1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the targeting of the Machinelegalizer class for 10 /// AMDGPU. 11 /// \todo This should be generated by TableGen. 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPULegalizerInfo.h" 15 16 #include "AMDGPU.h" 17 #include "AMDGPUGlobalISelUtils.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 24 #include "llvm/CodeGen/TargetOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/Debug.h" 30 31 #define DEBUG_TYPE "amdgpu-legalinfo" 32 33 using namespace llvm; 34 using namespace LegalizeActions; 35 using namespace LegalizeMutations; 36 using namespace LegalityPredicates; 37 using namespace MIPatternMatch; 38 39 // Hack until load/store selection patterns support any tuple of legal types. 40 static cl::opt<bool> EnableNewLegality( 41 "amdgpu-global-isel-new-legality", 42 cl::desc("Use GlobalISel desired legality, rather than try to use" 43 "rules compatible with selection patterns"), 44 cl::init(false), 45 cl::ReallyHidden); 46 47 static constexpr unsigned MaxRegisterSize = 1024; 48 49 // Round the number of elements to the next power of two elements 50 static LLT getPow2VectorType(LLT Ty) { 51 unsigned NElts = Ty.getNumElements(); 52 unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); 53 return Ty.changeNumElements(Pow2NElts); 54 } 55 56 // Round the number of bits to the next power of two bits 57 static LLT getPow2ScalarType(LLT Ty) { 58 unsigned Bits = Ty.getSizeInBits(); 59 unsigned Pow2Bits = 1 << Log2_32_Ceil(Bits); 60 return LLT::scalar(Pow2Bits); 61 } 62 63 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) { 64 return [=](const LegalityQuery &Query) { 65 const LLT Ty = Query.Types[TypeIdx]; 66 return Ty.isVector() && 67 Ty.getNumElements() % 2 != 0 && 68 Ty.getElementType().getSizeInBits() < 32 && 69 Ty.getSizeInBits() % 32 != 0; 70 }; 71 } 72 73 static LegalityPredicate isWideVec16(unsigned TypeIdx) { 74 return [=](const LegalityQuery &Query) { 75 const LLT Ty = Query.Types[TypeIdx]; 76 const LLT EltTy = Ty.getScalarType(); 77 return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2; 78 }; 79 } 80 81 static LegalizeMutation oneMoreElement(unsigned TypeIdx) { 82 return [=](const LegalityQuery &Query) { 83 const LLT Ty = Query.Types[TypeIdx]; 84 const LLT EltTy = Ty.getElementType(); 85 return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy)); 86 }; 87 } 88 89 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) { 90 return [=](const LegalityQuery &Query) { 91 const LLT Ty = Query.Types[TypeIdx]; 92 const LLT EltTy = Ty.getElementType(); 93 unsigned Size = Ty.getSizeInBits(); 94 unsigned Pieces = (Size + 63) / 64; 95 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces; 96 return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy)); 97 }; 98 } 99 100 // Increase the number of vector elements to reach the next multiple of 32-bit 101 // type. 102 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) { 103 return [=](const LegalityQuery &Query) { 104 const LLT Ty = Query.Types[TypeIdx]; 105 106 const LLT EltTy = Ty.getElementType(); 107 const int Size = Ty.getSizeInBits(); 108 const int EltSize = EltTy.getSizeInBits(); 109 const int NextMul32 = (Size + 31) / 32; 110 111 assert(EltSize < 32); 112 113 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize; 114 return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy)); 115 }; 116 } 117 118 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) { 119 return [=](const LegalityQuery &Query) { 120 const LLT Ty = Query.Types[TypeIdx]; 121 unsigned Size = Ty.getSizeInBits(); 122 123 LLT CoercedTy; 124 if (Size < 32) { 125 // <2 x s8> -> s16 126 assert(Size == 16); 127 CoercedTy = LLT::scalar(16); 128 } else 129 CoercedTy = LLT::scalarOrVector(Size / 32, 32); 130 131 return std::make_pair(TypeIdx, CoercedTy); 132 }; 133 } 134 135 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) { 136 return [=](const LegalityQuery &Query) { 137 const LLT QueryTy = Query.Types[TypeIdx]; 138 return QueryTy.isVector() && QueryTy.getSizeInBits() < Size; 139 }; 140 } 141 142 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) { 143 return [=](const LegalityQuery &Query) { 144 const LLT QueryTy = Query.Types[TypeIdx]; 145 return QueryTy.isVector() && QueryTy.getSizeInBits() > Size; 146 }; 147 } 148 149 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) { 150 return [=](const LegalityQuery &Query) { 151 const LLT QueryTy = Query.Types[TypeIdx]; 152 return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0; 153 }; 154 } 155 156 static bool isRegisterSize(unsigned Size) { 157 return Size % 32 == 0 && Size <= MaxRegisterSize; 158 } 159 160 static bool isRegisterVectorElementType(LLT EltTy) { 161 const int EltSize = EltTy.getSizeInBits(); 162 return EltSize == 16 || EltSize % 32 == 0; 163 } 164 165 static bool isRegisterVectorType(LLT Ty) { 166 const int EltSize = Ty.getElementType().getSizeInBits(); 167 return EltSize == 32 || EltSize == 64 || 168 (EltSize == 16 && Ty.getNumElements() % 2 == 0) || 169 EltSize == 128 || EltSize == 256; 170 } 171 172 static bool isRegisterType(LLT Ty) { 173 if (!isRegisterSize(Ty.getSizeInBits())) 174 return false; 175 176 if (Ty.isVector()) 177 return isRegisterVectorType(Ty); 178 179 return true; 180 } 181 182 // Any combination of 32 or 64-bit elements up the maximum register size, and 183 // multiples of v2s16. 184 static LegalityPredicate isRegisterType(unsigned TypeIdx) { 185 return [=](const LegalityQuery &Query) { 186 return isRegisterType(Query.Types[TypeIdx]); 187 }; 188 } 189 190 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) { 191 return [=](const LegalityQuery &Query) { 192 const LLT QueryTy = Query.Types[TypeIdx]; 193 if (!QueryTy.isVector()) 194 return false; 195 const LLT EltTy = QueryTy.getElementType(); 196 return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32; 197 }; 198 } 199 200 static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) { 201 return [=](const LegalityQuery &Query) { 202 const LLT Ty = Query.Types[TypeIdx]; 203 return !Ty.isVector() && Ty.getSizeInBits() > 32 && 204 Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits(); 205 }; 206 } 207 208 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we 209 // handle some operations by just promoting the register during 210 // selection. There are also d16 loads on GFX9+ which preserve the high bits. 211 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, 212 bool IsLoad) { 213 switch (AS) { 214 case AMDGPUAS::PRIVATE_ADDRESS: 215 // FIXME: Private element size. 216 return 32; 217 case AMDGPUAS::LOCAL_ADDRESS: 218 return ST.useDS128() ? 128 : 64; 219 case AMDGPUAS::GLOBAL_ADDRESS: 220 case AMDGPUAS::CONSTANT_ADDRESS: 221 case AMDGPUAS::CONSTANT_ADDRESS_32BIT: 222 // Treat constant and global as identical. SMRD loads are sometimes usable for 223 // global loads (ideally constant address space should be eliminated) 224 // depending on the context. Legality cannot be context dependent, but 225 // RegBankSelect can split the load as necessary depending on the pointer 226 // register bank/uniformity and if the memory is invariant or not written in a 227 // kernel. 228 return IsLoad ? 512 : 128; 229 default: 230 // Flat addresses may contextually need to be split to 32-bit parts if they 231 // may alias scratch depending on the subtarget. 232 return 128; 233 } 234 } 235 236 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, 237 const LegalityQuery &Query, 238 unsigned Opcode) { 239 const LLT Ty = Query.Types[0]; 240 241 // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD 242 const bool IsLoad = Opcode != AMDGPU::G_STORE; 243 244 unsigned RegSize = Ty.getSizeInBits(); 245 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 246 unsigned Align = Query.MMODescrs[0].AlignInBits; 247 unsigned AS = Query.Types[1].getAddressSpace(); 248 249 // All of these need to be custom lowered to cast the pointer operand. 250 if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 251 return false; 252 253 // TODO: We should be able to widen loads if the alignment is high enough, but 254 // we also need to modify the memory access size. 255 #if 0 256 // Accept widening loads based on alignment. 257 if (IsLoad && MemSize < Size) 258 MemSize = std::max(MemSize, Align); 259 #endif 260 261 // Only 1-byte and 2-byte to 32-bit extloads are valid. 262 if (MemSize != RegSize && RegSize != 32) 263 return false; 264 265 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 266 return false; 267 268 switch (MemSize) { 269 case 8: 270 case 16: 271 case 32: 272 case 64: 273 case 128: 274 break; 275 case 96: 276 if (!ST.hasDwordx3LoadStores()) 277 return false; 278 break; 279 case 256: 280 case 512: 281 // These may contextually need to be broken down. 282 break; 283 default: 284 return false; 285 } 286 287 assert(RegSize >= MemSize); 288 289 if (Align < MemSize) { 290 const SITargetLowering *TLI = ST.getTargetLowering(); 291 if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8)) 292 return false; 293 } 294 295 return true; 296 } 297 298 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so 299 // workaround this. Eventually it should ignore the type for loads and only care 300 // about the size. Return true in cases where we will workaround this for now by 301 // bitcasting. 302 static bool loadStoreBitcastWorkaround(const LLT Ty) { 303 if (EnableNewLegality) 304 return false; 305 306 const unsigned Size = Ty.getSizeInBits(); 307 if (Size <= 64) 308 return false; 309 if (!Ty.isVector()) 310 return true; 311 unsigned EltSize = Ty.getElementType().getSizeInBits(); 312 return EltSize != 32 && EltSize != 64; 313 } 314 315 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query, 316 unsigned Opcode) { 317 const LLT Ty = Query.Types[0]; 318 return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query, Opcode) && 319 !loadStoreBitcastWorkaround(Ty); 320 } 321 322 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_, 323 const GCNTargetMachine &TM) 324 : ST(ST_) { 325 using namespace TargetOpcode; 326 327 auto GetAddrSpacePtr = [&TM](unsigned AS) { 328 return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); 329 }; 330 331 const LLT S1 = LLT::scalar(1); 332 const LLT S16 = LLT::scalar(16); 333 const LLT S32 = LLT::scalar(32); 334 const LLT S64 = LLT::scalar(64); 335 const LLT S128 = LLT::scalar(128); 336 const LLT S256 = LLT::scalar(256); 337 const LLT S512 = LLT::scalar(512); 338 const LLT MaxScalar = LLT::scalar(MaxRegisterSize); 339 340 const LLT V2S16 = LLT::vector(2, 16); 341 const LLT V4S16 = LLT::vector(4, 16); 342 343 const LLT V2S32 = LLT::vector(2, 32); 344 const LLT V3S32 = LLT::vector(3, 32); 345 const LLT V4S32 = LLT::vector(4, 32); 346 const LLT V5S32 = LLT::vector(5, 32); 347 const LLT V6S32 = LLT::vector(6, 32); 348 const LLT V7S32 = LLT::vector(7, 32); 349 const LLT V8S32 = LLT::vector(8, 32); 350 const LLT V9S32 = LLT::vector(9, 32); 351 const LLT V10S32 = LLT::vector(10, 32); 352 const LLT V11S32 = LLT::vector(11, 32); 353 const LLT V12S32 = LLT::vector(12, 32); 354 const LLT V13S32 = LLT::vector(13, 32); 355 const LLT V14S32 = LLT::vector(14, 32); 356 const LLT V15S32 = LLT::vector(15, 32); 357 const LLT V16S32 = LLT::vector(16, 32); 358 const LLT V32S32 = LLT::vector(32, 32); 359 360 const LLT V2S64 = LLT::vector(2, 64); 361 const LLT V3S64 = LLT::vector(3, 64); 362 const LLT V4S64 = LLT::vector(4, 64); 363 const LLT V5S64 = LLT::vector(5, 64); 364 const LLT V6S64 = LLT::vector(6, 64); 365 const LLT V7S64 = LLT::vector(7, 64); 366 const LLT V8S64 = LLT::vector(8, 64); 367 const LLT V16S64 = LLT::vector(16, 64); 368 369 std::initializer_list<LLT> AllS32Vectors = 370 {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, 371 V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32}; 372 std::initializer_list<LLT> AllS64Vectors = 373 {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64}; 374 375 const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); 376 const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); 377 const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT); 378 const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); 379 const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS); 380 const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); 381 const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); 382 383 const LLT CodePtr = FlatPtr; 384 385 const std::initializer_list<LLT> AddrSpaces64 = { 386 GlobalPtr, ConstantPtr, FlatPtr 387 }; 388 389 const std::initializer_list<LLT> AddrSpaces32 = { 390 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr 391 }; 392 393 const std::initializer_list<LLT> FPTypesBase = { 394 S32, S64 395 }; 396 397 const std::initializer_list<LLT> FPTypes16 = { 398 S32, S64, S16 399 }; 400 401 const std::initializer_list<LLT> FPTypesPK16 = { 402 S32, S64, S16, V2S16 403 }; 404 405 const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32; 406 407 setAction({G_BRCOND, S1}, Legal); // VCC branches 408 setAction({G_BRCOND, S32}, Legal); // SCC branches 409 410 // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more 411 // elements for v3s16 412 getActionDefinitionsBuilder(G_PHI) 413 .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256}) 414 .legalFor(AllS32Vectors) 415 .legalFor(AllS64Vectors) 416 .legalFor(AddrSpaces64) 417 .legalFor(AddrSpaces32) 418 .clampScalar(0, S32, S256) 419 .widenScalarToNextPow2(0, 32) 420 .clampMaxNumElements(0, S32, 16) 421 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 422 .legalIf(isPointer(0)); 423 424 if (ST.hasVOP3PInsts()) { 425 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 426 .legalFor({S32, S16, V2S16}) 427 .clampScalar(0, S16, S32) 428 .clampMaxNumElements(0, S16, 2) 429 .scalarize(0) 430 .widenScalarToNextPow2(0, 32); 431 } else if (ST.has16BitInsts()) { 432 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 433 .legalFor({S32, S16}) 434 .clampScalar(0, S16, S32) 435 .scalarize(0) 436 .widenScalarToNextPow2(0, 32); 437 } else { 438 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 439 .legalFor({S32}) 440 .clampScalar(0, S32, S32) 441 .scalarize(0); 442 } 443 444 // FIXME: Not really legal. Placeholder for custom lowering. 445 getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_SREM, G_UREM}) 446 .customFor({S32, S64}) 447 .clampScalar(0, S32, S64) 448 .widenScalarToNextPow2(0, 32) 449 .scalarize(0); 450 451 getActionDefinitionsBuilder({G_UMULH, G_SMULH}) 452 .legalFor({S32}) 453 .clampScalar(0, S32, S32) 454 .scalarize(0); 455 456 // Report legal for any types we can handle anywhere. For the cases only legal 457 // on the SALU, RegBankSelect will be able to re-legalize. 458 getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) 459 .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16}) 460 .clampScalar(0, S32, S64) 461 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 462 .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0)) 463 .widenScalarToNextPow2(0) 464 .scalarize(0); 465 466 getActionDefinitionsBuilder({G_UADDO, G_USUBO, 467 G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) 468 .legalFor({{S32, S1}, {S32, S32}}) 469 .minScalar(0, S32) 470 // TODO: .scalarize(0) 471 .lower(); 472 473 getActionDefinitionsBuilder(G_BITCAST) 474 // Don't worry about the size constraint. 475 .legalIf(all(isRegisterType(0), isRegisterType(1))) 476 .lower(); 477 478 479 getActionDefinitionsBuilder(G_CONSTANT) 480 .legalFor({S1, S32, S64, S16, GlobalPtr, 481 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) 482 .clampScalar(0, S32, S64) 483 .widenScalarToNextPow2(0) 484 .legalIf(isPointer(0)); 485 486 getActionDefinitionsBuilder(G_FCONSTANT) 487 .legalFor({S32, S64, S16}) 488 .clampScalar(0, S16, S64); 489 490 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE}) 491 .legalIf(isRegisterType(0)) 492 // s1 and s16 are special cases because they have legal operations on 493 // them, but don't really occupy registers in the normal way. 494 .legalFor({S1, S16}) 495 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 496 .clampScalarOrElt(0, S32, MaxScalar) 497 .widenScalarToNextPow2(0, 32) 498 .clampMaxNumElements(0, S32, 16); 499 500 setAction({G_FRAME_INDEX, PrivatePtr}, Legal); 501 502 // If the amount is divergent, we have to do a wave reduction to get the 503 // maximum value, so this is expanded during RegBankSelect. 504 getActionDefinitionsBuilder(G_DYN_STACKALLOC) 505 .legalFor({{PrivatePtr, S32}}); 506 507 getActionDefinitionsBuilder(G_GLOBAL_VALUE) 508 .unsupportedFor({PrivatePtr}) 509 .custom(); 510 setAction({G_BLOCK_ADDR, CodePtr}, Legal); 511 512 auto &FPOpActions = getActionDefinitionsBuilder( 513 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE}) 514 .legalFor({S32, S64}); 515 auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS}) 516 .customFor({S32, S64}); 517 auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV) 518 .customFor({S32, S64}); 519 520 if (ST.has16BitInsts()) { 521 if (ST.hasVOP3PInsts()) 522 FPOpActions.legalFor({S16, V2S16}); 523 else 524 FPOpActions.legalFor({S16}); 525 526 TrigActions.customFor({S16}); 527 FDIVActions.customFor({S16}); 528 } 529 530 auto &MinNumMaxNum = getActionDefinitionsBuilder({ 531 G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE}); 532 533 if (ST.hasVOP3PInsts()) { 534 MinNumMaxNum.customFor(FPTypesPK16) 535 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 536 .clampMaxNumElements(0, S16, 2) 537 .clampScalar(0, S16, S64) 538 .scalarize(0); 539 } else if (ST.has16BitInsts()) { 540 MinNumMaxNum.customFor(FPTypes16) 541 .clampScalar(0, S16, S64) 542 .scalarize(0); 543 } else { 544 MinNumMaxNum.customFor(FPTypesBase) 545 .clampScalar(0, S32, S64) 546 .scalarize(0); 547 } 548 549 if (ST.hasVOP3PInsts()) 550 FPOpActions.clampMaxNumElements(0, S16, 2); 551 552 FPOpActions 553 .scalarize(0) 554 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 555 556 TrigActions 557 .scalarize(0) 558 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 559 560 FDIVActions 561 .scalarize(0) 562 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 563 564 getActionDefinitionsBuilder({G_FNEG, G_FABS}) 565 .legalFor(FPTypesPK16) 566 .clampMaxNumElements(0, S16, 2) 567 .scalarize(0) 568 .clampScalar(0, S16, S64); 569 570 if (ST.has16BitInsts()) { 571 getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR}) 572 .legalFor({S32, S64, S16}) 573 .scalarize(0) 574 .clampScalar(0, S16, S64); 575 } else { 576 getActionDefinitionsBuilder(G_FSQRT) 577 .legalFor({S32, S64}) 578 .scalarize(0) 579 .clampScalar(0, S32, S64); 580 581 if (ST.hasFractBug()) { 582 getActionDefinitionsBuilder(G_FFLOOR) 583 .customFor({S64}) 584 .legalFor({S32, S64}) 585 .scalarize(0) 586 .clampScalar(0, S32, S64); 587 } else { 588 getActionDefinitionsBuilder(G_FFLOOR) 589 .legalFor({S32, S64}) 590 .scalarize(0) 591 .clampScalar(0, S32, S64); 592 } 593 } 594 595 getActionDefinitionsBuilder(G_FPTRUNC) 596 .legalFor({{S32, S64}, {S16, S32}}) 597 .scalarize(0) 598 .lower(); 599 600 getActionDefinitionsBuilder(G_FPEXT) 601 .legalFor({{S64, S32}, {S32, S16}}) 602 .lowerFor({{S64, S16}}) // FIXME: Implement 603 .scalarize(0); 604 605 getActionDefinitionsBuilder(G_FSUB) 606 // Use actual fsub instruction 607 .legalFor({S32}) 608 // Must use fadd + fneg 609 .lowerFor({S64, S16, V2S16}) 610 .scalarize(0) 611 .clampScalar(0, S32, S64); 612 613 // Whether this is legal depends on the floating point mode for the function. 614 auto &FMad = getActionDefinitionsBuilder(G_FMAD); 615 if (ST.hasMadF16() && ST.hasMadMacF32Insts()) 616 FMad.customFor({S32, S16}); 617 else if (ST.hasMadMacF32Insts()) 618 FMad.customFor({S32}); 619 else if (ST.hasMadF16()) 620 FMad.customFor({S16}); 621 FMad.scalarize(0) 622 .lower(); 623 624 // TODO: Do we need to clamp maximum bitwidth? 625 getActionDefinitionsBuilder(G_TRUNC) 626 .legalIf(isScalar(0)) 627 .legalFor({{V2S16, V2S32}}) 628 .clampMaxNumElements(0, S16, 2) 629 // Avoid scalarizing in cases that should be truly illegal. In unresolvable 630 // situations (like an invalid implicit use), we don't want to infinite loop 631 // in the legalizer. 632 .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0)) 633 .alwaysLegal(); 634 635 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) 636 .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, 637 {S32, S1}, {S64, S1}, {S16, S1}}) 638 .scalarize(0) 639 .clampScalar(0, S32, S64) 640 .widenScalarToNextPow2(1, 32); 641 642 // TODO: Split s1->s64 during regbankselect for VALU. 643 auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) 644 .legalFor({{S32, S32}, {S64, S32}, {S16, S32}}) 645 .lowerFor({{S32, S64}}) 646 .lowerIf(typeIs(1, S1)) 647 .customFor({{S64, S64}}); 648 if (ST.has16BitInsts()) 649 IToFP.legalFor({{S16, S16}}); 650 IToFP.clampScalar(1, S32, S64) 651 .scalarize(0) 652 .widenScalarToNextPow2(1); 653 654 auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) 655 .legalFor({{S32, S32}, {S32, S64}, {S32, S16}}) 656 .customFor({{S64, S64}}); 657 if (ST.has16BitInsts()) 658 FPToI.legalFor({{S16, S16}}); 659 else 660 FPToI.minScalar(1, S32); 661 662 FPToI.minScalar(0, S32) 663 .scalarize(0) 664 .lower(); 665 666 getActionDefinitionsBuilder(G_INTRINSIC_ROUND) 667 .scalarize(0) 668 .lower(); 669 670 if (ST.has16BitInsts()) { 671 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 672 .legalFor({S16, S32, S64}) 673 .clampScalar(0, S16, S64) 674 .scalarize(0); 675 } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { 676 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 677 .legalFor({S32, S64}) 678 .clampScalar(0, S32, S64) 679 .scalarize(0); 680 } else { 681 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 682 .legalFor({S32}) 683 .customFor({S64}) 684 .clampScalar(0, S32, S64) 685 .scalarize(0); 686 } 687 688 // FIXME: Clamp offset operand. 689 getActionDefinitionsBuilder(G_PTR_ADD) 690 .legalIf(isPointer(0)) 691 .scalarize(0); 692 693 getActionDefinitionsBuilder(G_PTRMASK) 694 .legalIf(typeInSet(1, {S64, S32})) 695 .minScalar(1, S32) 696 .maxScalarIf(sizeIs(0, 32), 1, S32) 697 .maxScalarIf(sizeIs(0, 64), 1, S64) 698 .scalarize(0); 699 700 auto &CmpBuilder = 701 getActionDefinitionsBuilder(G_ICMP) 702 // The compare output type differs based on the register bank of the output, 703 // so make both s1 and s32 legal. 704 // 705 // Scalar compares producing output in scc will be promoted to s32, as that 706 // is the allocatable register type that will be needed for the copy from 707 // scc. This will be promoted during RegBankSelect, and we assume something 708 // before that won't try to use s32 result types. 709 // 710 // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg 711 // bank. 712 .legalForCartesianProduct( 713 {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) 714 .legalForCartesianProduct( 715 {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}); 716 if (ST.has16BitInsts()) { 717 CmpBuilder.legalFor({{S1, S16}}); 718 } 719 720 CmpBuilder 721 .widenScalarToNextPow2(1) 722 .clampScalar(1, S32, S64) 723 .scalarize(0) 724 .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1))); 725 726 getActionDefinitionsBuilder(G_FCMP) 727 .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase) 728 .widenScalarToNextPow2(1) 729 .clampScalar(1, S32, S64) 730 .scalarize(0); 731 732 // FIXME: fpow has a selection pattern that should move to custom lowering. 733 auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2}); 734 if (ST.has16BitInsts()) 735 Exp2Ops.legalFor({S32, S16}); 736 else 737 Exp2Ops.legalFor({S32}); 738 Exp2Ops.clampScalar(0, MinScalarFPTy, S32); 739 Exp2Ops.scalarize(0); 740 741 auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW}); 742 if (ST.has16BitInsts()) 743 ExpOps.customFor({{S32}, {S16}}); 744 else 745 ExpOps.customFor({S32}); 746 ExpOps.clampScalar(0, MinScalarFPTy, S32) 747 .scalarize(0); 748 749 // The 64-bit versions produce 32-bit results, but only on the SALU. 750 getActionDefinitionsBuilder(G_CTPOP) 751 .legalFor({{S32, S32}, {S32, S64}}) 752 .clampScalar(0, S32, S32) 753 .clampScalar(1, S32, S64) 754 .scalarize(0) 755 .widenScalarToNextPow2(0, 32) 756 .widenScalarToNextPow2(1, 32); 757 758 // The hardware instructions return a different result on 0 than the generic 759 // instructions expect. The hardware produces -1, but these produce the 760 // bitwidth. 761 getActionDefinitionsBuilder({G_CTLZ, G_CTTZ}) 762 .scalarize(0) 763 .clampScalar(0, S32, S32) 764 .clampScalar(1, S32, S64) 765 .widenScalarToNextPow2(0, 32) 766 .widenScalarToNextPow2(1, 32) 767 .lower(); 768 769 // The 64-bit versions produce 32-bit results, but only on the SALU. 770 getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF}) 771 .legalFor({{S32, S32}, {S32, S64}}) 772 .clampScalar(0, S32, S32) 773 .clampScalar(1, S32, S64) 774 .scalarize(0) 775 .widenScalarToNextPow2(0, 32) 776 .widenScalarToNextPow2(1, 32); 777 778 getActionDefinitionsBuilder(G_BITREVERSE) 779 .legalFor({S32}) 780 .clampScalar(0, S32, S32) 781 .scalarize(0); 782 783 if (ST.has16BitInsts()) { 784 getActionDefinitionsBuilder(G_BSWAP) 785 .legalFor({S16, S32, V2S16}) 786 .clampMaxNumElements(0, S16, 2) 787 // FIXME: Fixing non-power-of-2 before clamp is workaround for 788 // narrowScalar limitation. 789 .widenScalarToNextPow2(0) 790 .clampScalar(0, S16, S32) 791 .scalarize(0); 792 793 if (ST.hasVOP3PInsts()) { 794 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 795 .legalFor({S32, S16, V2S16}) 796 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 797 .clampMaxNumElements(0, S16, 2) 798 .minScalar(0, S16) 799 .widenScalarToNextPow2(0) 800 .scalarize(0) 801 .lower(); 802 } else { 803 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 804 .legalFor({S32, S16}) 805 .widenScalarToNextPow2(0) 806 .minScalar(0, S16) 807 .scalarize(0) 808 .lower(); 809 } 810 } else { 811 // TODO: Should have same legality without v_perm_b32 812 getActionDefinitionsBuilder(G_BSWAP) 813 .legalFor({S32}) 814 .lowerIf(scalarNarrowerThan(0, 32)) 815 // FIXME: Fixing non-power-of-2 before clamp is workaround for 816 // narrowScalar limitation. 817 .widenScalarToNextPow2(0) 818 .maxScalar(0, S32) 819 .scalarize(0) 820 .lower(); 821 822 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 823 .legalFor({S32}) 824 .minScalar(0, S32) 825 .widenScalarToNextPow2(0) 826 .scalarize(0) 827 .lower(); 828 } 829 830 getActionDefinitionsBuilder(G_INTTOPTR) 831 // List the common cases 832 .legalForCartesianProduct(AddrSpaces64, {S64}) 833 .legalForCartesianProduct(AddrSpaces32, {S32}) 834 .scalarize(0) 835 // Accept any address space as long as the size matches 836 .legalIf(sameSize(0, 1)) 837 .widenScalarIf(smallerThan(1, 0), 838 [](const LegalityQuery &Query) { 839 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 840 }) 841 .narrowScalarIf(largerThan(1, 0), 842 [](const LegalityQuery &Query) { 843 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 844 }); 845 846 getActionDefinitionsBuilder(G_PTRTOINT) 847 // List the common cases 848 .legalForCartesianProduct(AddrSpaces64, {S64}) 849 .legalForCartesianProduct(AddrSpaces32, {S32}) 850 .scalarize(0) 851 // Accept any address space as long as the size matches 852 .legalIf(sameSize(0, 1)) 853 .widenScalarIf(smallerThan(0, 1), 854 [](const LegalityQuery &Query) { 855 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 856 }) 857 .narrowScalarIf( 858 largerThan(0, 1), 859 [](const LegalityQuery &Query) { 860 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 861 }); 862 863 getActionDefinitionsBuilder(G_ADDRSPACE_CAST) 864 .scalarize(0) 865 .custom(); 866 867 const auto needToSplitMemOp = [=](const LegalityQuery &Query, 868 bool IsLoad) -> bool { 869 const LLT DstTy = Query.Types[0]; 870 871 // Split vector extloads. 872 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 873 unsigned Align = Query.MMODescrs[0].AlignInBits; 874 875 if (MemSize < DstTy.getSizeInBits()) 876 MemSize = std::max(MemSize, Align); 877 878 if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize) 879 return true; 880 881 const LLT PtrTy = Query.Types[1]; 882 unsigned AS = PtrTy.getAddressSpace(); 883 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 884 return true; 885 886 // Catch weird sized loads that don't evenly divide into the access sizes 887 // TODO: May be able to widen depending on alignment etc. 888 unsigned NumRegs = (MemSize + 31) / 32; 889 if (NumRegs == 3) { 890 if (!ST.hasDwordx3LoadStores()) 891 return true; 892 } else { 893 // If the alignment allows, these should have been widened. 894 if (!isPowerOf2_32(NumRegs)) 895 return true; 896 } 897 898 if (Align < MemSize) { 899 const SITargetLowering *TLI = ST.getTargetLowering(); 900 return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8); 901 } 902 903 return false; 904 }; 905 906 const auto shouldWidenLoadResult = [=](const LegalityQuery &Query, 907 unsigned Opc) -> bool { 908 unsigned Size = Query.Types[0].getSizeInBits(); 909 if (isPowerOf2_32(Size)) 910 return false; 911 912 if (Size == 96 && ST.hasDwordx3LoadStores()) 913 return false; 914 915 unsigned AddrSpace = Query.Types[1].getAddressSpace(); 916 if (Size >= maxSizeForAddrSpace(ST, AddrSpace, Opc)) 917 return false; 918 919 unsigned Align = Query.MMODescrs[0].AlignInBits; 920 unsigned RoundedSize = NextPowerOf2(Size); 921 return (Align >= RoundedSize); 922 }; 923 924 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccess() ? 0 : 32; 925 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccess() ? 0 : 16; 926 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccess() ? 0 : 8; 927 928 // TODO: Refine based on subtargets which support unaligned access or 128-bit 929 // LDS 930 // TODO: Unsupported flat for SI. 931 932 for (unsigned Op : {G_LOAD, G_STORE}) { 933 const bool IsStore = Op == G_STORE; 934 935 auto &Actions = getActionDefinitionsBuilder(Op); 936 // Whitelist some common cases. 937 // TODO: Does this help compile time at all? 938 Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32}, 939 {V2S32, GlobalPtr, 64, GlobalAlign32}, 940 {V4S32, GlobalPtr, 128, GlobalAlign32}, 941 {S64, GlobalPtr, 64, GlobalAlign32}, 942 {V2S64, GlobalPtr, 128, GlobalAlign32}, 943 {V2S16, GlobalPtr, 32, GlobalAlign32}, 944 {S32, GlobalPtr, 8, GlobalAlign8}, 945 {S32, GlobalPtr, 16, GlobalAlign16}, 946 947 {S32, LocalPtr, 32, 32}, 948 {S64, LocalPtr, 64, 32}, 949 {V2S32, LocalPtr, 64, 32}, 950 {S32, LocalPtr, 8, 8}, 951 {S32, LocalPtr, 16, 16}, 952 {V2S16, LocalPtr, 32, 32}, 953 954 {S32, PrivatePtr, 32, 32}, 955 {S32, PrivatePtr, 8, 8}, 956 {S32, PrivatePtr, 16, 16}, 957 {V2S16, PrivatePtr, 32, 32}, 958 959 {S32, ConstantPtr, 32, GlobalAlign32}, 960 {V2S32, ConstantPtr, 64, GlobalAlign32}, 961 {V4S32, ConstantPtr, 128, GlobalAlign32}, 962 {S64, ConstantPtr, 64, GlobalAlign32}, 963 {V2S32, ConstantPtr, 32, GlobalAlign32}}); 964 Actions.legalIf( 965 [=](const LegalityQuery &Query) -> bool { 966 return isLoadStoreLegal(ST, Query, Op); 967 }); 968 969 // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to 970 // 64-bits. 971 // 972 // TODO: Should generalize bitcast action into coerce, which will also cover 973 // inserting addrspacecasts. 974 Actions.customIf(typeIs(1, Constant32Ptr)); 975 976 // Turn any illegal element vectors into something easier to deal 977 // with. These will ultimately produce 32-bit scalar shifts to extract the 978 // parts anyway. 979 // 980 // For odd 16-bit element vectors, prefer to split those into pieces with 981 // 16-bit vector parts. 982 Actions.bitcastIf( 983 [=](const LegalityQuery &Query) -> bool { 984 const LLT Ty = Query.Types[0]; 985 986 // Do not cast an extload/truncstore. 987 if (Ty.getSizeInBits() != Query.MMODescrs[0].SizeInBits) 988 return false; 989 990 if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty)) 991 return true; 992 const unsigned Size = Ty.getSizeInBits(); 993 return Ty.isVector() && isRegisterSize(Size) && 994 !isRegisterVectorElementType(Ty.getElementType()); 995 }, bitcastToRegisterType(0)); 996 997 Actions 998 .customIf(typeIs(1, Constant32Ptr)) 999 // Widen suitably aligned loads by loading extra elements. 1000 .moreElementsIf([=](const LegalityQuery &Query) { 1001 const LLT Ty = Query.Types[0]; 1002 return Op == G_LOAD && Ty.isVector() && 1003 shouldWidenLoadResult(Query, Op); 1004 }, moreElementsToNextPow2(0)) 1005 .widenScalarIf([=](const LegalityQuery &Query) { 1006 const LLT Ty = Query.Types[0]; 1007 return Op == G_LOAD && !Ty.isVector() && 1008 shouldWidenLoadResult(Query, Op); 1009 }, widenScalarOrEltToNextPow2(0)) 1010 .narrowScalarIf( 1011 [=](const LegalityQuery &Query) -> bool { 1012 return !Query.Types[0].isVector() && 1013 needToSplitMemOp(Query, Op == G_LOAD); 1014 }, 1015 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1016 const LLT DstTy = Query.Types[0]; 1017 const LLT PtrTy = Query.Types[1]; 1018 1019 const unsigned DstSize = DstTy.getSizeInBits(); 1020 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 1021 1022 // Split extloads. 1023 if (DstSize > MemSize) 1024 return std::make_pair(0, LLT::scalar(MemSize)); 1025 1026 if (!isPowerOf2_32(DstSize)) { 1027 // We're probably decomposing an odd sized store. Try to split 1028 // to the widest type. TODO: Account for alignment. As-is it 1029 // should be OK, since the new parts will be further legalized. 1030 unsigned FloorSize = PowerOf2Floor(DstSize); 1031 return std::make_pair(0, LLT::scalar(FloorSize)); 1032 } 1033 1034 if (DstSize > 32 && (DstSize % 32 != 0)) { 1035 // FIXME: Need a way to specify non-extload of larger size if 1036 // suitably aligned. 1037 return std::make_pair(0, LLT::scalar(32 * (DstSize / 32))); 1038 } 1039 1040 unsigned MaxSize = maxSizeForAddrSpace(ST, 1041 PtrTy.getAddressSpace(), 1042 Op == G_LOAD); 1043 if (MemSize > MaxSize) 1044 return std::make_pair(0, LLT::scalar(MaxSize)); 1045 1046 unsigned Align = Query.MMODescrs[0].AlignInBits; 1047 return std::make_pair(0, LLT::scalar(Align)); 1048 }) 1049 .fewerElementsIf( 1050 [=](const LegalityQuery &Query) -> bool { 1051 return Query.Types[0].isVector() && 1052 needToSplitMemOp(Query, Op == G_LOAD); 1053 }, 1054 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1055 const LLT DstTy = Query.Types[0]; 1056 const LLT PtrTy = Query.Types[1]; 1057 1058 LLT EltTy = DstTy.getElementType(); 1059 unsigned MaxSize = maxSizeForAddrSpace(ST, 1060 PtrTy.getAddressSpace(), 1061 Op == G_LOAD); 1062 1063 // FIXME: Handle widened to power of 2 results better. This ends 1064 // up scalarizing. 1065 // FIXME: 3 element stores scalarized on SI 1066 1067 // Split if it's too large for the address space. 1068 if (Query.MMODescrs[0].SizeInBits > MaxSize) { 1069 unsigned NumElts = DstTy.getNumElements(); 1070 unsigned EltSize = EltTy.getSizeInBits(); 1071 1072 if (MaxSize % EltSize == 0) { 1073 return std::make_pair( 1074 0, LLT::scalarOrVector(MaxSize / EltSize, EltTy)); 1075 } 1076 1077 unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize; 1078 1079 // FIXME: Refine when odd breakdowns handled 1080 // The scalars will need to be re-legalized. 1081 if (NumPieces == 1 || NumPieces >= NumElts || 1082 NumElts % NumPieces != 0) 1083 return std::make_pair(0, EltTy); 1084 1085 return std::make_pair(0, 1086 LLT::vector(NumElts / NumPieces, EltTy)); 1087 } 1088 1089 // FIXME: We could probably handle weird extending loads better. 1090 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 1091 if (DstTy.getSizeInBits() > MemSize) 1092 return std::make_pair(0, EltTy); 1093 1094 unsigned EltSize = EltTy.getSizeInBits(); 1095 unsigned DstSize = DstTy.getSizeInBits(); 1096 if (!isPowerOf2_32(DstSize)) { 1097 // We're probably decomposing an odd sized store. Try to split 1098 // to the widest type. TODO: Account for alignment. As-is it 1099 // should be OK, since the new parts will be further legalized. 1100 unsigned FloorSize = PowerOf2Floor(DstSize); 1101 return std::make_pair( 1102 0, LLT::scalarOrVector(FloorSize / EltSize, EltTy)); 1103 } 1104 1105 // Need to split because of alignment. 1106 unsigned Align = Query.MMODescrs[0].AlignInBits; 1107 if (EltSize > Align && 1108 (EltSize / Align < DstTy.getNumElements())) { 1109 return std::make_pair(0, LLT::vector(EltSize / Align, EltTy)); 1110 } 1111 1112 // May need relegalization for the scalars. 1113 return std::make_pair(0, EltTy); 1114 }) 1115 .minScalar(0, S32); 1116 1117 if (IsStore) 1118 Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32)); 1119 1120 // TODO: Need a bitcast lower option? 1121 Actions 1122 .widenScalarToNextPow2(0) 1123 .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0)); 1124 } 1125 1126 auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) 1127 .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8}, 1128 {S32, GlobalPtr, 16, 2 * 8}, 1129 {S32, LocalPtr, 8, 8}, 1130 {S32, LocalPtr, 16, 16}, 1131 {S32, PrivatePtr, 8, 8}, 1132 {S32, PrivatePtr, 16, 16}, 1133 {S32, ConstantPtr, 8, 8}, 1134 {S32, ConstantPtr, 16, 2 * 8}}); 1135 if (ST.hasFlatAddressSpace()) { 1136 ExtLoads.legalForTypesWithMemDesc( 1137 {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}}); 1138 } 1139 1140 ExtLoads.clampScalar(0, S32, S32) 1141 .widenScalarToNextPow2(0) 1142 .unsupportedIfMemSizeNotPow2() 1143 .lower(); 1144 1145 auto &Atomics = getActionDefinitionsBuilder( 1146 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, 1147 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, 1148 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, 1149 G_ATOMICRMW_UMIN}) 1150 .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, 1151 {S64, GlobalPtr}, {S64, LocalPtr}}); 1152 if (ST.hasFlatAddressSpace()) { 1153 Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); 1154 } 1155 1156 if (ST.hasLDSFPAtomics()) { 1157 getActionDefinitionsBuilder(G_ATOMICRMW_FADD) 1158 .legalFor({{S32, LocalPtr}}); 1159 } 1160 1161 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output 1162 // demarshalling 1163 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG) 1164 .customFor({{S32, GlobalPtr}, {S64, GlobalPtr}, 1165 {S32, FlatPtr}, {S64, FlatPtr}}) 1166 .legalFor({{S32, LocalPtr}, {S64, LocalPtr}, 1167 {S32, RegionPtr}, {S64, RegionPtr}}); 1168 // TODO: Pointer types, any 32-bit or 64-bit vector 1169 1170 // Condition should be s32 for scalar, s1 for vector. 1171 getActionDefinitionsBuilder(G_SELECT) 1172 .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, 1173 GlobalPtr, LocalPtr, FlatPtr, PrivatePtr, 1174 LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1, S32}) 1175 .clampScalar(0, S16, S64) 1176 .scalarize(1) 1177 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 1178 .fewerElementsIf(numElementsNotEven(0), scalarize(0)) 1179 .clampMaxNumElements(0, S32, 2) 1180 .clampMaxNumElements(0, LocalPtr, 2) 1181 .clampMaxNumElements(0, PrivatePtr, 2) 1182 .scalarize(0) 1183 .widenScalarToNextPow2(0) 1184 .legalIf(all(isPointer(0), typeInSet(1, {S1, S32}))); 1185 1186 // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can 1187 // be more flexible with the shift amount type. 1188 auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) 1189 .legalFor({{S32, S32}, {S64, S32}}); 1190 if (ST.has16BitInsts()) { 1191 if (ST.hasVOP3PInsts()) { 1192 Shifts.legalFor({{S16, S16}, {V2S16, V2S16}}) 1193 .clampMaxNumElements(0, S16, 2); 1194 } else 1195 Shifts.legalFor({{S16, S16}}); 1196 1197 // TODO: Support 16-bit shift amounts for all types 1198 Shifts.widenScalarIf( 1199 [=](const LegalityQuery &Query) { 1200 // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a 1201 // 32-bit amount. 1202 const LLT ValTy = Query.Types[0]; 1203 const LLT AmountTy = Query.Types[1]; 1204 return ValTy.getSizeInBits() <= 16 && 1205 AmountTy.getSizeInBits() < 16; 1206 }, changeTo(1, S16)); 1207 Shifts.maxScalarIf(typeIs(0, S16), 1, S16); 1208 Shifts.clampScalar(1, S32, S32); 1209 Shifts.clampScalar(0, S16, S64); 1210 Shifts.widenScalarToNextPow2(0, 16); 1211 } else { 1212 // Make sure we legalize the shift amount type first, as the general 1213 // expansion for the shifted type will produce much worse code if it hasn't 1214 // been truncated already. 1215 Shifts.clampScalar(1, S32, S32); 1216 Shifts.clampScalar(0, S32, S64); 1217 Shifts.widenScalarToNextPow2(0, 32); 1218 } 1219 Shifts.scalarize(0); 1220 1221 for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { 1222 unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; 1223 unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; 1224 unsigned IdxTypeIdx = 2; 1225 1226 getActionDefinitionsBuilder(Op) 1227 .customIf([=](const LegalityQuery &Query) { 1228 const LLT EltTy = Query.Types[EltTypeIdx]; 1229 const LLT VecTy = Query.Types[VecTypeIdx]; 1230 const LLT IdxTy = Query.Types[IdxTypeIdx]; 1231 return (EltTy.getSizeInBits() == 16 || 1232 EltTy.getSizeInBits() % 32 == 0) && 1233 VecTy.getSizeInBits() % 32 == 0 && 1234 VecTy.getSizeInBits() <= MaxRegisterSize && 1235 IdxTy.getSizeInBits() == 32; 1236 }) 1237 .clampScalar(EltTypeIdx, S32, S64) 1238 .clampScalar(VecTypeIdx, S32, S64) 1239 .clampScalar(IdxTypeIdx, S32, S32); 1240 } 1241 1242 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) 1243 .unsupportedIf([=](const LegalityQuery &Query) { 1244 const LLT &EltTy = Query.Types[1].getElementType(); 1245 return Query.Types[0] != EltTy; 1246 }); 1247 1248 for (unsigned Op : {G_EXTRACT, G_INSERT}) { 1249 unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; 1250 unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; 1251 1252 // FIXME: Doesn't handle extract of illegal sizes. 1253 getActionDefinitionsBuilder(Op) 1254 .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32))) 1255 // FIXME: Multiples of 16 should not be legal. 1256 .legalIf([=](const LegalityQuery &Query) { 1257 const LLT BigTy = Query.Types[BigTyIdx]; 1258 const LLT LitTy = Query.Types[LitTyIdx]; 1259 return (BigTy.getSizeInBits() % 32 == 0) && 1260 (LitTy.getSizeInBits() % 16 == 0); 1261 }) 1262 .widenScalarIf( 1263 [=](const LegalityQuery &Query) { 1264 const LLT BigTy = Query.Types[BigTyIdx]; 1265 return (BigTy.getScalarSizeInBits() < 16); 1266 }, 1267 LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) 1268 .widenScalarIf( 1269 [=](const LegalityQuery &Query) { 1270 const LLT LitTy = Query.Types[LitTyIdx]; 1271 return (LitTy.getScalarSizeInBits() < 16); 1272 }, 1273 LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) 1274 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1275 .widenScalarToNextPow2(BigTyIdx, 32); 1276 1277 } 1278 1279 auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR) 1280 .legalForCartesianProduct(AllS32Vectors, {S32}) 1281 .legalForCartesianProduct(AllS64Vectors, {S64}) 1282 .clampNumElements(0, V16S32, V32S32) 1283 .clampNumElements(0, V2S64, V16S64) 1284 .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16)); 1285 1286 if (ST.hasScalarPackInsts()) { 1287 BuildVector 1288 // FIXME: Should probably widen s1 vectors straight to s32 1289 .minScalarOrElt(0, S16) 1290 // Widen source elements and produce a G_BUILD_VECTOR_TRUNC 1291 .minScalar(1, S32); 1292 1293 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1294 .legalFor({V2S16, S32}) 1295 .lower(); 1296 BuildVector.minScalarOrElt(0, S32); 1297 } else { 1298 BuildVector.customFor({V2S16, S16}); 1299 BuildVector.minScalarOrElt(0, S32); 1300 1301 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1302 .customFor({V2S16, S32}) 1303 .lower(); 1304 } 1305 1306 BuildVector.legalIf(isRegisterType(0)); 1307 1308 // FIXME: Clamp maximum size 1309 getActionDefinitionsBuilder(G_CONCAT_VECTORS) 1310 .legalIf(isRegisterType(0)); 1311 1312 // TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse 1313 // pre-legalize. 1314 if (ST.hasVOP3PInsts()) { 1315 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR) 1316 .customFor({V2S16, V2S16}) 1317 .lower(); 1318 } else 1319 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower(); 1320 1321 // Merge/Unmerge 1322 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { 1323 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; 1324 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; 1325 1326 auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { 1327 const LLT Ty = Query.Types[TypeIdx]; 1328 if (Ty.isVector()) { 1329 const LLT &EltTy = Ty.getElementType(); 1330 if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512) 1331 return true; 1332 if (!isPowerOf2_32(EltTy.getSizeInBits())) 1333 return true; 1334 } 1335 return false; 1336 }; 1337 1338 auto &Builder = getActionDefinitionsBuilder(Op) 1339 .lowerFor({{S16, V2S16}}) 1340 .lowerIf([=](const LegalityQuery &Query) { 1341 const LLT BigTy = Query.Types[BigTyIdx]; 1342 return BigTy.getSizeInBits() == 32; 1343 }) 1344 // Try to widen to s16 first for small types. 1345 // TODO: Only do this on targets with legal s16 shifts 1346 .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16) 1347 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) 1348 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1349 .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32), 1350 elementTypeIs(1, S16)), 1351 changeTo(1, V2S16)) 1352 // Clamp the little scalar to s8-s256 and make it a power of 2. It's not 1353 // worth considering the multiples of 64 since 2*192 and 2*384 are not 1354 // valid. 1355 .clampScalar(LitTyIdx, S32, S512) 1356 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) 1357 // Break up vectors with weird elements into scalars 1358 .fewerElementsIf( 1359 [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); }, 1360 scalarize(0)) 1361 .fewerElementsIf( 1362 [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); }, 1363 scalarize(1)) 1364 .clampScalar(BigTyIdx, S32, MaxScalar); 1365 1366 if (Op == G_MERGE_VALUES) { 1367 Builder.widenScalarIf( 1368 // TODO: Use 16-bit shifts if legal for 8-bit values? 1369 [=](const LegalityQuery &Query) { 1370 const LLT Ty = Query.Types[LitTyIdx]; 1371 return Ty.getSizeInBits() < 32; 1372 }, 1373 changeTo(LitTyIdx, S32)); 1374 } 1375 1376 Builder.widenScalarIf( 1377 [=](const LegalityQuery &Query) { 1378 const LLT Ty = Query.Types[BigTyIdx]; 1379 return !isPowerOf2_32(Ty.getSizeInBits()) && 1380 Ty.getSizeInBits() % 16 != 0; 1381 }, 1382 [=](const LegalityQuery &Query) { 1383 // Pick the next power of 2, or a multiple of 64 over 128. 1384 // Whichever is smaller. 1385 const LLT &Ty = Query.Types[BigTyIdx]; 1386 unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); 1387 if (NewSizeInBits >= 256) { 1388 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); 1389 if (RoundedTo < NewSizeInBits) 1390 NewSizeInBits = RoundedTo; 1391 } 1392 return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); 1393 }) 1394 .legalIf([=](const LegalityQuery &Query) { 1395 const LLT &BigTy = Query.Types[BigTyIdx]; 1396 const LLT &LitTy = Query.Types[LitTyIdx]; 1397 1398 if (BigTy.isVector() && BigTy.getSizeInBits() < 32) 1399 return false; 1400 if (LitTy.isVector() && LitTy.getSizeInBits() < 32) 1401 return false; 1402 1403 return BigTy.getSizeInBits() % 16 == 0 && 1404 LitTy.getSizeInBits() % 16 == 0 && 1405 BigTy.getSizeInBits() <= MaxRegisterSize; 1406 }) 1407 // Any vectors left are the wrong size. Scalarize them. 1408 .scalarize(0) 1409 .scalarize(1); 1410 } 1411 1412 // S64 is only legal on SALU, and needs to be broken into 32-bit elements in 1413 // RegBankSelect. 1414 auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG) 1415 .legalFor({{S32}, {S64}}); 1416 1417 if (ST.hasVOP3PInsts()) { 1418 SextInReg.lowerFor({{V2S16}}) 1419 // Prefer to reduce vector widths for 16-bit vectors before lowering, to 1420 // get more vector shift opportunities, since we'll get those when 1421 // expanded. 1422 .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16)); 1423 } else if (ST.has16BitInsts()) { 1424 SextInReg.lowerFor({{S32}, {S64}, {S16}}); 1425 } else { 1426 // Prefer to promote to s32 before lowering if we don't have 16-bit 1427 // shifts. This avoid a lot of intermediate truncate and extend operations. 1428 SextInReg.lowerFor({{S32}, {S64}}); 1429 } 1430 1431 SextInReg 1432 .scalarize(0) 1433 .clampScalar(0, S32, S64) 1434 .lower(); 1435 1436 getActionDefinitionsBuilder(G_FSHR) 1437 .legalFor({{S32, S32}}) 1438 .scalarize(0) 1439 .lower(); 1440 1441 getActionDefinitionsBuilder(G_READCYCLECOUNTER) 1442 .legalFor({S64}); 1443 1444 getActionDefinitionsBuilder({ 1445 // TODO: Verify V_BFI_B32 is generated from expanded bit ops 1446 G_FCOPYSIGN, 1447 1448 G_ATOMIC_CMPXCHG_WITH_SUCCESS, 1449 G_READ_REGISTER, 1450 G_WRITE_REGISTER, 1451 1452 G_SADDO, G_SSUBO, 1453 1454 // TODO: Implement 1455 G_FMINIMUM, G_FMAXIMUM, 1456 G_FSHL 1457 }).lower(); 1458 1459 getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE, 1460 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD, 1461 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE}) 1462 .unsupported(); 1463 1464 computeTables(); 1465 verify(*ST.getInstrInfo()); 1466 } 1467 1468 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper, 1469 MachineInstr &MI) const { 1470 MachineIRBuilder &B = Helper.MIRBuilder; 1471 MachineRegisterInfo &MRI = *B.getMRI(); 1472 GISelChangeObserver &Observer = Helper.Observer; 1473 1474 switch (MI.getOpcode()) { 1475 case TargetOpcode::G_ADDRSPACE_CAST: 1476 return legalizeAddrSpaceCast(MI, MRI, B); 1477 case TargetOpcode::G_FRINT: 1478 return legalizeFrint(MI, MRI, B); 1479 case TargetOpcode::G_FCEIL: 1480 return legalizeFceil(MI, MRI, B); 1481 case TargetOpcode::G_INTRINSIC_TRUNC: 1482 return legalizeIntrinsicTrunc(MI, MRI, B); 1483 case TargetOpcode::G_SITOFP: 1484 return legalizeITOFP(MI, MRI, B, true); 1485 case TargetOpcode::G_UITOFP: 1486 return legalizeITOFP(MI, MRI, B, false); 1487 case TargetOpcode::G_FPTOSI: 1488 return legalizeFPTOI(MI, MRI, B, true); 1489 case TargetOpcode::G_FPTOUI: 1490 return legalizeFPTOI(MI, MRI, B, false); 1491 case TargetOpcode::G_FMINNUM: 1492 case TargetOpcode::G_FMAXNUM: 1493 case TargetOpcode::G_FMINNUM_IEEE: 1494 case TargetOpcode::G_FMAXNUM_IEEE: 1495 return legalizeMinNumMaxNum(Helper, MI); 1496 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1497 return legalizeExtractVectorElt(MI, MRI, B); 1498 case TargetOpcode::G_INSERT_VECTOR_ELT: 1499 return legalizeInsertVectorElt(MI, MRI, B); 1500 case TargetOpcode::G_SHUFFLE_VECTOR: 1501 return legalizeShuffleVector(MI, MRI, B); 1502 case TargetOpcode::G_FSIN: 1503 case TargetOpcode::G_FCOS: 1504 return legalizeSinCos(MI, MRI, B); 1505 case TargetOpcode::G_GLOBAL_VALUE: 1506 return legalizeGlobalValue(MI, MRI, B); 1507 case TargetOpcode::G_LOAD: 1508 return legalizeLoad(MI, MRI, B, Observer); 1509 case TargetOpcode::G_FMAD: 1510 return legalizeFMad(MI, MRI, B); 1511 case TargetOpcode::G_FDIV: 1512 return legalizeFDIV(MI, MRI, B); 1513 case TargetOpcode::G_UDIV: 1514 case TargetOpcode::G_UREM: 1515 return legalizeUDIV_UREM(MI, MRI, B); 1516 case TargetOpcode::G_SDIV: 1517 case TargetOpcode::G_SREM: 1518 return legalizeSDIV_SREM(MI, MRI, B); 1519 case TargetOpcode::G_ATOMIC_CMPXCHG: 1520 return legalizeAtomicCmpXChg(MI, MRI, B); 1521 case TargetOpcode::G_FLOG: 1522 return legalizeFlog(MI, B, numbers::ln2f); 1523 case TargetOpcode::G_FLOG10: 1524 return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f); 1525 case TargetOpcode::G_FEXP: 1526 return legalizeFExp(MI, B); 1527 case TargetOpcode::G_FPOW: 1528 return legalizeFPow(MI, B); 1529 case TargetOpcode::G_FFLOOR: 1530 return legalizeFFloor(MI, MRI, B); 1531 case TargetOpcode::G_BUILD_VECTOR: 1532 return legalizeBuildVector(MI, MRI, B); 1533 default: 1534 return false; 1535 } 1536 1537 llvm_unreachable("expected switch to return"); 1538 } 1539 1540 Register AMDGPULegalizerInfo::getSegmentAperture( 1541 unsigned AS, 1542 MachineRegisterInfo &MRI, 1543 MachineIRBuilder &B) const { 1544 MachineFunction &MF = B.getMF(); 1545 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1546 const LLT S32 = LLT::scalar(32); 1547 1548 assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS); 1549 1550 if (ST.hasApertureRegs()) { 1551 // FIXME: Use inline constants (src_{shared, private}_base) instead of 1552 // getreg. 1553 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 1554 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 1555 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 1556 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 1557 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 1558 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 1559 unsigned Encoding = 1560 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 1561 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 1562 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 1563 1564 Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 1565 1566 B.buildInstr(AMDGPU::S_GETREG_B32) 1567 .addDef(GetReg) 1568 .addImm(Encoding); 1569 MRI.setType(GetReg, S32); 1570 1571 auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1); 1572 return B.buildShl(S32, GetReg, ShiftAmt).getReg(0); 1573 } 1574 1575 Register QueuePtr = MRI.createGenericVirtualRegister( 1576 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1577 1578 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1579 if (!loadInputValue(QueuePtr, B, &MFI->getArgInfo().QueuePtr)) 1580 return Register(); 1581 1582 // Offset into amd_queue_t for group_segment_aperture_base_hi / 1583 // private_segment_aperture_base_hi. 1584 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 1585 1586 // TODO: can we be smarter about machine pointer info? 1587 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1588 MachineMemOperand *MMO = MF.getMachineMemOperand( 1589 PtrInfo, 1590 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 1591 MachineMemOperand::MOInvariant, 1592 4, commonAlignment(Align(64), StructOffset)); 1593 1594 Register LoadAddr; 1595 1596 B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset); 1597 return B.buildLoad(S32, LoadAddr, *MMO).getReg(0); 1598 } 1599 1600 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast( 1601 MachineInstr &MI, MachineRegisterInfo &MRI, 1602 MachineIRBuilder &B) const { 1603 MachineFunction &MF = B.getMF(); 1604 1605 const LLT S32 = LLT::scalar(32); 1606 Register Dst = MI.getOperand(0).getReg(); 1607 Register Src = MI.getOperand(1).getReg(); 1608 1609 LLT DstTy = MRI.getType(Dst); 1610 LLT SrcTy = MRI.getType(Src); 1611 unsigned DestAS = DstTy.getAddressSpace(); 1612 unsigned SrcAS = SrcTy.getAddressSpace(); 1613 1614 // TODO: Avoid reloading from the queue ptr for each cast, or at least each 1615 // vector element. 1616 assert(!DstTy.isVector()); 1617 1618 const AMDGPUTargetMachine &TM 1619 = static_cast<const AMDGPUTargetMachine &>(MF.getTarget()); 1620 1621 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1622 if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) { 1623 MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST)); 1624 return true; 1625 } 1626 1627 if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1628 // Truncate. 1629 B.buildExtract(Dst, Src, 0); 1630 MI.eraseFromParent(); 1631 return true; 1632 } 1633 1634 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1635 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1636 uint32_t AddrHiVal = Info->get32BitAddressHighBits(); 1637 1638 // FIXME: This is a bit ugly due to creating a merge of 2 pointers to 1639 // another. Merge operands are required to be the same type, but creating an 1640 // extra ptrtoint would be kind of pointless. 1641 auto HighAddr = B.buildConstant( 1642 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal); 1643 B.buildMerge(Dst, {Src, HighAddr}); 1644 MI.eraseFromParent(); 1645 return true; 1646 } 1647 1648 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 1649 assert(DestAS == AMDGPUAS::LOCAL_ADDRESS || 1650 DestAS == AMDGPUAS::PRIVATE_ADDRESS); 1651 unsigned NullVal = TM.getNullPointerValue(DestAS); 1652 1653 auto SegmentNull = B.buildConstant(DstTy, NullVal); 1654 auto FlatNull = B.buildConstant(SrcTy, 0); 1655 1656 // Extract low 32-bits of the pointer. 1657 auto PtrLo32 = B.buildExtract(DstTy, Src, 0); 1658 1659 auto CmpRes = 1660 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0)); 1661 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0)); 1662 1663 MI.eraseFromParent(); 1664 return true; 1665 } 1666 1667 if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS) 1668 return false; 1669 1670 if (!ST.hasFlatAddressSpace()) 1671 return false; 1672 1673 auto SegmentNull = 1674 B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS)); 1675 auto FlatNull = 1676 B.buildConstant(DstTy, TM.getNullPointerValue(DestAS)); 1677 1678 Register ApertureReg = getSegmentAperture(SrcAS, MRI, B); 1679 if (!ApertureReg.isValid()) 1680 return false; 1681 1682 auto CmpRes = 1683 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0)); 1684 1685 // Coerce the type of the low half of the result so we can use merge_values. 1686 Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0); 1687 1688 // TODO: Should we allow mismatched types but matching sizes in merges to 1689 // avoid the ptrtoint? 1690 auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg}); 1691 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull); 1692 1693 MI.eraseFromParent(); 1694 return true; 1695 } 1696 1697 bool AMDGPULegalizerInfo::legalizeFrint( 1698 MachineInstr &MI, MachineRegisterInfo &MRI, 1699 MachineIRBuilder &B) const { 1700 Register Src = MI.getOperand(1).getReg(); 1701 LLT Ty = MRI.getType(Src); 1702 assert(Ty.isScalar() && Ty.getSizeInBits() == 64); 1703 1704 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1705 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1706 1707 auto C1 = B.buildFConstant(Ty, C1Val); 1708 auto CopySign = B.buildFCopysign(Ty, C1, Src); 1709 1710 // TODO: Should this propagate fast-math-flags? 1711 auto Tmp1 = B.buildFAdd(Ty, Src, CopySign); 1712 auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign); 1713 1714 auto C2 = B.buildFConstant(Ty, C2Val); 1715 auto Fabs = B.buildFAbs(Ty, Src); 1716 1717 auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2); 1718 B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2); 1719 return true; 1720 } 1721 1722 bool AMDGPULegalizerInfo::legalizeFceil( 1723 MachineInstr &MI, MachineRegisterInfo &MRI, 1724 MachineIRBuilder &B) const { 1725 1726 const LLT S1 = LLT::scalar(1); 1727 const LLT S64 = LLT::scalar(64); 1728 1729 Register Src = MI.getOperand(1).getReg(); 1730 assert(MRI.getType(Src) == S64); 1731 1732 // result = trunc(src) 1733 // if (src > 0.0 && src != result) 1734 // result += 1.0 1735 1736 auto Trunc = B.buildIntrinsicTrunc(S64, Src); 1737 1738 const auto Zero = B.buildFConstant(S64, 0.0); 1739 const auto One = B.buildFConstant(S64, 1.0); 1740 auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero); 1741 auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc); 1742 auto And = B.buildAnd(S1, Lt0, NeTrunc); 1743 auto Add = B.buildSelect(S64, And, One, Zero); 1744 1745 // TODO: Should this propagate fast-math-flags? 1746 B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add); 1747 return true; 1748 } 1749 1750 static MachineInstrBuilder extractF64Exponent(unsigned Hi, 1751 MachineIRBuilder &B) { 1752 const unsigned FractBits = 52; 1753 const unsigned ExpBits = 11; 1754 LLT S32 = LLT::scalar(32); 1755 1756 auto Const0 = B.buildConstant(S32, FractBits - 32); 1757 auto Const1 = B.buildConstant(S32, ExpBits); 1758 1759 auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false) 1760 .addUse(Const0.getReg(0)) 1761 .addUse(Const1.getReg(0)); 1762 1763 return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023)); 1764 } 1765 1766 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc( 1767 MachineInstr &MI, MachineRegisterInfo &MRI, 1768 MachineIRBuilder &B) const { 1769 const LLT S1 = LLT::scalar(1); 1770 const LLT S32 = LLT::scalar(32); 1771 const LLT S64 = LLT::scalar(64); 1772 1773 Register Src = MI.getOperand(1).getReg(); 1774 assert(MRI.getType(Src) == S64); 1775 1776 // TODO: Should this use extract since the low half is unused? 1777 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 1778 Register Hi = Unmerge.getReg(1); 1779 1780 // Extract the upper half, since this is where we will find the sign and 1781 // exponent. 1782 auto Exp = extractF64Exponent(Hi, B); 1783 1784 const unsigned FractBits = 52; 1785 1786 // Extract the sign bit. 1787 const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31); 1788 auto SignBit = B.buildAnd(S32, Hi, SignBitMask); 1789 1790 const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1); 1791 1792 const auto Zero32 = B.buildConstant(S32, 0); 1793 1794 // Extend back to 64-bits. 1795 auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit}); 1796 1797 auto Shr = B.buildAShr(S64, FractMask, Exp); 1798 auto Not = B.buildNot(S64, Shr); 1799 auto Tmp0 = B.buildAnd(S64, Src, Not); 1800 auto FiftyOne = B.buildConstant(S32, FractBits - 1); 1801 1802 auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32); 1803 auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne); 1804 1805 auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0); 1806 B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1); 1807 return true; 1808 } 1809 1810 bool AMDGPULegalizerInfo::legalizeITOFP( 1811 MachineInstr &MI, MachineRegisterInfo &MRI, 1812 MachineIRBuilder &B, bool Signed) const { 1813 1814 Register Dst = MI.getOperand(0).getReg(); 1815 Register Src = MI.getOperand(1).getReg(); 1816 1817 const LLT S64 = LLT::scalar(64); 1818 const LLT S32 = LLT::scalar(32); 1819 1820 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); 1821 1822 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 1823 1824 auto CvtHi = Signed ? 1825 B.buildSITOFP(S64, Unmerge.getReg(1)) : 1826 B.buildUITOFP(S64, Unmerge.getReg(1)); 1827 1828 auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0)); 1829 1830 auto ThirtyTwo = B.buildConstant(S32, 32); 1831 auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false) 1832 .addUse(CvtHi.getReg(0)) 1833 .addUse(ThirtyTwo.getReg(0)); 1834 1835 // TODO: Should this propagate fast-math-flags? 1836 B.buildFAdd(Dst, LdExp, CvtLo); 1837 MI.eraseFromParent(); 1838 return true; 1839 } 1840 1841 // TODO: Copied from DAG implementation. Verify logic and document how this 1842 // actually works. 1843 bool AMDGPULegalizerInfo::legalizeFPTOI( 1844 MachineInstr &MI, MachineRegisterInfo &MRI, 1845 MachineIRBuilder &B, bool Signed) const { 1846 1847 Register Dst = MI.getOperand(0).getReg(); 1848 Register Src = MI.getOperand(1).getReg(); 1849 1850 const LLT S64 = LLT::scalar(64); 1851 const LLT S32 = LLT::scalar(32); 1852 1853 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); 1854 1855 unsigned Flags = MI.getFlags(); 1856 1857 auto Trunc = B.buildIntrinsicTrunc(S64, Src, Flags); 1858 auto K0 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0x3df0000000000000))); 1859 auto K1 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0xc1f0000000000000))); 1860 1861 auto Mul = B.buildFMul(S64, Trunc, K0, Flags); 1862 auto FloorMul = B.buildFFloor(S64, Mul, Flags); 1863 auto Fma = B.buildFMA(S64, FloorMul, K1, Trunc, Flags); 1864 1865 auto Hi = Signed ? 1866 B.buildFPTOSI(S32, FloorMul) : 1867 B.buildFPTOUI(S32, FloorMul); 1868 auto Lo = B.buildFPTOUI(S32, Fma); 1869 1870 B.buildMerge(Dst, { Lo, Hi }); 1871 MI.eraseFromParent(); 1872 1873 return true; 1874 } 1875 1876 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper, 1877 MachineInstr &MI) const { 1878 MachineFunction &MF = Helper.MIRBuilder.getMF(); 1879 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1880 1881 const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE || 1882 MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE; 1883 1884 // With ieee_mode disabled, the instructions have the correct behavior 1885 // already for G_FMINNUM/G_FMAXNUM 1886 if (!MFI->getMode().IEEE) 1887 return !IsIEEEOp; 1888 1889 if (IsIEEEOp) 1890 return true; 1891 1892 return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized; 1893 } 1894 1895 bool AMDGPULegalizerInfo::legalizeExtractVectorElt( 1896 MachineInstr &MI, MachineRegisterInfo &MRI, 1897 MachineIRBuilder &B) const { 1898 // TODO: Should move some of this into LegalizerHelper. 1899 1900 // TODO: Promote dynamic indexing of s16 to s32 1901 1902 // FIXME: Artifact combiner probably should have replaced the truncated 1903 // constant before this, so we shouldn't need 1904 // getConstantVRegValWithLookThrough. 1905 Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough( 1906 MI.getOperand(2).getReg(), MRI); 1907 if (!IdxVal) // Dynamic case will be selected to register indexing. 1908 return true; 1909 1910 Register Dst = MI.getOperand(0).getReg(); 1911 Register Vec = MI.getOperand(1).getReg(); 1912 1913 LLT VecTy = MRI.getType(Vec); 1914 LLT EltTy = VecTy.getElementType(); 1915 assert(EltTy == MRI.getType(Dst)); 1916 1917 if (IdxVal->Value < VecTy.getNumElements()) 1918 B.buildExtract(Dst, Vec, IdxVal->Value * EltTy.getSizeInBits()); 1919 else 1920 B.buildUndef(Dst); 1921 1922 MI.eraseFromParent(); 1923 return true; 1924 } 1925 1926 bool AMDGPULegalizerInfo::legalizeInsertVectorElt( 1927 MachineInstr &MI, MachineRegisterInfo &MRI, 1928 MachineIRBuilder &B) const { 1929 // TODO: Should move some of this into LegalizerHelper. 1930 1931 // TODO: Promote dynamic indexing of s16 to s32 1932 1933 // FIXME: Artifact combiner probably should have replaced the truncated 1934 // constant before this, so we shouldn't need 1935 // getConstantVRegValWithLookThrough. 1936 Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough( 1937 MI.getOperand(3).getReg(), MRI); 1938 if (!IdxVal) // Dynamic case will be selected to register indexing. 1939 return true; 1940 1941 Register Dst = MI.getOperand(0).getReg(); 1942 Register Vec = MI.getOperand(1).getReg(); 1943 Register Ins = MI.getOperand(2).getReg(); 1944 1945 LLT VecTy = MRI.getType(Vec); 1946 LLT EltTy = VecTy.getElementType(); 1947 assert(EltTy == MRI.getType(Ins)); 1948 1949 if (IdxVal->Value < VecTy.getNumElements()) 1950 B.buildInsert(Dst, Vec, Ins, IdxVal->Value * EltTy.getSizeInBits()); 1951 else 1952 B.buildUndef(Dst); 1953 1954 MI.eraseFromParent(); 1955 return true; 1956 } 1957 1958 bool AMDGPULegalizerInfo::legalizeShuffleVector( 1959 MachineInstr &MI, MachineRegisterInfo &MRI, 1960 MachineIRBuilder &B) const { 1961 const LLT V2S16 = LLT::vector(2, 16); 1962 1963 Register Dst = MI.getOperand(0).getReg(); 1964 Register Src0 = MI.getOperand(1).getReg(); 1965 LLT DstTy = MRI.getType(Dst); 1966 LLT SrcTy = MRI.getType(Src0); 1967 1968 if (SrcTy == V2S16 && DstTy == V2S16 && 1969 AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask())) 1970 return true; 1971 1972 MachineIRBuilder HelperBuilder(MI); 1973 GISelObserverWrapper DummyObserver; 1974 LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder); 1975 return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized; 1976 } 1977 1978 bool AMDGPULegalizerInfo::legalizeSinCos( 1979 MachineInstr &MI, MachineRegisterInfo &MRI, 1980 MachineIRBuilder &B) const { 1981 1982 Register DstReg = MI.getOperand(0).getReg(); 1983 Register SrcReg = MI.getOperand(1).getReg(); 1984 LLT Ty = MRI.getType(DstReg); 1985 unsigned Flags = MI.getFlags(); 1986 1987 Register TrigVal; 1988 auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi); 1989 if (ST.hasTrigReducedRange()) { 1990 auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags); 1991 TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false) 1992 .addUse(MulVal.getReg(0)) 1993 .setMIFlags(Flags).getReg(0); 1994 } else 1995 TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0); 1996 1997 Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ? 1998 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos; 1999 B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false) 2000 .addUse(TrigVal) 2001 .setMIFlags(Flags); 2002 MI.eraseFromParent(); 2003 return true; 2004 } 2005 2006 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress( 2007 Register DstReg, LLT PtrTy, 2008 MachineIRBuilder &B, const GlobalValue *GV, 2009 unsigned Offset, unsigned GAFlags) const { 2010 // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered 2011 // to the following code sequence: 2012 // 2013 // For constant address space: 2014 // s_getpc_b64 s[0:1] 2015 // s_add_u32 s0, s0, $symbol 2016 // s_addc_u32 s1, s1, 0 2017 // 2018 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2019 // a fixup or relocation is emitted to replace $symbol with a literal 2020 // constant, which is a pc-relative offset from the encoding of the $symbol 2021 // operand to the global variable. 2022 // 2023 // For global address space: 2024 // s_getpc_b64 s[0:1] 2025 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 2026 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 2027 // 2028 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2029 // fixups or relocations are emitted to replace $symbol@*@lo and 2030 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 2031 // which is a 64-bit pc-relative offset from the encoding of the $symbol 2032 // operand to the global variable. 2033 // 2034 // What we want here is an offset from the value returned by s_getpc 2035 // (which is the address of the s_add_u32 instruction) to the global 2036 // variable, but since the encoding of $symbol starts 4 bytes after the start 2037 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 2038 // small. This requires us to add 4 to the global variable offset in order to 2039 // compute the correct address. 2040 2041 LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2042 2043 Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg : 2044 B.getMRI()->createGenericVirtualRegister(ConstPtrTy); 2045 2046 MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET) 2047 .addDef(PCReg); 2048 2049 MIB.addGlobalAddress(GV, Offset + 4, GAFlags); 2050 if (GAFlags == SIInstrInfo::MO_NONE) 2051 MIB.addImm(0); 2052 else 2053 MIB.addGlobalAddress(GV, Offset + 4, GAFlags + 1); 2054 2055 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass); 2056 2057 if (PtrTy.getSizeInBits() == 32) 2058 B.buildExtract(DstReg, PCReg, 0); 2059 return true; 2060 } 2061 2062 bool AMDGPULegalizerInfo::legalizeGlobalValue( 2063 MachineInstr &MI, MachineRegisterInfo &MRI, 2064 MachineIRBuilder &B) const { 2065 Register DstReg = MI.getOperand(0).getReg(); 2066 LLT Ty = MRI.getType(DstReg); 2067 unsigned AS = Ty.getAddressSpace(); 2068 2069 const GlobalValue *GV = MI.getOperand(1).getGlobal(); 2070 MachineFunction &MF = B.getMF(); 2071 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2072 2073 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 2074 if (!MFI->isEntryFunction()) { 2075 const Function &Fn = MF.getFunction(); 2076 DiagnosticInfoUnsupported BadLDSDecl( 2077 Fn, "local memory global used by non-kernel function", MI.getDebugLoc(), 2078 DS_Warning); 2079 Fn.getContext().diagnose(BadLDSDecl); 2080 2081 // We currently don't have a way to correctly allocate LDS objects that 2082 // aren't directly associated with a kernel. We do force inlining of 2083 // functions that use local objects. However, if these dead functions are 2084 // not eliminated, we don't want a compile time error. Just emit a warning 2085 // and a trap, since there should be no callable path here. 2086 B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2087 B.buildUndef(DstReg); 2088 MI.eraseFromParent(); 2089 return true; 2090 } 2091 2092 // TODO: We could emit code to handle the initialization somewhere. 2093 if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) { 2094 const SITargetLowering *TLI = ST.getTargetLowering(); 2095 if (!TLI->shouldUseLDSConstAddress(GV)) { 2096 MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO); 2097 return true; // Leave in place; 2098 } 2099 2100 B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(), *GV)); 2101 MI.eraseFromParent(); 2102 return true; 2103 } 2104 2105 const Function &Fn = MF.getFunction(); 2106 DiagnosticInfoUnsupported BadInit( 2107 Fn, "unsupported initializer for address space", MI.getDebugLoc()); 2108 Fn.getContext().diagnose(BadInit); 2109 return true; 2110 } 2111 2112 const SITargetLowering *TLI = ST.getTargetLowering(); 2113 2114 if (TLI->shouldEmitFixup(GV)) { 2115 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0); 2116 MI.eraseFromParent(); 2117 return true; 2118 } 2119 2120 if (TLI->shouldEmitPCReloc(GV)) { 2121 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32); 2122 MI.eraseFromParent(); 2123 return true; 2124 } 2125 2126 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2127 Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy); 2128 2129 MachineMemOperand *GOTMMO = MF.getMachineMemOperand( 2130 MachinePointerInfo::getGOT(MF), 2131 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 2132 MachineMemOperand::MOInvariant, 2133 8 /*Size*/, Align(8)); 2134 2135 buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32); 2136 2137 if (Ty.getSizeInBits() == 32) { 2138 // Truncate if this is a 32-bit constant adrdess. 2139 auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO); 2140 B.buildExtract(DstReg, Load, 0); 2141 } else 2142 B.buildLoad(DstReg, GOTAddr, *GOTMMO); 2143 2144 MI.eraseFromParent(); 2145 return true; 2146 } 2147 2148 bool AMDGPULegalizerInfo::legalizeLoad( 2149 MachineInstr &MI, MachineRegisterInfo &MRI, 2150 MachineIRBuilder &B, GISelChangeObserver &Observer) const { 2151 LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2152 auto Cast = B.buildAddrSpaceCast(ConstPtr, MI.getOperand(1).getReg()); 2153 Observer.changingInstr(MI); 2154 MI.getOperand(1).setReg(Cast.getReg(0)); 2155 Observer.changedInstr(MI); 2156 return true; 2157 } 2158 2159 bool AMDGPULegalizerInfo::legalizeFMad( 2160 MachineInstr &MI, MachineRegisterInfo &MRI, 2161 MachineIRBuilder &B) const { 2162 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2163 assert(Ty.isScalar()); 2164 2165 MachineFunction &MF = B.getMF(); 2166 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2167 2168 // TODO: Always legal with future ftz flag. 2169 // FIXME: Do we need just output? 2170 if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals()) 2171 return true; 2172 if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals()) 2173 return true; 2174 2175 MachineIRBuilder HelperBuilder(MI); 2176 GISelObserverWrapper DummyObserver; 2177 LegalizerHelper Helper(MF, DummyObserver, HelperBuilder); 2178 return Helper.lowerFMad(MI) == LegalizerHelper::Legalized; 2179 } 2180 2181 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg( 2182 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2183 Register DstReg = MI.getOperand(0).getReg(); 2184 Register PtrReg = MI.getOperand(1).getReg(); 2185 Register CmpVal = MI.getOperand(2).getReg(); 2186 Register NewVal = MI.getOperand(3).getReg(); 2187 2188 assert(SITargetLowering::isFlatGlobalAddrSpace( 2189 MRI.getType(PtrReg).getAddressSpace()) && 2190 "this should not have been custom lowered"); 2191 2192 LLT ValTy = MRI.getType(CmpVal); 2193 LLT VecTy = LLT::vector(2, ValTy); 2194 2195 Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0); 2196 2197 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG) 2198 .addDef(DstReg) 2199 .addUse(PtrReg) 2200 .addUse(PackedVal) 2201 .setMemRefs(MI.memoperands()); 2202 2203 MI.eraseFromParent(); 2204 return true; 2205 } 2206 2207 bool AMDGPULegalizerInfo::legalizeFlog( 2208 MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const { 2209 Register Dst = MI.getOperand(0).getReg(); 2210 Register Src = MI.getOperand(1).getReg(); 2211 LLT Ty = B.getMRI()->getType(Dst); 2212 unsigned Flags = MI.getFlags(); 2213 2214 auto Log2Operand = B.buildFLog2(Ty, Src, Flags); 2215 auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted); 2216 2217 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags); 2218 MI.eraseFromParent(); 2219 return true; 2220 } 2221 2222 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI, 2223 MachineIRBuilder &B) const { 2224 Register Dst = MI.getOperand(0).getReg(); 2225 Register Src = MI.getOperand(1).getReg(); 2226 unsigned Flags = MI.getFlags(); 2227 LLT Ty = B.getMRI()->getType(Dst); 2228 2229 auto K = B.buildFConstant(Ty, numbers::log2e); 2230 auto Mul = B.buildFMul(Ty, Src, K, Flags); 2231 B.buildFExp2(Dst, Mul, Flags); 2232 MI.eraseFromParent(); 2233 return true; 2234 } 2235 2236 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI, 2237 MachineIRBuilder &B) const { 2238 Register Dst = MI.getOperand(0).getReg(); 2239 Register Src0 = MI.getOperand(1).getReg(); 2240 Register Src1 = MI.getOperand(2).getReg(); 2241 unsigned Flags = MI.getFlags(); 2242 LLT Ty = B.getMRI()->getType(Dst); 2243 const LLT S16 = LLT::scalar(16); 2244 const LLT S32 = LLT::scalar(32); 2245 2246 if (Ty == S32) { 2247 auto Log = B.buildFLog2(S32, Src0, Flags); 2248 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2249 .addUse(Log.getReg(0)) 2250 .addUse(Src1) 2251 .setMIFlags(Flags); 2252 B.buildFExp2(Dst, Mul, Flags); 2253 } else if (Ty == S16) { 2254 // There's no f16 fmul_legacy, so we need to convert for it. 2255 auto Log = B.buildFLog2(S16, Src0, Flags); 2256 auto Ext0 = B.buildFPExt(S32, Log, Flags); 2257 auto Ext1 = B.buildFPExt(S32, Src1, Flags); 2258 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2259 .addUse(Ext0.getReg(0)) 2260 .addUse(Ext1.getReg(0)) 2261 .setMIFlags(Flags); 2262 2263 B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags); 2264 } else 2265 return false; 2266 2267 MI.eraseFromParent(); 2268 return true; 2269 } 2270 2271 // Find a source register, ignoring any possible source modifiers. 2272 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) { 2273 Register ModSrc = OrigSrc; 2274 if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) { 2275 ModSrc = SrcFNeg->getOperand(1).getReg(); 2276 if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2277 ModSrc = SrcFAbs->getOperand(1).getReg(); 2278 } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2279 ModSrc = SrcFAbs->getOperand(1).getReg(); 2280 return ModSrc; 2281 } 2282 2283 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI, 2284 MachineRegisterInfo &MRI, 2285 MachineIRBuilder &B) const { 2286 2287 const LLT S1 = LLT::scalar(1); 2288 const LLT S64 = LLT::scalar(64); 2289 Register Dst = MI.getOperand(0).getReg(); 2290 Register OrigSrc = MI.getOperand(1).getReg(); 2291 unsigned Flags = MI.getFlags(); 2292 assert(ST.hasFractBug() && MRI.getType(Dst) == S64 && 2293 "this should not have been custom lowered"); 2294 2295 // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) 2296 // is used instead. However, SI doesn't have V_FLOOR_F64, so the most 2297 // efficient way to implement it is using V_FRACT_F64. The workaround for the 2298 // V_FRACT bug is: 2299 // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 2300 // 2301 // Convert floor(x) to (x - fract(x)) 2302 2303 auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false) 2304 .addUse(OrigSrc) 2305 .setMIFlags(Flags); 2306 2307 // Give source modifier matching some assistance before obscuring a foldable 2308 // pattern. 2309 2310 // TODO: We can avoid the neg on the fract? The input sign to fract 2311 // shouldn't matter? 2312 Register ModSrc = stripAnySourceMods(OrigSrc, MRI); 2313 2314 auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff)); 2315 2316 Register Min = MRI.createGenericVirtualRegister(S64); 2317 2318 // We don't need to concern ourselves with the snan handling difference, so 2319 // use the one which will directly select. 2320 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2321 if (MFI->getMode().IEEE) 2322 B.buildFMinNumIEEE(Min, Fract, Const, Flags); 2323 else 2324 B.buildFMinNum(Min, Fract, Const, Flags); 2325 2326 Register CorrectedFract = Min; 2327 if (!MI.getFlag(MachineInstr::FmNoNans)) { 2328 auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags); 2329 CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0); 2330 } 2331 2332 auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags); 2333 B.buildFAdd(Dst, OrigSrc, NegFract, Flags); 2334 2335 MI.eraseFromParent(); 2336 return true; 2337 } 2338 2339 // Turn an illegal packed v2s16 build vector into bit operations. 2340 // TODO: This should probably be a bitcast action in LegalizerHelper. 2341 bool AMDGPULegalizerInfo::legalizeBuildVector( 2342 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2343 Register Dst = MI.getOperand(0).getReg(); 2344 const LLT S32 = LLT::scalar(32); 2345 assert(MRI.getType(Dst) == LLT::vector(2, 16)); 2346 2347 Register Src0 = MI.getOperand(1).getReg(); 2348 Register Src1 = MI.getOperand(2).getReg(); 2349 assert(MRI.getType(Src0) == LLT::scalar(16)); 2350 2351 auto Merge = B.buildMerge(S32, {Src0, Src1}); 2352 B.buildBitcast(Dst, Merge); 2353 2354 MI.eraseFromParent(); 2355 return true; 2356 } 2357 2358 // Return the use branch instruction, otherwise null if the usage is invalid. 2359 static MachineInstr *verifyCFIntrinsic(MachineInstr &MI, 2360 MachineRegisterInfo &MRI, 2361 MachineInstr *&Br, 2362 MachineBasicBlock *&UncondBrTarget) { 2363 Register CondDef = MI.getOperand(0).getReg(); 2364 if (!MRI.hasOneNonDBGUse(CondDef)) 2365 return nullptr; 2366 2367 MachineBasicBlock *Parent = MI.getParent(); 2368 MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef); 2369 if (UseMI.getParent() != Parent || 2370 UseMI.getOpcode() != AMDGPU::G_BRCOND) 2371 return nullptr; 2372 2373 // Make sure the cond br is followed by a G_BR, or is the last instruction. 2374 MachineBasicBlock::iterator Next = std::next(UseMI.getIterator()); 2375 if (Next == Parent->end()) { 2376 MachineFunction::iterator NextMBB = std::next(Parent->getIterator()); 2377 if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use. 2378 return nullptr; 2379 UncondBrTarget = &*NextMBB; 2380 } else { 2381 if (Next->getOpcode() != AMDGPU::G_BR) 2382 return nullptr; 2383 Br = &*Next; 2384 UncondBrTarget = Br->getOperand(0).getMBB(); 2385 } 2386 2387 return &UseMI; 2388 } 2389 2390 Register AMDGPULegalizerInfo::insertLiveInCopy(MachineIRBuilder &B, 2391 MachineRegisterInfo &MRI, 2392 Register LiveIn, 2393 Register PhyReg) const { 2394 assert(PhyReg.isPhysical() && "Physical register expected"); 2395 2396 // Insert the live-in copy, if required, by defining destination virtual 2397 // register. 2398 // FIXME: It seems EmitLiveInCopies isn't called anywhere? 2399 if (!MRI.getVRegDef(LiveIn)) { 2400 // FIXME: Should have scoped insert pt 2401 MachineBasicBlock &OrigInsBB = B.getMBB(); 2402 auto OrigInsPt = B.getInsertPt(); 2403 2404 MachineBasicBlock &EntryMBB = B.getMF().front(); 2405 EntryMBB.addLiveIn(PhyReg); 2406 B.setInsertPt(EntryMBB, EntryMBB.begin()); 2407 B.buildCopy(LiveIn, PhyReg); 2408 2409 B.setInsertPt(OrigInsBB, OrigInsPt); 2410 } 2411 2412 return LiveIn; 2413 } 2414 2415 Register AMDGPULegalizerInfo::getLiveInRegister(MachineIRBuilder &B, 2416 MachineRegisterInfo &MRI, 2417 Register PhyReg, LLT Ty, 2418 bool InsertLiveInCopy) const { 2419 assert(PhyReg.isPhysical() && "Physical register expected"); 2420 2421 // Get or create virtual live-in regester 2422 Register LiveIn = MRI.getLiveInVirtReg(PhyReg); 2423 if (!LiveIn) { 2424 LiveIn = MRI.createGenericVirtualRegister(Ty); 2425 MRI.addLiveIn(PhyReg, LiveIn); 2426 } 2427 2428 // When the actual true copy required is from virtual register to physical 2429 // register (to be inserted later), live-in copy insertion from physical 2430 // to register virtual register is not required 2431 if (!InsertLiveInCopy) 2432 return LiveIn; 2433 2434 return insertLiveInCopy(B, MRI, LiveIn, PhyReg); 2435 } 2436 2437 const ArgDescriptor *AMDGPULegalizerInfo::getArgDescriptor( 2438 MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2439 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2440 const ArgDescriptor *Arg; 2441 const TargetRegisterClass *RC; 2442 std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType); 2443 if (!Arg) { 2444 LLVM_DEBUG(dbgs() << "Required arg register missing\n"); 2445 return nullptr; 2446 } 2447 return Arg; 2448 } 2449 2450 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B, 2451 const ArgDescriptor *Arg) const { 2452 if (!Arg->isRegister() || !Arg->getRegister().isValid()) 2453 return false; // TODO: Handle these 2454 2455 Register SrcReg = Arg->getRegister(); 2456 assert(SrcReg.isPhysical() && "Physical register expected"); 2457 assert(DstReg.isVirtual() && "Virtual register expected"); 2458 2459 MachineRegisterInfo &MRI = *B.getMRI(); 2460 2461 LLT Ty = MRI.getType(DstReg); 2462 Register LiveIn = getLiveInRegister(B, MRI, SrcReg, Ty); 2463 2464 if (Arg->isMasked()) { 2465 // TODO: Should we try to emit this once in the entry block? 2466 const LLT S32 = LLT::scalar(32); 2467 const unsigned Mask = Arg->getMask(); 2468 const unsigned Shift = countTrailingZeros<unsigned>(Mask); 2469 2470 Register AndMaskSrc = LiveIn; 2471 2472 if (Shift != 0) { 2473 auto ShiftAmt = B.buildConstant(S32, Shift); 2474 AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0); 2475 } 2476 2477 B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift)); 2478 } else { 2479 B.buildCopy(DstReg, LiveIn); 2480 } 2481 2482 return true; 2483 } 2484 2485 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin( 2486 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, 2487 AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2488 2489 const ArgDescriptor *Arg = getArgDescriptor(B, ArgType); 2490 if (!Arg) 2491 return false; 2492 2493 if (!loadInputValue(MI.getOperand(0).getReg(), B, Arg)) 2494 return false; 2495 2496 MI.eraseFromParent(); 2497 return true; 2498 } 2499 2500 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI, 2501 MachineRegisterInfo &MRI, 2502 MachineIRBuilder &B) const { 2503 Register Dst = MI.getOperand(0).getReg(); 2504 LLT DstTy = MRI.getType(Dst); 2505 LLT S16 = LLT::scalar(16); 2506 LLT S32 = LLT::scalar(32); 2507 LLT S64 = LLT::scalar(64); 2508 2509 if (legalizeFastUnsafeFDIV(MI, MRI, B)) 2510 return true; 2511 2512 if (DstTy == S16) 2513 return legalizeFDIV16(MI, MRI, B); 2514 if (DstTy == S32) 2515 return legalizeFDIV32(MI, MRI, B); 2516 if (DstTy == S64) 2517 return legalizeFDIV64(MI, MRI, B); 2518 2519 return false; 2520 } 2521 2522 static Register buildDivRCP(MachineIRBuilder &B, Register Src) { 2523 const LLT S32 = LLT::scalar(32); 2524 2525 auto Cvt0 = B.buildUITOFP(S32, Src); 2526 auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Cvt0}); 2527 auto FPUIntMaxPlus1 = B.buildFConstant(S32, BitsToFloat(0x4f800000)); 2528 auto Mul = B.buildFMul(S32, RcpIFlag, FPUIntMaxPlus1); 2529 return B.buildFPTOUI(S32, Mul).getReg(0); 2530 } 2531 2532 void AMDGPULegalizerInfo::legalizeUDIV_UREM32Impl(MachineIRBuilder &B, 2533 Register DstReg, 2534 Register Num, 2535 Register Den, 2536 bool IsRem) const { 2537 const LLT S1 = LLT::scalar(1); 2538 const LLT S32 = LLT::scalar(32); 2539 2540 // RCP = URECIP(Den) = 2^32 / Den + e 2541 // e is rounding error. 2542 auto RCP = buildDivRCP(B, Den); 2543 2544 // RCP_LO = mul(RCP, Den) 2545 auto RCP_LO = B.buildMul(S32, RCP, Den); 2546 2547 // RCP_HI = mulhu (RCP, Den) */ 2548 auto RCP_HI = B.buildUMulH(S32, RCP, Den); 2549 2550 // NEG_RCP_LO = -RCP_LO 2551 auto Zero = B.buildConstant(S32, 0); 2552 auto NEG_RCP_LO = B.buildSub(S32, Zero, RCP_LO); 2553 2554 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 2555 auto CmpRcpHiZero = B.buildICmp(CmpInst::ICMP_EQ, S1, RCP_HI, Zero); 2556 auto ABS_RCP_LO = B.buildSelect(S32, CmpRcpHiZero, NEG_RCP_LO, RCP_LO); 2557 2558 // Calculate the rounding error from the URECIP instruction 2559 // E = mulhu(ABS_RCP_LO, RCP) 2560 auto E = B.buildUMulH(S32, ABS_RCP_LO, RCP); 2561 2562 // RCP_A_E = RCP + E 2563 auto RCP_A_E = B.buildAdd(S32, RCP, E); 2564 2565 // RCP_S_E = RCP - E 2566 auto RCP_S_E = B.buildSub(S32, RCP, E); 2567 2568 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 2569 auto Tmp0 = B.buildSelect(S32, CmpRcpHiZero, RCP_A_E, RCP_S_E); 2570 2571 // Quotient = mulhu(Tmp0, Num)stmp 2572 auto Quotient = B.buildUMulH(S32, Tmp0, Num); 2573 2574 // Num_S_Remainder = Quotient * Den 2575 auto Num_S_Remainder = B.buildMul(S32, Quotient, Den); 2576 2577 // Remainder = Num - Num_S_Remainder 2578 auto Remainder = B.buildSub(S32, Num, Num_S_Remainder); 2579 2580 // Remainder_GE_Den = Remainder >= Den 2581 auto Remainder_GE_Den = B.buildICmp(CmpInst::ICMP_UGE, S1, Remainder, Den); 2582 2583 // Remainder_GE_Zero = Num >= Num_S_Remainder; 2584 auto Remainder_GE_Zero = B.buildICmp(CmpInst::ICMP_UGE, S1, 2585 Num, Num_S_Remainder); 2586 2587 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 2588 auto Tmp1 = B.buildAnd(S1, Remainder_GE_Den, Remainder_GE_Zero); 2589 2590 // Calculate Division result: 2591 2592 // Quotient_A_One = Quotient + 1 2593 auto One = B.buildConstant(S32, 1); 2594 auto Quotient_A_One = B.buildAdd(S32, Quotient, One); 2595 2596 // Quotient_S_One = Quotient - 1 2597 auto Quotient_S_One = B.buildSub(S32, Quotient, One); 2598 2599 // Div = (Tmp1 ? Quotient_A_One : Quotient) 2600 auto Div = B.buildSelect(S32, Tmp1, Quotient_A_One, Quotient); 2601 2602 // Div = (Remainder_GE_Zero ? Div : Quotient_S_One) 2603 if (IsRem) { 2604 Div = B.buildSelect(S32, Remainder_GE_Zero, Div, Quotient_S_One); 2605 2606 // Calculate Rem result: 2607 auto Remainder_S_Den = B.buildSub(S32, Remainder, Den); 2608 2609 // Remainder_A_Den = Remainder + Den 2610 auto Remainder_A_Den = B.buildAdd(S32, Remainder, Den); 2611 2612 // Rem = (Tmp1 ? Remainder_S_Den : Remainder) 2613 auto Rem = B.buildSelect(S32, Tmp1, Remainder_S_Den, Remainder); 2614 2615 // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den) 2616 B.buildSelect(DstReg, Remainder_GE_Zero, Rem, Remainder_A_Den); 2617 } else { 2618 B.buildSelect(DstReg, Remainder_GE_Zero, Div, Quotient_S_One); 2619 } 2620 } 2621 2622 bool AMDGPULegalizerInfo::legalizeUDIV_UREM32(MachineInstr &MI, 2623 MachineRegisterInfo &MRI, 2624 MachineIRBuilder &B) const { 2625 const bool IsRem = MI.getOpcode() == AMDGPU::G_UREM; 2626 Register DstReg = MI.getOperand(0).getReg(); 2627 Register Num = MI.getOperand(1).getReg(); 2628 Register Den = MI.getOperand(2).getReg(); 2629 legalizeUDIV_UREM32Impl(B, DstReg, Num, Den, IsRem); 2630 MI.eraseFromParent(); 2631 return true; 2632 } 2633 2634 // Build integer reciprocal sequence arounud V_RCP_IFLAG_F32 2635 // 2636 // Return lo, hi of result 2637 // 2638 // %cvt.lo = G_UITOFP Val.lo 2639 // %cvt.hi = G_UITOFP Val.hi 2640 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo 2641 // %rcp = G_AMDGPU_RCP_IFLAG %mad 2642 // %mul1 = G_FMUL %rcp, 0x5f7ffffc 2643 // %mul2 = G_FMUL %mul1, 2**(-32) 2644 // %trunc = G_INTRINSIC_TRUNC %mul2 2645 // %mad2 = G_FMAD %trunc, -(2**32), %mul1 2646 // return {G_FPTOUI %mad2, G_FPTOUI %trunc} 2647 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B, 2648 Register Val) { 2649 const LLT S32 = LLT::scalar(32); 2650 auto Unmerge = B.buildUnmerge(S32, Val); 2651 2652 auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0)); 2653 auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1)); 2654 2655 auto Mad = B.buildFMAD(S32, CvtHi, // 2**32 2656 B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo); 2657 2658 auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad}); 2659 auto Mul1 = 2660 B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc))); 2661 2662 // 2**(-32) 2663 auto Mul2 = 2664 B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000))); 2665 auto Trunc = B.buildIntrinsicTrunc(S32, Mul2); 2666 2667 // -(2**32) 2668 auto Mad2 = B.buildFMAD(S32, Trunc, 2669 B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1); 2670 2671 auto ResultLo = B.buildFPTOUI(S32, Mad2); 2672 auto ResultHi = B.buildFPTOUI(S32, Trunc); 2673 2674 return {ResultLo.getReg(0), ResultHi.getReg(0)}; 2675 } 2676 2677 bool AMDGPULegalizerInfo::legalizeUDIV_UREM64(MachineInstr &MI, 2678 MachineRegisterInfo &MRI, 2679 MachineIRBuilder &B) const { 2680 const bool IsDiv = MI.getOpcode() == TargetOpcode::G_UDIV; 2681 const LLT S32 = LLT::scalar(32); 2682 const LLT S64 = LLT::scalar(64); 2683 const LLT S1 = LLT::scalar(1); 2684 Register Numer = MI.getOperand(1).getReg(); 2685 Register Denom = MI.getOperand(2).getReg(); 2686 Register RcpLo, RcpHi; 2687 2688 std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom); 2689 2690 auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi}); 2691 2692 auto Zero64 = B.buildConstant(S64, 0); 2693 auto NegDenom = B.buildSub(S64, Zero64, Denom); 2694 2695 auto MulLo1 = B.buildMul(S64, NegDenom, Rcp); 2696 auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1); 2697 2698 auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1); 2699 Register MulHi1_Lo = UnmergeMulHi1.getReg(0); 2700 Register MulHi1_Hi = UnmergeMulHi1.getReg(1); 2701 2702 auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo); 2703 auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1)); 2704 auto Add1_HiNc = B.buildAdd(S32, RcpHi, MulHi1_Hi); 2705 auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi}); 2706 2707 auto MulLo2 = B.buildMul(S64, NegDenom, Add1); 2708 auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2); 2709 auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2); 2710 Register MulHi2_Lo = UnmergeMulHi2.getReg(0); 2711 Register MulHi2_Hi = UnmergeMulHi2.getReg(1); 2712 2713 auto Zero32 = B.buildConstant(S32, 0); 2714 auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo); 2715 auto Add2_HiC = 2716 B.buildUAdde(S32, S1, Add1_HiNc, MulHi2_Hi, Add1_Lo.getReg(1)); 2717 auto Add2_Hi = B.buildUAdde(S32, S1, Add2_HiC, Zero32, Add2_Lo.getReg(1)); 2718 auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi}); 2719 2720 auto UnmergeNumer = B.buildUnmerge(S32, Numer); 2721 Register NumerLo = UnmergeNumer.getReg(0); 2722 Register NumerHi = UnmergeNumer.getReg(1); 2723 2724 auto MulHi3 = B.buildUMulH(S64, Numer, Add2); 2725 auto Mul3 = B.buildMul(S64, Denom, MulHi3); 2726 auto UnmergeMul3 = B.buildUnmerge(S32, Mul3); 2727 Register Mul3_Lo = UnmergeMul3.getReg(0); 2728 Register Mul3_Hi = UnmergeMul3.getReg(1); 2729 auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo); 2730 auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1)); 2731 auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi); 2732 auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi}); 2733 2734 auto UnmergeDenom = B.buildUnmerge(S32, Denom); 2735 Register DenomLo = UnmergeDenom.getReg(0); 2736 Register DenomHi = UnmergeDenom.getReg(1); 2737 2738 auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi); 2739 auto C1 = B.buildSExt(S32, CmpHi); 2740 2741 auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo); 2742 auto C2 = B.buildSExt(S32, CmpLo); 2743 2744 auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi); 2745 auto C3 = B.buildSelect(S32, CmpEq, C2, C1); 2746 2747 // TODO: Here and below portions of the code can be enclosed into if/endif. 2748 // Currently control flow is unconditional and we have 4 selects after 2749 // potential endif to substitute PHIs. 2750 2751 // if C3 != 0 ... 2752 auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo); 2753 auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1)); 2754 auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1)); 2755 auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi}); 2756 2757 auto One64 = B.buildConstant(S64, 1); 2758 auto Add3 = B.buildAdd(S64, MulHi3, One64); 2759 2760 auto C4 = 2761 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi)); 2762 auto C5 = 2763 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo)); 2764 auto C6 = B.buildSelect( 2765 S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4); 2766 2767 // if (C6 != 0) 2768 auto Add4 = B.buildAdd(S64, Add3, One64); 2769 auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo); 2770 2771 auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1)); 2772 auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1)); 2773 auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi}); 2774 2775 // endif C6 2776 // endif C3 2777 2778 if (IsDiv) { 2779 auto Sel1 = B.buildSelect( 2780 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3); 2781 B.buildSelect(MI.getOperand(0), 2782 B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel1, MulHi3); 2783 } else { 2784 auto Sel2 = B.buildSelect( 2785 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2); 2786 B.buildSelect(MI.getOperand(0), 2787 B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel2, Sub1); 2788 } 2789 2790 MI.eraseFromParent(); 2791 return true; 2792 } 2793 2794 bool AMDGPULegalizerInfo::legalizeUDIV_UREM(MachineInstr &MI, 2795 MachineRegisterInfo &MRI, 2796 MachineIRBuilder &B) const { 2797 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2798 if (Ty == LLT::scalar(32)) 2799 return legalizeUDIV_UREM32(MI, MRI, B); 2800 if (Ty == LLT::scalar(64)) 2801 return legalizeUDIV_UREM64(MI, MRI, B); 2802 return false; 2803 } 2804 2805 bool AMDGPULegalizerInfo::legalizeSDIV_SREM32(MachineInstr &MI, 2806 MachineRegisterInfo &MRI, 2807 MachineIRBuilder &B) const { 2808 const LLT S32 = LLT::scalar(32); 2809 2810 const bool IsRem = MI.getOpcode() == AMDGPU::G_SREM; 2811 Register DstReg = MI.getOperand(0).getReg(); 2812 Register LHS = MI.getOperand(1).getReg(); 2813 Register RHS = MI.getOperand(2).getReg(); 2814 2815 auto ThirtyOne = B.buildConstant(S32, 31); 2816 auto LHSign = B.buildAShr(S32, LHS, ThirtyOne); 2817 auto RHSign = B.buildAShr(S32, RHS, ThirtyOne); 2818 2819 LHS = B.buildAdd(S32, LHS, LHSign).getReg(0); 2820 RHS = B.buildAdd(S32, RHS, RHSign).getReg(0); 2821 2822 LHS = B.buildXor(S32, LHS, LHSign).getReg(0); 2823 RHS = B.buildXor(S32, RHS, RHSign).getReg(0); 2824 2825 Register UDivRem = MRI.createGenericVirtualRegister(S32); 2826 legalizeUDIV_UREM32Impl(B, UDivRem, LHS, RHS, IsRem); 2827 2828 if (IsRem) { 2829 auto RSign = LHSign; // Remainder sign is the same as LHS 2830 UDivRem = B.buildXor(S32, UDivRem, RSign).getReg(0); 2831 B.buildSub(DstReg, UDivRem, RSign); 2832 } else { 2833 auto DSign = B.buildXor(S32, LHSign, RHSign); 2834 UDivRem = B.buildXor(S32, UDivRem, DSign).getReg(0); 2835 B.buildSub(DstReg, UDivRem, DSign); 2836 } 2837 2838 MI.eraseFromParent(); 2839 return true; 2840 } 2841 2842 bool AMDGPULegalizerInfo::legalizeSDIV_SREM(MachineInstr &MI, 2843 MachineRegisterInfo &MRI, 2844 MachineIRBuilder &B) const { 2845 if (MRI.getType(MI.getOperand(0).getReg()) == LLT::scalar(32)) 2846 return legalizeSDIV_SREM32(MI, MRI, B); 2847 return false; 2848 } 2849 2850 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI, 2851 MachineRegisterInfo &MRI, 2852 MachineIRBuilder &B) const { 2853 Register Res = MI.getOperand(0).getReg(); 2854 Register LHS = MI.getOperand(1).getReg(); 2855 Register RHS = MI.getOperand(2).getReg(); 2856 2857 uint16_t Flags = MI.getFlags(); 2858 2859 LLT ResTy = MRI.getType(Res); 2860 LLT S32 = LLT::scalar(32); 2861 LLT S64 = LLT::scalar(64); 2862 2863 const MachineFunction &MF = B.getMF(); 2864 bool Unsafe = 2865 MF.getTarget().Options.UnsafeFPMath || MI.getFlag(MachineInstr::FmArcp); 2866 2867 if (!MF.getTarget().Options.UnsafeFPMath && ResTy == S64) 2868 return false; 2869 2870 if (!Unsafe && ResTy == S32 && 2871 MF.getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals()) 2872 return false; 2873 2874 if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) { 2875 // 1 / x -> RCP(x) 2876 if (CLHS->isExactlyValue(1.0)) { 2877 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 2878 .addUse(RHS) 2879 .setMIFlags(Flags); 2880 2881 MI.eraseFromParent(); 2882 return true; 2883 } 2884 2885 // -1 / x -> RCP( FNEG(x) ) 2886 if (CLHS->isExactlyValue(-1.0)) { 2887 auto FNeg = B.buildFNeg(ResTy, RHS, Flags); 2888 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 2889 .addUse(FNeg.getReg(0)) 2890 .setMIFlags(Flags); 2891 2892 MI.eraseFromParent(); 2893 return true; 2894 } 2895 } 2896 2897 // x / y -> x * (1.0 / y) 2898 if (Unsafe) { 2899 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false) 2900 .addUse(RHS) 2901 .setMIFlags(Flags); 2902 B.buildFMul(Res, LHS, RCP, Flags); 2903 2904 MI.eraseFromParent(); 2905 return true; 2906 } 2907 2908 return false; 2909 } 2910 2911 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI, 2912 MachineRegisterInfo &MRI, 2913 MachineIRBuilder &B) const { 2914 Register Res = MI.getOperand(0).getReg(); 2915 Register LHS = MI.getOperand(1).getReg(); 2916 Register RHS = MI.getOperand(2).getReg(); 2917 2918 uint16_t Flags = MI.getFlags(); 2919 2920 LLT S16 = LLT::scalar(16); 2921 LLT S32 = LLT::scalar(32); 2922 2923 auto LHSExt = B.buildFPExt(S32, LHS, Flags); 2924 auto RHSExt = B.buildFPExt(S32, RHS, Flags); 2925 2926 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 2927 .addUse(RHSExt.getReg(0)) 2928 .setMIFlags(Flags); 2929 2930 auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags); 2931 auto RDst = B.buildFPTrunc(S16, QUOT, Flags); 2932 2933 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 2934 .addUse(RDst.getReg(0)) 2935 .addUse(RHS) 2936 .addUse(LHS) 2937 .setMIFlags(Flags); 2938 2939 MI.eraseFromParent(); 2940 return true; 2941 } 2942 2943 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions 2944 // to enable denorm mode. When 'Enable' is false, disable denorm mode. 2945 static void toggleSPDenormMode(bool Enable, 2946 MachineIRBuilder &B, 2947 const GCNSubtarget &ST, 2948 AMDGPU::SIModeRegisterDefaults Mode) { 2949 // Set SP denorm mode to this value. 2950 unsigned SPDenormMode = 2951 Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue(); 2952 2953 if (ST.hasDenormModeInst()) { 2954 // Preserve default FP64FP16 denorm mode while updating FP32 mode. 2955 uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue(); 2956 2957 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2); 2958 B.buildInstr(AMDGPU::S_DENORM_MODE) 2959 .addImm(NewDenormModeValue); 2960 2961 } else { 2962 // Select FP32 bit field in mode register. 2963 unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE | 2964 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 2965 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 2966 2967 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32) 2968 .addImm(SPDenormMode) 2969 .addImm(SPDenormModeBitField); 2970 } 2971 } 2972 2973 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI, 2974 MachineRegisterInfo &MRI, 2975 MachineIRBuilder &B) const { 2976 Register Res = MI.getOperand(0).getReg(); 2977 Register LHS = MI.getOperand(1).getReg(); 2978 Register RHS = MI.getOperand(2).getReg(); 2979 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2980 AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode(); 2981 2982 uint16_t Flags = MI.getFlags(); 2983 2984 LLT S32 = LLT::scalar(32); 2985 LLT S1 = LLT::scalar(1); 2986 2987 auto One = B.buildFConstant(S32, 1.0f); 2988 2989 auto DenominatorScaled = 2990 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 2991 .addUse(LHS) 2992 .addUse(RHS) 2993 .addImm(0) 2994 .setMIFlags(Flags); 2995 auto NumeratorScaled = 2996 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 2997 .addUse(LHS) 2998 .addUse(RHS) 2999 .addImm(1) 3000 .setMIFlags(Flags); 3001 3002 auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3003 .addUse(DenominatorScaled.getReg(0)) 3004 .setMIFlags(Flags); 3005 auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags); 3006 3007 // FIXME: Doesn't correctly model the FP mode switch, and the FP operations 3008 // aren't modeled as reading it. 3009 if (!Mode.allFP32Denormals()) 3010 toggleSPDenormMode(true, B, ST, Mode); 3011 3012 auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags); 3013 auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags); 3014 auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags); 3015 auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags); 3016 auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags); 3017 auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags); 3018 3019 if (!Mode.allFP32Denormals()) 3020 toggleSPDenormMode(false, B, ST, Mode); 3021 3022 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false) 3023 .addUse(Fma4.getReg(0)) 3024 .addUse(Fma1.getReg(0)) 3025 .addUse(Fma3.getReg(0)) 3026 .addUse(NumeratorScaled.getReg(1)) 3027 .setMIFlags(Flags); 3028 3029 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 3030 .addUse(Fmas.getReg(0)) 3031 .addUse(RHS) 3032 .addUse(LHS) 3033 .setMIFlags(Flags); 3034 3035 MI.eraseFromParent(); 3036 return true; 3037 } 3038 3039 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI, 3040 MachineRegisterInfo &MRI, 3041 MachineIRBuilder &B) const { 3042 Register Res = MI.getOperand(0).getReg(); 3043 Register LHS = MI.getOperand(1).getReg(); 3044 Register RHS = MI.getOperand(2).getReg(); 3045 3046 uint16_t Flags = MI.getFlags(); 3047 3048 LLT S64 = LLT::scalar(64); 3049 LLT S1 = LLT::scalar(1); 3050 3051 auto One = B.buildFConstant(S64, 1.0); 3052 3053 auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3054 .addUse(LHS) 3055 .addUse(RHS) 3056 .addImm(0) 3057 .setMIFlags(Flags); 3058 3059 auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags); 3060 3061 auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false) 3062 .addUse(DivScale0.getReg(0)) 3063 .setMIFlags(Flags); 3064 3065 auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags); 3066 auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags); 3067 auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags); 3068 3069 auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3070 .addUse(LHS) 3071 .addUse(RHS) 3072 .addImm(1) 3073 .setMIFlags(Flags); 3074 3075 auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags); 3076 auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags); 3077 auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags); 3078 3079 Register Scale; 3080 if (!ST.hasUsableDivScaleConditionOutput()) { 3081 // Workaround a hardware bug on SI where the condition output from div_scale 3082 // is not usable. 3083 3084 LLT S32 = LLT::scalar(32); 3085 3086 auto NumUnmerge = B.buildUnmerge(S32, LHS); 3087 auto DenUnmerge = B.buildUnmerge(S32, RHS); 3088 auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0); 3089 auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1); 3090 3091 auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1), 3092 Scale1Unmerge.getReg(1)); 3093 auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1), 3094 Scale0Unmerge.getReg(1)); 3095 Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0); 3096 } else { 3097 Scale = DivScale1.getReg(1); 3098 } 3099 3100 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false) 3101 .addUse(Fma4.getReg(0)) 3102 .addUse(Fma3.getReg(0)) 3103 .addUse(Mul.getReg(0)) 3104 .addUse(Scale) 3105 .setMIFlags(Flags); 3106 3107 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false) 3108 .addUse(Fmas.getReg(0)) 3109 .addUse(RHS) 3110 .addUse(LHS) 3111 .setMIFlags(Flags); 3112 3113 MI.eraseFromParent(); 3114 return true; 3115 } 3116 3117 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI, 3118 MachineRegisterInfo &MRI, 3119 MachineIRBuilder &B) const { 3120 Register Res = MI.getOperand(0).getReg(); 3121 Register LHS = MI.getOperand(2).getReg(); 3122 Register RHS = MI.getOperand(3).getReg(); 3123 uint16_t Flags = MI.getFlags(); 3124 3125 LLT S32 = LLT::scalar(32); 3126 LLT S1 = LLT::scalar(1); 3127 3128 auto Abs = B.buildFAbs(S32, RHS, Flags); 3129 const APFloat C0Val(1.0f); 3130 3131 auto C0 = B.buildConstant(S32, 0x6f800000); 3132 auto C1 = B.buildConstant(S32, 0x2f800000); 3133 auto C2 = B.buildConstant(S32, FloatToBits(1.0f)); 3134 3135 auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags); 3136 auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags); 3137 3138 auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags); 3139 3140 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3141 .addUse(Mul0.getReg(0)) 3142 .setMIFlags(Flags); 3143 3144 auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags); 3145 3146 B.buildFMul(Res, Sel, Mul1, Flags); 3147 3148 MI.eraseFromParent(); 3149 return true; 3150 } 3151 3152 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI, 3153 MachineRegisterInfo &MRI, 3154 MachineIRBuilder &B) const { 3155 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 3156 if (!MFI->isEntryFunction()) { 3157 return legalizePreloadedArgIntrin(MI, MRI, B, 3158 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 3159 } 3160 3161 uint64_t Offset = 3162 ST.getTargetLowering()->getImplicitParameterOffset( 3163 B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT); 3164 Register DstReg = MI.getOperand(0).getReg(); 3165 LLT DstTy = MRI.getType(DstReg); 3166 LLT IdxTy = LLT::scalar(DstTy.getSizeInBits()); 3167 3168 const ArgDescriptor *Arg; 3169 const TargetRegisterClass *RC; 3170 std::tie(Arg, RC) 3171 = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 3172 if (!Arg) 3173 return false; 3174 3175 Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy); 3176 if (!loadInputValue(KernargPtrReg, B, Arg)) 3177 return false; 3178 3179 B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0)); 3180 MI.eraseFromParent(); 3181 return true; 3182 } 3183 3184 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI, 3185 MachineRegisterInfo &MRI, 3186 MachineIRBuilder &B, 3187 unsigned AddrSpace) const { 3188 Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B); 3189 auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32); 3190 B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg); 3191 MI.eraseFromParent(); 3192 return true; 3193 } 3194 3195 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 3196 // offset (the offset that is included in bounds checking and swizzling, to be 3197 // split between the instruction's voffset and immoffset fields) and soffset 3198 // (the offset that is excluded from bounds checking and swizzling, to go in 3199 // the instruction's soffset field). This function takes the first kind of 3200 // offset and figures out how to split it between voffset and immoffset. 3201 std::tuple<Register, unsigned, unsigned> 3202 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B, 3203 Register OrigOffset) const { 3204 const unsigned MaxImm = 4095; 3205 Register BaseReg; 3206 unsigned TotalConstOffset; 3207 MachineInstr *OffsetDef; 3208 const LLT S32 = LLT::scalar(32); 3209 3210 std::tie(BaseReg, TotalConstOffset, OffsetDef) 3211 = AMDGPU::getBaseWithConstantOffset(*B.getMRI(), OrigOffset); 3212 3213 unsigned ImmOffset = TotalConstOffset; 3214 3215 // If the immediate value is too big for the immoffset field, put the value 3216 // and -4096 into the immoffset field so that the value that is copied/added 3217 // for the voffset field is a multiple of 4096, and it stands more chance 3218 // of being CSEd with the copy/add for another similar load/store. 3219 // However, do not do that rounding down to a multiple of 4096 if that is a 3220 // negative number, as it appears to be illegal to have a negative offset 3221 // in the vgpr, even if adding the immediate offset makes it positive. 3222 unsigned Overflow = ImmOffset & ~MaxImm; 3223 ImmOffset -= Overflow; 3224 if ((int32_t)Overflow < 0) { 3225 Overflow += ImmOffset; 3226 ImmOffset = 0; 3227 } 3228 3229 if (Overflow != 0) { 3230 if (!BaseReg) { 3231 BaseReg = B.buildConstant(S32, Overflow).getReg(0); 3232 } else { 3233 auto OverflowVal = B.buildConstant(S32, Overflow); 3234 BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0); 3235 } 3236 } 3237 3238 if (!BaseReg) 3239 BaseReg = B.buildConstant(S32, 0).getReg(0); 3240 3241 return std::make_tuple(BaseReg, ImmOffset, TotalConstOffset); 3242 } 3243 3244 /// Handle register layout difference for f16 images for some subtargets. 3245 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B, 3246 MachineRegisterInfo &MRI, 3247 Register Reg) const { 3248 if (!ST.hasUnpackedD16VMem()) 3249 return Reg; 3250 3251 const LLT S16 = LLT::scalar(16); 3252 const LLT S32 = LLT::scalar(32); 3253 LLT StoreVT = MRI.getType(Reg); 3254 assert(StoreVT.isVector() && StoreVT.getElementType() == S16); 3255 3256 auto Unmerge = B.buildUnmerge(S16, Reg); 3257 3258 SmallVector<Register, 4> WideRegs; 3259 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3260 WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0)); 3261 3262 int NumElts = StoreVT.getNumElements(); 3263 3264 return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0); 3265 } 3266 3267 Register AMDGPULegalizerInfo::fixStoreSourceType( 3268 MachineIRBuilder &B, Register VData, bool IsFormat) const { 3269 MachineRegisterInfo *MRI = B.getMRI(); 3270 LLT Ty = MRI->getType(VData); 3271 3272 const LLT S16 = LLT::scalar(16); 3273 3274 // Fixup illegal register types for i8 stores. 3275 if (Ty == LLT::scalar(8) || Ty == S16) { 3276 Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0); 3277 return AnyExt; 3278 } 3279 3280 if (Ty.isVector()) { 3281 if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) { 3282 if (IsFormat) 3283 return handleD16VData(B, *MRI, VData); 3284 } 3285 } 3286 3287 return VData; 3288 } 3289 3290 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI, 3291 MachineRegisterInfo &MRI, 3292 MachineIRBuilder &B, 3293 bool IsTyped, 3294 bool IsFormat) const { 3295 Register VData = MI.getOperand(1).getReg(); 3296 LLT Ty = MRI.getType(VData); 3297 LLT EltTy = Ty.getScalarType(); 3298 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 3299 const LLT S32 = LLT::scalar(32); 3300 3301 VData = fixStoreSourceType(B, VData, IsFormat); 3302 Register RSrc = MI.getOperand(2).getReg(); 3303 3304 MachineMemOperand *MMO = *MI.memoperands_begin(); 3305 const int MemSize = MMO->getSize(); 3306 3307 unsigned ImmOffset; 3308 unsigned TotalOffset; 3309 3310 // The typed intrinsics add an immediate after the registers. 3311 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3312 3313 // The struct intrinsic variants add one additional operand over raw. 3314 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3315 Register VIndex; 3316 int OpOffset = 0; 3317 if (HasVIndex) { 3318 VIndex = MI.getOperand(3).getReg(); 3319 OpOffset = 1; 3320 } 3321 3322 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3323 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3324 3325 unsigned Format = 0; 3326 if (IsTyped) { 3327 Format = MI.getOperand(5 + OpOffset).getImm(); 3328 ++OpOffset; 3329 } 3330 3331 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 3332 3333 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3334 if (TotalOffset != 0) 3335 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize); 3336 3337 unsigned Opc; 3338 if (IsTyped) { 3339 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : 3340 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT; 3341 } else if (IsFormat) { 3342 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 : 3343 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT; 3344 } else { 3345 switch (MemSize) { 3346 case 1: 3347 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE; 3348 break; 3349 case 2: 3350 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT; 3351 break; 3352 default: 3353 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE; 3354 break; 3355 } 3356 } 3357 3358 if (!VIndex) 3359 VIndex = B.buildConstant(S32, 0).getReg(0); 3360 3361 auto MIB = B.buildInstr(Opc) 3362 .addUse(VData) // vdata 3363 .addUse(RSrc) // rsrc 3364 .addUse(VIndex) // vindex 3365 .addUse(VOffset) // voffset 3366 .addUse(SOffset) // soffset 3367 .addImm(ImmOffset); // offset(imm) 3368 3369 if (IsTyped) 3370 MIB.addImm(Format); 3371 3372 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3373 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3374 .addMemOperand(MMO); 3375 3376 MI.eraseFromParent(); 3377 return true; 3378 } 3379 3380 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI, 3381 MachineRegisterInfo &MRI, 3382 MachineIRBuilder &B, 3383 bool IsFormat, 3384 bool IsTyped) const { 3385 // FIXME: Verifier should enforce 1 MMO for these intrinsics. 3386 MachineMemOperand *MMO = *MI.memoperands_begin(); 3387 const int MemSize = MMO->getSize(); 3388 const LLT S32 = LLT::scalar(32); 3389 3390 Register Dst = MI.getOperand(0).getReg(); 3391 Register RSrc = MI.getOperand(2).getReg(); 3392 3393 // The typed intrinsics add an immediate after the registers. 3394 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3395 3396 // The struct intrinsic variants add one additional operand over raw. 3397 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3398 Register VIndex; 3399 int OpOffset = 0; 3400 if (HasVIndex) { 3401 VIndex = MI.getOperand(3).getReg(); 3402 OpOffset = 1; 3403 } 3404 3405 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3406 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3407 3408 unsigned Format = 0; 3409 if (IsTyped) { 3410 Format = MI.getOperand(5 + OpOffset).getImm(); 3411 ++OpOffset; 3412 } 3413 3414 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 3415 unsigned ImmOffset; 3416 unsigned TotalOffset; 3417 3418 LLT Ty = MRI.getType(Dst); 3419 LLT EltTy = Ty.getScalarType(); 3420 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 3421 const bool Unpacked = ST.hasUnpackedD16VMem(); 3422 3423 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3424 if (TotalOffset != 0) 3425 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize); 3426 3427 unsigned Opc; 3428 3429 if (IsTyped) { 3430 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : 3431 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT; 3432 } else if (IsFormat) { 3433 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : 3434 AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT; 3435 } else { 3436 switch (MemSize) { 3437 case 1: 3438 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE; 3439 break; 3440 case 2: 3441 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT; 3442 break; 3443 default: 3444 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD; 3445 break; 3446 } 3447 } 3448 3449 Register LoadDstReg; 3450 3451 bool IsExtLoad = (!IsD16 && MemSize < 4) || (IsD16 && !Ty.isVector()); 3452 LLT UnpackedTy = Ty.changeElementSize(32); 3453 3454 if (IsExtLoad) 3455 LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32); 3456 else if (Unpacked && IsD16 && Ty.isVector()) 3457 LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy); 3458 else 3459 LoadDstReg = Dst; 3460 3461 if (!VIndex) 3462 VIndex = B.buildConstant(S32, 0).getReg(0); 3463 3464 auto MIB = B.buildInstr(Opc) 3465 .addDef(LoadDstReg) // vdata 3466 .addUse(RSrc) // rsrc 3467 .addUse(VIndex) // vindex 3468 .addUse(VOffset) // voffset 3469 .addUse(SOffset) // soffset 3470 .addImm(ImmOffset); // offset(imm) 3471 3472 if (IsTyped) 3473 MIB.addImm(Format); 3474 3475 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3476 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3477 .addMemOperand(MMO); 3478 3479 if (LoadDstReg != Dst) { 3480 B.setInsertPt(B.getMBB(), ++B.getInsertPt()); 3481 3482 // Widen result for extending loads was widened. 3483 if (IsExtLoad) 3484 B.buildTrunc(Dst, LoadDstReg); 3485 else { 3486 // Repack to original 16-bit vector result 3487 // FIXME: G_TRUNC should work, but legalization currently fails 3488 auto Unmerge = B.buildUnmerge(S32, LoadDstReg); 3489 SmallVector<Register, 4> Repack; 3490 for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I) 3491 Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0)); 3492 B.buildMerge(Dst, Repack); 3493 } 3494 } 3495 3496 MI.eraseFromParent(); 3497 return true; 3498 } 3499 3500 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI, 3501 MachineIRBuilder &B, 3502 bool IsInc) const { 3503 unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC : 3504 AMDGPU::G_AMDGPU_ATOMIC_DEC; 3505 B.buildInstr(Opc) 3506 .addDef(MI.getOperand(0).getReg()) 3507 .addUse(MI.getOperand(2).getReg()) 3508 .addUse(MI.getOperand(3).getReg()) 3509 .cloneMemRefs(MI); 3510 MI.eraseFromParent(); 3511 return true; 3512 } 3513 3514 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) { 3515 switch (IntrID) { 3516 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 3517 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 3518 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP; 3519 case Intrinsic::amdgcn_raw_buffer_atomic_add: 3520 case Intrinsic::amdgcn_struct_buffer_atomic_add: 3521 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD; 3522 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 3523 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 3524 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB; 3525 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 3526 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 3527 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN; 3528 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 3529 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 3530 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN; 3531 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 3532 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 3533 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX; 3534 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 3535 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 3536 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX; 3537 case Intrinsic::amdgcn_raw_buffer_atomic_and: 3538 case Intrinsic::amdgcn_struct_buffer_atomic_and: 3539 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND; 3540 case Intrinsic::amdgcn_raw_buffer_atomic_or: 3541 case Intrinsic::amdgcn_struct_buffer_atomic_or: 3542 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR; 3543 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 3544 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 3545 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR; 3546 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 3547 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 3548 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC; 3549 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 3550 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 3551 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC; 3552 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 3553 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 3554 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP; 3555 default: 3556 llvm_unreachable("unhandled atomic opcode"); 3557 } 3558 } 3559 3560 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI, 3561 MachineIRBuilder &B, 3562 Intrinsic::ID IID) const { 3563 const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap || 3564 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap; 3565 3566 Register Dst = MI.getOperand(0).getReg(); 3567 Register VData = MI.getOperand(2).getReg(); 3568 3569 Register CmpVal; 3570 int OpOffset = 0; 3571 3572 if (IsCmpSwap) { 3573 CmpVal = MI.getOperand(3 + OpOffset).getReg(); 3574 ++OpOffset; 3575 } 3576 3577 Register RSrc = MI.getOperand(3 + OpOffset).getReg(); 3578 const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8; 3579 3580 // The struct intrinsic variants add one additional operand over raw. 3581 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3582 Register VIndex; 3583 if (HasVIndex) { 3584 VIndex = MI.getOperand(4 + OpOffset).getReg(); 3585 ++OpOffset; 3586 } 3587 3588 Register VOffset = MI.getOperand(4 + OpOffset).getReg(); 3589 Register SOffset = MI.getOperand(5 + OpOffset).getReg(); 3590 unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm(); 3591 3592 MachineMemOperand *MMO = *MI.memoperands_begin(); 3593 3594 unsigned ImmOffset; 3595 unsigned TotalOffset; 3596 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3597 if (TotalOffset != 0) 3598 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MMO->getSize()); 3599 3600 if (!VIndex) 3601 VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0); 3602 3603 auto MIB = B.buildInstr(getBufferAtomicPseudo(IID)) 3604 .addDef(Dst) 3605 .addUse(VData); // vdata 3606 3607 if (IsCmpSwap) 3608 MIB.addReg(CmpVal); 3609 3610 MIB.addUse(RSrc) // rsrc 3611 .addUse(VIndex) // vindex 3612 .addUse(VOffset) // voffset 3613 .addUse(SOffset) // soffset 3614 .addImm(ImmOffset) // offset(imm) 3615 .addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3616 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3617 .addMemOperand(MMO); 3618 3619 MI.eraseFromParent(); 3620 return true; 3621 } 3622 3623 /// Turn a set of s16 typed registers in \p A16AddrRegs into a dword sized 3624 /// vector with s16 typed elements. 3625 static void packImageA16AddressToDwords(MachineIRBuilder &B, MachineInstr &MI, 3626 SmallVectorImpl<Register> &PackedAddrs, 3627 int AddrIdx, int DimIdx, int EndIdx, 3628 int NumGradients) { 3629 const LLT S16 = LLT::scalar(16); 3630 const LLT V2S16 = LLT::vector(2, 16); 3631 3632 for (int I = AddrIdx; I < EndIdx; ++I) { 3633 MachineOperand &SrcOp = MI.getOperand(I); 3634 if (!SrcOp.isReg()) 3635 continue; // _L to _LZ may have eliminated this. 3636 3637 Register AddrReg = SrcOp.getReg(); 3638 3639 if (I < DimIdx) { 3640 AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0); 3641 PackedAddrs.push_back(AddrReg); 3642 } else { 3643 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D, 3644 // derivatives dx/dh and dx/dv are packed with undef. 3645 if (((I + 1) >= EndIdx) || 3646 ((NumGradients / 2) % 2 == 1 && 3647 (I == DimIdx + (NumGradients / 2) - 1 || 3648 I == DimIdx + NumGradients - 1)) || 3649 // Check for _L to _LZ optimization 3650 !MI.getOperand(I + 1).isReg()) { 3651 PackedAddrs.push_back( 3652 B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)}) 3653 .getReg(0)); 3654 } else { 3655 PackedAddrs.push_back( 3656 B.buildBuildVector(V2S16, {AddrReg, MI.getOperand(I + 1).getReg()}) 3657 .getReg(0)); 3658 ++I; 3659 } 3660 } 3661 } 3662 } 3663 3664 /// Convert from separate vaddr components to a single vector address register, 3665 /// and replace the remaining operands with $noreg. 3666 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, 3667 int DimIdx, int NumVAddrs) { 3668 const LLT S32 = LLT::scalar(32); 3669 3670 SmallVector<Register, 8> AddrRegs; 3671 for (int I = 0; I != NumVAddrs; ++I) { 3672 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 3673 if (SrcOp.isReg()) { 3674 AddrRegs.push_back(SrcOp.getReg()); 3675 assert(B.getMRI()->getType(SrcOp.getReg()) == S32); 3676 } 3677 } 3678 3679 int NumAddrRegs = AddrRegs.size(); 3680 if (NumAddrRegs != 1) { 3681 // Round up to 8 elements for v5-v7 3682 // FIXME: Missing intermediate sized register classes and instructions. 3683 if (NumAddrRegs > 4 && !isPowerOf2_32(NumAddrRegs)) { 3684 const int RoundedNumRegs = NextPowerOf2(NumAddrRegs); 3685 auto Undef = B.buildUndef(S32); 3686 AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0)); 3687 NumAddrRegs = RoundedNumRegs; 3688 } 3689 3690 auto VAddr = B.buildBuildVector(LLT::vector(NumAddrRegs, 32), AddrRegs); 3691 MI.getOperand(DimIdx).setReg(VAddr.getReg(0)); 3692 } 3693 3694 for (int I = 1; I != NumVAddrs; ++I) { 3695 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 3696 if (SrcOp.isReg()) 3697 MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister); 3698 } 3699 } 3700 3701 /// Rewrite image intrinsics to use register layouts expected by the subtarget. 3702 /// 3703 /// Depending on the subtarget, load/store with 16-bit element data need to be 3704 /// rewritten to use the low half of 32-bit registers, or directly use a packed 3705 /// layout. 16-bit addresses should also sometimes be packed into 32-bit 3706 /// registers. 3707 /// 3708 /// We don't want to directly select image instructions just yet, but also want 3709 /// to exposes all register repacking to the legalizer/combiners. We also don't 3710 /// want a selected instrution entering RegBankSelect. In order to avoid 3711 /// defining a multitude of intermediate image instructions, directly hack on 3712 /// the intrinsic's arguments. In cases like a16 addreses, this requires padding 3713 /// now unnecessary arguments with $noreg. 3714 bool AMDGPULegalizerInfo::legalizeImageIntrinsic( 3715 MachineInstr &MI, MachineIRBuilder &B, 3716 GISelChangeObserver &Observer, 3717 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const { 3718 3719 const int NumDefs = MI.getNumExplicitDefs(); 3720 bool IsTFE = NumDefs == 2; 3721 // We are only processing the operands of d16 image operations on subtargets 3722 // that use the unpacked register layout, or need to repack the TFE result. 3723 3724 // TODO: Do we need to guard against already legalized intrinsics? 3725 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 3726 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 3727 3728 MachineRegisterInfo *MRI = B.getMRI(); 3729 const LLT S32 = LLT::scalar(32); 3730 const LLT S16 = LLT::scalar(16); 3731 const LLT V2S16 = LLT::vector(2, 16); 3732 3733 // Index of first address argument 3734 const int AddrIdx = getImageVAddrIdxBegin(BaseOpcode, NumDefs); 3735 3736 int NumVAddrs, NumGradients; 3737 std::tie(NumVAddrs, NumGradients) = getImageNumVAddr(ImageDimIntr, BaseOpcode); 3738 const int DMaskIdx = BaseOpcode->Atomic ? -1 : 3739 getDMaskIdx(BaseOpcode, NumDefs); 3740 unsigned DMask = 0; 3741 3742 // Check for 16 bit addresses and pack if true. 3743 int DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 3744 LLT GradTy = MRI->getType(MI.getOperand(DimIdx).getReg()); 3745 LLT AddrTy = MRI->getType(MI.getOperand(DimIdx + NumGradients).getReg()); 3746 const bool IsG16 = GradTy == S16; 3747 const bool IsA16 = AddrTy == S16; 3748 3749 int DMaskLanes = 0; 3750 if (!BaseOpcode->Atomic) { 3751 DMask = MI.getOperand(DMaskIdx).getImm(); 3752 if (BaseOpcode->Gather4) { 3753 DMaskLanes = 4; 3754 } else if (DMask != 0) { 3755 DMaskLanes = countPopulation(DMask); 3756 } else if (!IsTFE && !BaseOpcode->Store) { 3757 // If dmask is 0, this is a no-op load. This can be eliminated. 3758 B.buildUndef(MI.getOperand(0)); 3759 MI.eraseFromParent(); 3760 return true; 3761 } 3762 } 3763 3764 Observer.changingInstr(MI); 3765 auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); }); 3766 3767 unsigned NewOpcode = NumDefs == 0 ? 3768 AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD; 3769 3770 // Track that we legalized this 3771 MI.setDesc(B.getTII().get(NewOpcode)); 3772 3773 // Expecting to get an error flag since TFC is on - and dmask is 0 Force 3774 // dmask to be at least 1 otherwise the instruction will fail 3775 if (IsTFE && DMask == 0) { 3776 DMask = 0x1; 3777 DMaskLanes = 1; 3778 MI.getOperand(DMaskIdx).setImm(DMask); 3779 } 3780 3781 if (BaseOpcode->Atomic) { 3782 Register VData0 = MI.getOperand(2).getReg(); 3783 LLT Ty = MRI->getType(VData0); 3784 3785 // TODO: Allow atomic swap and bit ops for v2s16/v4s16 3786 if (Ty.isVector()) 3787 return false; 3788 3789 if (BaseOpcode->AtomicX2) { 3790 Register VData1 = MI.getOperand(3).getReg(); 3791 // The two values are packed in one register. 3792 LLT PackedTy = LLT::vector(2, Ty); 3793 auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1}); 3794 MI.getOperand(2).setReg(Concat.getReg(0)); 3795 MI.getOperand(3).setReg(AMDGPU::NoRegister); 3796 } 3797 } 3798 3799 int CorrectedNumVAddrs = NumVAddrs; 3800 3801 // Optimize _L to _LZ when _L is zero 3802 if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 3803 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 3804 const ConstantFP *ConstantLod; 3805 const int LodIdx = AddrIdx + NumVAddrs - 1; 3806 3807 if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_GFCst(ConstantLod))) { 3808 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 3809 // Set new opcode to _lz variant of _l, and change the intrinsic ID. 3810 ImageDimIntr = AMDGPU::getImageDimInstrinsicByBaseOpcode( 3811 LZMappingInfo->LZ, ImageDimIntr->Dim); 3812 3813 // The starting indexes should remain in the same place. 3814 --NumVAddrs; 3815 --CorrectedNumVAddrs; 3816 3817 MI.getOperand(MI.getNumExplicitDefs()).setIntrinsicID( 3818 static_cast<Intrinsic::ID>(ImageDimIntr->Intr)); 3819 MI.RemoveOperand(LodIdx); 3820 } 3821 } 3822 } 3823 3824 // Optimize _mip away, when 'lod' is zero 3825 if (AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 3826 int64_t ConstantLod; 3827 const int LodIdx = AddrIdx + NumVAddrs - 1; 3828 3829 if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_ICst(ConstantLod))) { 3830 if (ConstantLod == 0) { 3831 // TODO: Change intrinsic opcode and remove operand instead or replacing 3832 // it with 0, as the _L to _LZ handling is done above. 3833 MI.getOperand(LodIdx).ChangeToImmediate(0); 3834 --CorrectedNumVAddrs; 3835 } 3836 } 3837 } 3838 3839 // Rewrite the addressing register layout before doing anything else. 3840 if (IsA16 || IsG16) { 3841 if (IsA16) { 3842 // Target must support the feature and gradients need to be 16 bit too 3843 if (!ST.hasA16() || !IsG16) 3844 return false; 3845 } else if (!ST.hasG16()) 3846 return false; 3847 3848 if (NumVAddrs > 1) { 3849 SmallVector<Register, 4> PackedRegs; 3850 // Don't compress addresses for G16 3851 const int PackEndIdx = 3852 IsA16 ? (AddrIdx + NumVAddrs) : (DimIdx + NumGradients); 3853 packImageA16AddressToDwords(B, MI, PackedRegs, AddrIdx, DimIdx, 3854 PackEndIdx, NumGradients); 3855 3856 if (!IsA16) { 3857 // Add uncompressed address 3858 for (int I = DimIdx + NumGradients; I != AddrIdx + NumVAddrs; ++I) { 3859 int AddrReg = MI.getOperand(I).getReg(); 3860 assert(B.getMRI()->getType(AddrReg) == LLT::scalar(32)); 3861 PackedRegs.push_back(AddrReg); 3862 } 3863 } 3864 3865 // See also below in the non-a16 branch 3866 const bool UseNSA = PackedRegs.size() >= 3 && ST.hasNSAEncoding(); 3867 3868 if (!UseNSA && PackedRegs.size() > 1) { 3869 LLT PackedAddrTy = LLT::vector(2 * PackedRegs.size(), 16); 3870 auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs); 3871 PackedRegs[0] = Concat.getReg(0); 3872 PackedRegs.resize(1); 3873 } 3874 3875 const int NumPacked = PackedRegs.size(); 3876 for (int I = 0; I != NumVAddrs; ++I) { 3877 MachineOperand &SrcOp = MI.getOperand(AddrIdx + I); 3878 if (!SrcOp.isReg()) { 3879 assert(SrcOp.isImm() && SrcOp.getImm() == 0); 3880 continue; 3881 } 3882 3883 assert(SrcOp.getReg() != AMDGPU::NoRegister); 3884 3885 if (I < NumPacked) 3886 SrcOp.setReg(PackedRegs[I]); 3887 else 3888 SrcOp.setReg(AMDGPU::NoRegister); 3889 } 3890 } 3891 } else { 3892 // If the register allocator cannot place the address registers contiguously 3893 // without introducing moves, then using the non-sequential address encoding 3894 // is always preferable, since it saves VALU instructions and is usually a 3895 // wash in terms of code size or even better. 3896 // 3897 // However, we currently have no way of hinting to the register allocator 3898 // that MIMG addresses should be placed contiguously when it is possible to 3899 // do so, so force non-NSA for the common 2-address case as a heuristic. 3900 // 3901 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 3902 // allocation when possible. 3903 const bool UseNSA = CorrectedNumVAddrs >= 3 && ST.hasNSAEncoding(); 3904 3905 if (!UseNSA && NumVAddrs > 1) 3906 convertImageAddrToPacked(B, MI, AddrIdx, NumVAddrs); 3907 } 3908 3909 int Flags = 0; 3910 if (IsA16) 3911 Flags |= 1; 3912 if (IsG16) 3913 Flags |= 2; 3914 MI.addOperand(MachineOperand::CreateImm(Flags)); 3915 3916 if (BaseOpcode->Store) { // No TFE for stores? 3917 // TODO: Handle dmask trim 3918 Register VData = MI.getOperand(1).getReg(); 3919 LLT Ty = MRI->getType(VData); 3920 if (!Ty.isVector() || Ty.getElementType() != S16) 3921 return true; 3922 3923 Register RepackedReg = handleD16VData(B, *MRI, VData); 3924 if (RepackedReg != VData) { 3925 MI.getOperand(1).setReg(RepackedReg); 3926 } 3927 3928 return true; 3929 } 3930 3931 Register DstReg = MI.getOperand(0).getReg(); 3932 LLT Ty = MRI->getType(DstReg); 3933 const LLT EltTy = Ty.getScalarType(); 3934 const bool IsD16 = Ty.getScalarType() == S16; 3935 const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1; 3936 3937 // Confirm that the return type is large enough for the dmask specified 3938 if (NumElts < DMaskLanes) 3939 return false; 3940 3941 if (NumElts > 4 || DMaskLanes > 4) 3942 return false; 3943 3944 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes; 3945 const LLT AdjustedTy = Ty.changeNumElements(AdjustedNumElts); 3946 3947 // The raw dword aligned data component of the load. The only legal cases 3948 // where this matters should be when using the packed D16 format, for 3949 // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>, 3950 LLT RoundedTy; 3951 3952 // S32 vector to to cover all data, plus TFE result element. 3953 LLT TFETy; 3954 3955 // Register type to use for each loaded component. Will be S32 or V2S16. 3956 LLT RegTy; 3957 3958 if (IsD16 && ST.hasUnpackedD16VMem()) { 3959 RoundedTy = LLT::scalarOrVector(AdjustedNumElts, 32); 3960 TFETy = LLT::vector(AdjustedNumElts + 1, 32); 3961 RegTy = S32; 3962 } else { 3963 unsigned EltSize = EltTy.getSizeInBits(); 3964 unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32; 3965 unsigned RoundedSize = 32 * RoundedElts; 3966 RoundedTy = LLT::scalarOrVector(RoundedSize / EltSize, EltSize); 3967 TFETy = LLT::vector(RoundedSize / 32 + 1, S32); 3968 RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32; 3969 } 3970 3971 // The return type does not need adjustment. 3972 // TODO: Should we change s16 case to s32 or <2 x s16>? 3973 if (!IsTFE && (RoundedTy == Ty || !Ty.isVector())) 3974 return true; 3975 3976 Register Dst1Reg; 3977 3978 // Insert after the instruction. 3979 B.setInsertPt(*MI.getParent(), ++MI.getIterator()); 3980 3981 // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x 3982 // s16> instead of s32, we would only need 1 bitcast instead of multiple. 3983 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy; 3984 const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32; 3985 3986 Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy); 3987 3988 MI.getOperand(0).setReg(NewResultReg); 3989 3990 // In the IR, TFE is supposed to be used with a 2 element struct return 3991 // type. The intruction really returns these two values in one contiguous 3992 // register, with one additional dword beyond the loaded data. Rewrite the 3993 // return type to use a single register result. 3994 3995 if (IsTFE) { 3996 Dst1Reg = MI.getOperand(1).getReg(); 3997 if (MRI->getType(Dst1Reg) != S32) 3998 return false; 3999 4000 // TODO: Make sure the TFE operand bit is set. 4001 MI.RemoveOperand(1); 4002 4003 // Handle the easy case that requires no repack instructions. 4004 if (Ty == S32) { 4005 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg); 4006 return true; 4007 } 4008 } 4009 4010 // Now figure out how to copy the new result register back into the old 4011 // result. 4012 SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg); 4013 4014 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs; 4015 4016 if (ResultNumRegs == 1) { 4017 assert(!IsTFE); 4018 ResultRegs[0] = NewResultReg; 4019 } else { 4020 // We have to repack into a new vector of some kind. 4021 for (int I = 0; I != NumDataRegs; ++I) 4022 ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy); 4023 B.buildUnmerge(ResultRegs, NewResultReg); 4024 4025 // Drop the final TFE element to get the data part. The TFE result is 4026 // directly written to the right place already. 4027 if (IsTFE) 4028 ResultRegs.resize(NumDataRegs); 4029 } 4030 4031 // For an s16 scalar result, we form an s32 result with a truncate regardless 4032 // of packed vs. unpacked. 4033 if (IsD16 && !Ty.isVector()) { 4034 B.buildTrunc(DstReg, ResultRegs[0]); 4035 return true; 4036 } 4037 4038 // Avoid a build/concat_vector of 1 entry. 4039 if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) { 4040 B.buildBitcast(DstReg, ResultRegs[0]); 4041 return true; 4042 } 4043 4044 assert(Ty.isVector()); 4045 4046 if (IsD16) { 4047 // For packed D16 results with TFE enabled, all the data components are 4048 // S32. Cast back to the expected type. 4049 // 4050 // TODO: We don't really need to use load s32 elements. We would only need one 4051 // cast for the TFE result if a multiple of v2s16 was used. 4052 if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) { 4053 for (Register &Reg : ResultRegs) 4054 Reg = B.buildBitcast(V2S16, Reg).getReg(0); 4055 } else if (ST.hasUnpackedD16VMem()) { 4056 for (Register &Reg : ResultRegs) 4057 Reg = B.buildTrunc(S16, Reg).getReg(0); 4058 } 4059 } 4060 4061 auto padWithUndef = [&](LLT Ty, int NumElts) { 4062 if (NumElts == 0) 4063 return; 4064 Register Undef = B.buildUndef(Ty).getReg(0); 4065 for (int I = 0; I != NumElts; ++I) 4066 ResultRegs.push_back(Undef); 4067 }; 4068 4069 // Pad out any elements eliminated due to the dmask. 4070 LLT ResTy = MRI->getType(ResultRegs[0]); 4071 if (!ResTy.isVector()) { 4072 padWithUndef(ResTy, NumElts - ResultRegs.size()); 4073 B.buildBuildVector(DstReg, ResultRegs); 4074 return true; 4075 } 4076 4077 assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16); 4078 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32; 4079 4080 // Deal with the one annoying legal case. 4081 const LLT V3S16 = LLT::vector(3, 16); 4082 if (Ty == V3S16) { 4083 padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1); 4084 auto Concat = B.buildConcatVectors(LLT::vector(6, 16), ResultRegs); 4085 B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat); 4086 return true; 4087 } 4088 4089 padWithUndef(ResTy, RegsToCover - ResultRegs.size()); 4090 B.buildConcatVectors(DstReg, ResultRegs); 4091 return true; 4092 } 4093 4094 bool AMDGPULegalizerInfo::legalizeSBufferLoad( 4095 MachineInstr &MI, MachineIRBuilder &B, 4096 GISelChangeObserver &Observer) const { 4097 Register Dst = MI.getOperand(0).getReg(); 4098 LLT Ty = B.getMRI()->getType(Dst); 4099 unsigned Size = Ty.getSizeInBits(); 4100 MachineFunction &MF = B.getMF(); 4101 4102 Observer.changingInstr(MI); 4103 4104 // FIXME: We don't really need this intermediate instruction. The intrinsic 4105 // should be fixed to have a memory operand. Since it's readnone, we're not 4106 // allowed to add one. 4107 MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD)); 4108 MI.RemoveOperand(1); // Remove intrinsic ID 4109 4110 // FIXME: When intrinsic definition is fixed, this should have an MMO already. 4111 // TODO: Should this use datalayout alignment? 4112 const unsigned MemSize = (Size + 7) / 8; 4113 const Align MemAlign(4); 4114 MachineMemOperand *MMO = MF.getMachineMemOperand( 4115 MachinePointerInfo(), 4116 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 4117 MachineMemOperand::MOInvariant, 4118 MemSize, MemAlign); 4119 MI.addMemOperand(MF, MMO); 4120 4121 // There are no 96-bit result scalar loads, but widening to 128-bit should 4122 // always be legal. We may need to restore this to a 96-bit result if it turns 4123 // out this needs to be converted to a vector load during RegBankSelect. 4124 if (!isPowerOf2_32(Size)) { 4125 LegalizerHelper Helper(MF, *this, Observer, B); 4126 4127 if (Ty.isVector()) 4128 Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0); 4129 else 4130 Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0); 4131 } 4132 4133 Observer.changedInstr(MI); 4134 return true; 4135 } 4136 4137 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI, 4138 MachineRegisterInfo &MRI, 4139 MachineIRBuilder &B) const { 4140 // Is non-HSA path or trap-handler disabled? then, insert s_endpgm instruction 4141 if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4142 !ST.isTrapHandlerEnabled()) { 4143 B.buildInstr(AMDGPU::S_ENDPGM).addImm(0); 4144 } else { 4145 // Pass queue pointer to trap handler as input, and insert trap instruction 4146 // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi 4147 const ArgDescriptor *Arg = 4148 getArgDescriptor(B, AMDGPUFunctionArgInfo::QUEUE_PTR); 4149 if (!Arg) 4150 return false; 4151 MachineRegisterInfo &MRI = *B.getMRI(); 4152 Register SGPR01(AMDGPU::SGPR0_SGPR1); 4153 Register LiveIn = getLiveInRegister( 4154 B, MRI, SGPR01, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64), 4155 /*InsertLiveInCopy=*/false); 4156 if (!loadInputValue(LiveIn, B, Arg)) 4157 return false; 4158 B.buildCopy(SGPR01, LiveIn); 4159 B.buildInstr(AMDGPU::S_TRAP) 4160 .addImm(GCNSubtarget::TrapIDLLVMTrap) 4161 .addReg(SGPR01, RegState::Implicit); 4162 } 4163 4164 MI.eraseFromParent(); 4165 return true; 4166 } 4167 4168 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic( 4169 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 4170 // Is non-HSA path or trap-handler disabled? then, report a warning 4171 // accordingly 4172 if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4173 !ST.isTrapHandlerEnabled()) { 4174 DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(), 4175 "debugtrap handler not supported", 4176 MI.getDebugLoc(), DS_Warning); 4177 LLVMContext &Ctx = B.getMF().getFunction().getContext(); 4178 Ctx.diagnose(NoTrap); 4179 } else { 4180 // Insert debug-trap instruction 4181 B.buildInstr(AMDGPU::S_TRAP).addImm(GCNSubtarget::TrapIDLLVMDebugTrap); 4182 } 4183 4184 MI.eraseFromParent(); 4185 return true; 4186 } 4187 4188 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper, 4189 MachineInstr &MI) const { 4190 MachineIRBuilder &B = Helper.MIRBuilder; 4191 MachineRegisterInfo &MRI = *B.getMRI(); 4192 4193 // Replace the use G_BRCOND with the exec manipulate and branch pseudos. 4194 auto IntrID = MI.getIntrinsicID(); 4195 switch (IntrID) { 4196 case Intrinsic::amdgcn_if: 4197 case Intrinsic::amdgcn_else: { 4198 MachineInstr *Br = nullptr; 4199 MachineBasicBlock *UncondBrTarget = nullptr; 4200 if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) { 4201 const SIRegisterInfo *TRI 4202 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4203 4204 Register Def = MI.getOperand(1).getReg(); 4205 Register Use = MI.getOperand(3).getReg(); 4206 4207 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4208 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4209 if (IntrID == Intrinsic::amdgcn_if) { 4210 B.buildInstr(AMDGPU::SI_IF) 4211 .addDef(Def) 4212 .addUse(Use) 4213 .addMBB(UncondBrTarget); 4214 } else { 4215 B.buildInstr(AMDGPU::SI_ELSE) 4216 .addDef(Def) 4217 .addUse(Use) 4218 .addMBB(UncondBrTarget) 4219 .addImm(0); 4220 } 4221 4222 if (Br) { 4223 Br->getOperand(0).setMBB(CondBrTarget); 4224 } else { 4225 // The IRTranslator skips inserting the G_BR for fallthrough cases, but 4226 // since we're swapping branch targets it needs to be reinserted. 4227 // FIXME: IRTranslator should probably not do this 4228 B.buildBr(*CondBrTarget); 4229 } 4230 4231 MRI.setRegClass(Def, TRI->getWaveMaskRegClass()); 4232 MRI.setRegClass(Use, TRI->getWaveMaskRegClass()); 4233 MI.eraseFromParent(); 4234 BrCond->eraseFromParent(); 4235 return true; 4236 } 4237 4238 return false; 4239 } 4240 case Intrinsic::amdgcn_loop: { 4241 MachineInstr *Br = nullptr; 4242 MachineBasicBlock *UncondBrTarget = nullptr; 4243 if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) { 4244 const SIRegisterInfo *TRI 4245 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4246 4247 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4248 Register Reg = MI.getOperand(2).getReg(); 4249 4250 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4251 B.buildInstr(AMDGPU::SI_LOOP) 4252 .addUse(Reg) 4253 .addMBB(UncondBrTarget); 4254 4255 if (Br) 4256 Br->getOperand(0).setMBB(CondBrTarget); 4257 else 4258 B.buildBr(*CondBrTarget); 4259 4260 MI.eraseFromParent(); 4261 BrCond->eraseFromParent(); 4262 MRI.setRegClass(Reg, TRI->getWaveMaskRegClass()); 4263 return true; 4264 } 4265 4266 return false; 4267 } 4268 case Intrinsic::amdgcn_kernarg_segment_ptr: 4269 if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) { 4270 // This only makes sense to call in a kernel, so just lower to null. 4271 B.buildConstant(MI.getOperand(0).getReg(), 0); 4272 MI.eraseFromParent(); 4273 return true; 4274 } 4275 4276 return legalizePreloadedArgIntrin( 4277 MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 4278 case Intrinsic::amdgcn_implicitarg_ptr: 4279 return legalizeImplicitArgPtr(MI, MRI, B); 4280 case Intrinsic::amdgcn_workitem_id_x: 4281 return legalizePreloadedArgIntrin(MI, MRI, B, 4282 AMDGPUFunctionArgInfo::WORKITEM_ID_X); 4283 case Intrinsic::amdgcn_workitem_id_y: 4284 return legalizePreloadedArgIntrin(MI, MRI, B, 4285 AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 4286 case Intrinsic::amdgcn_workitem_id_z: 4287 return legalizePreloadedArgIntrin(MI, MRI, B, 4288 AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 4289 case Intrinsic::amdgcn_workgroup_id_x: 4290 return legalizePreloadedArgIntrin(MI, MRI, B, 4291 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 4292 case Intrinsic::amdgcn_workgroup_id_y: 4293 return legalizePreloadedArgIntrin(MI, MRI, B, 4294 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 4295 case Intrinsic::amdgcn_workgroup_id_z: 4296 return legalizePreloadedArgIntrin(MI, MRI, B, 4297 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 4298 case Intrinsic::amdgcn_dispatch_ptr: 4299 return legalizePreloadedArgIntrin(MI, MRI, B, 4300 AMDGPUFunctionArgInfo::DISPATCH_PTR); 4301 case Intrinsic::amdgcn_queue_ptr: 4302 return legalizePreloadedArgIntrin(MI, MRI, B, 4303 AMDGPUFunctionArgInfo::QUEUE_PTR); 4304 case Intrinsic::amdgcn_implicit_buffer_ptr: 4305 return legalizePreloadedArgIntrin( 4306 MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 4307 case Intrinsic::amdgcn_dispatch_id: 4308 return legalizePreloadedArgIntrin(MI, MRI, B, 4309 AMDGPUFunctionArgInfo::DISPATCH_ID); 4310 case Intrinsic::amdgcn_fdiv_fast: 4311 return legalizeFDIVFastIntrin(MI, MRI, B); 4312 case Intrinsic::amdgcn_is_shared: 4313 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS); 4314 case Intrinsic::amdgcn_is_private: 4315 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS); 4316 case Intrinsic::amdgcn_wavefrontsize: { 4317 B.buildConstant(MI.getOperand(0), ST.getWavefrontSize()); 4318 MI.eraseFromParent(); 4319 return true; 4320 } 4321 case Intrinsic::amdgcn_s_buffer_load: 4322 return legalizeSBufferLoad(MI, B, Helper.Observer); 4323 case Intrinsic::amdgcn_raw_buffer_store: 4324 case Intrinsic::amdgcn_struct_buffer_store: 4325 return legalizeBufferStore(MI, MRI, B, false, false); 4326 case Intrinsic::amdgcn_raw_buffer_store_format: 4327 case Intrinsic::amdgcn_struct_buffer_store_format: 4328 return legalizeBufferStore(MI, MRI, B, false, true); 4329 case Intrinsic::amdgcn_raw_tbuffer_store: 4330 case Intrinsic::amdgcn_struct_tbuffer_store: 4331 return legalizeBufferStore(MI, MRI, B, true, true); 4332 case Intrinsic::amdgcn_raw_buffer_load: 4333 case Intrinsic::amdgcn_struct_buffer_load: 4334 return legalizeBufferLoad(MI, MRI, B, false, false); 4335 case Intrinsic::amdgcn_raw_buffer_load_format: 4336 case Intrinsic::amdgcn_struct_buffer_load_format: 4337 return legalizeBufferLoad(MI, MRI, B, true, false); 4338 case Intrinsic::amdgcn_raw_tbuffer_load: 4339 case Intrinsic::amdgcn_struct_tbuffer_load: 4340 return legalizeBufferLoad(MI, MRI, B, true, true); 4341 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 4342 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 4343 case Intrinsic::amdgcn_raw_buffer_atomic_add: 4344 case Intrinsic::amdgcn_struct_buffer_atomic_add: 4345 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 4346 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 4347 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 4348 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 4349 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 4350 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 4351 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 4352 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 4353 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 4354 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 4355 case Intrinsic::amdgcn_raw_buffer_atomic_and: 4356 case Intrinsic::amdgcn_struct_buffer_atomic_and: 4357 case Intrinsic::amdgcn_raw_buffer_atomic_or: 4358 case Intrinsic::amdgcn_struct_buffer_atomic_or: 4359 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 4360 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 4361 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 4362 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 4363 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 4364 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 4365 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 4366 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 4367 return legalizeBufferAtomic(MI, B, IntrID); 4368 case Intrinsic::amdgcn_atomic_inc: 4369 return legalizeAtomicIncDec(MI, B, true); 4370 case Intrinsic::amdgcn_atomic_dec: 4371 return legalizeAtomicIncDec(MI, B, false); 4372 case Intrinsic::trap: 4373 return legalizeTrapIntrinsic(MI, MRI, B); 4374 case Intrinsic::debugtrap: 4375 return legalizeDebugTrapIntrinsic(MI, MRI, B); 4376 default: { 4377 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 4378 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 4379 return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr); 4380 return true; 4381 } 4382 } 4383 4384 return true; 4385 } 4386