1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the targeting of the Machinelegalizer class for 10 /// AMDGPU. 11 /// \todo This should be generated by TableGen. 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPULegalizerInfo.h" 15 16 #include "AMDGPU.h" 17 #include "AMDGPUGlobalISelUtils.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 24 #include "llvm/CodeGen/TargetOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/Debug.h" 30 31 #define DEBUG_TYPE "amdgpu-legalinfo" 32 33 using namespace llvm; 34 using namespace LegalizeActions; 35 using namespace LegalizeMutations; 36 using namespace LegalityPredicates; 37 using namespace MIPatternMatch; 38 39 // Hack until load/store selection patterns support any tuple of legal types. 40 static cl::opt<bool> EnableNewLegality( 41 "amdgpu-global-isel-new-legality", 42 cl::desc("Use GlobalISel desired legality, rather than try to use" 43 "rules compatible with selection patterns"), 44 cl::init(false), 45 cl::ReallyHidden); 46 47 static constexpr unsigned MaxRegisterSize = 1024; 48 49 // Round the number of elements to the next power of two elements 50 static LLT getPow2VectorType(LLT Ty) { 51 unsigned NElts = Ty.getNumElements(); 52 unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); 53 return Ty.changeNumElements(Pow2NElts); 54 } 55 56 // Round the number of bits to the next power of two bits 57 static LLT getPow2ScalarType(LLT Ty) { 58 unsigned Bits = Ty.getSizeInBits(); 59 unsigned Pow2Bits = 1 << Log2_32_Ceil(Bits); 60 return LLT::scalar(Pow2Bits); 61 } 62 63 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) { 64 return [=](const LegalityQuery &Query) { 65 const LLT Ty = Query.Types[TypeIdx]; 66 return Ty.isVector() && 67 Ty.getNumElements() % 2 != 0 && 68 Ty.getElementType().getSizeInBits() < 32 && 69 Ty.getSizeInBits() % 32 != 0; 70 }; 71 } 72 73 static LegalityPredicate isWideVec16(unsigned TypeIdx) { 74 return [=](const LegalityQuery &Query) { 75 const LLT Ty = Query.Types[TypeIdx]; 76 const LLT EltTy = Ty.getScalarType(); 77 return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2; 78 }; 79 } 80 81 static LegalizeMutation oneMoreElement(unsigned TypeIdx) { 82 return [=](const LegalityQuery &Query) { 83 const LLT Ty = Query.Types[TypeIdx]; 84 const LLT EltTy = Ty.getElementType(); 85 return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy)); 86 }; 87 } 88 89 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) { 90 return [=](const LegalityQuery &Query) { 91 const LLT Ty = Query.Types[TypeIdx]; 92 const LLT EltTy = Ty.getElementType(); 93 unsigned Size = Ty.getSizeInBits(); 94 unsigned Pieces = (Size + 63) / 64; 95 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces; 96 return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy)); 97 }; 98 } 99 100 // Increase the number of vector elements to reach the next multiple of 32-bit 101 // type. 102 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) { 103 return [=](const LegalityQuery &Query) { 104 const LLT Ty = Query.Types[TypeIdx]; 105 106 const LLT EltTy = Ty.getElementType(); 107 const int Size = Ty.getSizeInBits(); 108 const int EltSize = EltTy.getSizeInBits(); 109 const int NextMul32 = (Size + 31) / 32; 110 111 assert(EltSize < 32); 112 113 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize; 114 return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy)); 115 }; 116 } 117 118 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) { 119 return [=](const LegalityQuery &Query) { 120 const LLT Ty = Query.Types[TypeIdx]; 121 unsigned Size = Ty.getSizeInBits(); 122 123 LLT CoercedTy; 124 if (Size < 32) { 125 // <2 x s8> -> s16 126 assert(Size == 16); 127 CoercedTy = LLT::scalar(16); 128 } else 129 CoercedTy = LLT::scalarOrVector(Size / 32, 32); 130 131 return std::make_pair(TypeIdx, CoercedTy); 132 }; 133 } 134 135 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) { 136 return [=](const LegalityQuery &Query) { 137 const LLT QueryTy = Query.Types[TypeIdx]; 138 return QueryTy.isVector() && QueryTy.getSizeInBits() < Size; 139 }; 140 } 141 142 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) { 143 return [=](const LegalityQuery &Query) { 144 const LLT QueryTy = Query.Types[TypeIdx]; 145 return QueryTy.isVector() && QueryTy.getSizeInBits() > Size; 146 }; 147 } 148 149 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) { 150 return [=](const LegalityQuery &Query) { 151 const LLT QueryTy = Query.Types[TypeIdx]; 152 return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0; 153 }; 154 } 155 156 static bool isRegisterSize(unsigned Size) { 157 return Size % 32 == 0 && Size <= MaxRegisterSize; 158 } 159 160 static bool isRegisterVectorElementType(LLT EltTy) { 161 const int EltSize = EltTy.getSizeInBits(); 162 return EltSize == 16 || EltSize % 32 == 0; 163 } 164 165 static bool isRegisterVectorType(LLT Ty) { 166 const int EltSize = Ty.getElementType().getSizeInBits(); 167 return EltSize == 32 || EltSize == 64 || 168 (EltSize == 16 && Ty.getNumElements() % 2 == 0) || 169 EltSize == 128 || EltSize == 256; 170 } 171 172 static bool isRegisterType(LLT Ty) { 173 if (!isRegisterSize(Ty.getSizeInBits())) 174 return false; 175 176 if (Ty.isVector()) 177 return isRegisterVectorType(Ty); 178 179 return true; 180 } 181 182 // Any combination of 32 or 64-bit elements up the maximum register size, and 183 // multiples of v2s16. 184 static LegalityPredicate isRegisterType(unsigned TypeIdx) { 185 return [=](const LegalityQuery &Query) { 186 return isRegisterType(Query.Types[TypeIdx]); 187 }; 188 } 189 190 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) { 191 return [=](const LegalityQuery &Query) { 192 const LLT QueryTy = Query.Types[TypeIdx]; 193 if (!QueryTy.isVector()) 194 return false; 195 const LLT EltTy = QueryTy.getElementType(); 196 return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32; 197 }; 198 } 199 200 static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) { 201 return [=](const LegalityQuery &Query) { 202 const LLT Ty = Query.Types[TypeIdx]; 203 return !Ty.isVector() && Ty.getSizeInBits() > 32 && 204 Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits(); 205 }; 206 } 207 208 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we 209 // handle some operations by just promoting the register during 210 // selection. There are also d16 loads on GFX9+ which preserve the high bits. 211 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, 212 bool IsLoad) { 213 switch (AS) { 214 case AMDGPUAS::PRIVATE_ADDRESS: 215 // FIXME: Private element size. 216 return 32; 217 case AMDGPUAS::LOCAL_ADDRESS: 218 return ST.useDS128() ? 128 : 64; 219 case AMDGPUAS::GLOBAL_ADDRESS: 220 case AMDGPUAS::CONSTANT_ADDRESS: 221 case AMDGPUAS::CONSTANT_ADDRESS_32BIT: 222 // Treat constant and global as identical. SMRD loads are sometimes usable for 223 // global loads (ideally constant address space should be eliminated) 224 // depending on the context. Legality cannot be context dependent, but 225 // RegBankSelect can split the load as necessary depending on the pointer 226 // register bank/uniformity and if the memory is invariant or not written in a 227 // kernel. 228 return IsLoad ? 512 : 128; 229 default: 230 // Flat addresses may contextually need to be split to 32-bit parts if they 231 // may alias scratch depending on the subtarget. 232 return 128; 233 } 234 } 235 236 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, 237 const LegalityQuery &Query, 238 unsigned Opcode) { 239 const LLT Ty = Query.Types[0]; 240 241 // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD 242 const bool IsLoad = Opcode != AMDGPU::G_STORE; 243 244 unsigned RegSize = Ty.getSizeInBits(); 245 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 246 unsigned Align = Query.MMODescrs[0].AlignInBits; 247 unsigned AS = Query.Types[1].getAddressSpace(); 248 249 // All of these need to be custom lowered to cast the pointer operand. 250 if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 251 return false; 252 253 // TODO: We should be able to widen loads if the alignment is high enough, but 254 // we also need to modify the memory access size. 255 #if 0 256 // Accept widening loads based on alignment. 257 if (IsLoad && MemSize < Size) 258 MemSize = std::max(MemSize, Align); 259 #endif 260 261 // Only 1-byte and 2-byte to 32-bit extloads are valid. 262 if (MemSize != RegSize && RegSize != 32) 263 return false; 264 265 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 266 return false; 267 268 switch (MemSize) { 269 case 8: 270 case 16: 271 case 32: 272 case 64: 273 case 128: 274 break; 275 case 96: 276 if (!ST.hasDwordx3LoadStores()) 277 return false; 278 break; 279 case 256: 280 case 512: 281 // These may contextually need to be broken down. 282 break; 283 default: 284 return false; 285 } 286 287 assert(RegSize >= MemSize); 288 289 if (Align < MemSize) { 290 const SITargetLowering *TLI = ST.getTargetLowering(); 291 if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8)) 292 return false; 293 } 294 295 return true; 296 } 297 298 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so 299 // workaround this. Eventually it should ignore the type for loads and only care 300 // about the size. Return true in cases where we will workaround this for now by 301 // bitcasting. 302 static bool loadStoreBitcastWorkaround(const LLT Ty) { 303 if (EnableNewLegality) 304 return false; 305 306 const unsigned Size = Ty.getSizeInBits(); 307 if (Size <= 64) 308 return false; 309 if (!Ty.isVector()) 310 return true; 311 unsigned EltSize = Ty.getElementType().getSizeInBits(); 312 return EltSize != 32 && EltSize != 64; 313 } 314 315 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query, 316 unsigned Opcode) { 317 const LLT Ty = Query.Types[0]; 318 return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query, Opcode) && 319 !loadStoreBitcastWorkaround(Ty); 320 } 321 322 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_, 323 const GCNTargetMachine &TM) 324 : ST(ST_) { 325 using namespace TargetOpcode; 326 327 auto GetAddrSpacePtr = [&TM](unsigned AS) { 328 return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); 329 }; 330 331 const LLT S1 = LLT::scalar(1); 332 const LLT S16 = LLT::scalar(16); 333 const LLT S32 = LLT::scalar(32); 334 const LLT S64 = LLT::scalar(64); 335 const LLT S128 = LLT::scalar(128); 336 const LLT S256 = LLT::scalar(256); 337 const LLT S512 = LLT::scalar(512); 338 const LLT MaxScalar = LLT::scalar(MaxRegisterSize); 339 340 const LLT V2S16 = LLT::vector(2, 16); 341 const LLT V4S16 = LLT::vector(4, 16); 342 343 const LLT V2S32 = LLT::vector(2, 32); 344 const LLT V3S32 = LLT::vector(3, 32); 345 const LLT V4S32 = LLT::vector(4, 32); 346 const LLT V5S32 = LLT::vector(5, 32); 347 const LLT V6S32 = LLT::vector(6, 32); 348 const LLT V7S32 = LLT::vector(7, 32); 349 const LLT V8S32 = LLT::vector(8, 32); 350 const LLT V9S32 = LLT::vector(9, 32); 351 const LLT V10S32 = LLT::vector(10, 32); 352 const LLT V11S32 = LLT::vector(11, 32); 353 const LLT V12S32 = LLT::vector(12, 32); 354 const LLT V13S32 = LLT::vector(13, 32); 355 const LLT V14S32 = LLT::vector(14, 32); 356 const LLT V15S32 = LLT::vector(15, 32); 357 const LLT V16S32 = LLT::vector(16, 32); 358 const LLT V32S32 = LLT::vector(32, 32); 359 360 const LLT V2S64 = LLT::vector(2, 64); 361 const LLT V3S64 = LLT::vector(3, 64); 362 const LLT V4S64 = LLT::vector(4, 64); 363 const LLT V5S64 = LLT::vector(5, 64); 364 const LLT V6S64 = LLT::vector(6, 64); 365 const LLT V7S64 = LLT::vector(7, 64); 366 const LLT V8S64 = LLT::vector(8, 64); 367 const LLT V16S64 = LLT::vector(16, 64); 368 369 std::initializer_list<LLT> AllS32Vectors = 370 {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, 371 V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32}; 372 std::initializer_list<LLT> AllS64Vectors = 373 {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64}; 374 375 const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); 376 const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); 377 const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT); 378 const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); 379 const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS); 380 const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); 381 const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); 382 383 const LLT CodePtr = FlatPtr; 384 385 const std::initializer_list<LLT> AddrSpaces64 = { 386 GlobalPtr, ConstantPtr, FlatPtr 387 }; 388 389 const std::initializer_list<LLT> AddrSpaces32 = { 390 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr 391 }; 392 393 const std::initializer_list<LLT> FPTypesBase = { 394 S32, S64 395 }; 396 397 const std::initializer_list<LLT> FPTypes16 = { 398 S32, S64, S16 399 }; 400 401 const std::initializer_list<LLT> FPTypesPK16 = { 402 S32, S64, S16, V2S16 403 }; 404 405 const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32; 406 407 setAction({G_BRCOND, S1}, Legal); // VCC branches 408 setAction({G_BRCOND, S32}, Legal); // SCC branches 409 410 // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more 411 // elements for v3s16 412 getActionDefinitionsBuilder(G_PHI) 413 .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256}) 414 .legalFor(AllS32Vectors) 415 .legalFor(AllS64Vectors) 416 .legalFor(AddrSpaces64) 417 .legalFor(AddrSpaces32) 418 .clampScalar(0, S32, S256) 419 .widenScalarToNextPow2(0, 32) 420 .clampMaxNumElements(0, S32, 16) 421 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 422 .legalIf(isPointer(0)); 423 424 if (ST.hasVOP3PInsts()) { 425 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 426 .legalFor({S32, S16, V2S16}) 427 .clampScalar(0, S16, S32) 428 .clampMaxNumElements(0, S16, 2) 429 .scalarize(0) 430 .widenScalarToNextPow2(0, 32); 431 } else if (ST.has16BitInsts()) { 432 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 433 .legalFor({S32, S16}) 434 .clampScalar(0, S16, S32) 435 .scalarize(0) 436 .widenScalarToNextPow2(0, 32); 437 } else { 438 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) 439 .legalFor({S32}) 440 .clampScalar(0, S32, S32) 441 .scalarize(0); 442 } 443 444 // FIXME: Not really legal. Placeholder for custom lowering. 445 getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_SREM, G_UREM}) 446 .customFor({S32, S64}) 447 .clampScalar(0, S32, S64) 448 .widenScalarToNextPow2(0, 32) 449 .scalarize(0); 450 451 getActionDefinitionsBuilder({G_UMULH, G_SMULH}) 452 .legalFor({S32}) 453 .clampScalar(0, S32, S32) 454 .scalarize(0); 455 456 // Report legal for any types we can handle anywhere. For the cases only legal 457 // on the SALU, RegBankSelect will be able to re-legalize. 458 getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) 459 .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16}) 460 .clampScalar(0, S32, S64) 461 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 462 .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0)) 463 .widenScalarToNextPow2(0) 464 .scalarize(0); 465 466 getActionDefinitionsBuilder({G_UADDO, G_USUBO, 467 G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) 468 .legalFor({{S32, S1}, {S32, S32}}) 469 .minScalar(0, S32) 470 // TODO: .scalarize(0) 471 .lower(); 472 473 getActionDefinitionsBuilder(G_BITCAST) 474 // Don't worry about the size constraint. 475 .legalIf(all(isRegisterType(0), isRegisterType(1))) 476 .lower(); 477 478 479 getActionDefinitionsBuilder(G_CONSTANT) 480 .legalFor({S1, S32, S64, S16, GlobalPtr, 481 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) 482 .clampScalar(0, S32, S64) 483 .widenScalarToNextPow2(0) 484 .legalIf(isPointer(0)); 485 486 getActionDefinitionsBuilder(G_FCONSTANT) 487 .legalFor({S32, S64, S16}) 488 .clampScalar(0, S16, S64); 489 490 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE}) 491 .legalIf(isRegisterType(0)) 492 // s1 and s16 are special cases because they have legal operations on 493 // them, but don't really occupy registers in the normal way. 494 .legalFor({S1, S16}) 495 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 496 .clampScalarOrElt(0, S32, MaxScalar) 497 .widenScalarToNextPow2(0, 32) 498 .clampMaxNumElements(0, S32, 16); 499 500 setAction({G_FRAME_INDEX, PrivatePtr}, Legal); 501 502 // If the amount is divergent, we have to do a wave reduction to get the 503 // maximum value, so this is expanded during RegBankSelect. 504 getActionDefinitionsBuilder(G_DYN_STACKALLOC) 505 .legalFor({{PrivatePtr, S32}}); 506 507 getActionDefinitionsBuilder(G_GLOBAL_VALUE) 508 .unsupportedFor({PrivatePtr}) 509 .custom(); 510 setAction({G_BLOCK_ADDR, CodePtr}, Legal); 511 512 auto &FPOpActions = getActionDefinitionsBuilder( 513 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE}) 514 .legalFor({S32, S64}); 515 auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS}) 516 .customFor({S32, S64}); 517 auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV) 518 .customFor({S32, S64}); 519 520 if (ST.has16BitInsts()) { 521 if (ST.hasVOP3PInsts()) 522 FPOpActions.legalFor({S16, V2S16}); 523 else 524 FPOpActions.legalFor({S16}); 525 526 TrigActions.customFor({S16}); 527 FDIVActions.customFor({S16}); 528 } 529 530 auto &MinNumMaxNum = getActionDefinitionsBuilder({ 531 G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE}); 532 533 if (ST.hasVOP3PInsts()) { 534 MinNumMaxNum.customFor(FPTypesPK16) 535 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 536 .clampMaxNumElements(0, S16, 2) 537 .clampScalar(0, S16, S64) 538 .scalarize(0); 539 } else if (ST.has16BitInsts()) { 540 MinNumMaxNum.customFor(FPTypes16) 541 .clampScalar(0, S16, S64) 542 .scalarize(0); 543 } else { 544 MinNumMaxNum.customFor(FPTypesBase) 545 .clampScalar(0, S32, S64) 546 .scalarize(0); 547 } 548 549 if (ST.hasVOP3PInsts()) 550 FPOpActions.clampMaxNumElements(0, S16, 2); 551 552 FPOpActions 553 .scalarize(0) 554 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 555 556 TrigActions 557 .scalarize(0) 558 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 559 560 FDIVActions 561 .scalarize(0) 562 .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); 563 564 getActionDefinitionsBuilder({G_FNEG, G_FABS}) 565 .legalFor(FPTypesPK16) 566 .clampMaxNumElements(0, S16, 2) 567 .scalarize(0) 568 .clampScalar(0, S16, S64); 569 570 if (ST.has16BitInsts()) { 571 getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR}) 572 .legalFor({S32, S64, S16}) 573 .scalarize(0) 574 .clampScalar(0, S16, S64); 575 } else { 576 getActionDefinitionsBuilder(G_FSQRT) 577 .legalFor({S32, S64}) 578 .scalarize(0) 579 .clampScalar(0, S32, S64); 580 581 if (ST.hasFractBug()) { 582 getActionDefinitionsBuilder(G_FFLOOR) 583 .customFor({S64}) 584 .legalFor({S32, S64}) 585 .scalarize(0) 586 .clampScalar(0, S32, S64); 587 } else { 588 getActionDefinitionsBuilder(G_FFLOOR) 589 .legalFor({S32, S64}) 590 .scalarize(0) 591 .clampScalar(0, S32, S64); 592 } 593 } 594 595 getActionDefinitionsBuilder(G_FPTRUNC) 596 .legalFor({{S32, S64}, {S16, S32}}) 597 .scalarize(0) 598 .lower(); 599 600 getActionDefinitionsBuilder(G_FPEXT) 601 .legalFor({{S64, S32}, {S32, S16}}) 602 .lowerFor({{S64, S16}}) // FIXME: Implement 603 .scalarize(0); 604 605 getActionDefinitionsBuilder(G_FSUB) 606 // Use actual fsub instruction 607 .legalFor({S32}) 608 // Must use fadd + fneg 609 .lowerFor({S64, S16, V2S16}) 610 .scalarize(0) 611 .clampScalar(0, S32, S64); 612 613 // Whether this is legal depends on the floating point mode for the function. 614 auto &FMad = getActionDefinitionsBuilder(G_FMAD); 615 if (ST.hasMadF16() && ST.hasMadMacF32Insts()) 616 FMad.customFor({S32, S16}); 617 else if (ST.hasMadMacF32Insts()) 618 FMad.customFor({S32}); 619 else if (ST.hasMadF16()) 620 FMad.customFor({S16}); 621 FMad.scalarize(0) 622 .lower(); 623 624 // TODO: Do we need to clamp maximum bitwidth? 625 getActionDefinitionsBuilder(G_TRUNC) 626 .legalIf(isScalar(0)) 627 .legalFor({{V2S16, V2S32}}) 628 .clampMaxNumElements(0, S16, 2) 629 // Avoid scalarizing in cases that should be truly illegal. In unresolvable 630 // situations (like an invalid implicit use), we don't want to infinite loop 631 // in the legalizer. 632 .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0)) 633 .alwaysLegal(); 634 635 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) 636 .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, 637 {S32, S1}, {S64, S1}, {S16, S1}}) 638 .scalarize(0) 639 .clampScalar(0, S32, S64) 640 .widenScalarToNextPow2(1, 32); 641 642 // TODO: Split s1->s64 during regbankselect for VALU. 643 auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) 644 .legalFor({{S32, S32}, {S64, S32}, {S16, S32}}) 645 .lowerFor({{S32, S64}}) 646 .lowerIf(typeIs(1, S1)) 647 .customFor({{S64, S64}}); 648 if (ST.has16BitInsts()) 649 IToFP.legalFor({{S16, S16}}); 650 IToFP.clampScalar(1, S32, S64) 651 .scalarize(0) 652 .widenScalarToNextPow2(1); 653 654 auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) 655 .legalFor({{S32, S32}, {S32, S64}, {S32, S16}}) 656 .customFor({{S64, S64}}); 657 if (ST.has16BitInsts()) 658 FPToI.legalFor({{S16, S16}}); 659 else 660 FPToI.minScalar(1, S32); 661 662 FPToI.minScalar(0, S32) 663 .scalarize(0) 664 .lower(); 665 666 getActionDefinitionsBuilder(G_INTRINSIC_ROUND) 667 .scalarize(0) 668 .lower(); 669 670 if (ST.has16BitInsts()) { 671 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 672 .legalFor({S16, S32, S64}) 673 .clampScalar(0, S16, S64) 674 .scalarize(0); 675 } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { 676 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 677 .legalFor({S32, S64}) 678 .clampScalar(0, S32, S64) 679 .scalarize(0); 680 } else { 681 getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) 682 .legalFor({S32}) 683 .customFor({S64}) 684 .clampScalar(0, S32, S64) 685 .scalarize(0); 686 } 687 688 // FIXME: Clamp offset operand. 689 getActionDefinitionsBuilder(G_PTR_ADD) 690 .legalIf(isPointer(0)) 691 .scalarize(0); 692 693 getActionDefinitionsBuilder(G_PTRMASK) 694 .legalIf(typeInSet(1, {S64, S32})) 695 .minScalar(1, S32) 696 .maxScalarIf(sizeIs(0, 32), 1, S32) 697 .maxScalarIf(sizeIs(0, 64), 1, S64) 698 .scalarize(0); 699 700 auto &CmpBuilder = 701 getActionDefinitionsBuilder(G_ICMP) 702 // The compare output type differs based on the register bank of the output, 703 // so make both s1 and s32 legal. 704 // 705 // Scalar compares producing output in scc will be promoted to s32, as that 706 // is the allocatable register type that will be needed for the copy from 707 // scc. This will be promoted during RegBankSelect, and we assume something 708 // before that won't try to use s32 result types. 709 // 710 // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg 711 // bank. 712 .legalForCartesianProduct( 713 {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) 714 .legalForCartesianProduct( 715 {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}); 716 if (ST.has16BitInsts()) { 717 CmpBuilder.legalFor({{S1, S16}}); 718 } 719 720 CmpBuilder 721 .widenScalarToNextPow2(1) 722 .clampScalar(1, S32, S64) 723 .scalarize(0) 724 .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1))); 725 726 getActionDefinitionsBuilder(G_FCMP) 727 .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase) 728 .widenScalarToNextPow2(1) 729 .clampScalar(1, S32, S64) 730 .scalarize(0); 731 732 // FIXME: fpow has a selection pattern that should move to custom lowering. 733 auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2}); 734 if (ST.has16BitInsts()) 735 Exp2Ops.legalFor({S32, S16}); 736 else 737 Exp2Ops.legalFor({S32}); 738 Exp2Ops.clampScalar(0, MinScalarFPTy, S32); 739 Exp2Ops.scalarize(0); 740 741 auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW}); 742 if (ST.has16BitInsts()) 743 ExpOps.customFor({{S32}, {S16}}); 744 else 745 ExpOps.customFor({S32}); 746 ExpOps.clampScalar(0, MinScalarFPTy, S32) 747 .scalarize(0); 748 749 // The 64-bit versions produce 32-bit results, but only on the SALU. 750 getActionDefinitionsBuilder(G_CTPOP) 751 .legalFor({{S32, S32}, {S32, S64}}) 752 .clampScalar(0, S32, S32) 753 .clampScalar(1, S32, S64) 754 .scalarize(0) 755 .widenScalarToNextPow2(0, 32) 756 .widenScalarToNextPow2(1, 32); 757 758 // The hardware instructions return a different result on 0 than the generic 759 // instructions expect. The hardware produces -1, but these produce the 760 // bitwidth. 761 getActionDefinitionsBuilder({G_CTLZ, G_CTTZ}) 762 .scalarize(0) 763 .clampScalar(0, S32, S32) 764 .clampScalar(1, S32, S64) 765 .widenScalarToNextPow2(0, 32) 766 .widenScalarToNextPow2(1, 32) 767 .lower(); 768 769 // The 64-bit versions produce 32-bit results, but only on the SALU. 770 getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF}) 771 .legalFor({{S32, S32}, {S32, S64}}) 772 .clampScalar(0, S32, S32) 773 .clampScalar(1, S32, S64) 774 .scalarize(0) 775 .widenScalarToNextPow2(0, 32) 776 .widenScalarToNextPow2(1, 32); 777 778 getActionDefinitionsBuilder(G_BITREVERSE) 779 .legalFor({S32}) 780 .clampScalar(0, S32, S32) 781 .scalarize(0); 782 783 if (ST.has16BitInsts()) { 784 getActionDefinitionsBuilder(G_BSWAP) 785 .legalFor({S16, S32, V2S16}) 786 .clampMaxNumElements(0, S16, 2) 787 // FIXME: Fixing non-power-of-2 before clamp is workaround for 788 // narrowScalar limitation. 789 .widenScalarToNextPow2(0) 790 .clampScalar(0, S16, S32) 791 .scalarize(0); 792 793 if (ST.hasVOP3PInsts()) { 794 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 795 .legalFor({S32, S16, V2S16}) 796 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 797 .clampMaxNumElements(0, S16, 2) 798 .minScalar(0, S16) 799 .widenScalarToNextPow2(0) 800 .scalarize(0) 801 .lower(); 802 } else { 803 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 804 .legalFor({S32, S16}) 805 .widenScalarToNextPow2(0) 806 .minScalar(0, S16) 807 .scalarize(0) 808 .lower(); 809 } 810 } else { 811 // TODO: Should have same legality without v_perm_b32 812 getActionDefinitionsBuilder(G_BSWAP) 813 .legalFor({S32}) 814 .lowerIf(scalarNarrowerThan(0, 32)) 815 // FIXME: Fixing non-power-of-2 before clamp is workaround for 816 // narrowScalar limitation. 817 .widenScalarToNextPow2(0) 818 .maxScalar(0, S32) 819 .scalarize(0) 820 .lower(); 821 822 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) 823 .legalFor({S32}) 824 .minScalar(0, S32) 825 .widenScalarToNextPow2(0) 826 .scalarize(0) 827 .lower(); 828 } 829 830 getActionDefinitionsBuilder(G_INTTOPTR) 831 // List the common cases 832 .legalForCartesianProduct(AddrSpaces64, {S64}) 833 .legalForCartesianProduct(AddrSpaces32, {S32}) 834 .scalarize(0) 835 // Accept any address space as long as the size matches 836 .legalIf(sameSize(0, 1)) 837 .widenScalarIf(smallerThan(1, 0), 838 [](const LegalityQuery &Query) { 839 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 840 }) 841 .narrowScalarIf(largerThan(1, 0), 842 [](const LegalityQuery &Query) { 843 return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); 844 }); 845 846 getActionDefinitionsBuilder(G_PTRTOINT) 847 // List the common cases 848 .legalForCartesianProduct(AddrSpaces64, {S64}) 849 .legalForCartesianProduct(AddrSpaces32, {S32}) 850 .scalarize(0) 851 // Accept any address space as long as the size matches 852 .legalIf(sameSize(0, 1)) 853 .widenScalarIf(smallerThan(0, 1), 854 [](const LegalityQuery &Query) { 855 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 856 }) 857 .narrowScalarIf( 858 largerThan(0, 1), 859 [](const LegalityQuery &Query) { 860 return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); 861 }); 862 863 getActionDefinitionsBuilder(G_ADDRSPACE_CAST) 864 .scalarize(0) 865 .custom(); 866 867 const auto needToSplitMemOp = [=](const LegalityQuery &Query, 868 bool IsLoad) -> bool { 869 const LLT DstTy = Query.Types[0]; 870 871 // Split vector extloads. 872 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 873 unsigned Align = Query.MMODescrs[0].AlignInBits; 874 875 if (MemSize < DstTy.getSizeInBits()) 876 MemSize = std::max(MemSize, Align); 877 878 if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize) 879 return true; 880 881 const LLT PtrTy = Query.Types[1]; 882 unsigned AS = PtrTy.getAddressSpace(); 883 if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad)) 884 return true; 885 886 // Catch weird sized loads that don't evenly divide into the access sizes 887 // TODO: May be able to widen depending on alignment etc. 888 unsigned NumRegs = (MemSize + 31) / 32; 889 if (NumRegs == 3) { 890 if (!ST.hasDwordx3LoadStores()) 891 return true; 892 } else { 893 // If the alignment allows, these should have been widened. 894 if (!isPowerOf2_32(NumRegs)) 895 return true; 896 } 897 898 if (Align < MemSize) { 899 const SITargetLowering *TLI = ST.getTargetLowering(); 900 return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8); 901 } 902 903 return false; 904 }; 905 906 const auto shouldWidenLoadResult = [=](const LegalityQuery &Query, 907 unsigned Opc) -> bool { 908 unsigned Size = Query.Types[0].getSizeInBits(); 909 if (isPowerOf2_32(Size)) 910 return false; 911 912 if (Size == 96 && ST.hasDwordx3LoadStores()) 913 return false; 914 915 unsigned AddrSpace = Query.Types[1].getAddressSpace(); 916 if (Size >= maxSizeForAddrSpace(ST, AddrSpace, Opc)) 917 return false; 918 919 unsigned Align = Query.MMODescrs[0].AlignInBits; 920 unsigned RoundedSize = NextPowerOf2(Size); 921 return (Align >= RoundedSize); 922 }; 923 924 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccess() ? 0 : 32; 925 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccess() ? 0 : 16; 926 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccess() ? 0 : 8; 927 928 // TODO: Refine based on subtargets which support unaligned access or 128-bit 929 // LDS 930 // TODO: Unsupported flat for SI. 931 932 for (unsigned Op : {G_LOAD, G_STORE}) { 933 const bool IsStore = Op == G_STORE; 934 935 auto &Actions = getActionDefinitionsBuilder(Op); 936 // Explicitly list some common cases. 937 // TODO: Does this help compile time at all? 938 Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32}, 939 {V2S32, GlobalPtr, 64, GlobalAlign32}, 940 {V4S32, GlobalPtr, 128, GlobalAlign32}, 941 {S64, GlobalPtr, 64, GlobalAlign32}, 942 {V2S64, GlobalPtr, 128, GlobalAlign32}, 943 {V2S16, GlobalPtr, 32, GlobalAlign32}, 944 {S32, GlobalPtr, 8, GlobalAlign8}, 945 {S32, GlobalPtr, 16, GlobalAlign16}, 946 947 {S32, LocalPtr, 32, 32}, 948 {S64, LocalPtr, 64, 32}, 949 {V2S32, LocalPtr, 64, 32}, 950 {S32, LocalPtr, 8, 8}, 951 {S32, LocalPtr, 16, 16}, 952 {V2S16, LocalPtr, 32, 32}, 953 954 {S32, PrivatePtr, 32, 32}, 955 {S32, PrivatePtr, 8, 8}, 956 {S32, PrivatePtr, 16, 16}, 957 {V2S16, PrivatePtr, 32, 32}, 958 959 {S32, ConstantPtr, 32, GlobalAlign32}, 960 {V2S32, ConstantPtr, 64, GlobalAlign32}, 961 {V4S32, ConstantPtr, 128, GlobalAlign32}, 962 {S64, ConstantPtr, 64, GlobalAlign32}, 963 {V2S32, ConstantPtr, 32, GlobalAlign32}}); 964 Actions.legalIf( 965 [=](const LegalityQuery &Query) -> bool { 966 return isLoadStoreLegal(ST, Query, Op); 967 }); 968 969 // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to 970 // 64-bits. 971 // 972 // TODO: Should generalize bitcast action into coerce, which will also cover 973 // inserting addrspacecasts. 974 Actions.customIf(typeIs(1, Constant32Ptr)); 975 976 // Turn any illegal element vectors into something easier to deal 977 // with. These will ultimately produce 32-bit scalar shifts to extract the 978 // parts anyway. 979 // 980 // For odd 16-bit element vectors, prefer to split those into pieces with 981 // 16-bit vector parts. 982 Actions.bitcastIf( 983 [=](const LegalityQuery &Query) -> bool { 984 const LLT Ty = Query.Types[0]; 985 986 // Do not cast an extload/truncstore. 987 if (Ty.getSizeInBits() != Query.MMODescrs[0].SizeInBits) 988 return false; 989 990 if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty)) 991 return true; 992 const unsigned Size = Ty.getSizeInBits(); 993 return Ty.isVector() && isRegisterSize(Size) && 994 !isRegisterVectorElementType(Ty.getElementType()); 995 }, bitcastToRegisterType(0)); 996 997 Actions 998 .customIf(typeIs(1, Constant32Ptr)) 999 // Widen suitably aligned loads by loading extra elements. 1000 .moreElementsIf([=](const LegalityQuery &Query) { 1001 const LLT Ty = Query.Types[0]; 1002 return Op == G_LOAD && Ty.isVector() && 1003 shouldWidenLoadResult(Query, Op); 1004 }, moreElementsToNextPow2(0)) 1005 .widenScalarIf([=](const LegalityQuery &Query) { 1006 const LLT Ty = Query.Types[0]; 1007 return Op == G_LOAD && !Ty.isVector() && 1008 shouldWidenLoadResult(Query, Op); 1009 }, widenScalarOrEltToNextPow2(0)) 1010 .narrowScalarIf( 1011 [=](const LegalityQuery &Query) -> bool { 1012 return !Query.Types[0].isVector() && 1013 needToSplitMemOp(Query, Op == G_LOAD); 1014 }, 1015 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1016 const LLT DstTy = Query.Types[0]; 1017 const LLT PtrTy = Query.Types[1]; 1018 1019 const unsigned DstSize = DstTy.getSizeInBits(); 1020 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 1021 1022 // Split extloads. 1023 if (DstSize > MemSize) 1024 return std::make_pair(0, LLT::scalar(MemSize)); 1025 1026 if (!isPowerOf2_32(DstSize)) { 1027 // We're probably decomposing an odd sized store. Try to split 1028 // to the widest type. TODO: Account for alignment. As-is it 1029 // should be OK, since the new parts will be further legalized. 1030 unsigned FloorSize = PowerOf2Floor(DstSize); 1031 return std::make_pair(0, LLT::scalar(FloorSize)); 1032 } 1033 1034 if (DstSize > 32 && (DstSize % 32 != 0)) { 1035 // FIXME: Need a way to specify non-extload of larger size if 1036 // suitably aligned. 1037 return std::make_pair(0, LLT::scalar(32 * (DstSize / 32))); 1038 } 1039 1040 unsigned MaxSize = maxSizeForAddrSpace(ST, 1041 PtrTy.getAddressSpace(), 1042 Op == G_LOAD); 1043 if (MemSize > MaxSize) 1044 return std::make_pair(0, LLT::scalar(MaxSize)); 1045 1046 unsigned Align = Query.MMODescrs[0].AlignInBits; 1047 return std::make_pair(0, LLT::scalar(Align)); 1048 }) 1049 .fewerElementsIf( 1050 [=](const LegalityQuery &Query) -> bool { 1051 return Query.Types[0].isVector() && 1052 needToSplitMemOp(Query, Op == G_LOAD); 1053 }, 1054 [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> { 1055 const LLT DstTy = Query.Types[0]; 1056 const LLT PtrTy = Query.Types[1]; 1057 1058 LLT EltTy = DstTy.getElementType(); 1059 unsigned MaxSize = maxSizeForAddrSpace(ST, 1060 PtrTy.getAddressSpace(), 1061 Op == G_LOAD); 1062 1063 // FIXME: Handle widened to power of 2 results better. This ends 1064 // up scalarizing. 1065 // FIXME: 3 element stores scalarized on SI 1066 1067 // Split if it's too large for the address space. 1068 if (Query.MMODescrs[0].SizeInBits > MaxSize) { 1069 unsigned NumElts = DstTy.getNumElements(); 1070 unsigned EltSize = EltTy.getSizeInBits(); 1071 1072 if (MaxSize % EltSize == 0) { 1073 return std::make_pair( 1074 0, LLT::scalarOrVector(MaxSize / EltSize, EltTy)); 1075 } 1076 1077 unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize; 1078 1079 // FIXME: Refine when odd breakdowns handled 1080 // The scalars will need to be re-legalized. 1081 if (NumPieces == 1 || NumPieces >= NumElts || 1082 NumElts % NumPieces != 0) 1083 return std::make_pair(0, EltTy); 1084 1085 return std::make_pair(0, 1086 LLT::vector(NumElts / NumPieces, EltTy)); 1087 } 1088 1089 // FIXME: We could probably handle weird extending loads better. 1090 unsigned MemSize = Query.MMODescrs[0].SizeInBits; 1091 if (DstTy.getSizeInBits() > MemSize) 1092 return std::make_pair(0, EltTy); 1093 1094 unsigned EltSize = EltTy.getSizeInBits(); 1095 unsigned DstSize = DstTy.getSizeInBits(); 1096 if (!isPowerOf2_32(DstSize)) { 1097 // We're probably decomposing an odd sized store. Try to split 1098 // to the widest type. TODO: Account for alignment. As-is it 1099 // should be OK, since the new parts will be further legalized. 1100 unsigned FloorSize = PowerOf2Floor(DstSize); 1101 return std::make_pair( 1102 0, LLT::scalarOrVector(FloorSize / EltSize, EltTy)); 1103 } 1104 1105 // Need to split because of alignment. 1106 unsigned Align = Query.MMODescrs[0].AlignInBits; 1107 if (EltSize > Align && 1108 (EltSize / Align < DstTy.getNumElements())) { 1109 return std::make_pair(0, LLT::vector(EltSize / Align, EltTy)); 1110 } 1111 1112 // May need relegalization for the scalars. 1113 return std::make_pair(0, EltTy); 1114 }) 1115 .minScalar(0, S32); 1116 1117 if (IsStore) 1118 Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32)); 1119 1120 // TODO: Need a bitcast lower option? 1121 Actions 1122 .widenScalarToNextPow2(0) 1123 .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0)); 1124 } 1125 1126 auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) 1127 .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8}, 1128 {S32, GlobalPtr, 16, 2 * 8}, 1129 {S32, LocalPtr, 8, 8}, 1130 {S32, LocalPtr, 16, 16}, 1131 {S32, PrivatePtr, 8, 8}, 1132 {S32, PrivatePtr, 16, 16}, 1133 {S32, ConstantPtr, 8, 8}, 1134 {S32, ConstantPtr, 16, 2 * 8}}); 1135 if (ST.hasFlatAddressSpace()) { 1136 ExtLoads.legalForTypesWithMemDesc( 1137 {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}}); 1138 } 1139 1140 ExtLoads.clampScalar(0, S32, S32) 1141 .widenScalarToNextPow2(0) 1142 .unsupportedIfMemSizeNotPow2() 1143 .lower(); 1144 1145 auto &Atomics = getActionDefinitionsBuilder( 1146 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, 1147 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, 1148 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, 1149 G_ATOMICRMW_UMIN}) 1150 .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, 1151 {S64, GlobalPtr}, {S64, LocalPtr}}); 1152 if (ST.hasFlatAddressSpace()) { 1153 Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); 1154 } 1155 1156 if (ST.hasLDSFPAtomics()) { 1157 getActionDefinitionsBuilder(G_ATOMICRMW_FADD) 1158 .legalFor({{S32, LocalPtr}}); 1159 } 1160 1161 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output 1162 // demarshalling 1163 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG) 1164 .customFor({{S32, GlobalPtr}, {S64, GlobalPtr}, 1165 {S32, FlatPtr}, {S64, FlatPtr}}) 1166 .legalFor({{S32, LocalPtr}, {S64, LocalPtr}, 1167 {S32, RegionPtr}, {S64, RegionPtr}}); 1168 // TODO: Pointer types, any 32-bit or 64-bit vector 1169 1170 // Condition should be s32 for scalar, s1 for vector. 1171 getActionDefinitionsBuilder(G_SELECT) 1172 .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, 1173 GlobalPtr, LocalPtr, FlatPtr, PrivatePtr, 1174 LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1, S32}) 1175 .clampScalar(0, S16, S64) 1176 .scalarize(1) 1177 .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) 1178 .fewerElementsIf(numElementsNotEven(0), scalarize(0)) 1179 .clampMaxNumElements(0, S32, 2) 1180 .clampMaxNumElements(0, LocalPtr, 2) 1181 .clampMaxNumElements(0, PrivatePtr, 2) 1182 .scalarize(0) 1183 .widenScalarToNextPow2(0) 1184 .legalIf(all(isPointer(0), typeInSet(1, {S1, S32}))); 1185 1186 // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can 1187 // be more flexible with the shift amount type. 1188 auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) 1189 .legalFor({{S32, S32}, {S64, S32}}); 1190 if (ST.has16BitInsts()) { 1191 if (ST.hasVOP3PInsts()) { 1192 Shifts.legalFor({{S16, S16}, {V2S16, V2S16}}) 1193 .clampMaxNumElements(0, S16, 2); 1194 } else 1195 Shifts.legalFor({{S16, S16}}); 1196 1197 // TODO: Support 16-bit shift amounts for all types 1198 Shifts.widenScalarIf( 1199 [=](const LegalityQuery &Query) { 1200 // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a 1201 // 32-bit amount. 1202 const LLT ValTy = Query.Types[0]; 1203 const LLT AmountTy = Query.Types[1]; 1204 return ValTy.getSizeInBits() <= 16 && 1205 AmountTy.getSizeInBits() < 16; 1206 }, changeTo(1, S16)); 1207 Shifts.maxScalarIf(typeIs(0, S16), 1, S16); 1208 Shifts.clampScalar(1, S32, S32); 1209 Shifts.clampScalar(0, S16, S64); 1210 Shifts.widenScalarToNextPow2(0, 16); 1211 } else { 1212 // Make sure we legalize the shift amount type first, as the general 1213 // expansion for the shifted type will produce much worse code if it hasn't 1214 // been truncated already. 1215 Shifts.clampScalar(1, S32, S32); 1216 Shifts.clampScalar(0, S32, S64); 1217 Shifts.widenScalarToNextPow2(0, 32); 1218 } 1219 Shifts.scalarize(0); 1220 1221 for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { 1222 unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; 1223 unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; 1224 unsigned IdxTypeIdx = 2; 1225 1226 getActionDefinitionsBuilder(Op) 1227 .customIf([=](const LegalityQuery &Query) { 1228 const LLT EltTy = Query.Types[EltTypeIdx]; 1229 const LLT VecTy = Query.Types[VecTypeIdx]; 1230 const LLT IdxTy = Query.Types[IdxTypeIdx]; 1231 return (EltTy.getSizeInBits() == 16 || 1232 EltTy.getSizeInBits() % 32 == 0) && 1233 VecTy.getSizeInBits() % 32 == 0 && 1234 VecTy.getSizeInBits() <= MaxRegisterSize && 1235 IdxTy.getSizeInBits() == 32; 1236 }) 1237 .clampScalar(EltTypeIdx, S32, S64) 1238 .clampScalar(VecTypeIdx, S32, S64) 1239 .clampScalar(IdxTypeIdx, S32, S32); 1240 } 1241 1242 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) 1243 .unsupportedIf([=](const LegalityQuery &Query) { 1244 const LLT &EltTy = Query.Types[1].getElementType(); 1245 return Query.Types[0] != EltTy; 1246 }); 1247 1248 for (unsigned Op : {G_EXTRACT, G_INSERT}) { 1249 unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; 1250 unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; 1251 1252 // FIXME: Doesn't handle extract of illegal sizes. 1253 getActionDefinitionsBuilder(Op) 1254 .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32))) 1255 // FIXME: Multiples of 16 should not be legal. 1256 .legalIf([=](const LegalityQuery &Query) { 1257 const LLT BigTy = Query.Types[BigTyIdx]; 1258 const LLT LitTy = Query.Types[LitTyIdx]; 1259 return (BigTy.getSizeInBits() % 32 == 0) && 1260 (LitTy.getSizeInBits() % 16 == 0); 1261 }) 1262 .widenScalarIf( 1263 [=](const LegalityQuery &Query) { 1264 const LLT BigTy = Query.Types[BigTyIdx]; 1265 return (BigTy.getScalarSizeInBits() < 16); 1266 }, 1267 LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) 1268 .widenScalarIf( 1269 [=](const LegalityQuery &Query) { 1270 const LLT LitTy = Query.Types[LitTyIdx]; 1271 return (LitTy.getScalarSizeInBits() < 16); 1272 }, 1273 LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) 1274 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1275 .widenScalarToNextPow2(BigTyIdx, 32); 1276 1277 } 1278 1279 auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR) 1280 .legalForCartesianProduct(AllS32Vectors, {S32}) 1281 .legalForCartesianProduct(AllS64Vectors, {S64}) 1282 .clampNumElements(0, V16S32, V32S32) 1283 .clampNumElements(0, V2S64, V16S64) 1284 .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16)); 1285 1286 if (ST.hasScalarPackInsts()) { 1287 BuildVector 1288 // FIXME: Should probably widen s1 vectors straight to s32 1289 .minScalarOrElt(0, S16) 1290 // Widen source elements and produce a G_BUILD_VECTOR_TRUNC 1291 .minScalar(1, S32); 1292 1293 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1294 .legalFor({V2S16, S32}) 1295 .lower(); 1296 BuildVector.minScalarOrElt(0, S32); 1297 } else { 1298 BuildVector.customFor({V2S16, S16}); 1299 BuildVector.minScalarOrElt(0, S32); 1300 1301 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) 1302 .customFor({V2S16, S32}) 1303 .lower(); 1304 } 1305 1306 BuildVector.legalIf(isRegisterType(0)); 1307 1308 // FIXME: Clamp maximum size 1309 getActionDefinitionsBuilder(G_CONCAT_VECTORS) 1310 .legalIf(isRegisterType(0)); 1311 1312 // TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse 1313 // pre-legalize. 1314 if (ST.hasVOP3PInsts()) { 1315 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR) 1316 .customFor({V2S16, V2S16}) 1317 .lower(); 1318 } else 1319 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower(); 1320 1321 // Merge/Unmerge 1322 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { 1323 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; 1324 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; 1325 1326 auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { 1327 const LLT Ty = Query.Types[TypeIdx]; 1328 if (Ty.isVector()) { 1329 const LLT &EltTy = Ty.getElementType(); 1330 if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512) 1331 return true; 1332 if (!isPowerOf2_32(EltTy.getSizeInBits())) 1333 return true; 1334 } 1335 return false; 1336 }; 1337 1338 auto &Builder = getActionDefinitionsBuilder(Op) 1339 .lowerFor({{S16, V2S16}}) 1340 .lowerIf([=](const LegalityQuery &Query) { 1341 const LLT BigTy = Query.Types[BigTyIdx]; 1342 return BigTy.getSizeInBits() == 32; 1343 }) 1344 // Try to widen to s16 first for small types. 1345 // TODO: Only do this on targets with legal s16 shifts 1346 .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16) 1347 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) 1348 .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) 1349 .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32), 1350 elementTypeIs(1, S16)), 1351 changeTo(1, V2S16)) 1352 // Clamp the little scalar to s8-s256 and make it a power of 2. It's not 1353 // worth considering the multiples of 64 since 2*192 and 2*384 are not 1354 // valid. 1355 .clampScalar(LitTyIdx, S32, S512) 1356 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) 1357 // Break up vectors with weird elements into scalars 1358 .fewerElementsIf( 1359 [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); }, 1360 scalarize(0)) 1361 .fewerElementsIf( 1362 [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); }, 1363 scalarize(1)) 1364 .clampScalar(BigTyIdx, S32, MaxScalar); 1365 1366 if (Op == G_MERGE_VALUES) { 1367 Builder.widenScalarIf( 1368 // TODO: Use 16-bit shifts if legal for 8-bit values? 1369 [=](const LegalityQuery &Query) { 1370 const LLT Ty = Query.Types[LitTyIdx]; 1371 return Ty.getSizeInBits() < 32; 1372 }, 1373 changeTo(LitTyIdx, S32)); 1374 } 1375 1376 Builder.widenScalarIf( 1377 [=](const LegalityQuery &Query) { 1378 const LLT Ty = Query.Types[BigTyIdx]; 1379 return !isPowerOf2_32(Ty.getSizeInBits()) && 1380 Ty.getSizeInBits() % 16 != 0; 1381 }, 1382 [=](const LegalityQuery &Query) { 1383 // Pick the next power of 2, or a multiple of 64 over 128. 1384 // Whichever is smaller. 1385 const LLT &Ty = Query.Types[BigTyIdx]; 1386 unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); 1387 if (NewSizeInBits >= 256) { 1388 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); 1389 if (RoundedTo < NewSizeInBits) 1390 NewSizeInBits = RoundedTo; 1391 } 1392 return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); 1393 }) 1394 .legalIf([=](const LegalityQuery &Query) { 1395 const LLT &BigTy = Query.Types[BigTyIdx]; 1396 const LLT &LitTy = Query.Types[LitTyIdx]; 1397 1398 if (BigTy.isVector() && BigTy.getSizeInBits() < 32) 1399 return false; 1400 if (LitTy.isVector() && LitTy.getSizeInBits() < 32) 1401 return false; 1402 1403 return BigTy.getSizeInBits() % 16 == 0 && 1404 LitTy.getSizeInBits() % 16 == 0 && 1405 BigTy.getSizeInBits() <= MaxRegisterSize; 1406 }) 1407 // Any vectors left are the wrong size. Scalarize them. 1408 .scalarize(0) 1409 .scalarize(1); 1410 } 1411 1412 // S64 is only legal on SALU, and needs to be broken into 32-bit elements in 1413 // RegBankSelect. 1414 auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG) 1415 .legalFor({{S32}, {S64}}); 1416 1417 if (ST.hasVOP3PInsts()) { 1418 SextInReg.lowerFor({{V2S16}}) 1419 // Prefer to reduce vector widths for 16-bit vectors before lowering, to 1420 // get more vector shift opportunities, since we'll get those when 1421 // expanded. 1422 .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16)); 1423 } else if (ST.has16BitInsts()) { 1424 SextInReg.lowerFor({{S32}, {S64}, {S16}}); 1425 } else { 1426 // Prefer to promote to s32 before lowering if we don't have 16-bit 1427 // shifts. This avoid a lot of intermediate truncate and extend operations. 1428 SextInReg.lowerFor({{S32}, {S64}}); 1429 } 1430 1431 SextInReg 1432 .scalarize(0) 1433 .clampScalar(0, S32, S64) 1434 .lower(); 1435 1436 getActionDefinitionsBuilder(G_FSHR) 1437 .legalFor({{S32, S32}}) 1438 .scalarize(0) 1439 .lower(); 1440 1441 getActionDefinitionsBuilder(G_READCYCLECOUNTER) 1442 .legalFor({S64}); 1443 1444 getActionDefinitionsBuilder({ 1445 // TODO: Verify V_BFI_B32 is generated from expanded bit ops 1446 G_FCOPYSIGN, 1447 1448 G_ATOMIC_CMPXCHG_WITH_SUCCESS, 1449 G_READ_REGISTER, 1450 G_WRITE_REGISTER, 1451 1452 G_SADDO, G_SSUBO, 1453 1454 // TODO: Implement 1455 G_FMINIMUM, G_FMAXIMUM, 1456 G_FSHL 1457 }).lower(); 1458 1459 getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE, 1460 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD, 1461 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE}) 1462 .unsupported(); 1463 1464 computeTables(); 1465 verify(*ST.getInstrInfo()); 1466 } 1467 1468 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper, 1469 MachineInstr &MI) const { 1470 MachineIRBuilder &B = Helper.MIRBuilder; 1471 MachineRegisterInfo &MRI = *B.getMRI(); 1472 GISelChangeObserver &Observer = Helper.Observer; 1473 1474 switch (MI.getOpcode()) { 1475 case TargetOpcode::G_ADDRSPACE_CAST: 1476 return legalizeAddrSpaceCast(MI, MRI, B); 1477 case TargetOpcode::G_FRINT: 1478 return legalizeFrint(MI, MRI, B); 1479 case TargetOpcode::G_FCEIL: 1480 return legalizeFceil(MI, MRI, B); 1481 case TargetOpcode::G_INTRINSIC_TRUNC: 1482 return legalizeIntrinsicTrunc(MI, MRI, B); 1483 case TargetOpcode::G_SITOFP: 1484 return legalizeITOFP(MI, MRI, B, true); 1485 case TargetOpcode::G_UITOFP: 1486 return legalizeITOFP(MI, MRI, B, false); 1487 case TargetOpcode::G_FPTOSI: 1488 return legalizeFPTOI(MI, MRI, B, true); 1489 case TargetOpcode::G_FPTOUI: 1490 return legalizeFPTOI(MI, MRI, B, false); 1491 case TargetOpcode::G_FMINNUM: 1492 case TargetOpcode::G_FMAXNUM: 1493 case TargetOpcode::G_FMINNUM_IEEE: 1494 case TargetOpcode::G_FMAXNUM_IEEE: 1495 return legalizeMinNumMaxNum(Helper, MI); 1496 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1497 return legalizeExtractVectorElt(MI, MRI, B); 1498 case TargetOpcode::G_INSERT_VECTOR_ELT: 1499 return legalizeInsertVectorElt(MI, MRI, B); 1500 case TargetOpcode::G_SHUFFLE_VECTOR: 1501 return legalizeShuffleVector(MI, MRI, B); 1502 case TargetOpcode::G_FSIN: 1503 case TargetOpcode::G_FCOS: 1504 return legalizeSinCos(MI, MRI, B); 1505 case TargetOpcode::G_GLOBAL_VALUE: 1506 return legalizeGlobalValue(MI, MRI, B); 1507 case TargetOpcode::G_LOAD: 1508 return legalizeLoad(MI, MRI, B, Observer); 1509 case TargetOpcode::G_FMAD: 1510 return legalizeFMad(MI, MRI, B); 1511 case TargetOpcode::G_FDIV: 1512 return legalizeFDIV(MI, MRI, B); 1513 case TargetOpcode::G_UDIV: 1514 case TargetOpcode::G_UREM: 1515 return legalizeUDIV_UREM(MI, MRI, B); 1516 case TargetOpcode::G_SDIV: 1517 case TargetOpcode::G_SREM: 1518 return legalizeSDIV_SREM(MI, MRI, B); 1519 case TargetOpcode::G_ATOMIC_CMPXCHG: 1520 return legalizeAtomicCmpXChg(MI, MRI, B); 1521 case TargetOpcode::G_FLOG: 1522 return legalizeFlog(MI, B, numbers::ln2f); 1523 case TargetOpcode::G_FLOG10: 1524 return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f); 1525 case TargetOpcode::G_FEXP: 1526 return legalizeFExp(MI, B); 1527 case TargetOpcode::G_FPOW: 1528 return legalizeFPow(MI, B); 1529 case TargetOpcode::G_FFLOOR: 1530 return legalizeFFloor(MI, MRI, B); 1531 case TargetOpcode::G_BUILD_VECTOR: 1532 return legalizeBuildVector(MI, MRI, B); 1533 default: 1534 return false; 1535 } 1536 1537 llvm_unreachable("expected switch to return"); 1538 } 1539 1540 Register AMDGPULegalizerInfo::getSegmentAperture( 1541 unsigned AS, 1542 MachineRegisterInfo &MRI, 1543 MachineIRBuilder &B) const { 1544 MachineFunction &MF = B.getMF(); 1545 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1546 const LLT S32 = LLT::scalar(32); 1547 1548 assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS); 1549 1550 if (ST.hasApertureRegs()) { 1551 // FIXME: Use inline constants (src_{shared, private}_base) instead of 1552 // getreg. 1553 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 1554 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 1555 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 1556 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 1557 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 1558 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 1559 unsigned Encoding = 1560 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 1561 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 1562 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 1563 1564 Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 1565 1566 B.buildInstr(AMDGPU::S_GETREG_B32) 1567 .addDef(GetReg) 1568 .addImm(Encoding); 1569 MRI.setType(GetReg, S32); 1570 1571 auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1); 1572 return B.buildShl(S32, GetReg, ShiftAmt).getReg(0); 1573 } 1574 1575 Register QueuePtr = MRI.createGenericVirtualRegister( 1576 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1577 1578 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1579 if (!loadInputValue(QueuePtr, B, &MFI->getArgInfo().QueuePtr)) 1580 return Register(); 1581 1582 // Offset into amd_queue_t for group_segment_aperture_base_hi / 1583 // private_segment_aperture_base_hi. 1584 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 1585 1586 // TODO: can we be smarter about machine pointer info? 1587 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1588 MachineMemOperand *MMO = MF.getMachineMemOperand( 1589 PtrInfo, 1590 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 1591 MachineMemOperand::MOInvariant, 1592 4, commonAlignment(Align(64), StructOffset)); 1593 1594 Register LoadAddr; 1595 1596 B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset); 1597 return B.buildLoad(S32, LoadAddr, *MMO).getReg(0); 1598 } 1599 1600 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast( 1601 MachineInstr &MI, MachineRegisterInfo &MRI, 1602 MachineIRBuilder &B) const { 1603 MachineFunction &MF = B.getMF(); 1604 1605 const LLT S32 = LLT::scalar(32); 1606 Register Dst = MI.getOperand(0).getReg(); 1607 Register Src = MI.getOperand(1).getReg(); 1608 1609 LLT DstTy = MRI.getType(Dst); 1610 LLT SrcTy = MRI.getType(Src); 1611 unsigned DestAS = DstTy.getAddressSpace(); 1612 unsigned SrcAS = SrcTy.getAddressSpace(); 1613 1614 // TODO: Avoid reloading from the queue ptr for each cast, or at least each 1615 // vector element. 1616 assert(!DstTy.isVector()); 1617 1618 const AMDGPUTargetMachine &TM 1619 = static_cast<const AMDGPUTargetMachine &>(MF.getTarget()); 1620 1621 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1622 if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) { 1623 MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST)); 1624 return true; 1625 } 1626 1627 if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1628 // Truncate. 1629 B.buildExtract(Dst, Src, 0); 1630 MI.eraseFromParent(); 1631 return true; 1632 } 1633 1634 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 1635 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1636 uint32_t AddrHiVal = Info->get32BitAddressHighBits(); 1637 1638 // FIXME: This is a bit ugly due to creating a merge of 2 pointers to 1639 // another. Merge operands are required to be the same type, but creating an 1640 // extra ptrtoint would be kind of pointless. 1641 auto HighAddr = B.buildConstant( 1642 LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal); 1643 B.buildMerge(Dst, {Src, HighAddr}); 1644 MI.eraseFromParent(); 1645 return true; 1646 } 1647 1648 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 1649 assert(DestAS == AMDGPUAS::LOCAL_ADDRESS || 1650 DestAS == AMDGPUAS::PRIVATE_ADDRESS); 1651 unsigned NullVal = TM.getNullPointerValue(DestAS); 1652 1653 auto SegmentNull = B.buildConstant(DstTy, NullVal); 1654 auto FlatNull = B.buildConstant(SrcTy, 0); 1655 1656 // Extract low 32-bits of the pointer. 1657 auto PtrLo32 = B.buildExtract(DstTy, Src, 0); 1658 1659 auto CmpRes = 1660 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0)); 1661 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0)); 1662 1663 MI.eraseFromParent(); 1664 return true; 1665 } 1666 1667 if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS) 1668 return false; 1669 1670 if (!ST.hasFlatAddressSpace()) 1671 return false; 1672 1673 auto SegmentNull = 1674 B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS)); 1675 auto FlatNull = 1676 B.buildConstant(DstTy, TM.getNullPointerValue(DestAS)); 1677 1678 Register ApertureReg = getSegmentAperture(SrcAS, MRI, B); 1679 if (!ApertureReg.isValid()) 1680 return false; 1681 1682 auto CmpRes = 1683 B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0)); 1684 1685 // Coerce the type of the low half of the result so we can use merge_values. 1686 Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0); 1687 1688 // TODO: Should we allow mismatched types but matching sizes in merges to 1689 // avoid the ptrtoint? 1690 auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg}); 1691 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull); 1692 1693 MI.eraseFromParent(); 1694 return true; 1695 } 1696 1697 bool AMDGPULegalizerInfo::legalizeFrint( 1698 MachineInstr &MI, MachineRegisterInfo &MRI, 1699 MachineIRBuilder &B) const { 1700 Register Src = MI.getOperand(1).getReg(); 1701 LLT Ty = MRI.getType(Src); 1702 assert(Ty.isScalar() && Ty.getSizeInBits() == 64); 1703 1704 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1705 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1706 1707 auto C1 = B.buildFConstant(Ty, C1Val); 1708 auto CopySign = B.buildFCopysign(Ty, C1, Src); 1709 1710 // TODO: Should this propagate fast-math-flags? 1711 auto Tmp1 = B.buildFAdd(Ty, Src, CopySign); 1712 auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign); 1713 1714 auto C2 = B.buildFConstant(Ty, C2Val); 1715 auto Fabs = B.buildFAbs(Ty, Src); 1716 1717 auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2); 1718 B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2); 1719 return true; 1720 } 1721 1722 bool AMDGPULegalizerInfo::legalizeFceil( 1723 MachineInstr &MI, MachineRegisterInfo &MRI, 1724 MachineIRBuilder &B) const { 1725 1726 const LLT S1 = LLT::scalar(1); 1727 const LLT S64 = LLT::scalar(64); 1728 1729 Register Src = MI.getOperand(1).getReg(); 1730 assert(MRI.getType(Src) == S64); 1731 1732 // result = trunc(src) 1733 // if (src > 0.0 && src != result) 1734 // result += 1.0 1735 1736 auto Trunc = B.buildIntrinsicTrunc(S64, Src); 1737 1738 const auto Zero = B.buildFConstant(S64, 0.0); 1739 const auto One = B.buildFConstant(S64, 1.0); 1740 auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero); 1741 auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc); 1742 auto And = B.buildAnd(S1, Lt0, NeTrunc); 1743 auto Add = B.buildSelect(S64, And, One, Zero); 1744 1745 // TODO: Should this propagate fast-math-flags? 1746 B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add); 1747 return true; 1748 } 1749 1750 static MachineInstrBuilder extractF64Exponent(unsigned Hi, 1751 MachineIRBuilder &B) { 1752 const unsigned FractBits = 52; 1753 const unsigned ExpBits = 11; 1754 LLT S32 = LLT::scalar(32); 1755 1756 auto Const0 = B.buildConstant(S32, FractBits - 32); 1757 auto Const1 = B.buildConstant(S32, ExpBits); 1758 1759 auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false) 1760 .addUse(Const0.getReg(0)) 1761 .addUse(Const1.getReg(0)); 1762 1763 return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023)); 1764 } 1765 1766 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc( 1767 MachineInstr &MI, MachineRegisterInfo &MRI, 1768 MachineIRBuilder &B) const { 1769 const LLT S1 = LLT::scalar(1); 1770 const LLT S32 = LLT::scalar(32); 1771 const LLT S64 = LLT::scalar(64); 1772 1773 Register Src = MI.getOperand(1).getReg(); 1774 assert(MRI.getType(Src) == S64); 1775 1776 // TODO: Should this use extract since the low half is unused? 1777 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 1778 Register Hi = Unmerge.getReg(1); 1779 1780 // Extract the upper half, since this is where we will find the sign and 1781 // exponent. 1782 auto Exp = extractF64Exponent(Hi, B); 1783 1784 const unsigned FractBits = 52; 1785 1786 // Extract the sign bit. 1787 const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31); 1788 auto SignBit = B.buildAnd(S32, Hi, SignBitMask); 1789 1790 const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1); 1791 1792 const auto Zero32 = B.buildConstant(S32, 0); 1793 1794 // Extend back to 64-bits. 1795 auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit}); 1796 1797 auto Shr = B.buildAShr(S64, FractMask, Exp); 1798 auto Not = B.buildNot(S64, Shr); 1799 auto Tmp0 = B.buildAnd(S64, Src, Not); 1800 auto FiftyOne = B.buildConstant(S32, FractBits - 1); 1801 1802 auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32); 1803 auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne); 1804 1805 auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0); 1806 B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1); 1807 return true; 1808 } 1809 1810 bool AMDGPULegalizerInfo::legalizeITOFP( 1811 MachineInstr &MI, MachineRegisterInfo &MRI, 1812 MachineIRBuilder &B, bool Signed) const { 1813 1814 Register Dst = MI.getOperand(0).getReg(); 1815 Register Src = MI.getOperand(1).getReg(); 1816 1817 const LLT S64 = LLT::scalar(64); 1818 const LLT S32 = LLT::scalar(32); 1819 1820 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); 1821 1822 auto Unmerge = B.buildUnmerge({S32, S32}, Src); 1823 1824 auto CvtHi = Signed ? 1825 B.buildSITOFP(S64, Unmerge.getReg(1)) : 1826 B.buildUITOFP(S64, Unmerge.getReg(1)); 1827 1828 auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0)); 1829 1830 auto ThirtyTwo = B.buildConstant(S32, 32); 1831 auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false) 1832 .addUse(CvtHi.getReg(0)) 1833 .addUse(ThirtyTwo.getReg(0)); 1834 1835 // TODO: Should this propagate fast-math-flags? 1836 B.buildFAdd(Dst, LdExp, CvtLo); 1837 MI.eraseFromParent(); 1838 return true; 1839 } 1840 1841 // TODO: Copied from DAG implementation. Verify logic and document how this 1842 // actually works. 1843 bool AMDGPULegalizerInfo::legalizeFPTOI( 1844 MachineInstr &MI, MachineRegisterInfo &MRI, 1845 MachineIRBuilder &B, bool Signed) const { 1846 1847 Register Dst = MI.getOperand(0).getReg(); 1848 Register Src = MI.getOperand(1).getReg(); 1849 1850 const LLT S64 = LLT::scalar(64); 1851 const LLT S32 = LLT::scalar(32); 1852 1853 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); 1854 1855 unsigned Flags = MI.getFlags(); 1856 1857 auto Trunc = B.buildIntrinsicTrunc(S64, Src, Flags); 1858 auto K0 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0x3df0000000000000))); 1859 auto K1 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0xc1f0000000000000))); 1860 1861 auto Mul = B.buildFMul(S64, Trunc, K0, Flags); 1862 auto FloorMul = B.buildFFloor(S64, Mul, Flags); 1863 auto Fma = B.buildFMA(S64, FloorMul, K1, Trunc, Flags); 1864 1865 auto Hi = Signed ? 1866 B.buildFPTOSI(S32, FloorMul) : 1867 B.buildFPTOUI(S32, FloorMul); 1868 auto Lo = B.buildFPTOUI(S32, Fma); 1869 1870 B.buildMerge(Dst, { Lo, Hi }); 1871 MI.eraseFromParent(); 1872 1873 return true; 1874 } 1875 1876 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper, 1877 MachineInstr &MI) const { 1878 MachineFunction &MF = Helper.MIRBuilder.getMF(); 1879 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1880 1881 const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE || 1882 MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE; 1883 1884 // With ieee_mode disabled, the instructions have the correct behavior 1885 // already for G_FMINNUM/G_FMAXNUM 1886 if (!MFI->getMode().IEEE) 1887 return !IsIEEEOp; 1888 1889 if (IsIEEEOp) 1890 return true; 1891 1892 return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized; 1893 } 1894 1895 bool AMDGPULegalizerInfo::legalizeExtractVectorElt( 1896 MachineInstr &MI, MachineRegisterInfo &MRI, 1897 MachineIRBuilder &B) const { 1898 // TODO: Should move some of this into LegalizerHelper. 1899 1900 // TODO: Promote dynamic indexing of s16 to s32 1901 1902 // FIXME: Artifact combiner probably should have replaced the truncated 1903 // constant before this, so we shouldn't need 1904 // getConstantVRegValWithLookThrough. 1905 Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough( 1906 MI.getOperand(2).getReg(), MRI); 1907 if (!IdxVal) // Dynamic case will be selected to register indexing. 1908 return true; 1909 1910 Register Dst = MI.getOperand(0).getReg(); 1911 Register Vec = MI.getOperand(1).getReg(); 1912 1913 LLT VecTy = MRI.getType(Vec); 1914 LLT EltTy = VecTy.getElementType(); 1915 assert(EltTy == MRI.getType(Dst)); 1916 1917 if (IdxVal->Value < VecTy.getNumElements()) 1918 B.buildExtract(Dst, Vec, IdxVal->Value * EltTy.getSizeInBits()); 1919 else 1920 B.buildUndef(Dst); 1921 1922 MI.eraseFromParent(); 1923 return true; 1924 } 1925 1926 bool AMDGPULegalizerInfo::legalizeInsertVectorElt( 1927 MachineInstr &MI, MachineRegisterInfo &MRI, 1928 MachineIRBuilder &B) const { 1929 // TODO: Should move some of this into LegalizerHelper. 1930 1931 // TODO: Promote dynamic indexing of s16 to s32 1932 1933 // FIXME: Artifact combiner probably should have replaced the truncated 1934 // constant before this, so we shouldn't need 1935 // getConstantVRegValWithLookThrough. 1936 Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough( 1937 MI.getOperand(3).getReg(), MRI); 1938 if (!IdxVal) // Dynamic case will be selected to register indexing. 1939 return true; 1940 1941 Register Dst = MI.getOperand(0).getReg(); 1942 Register Vec = MI.getOperand(1).getReg(); 1943 Register Ins = MI.getOperand(2).getReg(); 1944 1945 LLT VecTy = MRI.getType(Vec); 1946 LLT EltTy = VecTy.getElementType(); 1947 assert(EltTy == MRI.getType(Ins)); 1948 1949 if (IdxVal->Value < VecTy.getNumElements()) 1950 B.buildInsert(Dst, Vec, Ins, IdxVal->Value * EltTy.getSizeInBits()); 1951 else 1952 B.buildUndef(Dst); 1953 1954 MI.eraseFromParent(); 1955 return true; 1956 } 1957 1958 bool AMDGPULegalizerInfo::legalizeShuffleVector( 1959 MachineInstr &MI, MachineRegisterInfo &MRI, 1960 MachineIRBuilder &B) const { 1961 const LLT V2S16 = LLT::vector(2, 16); 1962 1963 Register Dst = MI.getOperand(0).getReg(); 1964 Register Src0 = MI.getOperand(1).getReg(); 1965 LLT DstTy = MRI.getType(Dst); 1966 LLT SrcTy = MRI.getType(Src0); 1967 1968 if (SrcTy == V2S16 && DstTy == V2S16 && 1969 AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask())) 1970 return true; 1971 1972 MachineIRBuilder HelperBuilder(MI); 1973 GISelObserverWrapper DummyObserver; 1974 LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder); 1975 return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized; 1976 } 1977 1978 bool AMDGPULegalizerInfo::legalizeSinCos( 1979 MachineInstr &MI, MachineRegisterInfo &MRI, 1980 MachineIRBuilder &B) const { 1981 1982 Register DstReg = MI.getOperand(0).getReg(); 1983 Register SrcReg = MI.getOperand(1).getReg(); 1984 LLT Ty = MRI.getType(DstReg); 1985 unsigned Flags = MI.getFlags(); 1986 1987 Register TrigVal; 1988 auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi); 1989 if (ST.hasTrigReducedRange()) { 1990 auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags); 1991 TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false) 1992 .addUse(MulVal.getReg(0)) 1993 .setMIFlags(Flags).getReg(0); 1994 } else 1995 TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0); 1996 1997 Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ? 1998 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos; 1999 B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false) 2000 .addUse(TrigVal) 2001 .setMIFlags(Flags); 2002 MI.eraseFromParent(); 2003 return true; 2004 } 2005 2006 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy, 2007 MachineIRBuilder &B, 2008 const GlobalValue *GV, 2009 int64_t Offset, 2010 unsigned GAFlags) const { 2011 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 2012 // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered 2013 // to the following code sequence: 2014 // 2015 // For constant address space: 2016 // s_getpc_b64 s[0:1] 2017 // s_add_u32 s0, s0, $symbol 2018 // s_addc_u32 s1, s1, 0 2019 // 2020 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2021 // a fixup or relocation is emitted to replace $symbol with a literal 2022 // constant, which is a pc-relative offset from the encoding of the $symbol 2023 // operand to the global variable. 2024 // 2025 // For global address space: 2026 // s_getpc_b64 s[0:1] 2027 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 2028 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 2029 // 2030 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 2031 // fixups or relocations are emitted to replace $symbol@*@lo and 2032 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 2033 // which is a 64-bit pc-relative offset from the encoding of the $symbol 2034 // operand to the global variable. 2035 // 2036 // What we want here is an offset from the value returned by s_getpc 2037 // (which is the address of the s_add_u32 instruction) to the global 2038 // variable, but since the encoding of $symbol starts 4 bytes after the start 2039 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 2040 // small. This requires us to add 4 to the global variable offset in order to 2041 // compute the correct address. 2042 2043 LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2044 2045 Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg : 2046 B.getMRI()->createGenericVirtualRegister(ConstPtrTy); 2047 2048 MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET) 2049 .addDef(PCReg); 2050 2051 MIB.addGlobalAddress(GV, Offset + 4, GAFlags); 2052 if (GAFlags == SIInstrInfo::MO_NONE) 2053 MIB.addImm(0); 2054 else 2055 MIB.addGlobalAddress(GV, Offset + 4, GAFlags + 1); 2056 2057 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass); 2058 2059 if (PtrTy.getSizeInBits() == 32) 2060 B.buildExtract(DstReg, PCReg, 0); 2061 return true; 2062 } 2063 2064 bool AMDGPULegalizerInfo::legalizeGlobalValue( 2065 MachineInstr &MI, MachineRegisterInfo &MRI, 2066 MachineIRBuilder &B) const { 2067 Register DstReg = MI.getOperand(0).getReg(); 2068 LLT Ty = MRI.getType(DstReg); 2069 unsigned AS = Ty.getAddressSpace(); 2070 2071 const GlobalValue *GV = MI.getOperand(1).getGlobal(); 2072 MachineFunction &MF = B.getMF(); 2073 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2074 2075 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 2076 if (!MFI->isEntryFunction()) { 2077 const Function &Fn = MF.getFunction(); 2078 DiagnosticInfoUnsupported BadLDSDecl( 2079 Fn, "local memory global used by non-kernel function", MI.getDebugLoc(), 2080 DS_Warning); 2081 Fn.getContext().diagnose(BadLDSDecl); 2082 2083 // We currently don't have a way to correctly allocate LDS objects that 2084 // aren't directly associated with a kernel. We do force inlining of 2085 // functions that use local objects. However, if these dead functions are 2086 // not eliminated, we don't want a compile time error. Just emit a warning 2087 // and a trap, since there should be no callable path here. 2088 B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2089 B.buildUndef(DstReg); 2090 MI.eraseFromParent(); 2091 return true; 2092 } 2093 2094 // TODO: We could emit code to handle the initialization somewhere. 2095 if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) { 2096 const SITargetLowering *TLI = ST.getTargetLowering(); 2097 if (!TLI->shouldUseLDSConstAddress(GV)) { 2098 MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO); 2099 return true; // Leave in place; 2100 } 2101 2102 B.buildConstant( 2103 DstReg, 2104 MFI->allocateLDSGlobal(B.getDataLayout(), *cast<GlobalVariable>(GV))); 2105 MI.eraseFromParent(); 2106 return true; 2107 } 2108 2109 const Function &Fn = MF.getFunction(); 2110 DiagnosticInfoUnsupported BadInit( 2111 Fn, "unsupported initializer for address space", MI.getDebugLoc()); 2112 Fn.getContext().diagnose(BadInit); 2113 return true; 2114 } 2115 2116 const SITargetLowering *TLI = ST.getTargetLowering(); 2117 2118 if (TLI->shouldEmitFixup(GV)) { 2119 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0); 2120 MI.eraseFromParent(); 2121 return true; 2122 } 2123 2124 if (TLI->shouldEmitPCReloc(GV)) { 2125 buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32); 2126 MI.eraseFromParent(); 2127 return true; 2128 } 2129 2130 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2131 Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy); 2132 2133 MachineMemOperand *GOTMMO = MF.getMachineMemOperand( 2134 MachinePointerInfo::getGOT(MF), 2135 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 2136 MachineMemOperand::MOInvariant, 2137 8 /*Size*/, Align(8)); 2138 2139 buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32); 2140 2141 if (Ty.getSizeInBits() == 32) { 2142 // Truncate if this is a 32-bit constant adrdess. 2143 auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO); 2144 B.buildExtract(DstReg, Load, 0); 2145 } else 2146 B.buildLoad(DstReg, GOTAddr, *GOTMMO); 2147 2148 MI.eraseFromParent(); 2149 return true; 2150 } 2151 2152 bool AMDGPULegalizerInfo::legalizeLoad( 2153 MachineInstr &MI, MachineRegisterInfo &MRI, 2154 MachineIRBuilder &B, GISelChangeObserver &Observer) const { 2155 LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 2156 auto Cast = B.buildAddrSpaceCast(ConstPtr, MI.getOperand(1).getReg()); 2157 Observer.changingInstr(MI); 2158 MI.getOperand(1).setReg(Cast.getReg(0)); 2159 Observer.changedInstr(MI); 2160 return true; 2161 } 2162 2163 bool AMDGPULegalizerInfo::legalizeFMad( 2164 MachineInstr &MI, MachineRegisterInfo &MRI, 2165 MachineIRBuilder &B) const { 2166 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2167 assert(Ty.isScalar()); 2168 2169 MachineFunction &MF = B.getMF(); 2170 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2171 2172 // TODO: Always legal with future ftz flag. 2173 // FIXME: Do we need just output? 2174 if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals()) 2175 return true; 2176 if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals()) 2177 return true; 2178 2179 MachineIRBuilder HelperBuilder(MI); 2180 GISelObserverWrapper DummyObserver; 2181 LegalizerHelper Helper(MF, DummyObserver, HelperBuilder); 2182 return Helper.lowerFMad(MI) == LegalizerHelper::Legalized; 2183 } 2184 2185 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg( 2186 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2187 Register DstReg = MI.getOperand(0).getReg(); 2188 Register PtrReg = MI.getOperand(1).getReg(); 2189 Register CmpVal = MI.getOperand(2).getReg(); 2190 Register NewVal = MI.getOperand(3).getReg(); 2191 2192 assert(SITargetLowering::isFlatGlobalAddrSpace( 2193 MRI.getType(PtrReg).getAddressSpace()) && 2194 "this should not have been custom lowered"); 2195 2196 LLT ValTy = MRI.getType(CmpVal); 2197 LLT VecTy = LLT::vector(2, ValTy); 2198 2199 Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0); 2200 2201 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG) 2202 .addDef(DstReg) 2203 .addUse(PtrReg) 2204 .addUse(PackedVal) 2205 .setMemRefs(MI.memoperands()); 2206 2207 MI.eraseFromParent(); 2208 return true; 2209 } 2210 2211 bool AMDGPULegalizerInfo::legalizeFlog( 2212 MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const { 2213 Register Dst = MI.getOperand(0).getReg(); 2214 Register Src = MI.getOperand(1).getReg(); 2215 LLT Ty = B.getMRI()->getType(Dst); 2216 unsigned Flags = MI.getFlags(); 2217 2218 auto Log2Operand = B.buildFLog2(Ty, Src, Flags); 2219 auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted); 2220 2221 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags); 2222 MI.eraseFromParent(); 2223 return true; 2224 } 2225 2226 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI, 2227 MachineIRBuilder &B) const { 2228 Register Dst = MI.getOperand(0).getReg(); 2229 Register Src = MI.getOperand(1).getReg(); 2230 unsigned Flags = MI.getFlags(); 2231 LLT Ty = B.getMRI()->getType(Dst); 2232 2233 auto K = B.buildFConstant(Ty, numbers::log2e); 2234 auto Mul = B.buildFMul(Ty, Src, K, Flags); 2235 B.buildFExp2(Dst, Mul, Flags); 2236 MI.eraseFromParent(); 2237 return true; 2238 } 2239 2240 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI, 2241 MachineIRBuilder &B) const { 2242 Register Dst = MI.getOperand(0).getReg(); 2243 Register Src0 = MI.getOperand(1).getReg(); 2244 Register Src1 = MI.getOperand(2).getReg(); 2245 unsigned Flags = MI.getFlags(); 2246 LLT Ty = B.getMRI()->getType(Dst); 2247 const LLT S16 = LLT::scalar(16); 2248 const LLT S32 = LLT::scalar(32); 2249 2250 if (Ty == S32) { 2251 auto Log = B.buildFLog2(S32, Src0, Flags); 2252 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2253 .addUse(Log.getReg(0)) 2254 .addUse(Src1) 2255 .setMIFlags(Flags); 2256 B.buildFExp2(Dst, Mul, Flags); 2257 } else if (Ty == S16) { 2258 // There's no f16 fmul_legacy, so we need to convert for it. 2259 auto Log = B.buildFLog2(S16, Src0, Flags); 2260 auto Ext0 = B.buildFPExt(S32, Log, Flags); 2261 auto Ext1 = B.buildFPExt(S32, Src1, Flags); 2262 auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false) 2263 .addUse(Ext0.getReg(0)) 2264 .addUse(Ext1.getReg(0)) 2265 .setMIFlags(Flags); 2266 2267 B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags); 2268 } else 2269 return false; 2270 2271 MI.eraseFromParent(); 2272 return true; 2273 } 2274 2275 // Find a source register, ignoring any possible source modifiers. 2276 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) { 2277 Register ModSrc = OrigSrc; 2278 if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) { 2279 ModSrc = SrcFNeg->getOperand(1).getReg(); 2280 if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2281 ModSrc = SrcFAbs->getOperand(1).getReg(); 2282 } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI)) 2283 ModSrc = SrcFAbs->getOperand(1).getReg(); 2284 return ModSrc; 2285 } 2286 2287 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI, 2288 MachineRegisterInfo &MRI, 2289 MachineIRBuilder &B) const { 2290 2291 const LLT S1 = LLT::scalar(1); 2292 const LLT S64 = LLT::scalar(64); 2293 Register Dst = MI.getOperand(0).getReg(); 2294 Register OrigSrc = MI.getOperand(1).getReg(); 2295 unsigned Flags = MI.getFlags(); 2296 assert(ST.hasFractBug() && MRI.getType(Dst) == S64 && 2297 "this should not have been custom lowered"); 2298 2299 // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) 2300 // is used instead. However, SI doesn't have V_FLOOR_F64, so the most 2301 // efficient way to implement it is using V_FRACT_F64. The workaround for the 2302 // V_FRACT bug is: 2303 // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 2304 // 2305 // Convert floor(x) to (x - fract(x)) 2306 2307 auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false) 2308 .addUse(OrigSrc) 2309 .setMIFlags(Flags); 2310 2311 // Give source modifier matching some assistance before obscuring a foldable 2312 // pattern. 2313 2314 // TODO: We can avoid the neg on the fract? The input sign to fract 2315 // shouldn't matter? 2316 Register ModSrc = stripAnySourceMods(OrigSrc, MRI); 2317 2318 auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff)); 2319 2320 Register Min = MRI.createGenericVirtualRegister(S64); 2321 2322 // We don't need to concern ourselves with the snan handling difference, so 2323 // use the one which will directly select. 2324 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2325 if (MFI->getMode().IEEE) 2326 B.buildFMinNumIEEE(Min, Fract, Const, Flags); 2327 else 2328 B.buildFMinNum(Min, Fract, Const, Flags); 2329 2330 Register CorrectedFract = Min; 2331 if (!MI.getFlag(MachineInstr::FmNoNans)) { 2332 auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags); 2333 CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0); 2334 } 2335 2336 auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags); 2337 B.buildFAdd(Dst, OrigSrc, NegFract, Flags); 2338 2339 MI.eraseFromParent(); 2340 return true; 2341 } 2342 2343 // Turn an illegal packed v2s16 build vector into bit operations. 2344 // TODO: This should probably be a bitcast action in LegalizerHelper. 2345 bool AMDGPULegalizerInfo::legalizeBuildVector( 2346 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 2347 Register Dst = MI.getOperand(0).getReg(); 2348 const LLT S32 = LLT::scalar(32); 2349 assert(MRI.getType(Dst) == LLT::vector(2, 16)); 2350 2351 Register Src0 = MI.getOperand(1).getReg(); 2352 Register Src1 = MI.getOperand(2).getReg(); 2353 assert(MRI.getType(Src0) == LLT::scalar(16)); 2354 2355 auto Merge = B.buildMerge(S32, {Src0, Src1}); 2356 B.buildBitcast(Dst, Merge); 2357 2358 MI.eraseFromParent(); 2359 return true; 2360 } 2361 2362 // Return the use branch instruction, otherwise null if the usage is invalid. 2363 static MachineInstr *verifyCFIntrinsic(MachineInstr &MI, 2364 MachineRegisterInfo &MRI, 2365 MachineInstr *&Br, 2366 MachineBasicBlock *&UncondBrTarget) { 2367 Register CondDef = MI.getOperand(0).getReg(); 2368 if (!MRI.hasOneNonDBGUse(CondDef)) 2369 return nullptr; 2370 2371 MachineBasicBlock *Parent = MI.getParent(); 2372 MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef); 2373 if (UseMI.getParent() != Parent || 2374 UseMI.getOpcode() != AMDGPU::G_BRCOND) 2375 return nullptr; 2376 2377 // Make sure the cond br is followed by a G_BR, or is the last instruction. 2378 MachineBasicBlock::iterator Next = std::next(UseMI.getIterator()); 2379 if (Next == Parent->end()) { 2380 MachineFunction::iterator NextMBB = std::next(Parent->getIterator()); 2381 if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use. 2382 return nullptr; 2383 UncondBrTarget = &*NextMBB; 2384 } else { 2385 if (Next->getOpcode() != AMDGPU::G_BR) 2386 return nullptr; 2387 Br = &*Next; 2388 UncondBrTarget = Br->getOperand(0).getMBB(); 2389 } 2390 2391 return &UseMI; 2392 } 2393 2394 Register AMDGPULegalizerInfo::insertLiveInCopy(MachineIRBuilder &B, 2395 MachineRegisterInfo &MRI, 2396 Register LiveIn, 2397 Register PhyReg) const { 2398 assert(PhyReg.isPhysical() && "Physical register expected"); 2399 2400 // Insert the live-in copy, if required, by defining destination virtual 2401 // register. 2402 // FIXME: It seems EmitLiveInCopies isn't called anywhere? 2403 if (!MRI.getVRegDef(LiveIn)) { 2404 // FIXME: Should have scoped insert pt 2405 MachineBasicBlock &OrigInsBB = B.getMBB(); 2406 auto OrigInsPt = B.getInsertPt(); 2407 2408 MachineBasicBlock &EntryMBB = B.getMF().front(); 2409 EntryMBB.addLiveIn(PhyReg); 2410 B.setInsertPt(EntryMBB, EntryMBB.begin()); 2411 B.buildCopy(LiveIn, PhyReg); 2412 2413 B.setInsertPt(OrigInsBB, OrigInsPt); 2414 } 2415 2416 return LiveIn; 2417 } 2418 2419 Register AMDGPULegalizerInfo::getLiveInRegister(MachineIRBuilder &B, 2420 MachineRegisterInfo &MRI, 2421 Register PhyReg, LLT Ty, 2422 bool InsertLiveInCopy) const { 2423 assert(PhyReg.isPhysical() && "Physical register expected"); 2424 2425 // Get or create virtual live-in regester 2426 Register LiveIn = MRI.getLiveInVirtReg(PhyReg); 2427 if (!LiveIn) { 2428 LiveIn = MRI.createGenericVirtualRegister(Ty); 2429 MRI.addLiveIn(PhyReg, LiveIn); 2430 } 2431 2432 // When the actual true copy required is from virtual register to physical 2433 // register (to be inserted later), live-in copy insertion from physical 2434 // to register virtual register is not required 2435 if (!InsertLiveInCopy) 2436 return LiveIn; 2437 2438 return insertLiveInCopy(B, MRI, LiveIn, PhyReg); 2439 } 2440 2441 const ArgDescriptor *AMDGPULegalizerInfo::getArgDescriptor( 2442 MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2443 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2444 const ArgDescriptor *Arg; 2445 const TargetRegisterClass *RC; 2446 std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType); 2447 if (!Arg) { 2448 LLVM_DEBUG(dbgs() << "Required arg register missing\n"); 2449 return nullptr; 2450 } 2451 return Arg; 2452 } 2453 2454 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B, 2455 const ArgDescriptor *Arg) const { 2456 if (!Arg->isRegister() || !Arg->getRegister().isValid()) 2457 return false; // TODO: Handle these 2458 2459 Register SrcReg = Arg->getRegister(); 2460 assert(SrcReg.isPhysical() && "Physical register expected"); 2461 assert(DstReg.isVirtual() && "Virtual register expected"); 2462 2463 MachineRegisterInfo &MRI = *B.getMRI(); 2464 2465 LLT Ty = MRI.getType(DstReg); 2466 Register LiveIn = getLiveInRegister(B, MRI, SrcReg, Ty); 2467 2468 if (Arg->isMasked()) { 2469 // TODO: Should we try to emit this once in the entry block? 2470 const LLT S32 = LLT::scalar(32); 2471 const unsigned Mask = Arg->getMask(); 2472 const unsigned Shift = countTrailingZeros<unsigned>(Mask); 2473 2474 Register AndMaskSrc = LiveIn; 2475 2476 if (Shift != 0) { 2477 auto ShiftAmt = B.buildConstant(S32, Shift); 2478 AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0); 2479 } 2480 2481 B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift)); 2482 } else { 2483 B.buildCopy(DstReg, LiveIn); 2484 } 2485 2486 return true; 2487 } 2488 2489 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin( 2490 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, 2491 AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { 2492 2493 const ArgDescriptor *Arg = getArgDescriptor(B, ArgType); 2494 if (!Arg) 2495 return false; 2496 2497 if (!loadInputValue(MI.getOperand(0).getReg(), B, Arg)) 2498 return false; 2499 2500 MI.eraseFromParent(); 2501 return true; 2502 } 2503 2504 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI, 2505 MachineRegisterInfo &MRI, 2506 MachineIRBuilder &B) const { 2507 Register Dst = MI.getOperand(0).getReg(); 2508 LLT DstTy = MRI.getType(Dst); 2509 LLT S16 = LLT::scalar(16); 2510 LLT S32 = LLT::scalar(32); 2511 LLT S64 = LLT::scalar(64); 2512 2513 if (legalizeFastUnsafeFDIV(MI, MRI, B)) 2514 return true; 2515 2516 if (DstTy == S16) 2517 return legalizeFDIV16(MI, MRI, B); 2518 if (DstTy == S32) 2519 return legalizeFDIV32(MI, MRI, B); 2520 if (DstTy == S64) 2521 return legalizeFDIV64(MI, MRI, B); 2522 2523 return false; 2524 } 2525 2526 static Register buildDivRCP(MachineIRBuilder &B, Register Src) { 2527 const LLT S32 = LLT::scalar(32); 2528 2529 auto Cvt0 = B.buildUITOFP(S32, Src); 2530 auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Cvt0}); 2531 auto FPUIntMaxPlus1 = B.buildFConstant(S32, BitsToFloat(0x4f800000)); 2532 auto Mul = B.buildFMul(S32, RcpIFlag, FPUIntMaxPlus1); 2533 return B.buildFPTOUI(S32, Mul).getReg(0); 2534 } 2535 2536 void AMDGPULegalizerInfo::legalizeUDIV_UREM32Impl(MachineIRBuilder &B, 2537 Register DstReg, 2538 Register Num, 2539 Register Den, 2540 bool IsRem) const { 2541 const LLT S1 = LLT::scalar(1); 2542 const LLT S32 = LLT::scalar(32); 2543 2544 // RCP = URECIP(Den) = 2^32 / Den + e 2545 // e is rounding error. 2546 auto RCP = buildDivRCP(B, Den); 2547 2548 // RCP_LO = mul(RCP, Den) 2549 auto RCP_LO = B.buildMul(S32, RCP, Den); 2550 2551 // RCP_HI = mulhu (RCP, Den) */ 2552 auto RCP_HI = B.buildUMulH(S32, RCP, Den); 2553 2554 // NEG_RCP_LO = -RCP_LO 2555 auto Zero = B.buildConstant(S32, 0); 2556 auto NEG_RCP_LO = B.buildSub(S32, Zero, RCP_LO); 2557 2558 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 2559 auto CmpRcpHiZero = B.buildICmp(CmpInst::ICMP_EQ, S1, RCP_HI, Zero); 2560 auto ABS_RCP_LO = B.buildSelect(S32, CmpRcpHiZero, NEG_RCP_LO, RCP_LO); 2561 2562 // Calculate the rounding error from the URECIP instruction 2563 // E = mulhu(ABS_RCP_LO, RCP) 2564 auto E = B.buildUMulH(S32, ABS_RCP_LO, RCP); 2565 2566 // RCP_A_E = RCP + E 2567 auto RCP_A_E = B.buildAdd(S32, RCP, E); 2568 2569 // RCP_S_E = RCP - E 2570 auto RCP_S_E = B.buildSub(S32, RCP, E); 2571 2572 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 2573 auto Tmp0 = B.buildSelect(S32, CmpRcpHiZero, RCP_A_E, RCP_S_E); 2574 2575 // Quotient = mulhu(Tmp0, Num)stmp 2576 auto Quotient = B.buildUMulH(S32, Tmp0, Num); 2577 2578 // Num_S_Remainder = Quotient * Den 2579 auto Num_S_Remainder = B.buildMul(S32, Quotient, Den); 2580 2581 // Remainder = Num - Num_S_Remainder 2582 auto Remainder = B.buildSub(S32, Num, Num_S_Remainder); 2583 2584 // Remainder_GE_Den = Remainder >= Den 2585 auto Remainder_GE_Den = B.buildICmp(CmpInst::ICMP_UGE, S1, Remainder, Den); 2586 2587 // Remainder_GE_Zero = Num >= Num_S_Remainder; 2588 auto Remainder_GE_Zero = B.buildICmp(CmpInst::ICMP_UGE, S1, 2589 Num, Num_S_Remainder); 2590 2591 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 2592 auto Tmp1 = B.buildAnd(S1, Remainder_GE_Den, Remainder_GE_Zero); 2593 2594 // Calculate Division result: 2595 2596 // Quotient_A_One = Quotient + 1 2597 auto One = B.buildConstant(S32, 1); 2598 auto Quotient_A_One = B.buildAdd(S32, Quotient, One); 2599 2600 // Quotient_S_One = Quotient - 1 2601 auto Quotient_S_One = B.buildSub(S32, Quotient, One); 2602 2603 // Div = (Tmp1 ? Quotient_A_One : Quotient) 2604 auto Div = B.buildSelect(S32, Tmp1, Quotient_A_One, Quotient); 2605 2606 // Div = (Remainder_GE_Zero ? Div : Quotient_S_One) 2607 if (IsRem) { 2608 Div = B.buildSelect(S32, Remainder_GE_Zero, Div, Quotient_S_One); 2609 2610 // Calculate Rem result: 2611 auto Remainder_S_Den = B.buildSub(S32, Remainder, Den); 2612 2613 // Remainder_A_Den = Remainder + Den 2614 auto Remainder_A_Den = B.buildAdd(S32, Remainder, Den); 2615 2616 // Rem = (Tmp1 ? Remainder_S_Den : Remainder) 2617 auto Rem = B.buildSelect(S32, Tmp1, Remainder_S_Den, Remainder); 2618 2619 // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den) 2620 B.buildSelect(DstReg, Remainder_GE_Zero, Rem, Remainder_A_Den); 2621 } else { 2622 B.buildSelect(DstReg, Remainder_GE_Zero, Div, Quotient_S_One); 2623 } 2624 } 2625 2626 bool AMDGPULegalizerInfo::legalizeUDIV_UREM32(MachineInstr &MI, 2627 MachineRegisterInfo &MRI, 2628 MachineIRBuilder &B) const { 2629 const bool IsRem = MI.getOpcode() == AMDGPU::G_UREM; 2630 Register DstReg = MI.getOperand(0).getReg(); 2631 Register Num = MI.getOperand(1).getReg(); 2632 Register Den = MI.getOperand(2).getReg(); 2633 legalizeUDIV_UREM32Impl(B, DstReg, Num, Den, IsRem); 2634 MI.eraseFromParent(); 2635 return true; 2636 } 2637 2638 // Build integer reciprocal sequence arounud V_RCP_IFLAG_F32 2639 // 2640 // Return lo, hi of result 2641 // 2642 // %cvt.lo = G_UITOFP Val.lo 2643 // %cvt.hi = G_UITOFP Val.hi 2644 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo 2645 // %rcp = G_AMDGPU_RCP_IFLAG %mad 2646 // %mul1 = G_FMUL %rcp, 0x5f7ffffc 2647 // %mul2 = G_FMUL %mul1, 2**(-32) 2648 // %trunc = G_INTRINSIC_TRUNC %mul2 2649 // %mad2 = G_FMAD %trunc, -(2**32), %mul1 2650 // return {G_FPTOUI %mad2, G_FPTOUI %trunc} 2651 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B, 2652 Register Val) { 2653 const LLT S32 = LLT::scalar(32); 2654 auto Unmerge = B.buildUnmerge(S32, Val); 2655 2656 auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0)); 2657 auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1)); 2658 2659 auto Mad = B.buildFMAD(S32, CvtHi, // 2**32 2660 B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo); 2661 2662 auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad}); 2663 auto Mul1 = 2664 B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc))); 2665 2666 // 2**(-32) 2667 auto Mul2 = 2668 B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000))); 2669 auto Trunc = B.buildIntrinsicTrunc(S32, Mul2); 2670 2671 // -(2**32) 2672 auto Mad2 = B.buildFMAD(S32, Trunc, 2673 B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1); 2674 2675 auto ResultLo = B.buildFPTOUI(S32, Mad2); 2676 auto ResultHi = B.buildFPTOUI(S32, Trunc); 2677 2678 return {ResultLo.getReg(0), ResultHi.getReg(0)}; 2679 } 2680 2681 bool AMDGPULegalizerInfo::legalizeUDIV_UREM64(MachineInstr &MI, 2682 MachineRegisterInfo &MRI, 2683 MachineIRBuilder &B) const { 2684 const bool IsDiv = MI.getOpcode() == TargetOpcode::G_UDIV; 2685 const LLT S32 = LLT::scalar(32); 2686 const LLT S64 = LLT::scalar(64); 2687 const LLT S1 = LLT::scalar(1); 2688 Register Numer = MI.getOperand(1).getReg(); 2689 Register Denom = MI.getOperand(2).getReg(); 2690 Register RcpLo, RcpHi; 2691 2692 std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom); 2693 2694 auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi}); 2695 2696 auto Zero64 = B.buildConstant(S64, 0); 2697 auto NegDenom = B.buildSub(S64, Zero64, Denom); 2698 2699 auto MulLo1 = B.buildMul(S64, NegDenom, Rcp); 2700 auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1); 2701 2702 auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1); 2703 Register MulHi1_Lo = UnmergeMulHi1.getReg(0); 2704 Register MulHi1_Hi = UnmergeMulHi1.getReg(1); 2705 2706 auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo); 2707 auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1)); 2708 auto Add1_HiNc = B.buildAdd(S32, RcpHi, MulHi1_Hi); 2709 auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi}); 2710 2711 auto MulLo2 = B.buildMul(S64, NegDenom, Add1); 2712 auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2); 2713 auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2); 2714 Register MulHi2_Lo = UnmergeMulHi2.getReg(0); 2715 Register MulHi2_Hi = UnmergeMulHi2.getReg(1); 2716 2717 auto Zero32 = B.buildConstant(S32, 0); 2718 auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo); 2719 auto Add2_HiC = 2720 B.buildUAdde(S32, S1, Add1_HiNc, MulHi2_Hi, Add1_Lo.getReg(1)); 2721 auto Add2_Hi = B.buildUAdde(S32, S1, Add2_HiC, Zero32, Add2_Lo.getReg(1)); 2722 auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi}); 2723 2724 auto UnmergeNumer = B.buildUnmerge(S32, Numer); 2725 Register NumerLo = UnmergeNumer.getReg(0); 2726 Register NumerHi = UnmergeNumer.getReg(1); 2727 2728 auto MulHi3 = B.buildUMulH(S64, Numer, Add2); 2729 auto Mul3 = B.buildMul(S64, Denom, MulHi3); 2730 auto UnmergeMul3 = B.buildUnmerge(S32, Mul3); 2731 Register Mul3_Lo = UnmergeMul3.getReg(0); 2732 Register Mul3_Hi = UnmergeMul3.getReg(1); 2733 auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo); 2734 auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1)); 2735 auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi); 2736 auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi}); 2737 2738 auto UnmergeDenom = B.buildUnmerge(S32, Denom); 2739 Register DenomLo = UnmergeDenom.getReg(0); 2740 Register DenomHi = UnmergeDenom.getReg(1); 2741 2742 auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi); 2743 auto C1 = B.buildSExt(S32, CmpHi); 2744 2745 auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo); 2746 auto C2 = B.buildSExt(S32, CmpLo); 2747 2748 auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi); 2749 auto C3 = B.buildSelect(S32, CmpEq, C2, C1); 2750 2751 // TODO: Here and below portions of the code can be enclosed into if/endif. 2752 // Currently control flow is unconditional and we have 4 selects after 2753 // potential endif to substitute PHIs. 2754 2755 // if C3 != 0 ... 2756 auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo); 2757 auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1)); 2758 auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1)); 2759 auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi}); 2760 2761 auto One64 = B.buildConstant(S64, 1); 2762 auto Add3 = B.buildAdd(S64, MulHi3, One64); 2763 2764 auto C4 = 2765 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi)); 2766 auto C5 = 2767 B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo)); 2768 auto C6 = B.buildSelect( 2769 S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4); 2770 2771 // if (C6 != 0) 2772 auto Add4 = B.buildAdd(S64, Add3, One64); 2773 auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo); 2774 2775 auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1)); 2776 auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1)); 2777 auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi}); 2778 2779 // endif C6 2780 // endif C3 2781 2782 if (IsDiv) { 2783 auto Sel1 = B.buildSelect( 2784 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3); 2785 B.buildSelect(MI.getOperand(0), 2786 B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel1, MulHi3); 2787 } else { 2788 auto Sel2 = B.buildSelect( 2789 S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2); 2790 B.buildSelect(MI.getOperand(0), 2791 B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel2, Sub1); 2792 } 2793 2794 MI.eraseFromParent(); 2795 return true; 2796 } 2797 2798 bool AMDGPULegalizerInfo::legalizeUDIV_UREM(MachineInstr &MI, 2799 MachineRegisterInfo &MRI, 2800 MachineIRBuilder &B) const { 2801 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2802 if (Ty == LLT::scalar(32)) 2803 return legalizeUDIV_UREM32(MI, MRI, B); 2804 if (Ty == LLT::scalar(64)) 2805 return legalizeUDIV_UREM64(MI, MRI, B); 2806 return false; 2807 } 2808 2809 bool AMDGPULegalizerInfo::legalizeSDIV_SREM32(MachineInstr &MI, 2810 MachineRegisterInfo &MRI, 2811 MachineIRBuilder &B) const { 2812 const LLT S32 = LLT::scalar(32); 2813 2814 const bool IsRem = MI.getOpcode() == AMDGPU::G_SREM; 2815 Register DstReg = MI.getOperand(0).getReg(); 2816 Register LHS = MI.getOperand(1).getReg(); 2817 Register RHS = MI.getOperand(2).getReg(); 2818 2819 auto ThirtyOne = B.buildConstant(S32, 31); 2820 auto LHSign = B.buildAShr(S32, LHS, ThirtyOne); 2821 auto RHSign = B.buildAShr(S32, RHS, ThirtyOne); 2822 2823 LHS = B.buildAdd(S32, LHS, LHSign).getReg(0); 2824 RHS = B.buildAdd(S32, RHS, RHSign).getReg(0); 2825 2826 LHS = B.buildXor(S32, LHS, LHSign).getReg(0); 2827 RHS = B.buildXor(S32, RHS, RHSign).getReg(0); 2828 2829 Register UDivRem = MRI.createGenericVirtualRegister(S32); 2830 legalizeUDIV_UREM32Impl(B, UDivRem, LHS, RHS, IsRem); 2831 2832 if (IsRem) { 2833 auto RSign = LHSign; // Remainder sign is the same as LHS 2834 UDivRem = B.buildXor(S32, UDivRem, RSign).getReg(0); 2835 B.buildSub(DstReg, UDivRem, RSign); 2836 } else { 2837 auto DSign = B.buildXor(S32, LHSign, RHSign); 2838 UDivRem = B.buildXor(S32, UDivRem, DSign).getReg(0); 2839 B.buildSub(DstReg, UDivRem, DSign); 2840 } 2841 2842 MI.eraseFromParent(); 2843 return true; 2844 } 2845 2846 bool AMDGPULegalizerInfo::legalizeSDIV_SREM(MachineInstr &MI, 2847 MachineRegisterInfo &MRI, 2848 MachineIRBuilder &B) const { 2849 if (MRI.getType(MI.getOperand(0).getReg()) == LLT::scalar(32)) 2850 return legalizeSDIV_SREM32(MI, MRI, B); 2851 return false; 2852 } 2853 2854 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI, 2855 MachineRegisterInfo &MRI, 2856 MachineIRBuilder &B) const { 2857 Register Res = MI.getOperand(0).getReg(); 2858 Register LHS = MI.getOperand(1).getReg(); 2859 Register RHS = MI.getOperand(2).getReg(); 2860 2861 uint16_t Flags = MI.getFlags(); 2862 2863 LLT ResTy = MRI.getType(Res); 2864 LLT S32 = LLT::scalar(32); 2865 LLT S64 = LLT::scalar(64); 2866 2867 const MachineFunction &MF = B.getMF(); 2868 bool Unsafe = 2869 MF.getTarget().Options.UnsafeFPMath || MI.getFlag(MachineInstr::FmArcp); 2870 2871 if (!MF.getTarget().Options.UnsafeFPMath && ResTy == S64) 2872 return false; 2873 2874 if (!Unsafe && ResTy == S32 && 2875 MF.getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals()) 2876 return false; 2877 2878 if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) { 2879 // 1 / x -> RCP(x) 2880 if (CLHS->isExactlyValue(1.0)) { 2881 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 2882 .addUse(RHS) 2883 .setMIFlags(Flags); 2884 2885 MI.eraseFromParent(); 2886 return true; 2887 } 2888 2889 // -1 / x -> RCP( FNEG(x) ) 2890 if (CLHS->isExactlyValue(-1.0)) { 2891 auto FNeg = B.buildFNeg(ResTy, RHS, Flags); 2892 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) 2893 .addUse(FNeg.getReg(0)) 2894 .setMIFlags(Flags); 2895 2896 MI.eraseFromParent(); 2897 return true; 2898 } 2899 } 2900 2901 // x / y -> x * (1.0 / y) 2902 if (Unsafe) { 2903 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false) 2904 .addUse(RHS) 2905 .setMIFlags(Flags); 2906 B.buildFMul(Res, LHS, RCP, Flags); 2907 2908 MI.eraseFromParent(); 2909 return true; 2910 } 2911 2912 return false; 2913 } 2914 2915 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI, 2916 MachineRegisterInfo &MRI, 2917 MachineIRBuilder &B) const { 2918 Register Res = MI.getOperand(0).getReg(); 2919 Register LHS = MI.getOperand(1).getReg(); 2920 Register RHS = MI.getOperand(2).getReg(); 2921 2922 uint16_t Flags = MI.getFlags(); 2923 2924 LLT S16 = LLT::scalar(16); 2925 LLT S32 = LLT::scalar(32); 2926 2927 auto LHSExt = B.buildFPExt(S32, LHS, Flags); 2928 auto RHSExt = B.buildFPExt(S32, RHS, Flags); 2929 2930 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 2931 .addUse(RHSExt.getReg(0)) 2932 .setMIFlags(Flags); 2933 2934 auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags); 2935 auto RDst = B.buildFPTrunc(S16, QUOT, Flags); 2936 2937 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 2938 .addUse(RDst.getReg(0)) 2939 .addUse(RHS) 2940 .addUse(LHS) 2941 .setMIFlags(Flags); 2942 2943 MI.eraseFromParent(); 2944 return true; 2945 } 2946 2947 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions 2948 // to enable denorm mode. When 'Enable' is false, disable denorm mode. 2949 static void toggleSPDenormMode(bool Enable, 2950 MachineIRBuilder &B, 2951 const GCNSubtarget &ST, 2952 AMDGPU::SIModeRegisterDefaults Mode) { 2953 // Set SP denorm mode to this value. 2954 unsigned SPDenormMode = 2955 Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue(); 2956 2957 if (ST.hasDenormModeInst()) { 2958 // Preserve default FP64FP16 denorm mode while updating FP32 mode. 2959 uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue(); 2960 2961 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2); 2962 B.buildInstr(AMDGPU::S_DENORM_MODE) 2963 .addImm(NewDenormModeValue); 2964 2965 } else { 2966 // Select FP32 bit field in mode register. 2967 unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE | 2968 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 2969 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 2970 2971 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32) 2972 .addImm(SPDenormMode) 2973 .addImm(SPDenormModeBitField); 2974 } 2975 } 2976 2977 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI, 2978 MachineRegisterInfo &MRI, 2979 MachineIRBuilder &B) const { 2980 Register Res = MI.getOperand(0).getReg(); 2981 Register LHS = MI.getOperand(1).getReg(); 2982 Register RHS = MI.getOperand(2).getReg(); 2983 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 2984 AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode(); 2985 2986 uint16_t Flags = MI.getFlags(); 2987 2988 LLT S32 = LLT::scalar(32); 2989 LLT S1 = LLT::scalar(1); 2990 2991 auto One = B.buildFConstant(S32, 1.0f); 2992 2993 auto DenominatorScaled = 2994 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 2995 .addUse(LHS) 2996 .addUse(RHS) 2997 .addImm(0) 2998 .setMIFlags(Flags); 2999 auto NumeratorScaled = 3000 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) 3001 .addUse(LHS) 3002 .addUse(RHS) 3003 .addImm(1) 3004 .setMIFlags(Flags); 3005 3006 auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3007 .addUse(DenominatorScaled.getReg(0)) 3008 .setMIFlags(Flags); 3009 auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags); 3010 3011 // FIXME: Doesn't correctly model the FP mode switch, and the FP operations 3012 // aren't modeled as reading it. 3013 if (!Mode.allFP32Denormals()) 3014 toggleSPDenormMode(true, B, ST, Mode); 3015 3016 auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags); 3017 auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags); 3018 auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags); 3019 auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags); 3020 auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags); 3021 auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags); 3022 3023 if (!Mode.allFP32Denormals()) 3024 toggleSPDenormMode(false, B, ST, Mode); 3025 3026 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false) 3027 .addUse(Fma4.getReg(0)) 3028 .addUse(Fma1.getReg(0)) 3029 .addUse(Fma3.getReg(0)) 3030 .addUse(NumeratorScaled.getReg(1)) 3031 .setMIFlags(Flags); 3032 3033 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) 3034 .addUse(Fmas.getReg(0)) 3035 .addUse(RHS) 3036 .addUse(LHS) 3037 .setMIFlags(Flags); 3038 3039 MI.eraseFromParent(); 3040 return true; 3041 } 3042 3043 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI, 3044 MachineRegisterInfo &MRI, 3045 MachineIRBuilder &B) const { 3046 Register Res = MI.getOperand(0).getReg(); 3047 Register LHS = MI.getOperand(1).getReg(); 3048 Register RHS = MI.getOperand(2).getReg(); 3049 3050 uint16_t Flags = MI.getFlags(); 3051 3052 LLT S64 = LLT::scalar(64); 3053 LLT S1 = LLT::scalar(1); 3054 3055 auto One = B.buildFConstant(S64, 1.0); 3056 3057 auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3058 .addUse(LHS) 3059 .addUse(RHS) 3060 .addImm(0) 3061 .setMIFlags(Flags); 3062 3063 auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags); 3064 3065 auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false) 3066 .addUse(DivScale0.getReg(0)) 3067 .setMIFlags(Flags); 3068 3069 auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags); 3070 auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags); 3071 auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags); 3072 3073 auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) 3074 .addUse(LHS) 3075 .addUse(RHS) 3076 .addImm(1) 3077 .setMIFlags(Flags); 3078 3079 auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags); 3080 auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags); 3081 auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags); 3082 3083 Register Scale; 3084 if (!ST.hasUsableDivScaleConditionOutput()) { 3085 // Workaround a hardware bug on SI where the condition output from div_scale 3086 // is not usable. 3087 3088 LLT S32 = LLT::scalar(32); 3089 3090 auto NumUnmerge = B.buildUnmerge(S32, LHS); 3091 auto DenUnmerge = B.buildUnmerge(S32, RHS); 3092 auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0); 3093 auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1); 3094 3095 auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1), 3096 Scale1Unmerge.getReg(1)); 3097 auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1), 3098 Scale0Unmerge.getReg(1)); 3099 Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0); 3100 } else { 3101 Scale = DivScale1.getReg(1); 3102 } 3103 3104 auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false) 3105 .addUse(Fma4.getReg(0)) 3106 .addUse(Fma3.getReg(0)) 3107 .addUse(Mul.getReg(0)) 3108 .addUse(Scale) 3109 .setMIFlags(Flags); 3110 3111 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false) 3112 .addUse(Fmas.getReg(0)) 3113 .addUse(RHS) 3114 .addUse(LHS) 3115 .setMIFlags(Flags); 3116 3117 MI.eraseFromParent(); 3118 return true; 3119 } 3120 3121 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI, 3122 MachineRegisterInfo &MRI, 3123 MachineIRBuilder &B) const { 3124 Register Res = MI.getOperand(0).getReg(); 3125 Register LHS = MI.getOperand(2).getReg(); 3126 Register RHS = MI.getOperand(3).getReg(); 3127 uint16_t Flags = MI.getFlags(); 3128 3129 LLT S32 = LLT::scalar(32); 3130 LLT S1 = LLT::scalar(1); 3131 3132 auto Abs = B.buildFAbs(S32, RHS, Flags); 3133 const APFloat C0Val(1.0f); 3134 3135 auto C0 = B.buildConstant(S32, 0x6f800000); 3136 auto C1 = B.buildConstant(S32, 0x2f800000); 3137 auto C2 = B.buildConstant(S32, FloatToBits(1.0f)); 3138 3139 auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags); 3140 auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags); 3141 3142 auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags); 3143 3144 auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) 3145 .addUse(Mul0.getReg(0)) 3146 .setMIFlags(Flags); 3147 3148 auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags); 3149 3150 B.buildFMul(Res, Sel, Mul1, Flags); 3151 3152 MI.eraseFromParent(); 3153 return true; 3154 } 3155 3156 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI, 3157 MachineRegisterInfo &MRI, 3158 MachineIRBuilder &B) const { 3159 const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>(); 3160 if (!MFI->isEntryFunction()) { 3161 return legalizePreloadedArgIntrin(MI, MRI, B, 3162 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 3163 } 3164 3165 uint64_t Offset = 3166 ST.getTargetLowering()->getImplicitParameterOffset( 3167 B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT); 3168 Register DstReg = MI.getOperand(0).getReg(); 3169 LLT DstTy = MRI.getType(DstReg); 3170 LLT IdxTy = LLT::scalar(DstTy.getSizeInBits()); 3171 3172 const ArgDescriptor *Arg; 3173 const TargetRegisterClass *RC; 3174 std::tie(Arg, RC) 3175 = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 3176 if (!Arg) 3177 return false; 3178 3179 Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy); 3180 if (!loadInputValue(KernargPtrReg, B, Arg)) 3181 return false; 3182 3183 B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0)); 3184 MI.eraseFromParent(); 3185 return true; 3186 } 3187 3188 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI, 3189 MachineRegisterInfo &MRI, 3190 MachineIRBuilder &B, 3191 unsigned AddrSpace) const { 3192 Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B); 3193 auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32); 3194 B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg); 3195 MI.eraseFromParent(); 3196 return true; 3197 } 3198 3199 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 3200 // offset (the offset that is included in bounds checking and swizzling, to be 3201 // split between the instruction's voffset and immoffset fields) and soffset 3202 // (the offset that is excluded from bounds checking and swizzling, to go in 3203 // the instruction's soffset field). This function takes the first kind of 3204 // offset and figures out how to split it between voffset and immoffset. 3205 std::tuple<Register, unsigned, unsigned> 3206 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B, 3207 Register OrigOffset) const { 3208 const unsigned MaxImm = 4095; 3209 Register BaseReg; 3210 unsigned TotalConstOffset; 3211 MachineInstr *OffsetDef; 3212 const LLT S32 = LLT::scalar(32); 3213 3214 std::tie(BaseReg, TotalConstOffset, OffsetDef) 3215 = AMDGPU::getBaseWithConstantOffset(*B.getMRI(), OrigOffset); 3216 3217 unsigned ImmOffset = TotalConstOffset; 3218 3219 // If the immediate value is too big for the immoffset field, put the value 3220 // and -4096 into the immoffset field so that the value that is copied/added 3221 // for the voffset field is a multiple of 4096, and it stands more chance 3222 // of being CSEd with the copy/add for another similar load/store. 3223 // However, do not do that rounding down to a multiple of 4096 if that is a 3224 // negative number, as it appears to be illegal to have a negative offset 3225 // in the vgpr, even if adding the immediate offset makes it positive. 3226 unsigned Overflow = ImmOffset & ~MaxImm; 3227 ImmOffset -= Overflow; 3228 if ((int32_t)Overflow < 0) { 3229 Overflow += ImmOffset; 3230 ImmOffset = 0; 3231 } 3232 3233 if (Overflow != 0) { 3234 if (!BaseReg) { 3235 BaseReg = B.buildConstant(S32, Overflow).getReg(0); 3236 } else { 3237 auto OverflowVal = B.buildConstant(S32, Overflow); 3238 BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0); 3239 } 3240 } 3241 3242 if (!BaseReg) 3243 BaseReg = B.buildConstant(S32, 0).getReg(0); 3244 3245 return std::make_tuple(BaseReg, ImmOffset, TotalConstOffset); 3246 } 3247 3248 /// Handle register layout difference for f16 images for some subtargets. 3249 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B, 3250 MachineRegisterInfo &MRI, 3251 Register Reg) const { 3252 if (!ST.hasUnpackedD16VMem()) 3253 return Reg; 3254 3255 const LLT S16 = LLT::scalar(16); 3256 const LLT S32 = LLT::scalar(32); 3257 LLT StoreVT = MRI.getType(Reg); 3258 assert(StoreVT.isVector() && StoreVT.getElementType() == S16); 3259 3260 auto Unmerge = B.buildUnmerge(S16, Reg); 3261 3262 SmallVector<Register, 4> WideRegs; 3263 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3264 WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0)); 3265 3266 int NumElts = StoreVT.getNumElements(); 3267 3268 return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0); 3269 } 3270 3271 Register AMDGPULegalizerInfo::fixStoreSourceType( 3272 MachineIRBuilder &B, Register VData, bool IsFormat) const { 3273 MachineRegisterInfo *MRI = B.getMRI(); 3274 LLT Ty = MRI->getType(VData); 3275 3276 const LLT S16 = LLT::scalar(16); 3277 3278 // Fixup illegal register types for i8 stores. 3279 if (Ty == LLT::scalar(8) || Ty == S16) { 3280 Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0); 3281 return AnyExt; 3282 } 3283 3284 if (Ty.isVector()) { 3285 if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) { 3286 if (IsFormat) 3287 return handleD16VData(B, *MRI, VData); 3288 } 3289 } 3290 3291 return VData; 3292 } 3293 3294 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI, 3295 MachineRegisterInfo &MRI, 3296 MachineIRBuilder &B, 3297 bool IsTyped, 3298 bool IsFormat) const { 3299 Register VData = MI.getOperand(1).getReg(); 3300 LLT Ty = MRI.getType(VData); 3301 LLT EltTy = Ty.getScalarType(); 3302 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 3303 const LLT S32 = LLT::scalar(32); 3304 3305 VData = fixStoreSourceType(B, VData, IsFormat); 3306 Register RSrc = MI.getOperand(2).getReg(); 3307 3308 MachineMemOperand *MMO = *MI.memoperands_begin(); 3309 const int MemSize = MMO->getSize(); 3310 3311 unsigned ImmOffset; 3312 unsigned TotalOffset; 3313 3314 // The typed intrinsics add an immediate after the registers. 3315 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3316 3317 // The struct intrinsic variants add one additional operand over raw. 3318 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3319 Register VIndex; 3320 int OpOffset = 0; 3321 if (HasVIndex) { 3322 VIndex = MI.getOperand(3).getReg(); 3323 OpOffset = 1; 3324 } 3325 3326 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3327 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3328 3329 unsigned Format = 0; 3330 if (IsTyped) { 3331 Format = MI.getOperand(5 + OpOffset).getImm(); 3332 ++OpOffset; 3333 } 3334 3335 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 3336 3337 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3338 if (TotalOffset != 0) 3339 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize); 3340 3341 unsigned Opc; 3342 if (IsTyped) { 3343 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : 3344 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT; 3345 } else if (IsFormat) { 3346 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 : 3347 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT; 3348 } else { 3349 switch (MemSize) { 3350 case 1: 3351 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE; 3352 break; 3353 case 2: 3354 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT; 3355 break; 3356 default: 3357 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE; 3358 break; 3359 } 3360 } 3361 3362 if (!VIndex) 3363 VIndex = B.buildConstant(S32, 0).getReg(0); 3364 3365 auto MIB = B.buildInstr(Opc) 3366 .addUse(VData) // vdata 3367 .addUse(RSrc) // rsrc 3368 .addUse(VIndex) // vindex 3369 .addUse(VOffset) // voffset 3370 .addUse(SOffset) // soffset 3371 .addImm(ImmOffset); // offset(imm) 3372 3373 if (IsTyped) 3374 MIB.addImm(Format); 3375 3376 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3377 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3378 .addMemOperand(MMO); 3379 3380 MI.eraseFromParent(); 3381 return true; 3382 } 3383 3384 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI, 3385 MachineRegisterInfo &MRI, 3386 MachineIRBuilder &B, 3387 bool IsFormat, 3388 bool IsTyped) const { 3389 // FIXME: Verifier should enforce 1 MMO for these intrinsics. 3390 MachineMemOperand *MMO = *MI.memoperands_begin(); 3391 const int MemSize = MMO->getSize(); 3392 const LLT S32 = LLT::scalar(32); 3393 3394 Register Dst = MI.getOperand(0).getReg(); 3395 Register RSrc = MI.getOperand(2).getReg(); 3396 3397 // The typed intrinsics add an immediate after the registers. 3398 const unsigned NumVIndexOps = IsTyped ? 8 : 7; 3399 3400 // The struct intrinsic variants add one additional operand over raw. 3401 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3402 Register VIndex; 3403 int OpOffset = 0; 3404 if (HasVIndex) { 3405 VIndex = MI.getOperand(3).getReg(); 3406 OpOffset = 1; 3407 } 3408 3409 Register VOffset = MI.getOperand(3 + OpOffset).getReg(); 3410 Register SOffset = MI.getOperand(4 + OpOffset).getReg(); 3411 3412 unsigned Format = 0; 3413 if (IsTyped) { 3414 Format = MI.getOperand(5 + OpOffset).getImm(); 3415 ++OpOffset; 3416 } 3417 3418 unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm(); 3419 unsigned ImmOffset; 3420 unsigned TotalOffset; 3421 3422 LLT Ty = MRI.getType(Dst); 3423 LLT EltTy = Ty.getScalarType(); 3424 const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16); 3425 const bool Unpacked = ST.hasUnpackedD16VMem(); 3426 3427 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3428 if (TotalOffset != 0) 3429 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize); 3430 3431 unsigned Opc; 3432 3433 if (IsTyped) { 3434 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : 3435 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT; 3436 } else if (IsFormat) { 3437 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : 3438 AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT; 3439 } else { 3440 switch (MemSize) { 3441 case 1: 3442 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE; 3443 break; 3444 case 2: 3445 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT; 3446 break; 3447 default: 3448 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD; 3449 break; 3450 } 3451 } 3452 3453 Register LoadDstReg; 3454 3455 bool IsExtLoad = (!IsD16 && MemSize < 4) || (IsD16 && !Ty.isVector()); 3456 LLT UnpackedTy = Ty.changeElementSize(32); 3457 3458 if (IsExtLoad) 3459 LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32); 3460 else if (Unpacked && IsD16 && Ty.isVector()) 3461 LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy); 3462 else 3463 LoadDstReg = Dst; 3464 3465 if (!VIndex) 3466 VIndex = B.buildConstant(S32, 0).getReg(0); 3467 3468 auto MIB = B.buildInstr(Opc) 3469 .addDef(LoadDstReg) // vdata 3470 .addUse(RSrc) // rsrc 3471 .addUse(VIndex) // vindex 3472 .addUse(VOffset) // voffset 3473 .addUse(SOffset) // soffset 3474 .addImm(ImmOffset); // offset(imm) 3475 3476 if (IsTyped) 3477 MIB.addImm(Format); 3478 3479 MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3480 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3481 .addMemOperand(MMO); 3482 3483 if (LoadDstReg != Dst) { 3484 B.setInsertPt(B.getMBB(), ++B.getInsertPt()); 3485 3486 // Widen result for extending loads was widened. 3487 if (IsExtLoad) 3488 B.buildTrunc(Dst, LoadDstReg); 3489 else { 3490 // Repack to original 16-bit vector result 3491 // FIXME: G_TRUNC should work, but legalization currently fails 3492 auto Unmerge = B.buildUnmerge(S32, LoadDstReg); 3493 SmallVector<Register, 4> Repack; 3494 for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I) 3495 Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0)); 3496 B.buildMerge(Dst, Repack); 3497 } 3498 } 3499 3500 MI.eraseFromParent(); 3501 return true; 3502 } 3503 3504 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI, 3505 MachineIRBuilder &B, 3506 bool IsInc) const { 3507 unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC : 3508 AMDGPU::G_AMDGPU_ATOMIC_DEC; 3509 B.buildInstr(Opc) 3510 .addDef(MI.getOperand(0).getReg()) 3511 .addUse(MI.getOperand(2).getReg()) 3512 .addUse(MI.getOperand(3).getReg()) 3513 .cloneMemRefs(MI); 3514 MI.eraseFromParent(); 3515 return true; 3516 } 3517 3518 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) { 3519 switch (IntrID) { 3520 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 3521 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 3522 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP; 3523 case Intrinsic::amdgcn_raw_buffer_atomic_add: 3524 case Intrinsic::amdgcn_struct_buffer_atomic_add: 3525 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD; 3526 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 3527 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 3528 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB; 3529 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 3530 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 3531 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN; 3532 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 3533 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 3534 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN; 3535 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 3536 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 3537 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX; 3538 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 3539 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 3540 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX; 3541 case Intrinsic::amdgcn_raw_buffer_atomic_and: 3542 case Intrinsic::amdgcn_struct_buffer_atomic_and: 3543 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND; 3544 case Intrinsic::amdgcn_raw_buffer_atomic_or: 3545 case Intrinsic::amdgcn_struct_buffer_atomic_or: 3546 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR; 3547 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 3548 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 3549 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR; 3550 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 3551 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 3552 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC; 3553 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 3554 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 3555 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC; 3556 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 3557 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 3558 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP; 3559 default: 3560 llvm_unreachable("unhandled atomic opcode"); 3561 } 3562 } 3563 3564 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI, 3565 MachineIRBuilder &B, 3566 Intrinsic::ID IID) const { 3567 const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap || 3568 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap; 3569 3570 Register Dst = MI.getOperand(0).getReg(); 3571 Register VData = MI.getOperand(2).getReg(); 3572 3573 Register CmpVal; 3574 int OpOffset = 0; 3575 3576 if (IsCmpSwap) { 3577 CmpVal = MI.getOperand(3 + OpOffset).getReg(); 3578 ++OpOffset; 3579 } 3580 3581 Register RSrc = MI.getOperand(3 + OpOffset).getReg(); 3582 const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8; 3583 3584 // The struct intrinsic variants add one additional operand over raw. 3585 const bool HasVIndex = MI.getNumOperands() == NumVIndexOps; 3586 Register VIndex; 3587 if (HasVIndex) { 3588 VIndex = MI.getOperand(4 + OpOffset).getReg(); 3589 ++OpOffset; 3590 } 3591 3592 Register VOffset = MI.getOperand(4 + OpOffset).getReg(); 3593 Register SOffset = MI.getOperand(5 + OpOffset).getReg(); 3594 unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm(); 3595 3596 MachineMemOperand *MMO = *MI.memoperands_begin(); 3597 3598 unsigned ImmOffset; 3599 unsigned TotalOffset; 3600 std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset); 3601 if (TotalOffset != 0) 3602 MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MMO->getSize()); 3603 3604 if (!VIndex) 3605 VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0); 3606 3607 auto MIB = B.buildInstr(getBufferAtomicPseudo(IID)) 3608 .addDef(Dst) 3609 .addUse(VData); // vdata 3610 3611 if (IsCmpSwap) 3612 MIB.addReg(CmpVal); 3613 3614 MIB.addUse(RSrc) // rsrc 3615 .addUse(VIndex) // vindex 3616 .addUse(VOffset) // voffset 3617 .addUse(SOffset) // soffset 3618 .addImm(ImmOffset) // offset(imm) 3619 .addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm) 3620 .addImm(HasVIndex ? -1 : 0) // idxen(imm) 3621 .addMemOperand(MMO); 3622 3623 MI.eraseFromParent(); 3624 return true; 3625 } 3626 3627 /// Turn a set of s16 typed registers in \p A16AddrRegs into a dword sized 3628 /// vector with s16 typed elements. 3629 static void packImageA16AddressToDwords(MachineIRBuilder &B, MachineInstr &MI, 3630 SmallVectorImpl<Register> &PackedAddrs, 3631 int AddrIdx, int DimIdx, int EndIdx, 3632 int NumGradients) { 3633 const LLT S16 = LLT::scalar(16); 3634 const LLT V2S16 = LLT::vector(2, 16); 3635 3636 for (int I = AddrIdx; I < EndIdx; ++I) { 3637 MachineOperand &SrcOp = MI.getOperand(I); 3638 if (!SrcOp.isReg()) 3639 continue; // _L to _LZ may have eliminated this. 3640 3641 Register AddrReg = SrcOp.getReg(); 3642 3643 if (I < DimIdx) { 3644 AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0); 3645 PackedAddrs.push_back(AddrReg); 3646 } else { 3647 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D, 3648 // derivatives dx/dh and dx/dv are packed with undef. 3649 if (((I + 1) >= EndIdx) || 3650 ((NumGradients / 2) % 2 == 1 && 3651 (I == DimIdx + (NumGradients / 2) - 1 || 3652 I == DimIdx + NumGradients - 1)) || 3653 // Check for _L to _LZ optimization 3654 !MI.getOperand(I + 1).isReg()) { 3655 PackedAddrs.push_back( 3656 B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)}) 3657 .getReg(0)); 3658 } else { 3659 PackedAddrs.push_back( 3660 B.buildBuildVector(V2S16, {AddrReg, MI.getOperand(I + 1).getReg()}) 3661 .getReg(0)); 3662 ++I; 3663 } 3664 } 3665 } 3666 } 3667 3668 /// Convert from separate vaddr components to a single vector address register, 3669 /// and replace the remaining operands with $noreg. 3670 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, 3671 int DimIdx, int NumVAddrs) { 3672 const LLT S32 = LLT::scalar(32); 3673 3674 SmallVector<Register, 8> AddrRegs; 3675 for (int I = 0; I != NumVAddrs; ++I) { 3676 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 3677 if (SrcOp.isReg()) { 3678 AddrRegs.push_back(SrcOp.getReg()); 3679 assert(B.getMRI()->getType(SrcOp.getReg()) == S32); 3680 } 3681 } 3682 3683 int NumAddrRegs = AddrRegs.size(); 3684 if (NumAddrRegs != 1) { 3685 // Round up to 8 elements for v5-v7 3686 // FIXME: Missing intermediate sized register classes and instructions. 3687 if (NumAddrRegs > 4 && !isPowerOf2_32(NumAddrRegs)) { 3688 const int RoundedNumRegs = NextPowerOf2(NumAddrRegs); 3689 auto Undef = B.buildUndef(S32); 3690 AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0)); 3691 NumAddrRegs = RoundedNumRegs; 3692 } 3693 3694 auto VAddr = B.buildBuildVector(LLT::vector(NumAddrRegs, 32), AddrRegs); 3695 MI.getOperand(DimIdx).setReg(VAddr.getReg(0)); 3696 } 3697 3698 for (int I = 1; I != NumVAddrs; ++I) { 3699 MachineOperand &SrcOp = MI.getOperand(DimIdx + I); 3700 if (SrcOp.isReg()) 3701 MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister); 3702 } 3703 } 3704 3705 /// Rewrite image intrinsics to use register layouts expected by the subtarget. 3706 /// 3707 /// Depending on the subtarget, load/store with 16-bit element data need to be 3708 /// rewritten to use the low half of 32-bit registers, or directly use a packed 3709 /// layout. 16-bit addresses should also sometimes be packed into 32-bit 3710 /// registers. 3711 /// 3712 /// We don't want to directly select image instructions just yet, but also want 3713 /// to exposes all register repacking to the legalizer/combiners. We also don't 3714 /// want a selected instrution entering RegBankSelect. In order to avoid 3715 /// defining a multitude of intermediate image instructions, directly hack on 3716 /// the intrinsic's arguments. In cases like a16 addreses, this requires padding 3717 /// now unnecessary arguments with $noreg. 3718 bool AMDGPULegalizerInfo::legalizeImageIntrinsic( 3719 MachineInstr &MI, MachineIRBuilder &B, 3720 GISelChangeObserver &Observer, 3721 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const { 3722 3723 const int NumDefs = MI.getNumExplicitDefs(); 3724 bool IsTFE = NumDefs == 2; 3725 // We are only processing the operands of d16 image operations on subtargets 3726 // that use the unpacked register layout, or need to repack the TFE result. 3727 3728 // TODO: Do we need to guard against already legalized intrinsics? 3729 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 3730 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 3731 3732 MachineRegisterInfo *MRI = B.getMRI(); 3733 const LLT S32 = LLT::scalar(32); 3734 const LLT S16 = LLT::scalar(16); 3735 const LLT V2S16 = LLT::vector(2, 16); 3736 3737 // Index of first address argument 3738 const int AddrIdx = getImageVAddrIdxBegin(BaseOpcode, NumDefs); 3739 3740 int NumVAddrs, NumGradients; 3741 std::tie(NumVAddrs, NumGradients) = getImageNumVAddr(ImageDimIntr, BaseOpcode); 3742 const int DMaskIdx = BaseOpcode->Atomic ? -1 : 3743 getDMaskIdx(BaseOpcode, NumDefs); 3744 unsigned DMask = 0; 3745 3746 // Check for 16 bit addresses and pack if true. 3747 int DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 3748 LLT GradTy = MRI->getType(MI.getOperand(DimIdx).getReg()); 3749 LLT AddrTy = MRI->getType(MI.getOperand(DimIdx + NumGradients).getReg()); 3750 const bool IsG16 = GradTy == S16; 3751 const bool IsA16 = AddrTy == S16; 3752 3753 int DMaskLanes = 0; 3754 if (!BaseOpcode->Atomic) { 3755 DMask = MI.getOperand(DMaskIdx).getImm(); 3756 if (BaseOpcode->Gather4) { 3757 DMaskLanes = 4; 3758 } else if (DMask != 0) { 3759 DMaskLanes = countPopulation(DMask); 3760 } else if (!IsTFE && !BaseOpcode->Store) { 3761 // If dmask is 0, this is a no-op load. This can be eliminated. 3762 B.buildUndef(MI.getOperand(0)); 3763 MI.eraseFromParent(); 3764 return true; 3765 } 3766 } 3767 3768 Observer.changingInstr(MI); 3769 auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); }); 3770 3771 unsigned NewOpcode = NumDefs == 0 ? 3772 AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD; 3773 3774 // Track that we legalized this 3775 MI.setDesc(B.getTII().get(NewOpcode)); 3776 3777 // Expecting to get an error flag since TFC is on - and dmask is 0 Force 3778 // dmask to be at least 1 otherwise the instruction will fail 3779 if (IsTFE && DMask == 0) { 3780 DMask = 0x1; 3781 DMaskLanes = 1; 3782 MI.getOperand(DMaskIdx).setImm(DMask); 3783 } 3784 3785 if (BaseOpcode->Atomic) { 3786 Register VData0 = MI.getOperand(2).getReg(); 3787 LLT Ty = MRI->getType(VData0); 3788 3789 // TODO: Allow atomic swap and bit ops for v2s16/v4s16 3790 if (Ty.isVector()) 3791 return false; 3792 3793 if (BaseOpcode->AtomicX2) { 3794 Register VData1 = MI.getOperand(3).getReg(); 3795 // The two values are packed in one register. 3796 LLT PackedTy = LLT::vector(2, Ty); 3797 auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1}); 3798 MI.getOperand(2).setReg(Concat.getReg(0)); 3799 MI.getOperand(3).setReg(AMDGPU::NoRegister); 3800 } 3801 } 3802 3803 int CorrectedNumVAddrs = NumVAddrs; 3804 3805 // Optimize _L to _LZ when _L is zero 3806 if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 3807 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 3808 const ConstantFP *ConstantLod; 3809 const int LodIdx = AddrIdx + NumVAddrs - 1; 3810 3811 if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_GFCst(ConstantLod))) { 3812 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 3813 // Set new opcode to _lz variant of _l, and change the intrinsic ID. 3814 ImageDimIntr = AMDGPU::getImageDimInstrinsicByBaseOpcode( 3815 LZMappingInfo->LZ, ImageDimIntr->Dim); 3816 3817 // The starting indexes should remain in the same place. 3818 --NumVAddrs; 3819 --CorrectedNumVAddrs; 3820 3821 MI.getOperand(MI.getNumExplicitDefs()).setIntrinsicID( 3822 static_cast<Intrinsic::ID>(ImageDimIntr->Intr)); 3823 MI.RemoveOperand(LodIdx); 3824 } 3825 } 3826 } 3827 3828 // Optimize _mip away, when 'lod' is zero 3829 if (AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 3830 int64_t ConstantLod; 3831 const int LodIdx = AddrIdx + NumVAddrs - 1; 3832 3833 if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_ICst(ConstantLod))) { 3834 if (ConstantLod == 0) { 3835 // TODO: Change intrinsic opcode and remove operand instead or replacing 3836 // it with 0, as the _L to _LZ handling is done above. 3837 MI.getOperand(LodIdx).ChangeToImmediate(0); 3838 --CorrectedNumVAddrs; 3839 } 3840 } 3841 } 3842 3843 // Rewrite the addressing register layout before doing anything else. 3844 if (IsA16 || IsG16) { 3845 if (IsA16) { 3846 // Target must support the feature and gradients need to be 16 bit too 3847 if (!ST.hasA16() || !IsG16) 3848 return false; 3849 } else if (!ST.hasG16()) 3850 return false; 3851 3852 if (NumVAddrs > 1) { 3853 SmallVector<Register, 4> PackedRegs; 3854 // Don't compress addresses for G16 3855 const int PackEndIdx = 3856 IsA16 ? (AddrIdx + NumVAddrs) : (DimIdx + NumGradients); 3857 packImageA16AddressToDwords(B, MI, PackedRegs, AddrIdx, DimIdx, 3858 PackEndIdx, NumGradients); 3859 3860 if (!IsA16) { 3861 // Add uncompressed address 3862 for (int I = DimIdx + NumGradients; I != AddrIdx + NumVAddrs; ++I) { 3863 int AddrReg = MI.getOperand(I).getReg(); 3864 assert(B.getMRI()->getType(AddrReg) == LLT::scalar(32)); 3865 PackedRegs.push_back(AddrReg); 3866 } 3867 } 3868 3869 // See also below in the non-a16 branch 3870 const bool UseNSA = PackedRegs.size() >= 3 && ST.hasNSAEncoding(); 3871 3872 if (!UseNSA && PackedRegs.size() > 1) { 3873 LLT PackedAddrTy = LLT::vector(2 * PackedRegs.size(), 16); 3874 auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs); 3875 PackedRegs[0] = Concat.getReg(0); 3876 PackedRegs.resize(1); 3877 } 3878 3879 const int NumPacked = PackedRegs.size(); 3880 for (int I = 0; I != NumVAddrs; ++I) { 3881 MachineOperand &SrcOp = MI.getOperand(AddrIdx + I); 3882 if (!SrcOp.isReg()) { 3883 assert(SrcOp.isImm() && SrcOp.getImm() == 0); 3884 continue; 3885 } 3886 3887 assert(SrcOp.getReg() != AMDGPU::NoRegister); 3888 3889 if (I < NumPacked) 3890 SrcOp.setReg(PackedRegs[I]); 3891 else 3892 SrcOp.setReg(AMDGPU::NoRegister); 3893 } 3894 } 3895 } else { 3896 // If the register allocator cannot place the address registers contiguously 3897 // without introducing moves, then using the non-sequential address encoding 3898 // is always preferable, since it saves VALU instructions and is usually a 3899 // wash in terms of code size or even better. 3900 // 3901 // However, we currently have no way of hinting to the register allocator 3902 // that MIMG addresses should be placed contiguously when it is possible to 3903 // do so, so force non-NSA for the common 2-address case as a heuristic. 3904 // 3905 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 3906 // allocation when possible. 3907 const bool UseNSA = CorrectedNumVAddrs >= 3 && ST.hasNSAEncoding(); 3908 3909 if (!UseNSA && NumVAddrs > 1) 3910 convertImageAddrToPacked(B, MI, AddrIdx, NumVAddrs); 3911 } 3912 3913 int Flags = 0; 3914 if (IsA16) 3915 Flags |= 1; 3916 if (IsG16) 3917 Flags |= 2; 3918 MI.addOperand(MachineOperand::CreateImm(Flags)); 3919 3920 if (BaseOpcode->Store) { // No TFE for stores? 3921 // TODO: Handle dmask trim 3922 Register VData = MI.getOperand(1).getReg(); 3923 LLT Ty = MRI->getType(VData); 3924 if (!Ty.isVector() || Ty.getElementType() != S16) 3925 return true; 3926 3927 Register RepackedReg = handleD16VData(B, *MRI, VData); 3928 if (RepackedReg != VData) { 3929 MI.getOperand(1).setReg(RepackedReg); 3930 } 3931 3932 return true; 3933 } 3934 3935 Register DstReg = MI.getOperand(0).getReg(); 3936 LLT Ty = MRI->getType(DstReg); 3937 const LLT EltTy = Ty.getScalarType(); 3938 const bool IsD16 = Ty.getScalarType() == S16; 3939 const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1; 3940 3941 // Confirm that the return type is large enough for the dmask specified 3942 if (NumElts < DMaskLanes) 3943 return false; 3944 3945 if (NumElts > 4 || DMaskLanes > 4) 3946 return false; 3947 3948 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes; 3949 const LLT AdjustedTy = Ty.changeNumElements(AdjustedNumElts); 3950 3951 // The raw dword aligned data component of the load. The only legal cases 3952 // where this matters should be when using the packed D16 format, for 3953 // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>, 3954 LLT RoundedTy; 3955 3956 // S32 vector to to cover all data, plus TFE result element. 3957 LLT TFETy; 3958 3959 // Register type to use for each loaded component. Will be S32 or V2S16. 3960 LLT RegTy; 3961 3962 if (IsD16 && ST.hasUnpackedD16VMem()) { 3963 RoundedTy = LLT::scalarOrVector(AdjustedNumElts, 32); 3964 TFETy = LLT::vector(AdjustedNumElts + 1, 32); 3965 RegTy = S32; 3966 } else { 3967 unsigned EltSize = EltTy.getSizeInBits(); 3968 unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32; 3969 unsigned RoundedSize = 32 * RoundedElts; 3970 RoundedTy = LLT::scalarOrVector(RoundedSize / EltSize, EltSize); 3971 TFETy = LLT::vector(RoundedSize / 32 + 1, S32); 3972 RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32; 3973 } 3974 3975 // The return type does not need adjustment. 3976 // TODO: Should we change s16 case to s32 or <2 x s16>? 3977 if (!IsTFE && (RoundedTy == Ty || !Ty.isVector())) 3978 return true; 3979 3980 Register Dst1Reg; 3981 3982 // Insert after the instruction. 3983 B.setInsertPt(*MI.getParent(), ++MI.getIterator()); 3984 3985 // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x 3986 // s16> instead of s32, we would only need 1 bitcast instead of multiple. 3987 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy; 3988 const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32; 3989 3990 Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy); 3991 3992 MI.getOperand(0).setReg(NewResultReg); 3993 3994 // In the IR, TFE is supposed to be used with a 2 element struct return 3995 // type. The intruction really returns these two values in one contiguous 3996 // register, with one additional dword beyond the loaded data. Rewrite the 3997 // return type to use a single register result. 3998 3999 if (IsTFE) { 4000 Dst1Reg = MI.getOperand(1).getReg(); 4001 if (MRI->getType(Dst1Reg) != S32) 4002 return false; 4003 4004 // TODO: Make sure the TFE operand bit is set. 4005 MI.RemoveOperand(1); 4006 4007 // Handle the easy case that requires no repack instructions. 4008 if (Ty == S32) { 4009 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg); 4010 return true; 4011 } 4012 } 4013 4014 // Now figure out how to copy the new result register back into the old 4015 // result. 4016 SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg); 4017 4018 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs; 4019 4020 if (ResultNumRegs == 1) { 4021 assert(!IsTFE); 4022 ResultRegs[0] = NewResultReg; 4023 } else { 4024 // We have to repack into a new vector of some kind. 4025 for (int I = 0; I != NumDataRegs; ++I) 4026 ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy); 4027 B.buildUnmerge(ResultRegs, NewResultReg); 4028 4029 // Drop the final TFE element to get the data part. The TFE result is 4030 // directly written to the right place already. 4031 if (IsTFE) 4032 ResultRegs.resize(NumDataRegs); 4033 } 4034 4035 // For an s16 scalar result, we form an s32 result with a truncate regardless 4036 // of packed vs. unpacked. 4037 if (IsD16 && !Ty.isVector()) { 4038 B.buildTrunc(DstReg, ResultRegs[0]); 4039 return true; 4040 } 4041 4042 // Avoid a build/concat_vector of 1 entry. 4043 if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) { 4044 B.buildBitcast(DstReg, ResultRegs[0]); 4045 return true; 4046 } 4047 4048 assert(Ty.isVector()); 4049 4050 if (IsD16) { 4051 // For packed D16 results with TFE enabled, all the data components are 4052 // S32. Cast back to the expected type. 4053 // 4054 // TODO: We don't really need to use load s32 elements. We would only need one 4055 // cast for the TFE result if a multiple of v2s16 was used. 4056 if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) { 4057 for (Register &Reg : ResultRegs) 4058 Reg = B.buildBitcast(V2S16, Reg).getReg(0); 4059 } else if (ST.hasUnpackedD16VMem()) { 4060 for (Register &Reg : ResultRegs) 4061 Reg = B.buildTrunc(S16, Reg).getReg(0); 4062 } 4063 } 4064 4065 auto padWithUndef = [&](LLT Ty, int NumElts) { 4066 if (NumElts == 0) 4067 return; 4068 Register Undef = B.buildUndef(Ty).getReg(0); 4069 for (int I = 0; I != NumElts; ++I) 4070 ResultRegs.push_back(Undef); 4071 }; 4072 4073 // Pad out any elements eliminated due to the dmask. 4074 LLT ResTy = MRI->getType(ResultRegs[0]); 4075 if (!ResTy.isVector()) { 4076 padWithUndef(ResTy, NumElts - ResultRegs.size()); 4077 B.buildBuildVector(DstReg, ResultRegs); 4078 return true; 4079 } 4080 4081 assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16); 4082 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32; 4083 4084 // Deal with the one annoying legal case. 4085 const LLT V3S16 = LLT::vector(3, 16); 4086 if (Ty == V3S16) { 4087 padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1); 4088 auto Concat = B.buildConcatVectors(LLT::vector(6, 16), ResultRegs); 4089 B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat); 4090 return true; 4091 } 4092 4093 padWithUndef(ResTy, RegsToCover - ResultRegs.size()); 4094 B.buildConcatVectors(DstReg, ResultRegs); 4095 return true; 4096 } 4097 4098 bool AMDGPULegalizerInfo::legalizeSBufferLoad( 4099 MachineInstr &MI, MachineIRBuilder &B, 4100 GISelChangeObserver &Observer) const { 4101 Register Dst = MI.getOperand(0).getReg(); 4102 LLT Ty = B.getMRI()->getType(Dst); 4103 unsigned Size = Ty.getSizeInBits(); 4104 MachineFunction &MF = B.getMF(); 4105 4106 Observer.changingInstr(MI); 4107 4108 // FIXME: We don't really need this intermediate instruction. The intrinsic 4109 // should be fixed to have a memory operand. Since it's readnone, we're not 4110 // allowed to add one. 4111 MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD)); 4112 MI.RemoveOperand(1); // Remove intrinsic ID 4113 4114 // FIXME: When intrinsic definition is fixed, this should have an MMO already. 4115 // TODO: Should this use datalayout alignment? 4116 const unsigned MemSize = (Size + 7) / 8; 4117 const Align MemAlign(4); 4118 MachineMemOperand *MMO = MF.getMachineMemOperand( 4119 MachinePointerInfo(), 4120 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 4121 MachineMemOperand::MOInvariant, 4122 MemSize, MemAlign); 4123 MI.addMemOperand(MF, MMO); 4124 4125 // There are no 96-bit result scalar loads, but widening to 128-bit should 4126 // always be legal. We may need to restore this to a 96-bit result if it turns 4127 // out this needs to be converted to a vector load during RegBankSelect. 4128 if (!isPowerOf2_32(Size)) { 4129 LegalizerHelper Helper(MF, *this, Observer, B); 4130 4131 if (Ty.isVector()) 4132 Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0); 4133 else 4134 Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0); 4135 } 4136 4137 Observer.changedInstr(MI); 4138 return true; 4139 } 4140 4141 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI, 4142 MachineRegisterInfo &MRI, 4143 MachineIRBuilder &B) const { 4144 // Is non-HSA path or trap-handler disabled? then, insert s_endpgm instruction 4145 if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4146 !ST.isTrapHandlerEnabled()) { 4147 B.buildInstr(AMDGPU::S_ENDPGM).addImm(0); 4148 } else { 4149 // Pass queue pointer to trap handler as input, and insert trap instruction 4150 // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi 4151 const ArgDescriptor *Arg = 4152 getArgDescriptor(B, AMDGPUFunctionArgInfo::QUEUE_PTR); 4153 if (!Arg) 4154 return false; 4155 MachineRegisterInfo &MRI = *B.getMRI(); 4156 Register SGPR01(AMDGPU::SGPR0_SGPR1); 4157 Register LiveIn = getLiveInRegister( 4158 B, MRI, SGPR01, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64), 4159 /*InsertLiveInCopy=*/false); 4160 if (!loadInputValue(LiveIn, B, Arg)) 4161 return false; 4162 B.buildCopy(SGPR01, LiveIn); 4163 B.buildInstr(AMDGPU::S_TRAP) 4164 .addImm(GCNSubtarget::TrapIDLLVMTrap) 4165 .addReg(SGPR01, RegState::Implicit); 4166 } 4167 4168 MI.eraseFromParent(); 4169 return true; 4170 } 4171 4172 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic( 4173 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { 4174 // Is non-HSA path or trap-handler disabled? then, report a warning 4175 // accordingly 4176 if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4177 !ST.isTrapHandlerEnabled()) { 4178 DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(), 4179 "debugtrap handler not supported", 4180 MI.getDebugLoc(), DS_Warning); 4181 LLVMContext &Ctx = B.getMF().getFunction().getContext(); 4182 Ctx.diagnose(NoTrap); 4183 } else { 4184 // Insert debug-trap instruction 4185 B.buildInstr(AMDGPU::S_TRAP).addImm(GCNSubtarget::TrapIDLLVMDebugTrap); 4186 } 4187 4188 MI.eraseFromParent(); 4189 return true; 4190 } 4191 4192 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper, 4193 MachineInstr &MI) const { 4194 MachineIRBuilder &B = Helper.MIRBuilder; 4195 MachineRegisterInfo &MRI = *B.getMRI(); 4196 4197 // Replace the use G_BRCOND with the exec manipulate and branch pseudos. 4198 auto IntrID = MI.getIntrinsicID(); 4199 switch (IntrID) { 4200 case Intrinsic::amdgcn_if: 4201 case Intrinsic::amdgcn_else: { 4202 MachineInstr *Br = nullptr; 4203 MachineBasicBlock *UncondBrTarget = nullptr; 4204 if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) { 4205 const SIRegisterInfo *TRI 4206 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4207 4208 Register Def = MI.getOperand(1).getReg(); 4209 Register Use = MI.getOperand(3).getReg(); 4210 4211 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4212 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4213 if (IntrID == Intrinsic::amdgcn_if) { 4214 B.buildInstr(AMDGPU::SI_IF) 4215 .addDef(Def) 4216 .addUse(Use) 4217 .addMBB(UncondBrTarget); 4218 } else { 4219 B.buildInstr(AMDGPU::SI_ELSE) 4220 .addDef(Def) 4221 .addUse(Use) 4222 .addMBB(UncondBrTarget) 4223 .addImm(0); 4224 } 4225 4226 if (Br) { 4227 Br->getOperand(0).setMBB(CondBrTarget); 4228 } else { 4229 // The IRTranslator skips inserting the G_BR for fallthrough cases, but 4230 // since we're swapping branch targets it needs to be reinserted. 4231 // FIXME: IRTranslator should probably not do this 4232 B.buildBr(*CondBrTarget); 4233 } 4234 4235 MRI.setRegClass(Def, TRI->getWaveMaskRegClass()); 4236 MRI.setRegClass(Use, TRI->getWaveMaskRegClass()); 4237 MI.eraseFromParent(); 4238 BrCond->eraseFromParent(); 4239 return true; 4240 } 4241 4242 return false; 4243 } 4244 case Intrinsic::amdgcn_loop: { 4245 MachineInstr *Br = nullptr; 4246 MachineBasicBlock *UncondBrTarget = nullptr; 4247 if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) { 4248 const SIRegisterInfo *TRI 4249 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 4250 4251 MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB(); 4252 Register Reg = MI.getOperand(2).getReg(); 4253 4254 B.setInsertPt(B.getMBB(), BrCond->getIterator()); 4255 B.buildInstr(AMDGPU::SI_LOOP) 4256 .addUse(Reg) 4257 .addMBB(UncondBrTarget); 4258 4259 if (Br) 4260 Br->getOperand(0).setMBB(CondBrTarget); 4261 else 4262 B.buildBr(*CondBrTarget); 4263 4264 MI.eraseFromParent(); 4265 BrCond->eraseFromParent(); 4266 MRI.setRegClass(Reg, TRI->getWaveMaskRegClass()); 4267 return true; 4268 } 4269 4270 return false; 4271 } 4272 case Intrinsic::amdgcn_kernarg_segment_ptr: 4273 if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) { 4274 // This only makes sense to call in a kernel, so just lower to null. 4275 B.buildConstant(MI.getOperand(0).getReg(), 0); 4276 MI.eraseFromParent(); 4277 return true; 4278 } 4279 4280 return legalizePreloadedArgIntrin( 4281 MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 4282 case Intrinsic::amdgcn_implicitarg_ptr: 4283 return legalizeImplicitArgPtr(MI, MRI, B); 4284 case Intrinsic::amdgcn_workitem_id_x: 4285 return legalizePreloadedArgIntrin(MI, MRI, B, 4286 AMDGPUFunctionArgInfo::WORKITEM_ID_X); 4287 case Intrinsic::amdgcn_workitem_id_y: 4288 return legalizePreloadedArgIntrin(MI, MRI, B, 4289 AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 4290 case Intrinsic::amdgcn_workitem_id_z: 4291 return legalizePreloadedArgIntrin(MI, MRI, B, 4292 AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 4293 case Intrinsic::amdgcn_workgroup_id_x: 4294 return legalizePreloadedArgIntrin(MI, MRI, B, 4295 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 4296 case Intrinsic::amdgcn_workgroup_id_y: 4297 return legalizePreloadedArgIntrin(MI, MRI, B, 4298 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 4299 case Intrinsic::amdgcn_workgroup_id_z: 4300 return legalizePreloadedArgIntrin(MI, MRI, B, 4301 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 4302 case Intrinsic::amdgcn_dispatch_ptr: 4303 return legalizePreloadedArgIntrin(MI, MRI, B, 4304 AMDGPUFunctionArgInfo::DISPATCH_PTR); 4305 case Intrinsic::amdgcn_queue_ptr: 4306 return legalizePreloadedArgIntrin(MI, MRI, B, 4307 AMDGPUFunctionArgInfo::QUEUE_PTR); 4308 case Intrinsic::amdgcn_implicit_buffer_ptr: 4309 return legalizePreloadedArgIntrin( 4310 MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 4311 case Intrinsic::amdgcn_dispatch_id: 4312 return legalizePreloadedArgIntrin(MI, MRI, B, 4313 AMDGPUFunctionArgInfo::DISPATCH_ID); 4314 case Intrinsic::amdgcn_fdiv_fast: 4315 return legalizeFDIVFastIntrin(MI, MRI, B); 4316 case Intrinsic::amdgcn_is_shared: 4317 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS); 4318 case Intrinsic::amdgcn_is_private: 4319 return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS); 4320 case Intrinsic::amdgcn_wavefrontsize: { 4321 B.buildConstant(MI.getOperand(0), ST.getWavefrontSize()); 4322 MI.eraseFromParent(); 4323 return true; 4324 } 4325 case Intrinsic::amdgcn_s_buffer_load: 4326 return legalizeSBufferLoad(MI, B, Helper.Observer); 4327 case Intrinsic::amdgcn_raw_buffer_store: 4328 case Intrinsic::amdgcn_struct_buffer_store: 4329 return legalizeBufferStore(MI, MRI, B, false, false); 4330 case Intrinsic::amdgcn_raw_buffer_store_format: 4331 case Intrinsic::amdgcn_struct_buffer_store_format: 4332 return legalizeBufferStore(MI, MRI, B, false, true); 4333 case Intrinsic::amdgcn_raw_tbuffer_store: 4334 case Intrinsic::amdgcn_struct_tbuffer_store: 4335 return legalizeBufferStore(MI, MRI, B, true, true); 4336 case Intrinsic::amdgcn_raw_buffer_load: 4337 case Intrinsic::amdgcn_struct_buffer_load: 4338 return legalizeBufferLoad(MI, MRI, B, false, false); 4339 case Intrinsic::amdgcn_raw_buffer_load_format: 4340 case Intrinsic::amdgcn_struct_buffer_load_format: 4341 return legalizeBufferLoad(MI, MRI, B, true, false); 4342 case Intrinsic::amdgcn_raw_tbuffer_load: 4343 case Intrinsic::amdgcn_struct_tbuffer_load: 4344 return legalizeBufferLoad(MI, MRI, B, true, true); 4345 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 4346 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 4347 case Intrinsic::amdgcn_raw_buffer_atomic_add: 4348 case Intrinsic::amdgcn_struct_buffer_atomic_add: 4349 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 4350 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 4351 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 4352 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 4353 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 4354 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 4355 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 4356 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 4357 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 4358 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 4359 case Intrinsic::amdgcn_raw_buffer_atomic_and: 4360 case Intrinsic::amdgcn_struct_buffer_atomic_and: 4361 case Intrinsic::amdgcn_raw_buffer_atomic_or: 4362 case Intrinsic::amdgcn_struct_buffer_atomic_or: 4363 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 4364 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 4365 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 4366 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 4367 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 4368 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 4369 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 4370 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 4371 return legalizeBufferAtomic(MI, B, IntrID); 4372 case Intrinsic::amdgcn_atomic_inc: 4373 return legalizeAtomicIncDec(MI, B, true); 4374 case Intrinsic::amdgcn_atomic_dec: 4375 return legalizeAtomicIncDec(MI, B, false); 4376 case Intrinsic::trap: 4377 return legalizeTrapIntrinsic(MI, MRI, B); 4378 case Intrinsic::debugtrap: 4379 return legalizeDebugTrapIntrinsic(MI, MRI, B); 4380 default: { 4381 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 4382 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 4383 return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr); 4384 return true; 4385 } 4386 } 4387 4388 return true; 4389 } 4390