1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AMDGPU.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPULegalizerInfo.h"
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUGlobalISelUtils.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
24 #include "llvm/CodeGen/TargetOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 
31 #define DEBUG_TYPE "amdgpu-legalinfo"
32 
33 using namespace llvm;
34 using namespace LegalizeActions;
35 using namespace LegalizeMutations;
36 using namespace LegalityPredicates;
37 using namespace MIPatternMatch;
38 
39 // Hack until load/store selection patterns support any tuple of legal types.
40 static cl::opt<bool> EnableNewLegality(
41   "amdgpu-global-isel-new-legality",
42   cl::desc("Use GlobalISel desired legality, rather than try to use"
43            "rules compatible with selection patterns"),
44   cl::init(false),
45   cl::ReallyHidden);
46 
47 static constexpr unsigned MaxRegisterSize = 1024;
48 
49 // Round the number of elements to the next power of two elements
50 static LLT getPow2VectorType(LLT Ty) {
51   unsigned NElts = Ty.getNumElements();
52   unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
53   return Ty.changeNumElements(Pow2NElts);
54 }
55 
56 // Round the number of bits to the next power of two bits
57 static LLT getPow2ScalarType(LLT Ty) {
58   unsigned Bits = Ty.getSizeInBits();
59   unsigned Pow2Bits = 1 <<  Log2_32_Ceil(Bits);
60   return LLT::scalar(Pow2Bits);
61 }
62 
63 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
64   return [=](const LegalityQuery &Query) {
65     const LLT Ty = Query.Types[TypeIdx];
66     return Ty.isVector() &&
67            Ty.getNumElements() % 2 != 0 &&
68            Ty.getElementType().getSizeInBits() < 32 &&
69            Ty.getSizeInBits() % 32 != 0;
70   };
71 }
72 
73 static LegalityPredicate isWideVec16(unsigned TypeIdx) {
74   return [=](const LegalityQuery &Query) {
75     const LLT Ty = Query.Types[TypeIdx];
76     const LLT EltTy = Ty.getScalarType();
77     return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
78   };
79 }
80 
81 static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
82   return [=](const LegalityQuery &Query) {
83     const LLT Ty = Query.Types[TypeIdx];
84     const LLT EltTy = Ty.getElementType();
85     return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy));
86   };
87 }
88 
89 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
90   return [=](const LegalityQuery &Query) {
91     const LLT Ty = Query.Types[TypeIdx];
92     const LLT EltTy = Ty.getElementType();
93     unsigned Size = Ty.getSizeInBits();
94     unsigned Pieces = (Size + 63) / 64;
95     unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
96     return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy));
97   };
98 }
99 
100 // Increase the number of vector elements to reach the next multiple of 32-bit
101 // type.
102 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
103   return [=](const LegalityQuery &Query) {
104     const LLT Ty = Query.Types[TypeIdx];
105 
106     const LLT EltTy = Ty.getElementType();
107     const int Size = Ty.getSizeInBits();
108     const int EltSize = EltTy.getSizeInBits();
109     const int NextMul32 = (Size + 31) / 32;
110 
111     assert(EltSize < 32);
112 
113     const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
114     return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy));
115   };
116 }
117 
118 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) {
119   return [=](const LegalityQuery &Query) {
120     const LLT Ty = Query.Types[TypeIdx];
121     unsigned Size = Ty.getSizeInBits();
122 
123     LLT CoercedTy;
124     if (Size < 32) {
125       // <2 x s8> -> s16
126       assert(Size == 16);
127       CoercedTy = LLT::scalar(16);
128     } else
129       CoercedTy = LLT::scalarOrVector(Size / 32, 32);
130 
131     return std::make_pair(TypeIdx, CoercedTy);
132   };
133 }
134 
135 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
136   return [=](const LegalityQuery &Query) {
137     const LLT QueryTy = Query.Types[TypeIdx];
138     return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
139   };
140 }
141 
142 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
143   return [=](const LegalityQuery &Query) {
144     const LLT QueryTy = Query.Types[TypeIdx];
145     return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
146   };
147 }
148 
149 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
150   return [=](const LegalityQuery &Query) {
151     const LLT QueryTy = Query.Types[TypeIdx];
152     return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
153   };
154 }
155 
156 static bool isRegisterSize(unsigned Size) {
157   return Size % 32 == 0 && Size <= MaxRegisterSize;
158 }
159 
160 static bool isRegisterVectorElementType(LLT EltTy) {
161   const int EltSize = EltTy.getSizeInBits();
162   return EltSize == 16 || EltSize % 32 == 0;
163 }
164 
165 static bool isRegisterVectorType(LLT Ty) {
166   const int EltSize = Ty.getElementType().getSizeInBits();
167   return EltSize == 32 || EltSize == 64 ||
168          (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
169          EltSize == 128 || EltSize == 256;
170 }
171 
172 static bool isRegisterType(LLT Ty) {
173   if (!isRegisterSize(Ty.getSizeInBits()))
174     return false;
175 
176   if (Ty.isVector())
177     return isRegisterVectorType(Ty);
178 
179   return true;
180 }
181 
182 // Any combination of 32 or 64-bit elements up the maximum register size, and
183 // multiples of v2s16.
184 static LegalityPredicate isRegisterType(unsigned TypeIdx) {
185   return [=](const LegalityQuery &Query) {
186     return isRegisterType(Query.Types[TypeIdx]);
187   };
188 }
189 
190 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) {
191   return [=](const LegalityQuery &Query) {
192     const LLT QueryTy = Query.Types[TypeIdx];
193     if (!QueryTy.isVector())
194       return false;
195     const LLT EltTy = QueryTy.getElementType();
196     return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32;
197   };
198 }
199 
200 static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) {
201   return [=](const LegalityQuery &Query) {
202     const LLT Ty = Query.Types[TypeIdx];
203     return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
204            Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits();
205   };
206 }
207 
208 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
209 // handle some operations by just promoting the register during
210 // selection. There are also d16 loads on GFX9+ which preserve the high bits.
211 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS,
212                                     bool IsLoad) {
213   switch (AS) {
214   case AMDGPUAS::PRIVATE_ADDRESS:
215     // FIXME: Private element size.
216     return 32;
217   case AMDGPUAS::LOCAL_ADDRESS:
218     return ST.useDS128() ? 128 : 64;
219   case AMDGPUAS::GLOBAL_ADDRESS:
220   case AMDGPUAS::CONSTANT_ADDRESS:
221   case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
222     // Treat constant and global as identical. SMRD loads are sometimes usable for
223     // global loads (ideally constant address space should be eliminated)
224     // depending on the context. Legality cannot be context dependent, but
225     // RegBankSelect can split the load as necessary depending on the pointer
226     // register bank/uniformity and if the memory is invariant or not written in a
227     // kernel.
228     return IsLoad ? 512 : 128;
229   default:
230     // Flat addresses may contextually need to be split to 32-bit parts if they
231     // may alias scratch depending on the subtarget.
232     return 128;
233   }
234 }
235 
236 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST,
237                                  const LegalityQuery &Query,
238                                  unsigned Opcode) {
239   const LLT Ty = Query.Types[0];
240 
241   // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD
242   const bool IsLoad = Opcode != AMDGPU::G_STORE;
243 
244   unsigned RegSize = Ty.getSizeInBits();
245   unsigned MemSize = Query.MMODescrs[0].SizeInBits;
246   unsigned Align = Query.MMODescrs[0].AlignInBits;
247   unsigned AS = Query.Types[1].getAddressSpace();
248 
249   // All of these need to be custom lowered to cast the pointer operand.
250   if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
251     return false;
252 
253   // TODO: We should be able to widen loads if the alignment is high enough, but
254   // we also need to modify the memory access size.
255 #if 0
256   // Accept widening loads based on alignment.
257   if (IsLoad && MemSize < Size)
258     MemSize = std::max(MemSize, Align);
259 #endif
260 
261   // Only 1-byte and 2-byte to 32-bit extloads are valid.
262   if (MemSize != RegSize && RegSize != 32)
263     return false;
264 
265   if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
266     return false;
267 
268   switch (MemSize) {
269   case 8:
270   case 16:
271   case 32:
272   case 64:
273   case 128:
274     break;
275   case 96:
276     if (!ST.hasDwordx3LoadStores())
277       return false;
278     break;
279   case 256:
280   case 512:
281     // These may contextually need to be broken down.
282     break;
283   default:
284     return false;
285   }
286 
287   assert(RegSize >= MemSize);
288 
289   if (Align < MemSize) {
290     const SITargetLowering *TLI = ST.getTargetLowering();
291     if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8))
292       return false;
293   }
294 
295   return true;
296 }
297 
298 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so
299 // workaround this. Eventually it should ignore the type for loads and only care
300 // about the size. Return true in cases where we will workaround this for now by
301 // bitcasting.
302 static bool loadStoreBitcastWorkaround(const LLT Ty) {
303   if (EnableNewLegality)
304     return false;
305 
306   const unsigned Size = Ty.getSizeInBits();
307   if (Size <= 64)
308     return false;
309   if (!Ty.isVector())
310     return true;
311   unsigned EltSize = Ty.getElementType().getSizeInBits();
312   return EltSize != 32 && EltSize != 64;
313 }
314 
315 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query,
316                              unsigned Opcode) {
317   const LLT Ty = Query.Types[0];
318   return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query, Opcode) &&
319          !loadStoreBitcastWorkaround(Ty);
320 }
321 
322 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
323                                          const GCNTargetMachine &TM)
324   :  ST(ST_) {
325   using namespace TargetOpcode;
326 
327   auto GetAddrSpacePtr = [&TM](unsigned AS) {
328     return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
329   };
330 
331   const LLT S1 = LLT::scalar(1);
332   const LLT S16 = LLT::scalar(16);
333   const LLT S32 = LLT::scalar(32);
334   const LLT S64 = LLT::scalar(64);
335   const LLT S128 = LLT::scalar(128);
336   const LLT S256 = LLT::scalar(256);
337   const LLT S512 = LLT::scalar(512);
338   const LLT MaxScalar = LLT::scalar(MaxRegisterSize);
339 
340   const LLT V2S16 = LLT::vector(2, 16);
341   const LLT V4S16 = LLT::vector(4, 16);
342 
343   const LLT V2S32 = LLT::vector(2, 32);
344   const LLT V3S32 = LLT::vector(3, 32);
345   const LLT V4S32 = LLT::vector(4, 32);
346   const LLT V5S32 = LLT::vector(5, 32);
347   const LLT V6S32 = LLT::vector(6, 32);
348   const LLT V7S32 = LLT::vector(7, 32);
349   const LLT V8S32 = LLT::vector(8, 32);
350   const LLT V9S32 = LLT::vector(9, 32);
351   const LLT V10S32 = LLT::vector(10, 32);
352   const LLT V11S32 = LLT::vector(11, 32);
353   const LLT V12S32 = LLT::vector(12, 32);
354   const LLT V13S32 = LLT::vector(13, 32);
355   const LLT V14S32 = LLT::vector(14, 32);
356   const LLT V15S32 = LLT::vector(15, 32);
357   const LLT V16S32 = LLT::vector(16, 32);
358   const LLT V32S32 = LLT::vector(32, 32);
359 
360   const LLT V2S64 = LLT::vector(2, 64);
361   const LLT V3S64 = LLT::vector(3, 64);
362   const LLT V4S64 = LLT::vector(4, 64);
363   const LLT V5S64 = LLT::vector(5, 64);
364   const LLT V6S64 = LLT::vector(6, 64);
365   const LLT V7S64 = LLT::vector(7, 64);
366   const LLT V8S64 = LLT::vector(8, 64);
367   const LLT V16S64 = LLT::vector(16, 64);
368 
369   std::initializer_list<LLT> AllS32Vectors =
370     {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
371      V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
372   std::initializer_list<LLT> AllS64Vectors =
373     {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};
374 
375   const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
376   const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
377   const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
378   const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
379   const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
380   const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
381   const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
382 
383   const LLT CodePtr = FlatPtr;
384 
385   const std::initializer_list<LLT> AddrSpaces64 = {
386     GlobalPtr, ConstantPtr, FlatPtr
387   };
388 
389   const std::initializer_list<LLT> AddrSpaces32 = {
390     LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
391   };
392 
393   const std::initializer_list<LLT> FPTypesBase = {
394     S32, S64
395   };
396 
397   const std::initializer_list<LLT> FPTypes16 = {
398     S32, S64, S16
399   };
400 
401   const std::initializer_list<LLT> FPTypesPK16 = {
402     S32, S64, S16, V2S16
403   };
404 
405   const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32;
406 
407   setAction({G_BRCOND, S1}, Legal); // VCC branches
408   setAction({G_BRCOND, S32}, Legal); // SCC branches
409 
410   // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
411   // elements for v3s16
412   getActionDefinitionsBuilder(G_PHI)
413     .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256})
414     .legalFor(AllS32Vectors)
415     .legalFor(AllS64Vectors)
416     .legalFor(AddrSpaces64)
417     .legalFor(AddrSpaces32)
418     .clampScalar(0, S32, S256)
419     .widenScalarToNextPow2(0, 32)
420     .clampMaxNumElements(0, S32, 16)
421     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
422     .legalIf(isPointer(0));
423 
424   if (ST.hasVOP3PInsts()) {
425     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
426       .legalFor({S32, S16, V2S16})
427       .clampScalar(0, S16, S32)
428       .clampMaxNumElements(0, S16, 2)
429       .scalarize(0)
430       .widenScalarToNextPow2(0, 32);
431   } else if (ST.has16BitInsts()) {
432     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
433       .legalFor({S32, S16})
434       .clampScalar(0, S16, S32)
435       .scalarize(0)
436       .widenScalarToNextPow2(0, 32);
437   } else {
438     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
439       .legalFor({S32})
440       .clampScalar(0, S32, S32)
441       .scalarize(0);
442   }
443 
444   // FIXME: Not really legal. Placeholder for custom lowering.
445   getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_SREM, G_UREM})
446     .customFor({S32, S64})
447     .clampScalar(0, S32, S64)
448     .widenScalarToNextPow2(0, 32)
449     .scalarize(0);
450 
451   getActionDefinitionsBuilder({G_UMULH, G_SMULH})
452     .legalFor({S32})
453     .clampScalar(0, S32, S32)
454     .scalarize(0);
455 
456   // Report legal for any types we can handle anywhere. For the cases only legal
457   // on the SALU, RegBankSelect will be able to re-legalize.
458   getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
459     .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
460     .clampScalar(0, S32, S64)
461     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
462     .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
463     .widenScalarToNextPow2(0)
464     .scalarize(0);
465 
466   getActionDefinitionsBuilder({G_UADDO, G_USUBO,
467                                G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
468     .legalFor({{S32, S1}, {S32, S32}})
469     .minScalar(0, S32)
470     // TODO: .scalarize(0)
471     .lower();
472 
473   getActionDefinitionsBuilder(G_BITCAST)
474     // Don't worry about the size constraint.
475     .legalIf(all(isRegisterType(0), isRegisterType(1)))
476     .lower();
477 
478 
479   getActionDefinitionsBuilder(G_CONSTANT)
480     .legalFor({S1, S32, S64, S16, GlobalPtr,
481                LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
482     .clampScalar(0, S32, S64)
483     .widenScalarToNextPow2(0)
484     .legalIf(isPointer(0));
485 
486   getActionDefinitionsBuilder(G_FCONSTANT)
487     .legalFor({S32, S64, S16})
488     .clampScalar(0, S16, S64);
489 
490   getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
491       .legalIf(isRegisterType(0))
492       // s1 and s16 are special cases because they have legal operations on
493       // them, but don't really occupy registers in the normal way.
494       .legalFor({S1, S16})
495       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
496       .clampScalarOrElt(0, S32, MaxScalar)
497       .widenScalarToNextPow2(0, 32)
498       .clampMaxNumElements(0, S32, 16);
499 
500   setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
501 
502   // If the amount is divergent, we have to do a wave reduction to get the
503   // maximum value, so this is expanded during RegBankSelect.
504   getActionDefinitionsBuilder(G_DYN_STACKALLOC)
505     .legalFor({{PrivatePtr, S32}});
506 
507   getActionDefinitionsBuilder(G_GLOBAL_VALUE)
508     .unsupportedFor({PrivatePtr})
509     .custom();
510   setAction({G_BLOCK_ADDR, CodePtr}, Legal);
511 
512   auto &FPOpActions = getActionDefinitionsBuilder(
513     { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
514     .legalFor({S32, S64});
515   auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
516     .customFor({S32, S64});
517   auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
518     .customFor({S32, S64});
519 
520   if (ST.has16BitInsts()) {
521     if (ST.hasVOP3PInsts())
522       FPOpActions.legalFor({S16, V2S16});
523     else
524       FPOpActions.legalFor({S16});
525 
526     TrigActions.customFor({S16});
527     FDIVActions.customFor({S16});
528   }
529 
530   auto &MinNumMaxNum = getActionDefinitionsBuilder({
531       G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});
532 
533   if (ST.hasVOP3PInsts()) {
534     MinNumMaxNum.customFor(FPTypesPK16)
535       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
536       .clampMaxNumElements(0, S16, 2)
537       .clampScalar(0, S16, S64)
538       .scalarize(0);
539   } else if (ST.has16BitInsts()) {
540     MinNumMaxNum.customFor(FPTypes16)
541       .clampScalar(0, S16, S64)
542       .scalarize(0);
543   } else {
544     MinNumMaxNum.customFor(FPTypesBase)
545       .clampScalar(0, S32, S64)
546       .scalarize(0);
547   }
548 
549   if (ST.hasVOP3PInsts())
550     FPOpActions.clampMaxNumElements(0, S16, 2);
551 
552   FPOpActions
553     .scalarize(0)
554     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
555 
556   TrigActions
557     .scalarize(0)
558     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
559 
560   FDIVActions
561     .scalarize(0)
562     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
563 
564   getActionDefinitionsBuilder({G_FNEG, G_FABS})
565     .legalFor(FPTypesPK16)
566     .clampMaxNumElements(0, S16, 2)
567     .scalarize(0)
568     .clampScalar(0, S16, S64);
569 
570   if (ST.has16BitInsts()) {
571     getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
572       .legalFor({S32, S64, S16})
573       .scalarize(0)
574       .clampScalar(0, S16, S64);
575   } else {
576     getActionDefinitionsBuilder(G_FSQRT)
577       .legalFor({S32, S64})
578       .scalarize(0)
579       .clampScalar(0, S32, S64);
580 
581     if (ST.hasFractBug()) {
582       getActionDefinitionsBuilder(G_FFLOOR)
583         .customFor({S64})
584         .legalFor({S32, S64})
585         .scalarize(0)
586         .clampScalar(0, S32, S64);
587     } else {
588       getActionDefinitionsBuilder(G_FFLOOR)
589         .legalFor({S32, S64})
590         .scalarize(0)
591         .clampScalar(0, S32, S64);
592     }
593   }
594 
595   getActionDefinitionsBuilder(G_FPTRUNC)
596     .legalFor({{S32, S64}, {S16, S32}})
597     .scalarize(0)
598     .lower();
599 
600   getActionDefinitionsBuilder(G_FPEXT)
601     .legalFor({{S64, S32}, {S32, S16}})
602     .lowerFor({{S64, S16}}) // FIXME: Implement
603     .scalarize(0);
604 
605   getActionDefinitionsBuilder(G_FSUB)
606       // Use actual fsub instruction
607       .legalFor({S32})
608       // Must use fadd + fneg
609       .lowerFor({S64, S16, V2S16})
610       .scalarize(0)
611       .clampScalar(0, S32, S64);
612 
613   // Whether this is legal depends on the floating point mode for the function.
614   auto &FMad = getActionDefinitionsBuilder(G_FMAD);
615   if (ST.hasMadF16() && ST.hasMadMacF32Insts())
616     FMad.customFor({S32, S16});
617   else if (ST.hasMadMacF32Insts())
618     FMad.customFor({S32});
619   else if (ST.hasMadF16())
620     FMad.customFor({S16});
621   FMad.scalarize(0)
622       .lower();
623 
624   // TODO: Do we need to clamp maximum bitwidth?
625   getActionDefinitionsBuilder(G_TRUNC)
626     .legalIf(isScalar(0))
627     .legalFor({{V2S16, V2S32}})
628     .clampMaxNumElements(0, S16, 2)
629     // Avoid scalarizing in cases that should be truly illegal. In unresolvable
630     // situations (like an invalid implicit use), we don't want to infinite loop
631     // in the legalizer.
632     .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0))
633     .alwaysLegal();
634 
635   getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
636     .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
637                {S32, S1}, {S64, S1}, {S16, S1}})
638     .scalarize(0)
639     .clampScalar(0, S32, S64)
640     .widenScalarToNextPow2(1, 32);
641 
642   // TODO: Split s1->s64 during regbankselect for VALU.
643   auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
644     .legalFor({{S32, S32}, {S64, S32}, {S16, S32}})
645     .lowerFor({{S32, S64}})
646     .lowerIf(typeIs(1, S1))
647     .customFor({{S64, S64}});
648   if (ST.has16BitInsts())
649     IToFP.legalFor({{S16, S16}});
650   IToFP.clampScalar(1, S32, S64)
651        .scalarize(0)
652        .widenScalarToNextPow2(1);
653 
654   auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
655     .legalFor({{S32, S32}, {S32, S64}, {S32, S16}})
656     .customFor({{S64, S64}});
657   if (ST.has16BitInsts())
658     FPToI.legalFor({{S16, S16}});
659   else
660     FPToI.minScalar(1, S32);
661 
662   FPToI.minScalar(0, S32)
663        .scalarize(0)
664        .lower();
665 
666   getActionDefinitionsBuilder(G_INTRINSIC_ROUND)
667     .scalarize(0)
668     .lower();
669 
670   if (ST.has16BitInsts()) {
671     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
672       .legalFor({S16, S32, S64})
673       .clampScalar(0, S16, S64)
674       .scalarize(0);
675   } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
676     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
677       .legalFor({S32, S64})
678       .clampScalar(0, S32, S64)
679       .scalarize(0);
680   } else {
681     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
682       .legalFor({S32})
683       .customFor({S64})
684       .clampScalar(0, S32, S64)
685       .scalarize(0);
686   }
687 
688   // FIXME: Clamp offset operand.
689   getActionDefinitionsBuilder(G_PTR_ADD)
690     .legalIf(isPointer(0))
691     .scalarize(0);
692 
693   getActionDefinitionsBuilder(G_PTRMASK)
694     .legalIf(typeInSet(1, {S64, S32}))
695     .minScalar(1, S32)
696     .maxScalarIf(sizeIs(0, 32), 1, S32)
697     .maxScalarIf(sizeIs(0, 64), 1, S64)
698     .scalarize(0);
699 
700   auto &CmpBuilder =
701     getActionDefinitionsBuilder(G_ICMP)
702     // The compare output type differs based on the register bank of the output,
703     // so make both s1 and s32 legal.
704     //
705     // Scalar compares producing output in scc will be promoted to s32, as that
706     // is the allocatable register type that will be needed for the copy from
707     // scc. This will be promoted during RegBankSelect, and we assume something
708     // before that won't try to use s32 result types.
709     //
710     // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg
711     // bank.
712     .legalForCartesianProduct(
713       {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
714     .legalForCartesianProduct(
715       {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
716   if (ST.has16BitInsts()) {
717     CmpBuilder.legalFor({{S1, S16}});
718   }
719 
720   CmpBuilder
721     .widenScalarToNextPow2(1)
722     .clampScalar(1, S32, S64)
723     .scalarize(0)
724     .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1)));
725 
726   getActionDefinitionsBuilder(G_FCMP)
727     .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
728     .widenScalarToNextPow2(1)
729     .clampScalar(1, S32, S64)
730     .scalarize(0);
731 
732   // FIXME: fpow has a selection pattern that should move to custom lowering.
733   auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2});
734   if (ST.has16BitInsts())
735     Exp2Ops.legalFor({S32, S16});
736   else
737     Exp2Ops.legalFor({S32});
738   Exp2Ops.clampScalar(0, MinScalarFPTy, S32);
739   Exp2Ops.scalarize(0);
740 
741   auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW});
742   if (ST.has16BitInsts())
743     ExpOps.customFor({{S32}, {S16}});
744   else
745     ExpOps.customFor({S32});
746   ExpOps.clampScalar(0, MinScalarFPTy, S32)
747         .scalarize(0);
748 
749   // The 64-bit versions produce 32-bit results, but only on the SALU.
750   getActionDefinitionsBuilder(G_CTPOP)
751     .legalFor({{S32, S32}, {S32, S64}})
752     .clampScalar(0, S32, S32)
753     .clampScalar(1, S32, S64)
754     .scalarize(0)
755     .widenScalarToNextPow2(0, 32)
756     .widenScalarToNextPow2(1, 32);
757 
758   // The hardware instructions return a different result on 0 than the generic
759   // instructions expect. The hardware produces -1, but these produce the
760   // bitwidth.
761   getActionDefinitionsBuilder({G_CTLZ, G_CTTZ})
762     .scalarize(0)
763     .clampScalar(0, S32, S32)
764     .clampScalar(1, S32, S64)
765     .widenScalarToNextPow2(0, 32)
766     .widenScalarToNextPow2(1, 32)
767     .lower();
768 
769   // The 64-bit versions produce 32-bit results, but only on the SALU.
770   getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF})
771     .legalFor({{S32, S32}, {S32, S64}})
772     .clampScalar(0, S32, S32)
773     .clampScalar(1, S32, S64)
774     .scalarize(0)
775     .widenScalarToNextPow2(0, 32)
776     .widenScalarToNextPow2(1, 32);
777 
778   getActionDefinitionsBuilder(G_BITREVERSE)
779     .legalFor({S32})
780     .clampScalar(0, S32, S32)
781     .scalarize(0);
782 
783   if (ST.has16BitInsts()) {
784     getActionDefinitionsBuilder(G_BSWAP)
785       .legalFor({S16, S32, V2S16})
786       .clampMaxNumElements(0, S16, 2)
787       // FIXME: Fixing non-power-of-2 before clamp is workaround for
788       // narrowScalar limitation.
789       .widenScalarToNextPow2(0)
790       .clampScalar(0, S16, S32)
791       .scalarize(0);
792 
793     if (ST.hasVOP3PInsts()) {
794       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
795         .legalFor({S32, S16, V2S16})
796         .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
797         .clampMaxNumElements(0, S16, 2)
798         .minScalar(0, S16)
799         .widenScalarToNextPow2(0)
800         .scalarize(0)
801         .lower();
802     } else {
803       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
804         .legalFor({S32, S16})
805         .widenScalarToNextPow2(0)
806         .minScalar(0, S16)
807         .scalarize(0)
808         .lower();
809     }
810   } else {
811     // TODO: Should have same legality without v_perm_b32
812     getActionDefinitionsBuilder(G_BSWAP)
813       .legalFor({S32})
814       .lowerIf(scalarNarrowerThan(0, 32))
815       // FIXME: Fixing non-power-of-2 before clamp is workaround for
816       // narrowScalar limitation.
817       .widenScalarToNextPow2(0)
818       .maxScalar(0, S32)
819       .scalarize(0)
820       .lower();
821 
822     getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
823       .legalFor({S32})
824       .minScalar(0, S32)
825       .widenScalarToNextPow2(0)
826       .scalarize(0)
827       .lower();
828   }
829 
830   getActionDefinitionsBuilder(G_INTTOPTR)
831     // List the common cases
832     .legalForCartesianProduct(AddrSpaces64, {S64})
833     .legalForCartesianProduct(AddrSpaces32, {S32})
834     .scalarize(0)
835     // Accept any address space as long as the size matches
836     .legalIf(sameSize(0, 1))
837     .widenScalarIf(smallerThan(1, 0),
838       [](const LegalityQuery &Query) {
839         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
840       })
841     .narrowScalarIf(largerThan(1, 0),
842       [](const LegalityQuery &Query) {
843         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
844       });
845 
846   getActionDefinitionsBuilder(G_PTRTOINT)
847     // List the common cases
848     .legalForCartesianProduct(AddrSpaces64, {S64})
849     .legalForCartesianProduct(AddrSpaces32, {S32})
850     .scalarize(0)
851     // Accept any address space as long as the size matches
852     .legalIf(sameSize(0, 1))
853     .widenScalarIf(smallerThan(0, 1),
854       [](const LegalityQuery &Query) {
855         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
856       })
857     .narrowScalarIf(
858       largerThan(0, 1),
859       [](const LegalityQuery &Query) {
860         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
861       });
862 
863   getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
864     .scalarize(0)
865     .custom();
866 
867   const auto needToSplitMemOp = [=](const LegalityQuery &Query,
868                                     bool IsLoad) -> bool {
869     const LLT DstTy = Query.Types[0];
870 
871     // Split vector extloads.
872     unsigned MemSize = Query.MMODescrs[0].SizeInBits;
873     unsigned Align = Query.MMODescrs[0].AlignInBits;
874 
875     if (MemSize < DstTy.getSizeInBits())
876       MemSize = std::max(MemSize, Align);
877 
878     if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
879       return true;
880 
881     const LLT PtrTy = Query.Types[1];
882     unsigned AS = PtrTy.getAddressSpace();
883     if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
884       return true;
885 
886     // Catch weird sized loads that don't evenly divide into the access sizes
887     // TODO: May be able to widen depending on alignment etc.
888     unsigned NumRegs = (MemSize + 31) / 32;
889     if (NumRegs == 3) {
890       if (!ST.hasDwordx3LoadStores())
891         return true;
892     } else {
893       // If the alignment allows, these should have been widened.
894       if (!isPowerOf2_32(NumRegs))
895         return true;
896     }
897 
898     if (Align < MemSize) {
899       const SITargetLowering *TLI = ST.getTargetLowering();
900       return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8);
901     }
902 
903     return false;
904   };
905 
906   const auto shouldWidenLoadResult = [=](const LegalityQuery &Query,
907                                          unsigned Opc) -> bool {
908     unsigned Size = Query.Types[0].getSizeInBits();
909     if (isPowerOf2_32(Size))
910       return false;
911 
912     if (Size == 96 && ST.hasDwordx3LoadStores())
913       return false;
914 
915     unsigned AddrSpace = Query.Types[1].getAddressSpace();
916     if (Size >= maxSizeForAddrSpace(ST, AddrSpace, Opc))
917       return false;
918 
919     unsigned Align = Query.MMODescrs[0].AlignInBits;
920     unsigned RoundedSize = NextPowerOf2(Size);
921     return (Align >= RoundedSize);
922   };
923 
924   unsigned GlobalAlign32 = ST.hasUnalignedBufferAccess() ? 0 : 32;
925   unsigned GlobalAlign16 = ST.hasUnalignedBufferAccess() ? 0 : 16;
926   unsigned GlobalAlign8 = ST.hasUnalignedBufferAccess() ? 0 : 8;
927 
928   // TODO: Refine based on subtargets which support unaligned access or 128-bit
929   // LDS
930   // TODO: Unsupported flat for SI.
931 
932   for (unsigned Op : {G_LOAD, G_STORE}) {
933     const bool IsStore = Op == G_STORE;
934 
935     auto &Actions = getActionDefinitionsBuilder(Op);
936     // Explicitly list some common cases.
937     // TODO: Does this help compile time at all?
938     Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32},
939                                       {V2S32, GlobalPtr, 64, GlobalAlign32},
940                                       {V4S32, GlobalPtr, 128, GlobalAlign32},
941                                       {S64, GlobalPtr, 64, GlobalAlign32},
942                                       {V2S64, GlobalPtr, 128, GlobalAlign32},
943                                       {V2S16, GlobalPtr, 32, GlobalAlign32},
944                                       {S32, GlobalPtr, 8, GlobalAlign8},
945                                       {S32, GlobalPtr, 16, GlobalAlign16},
946 
947                                       {S32, LocalPtr, 32, 32},
948                                       {S64, LocalPtr, 64, 32},
949                                       {V2S32, LocalPtr, 64, 32},
950                                       {S32, LocalPtr, 8, 8},
951                                       {S32, LocalPtr, 16, 16},
952                                       {V2S16, LocalPtr, 32, 32},
953 
954                                       {S32, PrivatePtr, 32, 32},
955                                       {S32, PrivatePtr, 8, 8},
956                                       {S32, PrivatePtr, 16, 16},
957                                       {V2S16, PrivatePtr, 32, 32},
958 
959                                       {S32, ConstantPtr, 32, GlobalAlign32},
960                                       {V2S32, ConstantPtr, 64, GlobalAlign32},
961                                       {V4S32, ConstantPtr, 128, GlobalAlign32},
962                                       {S64, ConstantPtr, 64, GlobalAlign32},
963                                       {V2S32, ConstantPtr, 32, GlobalAlign32}});
964     Actions.legalIf(
965       [=](const LegalityQuery &Query) -> bool {
966         return isLoadStoreLegal(ST, Query, Op);
967       });
968 
969     // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
970     // 64-bits.
971     //
972     // TODO: Should generalize bitcast action into coerce, which will also cover
973     // inserting addrspacecasts.
974     Actions.customIf(typeIs(1, Constant32Ptr));
975 
976     // Turn any illegal element vectors into something easier to deal
977     // with. These will ultimately produce 32-bit scalar shifts to extract the
978     // parts anyway.
979     //
980     // For odd 16-bit element vectors, prefer to split those into pieces with
981     // 16-bit vector parts.
982     Actions.bitcastIf(
983       [=](const LegalityQuery &Query) -> bool {
984         const LLT Ty = Query.Types[0];
985 
986         // Do not cast an extload/truncstore.
987         if (Ty.getSizeInBits() != Query.MMODescrs[0].SizeInBits)
988           return false;
989 
990         if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty))
991           return true;
992         const unsigned Size = Ty.getSizeInBits();
993         return Ty.isVector() && isRegisterSize(Size) &&
994                !isRegisterVectorElementType(Ty.getElementType());
995       }, bitcastToRegisterType(0));
996 
997     Actions
998         .customIf(typeIs(1, Constant32Ptr))
999         // Widen suitably aligned loads by loading extra elements.
1000         .moreElementsIf([=](const LegalityQuery &Query) {
1001             const LLT Ty = Query.Types[0];
1002             return Op == G_LOAD && Ty.isVector() &&
1003                    shouldWidenLoadResult(Query, Op);
1004           }, moreElementsToNextPow2(0))
1005         .widenScalarIf([=](const LegalityQuery &Query) {
1006             const LLT Ty = Query.Types[0];
1007             return Op == G_LOAD && !Ty.isVector() &&
1008                    shouldWidenLoadResult(Query, Op);
1009           }, widenScalarOrEltToNextPow2(0))
1010         .narrowScalarIf(
1011             [=](const LegalityQuery &Query) -> bool {
1012               return !Query.Types[0].isVector() &&
1013                      needToSplitMemOp(Query, Op == G_LOAD);
1014             },
1015             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1016               const LLT DstTy = Query.Types[0];
1017               const LLT PtrTy = Query.Types[1];
1018 
1019               const unsigned DstSize = DstTy.getSizeInBits();
1020               unsigned MemSize = Query.MMODescrs[0].SizeInBits;
1021 
1022               // Split extloads.
1023               if (DstSize > MemSize)
1024                 return std::make_pair(0, LLT::scalar(MemSize));
1025 
1026               if (!isPowerOf2_32(DstSize)) {
1027                 // We're probably decomposing an odd sized store. Try to split
1028                 // to the widest type. TODO: Account for alignment. As-is it
1029                 // should be OK, since the new parts will be further legalized.
1030                 unsigned FloorSize = PowerOf2Floor(DstSize);
1031                 return std::make_pair(0, LLT::scalar(FloorSize));
1032               }
1033 
1034               if (DstSize > 32 && (DstSize % 32 != 0)) {
1035                 // FIXME: Need a way to specify non-extload of larger size if
1036                 // suitably aligned.
1037                 return std::make_pair(0, LLT::scalar(32 * (DstSize / 32)));
1038               }
1039 
1040               unsigned MaxSize = maxSizeForAddrSpace(ST,
1041                                                      PtrTy.getAddressSpace(),
1042                                                      Op == G_LOAD);
1043               if (MemSize > MaxSize)
1044                 return std::make_pair(0, LLT::scalar(MaxSize));
1045 
1046               unsigned Align = Query.MMODescrs[0].AlignInBits;
1047               return std::make_pair(0, LLT::scalar(Align));
1048             })
1049         .fewerElementsIf(
1050             [=](const LegalityQuery &Query) -> bool {
1051               return Query.Types[0].isVector() &&
1052                      needToSplitMemOp(Query, Op == G_LOAD);
1053             },
1054             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1055               const LLT DstTy = Query.Types[0];
1056               const LLT PtrTy = Query.Types[1];
1057 
1058               LLT EltTy = DstTy.getElementType();
1059               unsigned MaxSize = maxSizeForAddrSpace(ST,
1060                                                      PtrTy.getAddressSpace(),
1061                                                      Op == G_LOAD);
1062 
1063               // FIXME: Handle widened to power of 2 results better. This ends
1064               // up scalarizing.
1065               // FIXME: 3 element stores scalarized on SI
1066 
1067               // Split if it's too large for the address space.
1068               if (Query.MMODescrs[0].SizeInBits > MaxSize) {
1069                 unsigned NumElts = DstTy.getNumElements();
1070                 unsigned EltSize = EltTy.getSizeInBits();
1071 
1072                 if (MaxSize % EltSize == 0) {
1073                   return std::make_pair(
1074                     0, LLT::scalarOrVector(MaxSize / EltSize, EltTy));
1075                 }
1076 
1077                 unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize;
1078 
1079                 // FIXME: Refine when odd breakdowns handled
1080                 // The scalars will need to be re-legalized.
1081                 if (NumPieces == 1 || NumPieces >= NumElts ||
1082                     NumElts % NumPieces != 0)
1083                   return std::make_pair(0, EltTy);
1084 
1085                 return std::make_pair(0,
1086                                       LLT::vector(NumElts / NumPieces, EltTy));
1087               }
1088 
1089               // FIXME: We could probably handle weird extending loads better.
1090               unsigned MemSize = Query.MMODescrs[0].SizeInBits;
1091               if (DstTy.getSizeInBits() > MemSize)
1092                 return std::make_pair(0, EltTy);
1093 
1094               unsigned EltSize = EltTy.getSizeInBits();
1095               unsigned DstSize = DstTy.getSizeInBits();
1096               if (!isPowerOf2_32(DstSize)) {
1097                 // We're probably decomposing an odd sized store. Try to split
1098                 // to the widest type. TODO: Account for alignment. As-is it
1099                 // should be OK, since the new parts will be further legalized.
1100                 unsigned FloorSize = PowerOf2Floor(DstSize);
1101                 return std::make_pair(
1102                   0, LLT::scalarOrVector(FloorSize / EltSize, EltTy));
1103               }
1104 
1105               // Need to split because of alignment.
1106               unsigned Align = Query.MMODescrs[0].AlignInBits;
1107               if (EltSize > Align &&
1108                   (EltSize / Align < DstTy.getNumElements())) {
1109                 return std::make_pair(0, LLT::vector(EltSize / Align, EltTy));
1110               }
1111 
1112               // May need relegalization for the scalars.
1113               return std::make_pair(0, EltTy);
1114             })
1115         .minScalar(0, S32);
1116 
1117     if (IsStore)
1118       Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32));
1119 
1120     // TODO: Need a bitcast lower option?
1121     Actions
1122         .widenScalarToNextPow2(0)
1123         .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0));
1124   }
1125 
1126   auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
1127                        .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8},
1128                                                   {S32, GlobalPtr, 16, 2 * 8},
1129                                                   {S32, LocalPtr, 8, 8},
1130                                                   {S32, LocalPtr, 16, 16},
1131                                                   {S32, PrivatePtr, 8, 8},
1132                                                   {S32, PrivatePtr, 16, 16},
1133                                                   {S32, ConstantPtr, 8, 8},
1134                                                   {S32, ConstantPtr, 16, 2 * 8}});
1135   if (ST.hasFlatAddressSpace()) {
1136     ExtLoads.legalForTypesWithMemDesc(
1137         {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}});
1138   }
1139 
1140   ExtLoads.clampScalar(0, S32, S32)
1141           .widenScalarToNextPow2(0)
1142           .unsupportedIfMemSizeNotPow2()
1143           .lower();
1144 
1145   auto &Atomics = getActionDefinitionsBuilder(
1146     {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1147      G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1148      G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1149      G_ATOMICRMW_UMIN})
1150     .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
1151                {S64, GlobalPtr}, {S64, LocalPtr}});
1152   if (ST.hasFlatAddressSpace()) {
1153     Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
1154   }
1155 
1156   if (ST.hasLDSFPAtomics()) {
1157     getActionDefinitionsBuilder(G_ATOMICRMW_FADD)
1158       .legalFor({{S32, LocalPtr}});
1159   }
1160 
1161   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output
1162   // demarshalling
1163   getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
1164     .customFor({{S32, GlobalPtr}, {S64, GlobalPtr},
1165                 {S32, FlatPtr}, {S64, FlatPtr}})
1166     .legalFor({{S32, LocalPtr}, {S64, LocalPtr},
1167                {S32, RegionPtr}, {S64, RegionPtr}});
1168   // TODO: Pointer types, any 32-bit or 64-bit vector
1169 
1170   // Condition should be s32 for scalar, s1 for vector.
1171   getActionDefinitionsBuilder(G_SELECT)
1172     .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16,
1173           GlobalPtr, LocalPtr, FlatPtr, PrivatePtr,
1174           LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1, S32})
1175     .clampScalar(0, S16, S64)
1176     .scalarize(1)
1177     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
1178     .fewerElementsIf(numElementsNotEven(0), scalarize(0))
1179     .clampMaxNumElements(0, S32, 2)
1180     .clampMaxNumElements(0, LocalPtr, 2)
1181     .clampMaxNumElements(0, PrivatePtr, 2)
1182     .scalarize(0)
1183     .widenScalarToNextPow2(0)
1184     .legalIf(all(isPointer(0), typeInSet(1, {S1, S32})));
1185 
1186   // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
1187   // be more flexible with the shift amount type.
1188   auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
1189     .legalFor({{S32, S32}, {S64, S32}});
1190   if (ST.has16BitInsts()) {
1191     if (ST.hasVOP3PInsts()) {
1192       Shifts.legalFor({{S16, S16}, {V2S16, V2S16}})
1193             .clampMaxNumElements(0, S16, 2);
1194     } else
1195       Shifts.legalFor({{S16, S16}});
1196 
1197     // TODO: Support 16-bit shift amounts for all types
1198     Shifts.widenScalarIf(
1199       [=](const LegalityQuery &Query) {
1200         // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a
1201         // 32-bit amount.
1202         const LLT ValTy = Query.Types[0];
1203         const LLT AmountTy = Query.Types[1];
1204         return ValTy.getSizeInBits() <= 16 &&
1205                AmountTy.getSizeInBits() < 16;
1206       }, changeTo(1, S16));
1207     Shifts.maxScalarIf(typeIs(0, S16), 1, S16);
1208     Shifts.clampScalar(1, S32, S32);
1209     Shifts.clampScalar(0, S16, S64);
1210     Shifts.widenScalarToNextPow2(0, 16);
1211   } else {
1212     // Make sure we legalize the shift amount type first, as the general
1213     // expansion for the shifted type will produce much worse code if it hasn't
1214     // been truncated already.
1215     Shifts.clampScalar(1, S32, S32);
1216     Shifts.clampScalar(0, S32, S64);
1217     Shifts.widenScalarToNextPow2(0, 32);
1218   }
1219   Shifts.scalarize(0);
1220 
1221   for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1222     unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1223     unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1224     unsigned IdxTypeIdx = 2;
1225 
1226     getActionDefinitionsBuilder(Op)
1227       .customIf([=](const LegalityQuery &Query) {
1228           const LLT EltTy = Query.Types[EltTypeIdx];
1229           const LLT VecTy = Query.Types[VecTypeIdx];
1230           const LLT IdxTy = Query.Types[IdxTypeIdx];
1231           return (EltTy.getSizeInBits() == 16 ||
1232                   EltTy.getSizeInBits() % 32 == 0) &&
1233                  VecTy.getSizeInBits() % 32 == 0 &&
1234                  VecTy.getSizeInBits() <= MaxRegisterSize &&
1235                  IdxTy.getSizeInBits() == 32;
1236         })
1237       .clampScalar(EltTypeIdx, S32, S64)
1238       .clampScalar(VecTypeIdx, S32, S64)
1239       .clampScalar(IdxTypeIdx, S32, S32);
1240   }
1241 
1242   getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
1243     .unsupportedIf([=](const LegalityQuery &Query) {
1244         const LLT &EltTy = Query.Types[1].getElementType();
1245         return Query.Types[0] != EltTy;
1246       });
1247 
1248   for (unsigned Op : {G_EXTRACT, G_INSERT}) {
1249     unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
1250     unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;
1251 
1252     // FIXME: Doesn't handle extract of illegal sizes.
1253     getActionDefinitionsBuilder(Op)
1254       .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
1255       // FIXME: Multiples of 16 should not be legal.
1256       .legalIf([=](const LegalityQuery &Query) {
1257           const LLT BigTy = Query.Types[BigTyIdx];
1258           const LLT LitTy = Query.Types[LitTyIdx];
1259           return (BigTy.getSizeInBits() % 32 == 0) &&
1260                  (LitTy.getSizeInBits() % 16 == 0);
1261         })
1262       .widenScalarIf(
1263         [=](const LegalityQuery &Query) {
1264           const LLT BigTy = Query.Types[BigTyIdx];
1265           return (BigTy.getScalarSizeInBits() < 16);
1266         },
1267         LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
1268       .widenScalarIf(
1269         [=](const LegalityQuery &Query) {
1270           const LLT LitTy = Query.Types[LitTyIdx];
1271           return (LitTy.getScalarSizeInBits() < 16);
1272         },
1273         LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
1274       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1275       .widenScalarToNextPow2(BigTyIdx, 32);
1276 
1277   }
1278 
1279   auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
1280     .legalForCartesianProduct(AllS32Vectors, {S32})
1281     .legalForCartesianProduct(AllS64Vectors, {S64})
1282     .clampNumElements(0, V16S32, V32S32)
1283     .clampNumElements(0, V2S64, V16S64)
1284     .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));
1285 
1286   if (ST.hasScalarPackInsts()) {
1287     BuildVector
1288       // FIXME: Should probably widen s1 vectors straight to s32
1289       .minScalarOrElt(0, S16)
1290       // Widen source elements and produce a G_BUILD_VECTOR_TRUNC
1291       .minScalar(1, S32);
1292 
1293     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1294       .legalFor({V2S16, S32})
1295       .lower();
1296     BuildVector.minScalarOrElt(0, S32);
1297   } else {
1298     BuildVector.customFor({V2S16, S16});
1299     BuildVector.minScalarOrElt(0, S32);
1300 
1301     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1302       .customFor({V2S16, S32})
1303       .lower();
1304   }
1305 
1306   BuildVector.legalIf(isRegisterType(0));
1307 
1308   // FIXME: Clamp maximum size
1309   getActionDefinitionsBuilder(G_CONCAT_VECTORS)
1310     .legalIf(isRegisterType(0));
1311 
1312   // TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse
1313   // pre-legalize.
1314   if (ST.hasVOP3PInsts()) {
1315     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
1316       .customFor({V2S16, V2S16})
1317       .lower();
1318   } else
1319     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();
1320 
1321   // Merge/Unmerge
1322   for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1323     unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
1324     unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
1325 
1326     auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
1327       const LLT Ty = Query.Types[TypeIdx];
1328       if (Ty.isVector()) {
1329         const LLT &EltTy = Ty.getElementType();
1330         if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512)
1331           return true;
1332         if (!isPowerOf2_32(EltTy.getSizeInBits()))
1333           return true;
1334       }
1335       return false;
1336     };
1337 
1338     auto &Builder = getActionDefinitionsBuilder(Op)
1339       .lowerFor({{S16, V2S16}})
1340       .lowerIf([=](const LegalityQuery &Query) {
1341           const LLT BigTy = Query.Types[BigTyIdx];
1342           return BigTy.getSizeInBits() == 32;
1343         })
1344       // Try to widen to s16 first for small types.
1345       // TODO: Only do this on targets with legal s16 shifts
1346       .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16)
1347       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
1348       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1349       .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
1350                            elementTypeIs(1, S16)),
1351                        changeTo(1, V2S16))
1352       // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
1353       // worth considering the multiples of 64 since 2*192 and 2*384 are not
1354       // valid.
1355       .clampScalar(LitTyIdx, S32, S512)
1356       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
1357       // Break up vectors with weird elements into scalars
1358       .fewerElementsIf(
1359         [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); },
1360         scalarize(0))
1361       .fewerElementsIf(
1362         [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); },
1363         scalarize(1))
1364       .clampScalar(BigTyIdx, S32, MaxScalar);
1365 
1366     if (Op == G_MERGE_VALUES) {
1367       Builder.widenScalarIf(
1368         // TODO: Use 16-bit shifts if legal for 8-bit values?
1369         [=](const LegalityQuery &Query) {
1370           const LLT Ty = Query.Types[LitTyIdx];
1371           return Ty.getSizeInBits() < 32;
1372         },
1373         changeTo(LitTyIdx, S32));
1374     }
1375 
1376     Builder.widenScalarIf(
1377       [=](const LegalityQuery &Query) {
1378         const LLT Ty = Query.Types[BigTyIdx];
1379         return !isPowerOf2_32(Ty.getSizeInBits()) &&
1380           Ty.getSizeInBits() % 16 != 0;
1381       },
1382       [=](const LegalityQuery &Query) {
1383         // Pick the next power of 2, or a multiple of 64 over 128.
1384         // Whichever is smaller.
1385         const LLT &Ty = Query.Types[BigTyIdx];
1386         unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
1387         if (NewSizeInBits >= 256) {
1388           unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
1389           if (RoundedTo < NewSizeInBits)
1390             NewSizeInBits = RoundedTo;
1391         }
1392         return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
1393       })
1394       .legalIf([=](const LegalityQuery &Query) {
1395           const LLT &BigTy = Query.Types[BigTyIdx];
1396           const LLT &LitTy = Query.Types[LitTyIdx];
1397 
1398           if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
1399             return false;
1400           if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
1401             return false;
1402 
1403           return BigTy.getSizeInBits() % 16 == 0 &&
1404                  LitTy.getSizeInBits() % 16 == 0 &&
1405                  BigTy.getSizeInBits() <= MaxRegisterSize;
1406         })
1407       // Any vectors left are the wrong size. Scalarize them.
1408       .scalarize(0)
1409       .scalarize(1);
1410   }
1411 
1412   // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
1413   // RegBankSelect.
1414   auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG)
1415     .legalFor({{S32}, {S64}});
1416 
1417   if (ST.hasVOP3PInsts()) {
1418     SextInReg.lowerFor({{V2S16}})
1419       // Prefer to reduce vector widths for 16-bit vectors before lowering, to
1420       // get more vector shift opportunities, since we'll get those when
1421       // expanded.
1422       .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16));
1423   } else if (ST.has16BitInsts()) {
1424     SextInReg.lowerFor({{S32}, {S64}, {S16}});
1425   } else {
1426     // Prefer to promote to s32 before lowering if we don't have 16-bit
1427     // shifts. This avoid a lot of intermediate truncate and extend operations.
1428     SextInReg.lowerFor({{S32}, {S64}});
1429   }
1430 
1431   SextInReg
1432     .scalarize(0)
1433     .clampScalar(0, S32, S64)
1434     .lower();
1435 
1436   getActionDefinitionsBuilder(G_FSHR)
1437     .legalFor({{S32, S32}})
1438     .scalarize(0)
1439     .lower();
1440 
1441   getActionDefinitionsBuilder(G_READCYCLECOUNTER)
1442     .legalFor({S64});
1443 
1444   getActionDefinitionsBuilder({
1445       // TODO: Verify V_BFI_B32 is generated from expanded bit ops
1446       G_FCOPYSIGN,
1447 
1448       G_ATOMIC_CMPXCHG_WITH_SUCCESS,
1449       G_READ_REGISTER,
1450       G_WRITE_REGISTER,
1451 
1452       G_SADDO, G_SSUBO,
1453 
1454        // TODO: Implement
1455       G_FMINIMUM, G_FMAXIMUM,
1456       G_FSHL
1457     }).lower();
1458 
1459   getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE,
1460         G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
1461         G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
1462     .unsupported();
1463 
1464   computeTables();
1465   verify(*ST.getInstrInfo());
1466 }
1467 
1468 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
1469                                          MachineInstr &MI) const {
1470   MachineIRBuilder &B = Helper.MIRBuilder;
1471   MachineRegisterInfo &MRI = *B.getMRI();
1472   GISelChangeObserver &Observer = Helper.Observer;
1473 
1474   switch (MI.getOpcode()) {
1475   case TargetOpcode::G_ADDRSPACE_CAST:
1476     return legalizeAddrSpaceCast(MI, MRI, B);
1477   case TargetOpcode::G_FRINT:
1478     return legalizeFrint(MI, MRI, B);
1479   case TargetOpcode::G_FCEIL:
1480     return legalizeFceil(MI, MRI, B);
1481   case TargetOpcode::G_INTRINSIC_TRUNC:
1482     return legalizeIntrinsicTrunc(MI, MRI, B);
1483   case TargetOpcode::G_SITOFP:
1484     return legalizeITOFP(MI, MRI, B, true);
1485   case TargetOpcode::G_UITOFP:
1486     return legalizeITOFP(MI, MRI, B, false);
1487   case TargetOpcode::G_FPTOSI:
1488     return legalizeFPTOI(MI, MRI, B, true);
1489   case TargetOpcode::G_FPTOUI:
1490     return legalizeFPTOI(MI, MRI, B, false);
1491   case TargetOpcode::G_FMINNUM:
1492   case TargetOpcode::G_FMAXNUM:
1493   case TargetOpcode::G_FMINNUM_IEEE:
1494   case TargetOpcode::G_FMAXNUM_IEEE:
1495     return legalizeMinNumMaxNum(Helper, MI);
1496   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1497     return legalizeExtractVectorElt(MI, MRI, B);
1498   case TargetOpcode::G_INSERT_VECTOR_ELT:
1499     return legalizeInsertVectorElt(MI, MRI, B);
1500   case TargetOpcode::G_SHUFFLE_VECTOR:
1501     return legalizeShuffleVector(MI, MRI, B);
1502   case TargetOpcode::G_FSIN:
1503   case TargetOpcode::G_FCOS:
1504     return legalizeSinCos(MI, MRI, B);
1505   case TargetOpcode::G_GLOBAL_VALUE:
1506     return legalizeGlobalValue(MI, MRI, B);
1507   case TargetOpcode::G_LOAD:
1508     return legalizeLoad(MI, MRI, B, Observer);
1509   case TargetOpcode::G_FMAD:
1510     return legalizeFMad(MI, MRI, B);
1511   case TargetOpcode::G_FDIV:
1512     return legalizeFDIV(MI, MRI, B);
1513   case TargetOpcode::G_UDIV:
1514   case TargetOpcode::G_UREM:
1515     return legalizeUDIV_UREM(MI, MRI, B);
1516   case TargetOpcode::G_SDIV:
1517   case TargetOpcode::G_SREM:
1518     return legalizeSDIV_SREM(MI, MRI, B);
1519   case TargetOpcode::G_ATOMIC_CMPXCHG:
1520     return legalizeAtomicCmpXChg(MI, MRI, B);
1521   case TargetOpcode::G_FLOG:
1522     return legalizeFlog(MI, B, numbers::ln2f);
1523   case TargetOpcode::G_FLOG10:
1524     return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f);
1525   case TargetOpcode::G_FEXP:
1526     return legalizeFExp(MI, B);
1527   case TargetOpcode::G_FPOW:
1528     return legalizeFPow(MI, B);
1529   case TargetOpcode::G_FFLOOR:
1530     return legalizeFFloor(MI, MRI, B);
1531   case TargetOpcode::G_BUILD_VECTOR:
1532     return legalizeBuildVector(MI, MRI, B);
1533   default:
1534     return false;
1535   }
1536 
1537   llvm_unreachable("expected switch to return");
1538 }
1539 
1540 Register AMDGPULegalizerInfo::getSegmentAperture(
1541   unsigned AS,
1542   MachineRegisterInfo &MRI,
1543   MachineIRBuilder &B) const {
1544   MachineFunction &MF = B.getMF();
1545   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1546   const LLT S32 = LLT::scalar(32);
1547 
1548   assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);
1549 
1550   if (ST.hasApertureRegs()) {
1551     // FIXME: Use inline constants (src_{shared, private}_base) instead of
1552     // getreg.
1553     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
1554         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
1555         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
1556     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
1557         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
1558         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
1559     unsigned Encoding =
1560         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
1561         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
1562         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
1563 
1564     Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
1565 
1566     B.buildInstr(AMDGPU::S_GETREG_B32)
1567       .addDef(GetReg)
1568       .addImm(Encoding);
1569     MRI.setType(GetReg, S32);
1570 
1571     auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
1572     return B.buildShl(S32, GetReg, ShiftAmt).getReg(0);
1573   }
1574 
1575   Register QueuePtr = MRI.createGenericVirtualRegister(
1576     LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1577 
1578   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1579   if (!loadInputValue(QueuePtr, B, &MFI->getArgInfo().QueuePtr))
1580     return Register();
1581 
1582   // Offset into amd_queue_t for group_segment_aperture_base_hi /
1583   // private_segment_aperture_base_hi.
1584   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
1585 
1586   // TODO: can we be smarter about machine pointer info?
1587   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1588   MachineMemOperand *MMO = MF.getMachineMemOperand(
1589       PtrInfo,
1590       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1591           MachineMemOperand::MOInvariant,
1592       4, commonAlignment(Align(64), StructOffset));
1593 
1594   Register LoadAddr;
1595 
1596   B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
1597   return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
1598 }
1599 
1600 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
1601   MachineInstr &MI, MachineRegisterInfo &MRI,
1602   MachineIRBuilder &B) const {
1603   MachineFunction &MF = B.getMF();
1604 
1605   const LLT S32 = LLT::scalar(32);
1606   Register Dst = MI.getOperand(0).getReg();
1607   Register Src = MI.getOperand(1).getReg();
1608 
1609   LLT DstTy = MRI.getType(Dst);
1610   LLT SrcTy = MRI.getType(Src);
1611   unsigned DestAS = DstTy.getAddressSpace();
1612   unsigned SrcAS = SrcTy.getAddressSpace();
1613 
1614   // TODO: Avoid reloading from the queue ptr for each cast, or at least each
1615   // vector element.
1616   assert(!DstTy.isVector());
1617 
1618   const AMDGPUTargetMachine &TM
1619     = static_cast<const AMDGPUTargetMachine &>(MF.getTarget());
1620 
1621   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1622   if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) {
1623     MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
1624     return true;
1625   }
1626 
1627   if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
1628     // Truncate.
1629     B.buildExtract(Dst, Src, 0);
1630     MI.eraseFromParent();
1631     return true;
1632   }
1633 
1634   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
1635     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1636     uint32_t AddrHiVal = Info->get32BitAddressHighBits();
1637 
1638     // FIXME: This is a bit ugly due to creating a merge of 2 pointers to
1639     // another. Merge operands are required to be the same type, but creating an
1640     // extra ptrtoint would be kind of pointless.
1641     auto HighAddr = B.buildConstant(
1642       LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
1643     B.buildMerge(Dst, {Src, HighAddr});
1644     MI.eraseFromParent();
1645     return true;
1646   }
1647 
1648   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
1649     assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
1650            DestAS == AMDGPUAS::PRIVATE_ADDRESS);
1651     unsigned NullVal = TM.getNullPointerValue(DestAS);
1652 
1653     auto SegmentNull = B.buildConstant(DstTy, NullVal);
1654     auto FlatNull = B.buildConstant(SrcTy, 0);
1655 
1656     // Extract low 32-bits of the pointer.
1657     auto PtrLo32 = B.buildExtract(DstTy, Src, 0);
1658 
1659     auto CmpRes =
1660         B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0));
1661     B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
1662 
1663     MI.eraseFromParent();
1664     return true;
1665   }
1666 
1667   if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS)
1668     return false;
1669 
1670   if (!ST.hasFlatAddressSpace())
1671     return false;
1672 
1673   auto SegmentNull =
1674       B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
1675   auto FlatNull =
1676       B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
1677 
1678   Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
1679   if (!ApertureReg.isValid())
1680     return false;
1681 
1682   auto CmpRes =
1683       B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0));
1684 
1685   // Coerce the type of the low half of the result so we can use merge_values.
1686   Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0);
1687 
1688   // TODO: Should we allow mismatched types but matching sizes in merges to
1689   // avoid the ptrtoint?
1690   auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg});
1691   B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
1692 
1693   MI.eraseFromParent();
1694   return true;
1695 }
1696 
1697 bool AMDGPULegalizerInfo::legalizeFrint(
1698   MachineInstr &MI, MachineRegisterInfo &MRI,
1699   MachineIRBuilder &B) const {
1700   Register Src = MI.getOperand(1).getReg();
1701   LLT Ty = MRI.getType(Src);
1702   assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
1703 
1704   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
1705   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
1706 
1707   auto C1 = B.buildFConstant(Ty, C1Val);
1708   auto CopySign = B.buildFCopysign(Ty, C1, Src);
1709 
1710   // TODO: Should this propagate fast-math-flags?
1711   auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
1712   auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);
1713 
1714   auto C2 = B.buildFConstant(Ty, C2Val);
1715   auto Fabs = B.buildFAbs(Ty, Src);
1716 
1717   auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
1718   B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
1719   return true;
1720 }
1721 
1722 bool AMDGPULegalizerInfo::legalizeFceil(
1723   MachineInstr &MI, MachineRegisterInfo &MRI,
1724   MachineIRBuilder &B) const {
1725 
1726   const LLT S1 = LLT::scalar(1);
1727   const LLT S64 = LLT::scalar(64);
1728 
1729   Register Src = MI.getOperand(1).getReg();
1730   assert(MRI.getType(Src) == S64);
1731 
1732   // result = trunc(src)
1733   // if (src > 0.0 && src != result)
1734   //   result += 1.0
1735 
1736   auto Trunc = B.buildIntrinsicTrunc(S64, Src);
1737 
1738   const auto Zero = B.buildFConstant(S64, 0.0);
1739   const auto One = B.buildFConstant(S64, 1.0);
1740   auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
1741   auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
1742   auto And = B.buildAnd(S1, Lt0, NeTrunc);
1743   auto Add = B.buildSelect(S64, And, One, Zero);
1744 
1745   // TODO: Should this propagate fast-math-flags?
1746   B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
1747   return true;
1748 }
1749 
1750 static MachineInstrBuilder extractF64Exponent(unsigned Hi,
1751                                               MachineIRBuilder &B) {
1752   const unsigned FractBits = 52;
1753   const unsigned ExpBits = 11;
1754   LLT S32 = LLT::scalar(32);
1755 
1756   auto Const0 = B.buildConstant(S32, FractBits - 32);
1757   auto Const1 = B.buildConstant(S32, ExpBits);
1758 
1759   auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
1760     .addUse(Const0.getReg(0))
1761     .addUse(Const1.getReg(0));
1762 
1763   return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
1764 }
1765 
1766 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
1767   MachineInstr &MI, MachineRegisterInfo &MRI,
1768   MachineIRBuilder &B) const {
1769   const LLT S1 = LLT::scalar(1);
1770   const LLT S32 = LLT::scalar(32);
1771   const LLT S64 = LLT::scalar(64);
1772 
1773   Register Src = MI.getOperand(1).getReg();
1774   assert(MRI.getType(Src) == S64);
1775 
1776   // TODO: Should this use extract since the low half is unused?
1777   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
1778   Register Hi = Unmerge.getReg(1);
1779 
1780   // Extract the upper half, since this is where we will find the sign and
1781   // exponent.
1782   auto Exp = extractF64Exponent(Hi, B);
1783 
1784   const unsigned FractBits = 52;
1785 
1786   // Extract the sign bit.
1787   const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
1788   auto SignBit = B.buildAnd(S32, Hi, SignBitMask);
1789 
1790   const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);
1791 
1792   const auto Zero32 = B.buildConstant(S32, 0);
1793 
1794   // Extend back to 64-bits.
1795   auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit});
1796 
1797   auto Shr = B.buildAShr(S64, FractMask, Exp);
1798   auto Not = B.buildNot(S64, Shr);
1799   auto Tmp0 = B.buildAnd(S64, Src, Not);
1800   auto FiftyOne = B.buildConstant(S32, FractBits - 1);
1801 
1802   auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
1803   auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);
1804 
1805   auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
1806   B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
1807   return true;
1808 }
1809 
1810 bool AMDGPULegalizerInfo::legalizeITOFP(
1811   MachineInstr &MI, MachineRegisterInfo &MRI,
1812   MachineIRBuilder &B, bool Signed) const {
1813 
1814   Register Dst = MI.getOperand(0).getReg();
1815   Register Src = MI.getOperand(1).getReg();
1816 
1817   const LLT S64 = LLT::scalar(64);
1818   const LLT S32 = LLT::scalar(32);
1819 
1820   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);
1821 
1822   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
1823 
1824   auto CvtHi = Signed ?
1825     B.buildSITOFP(S64, Unmerge.getReg(1)) :
1826     B.buildUITOFP(S64, Unmerge.getReg(1));
1827 
1828   auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));
1829 
1830   auto ThirtyTwo = B.buildConstant(S32, 32);
1831   auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
1832     .addUse(CvtHi.getReg(0))
1833     .addUse(ThirtyTwo.getReg(0));
1834 
1835   // TODO: Should this propagate fast-math-flags?
1836   B.buildFAdd(Dst, LdExp, CvtLo);
1837   MI.eraseFromParent();
1838   return true;
1839 }
1840 
1841 // TODO: Copied from DAG implementation. Verify logic and document how this
1842 // actually works.
1843 bool AMDGPULegalizerInfo::legalizeFPTOI(
1844   MachineInstr &MI, MachineRegisterInfo &MRI,
1845   MachineIRBuilder &B, bool Signed) const {
1846 
1847   Register Dst = MI.getOperand(0).getReg();
1848   Register Src = MI.getOperand(1).getReg();
1849 
1850   const LLT S64 = LLT::scalar(64);
1851   const LLT S32 = LLT::scalar(32);
1852 
1853   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);
1854 
1855   unsigned Flags = MI.getFlags();
1856 
1857   auto Trunc = B.buildIntrinsicTrunc(S64, Src, Flags);
1858   auto K0 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0x3df0000000000000)));
1859   auto K1 = B.buildFConstant(S64, BitsToDouble(UINT64_C(0xc1f0000000000000)));
1860 
1861   auto Mul = B.buildFMul(S64, Trunc, K0, Flags);
1862   auto FloorMul = B.buildFFloor(S64, Mul, Flags);
1863   auto Fma = B.buildFMA(S64, FloorMul, K1, Trunc, Flags);
1864 
1865   auto Hi = Signed ?
1866     B.buildFPTOSI(S32, FloorMul) :
1867     B.buildFPTOUI(S32, FloorMul);
1868   auto Lo = B.buildFPTOUI(S32, Fma);
1869 
1870   B.buildMerge(Dst, { Lo, Hi });
1871   MI.eraseFromParent();
1872 
1873   return true;
1874 }
1875 
1876 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper,
1877                                                MachineInstr &MI) const {
1878   MachineFunction &MF = Helper.MIRBuilder.getMF();
1879   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1880 
1881   const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
1882                         MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
1883 
1884   // With ieee_mode disabled, the instructions have the correct behavior
1885   // already for G_FMINNUM/G_FMAXNUM
1886   if (!MFI->getMode().IEEE)
1887     return !IsIEEEOp;
1888 
1889   if (IsIEEEOp)
1890     return true;
1891 
1892   return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
1893 }
1894 
1895 bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
1896   MachineInstr &MI, MachineRegisterInfo &MRI,
1897   MachineIRBuilder &B) const {
1898   // TODO: Should move some of this into LegalizerHelper.
1899 
1900   // TODO: Promote dynamic indexing of s16 to s32
1901 
1902   // FIXME: Artifact combiner probably should have replaced the truncated
1903   // constant before this, so we shouldn't need
1904   // getConstantVRegValWithLookThrough.
1905   Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough(
1906     MI.getOperand(2).getReg(), MRI);
1907   if (!IdxVal) // Dynamic case will be selected to register indexing.
1908     return true;
1909 
1910   Register Dst = MI.getOperand(0).getReg();
1911   Register Vec = MI.getOperand(1).getReg();
1912 
1913   LLT VecTy = MRI.getType(Vec);
1914   LLT EltTy = VecTy.getElementType();
1915   assert(EltTy == MRI.getType(Dst));
1916 
1917   if (IdxVal->Value < VecTy.getNumElements())
1918     B.buildExtract(Dst, Vec, IdxVal->Value * EltTy.getSizeInBits());
1919   else
1920     B.buildUndef(Dst);
1921 
1922   MI.eraseFromParent();
1923   return true;
1924 }
1925 
1926 bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
1927   MachineInstr &MI, MachineRegisterInfo &MRI,
1928   MachineIRBuilder &B) const {
1929   // TODO: Should move some of this into LegalizerHelper.
1930 
1931   // TODO: Promote dynamic indexing of s16 to s32
1932 
1933   // FIXME: Artifact combiner probably should have replaced the truncated
1934   // constant before this, so we shouldn't need
1935   // getConstantVRegValWithLookThrough.
1936   Optional<ValueAndVReg> IdxVal = getConstantVRegValWithLookThrough(
1937     MI.getOperand(3).getReg(), MRI);
1938   if (!IdxVal) // Dynamic case will be selected to register indexing.
1939     return true;
1940 
1941   Register Dst = MI.getOperand(0).getReg();
1942   Register Vec = MI.getOperand(1).getReg();
1943   Register Ins = MI.getOperand(2).getReg();
1944 
1945   LLT VecTy = MRI.getType(Vec);
1946   LLT EltTy = VecTy.getElementType();
1947   assert(EltTy == MRI.getType(Ins));
1948 
1949   if (IdxVal->Value < VecTy.getNumElements())
1950     B.buildInsert(Dst, Vec, Ins, IdxVal->Value * EltTy.getSizeInBits());
1951   else
1952     B.buildUndef(Dst);
1953 
1954   MI.eraseFromParent();
1955   return true;
1956 }
1957 
1958 bool AMDGPULegalizerInfo::legalizeShuffleVector(
1959   MachineInstr &MI, MachineRegisterInfo &MRI,
1960   MachineIRBuilder &B) const {
1961   const LLT V2S16 = LLT::vector(2, 16);
1962 
1963   Register Dst = MI.getOperand(0).getReg();
1964   Register Src0 = MI.getOperand(1).getReg();
1965   LLT DstTy = MRI.getType(Dst);
1966   LLT SrcTy = MRI.getType(Src0);
1967 
1968   if (SrcTy == V2S16 && DstTy == V2S16 &&
1969       AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask()))
1970     return true;
1971 
1972   MachineIRBuilder HelperBuilder(MI);
1973   GISelObserverWrapper DummyObserver;
1974   LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder);
1975   return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized;
1976 }
1977 
1978 bool AMDGPULegalizerInfo::legalizeSinCos(
1979   MachineInstr &MI, MachineRegisterInfo &MRI,
1980   MachineIRBuilder &B) const {
1981 
1982   Register DstReg = MI.getOperand(0).getReg();
1983   Register SrcReg = MI.getOperand(1).getReg();
1984   LLT Ty = MRI.getType(DstReg);
1985   unsigned Flags = MI.getFlags();
1986 
1987   Register TrigVal;
1988   auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi);
1989   if (ST.hasTrigReducedRange()) {
1990     auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
1991     TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
1992       .addUse(MulVal.getReg(0))
1993       .setMIFlags(Flags).getReg(0);
1994   } else
1995     TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
1996 
1997   Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
1998     Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
1999   B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
2000     .addUse(TrigVal)
2001     .setMIFlags(Flags);
2002   MI.eraseFromParent();
2003   return true;
2004 }
2005 
2006 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy,
2007                                                   MachineIRBuilder &B,
2008                                                   const GlobalValue *GV,
2009                                                   int64_t Offset,
2010                                                   unsigned GAFlags) const {
2011   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
2012   // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
2013   // to the following code sequence:
2014   //
2015   // For constant address space:
2016   //   s_getpc_b64 s[0:1]
2017   //   s_add_u32 s0, s0, $symbol
2018   //   s_addc_u32 s1, s1, 0
2019   //
2020   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2021   //   a fixup or relocation is emitted to replace $symbol with a literal
2022   //   constant, which is a pc-relative offset from the encoding of the $symbol
2023   //   operand to the global variable.
2024   //
2025   // For global address space:
2026   //   s_getpc_b64 s[0:1]
2027   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
2028   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
2029   //
2030   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2031   //   fixups or relocations are emitted to replace $symbol@*@lo and
2032   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
2033   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
2034   //   operand to the global variable.
2035   //
2036   // What we want here is an offset from the value returned by s_getpc
2037   // (which is the address of the s_add_u32 instruction) to the global
2038   // variable, but since the encoding of $symbol starts 4 bytes after the start
2039   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
2040   // small. This requires us to add 4 to the global variable offset in order to
2041   // compute the correct address.
2042 
2043   LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2044 
2045   Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
2046     B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
2047 
2048   MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
2049     .addDef(PCReg);
2050 
2051   MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
2052   if (GAFlags == SIInstrInfo::MO_NONE)
2053     MIB.addImm(0);
2054   else
2055     MIB.addGlobalAddress(GV, Offset + 4, GAFlags + 1);
2056 
2057   B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
2058 
2059   if (PtrTy.getSizeInBits() == 32)
2060     B.buildExtract(DstReg, PCReg, 0);
2061   return true;
2062  }
2063 
2064 bool AMDGPULegalizerInfo::legalizeGlobalValue(
2065   MachineInstr &MI, MachineRegisterInfo &MRI,
2066   MachineIRBuilder &B) const {
2067   Register DstReg = MI.getOperand(0).getReg();
2068   LLT Ty = MRI.getType(DstReg);
2069   unsigned AS = Ty.getAddressSpace();
2070 
2071   const GlobalValue *GV = MI.getOperand(1).getGlobal();
2072   MachineFunction &MF = B.getMF();
2073   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2074 
2075   if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
2076     if (!MFI->isEntryFunction()) {
2077       const Function &Fn = MF.getFunction();
2078       DiagnosticInfoUnsupported BadLDSDecl(
2079         Fn, "local memory global used by non-kernel function", MI.getDebugLoc(),
2080         DS_Warning);
2081       Fn.getContext().diagnose(BadLDSDecl);
2082 
2083       // We currently don't have a way to correctly allocate LDS objects that
2084       // aren't directly associated with a kernel. We do force inlining of
2085       // functions that use local objects. However, if these dead functions are
2086       // not eliminated, we don't want a compile time error. Just emit a warning
2087       // and a trap, since there should be no callable path here.
2088       B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2089       B.buildUndef(DstReg);
2090       MI.eraseFromParent();
2091       return true;
2092     }
2093 
2094     // TODO: We could emit code to handle the initialization somewhere.
2095     if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) {
2096       const SITargetLowering *TLI = ST.getTargetLowering();
2097       if (!TLI->shouldUseLDSConstAddress(GV)) {
2098         MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO);
2099         return true; // Leave in place;
2100       }
2101 
2102       B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(), *GV));
2103       MI.eraseFromParent();
2104       return true;
2105     }
2106 
2107     const Function &Fn = MF.getFunction();
2108     DiagnosticInfoUnsupported BadInit(
2109       Fn, "unsupported initializer for address space", MI.getDebugLoc());
2110     Fn.getContext().diagnose(BadInit);
2111     return true;
2112   }
2113 
2114   const SITargetLowering *TLI = ST.getTargetLowering();
2115 
2116   if (TLI->shouldEmitFixup(GV)) {
2117     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
2118     MI.eraseFromParent();
2119     return true;
2120   }
2121 
2122   if (TLI->shouldEmitPCReloc(GV)) {
2123     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
2124     MI.eraseFromParent();
2125     return true;
2126   }
2127 
2128   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2129   Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);
2130 
2131   MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
2132       MachinePointerInfo::getGOT(MF),
2133       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
2134           MachineMemOperand::MOInvariant,
2135       8 /*Size*/, Align(8));
2136 
2137   buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);
2138 
2139   if (Ty.getSizeInBits() == 32) {
2140     // Truncate if this is a 32-bit constant adrdess.
2141     auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
2142     B.buildExtract(DstReg, Load, 0);
2143   } else
2144     B.buildLoad(DstReg, GOTAddr, *GOTMMO);
2145 
2146   MI.eraseFromParent();
2147   return true;
2148 }
2149 
2150 bool AMDGPULegalizerInfo::legalizeLoad(
2151   MachineInstr &MI, MachineRegisterInfo &MRI,
2152   MachineIRBuilder &B, GISelChangeObserver &Observer) const {
2153   LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2154   auto Cast = B.buildAddrSpaceCast(ConstPtr, MI.getOperand(1).getReg());
2155   Observer.changingInstr(MI);
2156   MI.getOperand(1).setReg(Cast.getReg(0));
2157   Observer.changedInstr(MI);
2158   return true;
2159 }
2160 
2161 bool AMDGPULegalizerInfo::legalizeFMad(
2162   MachineInstr &MI, MachineRegisterInfo &MRI,
2163   MachineIRBuilder &B) const {
2164   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2165   assert(Ty.isScalar());
2166 
2167   MachineFunction &MF = B.getMF();
2168   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2169 
2170   // TODO: Always legal with future ftz flag.
2171   // FIXME: Do we need just output?
2172   if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals())
2173     return true;
2174   if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals())
2175     return true;
2176 
2177   MachineIRBuilder HelperBuilder(MI);
2178   GISelObserverWrapper DummyObserver;
2179   LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
2180   return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
2181 }
2182 
2183 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg(
2184   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2185   Register DstReg = MI.getOperand(0).getReg();
2186   Register PtrReg = MI.getOperand(1).getReg();
2187   Register CmpVal = MI.getOperand(2).getReg();
2188   Register NewVal = MI.getOperand(3).getReg();
2189 
2190   assert(SITargetLowering::isFlatGlobalAddrSpace(
2191            MRI.getType(PtrReg).getAddressSpace()) &&
2192          "this should not have been custom lowered");
2193 
2194   LLT ValTy = MRI.getType(CmpVal);
2195   LLT VecTy = LLT::vector(2, ValTy);
2196 
2197   Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0);
2198 
2199   B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
2200     .addDef(DstReg)
2201     .addUse(PtrReg)
2202     .addUse(PackedVal)
2203     .setMemRefs(MI.memoperands());
2204 
2205   MI.eraseFromParent();
2206   return true;
2207 }
2208 
2209 bool AMDGPULegalizerInfo::legalizeFlog(
2210   MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const {
2211   Register Dst = MI.getOperand(0).getReg();
2212   Register Src = MI.getOperand(1).getReg();
2213   LLT Ty = B.getMRI()->getType(Dst);
2214   unsigned Flags = MI.getFlags();
2215 
2216   auto Log2Operand = B.buildFLog2(Ty, Src, Flags);
2217   auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted);
2218 
2219   B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
2220   MI.eraseFromParent();
2221   return true;
2222 }
2223 
2224 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI,
2225                                        MachineIRBuilder &B) const {
2226   Register Dst = MI.getOperand(0).getReg();
2227   Register Src = MI.getOperand(1).getReg();
2228   unsigned Flags = MI.getFlags();
2229   LLT Ty = B.getMRI()->getType(Dst);
2230 
2231   auto K = B.buildFConstant(Ty, numbers::log2e);
2232   auto Mul = B.buildFMul(Ty, Src, K, Flags);
2233   B.buildFExp2(Dst, Mul, Flags);
2234   MI.eraseFromParent();
2235   return true;
2236 }
2237 
2238 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI,
2239                                        MachineIRBuilder &B) const {
2240   Register Dst = MI.getOperand(0).getReg();
2241   Register Src0 = MI.getOperand(1).getReg();
2242   Register Src1 = MI.getOperand(2).getReg();
2243   unsigned Flags = MI.getFlags();
2244   LLT Ty = B.getMRI()->getType(Dst);
2245   const LLT S16 = LLT::scalar(16);
2246   const LLT S32 = LLT::scalar(32);
2247 
2248   if (Ty == S32) {
2249     auto Log = B.buildFLog2(S32, Src0, Flags);
2250     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2251       .addUse(Log.getReg(0))
2252       .addUse(Src1)
2253       .setMIFlags(Flags);
2254     B.buildFExp2(Dst, Mul, Flags);
2255   } else if (Ty == S16) {
2256     // There's no f16 fmul_legacy, so we need to convert for it.
2257     auto Log = B.buildFLog2(S16, Src0, Flags);
2258     auto Ext0 = B.buildFPExt(S32, Log, Flags);
2259     auto Ext1 = B.buildFPExt(S32, Src1, Flags);
2260     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2261       .addUse(Ext0.getReg(0))
2262       .addUse(Ext1.getReg(0))
2263       .setMIFlags(Flags);
2264 
2265     B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags);
2266   } else
2267     return false;
2268 
2269   MI.eraseFromParent();
2270   return true;
2271 }
2272 
2273 // Find a source register, ignoring any possible source modifiers.
2274 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) {
2275   Register ModSrc = OrigSrc;
2276   if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) {
2277     ModSrc = SrcFNeg->getOperand(1).getReg();
2278     if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2279       ModSrc = SrcFAbs->getOperand(1).getReg();
2280   } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2281     ModSrc = SrcFAbs->getOperand(1).getReg();
2282   return ModSrc;
2283 }
2284 
2285 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI,
2286                                          MachineRegisterInfo &MRI,
2287                                          MachineIRBuilder &B) const {
2288 
2289   const LLT S1 = LLT::scalar(1);
2290   const LLT S64 = LLT::scalar(64);
2291   Register Dst = MI.getOperand(0).getReg();
2292   Register OrigSrc = MI.getOperand(1).getReg();
2293   unsigned Flags = MI.getFlags();
2294   assert(ST.hasFractBug() && MRI.getType(Dst) == S64 &&
2295          "this should not have been custom lowered");
2296 
2297   // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x))
2298   // is used instead. However, SI doesn't have V_FLOOR_F64, so the most
2299   // efficient way to implement it is using V_FRACT_F64. The workaround for the
2300   // V_FRACT bug is:
2301   //    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
2302   //
2303   // Convert floor(x) to (x - fract(x))
2304 
2305   auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false)
2306     .addUse(OrigSrc)
2307     .setMIFlags(Flags);
2308 
2309   // Give source modifier matching some assistance before obscuring a foldable
2310   // pattern.
2311 
2312   // TODO: We can avoid the neg on the fract? The input sign to fract
2313   // shouldn't matter?
2314   Register ModSrc = stripAnySourceMods(OrigSrc, MRI);
2315 
2316   auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff));
2317 
2318   Register Min = MRI.createGenericVirtualRegister(S64);
2319 
2320   // We don't need to concern ourselves with the snan handling difference, so
2321   // use the one which will directly select.
2322   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2323   if (MFI->getMode().IEEE)
2324     B.buildFMinNumIEEE(Min, Fract, Const, Flags);
2325   else
2326     B.buildFMinNum(Min, Fract, Const, Flags);
2327 
2328   Register CorrectedFract = Min;
2329   if (!MI.getFlag(MachineInstr::FmNoNans)) {
2330     auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags);
2331     CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0);
2332   }
2333 
2334   auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags);
2335   B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
2336 
2337   MI.eraseFromParent();
2338   return true;
2339 }
2340 
2341 // Turn an illegal packed v2s16 build vector into bit operations.
2342 // TODO: This should probably be a bitcast action in LegalizerHelper.
2343 bool AMDGPULegalizerInfo::legalizeBuildVector(
2344   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2345   Register Dst = MI.getOperand(0).getReg();
2346   const LLT S32 = LLT::scalar(32);
2347   assert(MRI.getType(Dst) == LLT::vector(2, 16));
2348 
2349   Register Src0 = MI.getOperand(1).getReg();
2350   Register Src1 = MI.getOperand(2).getReg();
2351   assert(MRI.getType(Src0) == LLT::scalar(16));
2352 
2353   auto Merge = B.buildMerge(S32, {Src0, Src1});
2354   B.buildBitcast(Dst, Merge);
2355 
2356   MI.eraseFromParent();
2357   return true;
2358 }
2359 
2360 // Return the use branch instruction, otherwise null if the usage is invalid.
2361 static MachineInstr *verifyCFIntrinsic(MachineInstr &MI,
2362                                        MachineRegisterInfo &MRI,
2363                                        MachineInstr *&Br,
2364                                        MachineBasicBlock *&UncondBrTarget) {
2365   Register CondDef = MI.getOperand(0).getReg();
2366   if (!MRI.hasOneNonDBGUse(CondDef))
2367     return nullptr;
2368 
2369   MachineBasicBlock *Parent = MI.getParent();
2370   MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef);
2371   if (UseMI.getParent() != Parent ||
2372       UseMI.getOpcode() != AMDGPU::G_BRCOND)
2373     return nullptr;
2374 
2375   // Make sure the cond br is followed by a G_BR, or is the last instruction.
2376   MachineBasicBlock::iterator Next = std::next(UseMI.getIterator());
2377   if (Next == Parent->end()) {
2378     MachineFunction::iterator NextMBB = std::next(Parent->getIterator());
2379     if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use.
2380       return nullptr;
2381     UncondBrTarget = &*NextMBB;
2382   } else {
2383     if (Next->getOpcode() != AMDGPU::G_BR)
2384       return nullptr;
2385     Br = &*Next;
2386     UncondBrTarget = Br->getOperand(0).getMBB();
2387   }
2388 
2389   return &UseMI;
2390 }
2391 
2392 Register AMDGPULegalizerInfo::insertLiveInCopy(MachineIRBuilder &B,
2393                                                MachineRegisterInfo &MRI,
2394                                                Register LiveIn,
2395                                                Register PhyReg) const {
2396   assert(PhyReg.isPhysical() && "Physical register expected");
2397 
2398   // Insert the live-in copy, if required, by defining destination virtual
2399   // register.
2400   // FIXME: It seems EmitLiveInCopies isn't called anywhere?
2401   if (!MRI.getVRegDef(LiveIn)) {
2402     // FIXME: Should have scoped insert pt
2403     MachineBasicBlock &OrigInsBB = B.getMBB();
2404     auto OrigInsPt = B.getInsertPt();
2405 
2406     MachineBasicBlock &EntryMBB = B.getMF().front();
2407     EntryMBB.addLiveIn(PhyReg);
2408     B.setInsertPt(EntryMBB, EntryMBB.begin());
2409     B.buildCopy(LiveIn, PhyReg);
2410 
2411     B.setInsertPt(OrigInsBB, OrigInsPt);
2412   }
2413 
2414   return LiveIn;
2415 }
2416 
2417 Register AMDGPULegalizerInfo::getLiveInRegister(MachineIRBuilder &B,
2418                                                 MachineRegisterInfo &MRI,
2419                                                 Register PhyReg, LLT Ty,
2420                                                 bool InsertLiveInCopy) const {
2421   assert(PhyReg.isPhysical() && "Physical register expected");
2422 
2423   // Get or create virtual live-in regester
2424   Register LiveIn = MRI.getLiveInVirtReg(PhyReg);
2425   if (!LiveIn) {
2426     LiveIn = MRI.createGenericVirtualRegister(Ty);
2427     MRI.addLiveIn(PhyReg, LiveIn);
2428   }
2429 
2430   // When the actual true copy required is from virtual register to physical
2431   // register (to be inserted later), live-in copy insertion from physical
2432   // to register virtual register is not required
2433   if (!InsertLiveInCopy)
2434     return LiveIn;
2435 
2436   return insertLiveInCopy(B, MRI, LiveIn, PhyReg);
2437 }
2438 
2439 const ArgDescriptor *AMDGPULegalizerInfo::getArgDescriptor(
2440     MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
2441   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2442   const ArgDescriptor *Arg;
2443   const TargetRegisterClass *RC;
2444   std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType);
2445   if (!Arg) {
2446     LLVM_DEBUG(dbgs() << "Required arg register missing\n");
2447     return nullptr;
2448   }
2449   return Arg;
2450 }
2451 
2452 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
2453                                          const ArgDescriptor *Arg) const {
2454   if (!Arg->isRegister() || !Arg->getRegister().isValid())
2455     return false; // TODO: Handle these
2456 
2457   Register SrcReg = Arg->getRegister();
2458   assert(SrcReg.isPhysical() && "Physical register expected");
2459   assert(DstReg.isVirtual() && "Virtual register expected");
2460 
2461   MachineRegisterInfo &MRI = *B.getMRI();
2462 
2463   LLT Ty = MRI.getType(DstReg);
2464   Register LiveIn = getLiveInRegister(B, MRI, SrcReg, Ty);
2465 
2466   if (Arg->isMasked()) {
2467     // TODO: Should we try to emit this once in the entry block?
2468     const LLT S32 = LLT::scalar(32);
2469     const unsigned Mask = Arg->getMask();
2470     const unsigned Shift = countTrailingZeros<unsigned>(Mask);
2471 
2472     Register AndMaskSrc = LiveIn;
2473 
2474     if (Shift != 0) {
2475       auto ShiftAmt = B.buildConstant(S32, Shift);
2476       AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
2477     }
2478 
2479     B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
2480   } else {
2481     B.buildCopy(DstReg, LiveIn);
2482   }
2483 
2484   return true;
2485 }
2486 
2487 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
2488     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
2489     AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
2490 
2491   const ArgDescriptor *Arg = getArgDescriptor(B, ArgType);
2492   if (!Arg)
2493     return false;
2494 
2495   if (!loadInputValue(MI.getOperand(0).getReg(), B, Arg))
2496     return false;
2497 
2498   MI.eraseFromParent();
2499   return true;
2500 }
2501 
2502 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
2503                                        MachineRegisterInfo &MRI,
2504                                        MachineIRBuilder &B) const {
2505   Register Dst = MI.getOperand(0).getReg();
2506   LLT DstTy = MRI.getType(Dst);
2507   LLT S16 = LLT::scalar(16);
2508   LLT S32 = LLT::scalar(32);
2509   LLT S64 = LLT::scalar(64);
2510 
2511   if (legalizeFastUnsafeFDIV(MI, MRI, B))
2512     return true;
2513 
2514   if (DstTy == S16)
2515     return legalizeFDIV16(MI, MRI, B);
2516   if (DstTy == S32)
2517     return legalizeFDIV32(MI, MRI, B);
2518   if (DstTy == S64)
2519     return legalizeFDIV64(MI, MRI, B);
2520 
2521   return false;
2522 }
2523 
2524 static Register buildDivRCP(MachineIRBuilder &B, Register Src) {
2525   const LLT S32 = LLT::scalar(32);
2526 
2527   auto Cvt0 = B.buildUITOFP(S32, Src);
2528   auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Cvt0});
2529   auto FPUIntMaxPlus1 = B.buildFConstant(S32, BitsToFloat(0x4f800000));
2530   auto Mul = B.buildFMul(S32, RcpIFlag, FPUIntMaxPlus1);
2531   return B.buildFPTOUI(S32, Mul).getReg(0);
2532 }
2533 
2534 void AMDGPULegalizerInfo::legalizeUDIV_UREM32Impl(MachineIRBuilder &B,
2535                                                   Register DstReg,
2536                                                   Register Num,
2537                                                   Register Den,
2538                                                   bool IsRem) const {
2539   const LLT S1 = LLT::scalar(1);
2540   const LLT S32 = LLT::scalar(32);
2541 
2542   // RCP =  URECIP(Den) = 2^32 / Den + e
2543   // e is rounding error.
2544   auto RCP = buildDivRCP(B, Den);
2545 
2546   // RCP_LO = mul(RCP, Den)
2547   auto RCP_LO = B.buildMul(S32, RCP, Den);
2548 
2549   // RCP_HI = mulhu (RCP, Den) */
2550   auto RCP_HI = B.buildUMulH(S32, RCP, Den);
2551 
2552   // NEG_RCP_LO = -RCP_LO
2553   auto Zero = B.buildConstant(S32, 0);
2554   auto NEG_RCP_LO = B.buildSub(S32, Zero, RCP_LO);
2555 
2556   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
2557   auto CmpRcpHiZero = B.buildICmp(CmpInst::ICMP_EQ, S1, RCP_HI, Zero);
2558   auto ABS_RCP_LO = B.buildSelect(S32, CmpRcpHiZero, NEG_RCP_LO, RCP_LO);
2559 
2560   // Calculate the rounding error from the URECIP instruction
2561   // E = mulhu(ABS_RCP_LO, RCP)
2562   auto E = B.buildUMulH(S32, ABS_RCP_LO, RCP);
2563 
2564   // RCP_A_E = RCP + E
2565   auto RCP_A_E = B.buildAdd(S32, RCP, E);
2566 
2567   // RCP_S_E = RCP - E
2568   auto RCP_S_E = B.buildSub(S32, RCP, E);
2569 
2570   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
2571   auto Tmp0 = B.buildSelect(S32, CmpRcpHiZero, RCP_A_E, RCP_S_E);
2572 
2573   // Quotient = mulhu(Tmp0, Num)stmp
2574   auto Quotient = B.buildUMulH(S32, Tmp0, Num);
2575 
2576   // Num_S_Remainder = Quotient * Den
2577   auto Num_S_Remainder = B.buildMul(S32, Quotient, Den);
2578 
2579   // Remainder = Num - Num_S_Remainder
2580   auto Remainder = B.buildSub(S32, Num, Num_S_Remainder);
2581 
2582   // Remainder_GE_Den = Remainder >= Den
2583   auto Remainder_GE_Den = B.buildICmp(CmpInst::ICMP_UGE, S1, Remainder, Den);
2584 
2585   // Remainder_GE_Zero = Num >= Num_S_Remainder;
2586   auto Remainder_GE_Zero = B.buildICmp(CmpInst::ICMP_UGE, S1,
2587                                        Num, Num_S_Remainder);
2588 
2589   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
2590   auto Tmp1 = B.buildAnd(S1, Remainder_GE_Den, Remainder_GE_Zero);
2591 
2592   // Calculate Division result:
2593 
2594   // Quotient_A_One = Quotient + 1
2595   auto One = B.buildConstant(S32, 1);
2596   auto Quotient_A_One = B.buildAdd(S32, Quotient, One);
2597 
2598   // Quotient_S_One = Quotient - 1
2599   auto Quotient_S_One = B.buildSub(S32, Quotient, One);
2600 
2601   // Div = (Tmp1 ? Quotient_A_One : Quotient)
2602   auto Div = B.buildSelect(S32, Tmp1, Quotient_A_One, Quotient);
2603 
2604   // Div = (Remainder_GE_Zero ? Div : Quotient_S_One)
2605   if (IsRem) {
2606     Div = B.buildSelect(S32, Remainder_GE_Zero, Div, Quotient_S_One);
2607 
2608     // Calculate Rem result:
2609     auto Remainder_S_Den = B.buildSub(S32, Remainder, Den);
2610 
2611     // Remainder_A_Den = Remainder + Den
2612     auto Remainder_A_Den = B.buildAdd(S32, Remainder, Den);
2613 
2614     // Rem = (Tmp1 ? Remainder_S_Den : Remainder)
2615     auto Rem = B.buildSelect(S32, Tmp1, Remainder_S_Den, Remainder);
2616 
2617     // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den)
2618     B.buildSelect(DstReg, Remainder_GE_Zero, Rem, Remainder_A_Den);
2619   } else {
2620     B.buildSelect(DstReg, Remainder_GE_Zero, Div, Quotient_S_One);
2621   }
2622 }
2623 
2624 bool AMDGPULegalizerInfo::legalizeUDIV_UREM32(MachineInstr &MI,
2625                                               MachineRegisterInfo &MRI,
2626                                               MachineIRBuilder &B) const {
2627   const bool IsRem = MI.getOpcode() == AMDGPU::G_UREM;
2628   Register DstReg = MI.getOperand(0).getReg();
2629   Register Num = MI.getOperand(1).getReg();
2630   Register Den = MI.getOperand(2).getReg();
2631   legalizeUDIV_UREM32Impl(B, DstReg, Num, Den, IsRem);
2632   MI.eraseFromParent();
2633   return true;
2634 }
2635 
2636 // Build integer reciprocal sequence arounud V_RCP_IFLAG_F32
2637 //
2638 // Return lo, hi of result
2639 //
2640 // %cvt.lo = G_UITOFP Val.lo
2641 // %cvt.hi = G_UITOFP Val.hi
2642 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo
2643 // %rcp = G_AMDGPU_RCP_IFLAG %mad
2644 // %mul1 = G_FMUL %rcp, 0x5f7ffffc
2645 // %mul2 = G_FMUL %mul1, 2**(-32)
2646 // %trunc = G_INTRINSIC_TRUNC %mul2
2647 // %mad2 = G_FMAD %trunc, -(2**32), %mul1
2648 // return {G_FPTOUI %mad2, G_FPTOUI %trunc}
2649 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B,
2650                                                        Register Val) {
2651   const LLT S32 = LLT::scalar(32);
2652   auto Unmerge = B.buildUnmerge(S32, Val);
2653 
2654   auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0));
2655   auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1));
2656 
2657   auto Mad = B.buildFMAD(S32, CvtHi, // 2**32
2658                          B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo);
2659 
2660   auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad});
2661   auto Mul1 =
2662       B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc)));
2663 
2664   // 2**(-32)
2665   auto Mul2 =
2666       B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000)));
2667   auto Trunc = B.buildIntrinsicTrunc(S32, Mul2);
2668 
2669   // -(2**32)
2670   auto Mad2 = B.buildFMAD(S32, Trunc,
2671                           B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1);
2672 
2673   auto ResultLo = B.buildFPTOUI(S32, Mad2);
2674   auto ResultHi = B.buildFPTOUI(S32, Trunc);
2675 
2676   return {ResultLo.getReg(0), ResultHi.getReg(0)};
2677 }
2678 
2679 bool AMDGPULegalizerInfo::legalizeUDIV_UREM64(MachineInstr &MI,
2680                                               MachineRegisterInfo &MRI,
2681                                               MachineIRBuilder &B) const {
2682   const bool IsDiv = MI.getOpcode() == TargetOpcode::G_UDIV;
2683   const LLT S32 = LLT::scalar(32);
2684   const LLT S64 = LLT::scalar(64);
2685   const LLT S1 = LLT::scalar(1);
2686   Register Numer = MI.getOperand(1).getReg();
2687   Register Denom = MI.getOperand(2).getReg();
2688   Register RcpLo, RcpHi;
2689 
2690   std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom);
2691 
2692   auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi});
2693 
2694   auto Zero64 = B.buildConstant(S64, 0);
2695   auto NegDenom = B.buildSub(S64, Zero64, Denom);
2696 
2697   auto MulLo1 = B.buildMul(S64, NegDenom, Rcp);
2698   auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1);
2699 
2700   auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1);
2701   Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
2702   Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
2703 
2704   auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo);
2705   auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
2706   auto Add1_HiNc = B.buildAdd(S32, RcpHi, MulHi1_Hi);
2707   auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi});
2708 
2709   auto MulLo2 = B.buildMul(S64, NegDenom, Add1);
2710   auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2);
2711   auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2);
2712   Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
2713   Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
2714 
2715   auto Zero32 = B.buildConstant(S32, 0);
2716   auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo);
2717   auto Add2_HiC =
2718       B.buildUAdde(S32, S1, Add1_HiNc, MulHi2_Hi, Add1_Lo.getReg(1));
2719   auto Add2_Hi = B.buildUAdde(S32, S1, Add2_HiC, Zero32, Add2_Lo.getReg(1));
2720   auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi});
2721 
2722   auto UnmergeNumer = B.buildUnmerge(S32, Numer);
2723   Register NumerLo = UnmergeNumer.getReg(0);
2724   Register NumerHi = UnmergeNumer.getReg(1);
2725 
2726   auto MulHi3 = B.buildUMulH(S64, Numer, Add2);
2727   auto Mul3 = B.buildMul(S64, Denom, MulHi3);
2728   auto UnmergeMul3 = B.buildUnmerge(S32, Mul3);
2729   Register Mul3_Lo = UnmergeMul3.getReg(0);
2730   Register Mul3_Hi = UnmergeMul3.getReg(1);
2731   auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo);
2732   auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
2733   auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi);
2734   auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi});
2735 
2736   auto UnmergeDenom = B.buildUnmerge(S32, Denom);
2737   Register DenomLo = UnmergeDenom.getReg(0);
2738   Register DenomHi = UnmergeDenom.getReg(1);
2739 
2740   auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi);
2741   auto C1 = B.buildSExt(S32, CmpHi);
2742 
2743   auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo);
2744   auto C2 = B.buildSExt(S32, CmpLo);
2745 
2746   auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi);
2747   auto C3 = B.buildSelect(S32, CmpEq, C2, C1);
2748 
2749   // TODO: Here and below portions of the code can be enclosed into if/endif.
2750   // Currently control flow is unconditional and we have 4 selects after
2751   // potential endif to substitute PHIs.
2752 
2753   // if C3 != 0 ...
2754   auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo);
2755   auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
2756   auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
2757   auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi});
2758 
2759   auto One64 = B.buildConstant(S64, 1);
2760   auto Add3 = B.buildAdd(S64, MulHi3, One64);
2761 
2762   auto C4 =
2763       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi));
2764   auto C5 =
2765       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo));
2766   auto C6 = B.buildSelect(
2767       S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4);
2768 
2769   // if (C6 != 0)
2770   auto Add4 = B.buildAdd(S64, Add3, One64);
2771   auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo);
2772 
2773   auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
2774   auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
2775   auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi});
2776 
2777   // endif C6
2778   // endif C3
2779 
2780   if (IsDiv) {
2781     auto Sel1 = B.buildSelect(
2782         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3);
2783     B.buildSelect(MI.getOperand(0),
2784                   B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel1, MulHi3);
2785   } else {
2786     auto Sel2 = B.buildSelect(
2787         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2);
2788     B.buildSelect(MI.getOperand(0),
2789                   B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32), Sel2, Sub1);
2790   }
2791 
2792   MI.eraseFromParent();
2793   return true;
2794 }
2795 
2796 bool AMDGPULegalizerInfo::legalizeUDIV_UREM(MachineInstr &MI,
2797                                             MachineRegisterInfo &MRI,
2798                                             MachineIRBuilder &B) const {
2799   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2800   if (Ty == LLT::scalar(32))
2801     return legalizeUDIV_UREM32(MI, MRI, B);
2802   if (Ty == LLT::scalar(64))
2803     return legalizeUDIV_UREM64(MI, MRI, B);
2804   return false;
2805 }
2806 
2807 bool AMDGPULegalizerInfo::legalizeSDIV_SREM32(MachineInstr &MI,
2808                                               MachineRegisterInfo &MRI,
2809                                               MachineIRBuilder &B) const {
2810   const LLT S32 = LLT::scalar(32);
2811 
2812   const bool IsRem = MI.getOpcode() == AMDGPU::G_SREM;
2813   Register DstReg = MI.getOperand(0).getReg();
2814   Register LHS = MI.getOperand(1).getReg();
2815   Register RHS = MI.getOperand(2).getReg();
2816 
2817   auto ThirtyOne = B.buildConstant(S32, 31);
2818   auto LHSign = B.buildAShr(S32, LHS, ThirtyOne);
2819   auto RHSign = B.buildAShr(S32, RHS, ThirtyOne);
2820 
2821   LHS = B.buildAdd(S32, LHS, LHSign).getReg(0);
2822   RHS = B.buildAdd(S32, RHS, RHSign).getReg(0);
2823 
2824   LHS = B.buildXor(S32, LHS, LHSign).getReg(0);
2825   RHS = B.buildXor(S32, RHS, RHSign).getReg(0);
2826 
2827   Register UDivRem = MRI.createGenericVirtualRegister(S32);
2828   legalizeUDIV_UREM32Impl(B, UDivRem, LHS, RHS, IsRem);
2829 
2830   if (IsRem) {
2831     auto RSign = LHSign; // Remainder sign is the same as LHS
2832     UDivRem = B.buildXor(S32, UDivRem, RSign).getReg(0);
2833     B.buildSub(DstReg, UDivRem, RSign);
2834   } else {
2835     auto DSign = B.buildXor(S32, LHSign, RHSign);
2836     UDivRem = B.buildXor(S32, UDivRem, DSign).getReg(0);
2837     B.buildSub(DstReg, UDivRem, DSign);
2838   }
2839 
2840   MI.eraseFromParent();
2841   return true;
2842 }
2843 
2844 bool AMDGPULegalizerInfo::legalizeSDIV_SREM(MachineInstr &MI,
2845                                             MachineRegisterInfo &MRI,
2846                                             MachineIRBuilder &B) const {
2847   if (MRI.getType(MI.getOperand(0).getReg()) == LLT::scalar(32))
2848     return legalizeSDIV_SREM32(MI, MRI, B);
2849   return false;
2850 }
2851 
2852 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
2853                                                  MachineRegisterInfo &MRI,
2854                                                  MachineIRBuilder &B) const {
2855   Register Res = MI.getOperand(0).getReg();
2856   Register LHS = MI.getOperand(1).getReg();
2857   Register RHS = MI.getOperand(2).getReg();
2858 
2859   uint16_t Flags = MI.getFlags();
2860 
2861   LLT ResTy = MRI.getType(Res);
2862   LLT S32 = LLT::scalar(32);
2863   LLT S64 = LLT::scalar(64);
2864 
2865   const MachineFunction &MF = B.getMF();
2866   bool Unsafe =
2867     MF.getTarget().Options.UnsafeFPMath || MI.getFlag(MachineInstr::FmArcp);
2868 
2869   if (!MF.getTarget().Options.UnsafeFPMath && ResTy == S64)
2870     return false;
2871 
2872   if (!Unsafe && ResTy == S32 &&
2873       MF.getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals())
2874     return false;
2875 
2876   if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
2877     // 1 / x -> RCP(x)
2878     if (CLHS->isExactlyValue(1.0)) {
2879       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
2880         .addUse(RHS)
2881         .setMIFlags(Flags);
2882 
2883       MI.eraseFromParent();
2884       return true;
2885     }
2886 
2887     // -1 / x -> RCP( FNEG(x) )
2888     if (CLHS->isExactlyValue(-1.0)) {
2889       auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
2890       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
2891         .addUse(FNeg.getReg(0))
2892         .setMIFlags(Flags);
2893 
2894       MI.eraseFromParent();
2895       return true;
2896     }
2897   }
2898 
2899   // x / y -> x * (1.0 / y)
2900   if (Unsafe) {
2901     auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
2902       .addUse(RHS)
2903       .setMIFlags(Flags);
2904     B.buildFMul(Res, LHS, RCP, Flags);
2905 
2906     MI.eraseFromParent();
2907     return true;
2908   }
2909 
2910   return false;
2911 }
2912 
2913 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI,
2914                                          MachineRegisterInfo &MRI,
2915                                          MachineIRBuilder &B) const {
2916   Register Res = MI.getOperand(0).getReg();
2917   Register LHS = MI.getOperand(1).getReg();
2918   Register RHS = MI.getOperand(2).getReg();
2919 
2920   uint16_t Flags = MI.getFlags();
2921 
2922   LLT S16 = LLT::scalar(16);
2923   LLT S32 = LLT::scalar(32);
2924 
2925   auto LHSExt = B.buildFPExt(S32, LHS, Flags);
2926   auto RHSExt = B.buildFPExt(S32, RHS, Flags);
2927 
2928   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
2929     .addUse(RHSExt.getReg(0))
2930     .setMIFlags(Flags);
2931 
2932   auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags);
2933   auto RDst = B.buildFPTrunc(S16, QUOT, Flags);
2934 
2935   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
2936     .addUse(RDst.getReg(0))
2937     .addUse(RHS)
2938     .addUse(LHS)
2939     .setMIFlags(Flags);
2940 
2941   MI.eraseFromParent();
2942   return true;
2943 }
2944 
2945 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions
2946 // to enable denorm mode. When 'Enable' is false, disable denorm mode.
2947 static void toggleSPDenormMode(bool Enable,
2948                                MachineIRBuilder &B,
2949                                const GCNSubtarget &ST,
2950                                AMDGPU::SIModeRegisterDefaults Mode) {
2951   // Set SP denorm mode to this value.
2952   unsigned SPDenormMode =
2953     Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue();
2954 
2955   if (ST.hasDenormModeInst()) {
2956     // Preserve default FP64FP16 denorm mode while updating FP32 mode.
2957     uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue();
2958 
2959     uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
2960     B.buildInstr(AMDGPU::S_DENORM_MODE)
2961       .addImm(NewDenormModeValue);
2962 
2963   } else {
2964     // Select FP32 bit field in mode register.
2965     unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE |
2966                                     (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
2967                                     (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
2968 
2969     B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
2970       .addImm(SPDenormMode)
2971       .addImm(SPDenormModeBitField);
2972   }
2973 }
2974 
2975 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI,
2976                                          MachineRegisterInfo &MRI,
2977                                          MachineIRBuilder &B) const {
2978   Register Res = MI.getOperand(0).getReg();
2979   Register LHS = MI.getOperand(1).getReg();
2980   Register RHS = MI.getOperand(2).getReg();
2981   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2982   AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode();
2983 
2984   uint16_t Flags = MI.getFlags();
2985 
2986   LLT S32 = LLT::scalar(32);
2987   LLT S1 = LLT::scalar(1);
2988 
2989   auto One = B.buildFConstant(S32, 1.0f);
2990 
2991   auto DenominatorScaled =
2992     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
2993       .addUse(LHS)
2994       .addUse(RHS)
2995       .addImm(0)
2996       .setMIFlags(Flags);
2997   auto NumeratorScaled =
2998     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
2999       .addUse(LHS)
3000       .addUse(RHS)
3001       .addImm(1)
3002       .setMIFlags(Flags);
3003 
3004   auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3005     .addUse(DenominatorScaled.getReg(0))
3006     .setMIFlags(Flags);
3007   auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags);
3008 
3009   // FIXME: Doesn't correctly model the FP mode switch, and the FP operations
3010   // aren't modeled as reading it.
3011   if (!Mode.allFP32Denormals())
3012     toggleSPDenormMode(true, B, ST, Mode);
3013 
3014   auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags);
3015   auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags);
3016   auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags);
3017   auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags);
3018   auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags);
3019   auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
3020 
3021   if (!Mode.allFP32Denormals())
3022     toggleSPDenormMode(false, B, ST, Mode);
3023 
3024   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false)
3025     .addUse(Fma4.getReg(0))
3026     .addUse(Fma1.getReg(0))
3027     .addUse(Fma3.getReg(0))
3028     .addUse(NumeratorScaled.getReg(1))
3029     .setMIFlags(Flags);
3030 
3031   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
3032     .addUse(Fmas.getReg(0))
3033     .addUse(RHS)
3034     .addUse(LHS)
3035     .setMIFlags(Flags);
3036 
3037   MI.eraseFromParent();
3038   return true;
3039 }
3040 
3041 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI,
3042                                          MachineRegisterInfo &MRI,
3043                                          MachineIRBuilder &B) const {
3044   Register Res = MI.getOperand(0).getReg();
3045   Register LHS = MI.getOperand(1).getReg();
3046   Register RHS = MI.getOperand(2).getReg();
3047 
3048   uint16_t Flags = MI.getFlags();
3049 
3050   LLT S64 = LLT::scalar(64);
3051   LLT S1 = LLT::scalar(1);
3052 
3053   auto One = B.buildFConstant(S64, 1.0);
3054 
3055   auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3056     .addUse(LHS)
3057     .addUse(RHS)
3058     .addImm(0)
3059     .setMIFlags(Flags);
3060 
3061   auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags);
3062 
3063   auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false)
3064     .addUse(DivScale0.getReg(0))
3065     .setMIFlags(Flags);
3066 
3067   auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags);
3068   auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags);
3069   auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags);
3070 
3071   auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3072     .addUse(LHS)
3073     .addUse(RHS)
3074     .addImm(1)
3075     .setMIFlags(Flags);
3076 
3077   auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags);
3078   auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags);
3079   auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags);
3080 
3081   Register Scale;
3082   if (!ST.hasUsableDivScaleConditionOutput()) {
3083     // Workaround a hardware bug on SI where the condition output from div_scale
3084     // is not usable.
3085 
3086     LLT S32 = LLT::scalar(32);
3087 
3088     auto NumUnmerge = B.buildUnmerge(S32, LHS);
3089     auto DenUnmerge = B.buildUnmerge(S32, RHS);
3090     auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0);
3091     auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1);
3092 
3093     auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1),
3094                               Scale1Unmerge.getReg(1));
3095     auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1),
3096                               Scale0Unmerge.getReg(1));
3097     Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0);
3098   } else {
3099     Scale = DivScale1.getReg(1);
3100   }
3101 
3102   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false)
3103     .addUse(Fma4.getReg(0))
3104     .addUse(Fma3.getReg(0))
3105     .addUse(Mul.getReg(0))
3106     .addUse(Scale)
3107     .setMIFlags(Flags);
3108 
3109   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false)
3110     .addUse(Fmas.getReg(0))
3111     .addUse(RHS)
3112     .addUse(LHS)
3113     .setMIFlags(Flags);
3114 
3115   MI.eraseFromParent();
3116   return true;
3117 }
3118 
3119 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
3120                                                  MachineRegisterInfo &MRI,
3121                                                  MachineIRBuilder &B) const {
3122   Register Res = MI.getOperand(0).getReg();
3123   Register LHS = MI.getOperand(2).getReg();
3124   Register RHS = MI.getOperand(3).getReg();
3125   uint16_t Flags = MI.getFlags();
3126 
3127   LLT S32 = LLT::scalar(32);
3128   LLT S1 = LLT::scalar(1);
3129 
3130   auto Abs = B.buildFAbs(S32, RHS, Flags);
3131   const APFloat C0Val(1.0f);
3132 
3133   auto C0 = B.buildConstant(S32, 0x6f800000);
3134   auto C1 = B.buildConstant(S32, 0x2f800000);
3135   auto C2 = B.buildConstant(S32, FloatToBits(1.0f));
3136 
3137   auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
3138   auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);
3139 
3140   auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);
3141 
3142   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3143     .addUse(Mul0.getReg(0))
3144     .setMIFlags(Flags);
3145 
3146   auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);
3147 
3148   B.buildFMul(Res, Sel, Mul1, Flags);
3149 
3150   MI.eraseFromParent();
3151   return true;
3152 }
3153 
3154 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
3155                                                  MachineRegisterInfo &MRI,
3156                                                  MachineIRBuilder &B) const {
3157   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3158   if (!MFI->isEntryFunction()) {
3159     return legalizePreloadedArgIntrin(MI, MRI, B,
3160                                       AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
3161   }
3162 
3163   uint64_t Offset =
3164     ST.getTargetLowering()->getImplicitParameterOffset(
3165       B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
3166   Register DstReg = MI.getOperand(0).getReg();
3167   LLT DstTy = MRI.getType(DstReg);
3168   LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());
3169 
3170   const ArgDescriptor *Arg;
3171   const TargetRegisterClass *RC;
3172   std::tie(Arg, RC)
3173     = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
3174   if (!Arg)
3175     return false;
3176 
3177   Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
3178   if (!loadInputValue(KernargPtrReg, B, Arg))
3179     return false;
3180 
3181   B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
3182   MI.eraseFromParent();
3183   return true;
3184 }
3185 
3186 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
3187                                               MachineRegisterInfo &MRI,
3188                                               MachineIRBuilder &B,
3189                                               unsigned AddrSpace) const {
3190   Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
3191   auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32);
3192   B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
3193   MI.eraseFromParent();
3194   return true;
3195 }
3196 
3197 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
3198 // offset (the offset that is included in bounds checking and swizzling, to be
3199 // split between the instruction's voffset and immoffset fields) and soffset
3200 // (the offset that is excluded from bounds checking and swizzling, to go in
3201 // the instruction's soffset field).  This function takes the first kind of
3202 // offset and figures out how to split it between voffset and immoffset.
3203 std::tuple<Register, unsigned, unsigned>
3204 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B,
3205                                         Register OrigOffset) const {
3206   const unsigned MaxImm = 4095;
3207   Register BaseReg;
3208   unsigned TotalConstOffset;
3209   MachineInstr *OffsetDef;
3210   const LLT S32 = LLT::scalar(32);
3211 
3212   std::tie(BaseReg, TotalConstOffset, OffsetDef)
3213     = AMDGPU::getBaseWithConstantOffset(*B.getMRI(), OrigOffset);
3214 
3215   unsigned ImmOffset = TotalConstOffset;
3216 
3217   // If the immediate value is too big for the immoffset field, put the value
3218   // and -4096 into the immoffset field so that the value that is copied/added
3219   // for the voffset field is a multiple of 4096, and it stands more chance
3220   // of being CSEd with the copy/add for another similar load/store.
3221   // However, do not do that rounding down to a multiple of 4096 if that is a
3222   // negative number, as it appears to be illegal to have a negative offset
3223   // in the vgpr, even if adding the immediate offset makes it positive.
3224   unsigned Overflow = ImmOffset & ~MaxImm;
3225   ImmOffset -= Overflow;
3226   if ((int32_t)Overflow < 0) {
3227     Overflow += ImmOffset;
3228     ImmOffset = 0;
3229   }
3230 
3231   if (Overflow != 0) {
3232     if (!BaseReg) {
3233       BaseReg = B.buildConstant(S32, Overflow).getReg(0);
3234     } else {
3235       auto OverflowVal = B.buildConstant(S32, Overflow);
3236       BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0);
3237     }
3238   }
3239 
3240   if (!BaseReg)
3241     BaseReg = B.buildConstant(S32, 0).getReg(0);
3242 
3243   return std::make_tuple(BaseReg, ImmOffset, TotalConstOffset);
3244 }
3245 
3246 /// Handle register layout difference for f16 images for some subtargets.
3247 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
3248                                              MachineRegisterInfo &MRI,
3249                                              Register Reg) const {
3250   if (!ST.hasUnpackedD16VMem())
3251     return Reg;
3252 
3253   const LLT S16 = LLT::scalar(16);
3254   const LLT S32 = LLT::scalar(32);
3255   LLT StoreVT = MRI.getType(Reg);
3256   assert(StoreVT.isVector() && StoreVT.getElementType() == S16);
3257 
3258   auto Unmerge = B.buildUnmerge(S16, Reg);
3259 
3260   SmallVector<Register, 4> WideRegs;
3261   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3262     WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));
3263 
3264   int NumElts = StoreVT.getNumElements();
3265 
3266   return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0);
3267 }
3268 
3269 Register AMDGPULegalizerInfo::fixStoreSourceType(
3270   MachineIRBuilder &B, Register VData, bool IsFormat) const {
3271   MachineRegisterInfo *MRI = B.getMRI();
3272   LLT Ty = MRI->getType(VData);
3273 
3274   const LLT S16 = LLT::scalar(16);
3275 
3276   // Fixup illegal register types for i8 stores.
3277   if (Ty == LLT::scalar(8) || Ty == S16) {
3278     Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
3279     return AnyExt;
3280   }
3281 
3282   if (Ty.isVector()) {
3283     if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
3284       if (IsFormat)
3285         return handleD16VData(B, *MRI, VData);
3286     }
3287   }
3288 
3289   return VData;
3290 }
3291 
3292 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI,
3293                                               MachineRegisterInfo &MRI,
3294                                               MachineIRBuilder &B,
3295                                               bool IsTyped,
3296                                               bool IsFormat) const {
3297   Register VData = MI.getOperand(1).getReg();
3298   LLT Ty = MRI.getType(VData);
3299   LLT EltTy = Ty.getScalarType();
3300   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
3301   const LLT S32 = LLT::scalar(32);
3302 
3303   VData = fixStoreSourceType(B, VData, IsFormat);
3304   Register RSrc = MI.getOperand(2).getReg();
3305 
3306   MachineMemOperand *MMO = *MI.memoperands_begin();
3307   const int MemSize = MMO->getSize();
3308 
3309   unsigned ImmOffset;
3310   unsigned TotalOffset;
3311 
3312   // The typed intrinsics add an immediate after the registers.
3313   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
3314 
3315   // The struct intrinsic variants add one additional operand over raw.
3316   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
3317   Register VIndex;
3318   int OpOffset = 0;
3319   if (HasVIndex) {
3320     VIndex = MI.getOperand(3).getReg();
3321     OpOffset = 1;
3322   }
3323 
3324   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
3325   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
3326 
3327   unsigned Format = 0;
3328   if (IsTyped) {
3329     Format = MI.getOperand(5 + OpOffset).getImm();
3330     ++OpOffset;
3331   }
3332 
3333   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
3334 
3335   std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset);
3336   if (TotalOffset != 0)
3337     MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize);
3338 
3339   unsigned Opc;
3340   if (IsTyped) {
3341     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
3342                   AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
3343   } else if (IsFormat) {
3344     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
3345                   AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
3346   } else {
3347     switch (MemSize) {
3348     case 1:
3349       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
3350       break;
3351     case 2:
3352       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
3353       break;
3354     default:
3355       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
3356       break;
3357     }
3358   }
3359 
3360   if (!VIndex)
3361     VIndex = B.buildConstant(S32, 0).getReg(0);
3362 
3363   auto MIB = B.buildInstr(Opc)
3364     .addUse(VData)              // vdata
3365     .addUse(RSrc)               // rsrc
3366     .addUse(VIndex)             // vindex
3367     .addUse(VOffset)            // voffset
3368     .addUse(SOffset)            // soffset
3369     .addImm(ImmOffset);         // offset(imm)
3370 
3371   if (IsTyped)
3372     MIB.addImm(Format);
3373 
3374   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
3375      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
3376      .addMemOperand(MMO);
3377 
3378   MI.eraseFromParent();
3379   return true;
3380 }
3381 
3382 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI,
3383                                              MachineRegisterInfo &MRI,
3384                                              MachineIRBuilder &B,
3385                                              bool IsFormat,
3386                                              bool IsTyped) const {
3387   // FIXME: Verifier should enforce 1 MMO for these intrinsics.
3388   MachineMemOperand *MMO = *MI.memoperands_begin();
3389   const int MemSize = MMO->getSize();
3390   const LLT S32 = LLT::scalar(32);
3391 
3392   Register Dst = MI.getOperand(0).getReg();
3393   Register RSrc = MI.getOperand(2).getReg();
3394 
3395   // The typed intrinsics add an immediate after the registers.
3396   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
3397 
3398   // The struct intrinsic variants add one additional operand over raw.
3399   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
3400   Register VIndex;
3401   int OpOffset = 0;
3402   if (HasVIndex) {
3403     VIndex = MI.getOperand(3).getReg();
3404     OpOffset = 1;
3405   }
3406 
3407   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
3408   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
3409 
3410   unsigned Format = 0;
3411   if (IsTyped) {
3412     Format = MI.getOperand(5 + OpOffset).getImm();
3413     ++OpOffset;
3414   }
3415 
3416   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
3417   unsigned ImmOffset;
3418   unsigned TotalOffset;
3419 
3420   LLT Ty = MRI.getType(Dst);
3421   LLT EltTy = Ty.getScalarType();
3422   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
3423   const bool Unpacked = ST.hasUnpackedD16VMem();
3424 
3425   std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset);
3426   if (TotalOffset != 0)
3427     MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MemSize);
3428 
3429   unsigned Opc;
3430 
3431   if (IsTyped) {
3432     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
3433                   AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
3434   } else if (IsFormat) {
3435     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 :
3436                   AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
3437   } else {
3438     switch (MemSize) {
3439     case 1:
3440       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
3441       break;
3442     case 2:
3443       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
3444       break;
3445     default:
3446       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD;
3447       break;
3448     }
3449   }
3450 
3451   Register LoadDstReg;
3452 
3453   bool IsExtLoad = (!IsD16 && MemSize < 4) || (IsD16 && !Ty.isVector());
3454   LLT UnpackedTy = Ty.changeElementSize(32);
3455 
3456   if (IsExtLoad)
3457     LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32);
3458   else if (Unpacked && IsD16 && Ty.isVector())
3459     LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy);
3460   else
3461     LoadDstReg = Dst;
3462 
3463   if (!VIndex)
3464     VIndex = B.buildConstant(S32, 0).getReg(0);
3465 
3466   auto MIB = B.buildInstr(Opc)
3467     .addDef(LoadDstReg)         // vdata
3468     .addUse(RSrc)               // rsrc
3469     .addUse(VIndex)             // vindex
3470     .addUse(VOffset)            // voffset
3471     .addUse(SOffset)            // soffset
3472     .addImm(ImmOffset);         // offset(imm)
3473 
3474   if (IsTyped)
3475     MIB.addImm(Format);
3476 
3477   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
3478      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
3479      .addMemOperand(MMO);
3480 
3481   if (LoadDstReg != Dst) {
3482     B.setInsertPt(B.getMBB(), ++B.getInsertPt());
3483 
3484     // Widen result for extending loads was widened.
3485     if (IsExtLoad)
3486       B.buildTrunc(Dst, LoadDstReg);
3487     else {
3488       // Repack to original 16-bit vector result
3489       // FIXME: G_TRUNC should work, but legalization currently fails
3490       auto Unmerge = B.buildUnmerge(S32, LoadDstReg);
3491       SmallVector<Register, 4> Repack;
3492       for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I)
3493         Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0));
3494       B.buildMerge(Dst, Repack);
3495     }
3496   }
3497 
3498   MI.eraseFromParent();
3499   return true;
3500 }
3501 
3502 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI,
3503                                                MachineIRBuilder &B,
3504                                                bool IsInc) const {
3505   unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC :
3506                          AMDGPU::G_AMDGPU_ATOMIC_DEC;
3507   B.buildInstr(Opc)
3508     .addDef(MI.getOperand(0).getReg())
3509     .addUse(MI.getOperand(2).getReg())
3510     .addUse(MI.getOperand(3).getReg())
3511     .cloneMemRefs(MI);
3512   MI.eraseFromParent();
3513   return true;
3514 }
3515 
3516 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) {
3517   switch (IntrID) {
3518   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
3519   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
3520     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
3521   case Intrinsic::amdgcn_raw_buffer_atomic_add:
3522   case Intrinsic::amdgcn_struct_buffer_atomic_add:
3523     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
3524   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
3525   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
3526     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
3527   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
3528   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
3529     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
3530   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
3531   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
3532     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
3533   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
3534   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
3535     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
3536   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
3537   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
3538     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
3539   case Intrinsic::amdgcn_raw_buffer_atomic_and:
3540   case Intrinsic::amdgcn_struct_buffer_atomic_and:
3541     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
3542   case Intrinsic::amdgcn_raw_buffer_atomic_or:
3543   case Intrinsic::amdgcn_struct_buffer_atomic_or:
3544     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
3545   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
3546   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
3547     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
3548   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
3549   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
3550     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
3551   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
3552   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
3553     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
3554   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
3555   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
3556     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
3557   default:
3558     llvm_unreachable("unhandled atomic opcode");
3559   }
3560 }
3561 
3562 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI,
3563                                                MachineIRBuilder &B,
3564                                                Intrinsic::ID IID) const {
3565   const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
3566                          IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap;
3567 
3568   Register Dst = MI.getOperand(0).getReg();
3569   Register VData = MI.getOperand(2).getReg();
3570 
3571   Register CmpVal;
3572   int OpOffset = 0;
3573 
3574   if (IsCmpSwap) {
3575     CmpVal = MI.getOperand(3 + OpOffset).getReg();
3576     ++OpOffset;
3577   }
3578 
3579   Register RSrc = MI.getOperand(3 + OpOffset).getReg();
3580   const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8;
3581 
3582   // The struct intrinsic variants add one additional operand over raw.
3583   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
3584   Register VIndex;
3585   if (HasVIndex) {
3586     VIndex = MI.getOperand(4 + OpOffset).getReg();
3587     ++OpOffset;
3588   }
3589 
3590   Register VOffset = MI.getOperand(4 + OpOffset).getReg();
3591   Register SOffset = MI.getOperand(5 + OpOffset).getReg();
3592   unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm();
3593 
3594   MachineMemOperand *MMO = *MI.memoperands_begin();
3595 
3596   unsigned ImmOffset;
3597   unsigned TotalOffset;
3598   std::tie(VOffset, ImmOffset, TotalOffset) = splitBufferOffsets(B, VOffset);
3599   if (TotalOffset != 0)
3600     MMO = B.getMF().getMachineMemOperand(MMO, TotalOffset, MMO->getSize());
3601 
3602   if (!VIndex)
3603     VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0);
3604 
3605   auto MIB = B.buildInstr(getBufferAtomicPseudo(IID))
3606     .addDef(Dst)
3607     .addUse(VData); // vdata
3608 
3609   if (IsCmpSwap)
3610     MIB.addReg(CmpVal);
3611 
3612   MIB.addUse(RSrc)               // rsrc
3613      .addUse(VIndex)             // vindex
3614      .addUse(VOffset)            // voffset
3615      .addUse(SOffset)            // soffset
3616      .addImm(ImmOffset)          // offset(imm)
3617      .addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
3618      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
3619      .addMemOperand(MMO);
3620 
3621   MI.eraseFromParent();
3622   return true;
3623 }
3624 
3625 /// Turn a set of s16 typed registers in \p A16AddrRegs into a dword sized
3626 /// vector with s16 typed elements.
3627 static void packImageA16AddressToDwords(MachineIRBuilder &B, MachineInstr &MI,
3628                                         SmallVectorImpl<Register> &PackedAddrs,
3629                                         int AddrIdx, int DimIdx, int EndIdx,
3630                                         int NumGradients) {
3631   const LLT S16 = LLT::scalar(16);
3632   const LLT V2S16 = LLT::vector(2, 16);
3633 
3634   for (int I = AddrIdx; I < EndIdx; ++I) {
3635     MachineOperand &SrcOp = MI.getOperand(I);
3636     if (!SrcOp.isReg())
3637       continue; // _L to _LZ may have eliminated this.
3638 
3639     Register AddrReg = SrcOp.getReg();
3640 
3641     if (I < DimIdx) {
3642       AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0);
3643       PackedAddrs.push_back(AddrReg);
3644     } else {
3645       // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D,
3646       // derivatives dx/dh and dx/dv are packed with undef.
3647       if (((I + 1) >= EndIdx) ||
3648           ((NumGradients / 2) % 2 == 1 &&
3649            (I == DimIdx + (NumGradients / 2) - 1 ||
3650             I == DimIdx + NumGradients - 1)) ||
3651           // Check for _L to _LZ optimization
3652           !MI.getOperand(I + 1).isReg()) {
3653         PackedAddrs.push_back(
3654             B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
3655                 .getReg(0));
3656       } else {
3657         PackedAddrs.push_back(
3658             B.buildBuildVector(V2S16, {AddrReg, MI.getOperand(I + 1).getReg()})
3659                 .getReg(0));
3660         ++I;
3661       }
3662     }
3663   }
3664 }
3665 
3666 /// Convert from separate vaddr components to a single vector address register,
3667 /// and replace the remaining operands with $noreg.
3668 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI,
3669                                      int DimIdx, int NumVAddrs) {
3670   const LLT S32 = LLT::scalar(32);
3671 
3672   SmallVector<Register, 8> AddrRegs;
3673   for (int I = 0; I != NumVAddrs; ++I) {
3674     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
3675     if (SrcOp.isReg()) {
3676       AddrRegs.push_back(SrcOp.getReg());
3677       assert(B.getMRI()->getType(SrcOp.getReg()) == S32);
3678     }
3679   }
3680 
3681   int NumAddrRegs = AddrRegs.size();
3682   if (NumAddrRegs != 1) {
3683     // Round up to 8 elements for v5-v7
3684     // FIXME: Missing intermediate sized register classes and instructions.
3685     if (NumAddrRegs > 4 && !isPowerOf2_32(NumAddrRegs)) {
3686       const int RoundedNumRegs = NextPowerOf2(NumAddrRegs);
3687       auto Undef = B.buildUndef(S32);
3688       AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0));
3689       NumAddrRegs = RoundedNumRegs;
3690     }
3691 
3692     auto VAddr = B.buildBuildVector(LLT::vector(NumAddrRegs, 32), AddrRegs);
3693     MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
3694   }
3695 
3696   for (int I = 1; I != NumVAddrs; ++I) {
3697     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
3698     if (SrcOp.isReg())
3699       MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister);
3700   }
3701 }
3702 
3703 /// Rewrite image intrinsics to use register layouts expected by the subtarget.
3704 ///
3705 /// Depending on the subtarget, load/store with 16-bit element data need to be
3706 /// rewritten to use the low half of 32-bit registers, or directly use a packed
3707 /// layout. 16-bit addresses should also sometimes be packed into 32-bit
3708 /// registers.
3709 ///
3710 /// We don't want to directly select image instructions just yet, but also want
3711 /// to exposes all register repacking to the legalizer/combiners. We also don't
3712 /// want a selected instrution entering RegBankSelect. In order to avoid
3713 /// defining a multitude of intermediate image instructions, directly hack on
3714 /// the intrinsic's arguments. In cases like a16 addreses, this requires padding
3715 /// now unnecessary arguments with $noreg.
3716 bool AMDGPULegalizerInfo::legalizeImageIntrinsic(
3717     MachineInstr &MI, MachineIRBuilder &B,
3718     GISelChangeObserver &Observer,
3719     const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const {
3720 
3721   const int NumDefs = MI.getNumExplicitDefs();
3722   bool IsTFE = NumDefs == 2;
3723   // We are only processing the operands of d16 image operations on subtargets
3724   // that use the unpacked register layout, or need to repack the TFE result.
3725 
3726   // TODO: Do we need to guard against already legalized intrinsics?
3727   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
3728     AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode);
3729 
3730   MachineRegisterInfo *MRI = B.getMRI();
3731   const LLT S32 = LLT::scalar(32);
3732   const LLT S16 = LLT::scalar(16);
3733   const LLT V2S16 = LLT::vector(2, 16);
3734 
3735   // Index of first address argument
3736   const int AddrIdx = getImageVAddrIdxBegin(BaseOpcode, NumDefs);
3737 
3738   int NumVAddrs, NumGradients;
3739   std::tie(NumVAddrs, NumGradients) = getImageNumVAddr(ImageDimIntr, BaseOpcode);
3740   const int DMaskIdx = BaseOpcode->Atomic ? -1 :
3741     getDMaskIdx(BaseOpcode, NumDefs);
3742   unsigned DMask = 0;
3743 
3744   // Check for 16 bit addresses and pack if true.
3745   int DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
3746   LLT GradTy = MRI->getType(MI.getOperand(DimIdx).getReg());
3747   LLT AddrTy = MRI->getType(MI.getOperand(DimIdx + NumGradients).getReg());
3748   const bool IsG16 = GradTy == S16;
3749   const bool IsA16 = AddrTy == S16;
3750 
3751   int DMaskLanes = 0;
3752   if (!BaseOpcode->Atomic) {
3753     DMask = MI.getOperand(DMaskIdx).getImm();
3754     if (BaseOpcode->Gather4) {
3755       DMaskLanes = 4;
3756     } else if (DMask != 0) {
3757       DMaskLanes = countPopulation(DMask);
3758     } else if (!IsTFE && !BaseOpcode->Store) {
3759       // If dmask is 0, this is a no-op load. This can be eliminated.
3760       B.buildUndef(MI.getOperand(0));
3761       MI.eraseFromParent();
3762       return true;
3763     }
3764   }
3765 
3766   Observer.changingInstr(MI);
3767   auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); });
3768 
3769   unsigned NewOpcode = NumDefs == 0 ?
3770     AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
3771 
3772   // Track that we legalized this
3773   MI.setDesc(B.getTII().get(NewOpcode));
3774 
3775   // Expecting to get an error flag since TFC is on - and dmask is 0 Force
3776   // dmask to be at least 1 otherwise the instruction will fail
3777   if (IsTFE && DMask == 0) {
3778     DMask = 0x1;
3779     DMaskLanes = 1;
3780     MI.getOperand(DMaskIdx).setImm(DMask);
3781   }
3782 
3783   if (BaseOpcode->Atomic) {
3784     Register VData0 = MI.getOperand(2).getReg();
3785     LLT Ty = MRI->getType(VData0);
3786 
3787     // TODO: Allow atomic swap and bit ops for v2s16/v4s16
3788     if (Ty.isVector())
3789       return false;
3790 
3791     if (BaseOpcode->AtomicX2) {
3792       Register VData1 = MI.getOperand(3).getReg();
3793       // The two values are packed in one register.
3794       LLT PackedTy = LLT::vector(2, Ty);
3795       auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1});
3796       MI.getOperand(2).setReg(Concat.getReg(0));
3797       MI.getOperand(3).setReg(AMDGPU::NoRegister);
3798     }
3799   }
3800 
3801   int CorrectedNumVAddrs = NumVAddrs;
3802 
3803   // Optimize _L to _LZ when _L is zero
3804   if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
3805         AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) {
3806     const ConstantFP *ConstantLod;
3807     const int LodIdx = AddrIdx + NumVAddrs - 1;
3808 
3809     if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_GFCst(ConstantLod))) {
3810       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
3811         // Set new opcode to _lz variant of _l, and change the intrinsic ID.
3812         ImageDimIntr = AMDGPU::getImageDimInstrinsicByBaseOpcode(
3813           LZMappingInfo->LZ, ImageDimIntr->Dim);
3814 
3815         // The starting indexes should remain in the same place.
3816         --NumVAddrs;
3817         --CorrectedNumVAddrs;
3818 
3819         MI.getOperand(MI.getNumExplicitDefs()).setIntrinsicID(
3820           static_cast<Intrinsic::ID>(ImageDimIntr->Intr));
3821         MI.RemoveOperand(LodIdx);
3822       }
3823     }
3824   }
3825 
3826   // Optimize _mip away, when 'lod' is zero
3827   if (AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) {
3828     int64_t ConstantLod;
3829     const int LodIdx = AddrIdx + NumVAddrs - 1;
3830 
3831     if (mi_match(MI.getOperand(LodIdx).getReg(), *MRI, m_ICst(ConstantLod))) {
3832       if (ConstantLod == 0) {
3833         // TODO: Change intrinsic opcode and remove operand instead or replacing
3834         // it with 0, as the _L to _LZ handling is done above.
3835         MI.getOperand(LodIdx).ChangeToImmediate(0);
3836         --CorrectedNumVAddrs;
3837       }
3838     }
3839   }
3840 
3841   // Rewrite the addressing register layout before doing anything else.
3842   if (IsA16 || IsG16) {
3843     if (IsA16) {
3844       // Target must support the feature and gradients need to be 16 bit too
3845       if (!ST.hasA16() || !IsG16)
3846         return false;
3847     } else if (!ST.hasG16())
3848       return false;
3849 
3850     if (NumVAddrs > 1) {
3851       SmallVector<Register, 4> PackedRegs;
3852       // Don't compress addresses for G16
3853       const int PackEndIdx =
3854           IsA16 ? (AddrIdx + NumVAddrs) : (DimIdx + NumGradients);
3855       packImageA16AddressToDwords(B, MI, PackedRegs, AddrIdx, DimIdx,
3856                                   PackEndIdx, NumGradients);
3857 
3858       if (!IsA16) {
3859         // Add uncompressed address
3860         for (int I = DimIdx + NumGradients; I != AddrIdx + NumVAddrs; ++I) {
3861           int AddrReg = MI.getOperand(I).getReg();
3862           assert(B.getMRI()->getType(AddrReg) == LLT::scalar(32));
3863           PackedRegs.push_back(AddrReg);
3864         }
3865       }
3866 
3867       // See also below in the non-a16 branch
3868       const bool UseNSA = PackedRegs.size() >= 3 && ST.hasNSAEncoding();
3869 
3870       if (!UseNSA && PackedRegs.size() > 1) {
3871         LLT PackedAddrTy = LLT::vector(2 * PackedRegs.size(), 16);
3872         auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs);
3873         PackedRegs[0] = Concat.getReg(0);
3874         PackedRegs.resize(1);
3875       }
3876 
3877       const int NumPacked = PackedRegs.size();
3878       for (int I = 0; I != NumVAddrs; ++I) {
3879         MachineOperand &SrcOp = MI.getOperand(AddrIdx + I);
3880         if (!SrcOp.isReg()) {
3881           assert(SrcOp.isImm() && SrcOp.getImm() == 0);
3882           continue;
3883         }
3884 
3885         assert(SrcOp.getReg() != AMDGPU::NoRegister);
3886 
3887         if (I < NumPacked)
3888           SrcOp.setReg(PackedRegs[I]);
3889         else
3890           SrcOp.setReg(AMDGPU::NoRegister);
3891       }
3892     }
3893   } else {
3894     // If the register allocator cannot place the address registers contiguously
3895     // without introducing moves, then using the non-sequential address encoding
3896     // is always preferable, since it saves VALU instructions and is usually a
3897     // wash in terms of code size or even better.
3898     //
3899     // However, we currently have no way of hinting to the register allocator
3900     // that MIMG addresses should be placed contiguously when it is possible to
3901     // do so, so force non-NSA for the common 2-address case as a heuristic.
3902     //
3903     // SIShrinkInstructions will convert NSA encodings to non-NSA after register
3904     // allocation when possible.
3905     const bool UseNSA = CorrectedNumVAddrs >= 3 && ST.hasNSAEncoding();
3906 
3907     if (!UseNSA && NumVAddrs > 1)
3908       convertImageAddrToPacked(B, MI, AddrIdx, NumVAddrs);
3909   }
3910 
3911   int Flags = 0;
3912   if (IsA16)
3913     Flags |= 1;
3914   if (IsG16)
3915     Flags |= 2;
3916   MI.addOperand(MachineOperand::CreateImm(Flags));
3917 
3918   if (BaseOpcode->Store) { // No TFE for stores?
3919     // TODO: Handle dmask trim
3920     Register VData = MI.getOperand(1).getReg();
3921     LLT Ty = MRI->getType(VData);
3922     if (!Ty.isVector() || Ty.getElementType() != S16)
3923       return true;
3924 
3925     Register RepackedReg = handleD16VData(B, *MRI, VData);
3926     if (RepackedReg != VData) {
3927       MI.getOperand(1).setReg(RepackedReg);
3928     }
3929 
3930     return true;
3931   }
3932 
3933   Register DstReg = MI.getOperand(0).getReg();
3934   LLT Ty = MRI->getType(DstReg);
3935   const LLT EltTy = Ty.getScalarType();
3936   const bool IsD16 = Ty.getScalarType() == S16;
3937   const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1;
3938 
3939   // Confirm that the return type is large enough for the dmask specified
3940   if (NumElts < DMaskLanes)
3941     return false;
3942 
3943   if (NumElts > 4 || DMaskLanes > 4)
3944     return false;
3945 
3946   const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
3947   const LLT AdjustedTy = Ty.changeNumElements(AdjustedNumElts);
3948 
3949   // The raw dword aligned data component of the load. The only legal cases
3950   // where this matters should be when using the packed D16 format, for
3951   // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>,
3952   LLT RoundedTy;
3953 
3954   // S32 vector to to cover all data, plus TFE result element.
3955   LLT TFETy;
3956 
3957   // Register type to use for each loaded component. Will be S32 or V2S16.
3958   LLT RegTy;
3959 
3960   if (IsD16 && ST.hasUnpackedD16VMem()) {
3961     RoundedTy = LLT::scalarOrVector(AdjustedNumElts, 32);
3962     TFETy = LLT::vector(AdjustedNumElts + 1, 32);
3963     RegTy = S32;
3964   } else {
3965     unsigned EltSize = EltTy.getSizeInBits();
3966     unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32;
3967     unsigned RoundedSize = 32 * RoundedElts;
3968     RoundedTy = LLT::scalarOrVector(RoundedSize / EltSize, EltSize);
3969     TFETy = LLT::vector(RoundedSize / 32 + 1, S32);
3970     RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32;
3971   }
3972 
3973   // The return type does not need adjustment.
3974   // TODO: Should we change s16 case to s32 or <2 x s16>?
3975   if (!IsTFE && (RoundedTy == Ty || !Ty.isVector()))
3976     return true;
3977 
3978   Register Dst1Reg;
3979 
3980   // Insert after the instruction.
3981   B.setInsertPt(*MI.getParent(), ++MI.getIterator());
3982 
3983   // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x
3984   // s16> instead of s32, we would only need 1 bitcast instead of multiple.
3985   const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
3986   const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32;
3987 
3988   Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy);
3989 
3990   MI.getOperand(0).setReg(NewResultReg);
3991 
3992   // In the IR, TFE is supposed to be used with a 2 element struct return
3993   // type. The intruction really returns these two values in one contiguous
3994   // register, with one additional dword beyond the loaded data. Rewrite the
3995   // return type to use a single register result.
3996 
3997   if (IsTFE) {
3998     Dst1Reg = MI.getOperand(1).getReg();
3999     if (MRI->getType(Dst1Reg) != S32)
4000       return false;
4001 
4002     // TODO: Make sure the TFE operand bit is set.
4003     MI.RemoveOperand(1);
4004 
4005     // Handle the easy case that requires no repack instructions.
4006     if (Ty == S32) {
4007       B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
4008       return true;
4009     }
4010   }
4011 
4012   // Now figure out how to copy the new result register back into the old
4013   // result.
4014   SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg);
4015 
4016   const int NumDataRegs = IsTFE ? ResultNumRegs - 1  : ResultNumRegs;
4017 
4018   if (ResultNumRegs == 1) {
4019     assert(!IsTFE);
4020     ResultRegs[0] = NewResultReg;
4021   } else {
4022     // We have to repack into a new vector of some kind.
4023     for (int I = 0; I != NumDataRegs; ++I)
4024       ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy);
4025     B.buildUnmerge(ResultRegs, NewResultReg);
4026 
4027     // Drop the final TFE element to get the data part. The TFE result is
4028     // directly written to the right place already.
4029     if (IsTFE)
4030       ResultRegs.resize(NumDataRegs);
4031   }
4032 
4033   // For an s16 scalar result, we form an s32 result with a truncate regardless
4034   // of packed vs. unpacked.
4035   if (IsD16 && !Ty.isVector()) {
4036     B.buildTrunc(DstReg, ResultRegs[0]);
4037     return true;
4038   }
4039 
4040   // Avoid a build/concat_vector of 1 entry.
4041   if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
4042     B.buildBitcast(DstReg, ResultRegs[0]);
4043     return true;
4044   }
4045 
4046   assert(Ty.isVector());
4047 
4048   if (IsD16) {
4049     // For packed D16 results with TFE enabled, all the data components are
4050     // S32. Cast back to the expected type.
4051     //
4052     // TODO: We don't really need to use load s32 elements. We would only need one
4053     // cast for the TFE result if a multiple of v2s16 was used.
4054     if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) {
4055       for (Register &Reg : ResultRegs)
4056         Reg = B.buildBitcast(V2S16, Reg).getReg(0);
4057     } else if (ST.hasUnpackedD16VMem()) {
4058       for (Register &Reg : ResultRegs)
4059         Reg = B.buildTrunc(S16, Reg).getReg(0);
4060     }
4061   }
4062 
4063   auto padWithUndef = [&](LLT Ty, int NumElts) {
4064     if (NumElts == 0)
4065       return;
4066     Register Undef = B.buildUndef(Ty).getReg(0);
4067     for (int I = 0; I != NumElts; ++I)
4068       ResultRegs.push_back(Undef);
4069   };
4070 
4071   // Pad out any elements eliminated due to the dmask.
4072   LLT ResTy = MRI->getType(ResultRegs[0]);
4073   if (!ResTy.isVector()) {
4074     padWithUndef(ResTy, NumElts - ResultRegs.size());
4075     B.buildBuildVector(DstReg, ResultRegs);
4076     return true;
4077   }
4078 
4079   assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16);
4080   const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
4081 
4082   // Deal with the one annoying legal case.
4083   const LLT V3S16 = LLT::vector(3, 16);
4084   if (Ty == V3S16) {
4085     padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1);
4086     auto Concat = B.buildConcatVectors(LLT::vector(6, 16), ResultRegs);
4087     B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat);
4088     return true;
4089   }
4090 
4091   padWithUndef(ResTy, RegsToCover - ResultRegs.size());
4092   B.buildConcatVectors(DstReg, ResultRegs);
4093   return true;
4094 }
4095 
4096 bool AMDGPULegalizerInfo::legalizeSBufferLoad(
4097   MachineInstr &MI, MachineIRBuilder &B,
4098   GISelChangeObserver &Observer) const {
4099   Register Dst = MI.getOperand(0).getReg();
4100   LLT Ty = B.getMRI()->getType(Dst);
4101   unsigned Size = Ty.getSizeInBits();
4102   MachineFunction &MF = B.getMF();
4103 
4104   Observer.changingInstr(MI);
4105 
4106   // FIXME: We don't really need this intermediate instruction. The intrinsic
4107   // should be fixed to have a memory operand. Since it's readnone, we're not
4108   // allowed to add one.
4109   MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD));
4110   MI.RemoveOperand(1); // Remove intrinsic ID
4111 
4112   // FIXME: When intrinsic definition is fixed, this should have an MMO already.
4113   // TODO: Should this use datalayout alignment?
4114   const unsigned MemSize = (Size + 7) / 8;
4115   const Align MemAlign(4);
4116   MachineMemOperand *MMO = MF.getMachineMemOperand(
4117       MachinePointerInfo(),
4118       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4119           MachineMemOperand::MOInvariant,
4120       MemSize, MemAlign);
4121   MI.addMemOperand(MF, MMO);
4122 
4123   // There are no 96-bit result scalar loads, but widening to 128-bit should
4124   // always be legal. We may need to restore this to a 96-bit result if it turns
4125   // out this needs to be converted to a vector load during RegBankSelect.
4126   if (!isPowerOf2_32(Size)) {
4127     LegalizerHelper Helper(MF, *this, Observer, B);
4128 
4129     if (Ty.isVector())
4130       Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0);
4131     else
4132       Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0);
4133   }
4134 
4135   Observer.changedInstr(MI);
4136   return true;
4137 }
4138 
4139 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI,
4140                                                 MachineRegisterInfo &MRI,
4141                                                 MachineIRBuilder &B) const {
4142   // Is non-HSA path or trap-handler disabled? then, insert s_endpgm instruction
4143   if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4144       !ST.isTrapHandlerEnabled()) {
4145     B.buildInstr(AMDGPU::S_ENDPGM).addImm(0);
4146   } else {
4147     // Pass queue pointer to trap handler as input, and insert trap instruction
4148     // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
4149     const ArgDescriptor *Arg =
4150         getArgDescriptor(B, AMDGPUFunctionArgInfo::QUEUE_PTR);
4151     if (!Arg)
4152       return false;
4153     MachineRegisterInfo &MRI = *B.getMRI();
4154     Register SGPR01(AMDGPU::SGPR0_SGPR1);
4155     Register LiveIn = getLiveInRegister(
4156         B, MRI, SGPR01, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64),
4157         /*InsertLiveInCopy=*/false);
4158     if (!loadInputValue(LiveIn, B, Arg))
4159       return false;
4160     B.buildCopy(SGPR01, LiveIn);
4161     B.buildInstr(AMDGPU::S_TRAP)
4162         .addImm(GCNSubtarget::TrapIDLLVMTrap)
4163         .addReg(SGPR01, RegState::Implicit);
4164   }
4165 
4166   MI.eraseFromParent();
4167   return true;
4168 }
4169 
4170 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic(
4171     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4172   // Is non-HSA path or trap-handler disabled? then, report a warning
4173   // accordingly
4174   if (ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4175       !ST.isTrapHandlerEnabled()) {
4176     DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(),
4177                                      "debugtrap handler not supported",
4178                                      MI.getDebugLoc(), DS_Warning);
4179     LLVMContext &Ctx = B.getMF().getFunction().getContext();
4180     Ctx.diagnose(NoTrap);
4181   } else {
4182     // Insert debug-trap instruction
4183     B.buildInstr(AMDGPU::S_TRAP).addImm(GCNSubtarget::TrapIDLLVMDebugTrap);
4184   }
4185 
4186   MI.eraseFromParent();
4187   return true;
4188 }
4189 
4190 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
4191                                             MachineInstr &MI) const {
4192   MachineIRBuilder &B = Helper.MIRBuilder;
4193   MachineRegisterInfo &MRI = *B.getMRI();
4194 
4195   // Replace the use G_BRCOND with the exec manipulate and branch pseudos.
4196   auto IntrID = MI.getIntrinsicID();
4197   switch (IntrID) {
4198   case Intrinsic::amdgcn_if:
4199   case Intrinsic::amdgcn_else: {
4200     MachineInstr *Br = nullptr;
4201     MachineBasicBlock *UncondBrTarget = nullptr;
4202     if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) {
4203       const SIRegisterInfo *TRI
4204         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
4205 
4206       Register Def = MI.getOperand(1).getReg();
4207       Register Use = MI.getOperand(3).getReg();
4208 
4209       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
4210       B.setInsertPt(B.getMBB(), BrCond->getIterator());
4211       if (IntrID == Intrinsic::amdgcn_if) {
4212         B.buildInstr(AMDGPU::SI_IF)
4213           .addDef(Def)
4214           .addUse(Use)
4215           .addMBB(UncondBrTarget);
4216       } else {
4217         B.buildInstr(AMDGPU::SI_ELSE)
4218           .addDef(Def)
4219           .addUse(Use)
4220           .addMBB(UncondBrTarget)
4221           .addImm(0);
4222       }
4223 
4224       if (Br) {
4225         Br->getOperand(0).setMBB(CondBrTarget);
4226       } else {
4227         // The IRTranslator skips inserting the G_BR for fallthrough cases, but
4228         // since we're swapping branch targets it needs to be reinserted.
4229         // FIXME: IRTranslator should probably not do this
4230         B.buildBr(*CondBrTarget);
4231       }
4232 
4233       MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
4234       MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
4235       MI.eraseFromParent();
4236       BrCond->eraseFromParent();
4237       return true;
4238     }
4239 
4240     return false;
4241   }
4242   case Intrinsic::amdgcn_loop: {
4243     MachineInstr *Br = nullptr;
4244     MachineBasicBlock *UncondBrTarget = nullptr;
4245     if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget)) {
4246       const SIRegisterInfo *TRI
4247         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
4248 
4249       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
4250       Register Reg = MI.getOperand(2).getReg();
4251 
4252       B.setInsertPt(B.getMBB(), BrCond->getIterator());
4253       B.buildInstr(AMDGPU::SI_LOOP)
4254         .addUse(Reg)
4255         .addMBB(UncondBrTarget);
4256 
4257       if (Br)
4258         Br->getOperand(0).setMBB(CondBrTarget);
4259       else
4260         B.buildBr(*CondBrTarget);
4261 
4262       MI.eraseFromParent();
4263       BrCond->eraseFromParent();
4264       MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
4265       return true;
4266     }
4267 
4268     return false;
4269   }
4270   case Intrinsic::amdgcn_kernarg_segment_ptr:
4271     if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) {
4272       // This only makes sense to call in a kernel, so just lower to null.
4273       B.buildConstant(MI.getOperand(0).getReg(), 0);
4274       MI.eraseFromParent();
4275       return true;
4276     }
4277 
4278     return legalizePreloadedArgIntrin(
4279       MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
4280   case Intrinsic::amdgcn_implicitarg_ptr:
4281     return legalizeImplicitArgPtr(MI, MRI, B);
4282   case Intrinsic::amdgcn_workitem_id_x:
4283     return legalizePreloadedArgIntrin(MI, MRI, B,
4284                                       AMDGPUFunctionArgInfo::WORKITEM_ID_X);
4285   case Intrinsic::amdgcn_workitem_id_y:
4286     return legalizePreloadedArgIntrin(MI, MRI, B,
4287                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
4288   case Intrinsic::amdgcn_workitem_id_z:
4289     return legalizePreloadedArgIntrin(MI, MRI, B,
4290                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
4291   case Intrinsic::amdgcn_workgroup_id_x:
4292     return legalizePreloadedArgIntrin(MI, MRI, B,
4293                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
4294   case Intrinsic::amdgcn_workgroup_id_y:
4295     return legalizePreloadedArgIntrin(MI, MRI, B,
4296                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
4297   case Intrinsic::amdgcn_workgroup_id_z:
4298     return legalizePreloadedArgIntrin(MI, MRI, B,
4299                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
4300   case Intrinsic::amdgcn_dispatch_ptr:
4301     return legalizePreloadedArgIntrin(MI, MRI, B,
4302                                       AMDGPUFunctionArgInfo::DISPATCH_PTR);
4303   case Intrinsic::amdgcn_queue_ptr:
4304     return legalizePreloadedArgIntrin(MI, MRI, B,
4305                                       AMDGPUFunctionArgInfo::QUEUE_PTR);
4306   case Intrinsic::amdgcn_implicit_buffer_ptr:
4307     return legalizePreloadedArgIntrin(
4308       MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
4309   case Intrinsic::amdgcn_dispatch_id:
4310     return legalizePreloadedArgIntrin(MI, MRI, B,
4311                                       AMDGPUFunctionArgInfo::DISPATCH_ID);
4312   case Intrinsic::amdgcn_fdiv_fast:
4313     return legalizeFDIVFastIntrin(MI, MRI, B);
4314   case Intrinsic::amdgcn_is_shared:
4315     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
4316   case Intrinsic::amdgcn_is_private:
4317     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
4318   case Intrinsic::amdgcn_wavefrontsize: {
4319     B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
4320     MI.eraseFromParent();
4321     return true;
4322   }
4323   case Intrinsic::amdgcn_s_buffer_load:
4324     return legalizeSBufferLoad(MI, B, Helper.Observer);
4325   case Intrinsic::amdgcn_raw_buffer_store:
4326   case Intrinsic::amdgcn_struct_buffer_store:
4327     return legalizeBufferStore(MI, MRI, B, false, false);
4328   case Intrinsic::amdgcn_raw_buffer_store_format:
4329   case Intrinsic::amdgcn_struct_buffer_store_format:
4330     return legalizeBufferStore(MI, MRI, B, false, true);
4331   case Intrinsic::amdgcn_raw_tbuffer_store:
4332   case Intrinsic::amdgcn_struct_tbuffer_store:
4333     return legalizeBufferStore(MI, MRI, B, true, true);
4334   case Intrinsic::amdgcn_raw_buffer_load:
4335   case Intrinsic::amdgcn_struct_buffer_load:
4336     return legalizeBufferLoad(MI, MRI, B, false, false);
4337   case Intrinsic::amdgcn_raw_buffer_load_format:
4338   case Intrinsic::amdgcn_struct_buffer_load_format:
4339     return legalizeBufferLoad(MI, MRI, B, true, false);
4340   case Intrinsic::amdgcn_raw_tbuffer_load:
4341   case Intrinsic::amdgcn_struct_tbuffer_load:
4342     return legalizeBufferLoad(MI, MRI, B, true, true);
4343   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
4344   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
4345   case Intrinsic::amdgcn_raw_buffer_atomic_add:
4346   case Intrinsic::amdgcn_struct_buffer_atomic_add:
4347   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
4348   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
4349   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
4350   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
4351   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
4352   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
4353   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
4354   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
4355   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
4356   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
4357   case Intrinsic::amdgcn_raw_buffer_atomic_and:
4358   case Intrinsic::amdgcn_struct_buffer_atomic_and:
4359   case Intrinsic::amdgcn_raw_buffer_atomic_or:
4360   case Intrinsic::amdgcn_struct_buffer_atomic_or:
4361   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
4362   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
4363   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
4364   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
4365   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
4366   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
4367   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
4368   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
4369     return legalizeBufferAtomic(MI, B, IntrID);
4370   case Intrinsic::amdgcn_atomic_inc:
4371     return legalizeAtomicIncDec(MI, B, true);
4372   case Intrinsic::amdgcn_atomic_dec:
4373     return legalizeAtomicIncDec(MI, B, false);
4374   case Intrinsic::trap:
4375     return legalizeTrapIntrinsic(MI, MRI, B);
4376   case Intrinsic::debugtrap:
4377     return legalizeDebugTrapIntrinsic(MI, MRI, B);
4378   default: {
4379     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
4380             AMDGPU::getImageDimIntrinsicInfo(IntrID))
4381       return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr);
4382     return true;
4383   }
4384   }
4385 
4386   return true;
4387 }
4388