1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AMDGPU.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPULegalizerInfo.h"
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUGlobalISelUtils.h"
18 #include "AMDGPUInstrInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "llvm/ADT/ScopeExit.h"
23 #include "llvm/BinaryFormat/ELF.h"
24 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
25 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/IntrinsicsAMDGPU.h"
29 #include "llvm/IR/IntrinsicsR600.h"
30 
31 #define DEBUG_TYPE "amdgpu-legalinfo"
32 
33 using namespace llvm;
34 using namespace LegalizeActions;
35 using namespace LegalizeMutations;
36 using namespace LegalityPredicates;
37 using namespace MIPatternMatch;
38 
39 // Hack until load/store selection patterns support any tuple of legal types.
40 static cl::opt<bool> EnableNewLegality(
41   "amdgpu-global-isel-new-legality",
42   cl::desc("Use GlobalISel desired legality, rather than try to use"
43            "rules compatible with selection patterns"),
44   cl::init(false),
45   cl::ReallyHidden);
46 
47 static constexpr unsigned MaxRegisterSize = 1024;
48 
49 // Round the number of elements to the next power of two elements
50 static LLT getPow2VectorType(LLT Ty) {
51   unsigned NElts = Ty.getNumElements();
52   unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
53   return Ty.changeElementCount(ElementCount::getFixed(Pow2NElts));
54 }
55 
56 // Round the number of bits to the next power of two bits
57 static LLT getPow2ScalarType(LLT Ty) {
58   unsigned Bits = Ty.getSizeInBits();
59   unsigned Pow2Bits = 1 <<  Log2_32_Ceil(Bits);
60   return LLT::scalar(Pow2Bits);
61 }
62 
63 /// \returns true if this is an odd sized vector which should widen by adding an
64 /// additional element. This is mostly to handle <3 x s16> -> <4 x s16>. This
65 /// excludes s1 vectors, which should always be scalarized.
66 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
67   return [=](const LegalityQuery &Query) {
68     const LLT Ty = Query.Types[TypeIdx];
69     if (!Ty.isVector())
70       return false;
71 
72     const LLT EltTy = Ty.getElementType();
73     const unsigned EltSize = EltTy.getSizeInBits();
74     return Ty.getNumElements() % 2 != 0 &&
75            EltSize > 1 && EltSize < 32 &&
76            Ty.getSizeInBits() % 32 != 0;
77   };
78 }
79 
80 static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx) {
81   return [=](const LegalityQuery &Query) {
82     const LLT Ty = Query.Types[TypeIdx];
83     return Ty.getSizeInBits() % 32 == 0;
84   };
85 }
86 
87 static LegalityPredicate isWideVec16(unsigned TypeIdx) {
88   return [=](const LegalityQuery &Query) {
89     const LLT Ty = Query.Types[TypeIdx];
90     const LLT EltTy = Ty.getScalarType();
91     return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
92   };
93 }
94 
95 static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
96   return [=](const LegalityQuery &Query) {
97     const LLT Ty = Query.Types[TypeIdx];
98     const LLT EltTy = Ty.getElementType();
99     return std::make_pair(TypeIdx,
100                           LLT::fixed_vector(Ty.getNumElements() + 1, EltTy));
101   };
102 }
103 
104 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
105   return [=](const LegalityQuery &Query) {
106     const LLT Ty = Query.Types[TypeIdx];
107     const LLT EltTy = Ty.getElementType();
108     unsigned Size = Ty.getSizeInBits();
109     unsigned Pieces = (Size + 63) / 64;
110     unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
111     return std::make_pair(
112         TypeIdx,
113         LLT::scalarOrVector(ElementCount::getFixed(NewNumElts), EltTy));
114   };
115 }
116 
117 // Increase the number of vector elements to reach the next multiple of 32-bit
118 // type.
119 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
120   return [=](const LegalityQuery &Query) {
121     const LLT Ty = Query.Types[TypeIdx];
122 
123     const LLT EltTy = Ty.getElementType();
124     const int Size = Ty.getSizeInBits();
125     const int EltSize = EltTy.getSizeInBits();
126     const int NextMul32 = (Size + 31) / 32;
127 
128     assert(EltSize < 32);
129 
130     const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
131     return std::make_pair(TypeIdx, LLT::fixed_vector(NewNumElts, EltTy));
132   };
133 }
134 
135 static LLT getBitcastRegisterType(const LLT Ty) {
136   const unsigned Size = Ty.getSizeInBits();
137 
138   if (Size <= 32) {
139     // <2 x s8> -> s16
140     // <4 x s8> -> s32
141     return LLT::scalar(Size);
142   }
143 
144   return LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32);
145 }
146 
147 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) {
148   return [=](const LegalityQuery &Query) {
149     const LLT Ty = Query.Types[TypeIdx];
150     return std::make_pair(TypeIdx, getBitcastRegisterType(Ty));
151   };
152 }
153 
154 static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx) {
155   return [=](const LegalityQuery &Query) {
156     const LLT Ty = Query.Types[TypeIdx];
157     unsigned Size = Ty.getSizeInBits();
158     assert(Size % 32 == 0);
159     return std::make_pair(
160         TypeIdx, LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32));
161   };
162 }
163 
164 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
165   return [=](const LegalityQuery &Query) {
166     const LLT QueryTy = Query.Types[TypeIdx];
167     return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
168   };
169 }
170 
171 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
172   return [=](const LegalityQuery &Query) {
173     const LLT QueryTy = Query.Types[TypeIdx];
174     return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
175   };
176 }
177 
178 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
179   return [=](const LegalityQuery &Query) {
180     const LLT QueryTy = Query.Types[TypeIdx];
181     return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
182   };
183 }
184 
185 static bool isRegisterSize(unsigned Size) {
186   return Size % 32 == 0 && Size <= MaxRegisterSize;
187 }
188 
189 static bool isRegisterVectorElementType(LLT EltTy) {
190   const int EltSize = EltTy.getSizeInBits();
191   return EltSize == 16 || EltSize % 32 == 0;
192 }
193 
194 static bool isRegisterVectorType(LLT Ty) {
195   const int EltSize = Ty.getElementType().getSizeInBits();
196   return EltSize == 32 || EltSize == 64 ||
197          (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
198          EltSize == 128 || EltSize == 256;
199 }
200 
201 static bool isRegisterType(LLT Ty) {
202   if (!isRegisterSize(Ty.getSizeInBits()))
203     return false;
204 
205   if (Ty.isVector())
206     return isRegisterVectorType(Ty);
207 
208   return true;
209 }
210 
211 // Any combination of 32 or 64-bit elements up the maximum register size, and
212 // multiples of v2s16.
213 static LegalityPredicate isRegisterType(unsigned TypeIdx) {
214   return [=](const LegalityQuery &Query) {
215     return isRegisterType(Query.Types[TypeIdx]);
216   };
217 }
218 
219 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) {
220   return [=](const LegalityQuery &Query) {
221     const LLT QueryTy = Query.Types[TypeIdx];
222     if (!QueryTy.isVector())
223       return false;
224     const LLT EltTy = QueryTy.getElementType();
225     return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32;
226   };
227 }
228 
229 // If we have a truncating store or an extending load with a data size larger
230 // than 32-bits, we need to reduce to a 32-bit type.
231 static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx) {
232   return [=](const LegalityQuery &Query) {
233     const LLT Ty = Query.Types[TypeIdx];
234     return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
235            Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
236   };
237 }
238 
239 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
240 // handle some operations by just promoting the register during
241 // selection. There are also d16 loads on GFX9+ which preserve the high bits.
242 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS,
243                                     bool IsLoad) {
244   switch (AS) {
245   case AMDGPUAS::PRIVATE_ADDRESS:
246     // FIXME: Private element size.
247     return ST.enableFlatScratch() ? 128 : 32;
248   case AMDGPUAS::LOCAL_ADDRESS:
249     return ST.useDS128() ? 128 : 64;
250   case AMDGPUAS::GLOBAL_ADDRESS:
251   case AMDGPUAS::CONSTANT_ADDRESS:
252   case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
253     // Treat constant and global as identical. SMRD loads are sometimes usable for
254     // global loads (ideally constant address space should be eliminated)
255     // depending on the context. Legality cannot be context dependent, but
256     // RegBankSelect can split the load as necessary depending on the pointer
257     // register bank/uniformity and if the memory is invariant or not written in a
258     // kernel.
259     return IsLoad ? 512 : 128;
260   default:
261     // Flat addresses may contextually need to be split to 32-bit parts if they
262     // may alias scratch depending on the subtarget.
263     return 128;
264   }
265 }
266 
267 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST,
268                                  const LegalityQuery &Query) {
269   const LLT Ty = Query.Types[0];
270 
271   // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD
272   const bool IsLoad = Query.Opcode != AMDGPU::G_STORE;
273 
274   unsigned RegSize = Ty.getSizeInBits();
275   uint64_t MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
276   uint64_t AlignBits = Query.MMODescrs[0].AlignInBits;
277   unsigned AS = Query.Types[1].getAddressSpace();
278 
279   // All of these need to be custom lowered to cast the pointer operand.
280   if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
281     return false;
282 
283   // Do not handle extending vector loads.
284   if (Ty.isVector() && MemSize != RegSize)
285     return false;
286 
287   // TODO: We should be able to widen loads if the alignment is high enough, but
288   // we also need to modify the memory access size.
289 #if 0
290   // Accept widening loads based on alignment.
291   if (IsLoad && MemSize < Size)
292     MemSize = std::max(MemSize, Align);
293 #endif
294 
295   // Only 1-byte and 2-byte to 32-bit extloads are valid.
296   if (MemSize != RegSize && RegSize != 32)
297     return false;
298 
299   if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
300     return false;
301 
302   switch (MemSize) {
303   case 8:
304   case 16:
305   case 32:
306   case 64:
307   case 128:
308     break;
309   case 96:
310     if (!ST.hasDwordx3LoadStores())
311       return false;
312     break;
313   case 256:
314   case 512:
315     // These may contextually need to be broken down.
316     break;
317   default:
318     return false;
319   }
320 
321   assert(RegSize >= MemSize);
322 
323   if (AlignBits < MemSize) {
324     const SITargetLowering *TLI = ST.getTargetLowering();
325     if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
326                                                  Align(AlignBits / 8)))
327       return false;
328   }
329 
330   return true;
331 }
332 
333 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so
334 // workaround this. Eventually it should ignore the type for loads and only care
335 // about the size. Return true in cases where we will workaround this for now by
336 // bitcasting.
337 static bool loadStoreBitcastWorkaround(const LLT Ty) {
338   if (EnableNewLegality)
339     return false;
340 
341   const unsigned Size = Ty.getSizeInBits();
342   if (Size <= 64)
343     return false;
344   if (!Ty.isVector())
345     return true;
346 
347   LLT EltTy = Ty.getElementType();
348   if (EltTy.isPointer())
349     return true;
350 
351   unsigned EltSize = EltTy.getSizeInBits();
352   return EltSize != 32 && EltSize != 64;
353 }
354 
355 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query) {
356   const LLT Ty = Query.Types[0];
357   return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query) &&
358          !loadStoreBitcastWorkaround(Ty);
359 }
360 
361 /// Return true if a load or store of the type should be lowered with a bitcast
362 /// to a different type.
363 static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty,
364                                        const LLT MemTy) {
365   const unsigned MemSizeInBits = MemTy.getSizeInBits();
366   const unsigned Size = Ty.getSizeInBits();
367   if (Size != MemSizeInBits)
368     return Size <= 32 && Ty.isVector();
369 
370   if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty))
371     return true;
372 
373   // Don't try to handle bitcasting vector ext loads for now.
374   return Ty.isVector() && (!MemTy.isVector() || MemTy == Ty) &&
375          (Size <= 32 || isRegisterSize(Size)) &&
376          !isRegisterVectorElementType(Ty.getElementType());
377 }
378 
379 /// Return true if we should legalize a load by widening an odd sized memory
380 /// access up to the alignment. Note this case when the memory access itself
381 /// changes, not the size of the result register.
382 static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy,
383                             uint64_t AlignInBits, unsigned AddrSpace,
384                             unsigned Opcode) {
385   unsigned SizeInBits = MemoryTy.getSizeInBits();
386   // We don't want to widen cases that are naturally legal.
387   if (isPowerOf2_32(SizeInBits))
388     return false;
389 
390   // If we have 96-bit memory operations, we shouldn't touch them. Note we may
391   // end up widening these for a scalar load during RegBankSelect, since there
392   // aren't 96-bit scalar loads.
393   if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
394     return false;
395 
396   if (SizeInBits >= maxSizeForAddrSpace(ST, AddrSpace, Opcode))
397     return false;
398 
399   // A load is known dereferenceable up to the alignment, so it's legal to widen
400   // to it.
401   //
402   // TODO: Could check dereferenceable for less aligned cases.
403   unsigned RoundedSize = NextPowerOf2(SizeInBits);
404   if (AlignInBits < RoundedSize)
405     return false;
406 
407   // Do not widen if it would introduce a slow unaligned load.
408   const SITargetLowering *TLI = ST.getTargetLowering();
409   bool Fast = false;
410   return TLI->allowsMisalignedMemoryAccessesImpl(
411              RoundedSize, AddrSpace, Align(AlignInBits / 8),
412              MachineMemOperand::MOLoad, &Fast) &&
413          Fast;
414 }
415 
416 static bool shouldWidenLoad(const GCNSubtarget &ST, const LegalityQuery &Query,
417                             unsigned Opcode) {
418   if (Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic)
419     return false;
420 
421   return shouldWidenLoad(ST, Query.MMODescrs[0].MemoryTy,
422                          Query.MMODescrs[0].AlignInBits,
423                          Query.Types[1].getAddressSpace(), Opcode);
424 }
425 
426 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
427                                          const GCNTargetMachine &TM)
428   :  ST(ST_) {
429   using namespace TargetOpcode;
430 
431   auto GetAddrSpacePtr = [&TM](unsigned AS) {
432     return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
433   };
434 
435   const LLT S1 = LLT::scalar(1);
436   const LLT S8 = LLT::scalar(8);
437   const LLT S16 = LLT::scalar(16);
438   const LLT S32 = LLT::scalar(32);
439   const LLT S64 = LLT::scalar(64);
440   const LLT S128 = LLT::scalar(128);
441   const LLT S256 = LLT::scalar(256);
442   const LLT S512 = LLT::scalar(512);
443   const LLT MaxScalar = LLT::scalar(MaxRegisterSize);
444 
445   const LLT V2S8 = LLT::fixed_vector(2, 8);
446   const LLT V2S16 = LLT::fixed_vector(2, 16);
447   const LLT V4S16 = LLT::fixed_vector(4, 16);
448 
449   const LLT V2S32 = LLT::fixed_vector(2, 32);
450   const LLT V3S32 = LLT::fixed_vector(3, 32);
451   const LLT V4S32 = LLT::fixed_vector(4, 32);
452   const LLT V5S32 = LLT::fixed_vector(5, 32);
453   const LLT V6S32 = LLT::fixed_vector(6, 32);
454   const LLT V7S32 = LLT::fixed_vector(7, 32);
455   const LLT V8S32 = LLT::fixed_vector(8, 32);
456   const LLT V9S32 = LLT::fixed_vector(9, 32);
457   const LLT V10S32 = LLT::fixed_vector(10, 32);
458   const LLT V11S32 = LLT::fixed_vector(11, 32);
459   const LLT V12S32 = LLT::fixed_vector(12, 32);
460   const LLT V13S32 = LLT::fixed_vector(13, 32);
461   const LLT V14S32 = LLT::fixed_vector(14, 32);
462   const LLT V15S32 = LLT::fixed_vector(15, 32);
463   const LLT V16S32 = LLT::fixed_vector(16, 32);
464   const LLT V32S32 = LLT::fixed_vector(32, 32);
465 
466   const LLT V2S64 = LLT::fixed_vector(2, 64);
467   const LLT V3S64 = LLT::fixed_vector(3, 64);
468   const LLT V4S64 = LLT::fixed_vector(4, 64);
469   const LLT V5S64 = LLT::fixed_vector(5, 64);
470   const LLT V6S64 = LLT::fixed_vector(6, 64);
471   const LLT V7S64 = LLT::fixed_vector(7, 64);
472   const LLT V8S64 = LLT::fixed_vector(8, 64);
473   const LLT V16S64 = LLT::fixed_vector(16, 64);
474 
475   std::initializer_list<LLT> AllS32Vectors =
476     {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
477      V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
478   std::initializer_list<LLT> AllS64Vectors =
479     {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};
480 
481   const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
482   const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
483   const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
484   const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
485   const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
486   const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
487   const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
488 
489   const LLT CodePtr = FlatPtr;
490 
491   const std::initializer_list<LLT> AddrSpaces64 = {
492     GlobalPtr, ConstantPtr, FlatPtr
493   };
494 
495   const std::initializer_list<LLT> AddrSpaces32 = {
496     LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
497   };
498 
499   const std::initializer_list<LLT> FPTypesBase = {
500     S32, S64
501   };
502 
503   const std::initializer_list<LLT> FPTypes16 = {
504     S32, S64, S16
505   };
506 
507   const std::initializer_list<LLT> FPTypesPK16 = {
508     S32, S64, S16, V2S16
509   };
510 
511   const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32;
512 
513   // s1 for VCC branches, s32 for SCC branches.
514   getActionDefinitionsBuilder(G_BRCOND).legalFor({S1, S32});
515 
516   // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
517   // elements for v3s16
518   getActionDefinitionsBuilder(G_PHI)
519     .legalFor({S32, S64, V2S16, S16, V4S16, S1, S128, S256})
520     .legalFor(AllS32Vectors)
521     .legalFor(AllS64Vectors)
522     .legalFor(AddrSpaces64)
523     .legalFor(AddrSpaces32)
524     .legalIf(isPointer(0))
525     .clampScalar(0, S16, S256)
526     .widenScalarToNextPow2(0, 32)
527     .clampMaxNumElements(0, S32, 16)
528     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
529     .scalarize(0);
530 
531   if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
532     // Full set of gfx9 features.
533     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
534       .legalFor({S32, S16, V2S16})
535       .minScalar(0, S16)
536       .clampMaxNumElementsStrict(0, S16, 2)
537       .widenScalarToNextMultipleOf(0, 32)
538       .maxScalar(0, S32)
539       .scalarize(0);
540 
541     getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT, G_SADDSAT, G_SSUBSAT})
542       .legalFor({S32, S16, V2S16}) // Clamp modifier
543       .minScalarOrElt(0, S16)
544       .clampMaxNumElementsStrict(0, S16, 2)
545       .scalarize(0)
546       .widenScalarToNextPow2(0, 32)
547       .lower();
548   } else if (ST.has16BitInsts()) {
549     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
550       .legalFor({S32, S16})
551       .minScalar(0, S16)
552       .widenScalarToNextMultipleOf(0, 32)
553       .maxScalar(0, S32)
554       .scalarize(0);
555 
556     // Technically the saturating operations require clamp bit support, but this
557     // was introduced at the same time as 16-bit operations.
558     getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
559       .legalFor({S32, S16}) // Clamp modifier
560       .minScalar(0, S16)
561       .scalarize(0)
562       .widenScalarToNextPow2(0, 16)
563       .lower();
564 
565     // We're just lowering this, but it helps get a better result to try to
566     // coerce to the desired type first.
567     getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
568       .minScalar(0, S16)
569       .scalarize(0)
570       .lower();
571   } else {
572     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
573       .legalFor({S32})
574       .widenScalarToNextMultipleOf(0, 32)
575       .clampScalar(0, S32, S32)
576       .scalarize(0);
577 
578     if (ST.hasIntClamp()) {
579       getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
580         .legalFor({S32}) // Clamp modifier.
581         .scalarize(0)
582         .minScalarOrElt(0, S32)
583         .lower();
584     } else {
585       // Clamp bit support was added in VI, along with 16-bit operations.
586       getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
587         .minScalar(0, S32)
588         .scalarize(0)
589         .lower();
590     }
591 
592     // FIXME: DAG expansion gets better results. The widening uses the smaller
593     // range values and goes for the min/max lowering directly.
594     getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
595       .minScalar(0, S32)
596       .scalarize(0)
597       .lower();
598   }
599 
600   getActionDefinitionsBuilder(
601       {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
602       .customFor({S32, S64})
603       .clampScalar(0, S32, S64)
604       .widenScalarToNextPow2(0, 32)
605       .scalarize(0);
606 
607   auto &Mulh = getActionDefinitionsBuilder({G_UMULH, G_SMULH})
608                    .legalFor({S32})
609                    .maxScalar(0, S32);
610 
611   if (ST.hasVOP3PInsts()) {
612     Mulh
613       .clampMaxNumElements(0, S8, 2)
614       .lowerFor({V2S8});
615   }
616 
617   Mulh
618     .scalarize(0)
619     .lower();
620 
621   // Report legal for any types we can handle anywhere. For the cases only legal
622   // on the SALU, RegBankSelect will be able to re-legalize.
623   getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
624     .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
625     .clampScalar(0, S32, S64)
626     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
627     .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
628     .widenScalarToNextPow2(0)
629     .scalarize(0);
630 
631   getActionDefinitionsBuilder({G_UADDO, G_USUBO,
632                                G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
633     .legalFor({{S32, S1}, {S32, S32}})
634     .minScalar(0, S32)
635     .scalarize(0)
636     .lower();
637 
638   getActionDefinitionsBuilder(G_BITCAST)
639     // Don't worry about the size constraint.
640     .legalIf(all(isRegisterType(0), isRegisterType(1)))
641     .lower();
642 
643 
644   getActionDefinitionsBuilder(G_CONSTANT)
645     .legalFor({S1, S32, S64, S16, GlobalPtr,
646                LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
647     .legalIf(isPointer(0))
648     .clampScalar(0, S32, S64)
649     .widenScalarToNextPow2(0);
650 
651   getActionDefinitionsBuilder(G_FCONSTANT)
652     .legalFor({S32, S64, S16})
653     .clampScalar(0, S16, S64);
654 
655   getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
656       .legalIf(isRegisterType(0))
657       // s1 and s16 are special cases because they have legal operations on
658       // them, but don't really occupy registers in the normal way.
659       .legalFor({S1, S16})
660       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
661       .clampScalarOrElt(0, S32, MaxScalar)
662       .widenScalarToNextPow2(0, 32)
663       .clampMaxNumElements(0, S32, 16);
664 
665   getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({PrivatePtr});
666 
667   // If the amount is divergent, we have to do a wave reduction to get the
668   // maximum value, so this is expanded during RegBankSelect.
669   getActionDefinitionsBuilder(G_DYN_STACKALLOC)
670     .legalFor({{PrivatePtr, S32}});
671 
672   getActionDefinitionsBuilder(G_GLOBAL_VALUE)
673     .customIf(typeIsNot(0, PrivatePtr));
674 
675   getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({CodePtr});
676 
677   auto &FPOpActions = getActionDefinitionsBuilder(
678     { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
679     .legalFor({S32, S64});
680   auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
681     .customFor({S32, S64});
682   auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
683     .customFor({S32, S64});
684 
685   if (ST.has16BitInsts()) {
686     if (ST.hasVOP3PInsts())
687       FPOpActions.legalFor({S16, V2S16});
688     else
689       FPOpActions.legalFor({S16});
690 
691     TrigActions.customFor({S16});
692     FDIVActions.customFor({S16});
693   }
694 
695   auto &MinNumMaxNum = getActionDefinitionsBuilder({
696       G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});
697 
698   if (ST.hasVOP3PInsts()) {
699     MinNumMaxNum.customFor(FPTypesPK16)
700       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
701       .clampMaxNumElements(0, S16, 2)
702       .clampScalar(0, S16, S64)
703       .scalarize(0);
704   } else if (ST.has16BitInsts()) {
705     MinNumMaxNum.customFor(FPTypes16)
706       .clampScalar(0, S16, S64)
707       .scalarize(0);
708   } else {
709     MinNumMaxNum.customFor(FPTypesBase)
710       .clampScalar(0, S32, S64)
711       .scalarize(0);
712   }
713 
714   if (ST.hasVOP3PInsts())
715     FPOpActions.clampMaxNumElementsStrict(0, S16, 2);
716 
717   FPOpActions
718     .scalarize(0)
719     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
720 
721   TrigActions
722     .scalarize(0)
723     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
724 
725   FDIVActions
726     .scalarize(0)
727     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
728 
729   getActionDefinitionsBuilder({G_FNEG, G_FABS})
730     .legalFor(FPTypesPK16)
731     .clampMaxNumElementsStrict(0, S16, 2)
732     .scalarize(0)
733     .clampScalar(0, S16, S64);
734 
735   if (ST.has16BitInsts()) {
736     getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
737       .legalFor({S32, S64, S16})
738       .scalarize(0)
739       .clampScalar(0, S16, S64);
740   } else {
741     getActionDefinitionsBuilder(G_FSQRT)
742       .legalFor({S32, S64})
743       .scalarize(0)
744       .clampScalar(0, S32, S64);
745 
746     if (ST.hasFractBug()) {
747       getActionDefinitionsBuilder(G_FFLOOR)
748         .customFor({S64})
749         .legalFor({S32, S64})
750         .scalarize(0)
751         .clampScalar(0, S32, S64);
752     } else {
753       getActionDefinitionsBuilder(G_FFLOOR)
754         .legalFor({S32, S64})
755         .scalarize(0)
756         .clampScalar(0, S32, S64);
757     }
758   }
759 
760   getActionDefinitionsBuilder(G_FPTRUNC)
761     .legalFor({{S32, S64}, {S16, S32}})
762     .scalarize(0)
763     .lower();
764 
765   getActionDefinitionsBuilder(G_FPEXT)
766     .legalFor({{S64, S32}, {S32, S16}})
767     .narrowScalarFor({{S64, S16}}, changeTo(0, S32))
768     .scalarize(0);
769 
770   getActionDefinitionsBuilder(G_FSUB)
771       // Use actual fsub instruction
772       .legalFor({S32})
773       // Must use fadd + fneg
774       .lowerFor({S64, S16, V2S16})
775       .scalarize(0)
776       .clampScalar(0, S32, S64);
777 
778   // Whether this is legal depends on the floating point mode for the function.
779   auto &FMad = getActionDefinitionsBuilder(G_FMAD);
780   if (ST.hasMadF16() && ST.hasMadMacF32Insts())
781     FMad.customFor({S32, S16});
782   else if (ST.hasMadMacF32Insts())
783     FMad.customFor({S32});
784   else if (ST.hasMadF16())
785     FMad.customFor({S16});
786   FMad.scalarize(0)
787       .lower();
788 
789   auto &FRem = getActionDefinitionsBuilder(G_FREM);
790   if (ST.has16BitInsts()) {
791     FRem.customFor({S16, S32, S64});
792   } else {
793     FRem.minScalar(0, S32)
794         .customFor({S32, S64});
795   }
796   FRem.scalarize(0);
797 
798   // TODO: Do we need to clamp maximum bitwidth?
799   getActionDefinitionsBuilder(G_TRUNC)
800     .legalIf(isScalar(0))
801     .legalFor({{V2S16, V2S32}})
802     .clampMaxNumElements(0, S16, 2)
803     // Avoid scalarizing in cases that should be truly illegal. In unresolvable
804     // situations (like an invalid implicit use), we don't want to infinite loop
805     // in the legalizer.
806     .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0))
807     .alwaysLegal();
808 
809   getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
810     .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
811                {S32, S1}, {S64, S1}, {S16, S1}})
812     .scalarize(0)
813     .clampScalar(0, S32, S64)
814     .widenScalarToNextPow2(1, 32);
815 
816   // TODO: Split s1->s64 during regbankselect for VALU.
817   auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
818                     .legalFor({{S32, S32}, {S64, S32}, {S16, S32}})
819                     .lowerIf(typeIs(1, S1))
820                     .customFor({{S32, S64}, {S64, S64}});
821   if (ST.has16BitInsts())
822     IToFP.legalFor({{S16, S16}});
823   IToFP.clampScalar(1, S32, S64)
824        .minScalar(0, S32)
825        .scalarize(0)
826        .widenScalarToNextPow2(1);
827 
828   auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
829     .legalFor({{S32, S32}, {S32, S64}, {S32, S16}})
830     .customFor({{S64, S32}, {S64, S64}})
831     .narrowScalarFor({{S64, S16}}, changeTo(0, S32));
832   if (ST.has16BitInsts())
833     FPToI.legalFor({{S16, S16}});
834   else
835     FPToI.minScalar(1, S32);
836 
837   FPToI.minScalar(0, S32)
838        .widenScalarToNextPow2(0, 32)
839        .scalarize(0)
840        .lower();
841 
842   getActionDefinitionsBuilder(G_INTRINSIC_FPTRUNC_ROUND)
843       .customFor({S16, S32})
844       .scalarize(0)
845       .lower();
846 
847   // Lower roundeven into G_FRINT
848   getActionDefinitionsBuilder({G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
849     .scalarize(0)
850     .lower();
851 
852   if (ST.has16BitInsts()) {
853     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
854       .legalFor({S16, S32, S64})
855       .clampScalar(0, S16, S64)
856       .scalarize(0);
857   } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
858     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
859       .legalFor({S32, S64})
860       .clampScalar(0, S32, S64)
861       .scalarize(0);
862   } else {
863     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
864       .legalFor({S32})
865       .customFor({S64})
866       .clampScalar(0, S32, S64)
867       .scalarize(0);
868   }
869 
870   getActionDefinitionsBuilder(G_PTR_ADD)
871     .legalIf(all(isPointer(0), sameSize(0, 1)))
872     .scalarize(0)
873     .scalarSameSizeAs(1, 0);
874 
875   getActionDefinitionsBuilder(G_PTRMASK)
876     .legalIf(all(sameSize(0, 1), typeInSet(1, {S64, S32})))
877     .scalarSameSizeAs(1, 0)
878     .scalarize(0);
879 
880   auto &CmpBuilder =
881     getActionDefinitionsBuilder(G_ICMP)
882     // The compare output type differs based on the register bank of the output,
883     // so make both s1 and s32 legal.
884     //
885     // Scalar compares producing output in scc will be promoted to s32, as that
886     // is the allocatable register type that will be needed for the copy from
887     // scc. This will be promoted during RegBankSelect, and we assume something
888     // before that won't try to use s32 result types.
889     //
890     // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg
891     // bank.
892     .legalForCartesianProduct(
893       {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
894     .legalForCartesianProduct(
895       {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
896   if (ST.has16BitInsts()) {
897     CmpBuilder.legalFor({{S1, S16}});
898   }
899 
900   CmpBuilder
901     .widenScalarToNextPow2(1)
902     .clampScalar(1, S32, S64)
903     .scalarize(0)
904     .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1)));
905 
906   getActionDefinitionsBuilder(G_FCMP)
907     .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
908     .widenScalarToNextPow2(1)
909     .clampScalar(1, S32, S64)
910     .scalarize(0);
911 
912   // FIXME: fpow has a selection pattern that should move to custom lowering.
913   auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2});
914   if (ST.has16BitInsts())
915     Exp2Ops.legalFor({S32, S16});
916   else
917     Exp2Ops.legalFor({S32});
918   Exp2Ops.clampScalar(0, MinScalarFPTy, S32);
919   Exp2Ops.scalarize(0);
920 
921   auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW});
922   if (ST.has16BitInsts())
923     ExpOps.customFor({{S32}, {S16}});
924   else
925     ExpOps.customFor({S32});
926   ExpOps.clampScalar(0, MinScalarFPTy, S32)
927         .scalarize(0);
928 
929   getActionDefinitionsBuilder(G_FPOWI)
930     .clampScalar(0, MinScalarFPTy, S32)
931     .lower();
932 
933   // The 64-bit versions produce 32-bit results, but only on the SALU.
934   getActionDefinitionsBuilder(G_CTPOP)
935     .legalFor({{S32, S32}, {S32, S64}})
936     .clampScalar(0, S32, S32)
937     .widenScalarToNextPow2(1, 32)
938     .clampScalar(1, S32, S64)
939     .scalarize(0)
940     .widenScalarToNextPow2(0, 32);
941 
942 
943   // The hardware instructions return a different result on 0 than the generic
944   // instructions expect. The hardware produces -1, but these produce the
945   // bitwidth.
946   getActionDefinitionsBuilder({G_CTLZ, G_CTTZ})
947     .scalarize(0)
948     .clampScalar(0, S32, S32)
949     .clampScalar(1, S32, S64)
950     .widenScalarToNextPow2(0, 32)
951     .widenScalarToNextPow2(1, 32)
952     .custom();
953 
954   // The 64-bit versions produce 32-bit results, but only on the SALU.
955   getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF})
956     .legalFor({{S32, S32}, {S32, S64}})
957     .clampScalar(0, S32, S32)
958     .clampScalar(1, S32, S64)
959     .scalarize(0)
960     .widenScalarToNextPow2(0, 32)
961     .widenScalarToNextPow2(1, 32);
962 
963   // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
964   // RegBankSelect.
965   getActionDefinitionsBuilder(G_BITREVERSE)
966     .legalFor({S32, S64})
967     .clampScalar(0, S32, S64)
968     .scalarize(0)
969     .widenScalarToNextPow2(0);
970 
971   if (ST.has16BitInsts()) {
972     getActionDefinitionsBuilder(G_BSWAP)
973       .legalFor({S16, S32, V2S16})
974       .clampMaxNumElementsStrict(0, S16, 2)
975       // FIXME: Fixing non-power-of-2 before clamp is workaround for
976       // narrowScalar limitation.
977       .widenScalarToNextPow2(0)
978       .clampScalar(0, S16, S32)
979       .scalarize(0);
980 
981     if (ST.hasVOP3PInsts()) {
982       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
983         .legalFor({S32, S16, V2S16})
984         .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
985         .clampMaxNumElements(0, S16, 2)
986         .minScalar(0, S16)
987         .widenScalarToNextPow2(0)
988         .scalarize(0)
989         .lower();
990     } else {
991       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
992         .legalFor({S32, S16})
993         .widenScalarToNextPow2(0)
994         .minScalar(0, S16)
995         .scalarize(0)
996         .lower();
997     }
998   } else {
999     // TODO: Should have same legality without v_perm_b32
1000     getActionDefinitionsBuilder(G_BSWAP)
1001       .legalFor({S32})
1002       .lowerIf(scalarNarrowerThan(0, 32))
1003       // FIXME: Fixing non-power-of-2 before clamp is workaround for
1004       // narrowScalar limitation.
1005       .widenScalarToNextPow2(0)
1006       .maxScalar(0, S32)
1007       .scalarize(0)
1008       .lower();
1009 
1010     getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
1011       .legalFor({S32})
1012       .minScalar(0, S32)
1013       .widenScalarToNextPow2(0)
1014       .scalarize(0)
1015       .lower();
1016   }
1017 
1018   getActionDefinitionsBuilder(G_INTTOPTR)
1019     // List the common cases
1020     .legalForCartesianProduct(AddrSpaces64, {S64})
1021     .legalForCartesianProduct(AddrSpaces32, {S32})
1022     .scalarize(0)
1023     // Accept any address space as long as the size matches
1024     .legalIf(sameSize(0, 1))
1025     .widenScalarIf(smallerThan(1, 0),
1026       [](const LegalityQuery &Query) {
1027         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
1028       })
1029     .narrowScalarIf(largerThan(1, 0),
1030       [](const LegalityQuery &Query) {
1031         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
1032       });
1033 
1034   getActionDefinitionsBuilder(G_PTRTOINT)
1035     // List the common cases
1036     .legalForCartesianProduct(AddrSpaces64, {S64})
1037     .legalForCartesianProduct(AddrSpaces32, {S32})
1038     .scalarize(0)
1039     // Accept any address space as long as the size matches
1040     .legalIf(sameSize(0, 1))
1041     .widenScalarIf(smallerThan(0, 1),
1042       [](const LegalityQuery &Query) {
1043         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
1044       })
1045     .narrowScalarIf(
1046       largerThan(0, 1),
1047       [](const LegalityQuery &Query) {
1048         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
1049       });
1050 
1051   getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
1052     .scalarize(0)
1053     .custom();
1054 
1055   const auto needToSplitMemOp = [=](const LegalityQuery &Query,
1056                                     bool IsLoad) -> bool {
1057     const LLT DstTy = Query.Types[0];
1058 
1059     // Split vector extloads.
1060     unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1061 
1062     if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
1063       return true;
1064 
1065     const LLT PtrTy = Query.Types[1];
1066     unsigned AS = PtrTy.getAddressSpace();
1067     if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
1068       return true;
1069 
1070     // Catch weird sized loads that don't evenly divide into the access sizes
1071     // TODO: May be able to widen depending on alignment etc.
1072     unsigned NumRegs = (MemSize + 31) / 32;
1073     if (NumRegs == 3) {
1074       if (!ST.hasDwordx3LoadStores())
1075         return true;
1076     } else {
1077       // If the alignment allows, these should have been widened.
1078       if (!isPowerOf2_32(NumRegs))
1079         return true;
1080     }
1081 
1082     return false;
1083   };
1084 
1085   unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
1086   unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
1087   unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
1088 
1089   // TODO: Refine based on subtargets which support unaligned access or 128-bit
1090   // LDS
1091   // TODO: Unsupported flat for SI.
1092 
1093   for (unsigned Op : {G_LOAD, G_STORE}) {
1094     const bool IsStore = Op == G_STORE;
1095 
1096     auto &Actions = getActionDefinitionsBuilder(Op);
1097     // Explicitly list some common cases.
1098     // TODO: Does this help compile time at all?
1099     Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, S32, GlobalAlign32},
1100                                       {V2S32, GlobalPtr, V2S32, GlobalAlign32},
1101                                       {V4S32, GlobalPtr, V4S32, GlobalAlign32},
1102                                       {S64, GlobalPtr, S64, GlobalAlign32},
1103                                       {V2S64, GlobalPtr, V2S64, GlobalAlign32},
1104                                       {V2S16, GlobalPtr, V2S16, GlobalAlign32},
1105                                       {S32, GlobalPtr, S8, GlobalAlign8},
1106                                       {S32, GlobalPtr, S16, GlobalAlign16},
1107 
1108                                       {S32, LocalPtr, S32, 32},
1109                                       {S64, LocalPtr, S64, 32},
1110                                       {V2S32, LocalPtr, V2S32, 32},
1111                                       {S32, LocalPtr, S8, 8},
1112                                       {S32, LocalPtr, S16, 16},
1113                                       {V2S16, LocalPtr, S32, 32},
1114 
1115                                       {S32, PrivatePtr, S32, 32},
1116                                       {S32, PrivatePtr, S8, 8},
1117                                       {S32, PrivatePtr, S16, 16},
1118                                       {V2S16, PrivatePtr, S32, 32},
1119 
1120                                       {S32, ConstantPtr, S32, GlobalAlign32},
1121                                       {V2S32, ConstantPtr, V2S32, GlobalAlign32},
1122                                       {V4S32, ConstantPtr, V4S32, GlobalAlign32},
1123                                       {S64, ConstantPtr, S64, GlobalAlign32},
1124                                       {V2S32, ConstantPtr, V2S32, GlobalAlign32}});
1125     Actions.legalIf(
1126       [=](const LegalityQuery &Query) -> bool {
1127         return isLoadStoreLegal(ST, Query);
1128       });
1129 
1130     // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
1131     // 64-bits.
1132     //
1133     // TODO: Should generalize bitcast action into coerce, which will also cover
1134     // inserting addrspacecasts.
1135     Actions.customIf(typeIs(1, Constant32Ptr));
1136 
1137     // Turn any illegal element vectors into something easier to deal
1138     // with. These will ultimately produce 32-bit scalar shifts to extract the
1139     // parts anyway.
1140     //
1141     // For odd 16-bit element vectors, prefer to split those into pieces with
1142     // 16-bit vector parts.
1143     Actions.bitcastIf(
1144       [=](const LegalityQuery &Query) -> bool {
1145         return shouldBitcastLoadStoreType(ST, Query.Types[0],
1146                                           Query.MMODescrs[0].MemoryTy);
1147       }, bitcastToRegisterType(0));
1148 
1149     if (!IsStore) {
1150       // Widen suitably aligned loads by loading extra bytes. The standard
1151       // legalization actions can't properly express widening memory operands.
1152       Actions.customIf([=](const LegalityQuery &Query) -> bool {
1153         return shouldWidenLoad(ST, Query, G_LOAD);
1154       });
1155     }
1156 
1157     // FIXME: load/store narrowing should be moved to lower action
1158     Actions
1159         .narrowScalarIf(
1160             [=](const LegalityQuery &Query) -> bool {
1161               return !Query.Types[0].isVector() &&
1162                      needToSplitMemOp(Query, Op == G_LOAD);
1163             },
1164             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1165               const LLT DstTy = Query.Types[0];
1166               const LLT PtrTy = Query.Types[1];
1167 
1168               const unsigned DstSize = DstTy.getSizeInBits();
1169               unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1170 
1171               // Split extloads.
1172               if (DstSize > MemSize)
1173                 return std::make_pair(0, LLT::scalar(MemSize));
1174 
1175               unsigned MaxSize = maxSizeForAddrSpace(ST,
1176                                                      PtrTy.getAddressSpace(),
1177                                                      Op == G_LOAD);
1178               if (MemSize > MaxSize)
1179                 return std::make_pair(0, LLT::scalar(MaxSize));
1180 
1181               uint64_t Align = Query.MMODescrs[0].AlignInBits;
1182               return std::make_pair(0, LLT::scalar(Align));
1183             })
1184         .fewerElementsIf(
1185             [=](const LegalityQuery &Query) -> bool {
1186               return Query.Types[0].isVector() &&
1187                      needToSplitMemOp(Query, Op == G_LOAD);
1188             },
1189             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1190               const LLT DstTy = Query.Types[0];
1191               const LLT PtrTy = Query.Types[1];
1192 
1193               LLT EltTy = DstTy.getElementType();
1194               unsigned MaxSize = maxSizeForAddrSpace(ST,
1195                                                      PtrTy.getAddressSpace(),
1196                                                      Op == G_LOAD);
1197 
1198               // FIXME: Handle widened to power of 2 results better. This ends
1199               // up scalarizing.
1200               // FIXME: 3 element stores scalarized on SI
1201 
1202               // Split if it's too large for the address space.
1203               unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1204               if (MemSize > MaxSize) {
1205                 unsigned NumElts = DstTy.getNumElements();
1206                 unsigned EltSize = EltTy.getSizeInBits();
1207 
1208                 if (MaxSize % EltSize == 0) {
1209                   return std::make_pair(
1210                       0, LLT::scalarOrVector(
1211                              ElementCount::getFixed(MaxSize / EltSize), EltTy));
1212                 }
1213 
1214                 unsigned NumPieces = MemSize / MaxSize;
1215 
1216                 // FIXME: Refine when odd breakdowns handled
1217                 // The scalars will need to be re-legalized.
1218                 if (NumPieces == 1 || NumPieces >= NumElts ||
1219                     NumElts % NumPieces != 0)
1220                   return std::make_pair(0, EltTy);
1221 
1222                 return std::make_pair(
1223                     0, LLT::fixed_vector(NumElts / NumPieces, EltTy));
1224               }
1225 
1226               // FIXME: We could probably handle weird extending loads better.
1227               if (DstTy.getSizeInBits() > MemSize)
1228                 return std::make_pair(0, EltTy);
1229 
1230               unsigned EltSize = EltTy.getSizeInBits();
1231               unsigned DstSize = DstTy.getSizeInBits();
1232               if (!isPowerOf2_32(DstSize)) {
1233                 // We're probably decomposing an odd sized store. Try to split
1234                 // to the widest type. TODO: Account for alignment. As-is it
1235                 // should be OK, since the new parts will be further legalized.
1236                 unsigned FloorSize = PowerOf2Floor(DstSize);
1237                 return std::make_pair(
1238                     0, LLT::scalarOrVector(
1239                            ElementCount::getFixed(FloorSize / EltSize), EltTy));
1240               }
1241 
1242               // May need relegalization for the scalars.
1243               return std::make_pair(0, EltTy);
1244             })
1245     .minScalar(0, S32)
1246     .narrowScalarIf(isWideScalarExtLoadTruncStore(0), changeTo(0, S32))
1247     .widenScalarToNextPow2(0)
1248     .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0))
1249     .lower();
1250   }
1251 
1252   // FIXME: Unaligned accesses not lowered.
1253   auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
1254                        .legalForTypesWithMemDesc({{S32, GlobalPtr, S8, 8},
1255                                                   {S32, GlobalPtr, S16, 2 * 8},
1256                                                   {S32, LocalPtr, S8, 8},
1257                                                   {S32, LocalPtr, S16, 16},
1258                                                   {S32, PrivatePtr, S8, 8},
1259                                                   {S32, PrivatePtr, S16, 16},
1260                                                   {S32, ConstantPtr, S8, 8},
1261                                                   {S32, ConstantPtr, S16, 2 * 8}})
1262                        .legalIf(
1263                          [=](const LegalityQuery &Query) -> bool {
1264                            return isLoadStoreLegal(ST, Query);
1265                          });
1266 
1267   if (ST.hasFlatAddressSpace()) {
1268     ExtLoads.legalForTypesWithMemDesc(
1269         {{S32, FlatPtr, S8, 8}, {S32, FlatPtr, S16, 16}});
1270   }
1271 
1272   // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
1273   // 64-bits.
1274   //
1275   // TODO: Should generalize bitcast action into coerce, which will also cover
1276   // inserting addrspacecasts.
1277   ExtLoads.customIf(typeIs(1, Constant32Ptr));
1278 
1279   ExtLoads.clampScalar(0, S32, S32)
1280           .widenScalarToNextPow2(0)
1281           .lower();
1282 
1283   auto &Atomics = getActionDefinitionsBuilder(
1284     {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1285      G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1286      G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1287      G_ATOMICRMW_UMIN})
1288     .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
1289                {S64, GlobalPtr}, {S64, LocalPtr},
1290                {S32, RegionPtr}, {S64, RegionPtr}});
1291   if (ST.hasFlatAddressSpace()) {
1292     Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
1293   }
1294 
1295   auto &Atomic = getActionDefinitionsBuilder(G_ATOMICRMW_FADD);
1296   if (ST.hasLDSFPAtomicAdd()) {
1297     Atomic.legalFor({{S32, LocalPtr}, {S32, RegionPtr}});
1298     if (ST.hasGFX90AInsts())
1299       Atomic.legalFor({{S64, LocalPtr}});
1300     if (ST.hasGFX940Insts())
1301       Atomic.legalFor({{V2S16, LocalPtr}});
1302   }
1303   if (ST.hasAtomicFaddInsts())
1304     Atomic.legalFor({{S32, GlobalPtr}});
1305 
1306   if (ST.hasGFX90AInsts()) {
1307     // These are legal with some caveats, and should have undergone expansion in
1308     // the IR in most situations
1309     // TODO: Move atomic expansion into legalizer
1310     // TODO: Also supports <2 x f16>
1311     Atomic.legalFor({
1312         {S32, GlobalPtr},
1313         {S64, GlobalPtr},
1314         {S64, FlatPtr}
1315       });
1316   }
1317 
1318   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output
1319   // demarshalling
1320   getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
1321     .customFor({{S32, GlobalPtr}, {S64, GlobalPtr},
1322                 {S32, FlatPtr}, {S64, FlatPtr}})
1323     .legalFor({{S32, LocalPtr}, {S64, LocalPtr},
1324                {S32, RegionPtr}, {S64, RegionPtr}});
1325   // TODO: Pointer types, any 32-bit or 64-bit vector
1326 
1327   // Condition should be s32 for scalar, s1 for vector.
1328   getActionDefinitionsBuilder(G_SELECT)
1329       .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, GlobalPtr,
1330                                  LocalPtr, FlatPtr, PrivatePtr,
1331                                  LLT::fixed_vector(2, LocalPtr),
1332                                  LLT::fixed_vector(2, PrivatePtr)},
1333                                 {S1, S32})
1334       .clampScalar(0, S16, S64)
1335       .scalarize(1)
1336       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
1337       .fewerElementsIf(numElementsNotEven(0), scalarize(0))
1338       .clampMaxNumElements(0, S32, 2)
1339       .clampMaxNumElements(0, LocalPtr, 2)
1340       .clampMaxNumElements(0, PrivatePtr, 2)
1341       .scalarize(0)
1342       .widenScalarToNextPow2(0)
1343       .legalIf(all(isPointer(0), typeInSet(1, {S1, S32})));
1344 
1345   // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
1346   // be more flexible with the shift amount type.
1347   auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
1348     .legalFor({{S32, S32}, {S64, S32}});
1349   if (ST.has16BitInsts()) {
1350     if (ST.hasVOP3PInsts()) {
1351       Shifts.legalFor({{S16, S16}, {V2S16, V2S16}})
1352             .clampMaxNumElements(0, S16, 2);
1353     } else
1354       Shifts.legalFor({{S16, S16}});
1355 
1356     // TODO: Support 16-bit shift amounts for all types
1357     Shifts.widenScalarIf(
1358       [=](const LegalityQuery &Query) {
1359         // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a
1360         // 32-bit amount.
1361         const LLT ValTy = Query.Types[0];
1362         const LLT AmountTy = Query.Types[1];
1363         return ValTy.getSizeInBits() <= 16 &&
1364                AmountTy.getSizeInBits() < 16;
1365       }, changeTo(1, S16));
1366     Shifts.maxScalarIf(typeIs(0, S16), 1, S16);
1367     Shifts.clampScalar(1, S32, S32);
1368     Shifts.widenScalarToNextPow2(0, 16);
1369     Shifts.clampScalar(0, S16, S64);
1370 
1371     getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
1372       .minScalar(0, S16)
1373       .scalarize(0)
1374       .lower();
1375   } else {
1376     // Make sure we legalize the shift amount type first, as the general
1377     // expansion for the shifted type will produce much worse code if it hasn't
1378     // been truncated already.
1379     Shifts.clampScalar(1, S32, S32);
1380     Shifts.widenScalarToNextPow2(0, 32);
1381     Shifts.clampScalar(0, S32, S64);
1382 
1383     getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
1384       .minScalar(0, S32)
1385       .scalarize(0)
1386       .lower();
1387   }
1388   Shifts.scalarize(0);
1389 
1390   for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1391     unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1392     unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1393     unsigned IdxTypeIdx = 2;
1394 
1395     getActionDefinitionsBuilder(Op)
1396       .customIf([=](const LegalityQuery &Query) {
1397           const LLT EltTy = Query.Types[EltTypeIdx];
1398           const LLT VecTy = Query.Types[VecTypeIdx];
1399           const LLT IdxTy = Query.Types[IdxTypeIdx];
1400           const unsigned EltSize = EltTy.getSizeInBits();
1401           return (EltSize == 32 || EltSize == 64) &&
1402                   VecTy.getSizeInBits() % 32 == 0 &&
1403                   VecTy.getSizeInBits() <= MaxRegisterSize &&
1404                   IdxTy.getSizeInBits() == 32;
1405         })
1406       .bitcastIf(all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltNarrowerThan(VecTypeIdx, 32)),
1407                  bitcastToVectorElement32(VecTypeIdx))
1408       //.bitcastIf(vectorSmallerThan(1, 32), bitcastToScalar(1))
1409       .bitcastIf(
1410         all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltWiderThan(VecTypeIdx, 64)),
1411         [=](const LegalityQuery &Query) {
1412           // For > 64-bit element types, try to turn this into a 64-bit
1413           // element vector since we may be able to do better indexing
1414           // if this is scalar. If not, fall back to 32.
1415           const LLT EltTy = Query.Types[EltTypeIdx];
1416           const LLT VecTy = Query.Types[VecTypeIdx];
1417           const unsigned DstEltSize = EltTy.getSizeInBits();
1418           const unsigned VecSize = VecTy.getSizeInBits();
1419 
1420           const unsigned TargetEltSize = DstEltSize % 64 == 0 ? 64 : 32;
1421           return std::make_pair(
1422               VecTypeIdx,
1423               LLT::fixed_vector(VecSize / TargetEltSize, TargetEltSize));
1424         })
1425       .clampScalar(EltTypeIdx, S32, S64)
1426       .clampScalar(VecTypeIdx, S32, S64)
1427       .clampScalar(IdxTypeIdx, S32, S32)
1428       .clampMaxNumElements(VecTypeIdx, S32, 32)
1429       // TODO: Clamp elements for 64-bit vectors?
1430       // It should only be necessary with variable indexes.
1431       // As a last resort, lower to the stack
1432       .lower();
1433   }
1434 
1435   getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
1436     .unsupportedIf([=](const LegalityQuery &Query) {
1437         const LLT &EltTy = Query.Types[1].getElementType();
1438         return Query.Types[0] != EltTy;
1439       });
1440 
1441   for (unsigned Op : {G_EXTRACT, G_INSERT}) {
1442     unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
1443     unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;
1444 
1445     // FIXME: Doesn't handle extract of illegal sizes.
1446     getActionDefinitionsBuilder(Op)
1447       .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
1448       .lowerIf([=](const LegalityQuery &Query) {
1449           // Sub-vector(or single element) insert and extract.
1450           // TODO: verify immediate offset here since lower only works with
1451           // whole elements.
1452           const LLT BigTy = Query.Types[BigTyIdx];
1453           return BigTy.isVector();
1454         })
1455       // FIXME: Multiples of 16 should not be legal.
1456       .legalIf([=](const LegalityQuery &Query) {
1457           const LLT BigTy = Query.Types[BigTyIdx];
1458           const LLT LitTy = Query.Types[LitTyIdx];
1459           return (BigTy.getSizeInBits() % 32 == 0) &&
1460                  (LitTy.getSizeInBits() % 16 == 0);
1461         })
1462       .widenScalarIf(
1463         [=](const LegalityQuery &Query) {
1464           const LLT BigTy = Query.Types[BigTyIdx];
1465           return (BigTy.getScalarSizeInBits() < 16);
1466         },
1467         LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
1468       .widenScalarIf(
1469         [=](const LegalityQuery &Query) {
1470           const LLT LitTy = Query.Types[LitTyIdx];
1471           return (LitTy.getScalarSizeInBits() < 16);
1472         },
1473         LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
1474       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1475       .widenScalarToNextPow2(BigTyIdx, 32);
1476 
1477   }
1478 
1479   auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
1480     .legalForCartesianProduct(AllS32Vectors, {S32})
1481     .legalForCartesianProduct(AllS64Vectors, {S64})
1482     .clampNumElements(0, V16S32, V32S32)
1483     .clampNumElements(0, V2S64, V16S64)
1484     .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));
1485 
1486   if (ST.hasScalarPackInsts()) {
1487     BuildVector
1488       // FIXME: Should probably widen s1 vectors straight to s32
1489       .minScalarOrElt(0, S16)
1490       // Widen source elements and produce a G_BUILD_VECTOR_TRUNC
1491       .minScalar(1, S32);
1492 
1493     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1494       .legalFor({V2S16, S32})
1495       .lower();
1496     BuildVector.minScalarOrElt(0, S32);
1497   } else {
1498     BuildVector.customFor({V2S16, S16});
1499     BuildVector.minScalarOrElt(0, S32);
1500 
1501     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1502       .customFor({V2S16, S32})
1503       .lower();
1504   }
1505 
1506   BuildVector.legalIf(isRegisterType(0));
1507 
1508   // FIXME: Clamp maximum size
1509   getActionDefinitionsBuilder(G_CONCAT_VECTORS)
1510     .legalIf(all(isRegisterType(0), isRegisterType(1)))
1511     .clampMaxNumElements(0, S32, 32)
1512     .clampMaxNumElements(1, S16, 2) // TODO: Make 4?
1513     .clampMaxNumElements(0, S16, 64);
1514 
1515   // TODO: Don't fully scalarize v2s16 pieces? Or combine out those
1516   // pre-legalize.
1517   if (ST.hasVOP3PInsts()) {
1518     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
1519       .customFor({V2S16, V2S16})
1520       .lower();
1521   } else
1522     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();
1523 
1524   // Merge/Unmerge
1525   for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1526     unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
1527     unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
1528 
1529     auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
1530       const LLT Ty = Query.Types[TypeIdx];
1531       if (Ty.isVector()) {
1532         const LLT &EltTy = Ty.getElementType();
1533         if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512)
1534           return true;
1535         if (!isPowerOf2_32(EltTy.getSizeInBits()))
1536           return true;
1537       }
1538       return false;
1539     };
1540 
1541     auto &Builder = getActionDefinitionsBuilder(Op)
1542       .legalIf(all(isRegisterType(0), isRegisterType(1)))
1543       .lowerFor({{S16, V2S16}})
1544       .lowerIf([=](const LegalityQuery &Query) {
1545           const LLT BigTy = Query.Types[BigTyIdx];
1546           return BigTy.getSizeInBits() == 32;
1547         })
1548       // Try to widen to s16 first for small types.
1549       // TODO: Only do this on targets with legal s16 shifts
1550       .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16)
1551       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
1552       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1553       .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
1554                            elementTypeIs(1, S16)),
1555                        changeTo(1, V2S16))
1556       // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
1557       // worth considering the multiples of 64 since 2*192 and 2*384 are not
1558       // valid.
1559       .clampScalar(LitTyIdx, S32, S512)
1560       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
1561       // Break up vectors with weird elements into scalars
1562       .fewerElementsIf(
1563         [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); },
1564         scalarize(0))
1565       .fewerElementsIf(
1566         [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); },
1567         scalarize(1))
1568       .clampScalar(BigTyIdx, S32, MaxScalar);
1569 
1570     if (Op == G_MERGE_VALUES) {
1571       Builder.widenScalarIf(
1572         // TODO: Use 16-bit shifts if legal for 8-bit values?
1573         [=](const LegalityQuery &Query) {
1574           const LLT Ty = Query.Types[LitTyIdx];
1575           return Ty.getSizeInBits() < 32;
1576         },
1577         changeTo(LitTyIdx, S32));
1578     }
1579 
1580     Builder.widenScalarIf(
1581       [=](const LegalityQuery &Query) {
1582         const LLT Ty = Query.Types[BigTyIdx];
1583         return !isPowerOf2_32(Ty.getSizeInBits()) &&
1584           Ty.getSizeInBits() % 16 != 0;
1585       },
1586       [=](const LegalityQuery &Query) {
1587         // Pick the next power of 2, or a multiple of 64 over 128.
1588         // Whichever is smaller.
1589         const LLT &Ty = Query.Types[BigTyIdx];
1590         unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
1591         if (NewSizeInBits >= 256) {
1592           unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
1593           if (RoundedTo < NewSizeInBits)
1594             NewSizeInBits = RoundedTo;
1595         }
1596         return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
1597       })
1598       // Any vectors left are the wrong size. Scalarize them.
1599       .scalarize(0)
1600       .scalarize(1);
1601   }
1602 
1603   // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
1604   // RegBankSelect.
1605   auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG)
1606     .legalFor({{S32}, {S64}});
1607 
1608   if (ST.hasVOP3PInsts()) {
1609     SextInReg.lowerFor({{V2S16}})
1610       // Prefer to reduce vector widths for 16-bit vectors before lowering, to
1611       // get more vector shift opportunities, since we'll get those when
1612       // expanded.
1613       .clampMaxNumElementsStrict(0, S16, 2);
1614   } else if (ST.has16BitInsts()) {
1615     SextInReg.lowerFor({{S32}, {S64}, {S16}});
1616   } else {
1617     // Prefer to promote to s32 before lowering if we don't have 16-bit
1618     // shifts. This avoid a lot of intermediate truncate and extend operations.
1619     SextInReg.lowerFor({{S32}, {S64}});
1620   }
1621 
1622   SextInReg
1623     .scalarize(0)
1624     .clampScalar(0, S32, S64)
1625     .lower();
1626 
1627   getActionDefinitionsBuilder({G_ROTR, G_ROTL})
1628     .scalarize(0)
1629     .lower();
1630 
1631   // TODO: Only Try to form v2s16 with legal packed instructions.
1632   getActionDefinitionsBuilder(G_FSHR)
1633     .legalFor({{S32, S32}})
1634     .lowerFor({{V2S16, V2S16}})
1635     .clampMaxNumElementsStrict(0, S16, 2)
1636     .scalarize(0)
1637     .lower();
1638 
1639   if (ST.hasVOP3PInsts()) {
1640     getActionDefinitionsBuilder(G_FSHL)
1641       .lowerFor({{V2S16, V2S16}})
1642       .clampMaxNumElementsStrict(0, S16, 2)
1643       .scalarize(0)
1644       .lower();
1645   } else {
1646     getActionDefinitionsBuilder(G_FSHL)
1647       .scalarize(0)
1648       .lower();
1649   }
1650 
1651   getActionDefinitionsBuilder(G_READCYCLECOUNTER)
1652     .legalFor({S64});
1653 
1654   getActionDefinitionsBuilder(G_FENCE)
1655     .alwaysLegal();
1656 
1657   getActionDefinitionsBuilder({G_SMULO, G_UMULO})
1658       .scalarize(0)
1659       .minScalar(0, S32)
1660       .lower();
1661 
1662   getActionDefinitionsBuilder({G_SBFX, G_UBFX})
1663       .legalFor({{S32, S32}, {S64, S32}})
1664       .clampScalar(1, S32, S32)
1665       .clampScalar(0, S32, S64)
1666       .widenScalarToNextPow2(0)
1667       .scalarize(0);
1668 
1669   getActionDefinitionsBuilder({
1670       // TODO: Verify V_BFI_B32 is generated from expanded bit ops
1671       G_FCOPYSIGN,
1672 
1673       G_ATOMIC_CMPXCHG_WITH_SUCCESS,
1674       G_ATOMICRMW_NAND,
1675       G_ATOMICRMW_FSUB,
1676       G_READ_REGISTER,
1677       G_WRITE_REGISTER,
1678 
1679       G_SADDO, G_SSUBO,
1680 
1681        // TODO: Implement
1682       G_FMINIMUM, G_FMAXIMUM}).lower();
1683 
1684   getActionDefinitionsBuilder({G_MEMCPY, G_MEMCPY_INLINE, G_MEMMOVE, G_MEMSET})
1685       .lower();
1686 
1687   getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE,
1688         G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
1689         G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
1690     .unsupported();
1691 
1692   getLegacyLegalizerInfo().computeTables();
1693   verify(*ST.getInstrInfo());
1694 }
1695 
1696 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
1697                                          MachineInstr &MI) const {
1698   MachineIRBuilder &B = Helper.MIRBuilder;
1699   MachineRegisterInfo &MRI = *B.getMRI();
1700 
1701   switch (MI.getOpcode()) {
1702   case TargetOpcode::G_ADDRSPACE_CAST:
1703     return legalizeAddrSpaceCast(MI, MRI, B);
1704   case TargetOpcode::G_FRINT:
1705     return legalizeFrint(MI, MRI, B);
1706   case TargetOpcode::G_FCEIL:
1707     return legalizeFceil(MI, MRI, B);
1708   case TargetOpcode::G_FREM:
1709     return legalizeFrem(MI, MRI, B);
1710   case TargetOpcode::G_INTRINSIC_TRUNC:
1711     return legalizeIntrinsicTrunc(MI, MRI, B);
1712   case TargetOpcode::G_SITOFP:
1713     return legalizeITOFP(MI, MRI, B, true);
1714   case TargetOpcode::G_UITOFP:
1715     return legalizeITOFP(MI, MRI, B, false);
1716   case TargetOpcode::G_FPTOSI:
1717     return legalizeFPTOI(MI, MRI, B, true);
1718   case TargetOpcode::G_FPTOUI:
1719     return legalizeFPTOI(MI, MRI, B, false);
1720   case TargetOpcode::G_FMINNUM:
1721   case TargetOpcode::G_FMAXNUM:
1722   case TargetOpcode::G_FMINNUM_IEEE:
1723   case TargetOpcode::G_FMAXNUM_IEEE:
1724     return legalizeMinNumMaxNum(Helper, MI);
1725   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1726     return legalizeExtractVectorElt(MI, MRI, B);
1727   case TargetOpcode::G_INSERT_VECTOR_ELT:
1728     return legalizeInsertVectorElt(MI, MRI, B);
1729   case TargetOpcode::G_SHUFFLE_VECTOR:
1730     return legalizeShuffleVector(MI, MRI, B);
1731   case TargetOpcode::G_FSIN:
1732   case TargetOpcode::G_FCOS:
1733     return legalizeSinCos(MI, MRI, B);
1734   case TargetOpcode::G_GLOBAL_VALUE:
1735     return legalizeGlobalValue(MI, MRI, B);
1736   case TargetOpcode::G_LOAD:
1737   case TargetOpcode::G_SEXTLOAD:
1738   case TargetOpcode::G_ZEXTLOAD:
1739     return legalizeLoad(Helper, MI);
1740   case TargetOpcode::G_FMAD:
1741     return legalizeFMad(MI, MRI, B);
1742   case TargetOpcode::G_FDIV:
1743     return legalizeFDIV(MI, MRI, B);
1744   case TargetOpcode::G_UDIV:
1745   case TargetOpcode::G_UREM:
1746   case TargetOpcode::G_UDIVREM:
1747     return legalizeUnsignedDIV_REM(MI, MRI, B);
1748   case TargetOpcode::G_SDIV:
1749   case TargetOpcode::G_SREM:
1750   case TargetOpcode::G_SDIVREM:
1751     return legalizeSignedDIV_REM(MI, MRI, B);
1752   case TargetOpcode::G_ATOMIC_CMPXCHG:
1753     return legalizeAtomicCmpXChg(MI, MRI, B);
1754   case TargetOpcode::G_FLOG:
1755     return legalizeFlog(MI, B, numbers::ln2f);
1756   case TargetOpcode::G_FLOG10:
1757     return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f);
1758   case TargetOpcode::G_FEXP:
1759     return legalizeFExp(MI, B);
1760   case TargetOpcode::G_FPOW:
1761     return legalizeFPow(MI, B);
1762   case TargetOpcode::G_FFLOOR:
1763     return legalizeFFloor(MI, MRI, B);
1764   case TargetOpcode::G_BUILD_VECTOR:
1765     return legalizeBuildVector(MI, MRI, B);
1766   case TargetOpcode::G_CTLZ:
1767   case TargetOpcode::G_CTTZ:
1768     return legalizeCTLZ_CTTZ(MI, MRI, B);
1769   case TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND:
1770     return legalizeFPTruncRound(MI, B);
1771   default:
1772     return false;
1773   }
1774 
1775   llvm_unreachable("expected switch to return");
1776 }
1777 
1778 Register AMDGPULegalizerInfo::getSegmentAperture(
1779   unsigned AS,
1780   MachineRegisterInfo &MRI,
1781   MachineIRBuilder &B) const {
1782   MachineFunction &MF = B.getMF();
1783   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1784   const LLT S32 = LLT::scalar(32);
1785 
1786   assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);
1787 
1788   if (ST.hasApertureRegs()) {
1789     // FIXME: Use inline constants (src_{shared, private}_base) instead of
1790     // getreg.
1791     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
1792         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
1793         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
1794     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
1795         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
1796         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
1797     unsigned Encoding =
1798         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
1799         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
1800         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
1801 
1802     Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
1803 
1804     B.buildInstr(AMDGPU::S_GETREG_B32)
1805       .addDef(GetReg)
1806       .addImm(Encoding);
1807     MRI.setType(GetReg, S32);
1808 
1809     auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
1810     return B.buildShl(S32, GetReg, ShiftAmt).getReg(0);
1811   }
1812 
1813   // TODO: can we be smarter about machine pointer info?
1814   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1815   Register LoadAddr = MRI.createGenericVirtualRegister(
1816     LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1817   // For code object version 5, private_base and shared_base are passed through
1818   // implicit kernargs.
1819   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
1820     AMDGPUTargetLowering::ImplicitParameter Param =
1821         AS == AMDGPUAS::LOCAL_ADDRESS ? AMDGPUTargetLowering::SHARED_BASE
1822                                       : AMDGPUTargetLowering::PRIVATE_BASE;
1823     uint64_t Offset =
1824         ST.getTargetLowering()->getImplicitParameterOffset(B.getMF(), Param);
1825 
1826     Register KernargPtrReg = MRI.createGenericVirtualRegister(
1827         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1828 
1829     if (!loadInputValue(KernargPtrReg, B,
1830                         AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
1831       return Register();
1832 
1833     MachineMemOperand *MMO = MF.getMachineMemOperand(
1834         PtrInfo,
1835         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1836             MachineMemOperand::MOInvariant,
1837         LLT::scalar(32), commonAlignment(Align(64), Offset));
1838 
1839     // Pointer address
1840     B.buildPtrAdd(LoadAddr, KernargPtrReg,
1841                   B.buildConstant(LLT::scalar(64), Offset).getReg(0));
1842     // Load address
1843     return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
1844   }
1845 
1846   Register QueuePtr = MRI.createGenericVirtualRegister(
1847     LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1848 
1849   if (!loadInputValue(QueuePtr, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
1850     return Register();
1851 
1852   // Offset into amd_queue_t for group_segment_aperture_base_hi /
1853   // private_segment_aperture_base_hi.
1854   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
1855 
1856   MachineMemOperand *MMO = MF.getMachineMemOperand(
1857       PtrInfo,
1858       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1859           MachineMemOperand::MOInvariant,
1860       LLT::scalar(32), commonAlignment(Align(64), StructOffset));
1861 
1862   B.buildPtrAdd(LoadAddr, QueuePtr,
1863                 B.buildConstant(LLT::scalar(64), StructOffset).getReg(0));
1864   return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
1865 }
1866 
1867 /// Return true if the value is a known valid address, such that a null check is
1868 /// not necessary.
1869 static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI,
1870                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
1871   MachineInstr *Def = MRI.getVRegDef(Val);
1872   switch (Def->getOpcode()) {
1873   case AMDGPU::G_FRAME_INDEX:
1874   case AMDGPU::G_GLOBAL_VALUE:
1875   case AMDGPU::G_BLOCK_ADDR:
1876     return true;
1877   case AMDGPU::G_CONSTANT: {
1878     const ConstantInt *CI = Def->getOperand(1).getCImm();
1879     return CI->getSExtValue() != TM.getNullPointerValue(AddrSpace);
1880   }
1881   default:
1882     return false;
1883   }
1884 
1885   return false;
1886 }
1887 
1888 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
1889   MachineInstr &MI, MachineRegisterInfo &MRI,
1890   MachineIRBuilder &B) const {
1891   MachineFunction &MF = B.getMF();
1892 
1893   const LLT S32 = LLT::scalar(32);
1894   Register Dst = MI.getOperand(0).getReg();
1895   Register Src = MI.getOperand(1).getReg();
1896 
1897   LLT DstTy = MRI.getType(Dst);
1898   LLT SrcTy = MRI.getType(Src);
1899   unsigned DestAS = DstTy.getAddressSpace();
1900   unsigned SrcAS = SrcTy.getAddressSpace();
1901 
1902   // TODO: Avoid reloading from the queue ptr for each cast, or at least each
1903   // vector element.
1904   assert(!DstTy.isVector());
1905 
1906   const AMDGPUTargetMachine &TM
1907     = static_cast<const AMDGPUTargetMachine &>(MF.getTarget());
1908 
1909   if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) {
1910     MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
1911     return true;
1912   }
1913 
1914   if (SrcAS == AMDGPUAS::FLAT_ADDRESS &&
1915       (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
1916        DestAS == AMDGPUAS::PRIVATE_ADDRESS)) {
1917     if (isKnownNonNull(Src, MRI, TM, SrcAS)) {
1918       // Extract low 32-bits of the pointer.
1919       B.buildExtract(Dst, Src, 0);
1920       MI.eraseFromParent();
1921       return true;
1922     }
1923 
1924     unsigned NullVal = TM.getNullPointerValue(DestAS);
1925 
1926     auto SegmentNull = B.buildConstant(DstTy, NullVal);
1927     auto FlatNull = B.buildConstant(SrcTy, 0);
1928 
1929     // Extract low 32-bits of the pointer.
1930     auto PtrLo32 = B.buildExtract(DstTy, Src, 0);
1931 
1932     auto CmpRes =
1933         B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0));
1934     B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
1935 
1936     MI.eraseFromParent();
1937     return true;
1938   }
1939 
1940   if (DestAS == AMDGPUAS::FLAT_ADDRESS &&
1941       (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
1942        SrcAS == AMDGPUAS::PRIVATE_ADDRESS)) {
1943     if (!ST.hasFlatAddressSpace())
1944       return false;
1945 
1946     Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
1947     if (!ApertureReg.isValid())
1948       return false;
1949 
1950     // Coerce the type of the low half of the result so we can use merge_values.
1951     Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0);
1952 
1953     // TODO: Should we allow mismatched types but matching sizes in merges to
1954     // avoid the ptrtoint?
1955     auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg});
1956 
1957     if (isKnownNonNull(Src, MRI, TM, SrcAS)) {
1958       B.buildCopy(Dst, BuildPtr);
1959       MI.eraseFromParent();
1960       return true;
1961     }
1962 
1963     auto SegmentNull = B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
1964     auto FlatNull = B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
1965 
1966     auto CmpRes = B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src,
1967                               SegmentNull.getReg(0));
1968 
1969     B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
1970 
1971     MI.eraseFromParent();
1972     return true;
1973   }
1974 
1975   if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
1976       SrcTy.getSizeInBits() == 64) {
1977     // Truncate.
1978     B.buildExtract(Dst, Src, 0);
1979     MI.eraseFromParent();
1980     return true;
1981   }
1982 
1983   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
1984       DstTy.getSizeInBits() == 64) {
1985     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1986     uint32_t AddrHiVal = Info->get32BitAddressHighBits();
1987 
1988     // FIXME: This is a bit ugly due to creating a merge of 2 pointers to
1989     // another. Merge operands are required to be the same type, but creating an
1990     // extra ptrtoint would be kind of pointless.
1991     auto HighAddr = B.buildConstant(
1992         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
1993     B.buildMerge(Dst, {Src, HighAddr});
1994     MI.eraseFromParent();
1995     return true;
1996   }
1997 
1998   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
1999       MF.getFunction(), "invalid addrspacecast", B.getDebugLoc());
2000 
2001   LLVMContext &Ctx = MF.getFunction().getContext();
2002   Ctx.diagnose(InvalidAddrSpaceCast);
2003   B.buildUndef(Dst);
2004   MI.eraseFromParent();
2005   return true;
2006 }
2007 
2008 bool AMDGPULegalizerInfo::legalizeFrint(
2009   MachineInstr &MI, MachineRegisterInfo &MRI,
2010   MachineIRBuilder &B) const {
2011   Register Src = MI.getOperand(1).getReg();
2012   LLT Ty = MRI.getType(Src);
2013   assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
2014 
2015   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2016   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2017 
2018   auto C1 = B.buildFConstant(Ty, C1Val);
2019   auto CopySign = B.buildFCopysign(Ty, C1, Src);
2020 
2021   // TODO: Should this propagate fast-math-flags?
2022   auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
2023   auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);
2024 
2025   auto C2 = B.buildFConstant(Ty, C2Val);
2026   auto Fabs = B.buildFAbs(Ty, Src);
2027 
2028   auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
2029   B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
2030   MI.eraseFromParent();
2031   return true;
2032 }
2033 
2034 bool AMDGPULegalizerInfo::legalizeFceil(
2035   MachineInstr &MI, MachineRegisterInfo &MRI,
2036   MachineIRBuilder &B) const {
2037 
2038   const LLT S1 = LLT::scalar(1);
2039   const LLT S64 = LLT::scalar(64);
2040 
2041   Register Src = MI.getOperand(1).getReg();
2042   assert(MRI.getType(Src) == S64);
2043 
2044   // result = trunc(src)
2045   // if (src > 0.0 && src != result)
2046   //   result += 1.0
2047 
2048   auto Trunc = B.buildIntrinsicTrunc(S64, Src);
2049 
2050   const auto Zero = B.buildFConstant(S64, 0.0);
2051   const auto One = B.buildFConstant(S64, 1.0);
2052   auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
2053   auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
2054   auto And = B.buildAnd(S1, Lt0, NeTrunc);
2055   auto Add = B.buildSelect(S64, And, One, Zero);
2056 
2057   // TODO: Should this propagate fast-math-flags?
2058   B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
2059   MI.eraseFromParent();
2060   return true;
2061 }
2062 
2063 bool AMDGPULegalizerInfo::legalizeFrem(
2064   MachineInstr &MI, MachineRegisterInfo &MRI,
2065   MachineIRBuilder &B) const {
2066     Register DstReg = MI.getOperand(0).getReg();
2067     Register Src0Reg = MI.getOperand(1).getReg();
2068     Register Src1Reg = MI.getOperand(2).getReg();
2069     auto Flags = MI.getFlags();
2070     LLT Ty = MRI.getType(DstReg);
2071 
2072     auto Div = B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
2073     auto Trunc = B.buildIntrinsicTrunc(Ty, Div, Flags);
2074     auto Neg = B.buildFNeg(Ty, Trunc, Flags);
2075     B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
2076     MI.eraseFromParent();
2077     return true;
2078 }
2079 
2080 static MachineInstrBuilder extractF64Exponent(Register Hi,
2081                                               MachineIRBuilder &B) {
2082   const unsigned FractBits = 52;
2083   const unsigned ExpBits = 11;
2084   LLT S32 = LLT::scalar(32);
2085 
2086   auto Const0 = B.buildConstant(S32, FractBits - 32);
2087   auto Const1 = B.buildConstant(S32, ExpBits);
2088 
2089   auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
2090     .addUse(Hi)
2091     .addUse(Const0.getReg(0))
2092     .addUse(Const1.getReg(0));
2093 
2094   return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
2095 }
2096 
2097 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
2098   MachineInstr &MI, MachineRegisterInfo &MRI,
2099   MachineIRBuilder &B) const {
2100   const LLT S1 = LLT::scalar(1);
2101   const LLT S32 = LLT::scalar(32);
2102   const LLT S64 = LLT::scalar(64);
2103 
2104   Register Src = MI.getOperand(1).getReg();
2105   assert(MRI.getType(Src) == S64);
2106 
2107   // TODO: Should this use extract since the low half is unused?
2108   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
2109   Register Hi = Unmerge.getReg(1);
2110 
2111   // Extract the upper half, since this is where we will find the sign and
2112   // exponent.
2113   auto Exp = extractF64Exponent(Hi, B);
2114 
2115   const unsigned FractBits = 52;
2116 
2117   // Extract the sign bit.
2118   const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
2119   auto SignBit = B.buildAnd(S32, Hi, SignBitMask);
2120 
2121   const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);
2122 
2123   const auto Zero32 = B.buildConstant(S32, 0);
2124 
2125   // Extend back to 64-bits.
2126   auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit});
2127 
2128   auto Shr = B.buildAShr(S64, FractMask, Exp);
2129   auto Not = B.buildNot(S64, Shr);
2130   auto Tmp0 = B.buildAnd(S64, Src, Not);
2131   auto FiftyOne = B.buildConstant(S32, FractBits - 1);
2132 
2133   auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
2134   auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);
2135 
2136   auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
2137   B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
2138   MI.eraseFromParent();
2139   return true;
2140 }
2141 
2142 bool AMDGPULegalizerInfo::legalizeITOFP(
2143   MachineInstr &MI, MachineRegisterInfo &MRI,
2144   MachineIRBuilder &B, bool Signed) const {
2145 
2146   Register Dst = MI.getOperand(0).getReg();
2147   Register Src = MI.getOperand(1).getReg();
2148 
2149   const LLT S64 = LLT::scalar(64);
2150   const LLT S32 = LLT::scalar(32);
2151 
2152   assert(MRI.getType(Src) == S64);
2153 
2154   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
2155   auto ThirtyTwo = B.buildConstant(S32, 32);
2156 
2157   if (MRI.getType(Dst) == S64) {
2158     auto CvtHi = Signed ? B.buildSITOFP(S64, Unmerge.getReg(1))
2159                         : B.buildUITOFP(S64, Unmerge.getReg(1));
2160 
2161     auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));
2162     auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
2163                      .addUse(CvtHi.getReg(0))
2164                      .addUse(ThirtyTwo.getReg(0));
2165 
2166     // TODO: Should this propagate fast-math-flags?
2167     B.buildFAdd(Dst, LdExp, CvtLo);
2168     MI.eraseFromParent();
2169     return true;
2170   }
2171 
2172   assert(MRI.getType(Dst) == S32);
2173 
2174   auto One = B.buildConstant(S32, 1);
2175 
2176   MachineInstrBuilder ShAmt;
2177   if (Signed) {
2178     auto ThirtyOne = B.buildConstant(S32, 31);
2179     auto X = B.buildXor(S32, Unmerge.getReg(0), Unmerge.getReg(1));
2180     auto OppositeSign = B.buildAShr(S32, X, ThirtyOne);
2181     auto MaxShAmt = B.buildAdd(S32, ThirtyTwo, OppositeSign);
2182     auto LS = B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {S32},
2183                                /*HasSideEffects=*/false)
2184                   .addUse(Unmerge.getReg(1));
2185     auto LS2 = B.buildSub(S32, LS, One);
2186     ShAmt = B.buildUMin(S32, LS2, MaxShAmt);
2187   } else
2188     ShAmt = B.buildCTLZ(S32, Unmerge.getReg(1));
2189   auto Norm = B.buildShl(S64, Src, ShAmt);
2190   auto Unmerge2 = B.buildUnmerge({S32, S32}, Norm);
2191   auto Adjust = B.buildUMin(S32, One, Unmerge2.getReg(0));
2192   auto Norm2 = B.buildOr(S32, Unmerge2.getReg(1), Adjust);
2193   auto FVal = Signed ? B.buildSITOFP(S32, Norm2) : B.buildUITOFP(S32, Norm2);
2194   auto Scale = B.buildSub(S32, ThirtyTwo, ShAmt);
2195   B.buildIntrinsic(Intrinsic::amdgcn_ldexp, ArrayRef<Register>{Dst},
2196                    /*HasSideEffects=*/false)
2197       .addUse(FVal.getReg(0))
2198       .addUse(Scale.getReg(0));
2199   MI.eraseFromParent();
2200   return true;
2201 }
2202 
2203 // TODO: Copied from DAG implementation. Verify logic and document how this
2204 // actually works.
2205 bool AMDGPULegalizerInfo::legalizeFPTOI(MachineInstr &MI,
2206                                         MachineRegisterInfo &MRI,
2207                                         MachineIRBuilder &B,
2208                                         bool Signed) const {
2209 
2210   Register Dst = MI.getOperand(0).getReg();
2211   Register Src = MI.getOperand(1).getReg();
2212 
2213   const LLT S64 = LLT::scalar(64);
2214   const LLT S32 = LLT::scalar(32);
2215 
2216   const LLT SrcLT = MRI.getType(Src);
2217   assert((SrcLT == S32 || SrcLT == S64) && MRI.getType(Dst) == S64);
2218 
2219   unsigned Flags = MI.getFlags();
2220 
2221   // The basic idea of converting a floating point number into a pair of 32-bit
2222   // integers is illustrated as follows:
2223   //
2224   //     tf := trunc(val);
2225   //    hif := floor(tf * 2^-32);
2226   //    lof := tf - hif * 2^32; // lof is always positive due to floor.
2227   //     hi := fptoi(hif);
2228   //     lo := fptoi(lof);
2229   //
2230   auto Trunc = B.buildIntrinsicTrunc(SrcLT, Src, Flags);
2231   MachineInstrBuilder Sign;
2232   if (Signed && SrcLT == S32) {
2233     // However, a 32-bit floating point number has only 23 bits mantissa and
2234     // it's not enough to hold all the significant bits of `lof` if val is
2235     // negative. To avoid the loss of precision, We need to take the absolute
2236     // value after truncating and flip the result back based on the original
2237     // signedness.
2238     Sign = B.buildAShr(S32, Src, B.buildConstant(S32, 31));
2239     Trunc = B.buildFAbs(S32, Trunc, Flags);
2240   }
2241   MachineInstrBuilder K0, K1;
2242   if (SrcLT == S64) {
2243     K0 = B.buildFConstant(S64,
2244                           BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)));
2245     K1 = B.buildFConstant(S64,
2246                           BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)));
2247   } else {
2248     K0 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)));
2249     K1 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)));
2250   }
2251 
2252   auto Mul = B.buildFMul(SrcLT, Trunc, K0, Flags);
2253   auto FloorMul = B.buildFFloor(SrcLT, Mul, Flags);
2254   auto Fma = B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
2255 
2256   auto Hi = (Signed && SrcLT == S64) ? B.buildFPTOSI(S32, FloorMul)
2257                                      : B.buildFPTOUI(S32, FloorMul);
2258   auto Lo = B.buildFPTOUI(S32, Fma);
2259 
2260   if (Signed && SrcLT == S32) {
2261     // Flip the result based on the signedness, which is either all 0s or 1s.
2262     Sign = B.buildMerge(S64, {Sign, Sign});
2263     // r := xor({lo, hi}, sign) - sign;
2264     B.buildSub(Dst, B.buildXor(S64, B.buildMerge(S64, {Lo, Hi}), Sign), Sign);
2265   } else
2266     B.buildMerge(Dst, {Lo, Hi});
2267   MI.eraseFromParent();
2268 
2269   return true;
2270 }
2271 
2272 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper,
2273                                                MachineInstr &MI) const {
2274   MachineFunction &MF = Helper.MIRBuilder.getMF();
2275   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2276 
2277   const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
2278                         MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
2279 
2280   // With ieee_mode disabled, the instructions have the correct behavior
2281   // already for G_FMINNUM/G_FMAXNUM
2282   if (!MFI->getMode().IEEE)
2283     return !IsIEEEOp;
2284 
2285   if (IsIEEEOp)
2286     return true;
2287 
2288   return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
2289 }
2290 
2291 bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
2292   MachineInstr &MI, MachineRegisterInfo &MRI,
2293   MachineIRBuilder &B) const {
2294   // TODO: Should move some of this into LegalizerHelper.
2295 
2296   // TODO: Promote dynamic indexing of s16 to s32
2297 
2298   // FIXME: Artifact combiner probably should have replaced the truncated
2299   // constant before this, so we shouldn't need
2300   // getIConstantVRegValWithLookThrough.
2301   Optional<ValueAndVReg> MaybeIdxVal =
2302       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2303   if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
2304     return true;
2305   const int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
2306 
2307   Register Dst = MI.getOperand(0).getReg();
2308   Register Vec = MI.getOperand(1).getReg();
2309 
2310   LLT VecTy = MRI.getType(Vec);
2311   LLT EltTy = VecTy.getElementType();
2312   assert(EltTy == MRI.getType(Dst));
2313 
2314   if (IdxVal < VecTy.getNumElements()) {
2315     auto Unmerge = B.buildUnmerge(EltTy, Vec);
2316     B.buildCopy(Dst, Unmerge.getReg(IdxVal));
2317   } else {
2318     B.buildUndef(Dst);
2319   }
2320 
2321   MI.eraseFromParent();
2322   return true;
2323 }
2324 
2325 bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
2326   MachineInstr &MI, MachineRegisterInfo &MRI,
2327   MachineIRBuilder &B) const {
2328   // TODO: Should move some of this into LegalizerHelper.
2329 
2330   // TODO: Promote dynamic indexing of s16 to s32
2331 
2332   // FIXME: Artifact combiner probably should have replaced the truncated
2333   // constant before this, so we shouldn't need
2334   // getIConstantVRegValWithLookThrough.
2335   Optional<ValueAndVReg> MaybeIdxVal =
2336       getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
2337   if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
2338     return true;
2339 
2340   int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
2341   Register Dst = MI.getOperand(0).getReg();
2342   Register Vec = MI.getOperand(1).getReg();
2343   Register Ins = MI.getOperand(2).getReg();
2344 
2345   LLT VecTy = MRI.getType(Vec);
2346   LLT EltTy = VecTy.getElementType();
2347   assert(EltTy == MRI.getType(Ins));
2348   (void)Ins;
2349 
2350   unsigned NumElts = VecTy.getNumElements();
2351   if (IdxVal < NumElts) {
2352     SmallVector<Register, 8> SrcRegs;
2353     for (unsigned i = 0; i < NumElts; ++i)
2354       SrcRegs.push_back(MRI.createGenericVirtualRegister(EltTy));
2355     B.buildUnmerge(SrcRegs, Vec);
2356 
2357     SrcRegs[IdxVal] = MI.getOperand(2).getReg();
2358     B.buildMerge(Dst, SrcRegs);
2359   } else {
2360     B.buildUndef(Dst);
2361   }
2362 
2363   MI.eraseFromParent();
2364   return true;
2365 }
2366 
2367 bool AMDGPULegalizerInfo::legalizeShuffleVector(
2368   MachineInstr &MI, MachineRegisterInfo &MRI,
2369   MachineIRBuilder &B) const {
2370   const LLT V2S16 = LLT::fixed_vector(2, 16);
2371 
2372   Register Dst = MI.getOperand(0).getReg();
2373   Register Src0 = MI.getOperand(1).getReg();
2374   LLT DstTy = MRI.getType(Dst);
2375   LLT SrcTy = MRI.getType(Src0);
2376 
2377   if (SrcTy == V2S16 && DstTy == V2S16 &&
2378       AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask()))
2379     return true;
2380 
2381   MachineIRBuilder HelperBuilder(MI);
2382   GISelObserverWrapper DummyObserver;
2383   LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder);
2384   return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized;
2385 }
2386 
2387 bool AMDGPULegalizerInfo::legalizeSinCos(
2388   MachineInstr &MI, MachineRegisterInfo &MRI,
2389   MachineIRBuilder &B) const {
2390 
2391   Register DstReg = MI.getOperand(0).getReg();
2392   Register SrcReg = MI.getOperand(1).getReg();
2393   LLT Ty = MRI.getType(DstReg);
2394   unsigned Flags = MI.getFlags();
2395 
2396   Register TrigVal;
2397   auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi);
2398   if (ST.hasTrigReducedRange()) {
2399     auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
2400     TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
2401       .addUse(MulVal.getReg(0))
2402       .setMIFlags(Flags).getReg(0);
2403   } else
2404     TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
2405 
2406   Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
2407     Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
2408   B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
2409     .addUse(TrigVal)
2410     .setMIFlags(Flags);
2411   MI.eraseFromParent();
2412   return true;
2413 }
2414 
2415 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy,
2416                                                   MachineIRBuilder &B,
2417                                                   const GlobalValue *GV,
2418                                                   int64_t Offset,
2419                                                   unsigned GAFlags) const {
2420   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
2421   // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
2422   // to the following code sequence:
2423   //
2424   // For constant address space:
2425   //   s_getpc_b64 s[0:1]
2426   //   s_add_u32 s0, s0, $symbol
2427   //   s_addc_u32 s1, s1, 0
2428   //
2429   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2430   //   a fixup or relocation is emitted to replace $symbol with a literal
2431   //   constant, which is a pc-relative offset from the encoding of the $symbol
2432   //   operand to the global variable.
2433   //
2434   // For global address space:
2435   //   s_getpc_b64 s[0:1]
2436   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
2437   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
2438   //
2439   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2440   //   fixups or relocations are emitted to replace $symbol@*@lo and
2441   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
2442   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
2443   //   operand to the global variable.
2444   //
2445   // What we want here is an offset from the value returned by s_getpc
2446   // (which is the address of the s_add_u32 instruction) to the global
2447   // variable, but since the encoding of $symbol starts 4 bytes after the start
2448   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
2449   // small. This requires us to add 4 to the global variable offset in order to
2450   // compute the correct address. Similarly for the s_addc_u32 instruction, the
2451   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
2452   // instruction.
2453 
2454   LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2455 
2456   Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
2457     B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
2458 
2459   MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
2460     .addDef(PCReg);
2461 
2462   MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
2463   if (GAFlags == SIInstrInfo::MO_NONE)
2464     MIB.addImm(0);
2465   else
2466     MIB.addGlobalAddress(GV, Offset + 12, GAFlags + 1);
2467 
2468   B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
2469 
2470   if (PtrTy.getSizeInBits() == 32)
2471     B.buildExtract(DstReg, PCReg, 0);
2472   return true;
2473  }
2474 
2475 bool AMDGPULegalizerInfo::legalizeGlobalValue(
2476   MachineInstr &MI, MachineRegisterInfo &MRI,
2477   MachineIRBuilder &B) const {
2478   Register DstReg = MI.getOperand(0).getReg();
2479   LLT Ty = MRI.getType(DstReg);
2480   unsigned AS = Ty.getAddressSpace();
2481 
2482   const GlobalValue *GV = MI.getOperand(1).getGlobal();
2483   MachineFunction &MF = B.getMF();
2484   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2485 
2486   if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
2487     if (!MFI->isModuleEntryFunction() &&
2488         !GV->getName().equals("llvm.amdgcn.module.lds")) {
2489       const Function &Fn = MF.getFunction();
2490       DiagnosticInfoUnsupported BadLDSDecl(
2491         Fn, "local memory global used by non-kernel function", MI.getDebugLoc(),
2492         DS_Warning);
2493       Fn.getContext().diagnose(BadLDSDecl);
2494 
2495       // We currently don't have a way to correctly allocate LDS objects that
2496       // aren't directly associated with a kernel. We do force inlining of
2497       // functions that use local objects. However, if these dead functions are
2498       // not eliminated, we don't want a compile time error. Just emit a warning
2499       // and a trap, since there should be no callable path here.
2500       B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2501       B.buildUndef(DstReg);
2502       MI.eraseFromParent();
2503       return true;
2504     }
2505 
2506     // TODO: We could emit code to handle the initialization somewhere.
2507     // We ignore the initializer for now and legalize it to allow selection.
2508     // The initializer will anyway get errored out during assembly emission.
2509     const SITargetLowering *TLI = ST.getTargetLowering();
2510     if (!TLI->shouldUseLDSConstAddress(GV)) {
2511       MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO);
2512       return true; // Leave in place;
2513     }
2514 
2515     if (AS == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) {
2516       Type *Ty = GV->getValueType();
2517       // HIP uses an unsized array `extern __shared__ T s[]` or similar
2518       // zero-sized type in other languages to declare the dynamic shared
2519       // memory which size is not known at the compile time. They will be
2520       // allocated by the runtime and placed directly after the static
2521       // allocated ones. They all share the same offset.
2522       if (B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
2523         // Adjust alignment for that dynamic shared memory array.
2524         MFI->setDynLDSAlign(B.getDataLayout(), *cast<GlobalVariable>(GV));
2525         LLT S32 = LLT::scalar(32);
2526         auto Sz =
2527             B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {S32}, false);
2528         B.buildIntToPtr(DstReg, Sz);
2529         MI.eraseFromParent();
2530         return true;
2531       }
2532     }
2533 
2534     B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(),
2535                                                    *cast<GlobalVariable>(GV)));
2536     MI.eraseFromParent();
2537     return true;
2538   }
2539 
2540   const SITargetLowering *TLI = ST.getTargetLowering();
2541 
2542   if (TLI->shouldEmitFixup(GV)) {
2543     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
2544     MI.eraseFromParent();
2545     return true;
2546   }
2547 
2548   if (TLI->shouldEmitPCReloc(GV)) {
2549     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
2550     MI.eraseFromParent();
2551     return true;
2552   }
2553 
2554   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2555   Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);
2556 
2557   LLT LoadTy = Ty.getSizeInBits() == 32 ? PtrTy : Ty;
2558   MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
2559       MachinePointerInfo::getGOT(MF),
2560       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
2561           MachineMemOperand::MOInvariant,
2562       LoadTy, Align(8));
2563 
2564   buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);
2565 
2566   if (Ty.getSizeInBits() == 32) {
2567     // Truncate if this is a 32-bit constant address.
2568     auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
2569     B.buildExtract(DstReg, Load, 0);
2570   } else
2571     B.buildLoad(DstReg, GOTAddr, *GOTMMO);
2572 
2573   MI.eraseFromParent();
2574   return true;
2575 }
2576 
2577 static LLT widenToNextPowerOf2(LLT Ty) {
2578   if (Ty.isVector())
2579     return Ty.changeElementCount(
2580         ElementCount::getFixed(PowerOf2Ceil(Ty.getNumElements())));
2581   return LLT::scalar(PowerOf2Ceil(Ty.getSizeInBits()));
2582 }
2583 
2584 bool AMDGPULegalizerInfo::legalizeLoad(LegalizerHelper &Helper,
2585                                        MachineInstr &MI) const {
2586   MachineIRBuilder &B = Helper.MIRBuilder;
2587   MachineRegisterInfo &MRI = *B.getMRI();
2588   GISelChangeObserver &Observer = Helper.Observer;
2589 
2590   Register PtrReg = MI.getOperand(1).getReg();
2591   LLT PtrTy = MRI.getType(PtrReg);
2592   unsigned AddrSpace = PtrTy.getAddressSpace();
2593 
2594   if (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
2595     LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2596     auto Cast = B.buildAddrSpaceCast(ConstPtr, PtrReg);
2597     Observer.changingInstr(MI);
2598     MI.getOperand(1).setReg(Cast.getReg(0));
2599     Observer.changedInstr(MI);
2600     return true;
2601   }
2602 
2603   if (MI.getOpcode() != AMDGPU::G_LOAD)
2604     return false;
2605 
2606   Register ValReg = MI.getOperand(0).getReg();
2607   LLT ValTy = MRI.getType(ValReg);
2608 
2609   MachineMemOperand *MMO = *MI.memoperands_begin();
2610   const unsigned ValSize = ValTy.getSizeInBits();
2611   const LLT MemTy = MMO->getMemoryType();
2612   const Align MemAlign = MMO->getAlign();
2613   const unsigned MemSize = MemTy.getSizeInBits();
2614   const uint64_t AlignInBits = 8 * MemAlign.value();
2615 
2616   // Widen non-power-of-2 loads to the alignment if needed
2617   if (shouldWidenLoad(ST, MemTy, AlignInBits, AddrSpace, MI.getOpcode())) {
2618     const unsigned WideMemSize = PowerOf2Ceil(MemSize);
2619 
2620     // This was already the correct extending load result type, so just adjust
2621     // the memory type.
2622     if (WideMemSize == ValSize) {
2623       MachineFunction &MF = B.getMF();
2624 
2625       MachineMemOperand *WideMMO =
2626           MF.getMachineMemOperand(MMO, 0, WideMemSize / 8);
2627       Observer.changingInstr(MI);
2628       MI.setMemRefs(MF, {WideMMO});
2629       Observer.changedInstr(MI);
2630       return true;
2631     }
2632 
2633     // Don't bother handling edge case that should probably never be produced.
2634     if (ValSize > WideMemSize)
2635       return false;
2636 
2637     LLT WideTy = widenToNextPowerOf2(ValTy);
2638 
2639     Register WideLoad;
2640     if (!WideTy.isVector()) {
2641       WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2642       B.buildTrunc(ValReg, WideLoad).getReg(0);
2643     } else {
2644       // Extract the subvector.
2645 
2646       if (isRegisterType(ValTy)) {
2647         // If this a case where G_EXTRACT is legal, use it.
2648         // (e.g. <3 x s32> -> <4 x s32>)
2649         WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2650         B.buildExtract(ValReg, WideLoad, 0);
2651       } else {
2652         // For cases where the widened type isn't a nice register value, unmerge
2653         // from a widened register (e.g. <3 x s16> -> <4 x s16>)
2654         WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2655         B.buildDeleteTrailingVectorElements(ValReg, WideLoad);
2656       }
2657     }
2658 
2659     MI.eraseFromParent();
2660     return true;
2661   }
2662 
2663   return false;
2664 }
2665 
2666 bool AMDGPULegalizerInfo::legalizeFMad(
2667   MachineInstr &MI, MachineRegisterInfo &MRI,
2668   MachineIRBuilder &B) const {
2669   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2670   assert(Ty.isScalar());
2671 
2672   MachineFunction &MF = B.getMF();
2673   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2674 
2675   // TODO: Always legal with future ftz flag.
2676   // FIXME: Do we need just output?
2677   if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals())
2678     return true;
2679   if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals())
2680     return true;
2681 
2682   MachineIRBuilder HelperBuilder(MI);
2683   GISelObserverWrapper DummyObserver;
2684   LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
2685   return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
2686 }
2687 
2688 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg(
2689   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2690   Register DstReg = MI.getOperand(0).getReg();
2691   Register PtrReg = MI.getOperand(1).getReg();
2692   Register CmpVal = MI.getOperand(2).getReg();
2693   Register NewVal = MI.getOperand(3).getReg();
2694 
2695   assert(AMDGPU::isFlatGlobalAddrSpace(MRI.getType(PtrReg).getAddressSpace()) &&
2696          "this should not have been custom lowered");
2697 
2698   LLT ValTy = MRI.getType(CmpVal);
2699   LLT VecTy = LLT::fixed_vector(2, ValTy);
2700 
2701   Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0);
2702 
2703   B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
2704     .addDef(DstReg)
2705     .addUse(PtrReg)
2706     .addUse(PackedVal)
2707     .setMemRefs(MI.memoperands());
2708 
2709   MI.eraseFromParent();
2710   return true;
2711 }
2712 
2713 bool AMDGPULegalizerInfo::legalizeFlog(
2714   MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const {
2715   Register Dst = MI.getOperand(0).getReg();
2716   Register Src = MI.getOperand(1).getReg();
2717   LLT Ty = B.getMRI()->getType(Dst);
2718   unsigned Flags = MI.getFlags();
2719 
2720   auto Log2Operand = B.buildFLog2(Ty, Src, Flags);
2721   auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted);
2722 
2723   B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
2724   MI.eraseFromParent();
2725   return true;
2726 }
2727 
2728 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI,
2729                                        MachineIRBuilder &B) const {
2730   Register Dst = MI.getOperand(0).getReg();
2731   Register Src = MI.getOperand(1).getReg();
2732   unsigned Flags = MI.getFlags();
2733   LLT Ty = B.getMRI()->getType(Dst);
2734 
2735   auto K = B.buildFConstant(Ty, numbers::log2e);
2736   auto Mul = B.buildFMul(Ty, Src, K, Flags);
2737   B.buildFExp2(Dst, Mul, Flags);
2738   MI.eraseFromParent();
2739   return true;
2740 }
2741 
2742 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI,
2743                                        MachineIRBuilder &B) const {
2744   Register Dst = MI.getOperand(0).getReg();
2745   Register Src0 = MI.getOperand(1).getReg();
2746   Register Src1 = MI.getOperand(2).getReg();
2747   unsigned Flags = MI.getFlags();
2748   LLT Ty = B.getMRI()->getType(Dst);
2749   const LLT S16 = LLT::scalar(16);
2750   const LLT S32 = LLT::scalar(32);
2751 
2752   if (Ty == S32) {
2753     auto Log = B.buildFLog2(S32, Src0, Flags);
2754     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2755       .addUse(Log.getReg(0))
2756       .addUse(Src1)
2757       .setMIFlags(Flags);
2758     B.buildFExp2(Dst, Mul, Flags);
2759   } else if (Ty == S16) {
2760     // There's no f16 fmul_legacy, so we need to convert for it.
2761     auto Log = B.buildFLog2(S16, Src0, Flags);
2762     auto Ext0 = B.buildFPExt(S32, Log, Flags);
2763     auto Ext1 = B.buildFPExt(S32, Src1, Flags);
2764     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2765       .addUse(Ext0.getReg(0))
2766       .addUse(Ext1.getReg(0))
2767       .setMIFlags(Flags);
2768 
2769     B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags);
2770   } else
2771     return false;
2772 
2773   MI.eraseFromParent();
2774   return true;
2775 }
2776 
2777 // Find a source register, ignoring any possible source modifiers.
2778 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) {
2779   Register ModSrc = OrigSrc;
2780   if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) {
2781     ModSrc = SrcFNeg->getOperand(1).getReg();
2782     if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2783       ModSrc = SrcFAbs->getOperand(1).getReg();
2784   } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2785     ModSrc = SrcFAbs->getOperand(1).getReg();
2786   return ModSrc;
2787 }
2788 
2789 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI,
2790                                          MachineRegisterInfo &MRI,
2791                                          MachineIRBuilder &B) const {
2792 
2793   const LLT S1 = LLT::scalar(1);
2794   const LLT S64 = LLT::scalar(64);
2795   Register Dst = MI.getOperand(0).getReg();
2796   Register OrigSrc = MI.getOperand(1).getReg();
2797   unsigned Flags = MI.getFlags();
2798   assert(ST.hasFractBug() && MRI.getType(Dst) == S64 &&
2799          "this should not have been custom lowered");
2800 
2801   // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x))
2802   // is used instead. However, SI doesn't have V_FLOOR_F64, so the most
2803   // efficient way to implement it is using V_FRACT_F64. The workaround for the
2804   // V_FRACT bug is:
2805   //    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
2806   //
2807   // Convert floor(x) to (x - fract(x))
2808 
2809   auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false)
2810     .addUse(OrigSrc)
2811     .setMIFlags(Flags);
2812 
2813   // Give source modifier matching some assistance before obscuring a foldable
2814   // pattern.
2815 
2816   // TODO: We can avoid the neg on the fract? The input sign to fract
2817   // shouldn't matter?
2818   Register ModSrc = stripAnySourceMods(OrigSrc, MRI);
2819 
2820   auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff));
2821 
2822   Register Min = MRI.createGenericVirtualRegister(S64);
2823 
2824   // We don't need to concern ourselves with the snan handling difference, so
2825   // use the one which will directly select.
2826   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2827   if (MFI->getMode().IEEE)
2828     B.buildFMinNumIEEE(Min, Fract, Const, Flags);
2829   else
2830     B.buildFMinNum(Min, Fract, Const, Flags);
2831 
2832   Register CorrectedFract = Min;
2833   if (!MI.getFlag(MachineInstr::FmNoNans)) {
2834     auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags);
2835     CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0);
2836   }
2837 
2838   auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags);
2839   B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
2840 
2841   MI.eraseFromParent();
2842   return true;
2843 }
2844 
2845 // Turn an illegal packed v2s16 build vector into bit operations.
2846 // TODO: This should probably be a bitcast action in LegalizerHelper.
2847 bool AMDGPULegalizerInfo::legalizeBuildVector(
2848   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2849   Register Dst = MI.getOperand(0).getReg();
2850   const LLT S32 = LLT::scalar(32);
2851   assert(MRI.getType(Dst) == LLT::fixed_vector(2, 16));
2852 
2853   Register Src0 = MI.getOperand(1).getReg();
2854   Register Src1 = MI.getOperand(2).getReg();
2855   assert(MRI.getType(Src0) == LLT::scalar(16));
2856 
2857   auto Merge = B.buildMerge(S32, {Src0, Src1});
2858   B.buildBitcast(Dst, Merge);
2859 
2860   MI.eraseFromParent();
2861   return true;
2862 }
2863 
2864 // Legalize ctlz/cttz to ffbh/ffbl instead of the default legalization to
2865 // ctlz/cttz_zero_undef. This allows us to fix up the result for the zero input
2866 // case with a single min instruction instead of a compare+select.
2867 bool AMDGPULegalizerInfo::legalizeCTLZ_CTTZ(MachineInstr &MI,
2868                                             MachineRegisterInfo &MRI,
2869                                             MachineIRBuilder &B) const {
2870   Register Dst = MI.getOperand(0).getReg();
2871   Register Src = MI.getOperand(1).getReg();
2872   LLT DstTy = MRI.getType(Dst);
2873   LLT SrcTy = MRI.getType(Src);
2874 
2875   unsigned NewOpc = MI.getOpcode() == AMDGPU::G_CTLZ
2876                         ? AMDGPU::G_AMDGPU_FFBH_U32
2877                         : AMDGPU::G_AMDGPU_FFBL_B32;
2878   auto Tmp = B.buildInstr(NewOpc, {DstTy}, {Src});
2879   B.buildUMin(Dst, Tmp, B.buildConstant(DstTy, SrcTy.getSizeInBits()));
2880 
2881   MI.eraseFromParent();
2882   return true;
2883 }
2884 
2885 // Check that this is a G_XOR x, -1
2886 static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI) {
2887   if (MI.getOpcode() != TargetOpcode::G_XOR)
2888     return false;
2889   auto ConstVal = getIConstantVRegSExtVal(MI.getOperand(2).getReg(), MRI);
2890   return ConstVal && *ConstVal == -1;
2891 }
2892 
2893 // Return the use branch instruction, otherwise null if the usage is invalid.
2894 static MachineInstr *
2895 verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br,
2896                   MachineBasicBlock *&UncondBrTarget, bool &Negated) {
2897   Register CondDef = MI.getOperand(0).getReg();
2898   if (!MRI.hasOneNonDBGUse(CondDef))
2899     return nullptr;
2900 
2901   MachineBasicBlock *Parent = MI.getParent();
2902   MachineInstr *UseMI = &*MRI.use_instr_nodbg_begin(CondDef);
2903 
2904   if (isNot(MRI, *UseMI)) {
2905     Register NegatedCond = UseMI->getOperand(0).getReg();
2906     if (!MRI.hasOneNonDBGUse(NegatedCond))
2907       return nullptr;
2908 
2909     // We're deleting the def of this value, so we need to remove it.
2910     eraseInstr(*UseMI, MRI);
2911 
2912     UseMI = &*MRI.use_instr_nodbg_begin(NegatedCond);
2913     Negated = true;
2914   }
2915 
2916   if (UseMI->getParent() != Parent || UseMI->getOpcode() != AMDGPU::G_BRCOND)
2917     return nullptr;
2918 
2919   // Make sure the cond br is followed by a G_BR, or is the last instruction.
2920   MachineBasicBlock::iterator Next = std::next(UseMI->getIterator());
2921   if (Next == Parent->end()) {
2922     MachineFunction::iterator NextMBB = std::next(Parent->getIterator());
2923     if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use.
2924       return nullptr;
2925     UncondBrTarget = &*NextMBB;
2926   } else {
2927     if (Next->getOpcode() != AMDGPU::G_BR)
2928       return nullptr;
2929     Br = &*Next;
2930     UncondBrTarget = Br->getOperand(0).getMBB();
2931   }
2932 
2933   return UseMI;
2934 }
2935 
2936 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
2937                                          const ArgDescriptor *Arg,
2938                                          const TargetRegisterClass *ArgRC,
2939                                          LLT ArgTy) const {
2940   MCRegister SrcReg = Arg->getRegister();
2941   assert(Register::isPhysicalRegister(SrcReg) && "Physical register expected");
2942   assert(DstReg.isVirtual() && "Virtual register expected");
2943 
2944   Register LiveIn = getFunctionLiveInPhysReg(B.getMF(), B.getTII(), SrcReg,
2945                                              *ArgRC, B.getDebugLoc(), ArgTy);
2946   if (Arg->isMasked()) {
2947     // TODO: Should we try to emit this once in the entry block?
2948     const LLT S32 = LLT::scalar(32);
2949     const unsigned Mask = Arg->getMask();
2950     const unsigned Shift = countTrailingZeros<unsigned>(Mask);
2951 
2952     Register AndMaskSrc = LiveIn;
2953 
2954     // TODO: Avoid clearing the high bits if we know workitem id y/z are always
2955     // 0.
2956     if (Shift != 0) {
2957       auto ShiftAmt = B.buildConstant(S32, Shift);
2958       AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
2959     }
2960 
2961     B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
2962   } else {
2963     B.buildCopy(DstReg, LiveIn);
2964   }
2965 
2966   return true;
2967 }
2968 
2969 bool AMDGPULegalizerInfo::loadInputValue(
2970     Register DstReg, MachineIRBuilder &B,
2971     AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
2972   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2973   const ArgDescriptor *Arg;
2974   const TargetRegisterClass *ArgRC;
2975   LLT ArgTy;
2976   std::tie(Arg, ArgRC, ArgTy) = MFI->getPreloadedValue(ArgType);
2977 
2978   if (!Arg) {
2979     if (ArgType == AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR) {
2980       // The intrinsic may appear when we have a 0 sized kernarg segment, in which
2981       // case the pointer argument may be missing and we use null.
2982       B.buildConstant(DstReg, 0);
2983       return true;
2984     }
2985 
2986     // It's undefined behavior if a function marked with the amdgpu-no-*
2987     // attributes uses the corresponding intrinsic.
2988     B.buildUndef(DstReg);
2989     return true;
2990   }
2991 
2992   if (!Arg->isRegister() || !Arg->getRegister().isValid())
2993     return false; // TODO: Handle these
2994   return loadInputValue(DstReg, B, Arg, ArgRC, ArgTy);
2995 }
2996 
2997 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
2998     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
2999     AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
3000   if (!loadInputValue(MI.getOperand(0).getReg(), B, ArgType))
3001     return false;
3002 
3003   MI.eraseFromParent();
3004   return true;
3005 }
3006 
3007 Register AMDGPULegalizerInfo::getKernargParameterPtr(MachineIRBuilder &B,
3008                                                      int64_t Offset) const {
3009   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
3010   Register KernArgReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
3011 
3012   // TODO: If we passed in the base kernel offset we could have a better
3013   // alignment than 4, but we don't really need it.
3014   if (!loadInputValue(KernArgReg, B,
3015                       AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
3016     llvm_unreachable("failed to find kernarg segment ptr");
3017 
3018   auto COffset = B.buildConstant(LLT::scalar(64), Offset);
3019   // TODO: Should get nuw
3020   return B.buildPtrAdd(PtrTy, KernArgReg, COffset).getReg(0);
3021 }
3022 
3023 /// Legalize a value that's loaded from kernel arguments. This is only used by
3024 /// legacy intrinsics.
3025 bool AMDGPULegalizerInfo::legalizeKernargMemParameter(MachineInstr &MI,
3026                                                       MachineIRBuilder &B,
3027                                                       uint64_t Offset,
3028                                                       Align Alignment) const {
3029   const LLT S32 = LLT::scalar(32);
3030   Register DstReg = MI.getOperand(0).getReg();
3031 
3032   assert(B.getMRI()->getType(DstReg) == S32 &&
3033          "unexpected kernarg parameter type");
3034 
3035   Register Ptr = getKernargParameterPtr(B, Offset);
3036   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
3037   B.buildLoad(DstReg, Ptr, PtrInfo, Align(4),
3038               MachineMemOperand::MODereferenceable |
3039                   MachineMemOperand::MOInvariant);
3040   MI.eraseFromParent();
3041   return true;
3042 }
3043 
3044 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
3045                                        MachineRegisterInfo &MRI,
3046                                        MachineIRBuilder &B) const {
3047   Register Dst = MI.getOperand(0).getReg();
3048   LLT DstTy = MRI.getType(Dst);
3049   LLT S16 = LLT::scalar(16);
3050   LLT S32 = LLT::scalar(32);
3051   LLT S64 = LLT::scalar(64);
3052 
3053   if (DstTy == S16)
3054     return legalizeFDIV16(MI, MRI, B);
3055   if (DstTy == S32)
3056     return legalizeFDIV32(MI, MRI, B);
3057   if (DstTy == S64)
3058     return legalizeFDIV64(MI, MRI, B);
3059 
3060   return false;
3061 }
3062 
3063 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B,
3064                                                         Register DstDivReg,
3065                                                         Register DstRemReg,
3066                                                         Register X,
3067                                                         Register Y) const {
3068   const LLT S1 = LLT::scalar(1);
3069   const LLT S32 = LLT::scalar(32);
3070 
3071   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
3072   // algorithm used here.
3073 
3074   // Initial estimate of inv(y).
3075   auto FloatY = B.buildUITOFP(S32, Y);
3076   auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {FloatY});
3077   auto Scale = B.buildFConstant(S32, BitsToFloat(0x4f7ffffe));
3078   auto ScaledY = B.buildFMul(S32, RcpIFlag, Scale);
3079   auto Z = B.buildFPTOUI(S32, ScaledY);
3080 
3081   // One round of UNR.
3082   auto NegY = B.buildSub(S32, B.buildConstant(S32, 0), Y);
3083   auto NegYZ = B.buildMul(S32, NegY, Z);
3084   Z = B.buildAdd(S32, Z, B.buildUMulH(S32, Z, NegYZ));
3085 
3086   // Quotient/remainder estimate.
3087   auto Q = B.buildUMulH(S32, X, Z);
3088   auto R = B.buildSub(S32, X, B.buildMul(S32, Q, Y));
3089 
3090   // First quotient/remainder refinement.
3091   auto One = B.buildConstant(S32, 1);
3092   auto Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
3093   if (DstDivReg)
3094     Q = B.buildSelect(S32, Cond, B.buildAdd(S32, Q, One), Q);
3095   R = B.buildSelect(S32, Cond, B.buildSub(S32, R, Y), R);
3096 
3097   // Second quotient/remainder refinement.
3098   Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
3099   if (DstDivReg)
3100     B.buildSelect(DstDivReg, Cond, B.buildAdd(S32, Q, One), Q);
3101 
3102   if (DstRemReg)
3103     B.buildSelect(DstRemReg, Cond, B.buildSub(S32, R, Y), R);
3104 }
3105 
3106 // Build integer reciprocal sequence around V_RCP_IFLAG_F32
3107 //
3108 // Return lo, hi of result
3109 //
3110 // %cvt.lo = G_UITOFP Val.lo
3111 // %cvt.hi = G_UITOFP Val.hi
3112 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo
3113 // %rcp = G_AMDGPU_RCP_IFLAG %mad
3114 // %mul1 = G_FMUL %rcp, 0x5f7ffffc
3115 // %mul2 = G_FMUL %mul1, 2**(-32)
3116 // %trunc = G_INTRINSIC_TRUNC %mul2
3117 // %mad2 = G_FMAD %trunc, -(2**32), %mul1
3118 // return {G_FPTOUI %mad2, G_FPTOUI %trunc}
3119 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B,
3120                                                        Register Val) {
3121   const LLT S32 = LLT::scalar(32);
3122   auto Unmerge = B.buildUnmerge(S32, Val);
3123 
3124   auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0));
3125   auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1));
3126 
3127   auto Mad = B.buildFMAD(S32, CvtHi, // 2**32
3128                          B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo);
3129 
3130   auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad});
3131   auto Mul1 =
3132       B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc)));
3133 
3134   // 2**(-32)
3135   auto Mul2 =
3136       B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000)));
3137   auto Trunc = B.buildIntrinsicTrunc(S32, Mul2);
3138 
3139   // -(2**32)
3140   auto Mad2 = B.buildFMAD(S32, Trunc,
3141                           B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1);
3142 
3143   auto ResultLo = B.buildFPTOUI(S32, Mad2);
3144   auto ResultHi = B.buildFPTOUI(S32, Trunc);
3145 
3146   return {ResultLo.getReg(0), ResultHi.getReg(0)};
3147 }
3148 
3149 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B,
3150                                                         Register DstDivReg,
3151                                                         Register DstRemReg,
3152                                                         Register Numer,
3153                                                         Register Denom) const {
3154   const LLT S32 = LLT::scalar(32);
3155   const LLT S64 = LLT::scalar(64);
3156   const LLT S1 = LLT::scalar(1);
3157   Register RcpLo, RcpHi;
3158 
3159   std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom);
3160 
3161   auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi});
3162 
3163   auto Zero64 = B.buildConstant(S64, 0);
3164   auto NegDenom = B.buildSub(S64, Zero64, Denom);
3165 
3166   auto MulLo1 = B.buildMul(S64, NegDenom, Rcp);
3167   auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1);
3168 
3169   auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1);
3170   Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
3171   Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
3172 
3173   auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo);
3174   auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
3175   auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi});
3176 
3177   auto MulLo2 = B.buildMul(S64, NegDenom, Add1);
3178   auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2);
3179   auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2);
3180   Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
3181   Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
3182 
3183   auto Zero32 = B.buildConstant(S32, 0);
3184   auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo);
3185   auto Add2_Hi = B.buildUAdde(S32, S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
3186   auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi});
3187 
3188   auto UnmergeNumer = B.buildUnmerge(S32, Numer);
3189   Register NumerLo = UnmergeNumer.getReg(0);
3190   Register NumerHi = UnmergeNumer.getReg(1);
3191 
3192   auto MulHi3 = B.buildUMulH(S64, Numer, Add2);
3193   auto Mul3 = B.buildMul(S64, Denom, MulHi3);
3194   auto UnmergeMul3 = B.buildUnmerge(S32, Mul3);
3195   Register Mul3_Lo = UnmergeMul3.getReg(0);
3196   Register Mul3_Hi = UnmergeMul3.getReg(1);
3197   auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo);
3198   auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
3199   auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi);
3200   auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi});
3201 
3202   auto UnmergeDenom = B.buildUnmerge(S32, Denom);
3203   Register DenomLo = UnmergeDenom.getReg(0);
3204   Register DenomHi = UnmergeDenom.getReg(1);
3205 
3206   auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi);
3207   auto C1 = B.buildSExt(S32, CmpHi);
3208 
3209   auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo);
3210   auto C2 = B.buildSExt(S32, CmpLo);
3211 
3212   auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi);
3213   auto C3 = B.buildSelect(S32, CmpEq, C2, C1);
3214 
3215   // TODO: Here and below portions of the code can be enclosed into if/endif.
3216   // Currently control flow is unconditional and we have 4 selects after
3217   // potential endif to substitute PHIs.
3218 
3219   // if C3 != 0 ...
3220   auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo);
3221   auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
3222   auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
3223   auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi});
3224 
3225   auto One64 = B.buildConstant(S64, 1);
3226   auto Add3 = B.buildAdd(S64, MulHi3, One64);
3227 
3228   auto C4 =
3229       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi));
3230   auto C5 =
3231       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo));
3232   auto C6 = B.buildSelect(
3233       S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4);
3234 
3235   // if (C6 != 0)
3236   auto Add4 = B.buildAdd(S64, Add3, One64);
3237   auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo);
3238 
3239   auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
3240   auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
3241   auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi});
3242 
3243   // endif C6
3244   // endif C3
3245 
3246   if (DstDivReg) {
3247     auto Sel1 = B.buildSelect(
3248         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3);
3249     B.buildSelect(DstDivReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
3250                   Sel1, MulHi3);
3251   }
3252 
3253   if (DstRemReg) {
3254     auto Sel2 = B.buildSelect(
3255         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2);
3256     B.buildSelect(DstRemReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
3257                   Sel2, Sub1);
3258   }
3259 }
3260 
3261 bool AMDGPULegalizerInfo::legalizeUnsignedDIV_REM(MachineInstr &MI,
3262                                                   MachineRegisterInfo &MRI,
3263                                                   MachineIRBuilder &B) const {
3264   Register DstDivReg, DstRemReg;
3265   switch (MI.getOpcode()) {
3266   default:
3267     llvm_unreachable("Unexpected opcode!");
3268   case AMDGPU::G_UDIV: {
3269     DstDivReg = MI.getOperand(0).getReg();
3270     break;
3271   }
3272   case AMDGPU::G_UREM: {
3273     DstRemReg = MI.getOperand(0).getReg();
3274     break;
3275   }
3276   case AMDGPU::G_UDIVREM: {
3277     DstDivReg = MI.getOperand(0).getReg();
3278     DstRemReg = MI.getOperand(1).getReg();
3279     break;
3280   }
3281   }
3282 
3283   const LLT S64 = LLT::scalar(64);
3284   const LLT S32 = LLT::scalar(32);
3285   const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
3286   Register Num = MI.getOperand(FirstSrcOpIdx).getReg();
3287   Register Den = MI.getOperand(FirstSrcOpIdx + 1).getReg();
3288   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3289 
3290   if (Ty == S32)
3291     legalizeUnsignedDIV_REM32Impl(B, DstDivReg, DstRemReg, Num, Den);
3292   else if (Ty == S64)
3293     legalizeUnsignedDIV_REM64Impl(B, DstDivReg, DstRemReg, Num, Den);
3294   else
3295     return false;
3296 
3297   MI.eraseFromParent();
3298   return true;
3299 }
3300 
3301 bool AMDGPULegalizerInfo::legalizeSignedDIV_REM(MachineInstr &MI,
3302                                                 MachineRegisterInfo &MRI,
3303                                                 MachineIRBuilder &B) const {
3304   const LLT S64 = LLT::scalar(64);
3305   const LLT S32 = LLT::scalar(32);
3306 
3307   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3308   if (Ty != S32 && Ty != S64)
3309     return false;
3310 
3311   const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
3312   Register LHS = MI.getOperand(FirstSrcOpIdx).getReg();
3313   Register RHS = MI.getOperand(FirstSrcOpIdx + 1).getReg();
3314 
3315   auto SignBitOffset = B.buildConstant(S32, Ty.getSizeInBits() - 1);
3316   auto LHSign = B.buildAShr(Ty, LHS, SignBitOffset);
3317   auto RHSign = B.buildAShr(Ty, RHS, SignBitOffset);
3318 
3319   LHS = B.buildAdd(Ty, LHS, LHSign).getReg(0);
3320   RHS = B.buildAdd(Ty, RHS, RHSign).getReg(0);
3321 
3322   LHS = B.buildXor(Ty, LHS, LHSign).getReg(0);
3323   RHS = B.buildXor(Ty, RHS, RHSign).getReg(0);
3324 
3325   Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
3326   switch (MI.getOpcode()) {
3327   default:
3328     llvm_unreachable("Unexpected opcode!");
3329   case AMDGPU::G_SDIV: {
3330     DstDivReg = MI.getOperand(0).getReg();
3331     TmpDivReg = MRI.createGenericVirtualRegister(Ty);
3332     break;
3333   }
3334   case AMDGPU::G_SREM: {
3335     DstRemReg = MI.getOperand(0).getReg();
3336     TmpRemReg = MRI.createGenericVirtualRegister(Ty);
3337     break;
3338   }
3339   case AMDGPU::G_SDIVREM: {
3340     DstDivReg = MI.getOperand(0).getReg();
3341     DstRemReg = MI.getOperand(1).getReg();
3342     TmpDivReg = MRI.createGenericVirtualRegister(Ty);
3343     TmpRemReg = MRI.createGenericVirtualRegister(Ty);
3344     break;
3345   }
3346   }
3347 
3348   if (Ty == S32)
3349     legalizeUnsignedDIV_REM32Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
3350   else
3351     legalizeUnsignedDIV_REM64Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
3352 
3353   if (DstDivReg) {
3354     auto Sign = B.buildXor(Ty, LHSign, RHSign).getReg(0);
3355     auto SignXor = B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
3356     B.buildSub(DstDivReg, SignXor, Sign);
3357   }
3358 
3359   if (DstRemReg) {
3360     auto Sign = LHSign.getReg(0); // Remainder sign is the same as LHS
3361     auto SignXor = B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
3362     B.buildSub(DstRemReg, SignXor, Sign);
3363   }
3364 
3365   MI.eraseFromParent();
3366   return true;
3367 }
3368 
3369 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
3370                                                  MachineRegisterInfo &MRI,
3371                                                  MachineIRBuilder &B) const {
3372   Register Res = MI.getOperand(0).getReg();
3373   Register LHS = MI.getOperand(1).getReg();
3374   Register RHS = MI.getOperand(2).getReg();
3375   uint16_t Flags = MI.getFlags();
3376   LLT ResTy = MRI.getType(Res);
3377 
3378   const MachineFunction &MF = B.getMF();
3379   bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
3380                             MI.getFlag(MachineInstr::FmAfn);
3381 
3382   if (!AllowInaccurateRcp)
3383     return false;
3384 
3385   if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
3386     // 1 / x -> RCP(x)
3387     if (CLHS->isExactlyValue(1.0)) {
3388       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
3389         .addUse(RHS)
3390         .setMIFlags(Flags);
3391 
3392       MI.eraseFromParent();
3393       return true;
3394     }
3395 
3396     // -1 / x -> RCP( FNEG(x) )
3397     if (CLHS->isExactlyValue(-1.0)) {
3398       auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
3399       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
3400         .addUse(FNeg.getReg(0))
3401         .setMIFlags(Flags);
3402 
3403       MI.eraseFromParent();
3404       return true;
3405     }
3406   }
3407 
3408   // x / y -> x * (1.0 / y)
3409   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
3410     .addUse(RHS)
3411     .setMIFlags(Flags);
3412   B.buildFMul(Res, LHS, RCP, Flags);
3413 
3414   MI.eraseFromParent();
3415   return true;
3416 }
3417 
3418 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV64(MachineInstr &MI,
3419                                                    MachineRegisterInfo &MRI,
3420                                                    MachineIRBuilder &B) const {
3421   Register Res = MI.getOperand(0).getReg();
3422   Register X = MI.getOperand(1).getReg();
3423   Register Y = MI.getOperand(2).getReg();
3424   uint16_t Flags = MI.getFlags();
3425   LLT ResTy = MRI.getType(Res);
3426 
3427   const MachineFunction &MF = B.getMF();
3428   bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
3429                             MI.getFlag(MachineInstr::FmAfn);
3430 
3431   if (!AllowInaccurateRcp)
3432     return false;
3433 
3434   auto NegY = B.buildFNeg(ResTy, Y);
3435   auto One = B.buildFConstant(ResTy, 1.0);
3436 
3437   auto R = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
3438     .addUse(Y)
3439     .setMIFlags(Flags);
3440 
3441   auto Tmp0 = B.buildFMA(ResTy, NegY, R, One);
3442   R = B.buildFMA(ResTy, Tmp0, R, R);
3443 
3444   auto Tmp1 = B.buildFMA(ResTy, NegY, R, One);
3445   R = B.buildFMA(ResTy, Tmp1, R, R);
3446 
3447   auto Ret = B.buildFMul(ResTy, X, R);
3448   auto Tmp2 = B.buildFMA(ResTy, NegY, Ret, X);
3449 
3450   B.buildFMA(Res, Tmp2, R, Ret);
3451   MI.eraseFromParent();
3452   return true;
3453 }
3454 
3455 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI,
3456                                          MachineRegisterInfo &MRI,
3457                                          MachineIRBuilder &B) const {
3458   if (legalizeFastUnsafeFDIV(MI, MRI, B))
3459     return true;
3460 
3461   Register Res = MI.getOperand(0).getReg();
3462   Register LHS = MI.getOperand(1).getReg();
3463   Register RHS = MI.getOperand(2).getReg();
3464 
3465   uint16_t Flags = MI.getFlags();
3466 
3467   LLT S16 = LLT::scalar(16);
3468   LLT S32 = LLT::scalar(32);
3469 
3470   auto LHSExt = B.buildFPExt(S32, LHS, Flags);
3471   auto RHSExt = B.buildFPExt(S32, RHS, Flags);
3472 
3473   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3474     .addUse(RHSExt.getReg(0))
3475     .setMIFlags(Flags);
3476 
3477   auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags);
3478   auto RDst = B.buildFPTrunc(S16, QUOT, Flags);
3479 
3480   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
3481     .addUse(RDst.getReg(0))
3482     .addUse(RHS)
3483     .addUse(LHS)
3484     .setMIFlags(Flags);
3485 
3486   MI.eraseFromParent();
3487   return true;
3488 }
3489 
3490 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions
3491 // to enable denorm mode. When 'Enable' is false, disable denorm mode.
3492 static void toggleSPDenormMode(bool Enable,
3493                                MachineIRBuilder &B,
3494                                const GCNSubtarget &ST,
3495                                AMDGPU::SIModeRegisterDefaults Mode) {
3496   // Set SP denorm mode to this value.
3497   unsigned SPDenormMode =
3498     Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue();
3499 
3500   if (ST.hasDenormModeInst()) {
3501     // Preserve default FP64FP16 denorm mode while updating FP32 mode.
3502     uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue();
3503 
3504     uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
3505     B.buildInstr(AMDGPU::S_DENORM_MODE)
3506       .addImm(NewDenormModeValue);
3507 
3508   } else {
3509     // Select FP32 bit field in mode register.
3510     unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE |
3511                                     (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
3512                                     (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
3513 
3514     B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
3515       .addImm(SPDenormMode)
3516       .addImm(SPDenormModeBitField);
3517   }
3518 }
3519 
3520 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI,
3521                                          MachineRegisterInfo &MRI,
3522                                          MachineIRBuilder &B) const {
3523   if (legalizeFastUnsafeFDIV(MI, MRI, B))
3524     return true;
3525 
3526   Register Res = MI.getOperand(0).getReg();
3527   Register LHS = MI.getOperand(1).getReg();
3528   Register RHS = MI.getOperand(2).getReg();
3529   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3530   AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode();
3531 
3532   uint16_t Flags = MI.getFlags();
3533 
3534   LLT S32 = LLT::scalar(32);
3535   LLT S1 = LLT::scalar(1);
3536 
3537   auto One = B.buildFConstant(S32, 1.0f);
3538 
3539   auto DenominatorScaled =
3540     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
3541       .addUse(LHS)
3542       .addUse(RHS)
3543       .addImm(0)
3544       .setMIFlags(Flags);
3545   auto NumeratorScaled =
3546     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
3547       .addUse(LHS)
3548       .addUse(RHS)
3549       .addImm(1)
3550       .setMIFlags(Flags);
3551 
3552   auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3553     .addUse(DenominatorScaled.getReg(0))
3554     .setMIFlags(Flags);
3555   auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags);
3556 
3557   // FIXME: Doesn't correctly model the FP mode switch, and the FP operations
3558   // aren't modeled as reading it.
3559   if (!Mode.allFP32Denormals())
3560     toggleSPDenormMode(true, B, ST, Mode);
3561 
3562   auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags);
3563   auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags);
3564   auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags);
3565   auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags);
3566   auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags);
3567   auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
3568 
3569   if (!Mode.allFP32Denormals())
3570     toggleSPDenormMode(false, B, ST, Mode);
3571 
3572   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false)
3573     .addUse(Fma4.getReg(0))
3574     .addUse(Fma1.getReg(0))
3575     .addUse(Fma3.getReg(0))
3576     .addUse(NumeratorScaled.getReg(1))
3577     .setMIFlags(Flags);
3578 
3579   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
3580     .addUse(Fmas.getReg(0))
3581     .addUse(RHS)
3582     .addUse(LHS)
3583     .setMIFlags(Flags);
3584 
3585   MI.eraseFromParent();
3586   return true;
3587 }
3588 
3589 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI,
3590                                          MachineRegisterInfo &MRI,
3591                                          MachineIRBuilder &B) const {
3592   if (legalizeFastUnsafeFDIV64(MI, MRI, B))
3593     return true;
3594 
3595   Register Res = MI.getOperand(0).getReg();
3596   Register LHS = MI.getOperand(1).getReg();
3597   Register RHS = MI.getOperand(2).getReg();
3598 
3599   uint16_t Flags = MI.getFlags();
3600 
3601   LLT S64 = LLT::scalar(64);
3602   LLT S1 = LLT::scalar(1);
3603 
3604   auto One = B.buildFConstant(S64, 1.0);
3605 
3606   auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3607     .addUse(LHS)
3608     .addUse(RHS)
3609     .addImm(0)
3610     .setMIFlags(Flags);
3611 
3612   auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags);
3613 
3614   auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false)
3615     .addUse(DivScale0.getReg(0))
3616     .setMIFlags(Flags);
3617 
3618   auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags);
3619   auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags);
3620   auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags);
3621 
3622   auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3623     .addUse(LHS)
3624     .addUse(RHS)
3625     .addImm(1)
3626     .setMIFlags(Flags);
3627 
3628   auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags);
3629   auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags);
3630   auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags);
3631 
3632   Register Scale;
3633   if (!ST.hasUsableDivScaleConditionOutput()) {
3634     // Workaround a hardware bug on SI where the condition output from div_scale
3635     // is not usable.
3636 
3637     LLT S32 = LLT::scalar(32);
3638 
3639     auto NumUnmerge = B.buildUnmerge(S32, LHS);
3640     auto DenUnmerge = B.buildUnmerge(S32, RHS);
3641     auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0);
3642     auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1);
3643 
3644     auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1),
3645                               Scale1Unmerge.getReg(1));
3646     auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1),
3647                               Scale0Unmerge.getReg(1));
3648     Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0);
3649   } else {
3650     Scale = DivScale1.getReg(1);
3651   }
3652 
3653   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false)
3654     .addUse(Fma4.getReg(0))
3655     .addUse(Fma3.getReg(0))
3656     .addUse(Mul.getReg(0))
3657     .addUse(Scale)
3658     .setMIFlags(Flags);
3659 
3660   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false)
3661     .addUse(Fmas.getReg(0))
3662     .addUse(RHS)
3663     .addUse(LHS)
3664     .setMIFlags(Flags);
3665 
3666   MI.eraseFromParent();
3667   return true;
3668 }
3669 
3670 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
3671                                                  MachineRegisterInfo &MRI,
3672                                                  MachineIRBuilder &B) const {
3673   Register Res = MI.getOperand(0).getReg();
3674   Register LHS = MI.getOperand(2).getReg();
3675   Register RHS = MI.getOperand(3).getReg();
3676   uint16_t Flags = MI.getFlags();
3677 
3678   LLT S32 = LLT::scalar(32);
3679   LLT S1 = LLT::scalar(1);
3680 
3681   auto Abs = B.buildFAbs(S32, RHS, Flags);
3682   const APFloat C0Val(1.0f);
3683 
3684   auto C0 = B.buildConstant(S32, 0x6f800000);
3685   auto C1 = B.buildConstant(S32, 0x2f800000);
3686   auto C2 = B.buildConstant(S32, FloatToBits(1.0f));
3687 
3688   auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
3689   auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);
3690 
3691   auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);
3692 
3693   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3694     .addUse(Mul0.getReg(0))
3695     .setMIFlags(Flags);
3696 
3697   auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);
3698 
3699   B.buildFMul(Res, Sel, Mul1, Flags);
3700 
3701   MI.eraseFromParent();
3702   return true;
3703 }
3704 
3705 // Expand llvm.amdgcn.rsq.clamp on targets that don't support the instruction.
3706 // FIXME: Why do we handle this one but not other removed instructions?
3707 //
3708 // Reciprocal square root.  The clamp prevents infinite results, clamping
3709 // infinities to max_float.  D.f = 1.0 / sqrt(S0.f), result clamped to
3710 // +-max_float.
3711 bool AMDGPULegalizerInfo::legalizeRsqClampIntrinsic(MachineInstr &MI,
3712                                                     MachineRegisterInfo &MRI,
3713                                                     MachineIRBuilder &B) const {
3714   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
3715     return true;
3716 
3717   Register Dst = MI.getOperand(0).getReg();
3718   Register Src = MI.getOperand(2).getReg();
3719   auto Flags = MI.getFlags();
3720 
3721   LLT Ty = MRI.getType(Dst);
3722 
3723   const fltSemantics *FltSemantics;
3724   if (Ty == LLT::scalar(32))
3725     FltSemantics = &APFloat::IEEEsingle();
3726   else if (Ty == LLT::scalar(64))
3727     FltSemantics = &APFloat::IEEEdouble();
3728   else
3729     return false;
3730 
3731   auto Rsq = B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty}, false)
3732     .addUse(Src)
3733     .setMIFlags(Flags);
3734 
3735   // We don't need to concern ourselves with the snan handling difference, since
3736   // the rsq quieted (or not) so use the one which will directly select.
3737   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3738   const bool UseIEEE = MFI->getMode().IEEE;
3739 
3740   auto MaxFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics));
3741   auto ClampMax = UseIEEE ? B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
3742                             B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
3743 
3744   auto MinFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics, true));
3745 
3746   if (UseIEEE)
3747     B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
3748   else
3749     B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
3750   MI.eraseFromParent();
3751   return true;
3752 }
3753 
3754 static unsigned getDSFPAtomicOpcode(Intrinsic::ID IID) {
3755   switch (IID) {
3756   case Intrinsic::amdgcn_ds_fadd:
3757     return AMDGPU::G_ATOMICRMW_FADD;
3758   case Intrinsic::amdgcn_ds_fmin:
3759     return AMDGPU::G_AMDGPU_ATOMIC_FMIN;
3760   case Intrinsic::amdgcn_ds_fmax:
3761     return AMDGPU::G_AMDGPU_ATOMIC_FMAX;
3762   default:
3763     llvm_unreachable("not a DS FP intrinsic");
3764   }
3765 }
3766 
3767 bool AMDGPULegalizerInfo::legalizeDSAtomicFPIntrinsic(LegalizerHelper &Helper,
3768                                                       MachineInstr &MI,
3769                                                       Intrinsic::ID IID) const {
3770   GISelChangeObserver &Observer = Helper.Observer;
3771   Observer.changingInstr(MI);
3772 
3773   MI.setDesc(ST.getInstrInfo()->get(getDSFPAtomicOpcode(IID)));
3774 
3775   // The remaining operands were used to set fields in the MemOperand on
3776   // construction.
3777   for (int I = 6; I > 3; --I)
3778     MI.removeOperand(I);
3779 
3780   MI.removeOperand(1); // Remove the intrinsic ID.
3781   Observer.changedInstr(MI);
3782   return true;
3783 }
3784 
3785 bool AMDGPULegalizerInfo::getImplicitArgPtr(Register DstReg,
3786                                             MachineRegisterInfo &MRI,
3787                                             MachineIRBuilder &B) const {
3788   uint64_t Offset =
3789     ST.getTargetLowering()->getImplicitParameterOffset(
3790       B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
3791   LLT DstTy = MRI.getType(DstReg);
3792   LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());
3793 
3794   Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
3795   if (!loadInputValue(KernargPtrReg, B,
3796                       AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
3797     return false;
3798 
3799   // FIXME: This should be nuw
3800   B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
3801   return true;
3802 }
3803 
3804 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
3805                                                  MachineRegisterInfo &MRI,
3806                                                  MachineIRBuilder &B) const {
3807   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3808   if (!MFI->isEntryFunction()) {
3809     return legalizePreloadedArgIntrin(MI, MRI, B,
3810                                       AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
3811   }
3812 
3813   Register DstReg = MI.getOperand(0).getReg();
3814   if (!getImplicitArgPtr(DstReg, MRI, B))
3815     return false;
3816 
3817   MI.eraseFromParent();
3818   return true;
3819 }
3820 
3821 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
3822                                               MachineRegisterInfo &MRI,
3823                                               MachineIRBuilder &B,
3824                                               unsigned AddrSpace) const {
3825   Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
3826   auto Unmerge = B.buildUnmerge(LLT::scalar(32), MI.getOperand(2).getReg());
3827   Register Hi32 = Unmerge.getReg(1);
3828 
3829   B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
3830   MI.eraseFromParent();
3831   return true;
3832 }
3833 
3834 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
3835 // offset (the offset that is included in bounds checking and swizzling, to be
3836 // split between the instruction's voffset and immoffset fields) and soffset
3837 // (the offset that is excluded from bounds checking and swizzling, to go in
3838 // the instruction's soffset field).  This function takes the first kind of
3839 // offset and figures out how to split it between voffset and immoffset.
3840 std::pair<Register, unsigned>
3841 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B,
3842                                         Register OrigOffset) const {
3843   const unsigned MaxImm = 4095;
3844   Register BaseReg;
3845   unsigned ImmOffset;
3846   const LLT S32 = LLT::scalar(32);
3847   MachineRegisterInfo &MRI = *B.getMRI();
3848 
3849   std::tie(BaseReg, ImmOffset) =
3850       AMDGPU::getBaseWithConstantOffset(MRI, OrigOffset);
3851 
3852   // If BaseReg is a pointer, convert it to int.
3853   if (MRI.getType(BaseReg).isPointer())
3854     BaseReg = B.buildPtrToInt(MRI.getType(OrigOffset), BaseReg).getReg(0);
3855 
3856   // If the immediate value is too big for the immoffset field, put the value
3857   // and -4096 into the immoffset field so that the value that is copied/added
3858   // for the voffset field is a multiple of 4096, and it stands more chance
3859   // of being CSEd with the copy/add for another similar load/store.
3860   // However, do not do that rounding down to a multiple of 4096 if that is a
3861   // negative number, as it appears to be illegal to have a negative offset
3862   // in the vgpr, even if adding the immediate offset makes it positive.
3863   unsigned Overflow = ImmOffset & ~MaxImm;
3864   ImmOffset -= Overflow;
3865   if ((int32_t)Overflow < 0) {
3866     Overflow += ImmOffset;
3867     ImmOffset = 0;
3868   }
3869 
3870   if (Overflow != 0) {
3871     if (!BaseReg) {
3872       BaseReg = B.buildConstant(S32, Overflow).getReg(0);
3873     } else {
3874       auto OverflowVal = B.buildConstant(S32, Overflow);
3875       BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0);
3876     }
3877   }
3878 
3879   if (!BaseReg)
3880     BaseReg = B.buildConstant(S32, 0).getReg(0);
3881 
3882   return std::make_pair(BaseReg, ImmOffset);
3883 }
3884 
3885 /// Update \p MMO based on the offset inputs to a raw/struct buffer intrinsic.
3886 void AMDGPULegalizerInfo::updateBufferMMO(MachineMemOperand *MMO,
3887                                           Register VOffset, Register SOffset,
3888                                           unsigned ImmOffset, Register VIndex,
3889                                           MachineRegisterInfo &MRI) const {
3890   Optional<ValueAndVReg> MaybeVOffsetVal =
3891       getIConstantVRegValWithLookThrough(VOffset, MRI);
3892   Optional<ValueAndVReg> MaybeSOffsetVal =
3893       getIConstantVRegValWithLookThrough(SOffset, MRI);
3894   Optional<ValueAndVReg> MaybeVIndexVal =
3895       getIConstantVRegValWithLookThrough(VIndex, MRI);
3896   // If the combined VOffset + SOffset + ImmOffset + strided VIndex is constant,
3897   // update the MMO with that offset. The stride is unknown so we can only do
3898   // this if VIndex is constant 0.
3899   if (MaybeVOffsetVal && MaybeSOffsetVal && MaybeVIndexVal &&
3900       MaybeVIndexVal->Value == 0) {
3901     uint64_t TotalOffset = MaybeVOffsetVal->Value.getZExtValue() +
3902                            MaybeSOffsetVal->Value.getZExtValue() + ImmOffset;
3903     MMO->setOffset(TotalOffset);
3904   } else {
3905     // We don't have a constant combined offset to use in the MMO. Give up.
3906     MMO->setValue((Value *)nullptr);
3907   }
3908 }
3909 
3910 /// Handle register layout difference for f16 images for some subtargets.
3911 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
3912                                              MachineRegisterInfo &MRI,
3913                                              Register Reg,
3914                                              bool ImageStore) const {
3915   const LLT S16 = LLT::scalar(16);
3916   const LLT S32 = LLT::scalar(32);
3917   LLT StoreVT = MRI.getType(Reg);
3918   assert(StoreVT.isVector() && StoreVT.getElementType() == S16);
3919 
3920   if (ST.hasUnpackedD16VMem()) {
3921     auto Unmerge = B.buildUnmerge(S16, Reg);
3922 
3923     SmallVector<Register, 4> WideRegs;
3924     for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3925       WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));
3926 
3927     int NumElts = StoreVT.getNumElements();
3928 
3929     return B.buildBuildVector(LLT::fixed_vector(NumElts, S32), WideRegs)
3930         .getReg(0);
3931   }
3932 
3933   if (ImageStore && ST.hasImageStoreD16Bug()) {
3934     if (StoreVT.getNumElements() == 2) {
3935       SmallVector<Register, 4> PackedRegs;
3936       Reg = B.buildBitcast(S32, Reg).getReg(0);
3937       PackedRegs.push_back(Reg);
3938       PackedRegs.resize(2, B.buildUndef(S32).getReg(0));
3939       return B.buildBuildVector(LLT::fixed_vector(2, S32), PackedRegs)
3940           .getReg(0);
3941     }
3942 
3943     if (StoreVT.getNumElements() == 3) {
3944       SmallVector<Register, 4> PackedRegs;
3945       auto Unmerge = B.buildUnmerge(S16, Reg);
3946       for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3947         PackedRegs.push_back(Unmerge.getReg(I));
3948       PackedRegs.resize(6, B.buildUndef(S16).getReg(0));
3949       Reg = B.buildBuildVector(LLT::fixed_vector(6, S16), PackedRegs).getReg(0);
3950       return B.buildBitcast(LLT::fixed_vector(3, S32), Reg).getReg(0);
3951     }
3952 
3953     if (StoreVT.getNumElements() == 4) {
3954       SmallVector<Register, 4> PackedRegs;
3955       Reg = B.buildBitcast(LLT::fixed_vector(2, S32), Reg).getReg(0);
3956       auto Unmerge = B.buildUnmerge(S32, Reg);
3957       for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3958         PackedRegs.push_back(Unmerge.getReg(I));
3959       PackedRegs.resize(4, B.buildUndef(S32).getReg(0));
3960       return B.buildBuildVector(LLT::fixed_vector(4, S32), PackedRegs)
3961           .getReg(0);
3962     }
3963 
3964     llvm_unreachable("invalid data type");
3965   }
3966 
3967   if (StoreVT == LLT::fixed_vector(3, S16)) {
3968     Reg = B.buildPadVectorWithUndefElements(LLT::fixed_vector(4, S16), Reg)
3969               .getReg(0);
3970   }
3971   return Reg;
3972 }
3973 
3974 Register AMDGPULegalizerInfo::fixStoreSourceType(
3975   MachineIRBuilder &B, Register VData, bool IsFormat) const {
3976   MachineRegisterInfo *MRI = B.getMRI();
3977   LLT Ty = MRI->getType(VData);
3978 
3979   const LLT S16 = LLT::scalar(16);
3980 
3981   // Fixup illegal register types for i8 stores.
3982   if (Ty == LLT::scalar(8) || Ty == S16) {
3983     Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
3984     return AnyExt;
3985   }
3986 
3987   if (Ty.isVector()) {
3988     if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
3989       if (IsFormat)
3990         return handleD16VData(B, *MRI, VData);
3991     }
3992   }
3993 
3994   return VData;
3995 }
3996 
3997 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI,
3998                                               MachineRegisterInfo &MRI,
3999                                               MachineIRBuilder &B,
4000                                               bool IsTyped,
4001                                               bool IsFormat) const {
4002   Register VData = MI.getOperand(1).getReg();
4003   LLT Ty = MRI.getType(VData);
4004   LLT EltTy = Ty.getScalarType();
4005   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
4006   const LLT S32 = LLT::scalar(32);
4007 
4008   VData = fixStoreSourceType(B, VData, IsFormat);
4009   Register RSrc = MI.getOperand(2).getReg();
4010 
4011   MachineMemOperand *MMO = *MI.memoperands_begin();
4012   const int MemSize = MMO->getSize();
4013 
4014   unsigned ImmOffset;
4015 
4016   // The typed intrinsics add an immediate after the registers.
4017   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
4018 
4019   // The struct intrinsic variants add one additional operand over raw.
4020   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
4021   Register VIndex;
4022   int OpOffset = 0;
4023   if (HasVIndex) {
4024     VIndex = MI.getOperand(3).getReg();
4025     OpOffset = 1;
4026   } else {
4027     VIndex = B.buildConstant(S32, 0).getReg(0);
4028   }
4029 
4030   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
4031   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
4032 
4033   unsigned Format = 0;
4034   if (IsTyped) {
4035     Format = MI.getOperand(5 + OpOffset).getImm();
4036     ++OpOffset;
4037   }
4038 
4039   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
4040 
4041   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4042   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
4043 
4044   unsigned Opc;
4045   if (IsTyped) {
4046     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
4047                   AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
4048   } else if (IsFormat) {
4049     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
4050                   AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
4051   } else {
4052     switch (MemSize) {
4053     case 1:
4054       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
4055       break;
4056     case 2:
4057       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
4058       break;
4059     default:
4060       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
4061       break;
4062     }
4063   }
4064 
4065   auto MIB = B.buildInstr(Opc)
4066     .addUse(VData)              // vdata
4067     .addUse(RSrc)               // rsrc
4068     .addUse(VIndex)             // vindex
4069     .addUse(VOffset)            // voffset
4070     .addUse(SOffset)            // soffset
4071     .addImm(ImmOffset);         // offset(imm)
4072 
4073   if (IsTyped)
4074     MIB.addImm(Format);
4075 
4076   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4077      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4078      .addMemOperand(MMO);
4079 
4080   MI.eraseFromParent();
4081   return true;
4082 }
4083 
4084 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI,
4085                                              MachineRegisterInfo &MRI,
4086                                              MachineIRBuilder &B,
4087                                              bool IsFormat,
4088                                              bool IsTyped) const {
4089   // FIXME: Verifier should enforce 1 MMO for these intrinsics.
4090   MachineMemOperand *MMO = *MI.memoperands_begin();
4091   const LLT MemTy = MMO->getMemoryType();
4092   const LLT S32 = LLT::scalar(32);
4093 
4094   Register Dst = MI.getOperand(0).getReg();
4095   Register RSrc = MI.getOperand(2).getReg();
4096 
4097   // The typed intrinsics add an immediate after the registers.
4098   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
4099 
4100   // The struct intrinsic variants add one additional operand over raw.
4101   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
4102   Register VIndex;
4103   int OpOffset = 0;
4104   if (HasVIndex) {
4105     VIndex = MI.getOperand(3).getReg();
4106     OpOffset = 1;
4107   } else {
4108     VIndex = B.buildConstant(S32, 0).getReg(0);
4109   }
4110 
4111   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
4112   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
4113 
4114   unsigned Format = 0;
4115   if (IsTyped) {
4116     Format = MI.getOperand(5 + OpOffset).getImm();
4117     ++OpOffset;
4118   }
4119 
4120   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
4121   unsigned ImmOffset;
4122 
4123   LLT Ty = MRI.getType(Dst);
4124   LLT EltTy = Ty.getScalarType();
4125   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
4126   const bool Unpacked = ST.hasUnpackedD16VMem();
4127 
4128   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4129   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
4130 
4131   unsigned Opc;
4132 
4133   if (IsTyped) {
4134     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
4135                   AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
4136   } else if (IsFormat) {
4137     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 :
4138                   AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
4139   } else {
4140     switch (MemTy.getSizeInBits()) {
4141     case 8:
4142       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
4143       break;
4144     case 16:
4145       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
4146       break;
4147     default:
4148       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD;
4149       break;
4150     }
4151   }
4152 
4153   Register LoadDstReg;
4154 
4155   bool IsExtLoad =
4156       (!IsD16 && MemTy.getSizeInBits() < 32) || (IsD16 && !Ty.isVector());
4157   LLT UnpackedTy = Ty.changeElementSize(32);
4158 
4159   if (IsExtLoad)
4160     LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32);
4161   else if (Unpacked && IsD16 && Ty.isVector())
4162     LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy);
4163   else
4164     LoadDstReg = Dst;
4165 
4166   auto MIB = B.buildInstr(Opc)
4167     .addDef(LoadDstReg)         // vdata
4168     .addUse(RSrc)               // rsrc
4169     .addUse(VIndex)             // vindex
4170     .addUse(VOffset)            // voffset
4171     .addUse(SOffset)            // soffset
4172     .addImm(ImmOffset);         // offset(imm)
4173 
4174   if (IsTyped)
4175     MIB.addImm(Format);
4176 
4177   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4178      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4179      .addMemOperand(MMO);
4180 
4181   if (LoadDstReg != Dst) {
4182     B.setInsertPt(B.getMBB(), ++B.getInsertPt());
4183 
4184     // Widen result for extending loads was widened.
4185     if (IsExtLoad)
4186       B.buildTrunc(Dst, LoadDstReg);
4187     else {
4188       // Repack to original 16-bit vector result
4189       // FIXME: G_TRUNC should work, but legalization currently fails
4190       auto Unmerge = B.buildUnmerge(S32, LoadDstReg);
4191       SmallVector<Register, 4> Repack;
4192       for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I)
4193         Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0));
4194       B.buildMerge(Dst, Repack);
4195     }
4196   }
4197 
4198   MI.eraseFromParent();
4199   return true;
4200 }
4201 
4202 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI,
4203                                                MachineIRBuilder &B,
4204                                                bool IsInc) const {
4205   unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC :
4206                          AMDGPU::G_AMDGPU_ATOMIC_DEC;
4207   B.buildInstr(Opc)
4208     .addDef(MI.getOperand(0).getReg())
4209     .addUse(MI.getOperand(2).getReg())
4210     .addUse(MI.getOperand(3).getReg())
4211     .cloneMemRefs(MI);
4212   MI.eraseFromParent();
4213   return true;
4214 }
4215 
4216 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) {
4217   switch (IntrID) {
4218   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
4219   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
4220     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
4221   case Intrinsic::amdgcn_raw_buffer_atomic_add:
4222   case Intrinsic::amdgcn_struct_buffer_atomic_add:
4223     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
4224   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
4225   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
4226     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
4227   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
4228   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
4229     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
4230   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
4231   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
4232     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
4233   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
4234   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
4235     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
4236   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
4237   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
4238     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
4239   case Intrinsic::amdgcn_raw_buffer_atomic_and:
4240   case Intrinsic::amdgcn_struct_buffer_atomic_and:
4241     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
4242   case Intrinsic::amdgcn_raw_buffer_atomic_or:
4243   case Intrinsic::amdgcn_struct_buffer_atomic_or:
4244     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
4245   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
4246   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
4247     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
4248   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
4249   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
4250     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
4251   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
4252   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
4253     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
4254   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
4255   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
4256     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
4257   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
4258   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
4259     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
4260   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
4261   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
4262     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
4263   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
4264   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
4265     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
4266   default:
4267     llvm_unreachable("unhandled atomic opcode");
4268   }
4269 }
4270 
4271 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI,
4272                                                MachineIRBuilder &B,
4273                                                Intrinsic::ID IID) const {
4274   const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
4275                          IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap;
4276   const bool HasReturn = MI.getNumExplicitDefs() != 0;
4277 
4278   Register Dst;
4279 
4280   int OpOffset = 0;
4281   if (HasReturn) {
4282     // A few FP atomics do not support return values.
4283     Dst = MI.getOperand(0).getReg();
4284   } else {
4285     OpOffset = -1;
4286   }
4287 
4288   Register VData = MI.getOperand(2 + OpOffset).getReg();
4289   Register CmpVal;
4290 
4291   if (IsCmpSwap) {
4292     CmpVal = MI.getOperand(3 + OpOffset).getReg();
4293     ++OpOffset;
4294   }
4295 
4296   Register RSrc = MI.getOperand(3 + OpOffset).getReg();
4297   const unsigned NumVIndexOps = (IsCmpSwap ? 8 : 7) + HasReturn;
4298 
4299   // The struct intrinsic variants add one additional operand over raw.
4300   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
4301   Register VIndex;
4302   if (HasVIndex) {
4303     VIndex = MI.getOperand(4 + OpOffset).getReg();
4304     ++OpOffset;
4305   } else {
4306     VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0);
4307   }
4308 
4309   Register VOffset = MI.getOperand(4 + OpOffset).getReg();
4310   Register SOffset = MI.getOperand(5 + OpOffset).getReg();
4311   unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm();
4312 
4313   MachineMemOperand *MMO = *MI.memoperands_begin();
4314 
4315   unsigned ImmOffset;
4316   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4317   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, *B.getMRI());
4318 
4319   auto MIB = B.buildInstr(getBufferAtomicPseudo(IID));
4320 
4321   if (HasReturn)
4322     MIB.addDef(Dst);
4323 
4324   MIB.addUse(VData); // vdata
4325 
4326   if (IsCmpSwap)
4327     MIB.addReg(CmpVal);
4328 
4329   MIB.addUse(RSrc)               // rsrc
4330      .addUse(VIndex)             // vindex
4331      .addUse(VOffset)            // voffset
4332      .addUse(SOffset)            // soffset
4333      .addImm(ImmOffset)          // offset(imm)
4334      .addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4335      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4336      .addMemOperand(MMO);
4337 
4338   MI.eraseFromParent();
4339   return true;
4340 }
4341 
4342 /// Turn a set of s16 typed registers in \p AddrRegs into a dword sized
4343 /// vector with s16 typed elements.
4344 static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI,
4345                                       SmallVectorImpl<Register> &PackedAddrs,
4346                                       unsigned ArgOffset,
4347                                       const AMDGPU::ImageDimIntrinsicInfo *Intr,
4348                                       bool IsA16, bool IsG16) {
4349   const LLT S16 = LLT::scalar(16);
4350   const LLT V2S16 = LLT::fixed_vector(2, 16);
4351   auto EndIdx = Intr->VAddrEnd;
4352 
4353   for (unsigned I = Intr->VAddrStart; I < EndIdx; I++) {
4354     MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
4355     if (!SrcOp.isReg())
4356       continue; // _L to _LZ may have eliminated this.
4357 
4358     Register AddrReg = SrcOp.getReg();
4359 
4360     if ((I < Intr->GradientStart) ||
4361         (I >= Intr->GradientStart && I < Intr->CoordStart && !IsG16) ||
4362         (I >= Intr->CoordStart && !IsA16)) {
4363       if ((I < Intr->GradientStart) && IsA16 &&
4364           (B.getMRI()->getType(AddrReg) == S16)) {
4365         assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
4366         // Special handling of bias when A16 is on. Bias is of type half but
4367         // occupies full 32-bit.
4368         PackedAddrs.push_back(
4369             B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
4370                 .getReg(0));
4371       } else {
4372         assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
4373                "Bias needs to be converted to 16 bit in A16 mode");
4374         // Handle any gradient or coordinate operands that should not be packed
4375         AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0);
4376         PackedAddrs.push_back(AddrReg);
4377       }
4378     } else {
4379       // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D,
4380       // derivatives dx/dh and dx/dv are packed with undef.
4381       if (((I + 1) >= EndIdx) ||
4382           ((Intr->NumGradients / 2) % 2 == 1 &&
4383            (I == static_cast<unsigned>(Intr->GradientStart +
4384                                        (Intr->NumGradients / 2) - 1) ||
4385             I == static_cast<unsigned>(Intr->GradientStart +
4386                                        Intr->NumGradients - 1))) ||
4387           // Check for _L to _LZ optimization
4388           !MI.getOperand(ArgOffset + I + 1).isReg()) {
4389         PackedAddrs.push_back(
4390             B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
4391                 .getReg(0));
4392       } else {
4393         PackedAddrs.push_back(
4394             B.buildBuildVector(
4395                  V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
4396                 .getReg(0));
4397         ++I;
4398       }
4399     }
4400   }
4401 }
4402 
4403 /// Convert from separate vaddr components to a single vector address register,
4404 /// and replace the remaining operands with $noreg.
4405 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI,
4406                                      int DimIdx, int NumVAddrs) {
4407   const LLT S32 = LLT::scalar(32);
4408 
4409   SmallVector<Register, 8> AddrRegs;
4410   for (int I = 0; I != NumVAddrs; ++I) {
4411     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
4412     if (SrcOp.isReg()) {
4413       AddrRegs.push_back(SrcOp.getReg());
4414       assert(B.getMRI()->getType(SrcOp.getReg()) == S32);
4415     }
4416   }
4417 
4418   int NumAddrRegs = AddrRegs.size();
4419   if (NumAddrRegs != 1) {
4420     // Above 8 elements round up to next power of 2 (i.e. 16).
4421     if (NumAddrRegs > 8 && !isPowerOf2_32(NumAddrRegs)) {
4422       const int RoundedNumRegs = NextPowerOf2(NumAddrRegs);
4423       auto Undef = B.buildUndef(S32);
4424       AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0));
4425       NumAddrRegs = RoundedNumRegs;
4426     }
4427 
4428     auto VAddr =
4429         B.buildBuildVector(LLT::fixed_vector(NumAddrRegs, 32), AddrRegs);
4430     MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
4431   }
4432 
4433   for (int I = 1; I != NumVAddrs; ++I) {
4434     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
4435     if (SrcOp.isReg())
4436       MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister);
4437   }
4438 }
4439 
4440 /// Rewrite image intrinsics to use register layouts expected by the subtarget.
4441 ///
4442 /// Depending on the subtarget, load/store with 16-bit element data need to be
4443 /// rewritten to use the low half of 32-bit registers, or directly use a packed
4444 /// layout. 16-bit addresses should also sometimes be packed into 32-bit
4445 /// registers.
4446 ///
4447 /// We don't want to directly select image instructions just yet, but also want
4448 /// to exposes all register repacking to the legalizer/combiners. We also don't
4449 /// want a selected instruction entering RegBankSelect. In order to avoid
4450 /// defining a multitude of intermediate image instructions, directly hack on
4451 /// the intrinsic's arguments. In cases like a16 addresses, this requires
4452 /// padding now unnecessary arguments with $noreg.
4453 bool AMDGPULegalizerInfo::legalizeImageIntrinsic(
4454     MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer,
4455     const AMDGPU::ImageDimIntrinsicInfo *Intr) const {
4456 
4457   const unsigned NumDefs = MI.getNumExplicitDefs();
4458   const unsigned ArgOffset = NumDefs + 1;
4459   bool IsTFE = NumDefs == 2;
4460   // We are only processing the operands of d16 image operations on subtargets
4461   // that use the unpacked register layout, or need to repack the TFE result.
4462 
4463   // TODO: Do we need to guard against already legalized intrinsics?
4464   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
4465       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
4466 
4467   MachineRegisterInfo *MRI = B.getMRI();
4468   const LLT S32 = LLT::scalar(32);
4469   const LLT S16 = LLT::scalar(16);
4470   const LLT V2S16 = LLT::fixed_vector(2, 16);
4471 
4472   unsigned DMask = 0;
4473   Register VData = MI.getOperand(NumDefs == 0 ? 1 : 0).getReg();
4474   LLT Ty = MRI->getType(VData);
4475 
4476   // Check for 16 bit addresses and pack if true.
4477   LLT GradTy =
4478       MRI->getType(MI.getOperand(ArgOffset + Intr->GradientStart).getReg());
4479   LLT AddrTy =
4480       MRI->getType(MI.getOperand(ArgOffset + Intr->CoordStart).getReg());
4481   const bool IsG16 = GradTy == S16;
4482   const bool IsA16 = AddrTy == S16;
4483   const bool IsD16 = Ty.getScalarType() == S16;
4484 
4485   int DMaskLanes = 0;
4486   if (!BaseOpcode->Atomic) {
4487     DMask = MI.getOperand(ArgOffset + Intr->DMaskIndex).getImm();
4488     if (BaseOpcode->Gather4) {
4489       DMaskLanes = 4;
4490     } else if (DMask != 0) {
4491       DMaskLanes = countPopulation(DMask);
4492     } else if (!IsTFE && !BaseOpcode->Store) {
4493       // If dmask is 0, this is a no-op load. This can be eliminated.
4494       B.buildUndef(MI.getOperand(0));
4495       MI.eraseFromParent();
4496       return true;
4497     }
4498   }
4499 
4500   Observer.changingInstr(MI);
4501   auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); });
4502 
4503   const unsigned StoreOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE_D16
4504                                      : AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE;
4505   const unsigned LoadOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_D16
4506                                     : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
4507   unsigned NewOpcode = NumDefs == 0 ? StoreOpcode : LoadOpcode;
4508 
4509   // Track that we legalized this
4510   MI.setDesc(B.getTII().get(NewOpcode));
4511 
4512   // Expecting to get an error flag since TFC is on - and dmask is 0 Force
4513   // dmask to be at least 1 otherwise the instruction will fail
4514   if (IsTFE && DMask == 0) {
4515     DMask = 0x1;
4516     DMaskLanes = 1;
4517     MI.getOperand(ArgOffset + Intr->DMaskIndex).setImm(DMask);
4518   }
4519 
4520   if (BaseOpcode->Atomic) {
4521     Register VData0 = MI.getOperand(2).getReg();
4522     LLT Ty = MRI->getType(VData0);
4523 
4524     // TODO: Allow atomic swap and bit ops for v2s16/v4s16
4525     if (Ty.isVector())
4526       return false;
4527 
4528     if (BaseOpcode->AtomicX2) {
4529       Register VData1 = MI.getOperand(3).getReg();
4530       // The two values are packed in one register.
4531       LLT PackedTy = LLT::fixed_vector(2, Ty);
4532       auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1});
4533       MI.getOperand(2).setReg(Concat.getReg(0));
4534       MI.getOperand(3).setReg(AMDGPU::NoRegister);
4535     }
4536   }
4537 
4538   unsigned CorrectedNumVAddrs = Intr->NumVAddrs;
4539 
4540   // Rewrite the addressing register layout before doing anything else.
4541   if (BaseOpcode->Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
4542     // 16 bit gradients are supported, but are tied to the A16 control
4543     // so both gradients and addresses must be 16 bit
4544     return false;
4545   }
4546 
4547   if (IsA16 && !ST.hasA16()) {
4548     // A16 not supported
4549     return false;
4550   }
4551 
4552   if (IsA16 || IsG16) {
4553     if (Intr->NumVAddrs > 1) {
4554       SmallVector<Register, 4> PackedRegs;
4555 
4556       packImage16bitOpsToDwords(B, MI, PackedRegs, ArgOffset, Intr, IsA16,
4557                                 IsG16);
4558 
4559       // See also below in the non-a16 branch
4560       const bool UseNSA = ST.hasNSAEncoding() && PackedRegs.size() >= 3 &&
4561                           PackedRegs.size() <= ST.getNSAMaxSize();
4562 
4563       if (!UseNSA && PackedRegs.size() > 1) {
4564         LLT PackedAddrTy = LLT::fixed_vector(2 * PackedRegs.size(), 16);
4565         auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs);
4566         PackedRegs[0] = Concat.getReg(0);
4567         PackedRegs.resize(1);
4568       }
4569 
4570       const unsigned NumPacked = PackedRegs.size();
4571       for (unsigned I = Intr->VAddrStart; I < Intr->VAddrEnd; I++) {
4572         MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
4573         if (!SrcOp.isReg()) {
4574           assert(SrcOp.isImm() && SrcOp.getImm() == 0);
4575           continue;
4576         }
4577 
4578         assert(SrcOp.getReg() != AMDGPU::NoRegister);
4579 
4580         if (I - Intr->VAddrStart < NumPacked)
4581           SrcOp.setReg(PackedRegs[I - Intr->VAddrStart]);
4582         else
4583           SrcOp.setReg(AMDGPU::NoRegister);
4584       }
4585     }
4586   } else {
4587     // If the register allocator cannot place the address registers contiguously
4588     // without introducing moves, then using the non-sequential address encoding
4589     // is always preferable, since it saves VALU instructions and is usually a
4590     // wash in terms of code size or even better.
4591     //
4592     // However, we currently have no way of hinting to the register allocator
4593     // that MIMG addresses should be placed contiguously when it is possible to
4594     // do so, so force non-NSA for the common 2-address case as a heuristic.
4595     //
4596     // SIShrinkInstructions will convert NSA encodings to non-NSA after register
4597     // allocation when possible.
4598     const bool UseNSA = ST.hasNSAEncoding() && CorrectedNumVAddrs >= 3 &&
4599                         CorrectedNumVAddrs <= ST.getNSAMaxSize();
4600 
4601     if (!UseNSA && Intr->NumVAddrs > 1)
4602       convertImageAddrToPacked(B, MI, ArgOffset + Intr->VAddrStart,
4603                                Intr->NumVAddrs);
4604   }
4605 
4606   int Flags = 0;
4607   if (IsA16)
4608     Flags |= 1;
4609   if (IsG16)
4610     Flags |= 2;
4611   MI.addOperand(MachineOperand::CreateImm(Flags));
4612 
4613   if (BaseOpcode->Store) { // No TFE for stores?
4614     // TODO: Handle dmask trim
4615     if (!Ty.isVector() || !IsD16)
4616       return true;
4617 
4618     Register RepackedReg = handleD16VData(B, *MRI, VData, true);
4619     if (RepackedReg != VData) {
4620       MI.getOperand(1).setReg(RepackedReg);
4621     }
4622 
4623     return true;
4624   }
4625 
4626   Register DstReg = MI.getOperand(0).getReg();
4627   const LLT EltTy = Ty.getScalarType();
4628   const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1;
4629 
4630   // Confirm that the return type is large enough for the dmask specified
4631   if (NumElts < DMaskLanes)
4632     return false;
4633 
4634   if (NumElts > 4 || DMaskLanes > 4)
4635     return false;
4636 
4637   const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
4638   const LLT AdjustedTy =
4639       Ty.changeElementCount(ElementCount::getFixed(AdjustedNumElts));
4640 
4641   // The raw dword aligned data component of the load. The only legal cases
4642   // where this matters should be when using the packed D16 format, for
4643   // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>,
4644   LLT RoundedTy;
4645 
4646   // S32 vector to to cover all data, plus TFE result element.
4647   LLT TFETy;
4648 
4649   // Register type to use for each loaded component. Will be S32 or V2S16.
4650   LLT RegTy;
4651 
4652   if (IsD16 && ST.hasUnpackedD16VMem()) {
4653     RoundedTy =
4654         LLT::scalarOrVector(ElementCount::getFixed(AdjustedNumElts), 32);
4655     TFETy = LLT::fixed_vector(AdjustedNumElts + 1, 32);
4656     RegTy = S32;
4657   } else {
4658     unsigned EltSize = EltTy.getSizeInBits();
4659     unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32;
4660     unsigned RoundedSize = 32 * RoundedElts;
4661     RoundedTy = LLT::scalarOrVector(
4662         ElementCount::getFixed(RoundedSize / EltSize), EltSize);
4663     TFETy = LLT::fixed_vector(RoundedSize / 32 + 1, S32);
4664     RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32;
4665   }
4666 
4667   // The return type does not need adjustment.
4668   // TODO: Should we change s16 case to s32 or <2 x s16>?
4669   if (!IsTFE && (RoundedTy == Ty || !Ty.isVector()))
4670     return true;
4671 
4672   Register Dst1Reg;
4673 
4674   // Insert after the instruction.
4675   B.setInsertPt(*MI.getParent(), ++MI.getIterator());
4676 
4677   // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x
4678   // s16> instead of s32, we would only need 1 bitcast instead of multiple.
4679   const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
4680   const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32;
4681 
4682   Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy);
4683 
4684   MI.getOperand(0).setReg(NewResultReg);
4685 
4686   // In the IR, TFE is supposed to be used with a 2 element struct return
4687   // type. The instruction really returns these two values in one contiguous
4688   // register, with one additional dword beyond the loaded data. Rewrite the
4689   // return type to use a single register result.
4690 
4691   if (IsTFE) {
4692     Dst1Reg = MI.getOperand(1).getReg();
4693     if (MRI->getType(Dst1Reg) != S32)
4694       return false;
4695 
4696     // TODO: Make sure the TFE operand bit is set.
4697     MI.removeOperand(1);
4698 
4699     // Handle the easy case that requires no repack instructions.
4700     if (Ty == S32) {
4701       B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
4702       return true;
4703     }
4704   }
4705 
4706   // Now figure out how to copy the new result register back into the old
4707   // result.
4708   SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg);
4709 
4710   const int NumDataRegs = IsTFE ? ResultNumRegs - 1  : ResultNumRegs;
4711 
4712   if (ResultNumRegs == 1) {
4713     assert(!IsTFE);
4714     ResultRegs[0] = NewResultReg;
4715   } else {
4716     // We have to repack into a new vector of some kind.
4717     for (int I = 0; I != NumDataRegs; ++I)
4718       ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy);
4719     B.buildUnmerge(ResultRegs, NewResultReg);
4720 
4721     // Drop the final TFE element to get the data part. The TFE result is
4722     // directly written to the right place already.
4723     if (IsTFE)
4724       ResultRegs.resize(NumDataRegs);
4725   }
4726 
4727   // For an s16 scalar result, we form an s32 result with a truncate regardless
4728   // of packed vs. unpacked.
4729   if (IsD16 && !Ty.isVector()) {
4730     B.buildTrunc(DstReg, ResultRegs[0]);
4731     return true;
4732   }
4733 
4734   // Avoid a build/concat_vector of 1 entry.
4735   if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
4736     B.buildBitcast(DstReg, ResultRegs[0]);
4737     return true;
4738   }
4739 
4740   assert(Ty.isVector());
4741 
4742   if (IsD16) {
4743     // For packed D16 results with TFE enabled, all the data components are
4744     // S32. Cast back to the expected type.
4745     //
4746     // TODO: We don't really need to use load s32 elements. We would only need one
4747     // cast for the TFE result if a multiple of v2s16 was used.
4748     if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) {
4749       for (Register &Reg : ResultRegs)
4750         Reg = B.buildBitcast(V2S16, Reg).getReg(0);
4751     } else if (ST.hasUnpackedD16VMem()) {
4752       for (Register &Reg : ResultRegs)
4753         Reg = B.buildTrunc(S16, Reg).getReg(0);
4754     }
4755   }
4756 
4757   auto padWithUndef = [&](LLT Ty, int NumElts) {
4758     if (NumElts == 0)
4759       return;
4760     Register Undef = B.buildUndef(Ty).getReg(0);
4761     for (int I = 0; I != NumElts; ++I)
4762       ResultRegs.push_back(Undef);
4763   };
4764 
4765   // Pad out any elements eliminated due to the dmask.
4766   LLT ResTy = MRI->getType(ResultRegs[0]);
4767   if (!ResTy.isVector()) {
4768     padWithUndef(ResTy, NumElts - ResultRegs.size());
4769     B.buildBuildVector(DstReg, ResultRegs);
4770     return true;
4771   }
4772 
4773   assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16);
4774   const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
4775 
4776   // Deal with the one annoying legal case.
4777   const LLT V3S16 = LLT::fixed_vector(3, 16);
4778   if (Ty == V3S16) {
4779     if (IsTFE) {
4780       if (ResultRegs.size() == 1) {
4781         NewResultReg = ResultRegs[0];
4782       } else if (ResultRegs.size() == 2) {
4783         LLT V4S16 = LLT::fixed_vector(4, 16);
4784         NewResultReg = B.buildConcatVectors(V4S16, ResultRegs).getReg(0);
4785       } else {
4786         return false;
4787       }
4788     }
4789 
4790     if (MRI->getType(DstReg).getNumElements() <
4791         MRI->getType(NewResultReg).getNumElements()) {
4792       B.buildDeleteTrailingVectorElements(DstReg, NewResultReg);
4793     } else {
4794       B.buildPadVectorWithUndefElements(DstReg, NewResultReg);
4795     }
4796     return true;
4797   }
4798 
4799   padWithUndef(ResTy, RegsToCover - ResultRegs.size());
4800   B.buildConcatVectors(DstReg, ResultRegs);
4801   return true;
4802 }
4803 
4804 bool AMDGPULegalizerInfo::legalizeSBufferLoad(
4805   LegalizerHelper &Helper, MachineInstr &MI) const {
4806   MachineIRBuilder &B = Helper.MIRBuilder;
4807   GISelChangeObserver &Observer = Helper.Observer;
4808 
4809   Register Dst = MI.getOperand(0).getReg();
4810   LLT Ty = B.getMRI()->getType(Dst);
4811   unsigned Size = Ty.getSizeInBits();
4812   MachineFunction &MF = B.getMF();
4813 
4814   Observer.changingInstr(MI);
4815 
4816   if (shouldBitcastLoadStoreType(ST, Ty, LLT::scalar(Size))) {
4817     Ty = getBitcastRegisterType(Ty);
4818     Helper.bitcastDst(MI, Ty, 0);
4819     Dst = MI.getOperand(0).getReg();
4820     B.setInsertPt(B.getMBB(), MI);
4821   }
4822 
4823   // FIXME: We don't really need this intermediate instruction. The intrinsic
4824   // should be fixed to have a memory operand. Since it's readnone, we're not
4825   // allowed to add one.
4826   MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD));
4827   MI.removeOperand(1); // Remove intrinsic ID
4828 
4829   // FIXME: When intrinsic definition is fixed, this should have an MMO already.
4830   // TODO: Should this use datalayout alignment?
4831   const unsigned MemSize = (Size + 7) / 8;
4832   const Align MemAlign(4);
4833   MachineMemOperand *MMO = MF.getMachineMemOperand(
4834       MachinePointerInfo(),
4835       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4836           MachineMemOperand::MOInvariant,
4837       MemSize, MemAlign);
4838   MI.addMemOperand(MF, MMO);
4839 
4840   // There are no 96-bit result scalar loads, but widening to 128-bit should
4841   // always be legal. We may need to restore this to a 96-bit result if it turns
4842   // out this needs to be converted to a vector load during RegBankSelect.
4843   if (!isPowerOf2_32(Size)) {
4844     if (Ty.isVector())
4845       Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0);
4846     else
4847       Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0);
4848   }
4849 
4850   Observer.changedInstr(MI);
4851   return true;
4852 }
4853 
4854 // TODO: Move to selection
4855 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI,
4856                                                 MachineRegisterInfo &MRI,
4857                                                 MachineIRBuilder &B) const {
4858   if (!ST.isTrapHandlerEnabled() ||
4859       ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
4860     return legalizeTrapEndpgm(MI, MRI, B);
4861 
4862   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(&ST)) {
4863     switch (*HsaAbiVer) {
4864     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
4865     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
4866       return legalizeTrapHsaQueuePtr(MI, MRI, B);
4867     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
4868     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
4869       return ST.supportsGetDoorbellID() ?
4870           legalizeTrapHsa(MI, MRI, B) :
4871           legalizeTrapHsaQueuePtr(MI, MRI, B);
4872     }
4873   }
4874 
4875   llvm_unreachable("Unknown trap handler");
4876 }
4877 
4878 bool AMDGPULegalizerInfo::legalizeTrapEndpgm(
4879     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4880   B.buildInstr(AMDGPU::S_ENDPGM).addImm(0);
4881   MI.eraseFromParent();
4882   return true;
4883 }
4884 
4885 bool AMDGPULegalizerInfo::legalizeTrapHsaQueuePtr(
4886     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4887   MachineFunction &MF = B.getMF();
4888   const LLT S64 = LLT::scalar(64);
4889 
4890   Register SGPR01(AMDGPU::SGPR0_SGPR1);
4891   // For code object version 5, queue_ptr is passed through implicit kernarg.
4892   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
4893     AMDGPUTargetLowering::ImplicitParameter Param =
4894         AMDGPUTargetLowering::QUEUE_PTR;
4895     uint64_t Offset =
4896         ST.getTargetLowering()->getImplicitParameterOffset(B.getMF(), Param);
4897 
4898     Register KernargPtrReg = MRI.createGenericVirtualRegister(
4899         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
4900 
4901     if (!loadInputValue(KernargPtrReg, B,
4902                         AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
4903       return false;
4904 
4905     // TODO: can we be smarter about machine pointer info?
4906     MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
4907     MachineMemOperand *MMO = MF.getMachineMemOperand(
4908         PtrInfo,
4909         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4910             MachineMemOperand::MOInvariant,
4911         LLT::scalar(64), commonAlignment(Align(64), Offset));
4912 
4913     // Pointer address
4914     Register LoadAddr = MRI.createGenericVirtualRegister(
4915         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
4916     B.buildPtrAdd(LoadAddr, KernargPtrReg,
4917                   B.buildConstant(LLT::scalar(64), Offset).getReg(0));
4918     // Load address
4919     Register Temp = B.buildLoad(S64, LoadAddr, *MMO).getReg(0);
4920     B.buildCopy(SGPR01, Temp);
4921     B.buildInstr(AMDGPU::S_TRAP)
4922         .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap))
4923         .addReg(SGPR01, RegState::Implicit);
4924     MI.eraseFromParent();
4925     return true;
4926   }
4927 
4928   // Pass queue pointer to trap handler as input, and insert trap instruction
4929   // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
4930   Register LiveIn =
4931     MRI.createGenericVirtualRegister(LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
4932   if (!loadInputValue(LiveIn, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
4933     return false;
4934 
4935   B.buildCopy(SGPR01, LiveIn);
4936   B.buildInstr(AMDGPU::S_TRAP)
4937       .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap))
4938       .addReg(SGPR01, RegState::Implicit);
4939 
4940   MI.eraseFromParent();
4941   return true;
4942 }
4943 
4944 bool AMDGPULegalizerInfo::legalizeTrapHsa(
4945     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4946   B.buildInstr(AMDGPU::S_TRAP)
4947       .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap));
4948   MI.eraseFromParent();
4949   return true;
4950 }
4951 
4952 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic(
4953     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4954   // Is non-HSA path or trap-handler disabled? Then, report a warning
4955   // accordingly
4956   if (!ST.isTrapHandlerEnabled() ||
4957       ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
4958     DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(),
4959                                      "debugtrap handler not supported",
4960                                      MI.getDebugLoc(), DS_Warning);
4961     LLVMContext &Ctx = B.getMF().getFunction().getContext();
4962     Ctx.diagnose(NoTrap);
4963   } else {
4964     // Insert debug-trap instruction
4965     B.buildInstr(AMDGPU::S_TRAP)
4966         .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap));
4967   }
4968 
4969   MI.eraseFromParent();
4970   return true;
4971 }
4972 
4973 bool AMDGPULegalizerInfo::legalizeBVHIntrinsic(MachineInstr &MI,
4974                                                MachineIRBuilder &B) const {
4975   MachineRegisterInfo &MRI = *B.getMRI();
4976   const LLT S16 = LLT::scalar(16);
4977   const LLT S32 = LLT::scalar(32);
4978 
4979   Register DstReg = MI.getOperand(0).getReg();
4980   Register NodePtr = MI.getOperand(2).getReg();
4981   Register RayExtent = MI.getOperand(3).getReg();
4982   Register RayOrigin = MI.getOperand(4).getReg();
4983   Register RayDir = MI.getOperand(5).getReg();
4984   Register RayInvDir = MI.getOperand(6).getReg();
4985   Register TDescr = MI.getOperand(7).getReg();
4986 
4987   if (!ST.hasGFX10_AEncoding()) {
4988     DiagnosticInfoUnsupported BadIntrin(B.getMF().getFunction(),
4989                                         "intrinsic not supported on subtarget",
4990                                         MI.getDebugLoc());
4991     B.getMF().getFunction().getContext().diagnose(BadIntrin);
4992     return false;
4993   }
4994 
4995   const bool IsA16 = MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
4996   const bool Is64 = MRI.getType(NodePtr).getSizeInBits() == 64;
4997   const unsigned NumVDataDwords = 4;
4998   const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
4999   const bool UseNSA =
5000       ST.hasNSAEncoding() && NumVAddrDwords <= ST.getNSAMaxSize();
5001   const unsigned BaseOpcodes[2][2] = {
5002       {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
5003       {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
5004        AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
5005   int Opcode;
5006   if (UseNSA) {
5007     Opcode =
5008         AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10NSA,
5009                               NumVDataDwords, NumVAddrDwords);
5010   } else {
5011     Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
5012                                    AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
5013                                    PowerOf2Ceil(NumVAddrDwords));
5014   }
5015   assert(Opcode != -1);
5016 
5017   SmallVector<Register, 12> Ops;
5018   if (Is64) {
5019     auto Unmerge = B.buildUnmerge({S32, S32}, NodePtr);
5020     Ops.push_back(Unmerge.getReg(0));
5021     Ops.push_back(Unmerge.getReg(1));
5022   } else {
5023     Ops.push_back(NodePtr);
5024   }
5025   Ops.push_back(RayExtent);
5026 
5027   auto packLanes = [&Ops, &S32, &B](Register Src) {
5028     auto Unmerge = B.buildUnmerge({S32, S32, S32}, Src);
5029     Ops.push_back(Unmerge.getReg(0));
5030     Ops.push_back(Unmerge.getReg(1));
5031     Ops.push_back(Unmerge.getReg(2));
5032   };
5033 
5034   packLanes(RayOrigin);
5035   if (IsA16) {
5036     auto UnmergeRayDir = B.buildUnmerge({S16, S16, S16}, RayDir);
5037     auto UnmergeRayInvDir = B.buildUnmerge({S16, S16, S16}, RayInvDir);
5038     Register R1 = MRI.createGenericVirtualRegister(S32);
5039     Register R2 = MRI.createGenericVirtualRegister(S32);
5040     Register R3 = MRI.createGenericVirtualRegister(S32);
5041     B.buildMerge(R1, {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
5042     B.buildMerge(R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
5043     B.buildMerge(R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
5044     Ops.push_back(R1);
5045     Ops.push_back(R2);
5046     Ops.push_back(R3);
5047   } else {
5048     packLanes(RayDir);
5049     packLanes(RayInvDir);
5050   }
5051 
5052   if (!UseNSA) {
5053     // Build a single vector containing all the operands so far prepared.
5054     LLT OpTy = LLT::fixed_vector(Ops.size(), 32);
5055     Register MergedOps = B.buildMerge(OpTy, Ops).getReg(0);
5056     Ops.clear();
5057     Ops.push_back(MergedOps);
5058   }
5059 
5060   auto MIB = B.buildInstr(AMDGPU::G_AMDGPU_INTRIN_BVH_INTERSECT_RAY)
5061     .addDef(DstReg)
5062     .addImm(Opcode);
5063 
5064   for (Register R : Ops) {
5065     MIB.addUse(R);
5066   }
5067 
5068   MIB.addUse(TDescr)
5069      .addImm(IsA16 ? 1 : 0)
5070      .cloneMemRefs(MI);
5071 
5072   MI.eraseFromParent();
5073   return true;
5074 }
5075 
5076 static bool replaceWithConstant(MachineIRBuilder &B, MachineInstr &MI, int64_t C) {
5077   B.buildConstant(MI.getOperand(0).getReg(), C);
5078   MI.eraseFromParent();
5079   return true;
5080 }
5081 
5082 bool AMDGPULegalizerInfo::legalizeFPTruncRound(MachineInstr &MI,
5083                                                MachineIRBuilder &B) const {
5084   unsigned Opc;
5085   int RoundMode = MI.getOperand(2).getImm();
5086 
5087   if (RoundMode == (int)RoundingMode::TowardPositive)
5088     Opc = AMDGPU::G_FPTRUNC_ROUND_UPWARD;
5089   else if (RoundMode == (int)RoundingMode::TowardNegative)
5090     Opc = AMDGPU::G_FPTRUNC_ROUND_DOWNWARD;
5091   else
5092     return false;
5093 
5094   B.buildInstr(Opc)
5095       .addDef(MI.getOperand(0).getReg())
5096       .addUse(MI.getOperand(1).getReg());
5097 
5098   MI.eraseFromParent();
5099 
5100   return true;
5101 }
5102 
5103 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
5104                                             MachineInstr &MI) const {
5105   MachineIRBuilder &B = Helper.MIRBuilder;
5106   MachineRegisterInfo &MRI = *B.getMRI();
5107 
5108   // Replace the use G_BRCOND with the exec manipulate and branch pseudos.
5109   auto IntrID = MI.getIntrinsicID();
5110   switch (IntrID) {
5111   case Intrinsic::amdgcn_if:
5112   case Intrinsic::amdgcn_else: {
5113     MachineInstr *Br = nullptr;
5114     MachineBasicBlock *UncondBrTarget = nullptr;
5115     bool Negated = false;
5116     if (MachineInstr *BrCond =
5117             verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
5118       const SIRegisterInfo *TRI
5119         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
5120 
5121       Register Def = MI.getOperand(1).getReg();
5122       Register Use = MI.getOperand(3).getReg();
5123 
5124       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
5125 
5126       if (Negated)
5127         std::swap(CondBrTarget, UncondBrTarget);
5128 
5129       B.setInsertPt(B.getMBB(), BrCond->getIterator());
5130       if (IntrID == Intrinsic::amdgcn_if) {
5131         B.buildInstr(AMDGPU::SI_IF)
5132           .addDef(Def)
5133           .addUse(Use)
5134           .addMBB(UncondBrTarget);
5135       } else {
5136         B.buildInstr(AMDGPU::SI_ELSE)
5137             .addDef(Def)
5138             .addUse(Use)
5139             .addMBB(UncondBrTarget);
5140       }
5141 
5142       if (Br) {
5143         Br->getOperand(0).setMBB(CondBrTarget);
5144       } else {
5145         // The IRTranslator skips inserting the G_BR for fallthrough cases, but
5146         // since we're swapping branch targets it needs to be reinserted.
5147         // FIXME: IRTranslator should probably not do this
5148         B.buildBr(*CondBrTarget);
5149       }
5150 
5151       MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
5152       MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
5153       MI.eraseFromParent();
5154       BrCond->eraseFromParent();
5155       return true;
5156     }
5157 
5158     return false;
5159   }
5160   case Intrinsic::amdgcn_loop: {
5161     MachineInstr *Br = nullptr;
5162     MachineBasicBlock *UncondBrTarget = nullptr;
5163     bool Negated = false;
5164     if (MachineInstr *BrCond =
5165             verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
5166       const SIRegisterInfo *TRI
5167         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
5168 
5169       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
5170       Register Reg = MI.getOperand(2).getReg();
5171 
5172       if (Negated)
5173         std::swap(CondBrTarget, UncondBrTarget);
5174 
5175       B.setInsertPt(B.getMBB(), BrCond->getIterator());
5176       B.buildInstr(AMDGPU::SI_LOOP)
5177         .addUse(Reg)
5178         .addMBB(UncondBrTarget);
5179 
5180       if (Br)
5181         Br->getOperand(0).setMBB(CondBrTarget);
5182       else
5183         B.buildBr(*CondBrTarget);
5184 
5185       MI.eraseFromParent();
5186       BrCond->eraseFromParent();
5187       MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
5188       return true;
5189     }
5190 
5191     return false;
5192   }
5193   case Intrinsic::amdgcn_kernarg_segment_ptr:
5194     if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) {
5195       // This only makes sense to call in a kernel, so just lower to null.
5196       B.buildConstant(MI.getOperand(0).getReg(), 0);
5197       MI.eraseFromParent();
5198       return true;
5199     }
5200 
5201     return legalizePreloadedArgIntrin(
5202       MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5203   case Intrinsic::amdgcn_implicitarg_ptr:
5204     return legalizeImplicitArgPtr(MI, MRI, B);
5205   case Intrinsic::amdgcn_workitem_id_x:
5206     if (ST.getMaxWorkitemID(B.getMF().getFunction(), 0) == 0)
5207       return replaceWithConstant(B, MI, 0);
5208     return legalizePreloadedArgIntrin(MI, MRI, B,
5209                                       AMDGPUFunctionArgInfo::WORKITEM_ID_X);
5210   case Intrinsic::amdgcn_workitem_id_y:
5211     if (ST.getMaxWorkitemID(B.getMF().getFunction(), 1) == 0)
5212       return replaceWithConstant(B, MI, 0);
5213 
5214     return legalizePreloadedArgIntrin(MI, MRI, B,
5215                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
5216   case Intrinsic::amdgcn_workitem_id_z:
5217     if (ST.getMaxWorkitemID(B.getMF().getFunction(), 2) == 0)
5218       return replaceWithConstant(B, MI, 0);
5219 
5220     return legalizePreloadedArgIntrin(MI, MRI, B,
5221                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
5222   case Intrinsic::amdgcn_workgroup_id_x:
5223     return legalizePreloadedArgIntrin(MI, MRI, B,
5224                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5225   case Intrinsic::amdgcn_workgroup_id_y:
5226     return legalizePreloadedArgIntrin(MI, MRI, B,
5227                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5228   case Intrinsic::amdgcn_workgroup_id_z:
5229     return legalizePreloadedArgIntrin(MI, MRI, B,
5230                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5231   case Intrinsic::amdgcn_dispatch_ptr:
5232     return legalizePreloadedArgIntrin(MI, MRI, B,
5233                                       AMDGPUFunctionArgInfo::DISPATCH_PTR);
5234   case Intrinsic::amdgcn_queue_ptr:
5235     return legalizePreloadedArgIntrin(MI, MRI, B,
5236                                       AMDGPUFunctionArgInfo::QUEUE_PTR);
5237   case Intrinsic::amdgcn_implicit_buffer_ptr:
5238     return legalizePreloadedArgIntrin(
5239       MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5240   case Intrinsic::amdgcn_dispatch_id:
5241     return legalizePreloadedArgIntrin(MI, MRI, B,
5242                                       AMDGPUFunctionArgInfo::DISPATCH_ID);
5243   case Intrinsic::r600_read_ngroups_x:
5244     // TODO: Emit error for hsa
5245     return legalizeKernargMemParameter(MI, B,
5246                                        SI::KernelInputOffsets::NGROUPS_X);
5247   case Intrinsic::r600_read_ngroups_y:
5248     return legalizeKernargMemParameter(MI, B,
5249                                        SI::KernelInputOffsets::NGROUPS_Y);
5250   case Intrinsic::r600_read_ngroups_z:
5251     return legalizeKernargMemParameter(MI, B,
5252                                        SI::KernelInputOffsets::NGROUPS_Z);
5253   case Intrinsic::r600_read_local_size_x:
5254     // TODO: Could insert G_ASSERT_ZEXT from s16
5255     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::LOCAL_SIZE_X);
5256   case Intrinsic::r600_read_local_size_y:
5257     // TODO: Could insert G_ASSERT_ZEXT from s16
5258     return legalizeKernargMemParameter(MI, B,  SI::KernelInputOffsets::LOCAL_SIZE_Y);
5259     // TODO: Could insert G_ASSERT_ZEXT from s16
5260   case Intrinsic::r600_read_local_size_z:
5261     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::LOCAL_SIZE_Z);
5262   case Intrinsic::r600_read_global_size_x:
5263     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::GLOBAL_SIZE_X);
5264   case Intrinsic::r600_read_global_size_y:
5265     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::GLOBAL_SIZE_Y);
5266   case Intrinsic::r600_read_global_size_z:
5267     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::GLOBAL_SIZE_Z);
5268   case Intrinsic::amdgcn_fdiv_fast:
5269     return legalizeFDIVFastIntrin(MI, MRI, B);
5270   case Intrinsic::amdgcn_is_shared:
5271     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
5272   case Intrinsic::amdgcn_is_private:
5273     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
5274   case Intrinsic::amdgcn_wavefrontsize: {
5275     B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
5276     MI.eraseFromParent();
5277     return true;
5278   }
5279   case Intrinsic::amdgcn_s_buffer_load:
5280     return legalizeSBufferLoad(Helper, MI);
5281   case Intrinsic::amdgcn_raw_buffer_store:
5282   case Intrinsic::amdgcn_struct_buffer_store:
5283     return legalizeBufferStore(MI, MRI, B, false, false);
5284   case Intrinsic::amdgcn_raw_buffer_store_format:
5285   case Intrinsic::amdgcn_struct_buffer_store_format:
5286     return legalizeBufferStore(MI, MRI, B, false, true);
5287   case Intrinsic::amdgcn_raw_tbuffer_store:
5288   case Intrinsic::amdgcn_struct_tbuffer_store:
5289     return legalizeBufferStore(MI, MRI, B, true, true);
5290   case Intrinsic::amdgcn_raw_buffer_load:
5291   case Intrinsic::amdgcn_struct_buffer_load:
5292     return legalizeBufferLoad(MI, MRI, B, false, false);
5293   case Intrinsic::amdgcn_raw_buffer_load_format:
5294   case Intrinsic::amdgcn_struct_buffer_load_format:
5295     return legalizeBufferLoad(MI, MRI, B, true, false);
5296   case Intrinsic::amdgcn_raw_tbuffer_load:
5297   case Intrinsic::amdgcn_struct_tbuffer_load:
5298     return legalizeBufferLoad(MI, MRI, B, true, true);
5299   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
5300   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
5301   case Intrinsic::amdgcn_raw_buffer_atomic_add:
5302   case Intrinsic::amdgcn_struct_buffer_atomic_add:
5303   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
5304   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
5305   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
5306   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
5307   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
5308   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
5309   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
5310   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
5311   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
5312   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
5313   case Intrinsic::amdgcn_raw_buffer_atomic_and:
5314   case Intrinsic::amdgcn_struct_buffer_atomic_and:
5315   case Intrinsic::amdgcn_raw_buffer_atomic_or:
5316   case Intrinsic::amdgcn_struct_buffer_atomic_or:
5317   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
5318   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
5319   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
5320   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
5321   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
5322   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
5323   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
5324   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
5325   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
5326   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
5327   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
5328   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
5329     return legalizeBufferAtomic(MI, B, IntrID);
5330   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
5331   case Intrinsic::amdgcn_struct_buffer_atomic_fadd: {
5332     Register DstReg = MI.getOperand(0).getReg();
5333     if (!MRI.use_empty(DstReg) && !ST.hasGFX90AInsts()) {
5334       Function &F = B.getMF().getFunction();
5335       DiagnosticInfoUnsupported NoFpRet(
5336           F, "return versions of fp atomics not supported", B.getDebugLoc(),
5337           DS_Error);
5338       F.getContext().diagnose(NoFpRet);
5339       B.buildUndef(DstReg);
5340       MI.eraseFromParent();
5341       return true;
5342     }
5343 
5344     return legalizeBufferAtomic(MI, B, IntrID);
5345   }
5346   case Intrinsic::amdgcn_atomic_inc:
5347     return legalizeAtomicIncDec(MI, B, true);
5348   case Intrinsic::amdgcn_atomic_dec:
5349     return legalizeAtomicIncDec(MI, B, false);
5350   case Intrinsic::trap:
5351     return legalizeTrapIntrinsic(MI, MRI, B);
5352   case Intrinsic::debugtrap:
5353     return legalizeDebugTrapIntrinsic(MI, MRI, B);
5354   case Intrinsic::amdgcn_rsq_clamp:
5355     return legalizeRsqClampIntrinsic(MI, MRI, B);
5356   case Intrinsic::amdgcn_ds_fadd:
5357   case Intrinsic::amdgcn_ds_fmin:
5358   case Intrinsic::amdgcn_ds_fmax:
5359     return legalizeDSAtomicFPIntrinsic(Helper, MI, IntrID);
5360   case Intrinsic::amdgcn_image_bvh_intersect_ray:
5361     return legalizeBVHIntrinsic(MI, B);
5362   default: {
5363     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
5364             AMDGPU::getImageDimIntrinsicInfo(IntrID))
5365       return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr);
5366     return true;
5367   }
5368   }
5369 
5370   return true;
5371 }
5372