.allFP32Denormals()) 3031 toggleSPDenormMode(false, B, ST, Mode); 3032 3033 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false) 3034 .addUse(Fma4.getReg(0)) 3035 .addUse(Fma1.getReg(0)) 3036 .addUse(Fma3.getReg(0)) 3037 .addUse(NumeratorScaled.getReg(1)) 3038 .setMIFlags(Flags); 3039 3040 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 3041 .addUse(Fmas.getReg(0)) 3042 .addUse(RHS) 3043 .addUse(LHS) 3044 .setMIFlags(Flags); 3045 3046 MI.eraseFromParent(); 3047 return true; 3048 } 3049 3050 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI, 3051 MachineRegisterInfo &MRI, 3052 MachineIRBuilder &B) const { 3053 Register Res = MI.getOperand(0).getReg(); 3054 Register LHS = MI.getOperand(1).getReg(); 3055 Register RHS = MI.getOperand(2).getReg(); 3056 3057 uint16_t Flags = MI.getFlags(); 3058 3059 LLT S64 = LLT::scalar(64); 3060 LLT S1 = LLT::scalar(1); 3061 3062 auto One = B.buildFConstant(S64, 1.0); 3063 3064 auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3065 .addUse(LHS) 3066 .addUse(RHS) 3067 .addImm(0) 3068 .setMIFlags(Flags); 3069 3070 auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags); 3071 3072 auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false) 3073 .addUse(DivScale0.getReg(0)) 3074 .setMIFlags(Flags); 3075 3076 auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags); 3077 auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags); 3078 auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags); 3079 3080 auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3081 .addUse(LHS) 3082 .addUse(RHS) 3083 .addImm(1) 3084 .setMIFlags(Flags); 3085 3086 auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags); 3087 auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags); 3088 auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags); 3089 3090 Register Scale; 3091 if (!ST.hasUsableDivScaleConditionOutput()) { 3092 // Workaround a hardware bug on SI where the condition output from div_scale 3093 // is not usable. 3094 3095 LLT S32 = LLT::scalar(32); 3096 3097 auto NumUnmerge = B.buildUnmerge(S32, LHS); 3098 auto DenUnmerge = B.buildUnmerge(S32, RHS); 3099 auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0); 3100 auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1); 3101 3102 auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1), 3103 Scale1Unmerge.getReg(1)); 3104 auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1), 3105 Scale0Unmerge.getReg(1)); 3106 Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0); 3107 } else { 3108 Scale = DivScale1.getReg(1); 3109 } 3110 3111 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false) 3112 .addUse(Fma4.getReg(0)) 3113 .addUse(Fma3.getReg(0)) 3114 .addUse(Mul.getReg(0)) 3115 .addUse(Scale) 3116 .setMIFlags(Flags); 3117 3118 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false) 3119 .addUse(Fmas.getReg(0)) 3120 .addUse(RHS) 3121 .addUse(LHS) 3122 .setMIFlags(Flags); 3123 3124 MI.eraseFromParent(); 3125 return true; 3126 } 3127 3128 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI, 3129 MachineRegisterInfo &MRI, 3130 MachineIRBuilder &B) const { 3131 Register Res = MI.getOperand(0).getReg(); 3132 Register LHS = MI.getOperand(2).getReg(); 3133 Register RHS = MI.getOperand(3).getReg(); 3134 uint16_t Flags = MI.getFlags(); 3135 3136 LLT S32 = LLT::scalar(32); 3137 LLT S1 = LLT::scalar(1); 3138 3139 auto Abs = B.buildFAbs(S32, RHS, Flags); 3140 const APFloat C0Val(1.0f); 3141 3142 auto C0 = B.buildConstant(S32, 0x6f800000); 3143 auto C1 = B.buildConstant(S32, 0x2f800000); 3144 auto C2 = B.buildConstant(S32, FloatToBits(1.0f)); 3145 3146 auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags); 3147 auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags); 3148 3149 auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags); 3150 3151 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3152 .addUse(Mul0.getReg(0)) 3153 .setMIFlags(Flags); 3154 3155 auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags); 3156 3157 B.buildFMul(Res, Sel, Mul1, Flags); 3158 3159 MI.eraseFromParent(); 3160 return true; 3161 } 3162 3163 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI, 3164 MachineRegisterInfo &MRI, 3165 MachineIRBuilder &B) const { 3166 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 3167 if (!MFI->isEntryFunction()) { 3168 return legalizePreloadedArgIntrin(MI, MRI, B, 3169 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 3170 } 3171 3172 uint64_t Offset = 3173 ST.getTargetLowering()->getImplicitParameterOffset( 3174 B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT); 3175 Register DstReg = MI.getOperand(0).getReg(); 3176 LLT DstTy = MRI.getType(DstReg); 3177 LLT IdxTy = LLT::scalar(DstTy.getSizeInBits()); 3178 3179 const ArgDescriptor *Arg; 3180 const TargetRegisterClass *RC; 3181 std::tie(Arg, RC) 3182 = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 3183 if (!Arg) 3184 return false; 3185 3186 Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy); 3187 if (!loadInputValue(KernargPtrReg, B, Arg)) 3188 return false; 3189 3190 B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0)); 3191 MI.eraseFromParent(); 3192 return true; 3193 } 3194 3195 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI, 3196 MachineRegisterInfo &MRI, 3197 MachineIRBuilder &B, 3198 unsigned AddrSpace) const { 3199 Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B); 3200 auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32); 3201 B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg); 3202 MI.eraseFromParent(); 3203 return true; 3204 } 3205 3206 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 3207 // offset (the offset that is included in bounds checking and swizzling, to be 3208 // split between the instruction's voffset and immoffset fields) and soffset 3209 // (the offset that is excluded from bounds checking and swizzling, to go in 3210 // the instruction's soffset field). This function takes the first kind of 3211 // offset and figures out how to split it between voffset and immoffset. 3212 std::tuple<Register, unsigned, unsigned> 3213 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B, 3214 Register OrigOffset) const { 3215 const unsigned MaxImm = 4095; 3216 Register BaseReg; 3217 unsigned TotalConstOffset; 3218 MachineInstr *OffsetDef; 3219 const LLT S32 = LLT::scalar(32); 3220 3221 std::tie(BaseReg, TotalConstOffset, OffsetDef) 3222 = AMDGPU::getBaseWithConstantOffset(*B.getMRI(), OrigOffset); 3223 3224 unsigned ImmOffset = TotalConstOffset; 3225 3226 // If the immediate value is too big for the immoffset field, put the value 3227 // and -4096 into the immoffset field so that the value that is copied/added 3228 // for the voffset field is a multiple of 4096, and it stands more chance 3229 // of being CSEd with the copy/add for another similar load/store. 3230 // However, do not do that rounding down to a multiple of 4096 if that is a 3231 // negative number, as it appears to be illegal to have a negative offset 3232 // in the vgpr, even if adding the immediate offset makes it positive. 3233 unsigned Overflow = ImmOffset & ~MaxImm; 3234 ImmOffset -= Overflow; 3235 if ((int32_t)Overflow < 0) { 3236 Overflow += ImmOffset; 3237 ImmOffset = 0; 3238 } 3239 3240 if (Overflow != 0) { 3241 if (!BaseReg) { 3242 BaseReg = B.buildConstant(S32, Overflow).getReg(0); 3243 } else { 3244 auto OverflowVal = B.buildConstant(S32, Overflow); 3245 BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0); 3246 } 3247 } 3248 3249 if (!BaseReg) 3250 BaseReg = B.buildConstant(S32, 0).getReg(0); 3251 3252 return std::make_tuple(BaseReg, ImmOffset, TotalConstOffset); 3253 } 3254 3255 /// Handle register layout difference for f16 images for some subtargets. 3256 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B, 3257 MachineRegisterInfo &MRI, 3258 Register Reg) const { 3259 if (!ST.hasUnpackedD16VMem()) 3260 return Reg; 3261 3262 const LLT S16 = LLT::scalar(16); 3263 const LLT S32 = LLT::scalar(32); 3264 LLT StoreVT = MRI.getType(Reg); 3265 assert(StoreVT.isVector() && StoreVT.getElementType() == S16); 3266 3267 auto Unmerge = B.buildUnmerge(S16, Reg); 3268 3269 SmallVector<Register, 4> WideRegs; 3270 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3271 WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0)); 3272 3273 int NumElts = StoreVT.getNumElements(); 3274 3275 return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0); 3276 } 3277 3278 Register AMDGPULegalizerInfo::fixStoreSourceType( 3279 MachineIRBuilder &B, Register VData, bool IsFormat) const { 3280 MachineRegisterInfo *MRI = B.getMRI(); 3281 LLT Ty = MRI->getType(VData); 3282 3283 const LLT S16 = LLT::scalar(16); 3284 3285 // Fixup illegal register types for i8 stores. 3286 if (Ty == LLT::scalar(8) || Ty == S16) { 3287 Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0); 3288 return AnyExt; 3289 } 3290 3291 if (Ty.isVector()) { 3292 if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) { 3293 if (IsFormat) 3294 return handleD16VData(B, *MRI, VData); 3295 } 3296 } 3297 3298 return VData; 3299 } 3300 3301 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI, 3302 MachineRegisterInfo &MRI, 3303 MachineIRBuilder &B, 3304 bool IsTyped, 3305 bool IsFormat) const { 3306 Register VData = MI.getOperand(1).getReg(); 3307 LLT Ty = MRI.getType(VData); 3308 LLT EltTy = Ty.getScalarType(); 3309 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 3310 const LLT S32 = LLT::scalar(32); 3311 3312 VData = fixStoreSourceType(B, VData, IsFormat); 3313 Register RSrc = MI.getOperand(2).getReg(); 3314 3315 MachineMemOperand *MMO = *MI.memoperands_begin(); 3316 const int MemSize = MMO->getSize(); 3317 3318 unsigned ImmOffset; 3319 unsigned TotalOffset; 3320 3321 // The typed intrinsics add an immediate after the registers. 3322 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3323 3324 // The struct intrinsic variants add one additional operand over raw. 3325 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3326 Register VIndex; 3327 int OpOffset = 0; 3328 if (HasVIndex) { 3329 VIndex = MI.getOperand(3).getReg(); 3330 OpOffset = 1; 3331 } 3332 3333 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3334 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3335 3336 unsigned Format = 0; 3337 if (IsTyped) { 3338 Format = MI.getOperand(5 + OpOffset).getImm(); 3339 ++OpOffset; 3340 } 3341 3342 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 3343 3344 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3345 if (TotalOffset != 0) 3346 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize); 3347 3348 unsigned Opc; 3349 if (IsTyped) { 3350 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : 3351 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT; 3352 } else if (IsFormat) { 3353 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 : 3354 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT; 3355 } else { 3356 switch (MemSize) { 3357 case 1: 3358 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE; 3359 break; 3360 case 2: 3361 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT; 3362 break; 3363 default: 3364 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE; 3365 break; 3366 } 3367 } 3368 3369 if (!VIndex) 3370 VIndex = B.buildConstant(S32, 0).getReg(0); 3371 3372 auto MIB = B.buildInstr(Opc) 3373 .addUse(VData) // vdata 3374 .addUse(RSrc) // rsrc 3375 .addUse(VIndex) // vindex 3376 .addUse(VOffset) // voffset 3377 .addUse(SOffset) // soffset 3378 .addImm(ImmOffset); // offset(imm) 3379 3380 if (IsTyped) 3381 MIB.addImm(Format); 3382 3383 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3384 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3385 .addMemOperand(MMO); 3386 3387 MI.eraseFromParent(); 3388 return true; 3389 } 3390 3391 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI, 3392 MachineRegisterInfo &MRI, 3393 MachineIRBuilder &B, 3394 bool IsFormat, 3395 bool IsTyped) const { 3396 // FIXME: Verifier should enforce 1 MMO for these intrinsics. 3397 MachineMemOperand *MMO = *MI.memoperands_begin(); 3398 const int MemSize = MMO->getSize(); 3399 const LLT S32 = LLT::scalar(32); 3400 3401 Register Dst = MI.getOperand(0).getReg(); 3402 Register RSrc = MI.getOperand(2).getReg(); 3403 3404 // The typed intrinsics add an immediate after the registers. 3405 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3406 3407 // The struct intrinsic variants add one additional operand over raw. 3408 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3409 Register VIndex; 3410 int OpOffset = 0; 3411 if (HasVIndex) { 3412 VIndex = MI.getOperand(3).getReg(); 3413 OpOffset = 1; 3414 } 3415 3416 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3417 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3418 3419 unsigned Format = 0; 3420 if (IsTyped) { 3421 Format = MI.getOperand(5 + OpOffset).getImm(); 3422 ++OpOffset; 3423 } 3424 3425 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 3426 unsigned ImmOffset; 3427 unsigned TotalOffset; 3428 3429 LLT Ty = MRI.getType(Dst); 3430 LLT EltTy = Ty.getScalarType(); 3431 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 3432 const bool Unpacked = ST.hasUnpackedD16VMem(); 3433 3434 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3435 if (TotalOffset != 0) 3436 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize); 3437 3438 unsigned Opc; 3439 3440 if (IsTyped) { 3441 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : 3442 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT; 3443 } else if (IsFormat) { 3444 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : 3445 AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT; 3446 } else { 3447 switch (MemSize) { 3448 case 1: 3449 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE; 3450 break; 3451 case 2: 3452 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT; 3453 break; 3454 default: 3455 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD; 3456 break; 3457 } 3458 } 3459 3460 Register LoadDstReg; 3461 3462 bool IsExtLoad = (!IsD16 && MemSize < 4) || (IsD16 && !Ty.isVector()); 3463 LLT UnpackedTy = Ty.changeElementSize(32); 3464 3465 if (IsExtLoad) 3466 LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32); 3467 else if (Unpacked && IsD16 && Ty.isVector()) 3468 LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy); 3469 else 3470 LoadDstReg = Dst; 3471 3472 if (!VIndex) 3473 VIndex = B.buildConstant(S32, 0).getReg(0); 3474 3475 auto MIB = B.buildInstr(Opc) 3476 .addDef(LoadDstReg) // vdata 3477 .addUse(RSrc) // rsrc 3478 .addUse(VIndex) // vindex 3479 .addUse(VOffset) // voffset 3480 .addUse(SOffset) // soffset 3481 .addImm(ImmOffset); // offset(imm) 3482 3483 if (IsTyped) 3484 MIB.addImm(Format); 3485 3486 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3487 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3488 .addMemOperand(MMO); 3489 3490 if (LoadDstReg != Dst) { 3491 B.setInsertPt(B.getMBB(), ++B.getInsertPt()); 3492 3493 // Widen result for extending loads was widened. 3494 if (IsExtLoad) 3495 B.buildTrunc(Dst, LoadDstReg); 3496 else { 3497 // Repack to original 16-bit vector result 3498 // FIXME: G_TRUNC should work, but legalization currently fails 3499 auto Unmerge = B.buildUnmerge(S32, LoadDstReg); 3500 SmallVector<Register, 4> Repack; 3501 for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I) 3502 Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0)); 3503 B.buildMerge(Dst, Repack); 3504 } 3505 } 3506 3507 MI.eraseFromParent(); 3508 return true; 3509 } 3510 3511 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI, 3512 MachineIRBuilder &B, 3513 bool IsInc) const { 3514 unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC : 3515 AMDGPU::G_AMDGPU_ATOMIC_DEC; 3516 B.buildInstr(Opc) 3517 .addDef(MI.getOperand(0).getReg()) 3518 .addUse(MI.getOperand(2).getReg()) 3519 .addUse(MI.getOperand(3).getReg()) 3520 .cloneMemRefs(MI); 3521 MI.eraseFromParent(); 3522 return true; 3523 } 3524 3525 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) { 3526 switch (IntrID) { 3527 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 3528 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 3529 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP; 3530 case Intrinsic::amdgcn_raw_buffer_atomic_add: 3531 case Intrinsic::amdgcn_struct_buffer_atomic_add: 3532 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD; 3533 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 3534 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 3535 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB; 3536 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 3537 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 3538 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN; 3539 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 3540 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 3541 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN; 3542 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 3543 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 3544 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX; 3545 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 3546 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 3547 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX; 3548 case Intrinsic::amdgcn_raw_buffer_atomic_and: 3549 case Intrinsic::amdgcn_struct_buffer_atomic_and: 3550 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND; 3551 case Intrinsic::amdgcn_raw_buffer_atomic_or: 3552 case Intrinsic::amdgcn_struct_buffer_atomic_or: 3553 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR; 3554 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 3555 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 3556 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR; 3557 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 3558 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 3559 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC; 3560 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 3561 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 3562 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC; 3563 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 3564 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 3565 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP; 3566 default: 3567 llvm_unreachable("unhandled atomic opcode"); 3568 } 3569 } 3570 3571 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI, 3572 MachineIRBuilder &B, 3573 Intrinsic::ID IID) const { 3574 const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap || 3575 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap; 3576 3577 Register Dst = MI.getOperand(0).getReg(); 3578 Register VData = MI.getOperand(2).getReg(); 3579 3580 Register CmpVal; 3581 int OpOffset = 0; 3582 3583 if (IsCmpSwap) { 3584 CmpVal = MI.getOperand(3 + OpOffset).getReg(); 3585 ++OpOffset; 3586 } 3587 3588 Register RSrc = MI.getOperand(3 + OpOffset).getReg(); 3589 const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8; 3590 3591 // The struct intrinsic variants add one additional operand over raw. 3592 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3593 Register VIndex; 3594 if (HasVIndex) { 3595 VIndex = MI.getOperand(4 + OpOffset).getReg(); 3596 ++OpOffset; 3597 } 3598 3599 Register VOffset = MI.getOperand(4 + OpOffset).getReg(); 3600 Register SOffset = MI.getOperand(5 + OpOffset).getReg(); 3601 unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm(); 3602 3603 MachineMemOperand *MMO = *MI.memoperands_begin(); 3604 3605 unsigned ImmOffset; 3606 unsigned TotalOffset; 3607 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3608 if (TotalOffset != 0) 3609 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MMO->getSize()); 3610 3611 if (!VIndex) 3612 VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0); 3613 3614 auto MIB = B.buildInstr(getBufferAtomicPseudo(IID)) 3615 .addDef(Dst) 3616 .addUse(VData); // vdata 3617 3618 if (IsCmpSwap) 3619 MIB.addReg(CmpVal); 3620 3621 MIB.addUse(RSrc) // rsrc 3622 .addUse(VIndex) // vindex 3623 .addUse(VOffset) // voffset 3624 .addUse(SOffset) // soffset 3625 .addImm(ImmOffset) // offset(imm) 3626 .addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3627 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3628 .addMemOperand(MMO); 3629 3630 MI.eraseFromParent(); 3631 return true; 3632 } 3633 3634 /// Turn a set of s16 typed registers in \p A16AddrRegs into a dword sized 3635 /// vector with s16 typed elements. 3636 static void packImageA16AddressToDwords(MachineIRBuilder &B, MachineInstr &MI, 3637 SmallVectorImpl<Register> &PackedAddrs, 3638 int AddrIdx, int DimIdx, int EndIdx, 3639 int NumGradients) { 3640 const LLT S16 = LLT::scalar(16); 3641 const LLT V2S16 = LLT::vector(2, 16); 3642 3643 for (int I = AddrIdx; I < EndIdx; ++I) { 3644 MachineOperand &SrcOp = MI.getOperand(I); 3645 if (!SrcOp.isReg()) 3646 continue; // _L to _LZ may have eliminated this. 3647 3648 Register AddrReg = SrcOp.getReg(); 3649 3650 if (I < DimIdx) { 3651 AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0); 3652 PackedAddrs.push_back(AddrReg); 3653 } else { 3654 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D, 3655 // derivatives dx/dh and dx/dv are packed with undef. 3656 if (((I + 1) >= EndIdx) || 3657 ((NumGradients / 2) % 2 == 1 && 3658 (I == DimIdx + (NumGradients / 2) - 1 || 3659 I == DimIdx + NumGradients - 1)) || 3660 // Check for _L to _LZ optimization 3661 !MI.getOperand(I + 1).isReg()) { 3662 PackedAddrs.push_back( 3663 B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)}) 3664 .getReg(0)); 3665 } else { 3666 PackedAddrs.push_back( 3667 B.buildBuildVector(V2S16, {AddrReg, MI.getOperand(I + 1).getReg()}) 3668 .getReg(0)); 3669 ++I; 3670 } 3671 } 3672 } 3673 } 3674 3675 /// Convert from separate vaddr components to a single vector address register, 3676 /// and replace the remaining operands with $noreg. 3677 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, 3678 int DimIdx, int NumVAddrs) { 3679 const LLT S32 = LLT::scalar(32); 3680 3681 SmallVector<Register, 8> AddrRegs; 3682 for (int I = 0; I != NumVAddrs; ++I) { 3683 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 3684 if (SrcOp.isReg()) { 3685 AddrRegs.push_back(SrcOp.getReg()); 3686 assert(B.getMRI()->getType(SrcOp.getReg()) == S32); 3687 } 3688 } 3689 3690 int NumAddrRegs = AddrRegs.size(); 3691 if (NumAddrRegs != 1) { 3692 // Round up to 8 elements for v5-v7 3693 // FIXME: Missing intermediate sized register classes and instructions. 3694 if (NumAddrRegs > 4 && !isPowerOf2_32(NumAddrRegs)) { 3695 const int RoundedNumRegs = NextPowerOf2(NumAddrRegs); 3696 auto Undef = B.buildUndef(S32); 3697 AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0)); 3698 NumAddrRegs = RoundedNumRegs; 3699 } 3700 3701 auto VAddr = B.buildBuildVector(LLT::vector(NumAddrRegs, 32), AddrRegs); 3702 MI.getOperand(DimIdx).setReg(VAddr.getReg(0)); 3703 } 3704 3705 for (int I = 1; I != NumVAddrs; ++I) { 3706 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 3707 if (SrcOp.isReg()) 3708 MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister); 3709 } 3710 } 3711 3712 /// Rewrite image intrinsics to use register layouts expected by the subtarget. 3713 /// 3714 /// Depending on the subtarget, load/store with 16-bit element data need to be 3715 /// rewritten to use the low half of 32-bit registers, or directly use a packed 3716 /// layout. 16-bit addresses should also sometimes be packed into 32-bit 3717 /// registers. 3718 /// 3719 /// We don't want to directly select image instructions just yet, but also want 3720 /// to exposes all register repacking to the legalizer/combiners. We also don't 3721 /// want a selected instrution entering RegBankSelect. In order to avoid 3722 /// defining a multitude of intermediate image instructions, directly hack on 3723 /// the intrinsic's arguments. In cases like a16 addreses, this requires padding 3724 /// now unnecessary arguments with $noreg. 3725 bool AMDGPULegalizerInfo::legalizeImageIntrinsic( 3726 MachineInstr &MI, MachineIRBuilder &B, 3727 GISelChangeObserver &Observer, 3728 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const { 3729 3730 const int NumDefs = MI.getNumExplicitDefs(); 3731 bool IsTFE = NumDefs == 2; 3732 // We are only processing the operands of d16 image operations on subtargets 3733 // that use the unpacked register layout, or need to repack the TFE result. 3734 3735 // TODO: Do we need to guard against already legalized intrinsics? 3736 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 3737 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 3738 3739 MachineRegisterInfo *MRI = B.getMRI(); 3740 const LLT S32 = LLT::scalar(32); 3741 const LLT S16 = LLT::scalar(16); 3742 const LLT V2S16 = LLT::vector(2, 16); 3743 3744 // Index of first address argument 3745 const int AddrIdx = getImageVAddrIdxBegin(BaseOpcode, NumDefs); 3746 3747 int NumVAddrs, NumGradients; 3748 std::tie(NumVAddrs, NumGradients) = getImageNumVAddr(ImageDimIntr, BaseOpcode); 3749 const int DMaskIdx = BaseOpcode->Atomic ? -1 : 3750 getDMaskIdx(BaseOpcode, NumDefs); 3751 unsigned DMask = 0; 3752 3753 // Check for 16 bit addresses and pack if true. 3754 int DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 3755 LLT GradTy = MRI->getType(MI.getOperand(DimIdx).getReg()); 3756 LLT AddrTy = MRI->getType(MI.getOperand(DimIdx + NumGradients).getReg()); 3757 const bool IsG16 = GradTy == S16; 3758 const bool IsA16 = AddrTy == S16; 3759 3760 int DMaskLanes = 0; 3761 if (!BaseOpcode->Atomic) { 3762 DMask = MI.getOperand(DMaskIdx).getImm(); 3763 if (BaseOpcode->Gather4) { 3764 DMaskLanes = 4; 3765 } else if (DMask != 0) { 3766 DMaskLanes = countPopulation(DMask); 3767 } else if (!IsTFE && !BaseOpcode->Store) { 3768 // If dmask is 0, this is a no-op load. This can be eliminated. 3769 B.buildUndef(MI.getOperand(0)); 3770 MI.eraseFromParent(); 3771 return true; 3772 } 3773 } 3774 3775 Observer.changingInstr(MI); 3776 auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); }); 3777 3778 unsigned NewOpcode = NumDefs == 0 ? 3779 AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD; 3780 3781 // Track that we legalized this 3782 MI.setDesc(B.getTII().get(NewOpcode)); 3783 3784 // Expecting to get an error flag since TFC is on - and dmask is 0 Force 3785 // dmask to be at least 1 otherwise the instruction will fail 3786 if (IsTFE && DMask == 0) { 3787 DMask = 0x1; 3788 DMaskLanes = 1; 3789 MI.getOperand(DMaskIdx).setImm(DMask); 3790 } 3791 3792 if (BaseOpcode->Atomic) { 3793 Register VData0 = MI.getOperand(2).getReg(); 3794 LLT Ty = MRI->getType(VData0); 3795 3796 // TODO: Allow atomic swap and bit ops for v2s16/v4s16 3797 if (Ty.isVector()) 3798 return false; 3799 3800 if (BaseOpcode->AtomicX2) { 3801 Register VData1 = MI.getOperand(3).getReg(); 3802 // The two values are packed in one register. 3803 LLT PackedTy = LLT::vector(2, Ty); 3804 auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1}); 3805 MI.getOperand(2).setReg(Concat.getReg(0)); 3806 MI.getOperand(3).setReg(AMDGPU::NoRegister); 3807 } 3808 } 3809 3810 int CorrectedNumVAddrs = NumVAddrs; 3811 3812 // Optimize _L to _LZ when _L is zero 3813 if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 3814 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 3815 const ConstantFP *ConstantLod; 3816 const int LodIdx = AddrIdx + NumVAddrs - 1; 3817 3818 if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_GFCst(ConstantLod))) { 3819 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 3820 // Set new opcode to _lz variant of _l, and change the intrinsic ID. 3821 ImageDimIntr = AMDGPU::getImageDimInstrinsicByBaseOpcode( 3822 LZMappingInfo->LZ, ImageDimIntr->Dim); 3823 3824 // The starting indexes should remain in the same place. 3825 --NumVAddrs; 3826 --CorrectedNumVAddrs; 3827 3828 MI.getOperand(MI.getNumExplicitDefs()).setIntrinsicID( 3829 static_cast<Intrinsic::ID>(ImageDimIntr->Intr)); 3830 MI.RemoveOperand(LodIdx); 3831 } 3832 } 3833 } 3834 3835 // Optimize _mip away, when 'lod' is zero 3836 if (AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 3837 int64_t ConstantLod; 3838 const int LodIdx = AddrIdx + NumVAddrs - 1; 3839 3840 if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_ICst(ConstantLod))) { 3841 if (ConstantLod == 0) { 3842 // TODO: Change intrinsic opcode and remove operand instead or replacing 3843 // it with 0, as the _L to _LZ handling is done above. 3844 MI.getOperand(LodIdx).ChangeToImmediate(0); 3845 --CorrectedNumVAddrs; 3846 } 3847 } 3848 } 3849 3850 // Rewrite the addressing register layout before doing anything else. 3851 if (IsA16 || IsG16) { 3852 if (IsA16) { 3853 // Target must support the feature and gradients need to be 16 bit too 3854 if (!ST.hasA16() || !IsG16) 3855 return false; 3856 } else if (!ST.hasG16()) 3857 return false; 3858 3859 if (NumVAddrs > 1) { 3860 SmallVector<Register, 4> PackedRegs; 3861 // Don't compress addresses for G16 3862 const int PackEndIdx = 3863 IsA16 ? (AddrIdx + NumVAddrs) : (DimIdx + NumGradients); 3864 packImageA16AddressToDwords(B, MI, PackedRegs, AddrIdx, DimIdx, 3865 PackEndIdx, NumGradients); 3866 3867 if (!IsA16) { 3868 // Add uncompressed address 3869 for (int I = DimIdx + NumGradients; I != AddrIdx + NumVAddrs; ++I) { 3870 int AddrReg = MI.getOperand(I).getReg(); 3871 assert(B.getMRI()->getType(AddrReg) == LLT::scalar(32)); 3872 PackedRegs.push_back(AddrReg); 3873 } 3874 } 3875 3876 // See also below in the non-a16 branch 3877 const bool UseNSA = PackedRegs.size() >= 3 && ST.hasNSAEncoding(); 3878 3879 if (!UseNSA && PackedRegs.size() > 1) { 3880 LLT PackedAddrTy = LLT::vector(2 * PackedRegs.size(), 16); 3881 auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs); 3882 PackedRegs[0] = Concat.getReg(0); 3883 PackedRegs.resize(1); 3884 } 3885 3886 const int NumPacked = PackedRegs.size(); 3887 for (int I = 0; I != NumVAddrs; ++I) { 3888 MachineOperand &SrcOp = MI.getOperand(AddrIdx + I); 3889 if (!SrcOp.isReg()) { 3890 assert(SrcOp.isImm() && SrcOp.getImm() == 0); 3891 continue; 3892 } 3893 3894 assert(SrcOp.getReg() != AMDGPU::NoRegister); 3895 3896 if (I < NumPacked) 3897 SrcOp.setReg(PackedRegs[I]); 3898 else 3899 SrcOp.setReg(AMDGPU::NoRegister); 3900 } 3901 } 3902 } else { 3903 // If the register allocator cannot place the address registers contiguously 3904 // without introducing moves, then using the non-sequential address encoding 3905 // is always preferable, since it saves VALU instructions and is usually a 3906 // wash in terms of code size or even better. 3907 // 3908 // However, we currently have no way of hinting to the register allocator 3909 // that MIMG addresses should be placed contiguously when it is possible to 3910 // do so, so force non-NSA for the common 2-address case as a heuristic. 3911 // 3912 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 3913 // allocation when possible. 3914 const bool UseNSA = CorrectedNumVAddrs >= 3 && ST.hasNSAEncoding(); 3915 3916 if (!UseNSA && NumVAddrs > 1) 3917 convertImageAddrToPacked(B, MI, AddrIdx, NumVAddrs); 3918 } 3919 3920 int Flags = 0; 3921 if (IsA16) 3922 Flags |= 1; 3923 if (IsG16) 3924 Flags |= 2; 3925 MI.addOperand(MachineOperand::CreateImm(Flags)); 3926 3927 if (BaseOpcode->Store) { // No TFE for stores? 3928 // TODO: Handle dmask trim 3929 Register VData = MI.getOperand(1).getReg(); 3930 LLT Ty = MRI->getType(VData); 3931 if (!Ty.isVector() || Ty.getElementType() != S16) 3932 return true; 3933 3934 Register RepackedReg = handleD16VData(B, *MRI, VData); 3935 if (RepackedReg != VData) { 3936 MI.getOperand(1).setReg(RepackedReg); 3937 } 3938 3939 return true; 3940 } 3941 3942 Register DstReg = MI.getOperand(0).getReg(); 3943 LLT Ty = MRI->getType(DstReg); 3944 const LLT EltTy = Ty.getScalarType(); 3945 const bool IsD16 = Ty.getScalarType() == S16; 3946 const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1; 3947 3948 // Confirm that the return type is large enough for the dmask specified 3949 if (NumElts < DMaskLanes) 3950 return false; 3951 3952 if (NumElts > 4 || DMaskLanes > 4) 3953 return false; 3954 3955 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes; 3956 const LLT AdjustedTy = Ty.changeNumElements(AdjustedNumElts); 3957 3958 // The raw dword aligned data component of the load. The only legal cases 3959 // where this matters should be when using the packed D16 format, for 3960 // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>, 3961 LLT RoundedTy; 3962 3963 // S32 vector to to cover all data, plus TFE result element. 3964 LLT TFETy; 3965 3966 // Register type to use for each loaded component. Will be S32 or V2S16. 3967 LLT RegTy; 3968 3969 if (IsD16 && ST.hasUnpackedD16VMem()) { 3970 RoundedTy = LLT::scalarOrVector(AdjustedNumElts, 32); 3971 TFETy = LLT::vector(AdjustedNumElts + 1, 32); 3972 RegTy = S32; 3973 } else { 3974 unsigned EltSize = EltTy.getSizeInBits(); 3975 unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32; 3976 unsigned RoundedSize = 32 * RoundedElts; 3977 RoundedTy = LLT::scalarOrVector(RoundedSize / EltSize, EltSize); 3978 TFETy = LLT::vector(RoundedSize / 32 + 1, S32); 3979 RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32; 3980 } 3981 3982 // The return type does not need adjustment. 3983 // TODO: Should we change s16 case to s32 or <2 x s16>? 3984 if (!IsTFE && (RoundedTy == Ty || !Ty.isVector())) 3985 return true; 3986 3987 Register Dst1Reg; 3988 3989 // Insert after the instruction. 3990 B.setInsertPt(*MI.getParent(), ++MI.getIterator()); 3991 3992 // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x 3993 // s16> instead of s32, we would only need 1 bitcast instead of multiple. 3994 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy; 3995 const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32; 3996 3997 Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy); 3998 3999 MI.getOperand(0).setReg(NewResultReg); 4000 4001 // In the IR, TFE is supposed to be used with a 2 element struct return 4002 // type. The intruction really returns these two values in one contiguous 4003 // register, with one additional dword beyond the loaded data. Rewrite the 4004 // return type to use a single register result. 4005 4006 if (IsTFE) { 4007 Dst1Reg = MI.getOperand(1).getReg(); 4008 if (MRI->getType(Dst1Reg) != S32) 4009 return false; 4010 4011 // TODO: Make sure the TFE operand bit is set. 4012 MI.RemoveOperand(1); 4013 4014 // Handle the easy case that requires no repack instructions. 4015 if (Ty == S32) { 4016 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg); 4017 return true; 4018 } 4019 } 4020 4021 // Now figure out how to copy the new result register back into the old 4022 // result. 4023 SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg); 4024 4025 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs; 4026 4027 if (ResultNumRegs == 1) { 4028 assert(!IsTFE); 4029 ResultRegs[0] = NewResultReg; 4030 } else { 4031 // We have to repack into a new vector of some kind. 4032 for (int I = 0; I != NumDataRegs; ++I) 4033 ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy); 4034 B.buildUnmerge(ResultRegs, NewResultReg); 4035 4036 // Drop the final TFE element to get the data part. The TFE result is 4037 // directly written to the right place already. 4038 if (IsTFE) 4039 ResultRegs.resize(NumDataRegs); 4040 } 4041 4042 // For an s16 scalar result, we form an s32 result with a truncate regardless 4043 // of packed vs. unpacked. 4044 if (IsD16 && !Ty.isVector()) { 4045 B.buildTrunc(DstReg, ResultRegs[0]); 4046 return true; 4047 } 4048 4049 // Avoid a build/concat_vector of 1 entry. 4050 if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) { 4051 B.buildBitcast(DstReg, ResultRegs[0]); 4052 return true; 4053 } 4054 4055 assert(Ty.isVector()); 4056 4057 if (IsD16) { 4058 // For packed D16 results with TFE enabled, all the data components are 4059 // S32. Cast back to the expected type. 4060 // 4061 // TODO: We don't really need to use load s32 elements. We would only need one 4062 // cast for the TFE result if a multiple of v2s16 was used. 4063 if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) { 4064 for (Register &Reg : ResultRegs) 4065 Reg = B.buildBitcast(V2S16, Reg).getReg(0); 4066 } else if (ST.hasUnpackedD16VMem()) { 4067 for (Register &Reg : ResultRegs) 4068 Reg = B.buildTrunc(S16, Reg).getReg(0); 4069 } 4070 } 4071 4072 auto padWithUndef = [&](LLT Ty, int NumElts) { 4073 if (NumElts == 0) 4074 return; 4075 Register Undef = B.buildUndef(Ty).getReg(0); 4076 for (int I = 0; I != NumElts; ++I) 4077 ResultRegs.push_back(Undef); 4078 }; 4079 4080 // Pad out any elements eliminated due to the dmask. 4081 LLT ResTy = MRI->getType(ResultRegs[0]); 4082 if (!ResTy.isVector()) { 4083 padWithUndef(ResTy, NumElts - ResultRegs.size()); 4084 B.buildBuildVector(DstReg, ResultRegs); 4085 return true; 4086 } 4087 4088 assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16); 4089 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32; 4090 4091 // Deal with the one annoying legal case. 4092 const LLT V3S16 = LLT::vector(3, 16); 4093 if (Ty == V3S16) { 4094 padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1); 4095 auto Concat = B.buildConcatVectors(LLT::vector(6, 16), ResultRegs); 4096 B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat); 4097 return true; 4098 } 4099 4100 padWithUndef(ResTy, RegsToCover - ResultRegs.size()); 4101 B.buildConcatVectors(DstReg, ResultRegs); 4102 return true; 4103 } 4104 4105 bool AMDGPULegalizerInfo::legalizeSBufferLoad( 4106 MachineInstr &MI, MachineIRBuilder &B, 4107 GISelChangeObserver &Observer) const { 4108 Register Dst = MI.getOperand(0).getReg(); 4109 LLT Ty = B.getMRI()->getType(Dst); 4110 unsigned Size = Ty.getSizeInBits(); 4111 MachineFunction &MF = B.getMF(); 4112 4113 Observer.changingInstr(MI); 4114 4115 // FIXME: We don't really need this intermediate instruction. The intrinsic 4116 // should be fixed to have a memory operand. Since it's readnone, we're not 4117 // allowed to add one. 4118 MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD)); 4119 MI.RemoveOperand(1); // Remove intrinsic ID 4120 4121 // FIXME: When intrinsic definition is fixed, this should have an MMO already. 4122 // TODO: Should this use datalayout alignment? 4123 const unsigned MemSize = (Size + 7) / 8; 4124 const Align MemAlign(4); 4125 MachineMemOperand *MMO = MF.getMachineMemOperand( 4126 MachinePointerInfo(), 4127 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 4128 MachineMemOperand::MOInvariant, 4129 MemSize, MemAlign); 4130 MI.addMemOperand(MF, MMO); 4131 4132 // There are no 96-bit result scalar loads, but widening to 128-bit should 4133 // always be legal. We may need to restore this to a 96-bit result if it turns 4134 // out this needs to be converted to a vector load during RegBankSelect. 4135 if (!isPowerOf2_32(Size)) { 4136 LegalizerHelper Helper(MF, *this, Observer, B); 4137 4138 if (Ty.isVector()) 4139 Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0); 4140 else 4141 Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0); 4142 } 4143 4144 Observer.changedInstr(MI); 4145 return true; 4146 } 4147 4148 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI, 4149 MachineRegisterInfo &MRI, 4150 MachineIRBuilder &B) const { 4151 // Is non-HSA path or trap-handler disabled? then, insert s_endpgm instruction 4152 if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4153 !ST.isTrapHandlerEnabled()) { 4154 B.buildInstr(AMDGPU::S_ENDPGM).addImm(0); 4155 } else { 4156 // Pass queue pointer to trap handler as input, and insert trap instruction 4157 // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi 4158 const ArgDescriptor *Arg = 4159 getArgDescriptor(B, AMDGPUFunctionArgInfo::QUEUE_PTR); 4160 if (!Arg) 4161 return false; 4162 MachineRegisterInfo &MRI = *B.getMRI(); 4163 Register SGPR01(AMDGPU::SGPR0_SGPR1); 4164 Register LiveIn = getLiveInRegister( 4165 B, MRI, SGPR01, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64), 4166 /*InsertLiveInCopy=*/false); 4167 if (!loadInputValue(LiveIn, B, Arg)) 4168 return false; 4169 B.buildCopy(SGPR01, LiveIn); 4170 B.buildInstr(AMDGPU::S_TRAP) 4171 .addImm(GCNSubtarget::TrapIDLLVMTrap) 4172 .addReg(SGPR01, RegState::Implicit); 4173 } 4174 4175 MI.eraseFromParent(); 4176 return true; 4177 } 4178 4179 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic( 4180 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 4181 // Is non-HSA path or trap-handler disabled? then, report a warning 4182 // accordingly 4183 if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4184 !ST.isTrapHandlerEnabled()) { 4185 DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(), 4186 "debugtrap handler not supported", 4187 MI.getDebugLoc(), DS_Warning); 4188 LLVMContext &Ctx = B.getMF().getFunction().getContext(); 4189 Ctx.diagnose(NoTrap); 4190 } else { 4191 // Insert debug-trap instruction 4192 B.buildInstr(AMDGPU::S_TRAP).addImm(GCNSubtarget::TrapIDLLVMDebugTrap); 4193 } 4194 4195 MI.eraseFromParent(); 4196 return true; 4197 } 4198 4199 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper, 4200 MachineInstr &MI) const { 4201 MachineIRBuilder &B = Helper.MIRBuilder; 4202 MachineRegisterInfo &MRI = *B.getMRI(); 4203 4204 // Replace the use G_BRCOND with the exec manipulate and branch pseudos. 4205 auto IntrID = MI.getIntrinsicID(); 4206 switch (IntrID) { 4207 case Intrinsic::amdgcn_if: 4208 case Intrinsic::amdgcn_else: { 4209 MachineInstr *Br = nullptr; 4210 MachineBasicBlock *UncondBrTarget = nullptr; 4211 if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) { 4212 const SIRegisterInfo *TRI 4213 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4214 4215 Register Def = MI.getOperand(1).getReg(); 4216 Register Use = MI.getOperand(3).getReg(); 4217 4218 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4219 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4220 if (IntrID == Intrinsic::amdgcn_if) { 4221 B.buildInstr(AMDGPU::SI_IF) 4222 .addDef(Def) 4223 .addUse(Use) 4224 .addMBB(UncondBrTarget); 4225 } else { 4226 B.buildInstr(AMDGPU::SI_ELSE) 4227 .addDef(Def) 4228 .addUse(Use) 4229 .addMBB(UncondBrTarget) 4230 .addImm(0); 4231 } 4232 4233 if (Br) { 4234 Br->getOperand(0).setMBB(CondBrTarget); 4235 } else { 4236 // The IRTranslator skips inserting the G_BR for fallthrough cases, but 4237 // since we're swapping branch targets it needs to be reinserted. 4238 // FIXME: IRTranslator should probably not do this 4239 B.buildBr(*CondBrTarget); 4240 } 4241 4242 MRI.setRegClass(Def, TRI->getWaveMaskRegClass()); 4243 MRI.setRegClass(Use, TRI->getWaveMaskRegClass()); 4244 MI.eraseFromParent(); 4245 BrCond->eraseFromParent(); 4246 return true; 4247 } 4248 4249 return false; 4250 } 4251 case Intrinsic::amdgcn_loop: { 4252 MachineInstr *Br = nullptr; 4253 MachineBasicBlock *UncondBrTarget = nullptr; 4254 if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) { 4255 const SIRegisterInfo *TRI 4256 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4257 4258 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4259 Register Reg = MI.getOperand(2).getReg(); 4260 4261 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4262 B.buildInstr(AMDGPU::SI_LOOP) 4263 .addUse(Reg) 4264 .addMBB(UncondBrTarget); 4265 4266 if (Br) 4267 Br->getOperand(0).setMBB(CondBrTarget); 4268 else 4269 B.buildBr(*CondBrTarget); 4270 4271 MI.eraseFromParent(); 4272 BrCond->eraseFromParent(); 4273 MRI.setRegClass(Reg, TRI->getWaveMaskRegClass()); 4274 return true; 4275 } 4276 4277 return false; 4278 } 4279 case Intrinsic::amdgcn_kernarg_segment_ptr: 4280 if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) { 4281 // This only makes sense to call in a kernel, so just lower to null. 4282 B.buildConstant(MI.getOperand(0).getReg(), 0); 4283 MI.eraseFromParent(); 4284 return true; 4285 } 4286 4287 return legalizePreloadedArgIntrin( 4288 MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 4289 case Intrinsic::amdgcn_implicitarg_ptr: 4290 return legalizeImplicitArgPtr(MI, MRI, B); 4291 case Intrinsic::amdgcn_workitem_id_x: 4292 return legalizePreloadedArgIntrin(MI, MRI, B, 4293 AMDGPUFunctionArgInfo::WORKITEM_ID_X); 4294 case Intrinsic::amdgcn_workitem_id_y: 4295 return legalizePreloadedArgIntrin(MI, MRI, B, 4296 AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 4297 case Intrinsic::amdgcn_workitem_id_z: 4298 return legalizePreloadedArgIntrin(MI, MRI, B, 4299 AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 4300 case Intrinsic::amdgcn_workgroup_id_x: 4301 return legalizePreloadedArgIntrin(MI, MRI, B, 4302 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 4303 case Intrinsic::amdgcn_workgroup_id_y: 4304 return legalizePreloadedArgIntrin(MI, MRI, B, 4305 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 4306 case Intrinsic::amdgcn_workgroup_id_z: 4307 return legalizePreloadedArgIntrin(MI, MRI, B, 4308 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 4309 case Intrinsic::amdgcn_dispatch_ptr: 4310 return legalizePreloadedArgIntrin(MI, MRI, B, 4311 AMDGPUFunctionArgInfo::DISPATCH_PTR); 4312 case Intrinsic::amdgcn_queue_ptr: 4313 return legalizePreloadedArgIntrin(MI, MRI, B, 4314 AMDGPUFunctionArgInfo::QUEUE_PTR); 4315 case Intrinsic::amdgcn_implicit_buffer_ptr: 4316 return legalizePreloadedArgIntrin( 4317 MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 4318 case Intrinsic::amdgcn_dispatch_id: 4319 return legalizePreloadedArgIntrin(MI, MRI, B, 4320 AMDGPUFunctionArgInfo::DISPATCH_ID); 4321 case Intrinsic::amdgcn_fdiv_fast: 4322 return legalizeFDIVFastIntrin(MI, MRI, B); 4323 case Intrinsic::amdgcn_is_shared: 4324 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS); 4325 case Intrinsic::amdgcn_is_private: 4326 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS); 4327 case Intrinsic::amdgcn_wavefrontsize: { 4328 B.buildConstant(MI.getOperand(0), ST.getWavefrontSize()); 4329 MI.eraseFromParent(); 4330 return true; 4331 } 4332 case Intrinsic::amdgcn_s_buffer_load: 4333 return legalizeSBufferLoad(MI, B, Helper.Observer); 4334 case Intrinsic::amdgcn_raw_buffer_store: 4335 case Intrinsic::amdgcn_struct_buffer_store: 4336 return legalizeBufferStore(MI, MRI, B, false, false); 4337 case Intrinsic::amdgcn_raw_buffer_store_format: 4338 case Intrinsic::amdgcn_struct_buffer_store_format: 4339 return legalizeBufferStore(MI, MRI, B, false, true); 4340 case Intrinsic::amdgcn_raw_tbuffer_store: 4341 case Intrinsic::amdgcn_struct_tbuffer_store: 4342 return legalizeBufferStore(MI, MRI, B, true, true); 4343 case Intrinsic::amdgcn_raw_buffer_load: 4344 case Intrinsic::amdgcn_struct_buffer_load: 4345 return legalizeBufferLoad(MI, MRI, B, false, false); 4346 case Intrinsic::amdgcn_raw_buffer_load_format: 4347 case Intrinsic::amdgcn_struct_buffer_load_format: 4348 return legalizeBufferLoad(MI, MRI, B, true, false); 4349 case Intrinsic::amdgcn_raw_tbuffer_load: 4350 case Intrinsic::amdgcn_struct_tbuffer_load: 4351 return legalizeBufferLoad(MI, MRI, B, true, true); 4352 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 4353 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 4354 case Intrinsic::amdgcn_raw_buffer_atomic_add: 4355 case Intrinsic::amdgcn_struct_buffer_atomic_add: 4356 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 4357 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 4358 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 4359 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 4360 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 4361 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 4362 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 4363 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 4364 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 4365 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 4366 case Intrinsic::amdgcn_raw_buffer_atomic_and: 4367 case Intrinsic::amdgcn_struct_buffer_atomic_and: 4368 case Intrinsic::amdgcn_raw_buffer_atomic_or: 4369 case Intrinsic::amdgcn_struct_buffer_atomic_or: 4370 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 4371 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 4372 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 4373 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 4374 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 4375 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 4376 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 4377 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 4378 return legalizeBufferAtomic(MI, B, IntrID); 4379 case Intrinsic::amdgcn_atomic_inc: 4380 return legalizeAtomicIncDec(MI, B, true); 4381 case Intrinsic::amdgcn_atomic_dec: 4382 return legalizeAtomicIncDec(MI, B, false); 4383 case Intrinsic::trap: 4384 return legalizeTrapIntrinsic(MI, MRI, B); 4385 case Intrinsic::debugtrap: 4386 return legalizeDebugTrapIntrinsic(MI, MRI, B); 4387 default: { 4388 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 4389 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 4390 return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr); 4391 return true; 4392 } 4393 } 4394 4395 return true; 4396 } 4397