1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIInstrInfo.h"
24 #include "SIMachineFunctionInfo.h"
25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/MathExtras.h"
36 using namespace llvm;
37 
38 #include "AMDGPUGenCallingConv.inc"
39 
40 static cl::opt<bool> AMDGPUBypassSlowDiv(
41   "amdgpu-bypass-slow-div",
42   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
43   cl::init(true));
44 
45 // Find a larger type to do a load / store of a vector with.
46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
47   unsigned StoreSize = VT.getStoreSizeInBits();
48   if (StoreSize <= 32)
49     return EVT::getIntegerVT(Ctx, StoreSize);
50 
51   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
52   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
53 }
54 
55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
56   EVT VT = Op.getValueType();
57   KnownBits Known = DAG.computeKnownBits(Op);
58   return VT.getSizeInBits() - Known.countMinLeadingZeros();
59 }
60 
61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
62   EVT VT = Op.getValueType();
63 
64   // In order for this to be a signed 24-bit value, bit 23, must
65   // be a sign bit.
66   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
67 }
68 
69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
70                                            const AMDGPUSubtarget &STI)
71     : TargetLowering(TM), Subtarget(&STI) {
72   // Lower floating point store/load to integer store/load to reduce the number
73   // of patterns in tablegen.
74   setOperationAction(ISD::LOAD, MVT::f32, Promote);
75   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
76 
77   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
78   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
79 
80   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
81   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
82 
83   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
84   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
85 
86   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
87   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
88 
89   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
90   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
91 
92   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
93   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
94 
95   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
96   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
97 
98   setOperationAction(ISD::LOAD, MVT::i64, Promote);
99   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
100 
101   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
102   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
103 
104   setOperationAction(ISD::LOAD, MVT::f64, Promote);
105   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
106 
107   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
108   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
109 
110   // There are no 64-bit extloads. These should be done as a 32-bit extload and
111   // an extension to 64-bit.
112   for (MVT VT : MVT::integer_valuetypes()) {
113     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
114     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
115     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_valuetypes()) {
119     if (VT == MVT::i64)
120       continue;
121 
122     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
124     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
125     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
126 
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
129     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
131 
132     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
133     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
134     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
135     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
136   }
137 
138   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
139     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
140     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
141     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
142     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
143     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
144     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
145     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
146     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
147     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
148     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
149     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
150     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
151     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
152     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
153     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
154   }
155 
156   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
157   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
158   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
159   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
160   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
161   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
162   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
163 
164   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
165   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
166   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
167   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
168 
169   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
170   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
171   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
172   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
173 
174   setOperationAction(ISD::STORE, MVT::f32, Promote);
175   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
176 
177   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
178   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
179 
180   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
181   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
182 
183   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
184   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
185 
186   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
187   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
188 
189   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
190   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
191 
192   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
193   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
194 
195   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
196   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
197 
198   setOperationAction(ISD::STORE, MVT::i64, Promote);
199   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
200 
201   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
202   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
203 
204   setOperationAction(ISD::STORE, MVT::f64, Promote);
205   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
206 
207   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
208   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
209 
210   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
211   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
212   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
213   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
214 
215   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
216   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
217   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
218   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
219 
220   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
221   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
222   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
223   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
224   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
225   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
226   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
227 
228   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
229   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
230 
231   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
232   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
233 
234   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
235   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
236 
237   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
238   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
239 
240 
241   setOperationAction(ISD::Constant, MVT::i32, Legal);
242   setOperationAction(ISD::Constant, MVT::i64, Legal);
243   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
244   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
245 
246   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
247   setOperationAction(ISD::BRIND, MVT::Other, Expand);
248 
249   // This is totally unsupported, just custom lower to produce an error.
250   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
251 
252   // Library functions.  These default to Expand, but we have instructions
253   // for them.
254   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
255   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
256   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
257   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
258   setOperationAction(ISD::FABS,   MVT::f32, Legal);
259   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
260   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
261   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
262   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
263   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
264 
265   setOperationAction(ISD::FROUND, MVT::f32, Custom);
266   setOperationAction(ISD::FROUND, MVT::f64, Custom);
267 
268   setOperationAction(ISD::FLOG, MVT::f32, Custom);
269   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
270   setOperationAction(ISD::FEXP, MVT::f32, Custom);
271 
272 
273   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
274   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
275 
276   setOperationAction(ISD::FREM, MVT::f32, Custom);
277   setOperationAction(ISD::FREM, MVT::f64, Custom);
278 
279   // Expand to fneg + fadd.
280   setOperationAction(ISD::FSUB, MVT::f64, Expand);
281 
282   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
283   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
284   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
285   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
286   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
287   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
288   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
289   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
290   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
291   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
292   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
293   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
294   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
295   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
296   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
297   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
298   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
299   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
300   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
301   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
302   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
303   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
304 
305   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
306   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
307   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
308 
309   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
310   for (MVT VT : ScalarIntVTs) {
311     // These should use [SU]DIVREM, so set them to expand
312     setOperationAction(ISD::SDIV, VT, Expand);
313     setOperationAction(ISD::UDIV, VT, Expand);
314     setOperationAction(ISD::SREM, VT, Expand);
315     setOperationAction(ISD::UREM, VT, Expand);
316 
317     // GPU does not have divrem function for signed or unsigned.
318     setOperationAction(ISD::SDIVREM, VT, Custom);
319     setOperationAction(ISD::UDIVREM, VT, Custom);
320 
321     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
322     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
323     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
324 
325     setOperationAction(ISD::BSWAP, VT, Expand);
326     setOperationAction(ISD::CTTZ, VT, Expand);
327     setOperationAction(ISD::CTLZ, VT, Expand);
328 
329     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
330     setOperationAction(ISD::ADDC, VT, Legal);
331     setOperationAction(ISD::SUBC, VT, Legal);
332     setOperationAction(ISD::ADDE, VT, Legal);
333     setOperationAction(ISD::SUBE, VT, Legal);
334   }
335 
336   // The hardware supports 32-bit ROTR, but not ROTL.
337   setOperationAction(ISD::ROTL, MVT::i32, Expand);
338   setOperationAction(ISD::ROTL, MVT::i64, Expand);
339   setOperationAction(ISD::ROTR, MVT::i64, Expand);
340 
341   setOperationAction(ISD::MUL, MVT::i64, Expand);
342   setOperationAction(ISD::MULHU, MVT::i64, Expand);
343   setOperationAction(ISD::MULHS, MVT::i64, Expand);
344   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
345   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
346   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
347   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
348   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
349 
350   setOperationAction(ISD::SMIN, MVT::i32, Legal);
351   setOperationAction(ISD::UMIN, MVT::i32, Legal);
352   setOperationAction(ISD::SMAX, MVT::i32, Legal);
353   setOperationAction(ISD::UMAX, MVT::i32, Legal);
354 
355   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
356   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
357   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
358   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
359 
360   static const MVT::SimpleValueType VectorIntTypes[] = {
361     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
362   };
363 
364   for (MVT VT : VectorIntTypes) {
365     // Expand the following operations for the current type by default.
366     setOperationAction(ISD::ADD,  VT, Expand);
367     setOperationAction(ISD::AND,  VT, Expand);
368     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
369     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
370     setOperationAction(ISD::MUL,  VT, Expand);
371     setOperationAction(ISD::MULHU, VT, Expand);
372     setOperationAction(ISD::MULHS, VT, Expand);
373     setOperationAction(ISD::OR,   VT, Expand);
374     setOperationAction(ISD::SHL,  VT, Expand);
375     setOperationAction(ISD::SRA,  VT, Expand);
376     setOperationAction(ISD::SRL,  VT, Expand);
377     setOperationAction(ISD::ROTL, VT, Expand);
378     setOperationAction(ISD::ROTR, VT, Expand);
379     setOperationAction(ISD::SUB,  VT, Expand);
380     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
381     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
382     setOperationAction(ISD::SDIV, VT, Expand);
383     setOperationAction(ISD::UDIV, VT, Expand);
384     setOperationAction(ISD::SREM, VT, Expand);
385     setOperationAction(ISD::UREM, VT, Expand);
386     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
387     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
388     setOperationAction(ISD::SDIVREM, VT, Custom);
389     setOperationAction(ISD::UDIVREM, VT, Expand);
390     setOperationAction(ISD::SELECT, VT, Expand);
391     setOperationAction(ISD::VSELECT, VT, Expand);
392     setOperationAction(ISD::SELECT_CC, VT, Expand);
393     setOperationAction(ISD::XOR,  VT, Expand);
394     setOperationAction(ISD::BSWAP, VT, Expand);
395     setOperationAction(ISD::CTPOP, VT, Expand);
396     setOperationAction(ISD::CTTZ, VT, Expand);
397     setOperationAction(ISD::CTLZ, VT, Expand);
398     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
399     setOperationAction(ISD::SETCC, VT, Expand);
400   }
401 
402   static const MVT::SimpleValueType FloatVectorTypes[] = {
403      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
404   };
405 
406   for (MVT VT : FloatVectorTypes) {
407     setOperationAction(ISD::FABS, VT, Expand);
408     setOperationAction(ISD::FMINNUM, VT, Expand);
409     setOperationAction(ISD::FMAXNUM, VT, Expand);
410     setOperationAction(ISD::FADD, VT, Expand);
411     setOperationAction(ISD::FCEIL, VT, Expand);
412     setOperationAction(ISD::FCOS, VT, Expand);
413     setOperationAction(ISD::FDIV, VT, Expand);
414     setOperationAction(ISD::FEXP2, VT, Expand);
415     setOperationAction(ISD::FEXP, VT, Expand);
416     setOperationAction(ISD::FLOG2, VT, Expand);
417     setOperationAction(ISD::FREM, VT, Expand);
418     setOperationAction(ISD::FLOG, VT, Expand);
419     setOperationAction(ISD::FLOG10, VT, Expand);
420     setOperationAction(ISD::FPOW, VT, Expand);
421     setOperationAction(ISD::FFLOOR, VT, Expand);
422     setOperationAction(ISD::FTRUNC, VT, Expand);
423     setOperationAction(ISD::FMUL, VT, Expand);
424     setOperationAction(ISD::FMA, VT, Expand);
425     setOperationAction(ISD::FRINT, VT, Expand);
426     setOperationAction(ISD::FNEARBYINT, VT, Expand);
427     setOperationAction(ISD::FSQRT, VT, Expand);
428     setOperationAction(ISD::FSIN, VT, Expand);
429     setOperationAction(ISD::FSUB, VT, Expand);
430     setOperationAction(ISD::FNEG, VT, Expand);
431     setOperationAction(ISD::VSELECT, VT, Expand);
432     setOperationAction(ISD::SELECT_CC, VT, Expand);
433     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
434     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
435     setOperationAction(ISD::SETCC, VT, Expand);
436     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
437   }
438 
439   // This causes using an unrolled select operation rather than expansion with
440   // bit operations. This is in general better, but the alternative using BFI
441   // instructions may be better if the select sources are SGPRs.
442   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
443   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
444 
445   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
446   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
447 
448   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
449   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
450 
451   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
452   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
453 
454   // There are no libcalls of any kind.
455   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
456     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
457 
458   setSchedulingPreference(Sched::RegPressure);
459   setJumpIsExpensive(true);
460 
461   // FIXME: This is only partially true. If we have to do vector compares, any
462   // SGPR pair can be a condition register. If we have a uniform condition, we
463   // are better off doing SALU operations, where there is only one SCC. For now,
464   // we don't have a way of knowing during instruction selection if a condition
465   // will be uniform and we always use vector compares. Assume we are using
466   // vector compares until that is fixed.
467   setHasMultipleConditionRegisters(true);
468 
469   setMinCmpXchgSizeInBits(32);
470   setSupportsUnalignedAtomics(false);
471 
472   PredictableSelectIsExpensive = false;
473 
474   // We want to find all load dependencies for long chains of stores to enable
475   // merging into very wide vectors. The problem is with vectors with > 4
476   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
477   // vectors are a legal type, even though we have to split the loads
478   // usually. When we can more precisely specify load legality per address
479   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
480   // smarter so that they can figure out what to do in 2 iterations without all
481   // N > 4 stores on the same chain.
482   GatherAllAliasesMaxDepth = 16;
483 
484   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
485   // about these during lowering.
486   MaxStoresPerMemcpy  = 0xffffffff;
487   MaxStoresPerMemmove = 0xffffffff;
488   MaxStoresPerMemset  = 0xffffffff;
489 
490   // The expansion for 64-bit division is enormous.
491   if (AMDGPUBypassSlowDiv)
492     addBypassSlowDiv(64, 32);
493 
494   setTargetDAGCombine(ISD::BITCAST);
495   setTargetDAGCombine(ISD::SHL);
496   setTargetDAGCombine(ISD::SRA);
497   setTargetDAGCombine(ISD::SRL);
498   setTargetDAGCombine(ISD::TRUNCATE);
499   setTargetDAGCombine(ISD::MUL);
500   setTargetDAGCombine(ISD::MULHU);
501   setTargetDAGCombine(ISD::MULHS);
502   setTargetDAGCombine(ISD::SELECT);
503   setTargetDAGCombine(ISD::SELECT_CC);
504   setTargetDAGCombine(ISD::STORE);
505   setTargetDAGCombine(ISD::FADD);
506   setTargetDAGCombine(ISD::FSUB);
507   setTargetDAGCombine(ISD::FNEG);
508   setTargetDAGCombine(ISD::FABS);
509   setTargetDAGCombine(ISD::AssertZext);
510   setTargetDAGCombine(ISD::AssertSext);
511   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
512 }
513 
514 //===----------------------------------------------------------------------===//
515 // Target Information
516 //===----------------------------------------------------------------------===//
517 
518 LLVM_READNONE
519 static bool fnegFoldsIntoOp(unsigned Opc) {
520   switch (Opc) {
521   case ISD::FADD:
522   case ISD::FSUB:
523   case ISD::FMUL:
524   case ISD::FMA:
525   case ISD::FMAD:
526   case ISD::FMINNUM:
527   case ISD::FMAXNUM:
528   case ISD::FMINNUM_IEEE:
529   case ISD::FMAXNUM_IEEE:
530   case ISD::FSIN:
531   case ISD::FTRUNC:
532   case ISD::FRINT:
533   case ISD::FNEARBYINT:
534   case ISD::FCANONICALIZE:
535   case AMDGPUISD::RCP:
536   case AMDGPUISD::RCP_LEGACY:
537   case AMDGPUISD::RCP_IFLAG:
538   case AMDGPUISD::SIN_HW:
539   case AMDGPUISD::FMUL_LEGACY:
540   case AMDGPUISD::FMIN_LEGACY:
541   case AMDGPUISD::FMAX_LEGACY:
542   case AMDGPUISD::FMED3:
543     return true;
544   default:
545     return false;
546   }
547 }
548 
549 /// \p returns true if the operation will definitely need to use a 64-bit
550 /// encoding, and thus will use a VOP3 encoding regardless of the source
551 /// modifiers.
552 LLVM_READONLY
553 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
554   return N->getNumOperands() > 2 || VT == MVT::f64;
555 }
556 
557 // Most FP instructions support source modifiers, but this could be refined
558 // slightly.
559 LLVM_READONLY
560 static bool hasSourceMods(const SDNode *N) {
561   if (isa<MemSDNode>(N))
562     return false;
563 
564   switch (N->getOpcode()) {
565   case ISD::CopyToReg:
566   case ISD::SELECT:
567   case ISD::FDIV:
568   case ISD::FREM:
569   case ISD::INLINEASM:
570   case ISD::INLINEASM_BR:
571   case AMDGPUISD::DIV_SCALE:
572   case ISD::INTRINSIC_W_CHAIN:
573 
574   // TODO: Should really be looking at the users of the bitcast. These are
575   // problematic because bitcasts are used to legalize all stores to integer
576   // types.
577   case ISD::BITCAST:
578     return false;
579   case ISD::INTRINSIC_WO_CHAIN: {
580     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
581     case Intrinsic::amdgcn_interp_p1:
582     case Intrinsic::amdgcn_interp_p2:
583     case Intrinsic::amdgcn_interp_mov:
584     case Intrinsic::amdgcn_interp_p1_f16:
585     case Intrinsic::amdgcn_interp_p2_f16:
586       return false;
587     default:
588       return true;
589     }
590   }
591   default:
592     return true;
593   }
594 }
595 
596 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
597                                                  unsigned CostThreshold) {
598   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
599   // it is truly free to use a source modifier in all cases. If there are
600   // multiple users but for each one will necessitate using VOP3, there will be
601   // a code size increase. Try to avoid increasing code size unless we know it
602   // will save on the instruction count.
603   unsigned NumMayIncreaseSize = 0;
604   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
605 
606   // XXX - Should this limit number of uses to check?
607   for (const SDNode *U : N->uses()) {
608     if (!hasSourceMods(U))
609       return false;
610 
611     if (!opMustUseVOP3Encoding(U, VT)) {
612       if (++NumMayIncreaseSize > CostThreshold)
613         return false;
614     }
615   }
616 
617   return true;
618 }
619 
620 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
621   return MVT::i32;
622 }
623 
624 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
625   return true;
626 }
627 
628 // The backend supports 32 and 64 bit floating point immediates.
629 // FIXME: Why are we reporting vectors of FP immediates as legal?
630 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
631                                         bool ForCodeSize) const {
632   EVT ScalarVT = VT.getScalarType();
633   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
634          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
635 }
636 
637 // We don't want to shrink f64 / f32 constants.
638 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
639   EVT ScalarVT = VT.getScalarType();
640   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
641 }
642 
643 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
644                                                  ISD::LoadExtType ExtTy,
645                                                  EVT NewVT) const {
646   // TODO: This may be worth removing. Check regression tests for diffs.
647   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
648     return false;
649 
650   unsigned NewSize = NewVT.getStoreSizeInBits();
651 
652   // If we are reducing to a 32-bit load or a smaller multi-dword load,
653   // this is always better.
654   if (NewSize >= 32)
655     return true;
656 
657   EVT OldVT = N->getValueType(0);
658   unsigned OldSize = OldVT.getStoreSizeInBits();
659 
660   MemSDNode *MN = cast<MemSDNode>(N);
661   unsigned AS = MN->getAddressSpace();
662   // Do not shrink an aligned scalar load to sub-dword.
663   // Scalar engine cannot do sub-dword loads.
664   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
665       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
666        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
667        (isa<LoadSDNode>(N) &&
668         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
669       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
670     return false;
671 
672   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
673   // extloads, so doing one requires using a buffer_load. In cases where we
674   // still couldn't use a scalar load, using the wider load shouldn't really
675   // hurt anything.
676 
677   // If the old size already had to be an extload, there's no harm in continuing
678   // to reduce the width.
679   return (OldSize < 32);
680 }
681 
682 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
683                                                    const SelectionDAG &DAG,
684                                                    const MachineMemOperand &MMO) const {
685 
686   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
687 
688   if (LoadTy.getScalarType() == MVT::i32)
689     return false;
690 
691   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
692   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
693 
694   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
695     return false;
696 
697   bool Fast = false;
698   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
699                                         CastTy, MMO, &Fast) &&
700          Fast;
701 }
702 
703 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
704 // profitable with the expansion for 64-bit since it's generally good to
705 // speculate things.
706 // FIXME: These should really have the size as a parameter.
707 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
708   return true;
709 }
710 
711 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
712   return true;
713 }
714 
715 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
716   switch (N->getOpcode()) {
717     default:
718     return false;
719     case ISD::EntryToken:
720     case ISD::TokenFactor:
721       return true;
722     case ISD::INTRINSIC_WO_CHAIN:
723     {
724       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
725       switch (IntrID) {
726         default:
727         return false;
728         case Intrinsic::amdgcn_readfirstlane:
729         case Intrinsic::amdgcn_readlane:
730           return true;
731       }
732     }
733     break;
734     case ISD::LOAD:
735     {
736       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
737           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
738         return true;
739       return false;
740     }
741     break;
742   }
743 }
744 
745 TargetLowering::NegatibleCost
746 AMDGPUTargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
747                                        bool LegalOperations, bool ForCodeSize,
748                                        unsigned Depth) const {
749   switch (Op.getOpcode()) {
750   case ISD::FMA:
751   case ISD::FMAD: {
752     // Negating a fma is not free if it has users without source mods.
753     if (!allUsesHaveSourceMods(Op.getNode()))
754       return NegatibleCost::Expensive;
755     break;
756   }
757   default:
758     break;
759   }
760 
761   return TargetLowering::getNegatibleCost(Op, DAG, LegalOperations, ForCodeSize,
762                                           Depth);
763 }
764 
765 //===---------------------------------------------------------------------===//
766 // Target Properties
767 //===---------------------------------------------------------------------===//
768 
769 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
770   assert(VT.isFloatingPoint());
771 
772   // Packed operations do not have a fabs modifier.
773   return VT == MVT::f32 || VT == MVT::f64 ||
774          (Subtarget->has16BitInsts() && VT == MVT::f16);
775 }
776 
777 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
778   assert(VT.isFloatingPoint());
779   return VT == MVT::f32 || VT == MVT::f64 ||
780          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
781          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
782 }
783 
784 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
785                                                          unsigned NumElem,
786                                                          unsigned AS) const {
787   return true;
788 }
789 
790 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
791   // There are few operations which truly have vector input operands. Any vector
792   // operation is going to involve operations on each component, and a
793   // build_vector will be a copy per element, so it always makes sense to use a
794   // build_vector input in place of the extracted element to avoid a copy into a
795   // super register.
796   //
797   // We should probably only do this if all users are extracts only, but this
798   // should be the common case.
799   return true;
800 }
801 
802 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
803   // Truncate is just accessing a subregister.
804 
805   unsigned SrcSize = Source.getSizeInBits();
806   unsigned DestSize = Dest.getSizeInBits();
807 
808   return DestSize < SrcSize && DestSize % 32 == 0 ;
809 }
810 
811 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
812   // Truncate is just accessing a subregister.
813 
814   unsigned SrcSize = Source->getScalarSizeInBits();
815   unsigned DestSize = Dest->getScalarSizeInBits();
816 
817   if (DestSize== 16 && Subtarget->has16BitInsts())
818     return SrcSize >= 32;
819 
820   return DestSize < SrcSize && DestSize % 32 == 0;
821 }
822 
823 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
824   unsigned SrcSize = Src->getScalarSizeInBits();
825   unsigned DestSize = Dest->getScalarSizeInBits();
826 
827   if (SrcSize == 16 && Subtarget->has16BitInsts())
828     return DestSize >= 32;
829 
830   return SrcSize == 32 && DestSize == 64;
831 }
832 
833 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
834   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
835   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
836   // this will enable reducing 64-bit operations the 32-bit, which is always
837   // good.
838 
839   if (Src == MVT::i16)
840     return Dest == MVT::i32 ||Dest == MVT::i64 ;
841 
842   return Src == MVT::i32 && Dest == MVT::i64;
843 }
844 
845 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
846   return isZExtFree(Val.getValueType(), VT2);
847 }
848 
849 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
850   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
851   // limited number of native 64-bit operations. Shrinking an operation to fit
852   // in a single 32-bit register should always be helpful. As currently used,
853   // this is much less general than the name suggests, and is only used in
854   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
855   // not profitable, and may actually be harmful.
856   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
857 }
858 
859 //===---------------------------------------------------------------------===//
860 // TargetLowering Callbacks
861 //===---------------------------------------------------------------------===//
862 
863 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
864                                                   bool IsVarArg) {
865   switch (CC) {
866   case CallingConv::AMDGPU_VS:
867   case CallingConv::AMDGPU_GS:
868   case CallingConv::AMDGPU_PS:
869   case CallingConv::AMDGPU_CS:
870   case CallingConv::AMDGPU_HS:
871   case CallingConv::AMDGPU_ES:
872   case CallingConv::AMDGPU_LS:
873     return CC_AMDGPU;
874   case CallingConv::C:
875   case CallingConv::Fast:
876   case CallingConv::Cold:
877     return CC_AMDGPU_Func;
878   case CallingConv::AMDGPU_KERNEL:
879   case CallingConv::SPIR_KERNEL:
880   default:
881     report_fatal_error("Unsupported calling convention for call");
882   }
883 }
884 
885 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
886                                                     bool IsVarArg) {
887   switch (CC) {
888   case CallingConv::AMDGPU_KERNEL:
889   case CallingConv::SPIR_KERNEL:
890     llvm_unreachable("kernels should not be handled here");
891   case CallingConv::AMDGPU_VS:
892   case CallingConv::AMDGPU_GS:
893   case CallingConv::AMDGPU_PS:
894   case CallingConv::AMDGPU_CS:
895   case CallingConv::AMDGPU_HS:
896   case CallingConv::AMDGPU_ES:
897   case CallingConv::AMDGPU_LS:
898     return RetCC_SI_Shader;
899   case CallingConv::C:
900   case CallingConv::Fast:
901   case CallingConv::Cold:
902     return RetCC_AMDGPU_Func;
903   default:
904     report_fatal_error("Unsupported calling convention.");
905   }
906 }
907 
908 /// The SelectionDAGBuilder will automatically promote function arguments
909 /// with illegal types.  However, this does not work for the AMDGPU targets
910 /// since the function arguments are stored in memory as these illegal types.
911 /// In order to handle this properly we need to get the original types sizes
912 /// from the LLVM IR Function and fixup the ISD:InputArg values before
913 /// passing them to AnalyzeFormalArguments()
914 
915 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
916 /// input values across multiple registers.  Each item in the Ins array
917 /// represents a single value that will be stored in registers.  Ins[x].VT is
918 /// the value type of the value that will be stored in the register, so
919 /// whatever SDNode we lower the argument to needs to be this type.
920 ///
921 /// In order to correctly lower the arguments we need to know the size of each
922 /// argument.  Since Ins[x].VT gives us the size of the register that will
923 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
924 /// for the orignal function argument so that we can deduce the correct memory
925 /// type to use for Ins[x].  In most cases the correct memory type will be
926 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
927 /// we have a kernel argument of type v8i8, this argument will be split into
928 /// 8 parts and each part will be represented by its own item in the Ins array.
929 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
930 /// the argument before it was split.  From this, we deduce that the memory type
931 /// for each individual part is i8.  We pass the memory type as LocVT to the
932 /// calling convention analysis function and the register type (Ins[x].VT) as
933 /// the ValVT.
934 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
935   CCState &State,
936   const SmallVectorImpl<ISD::InputArg> &Ins) const {
937   const MachineFunction &MF = State.getMachineFunction();
938   const Function &Fn = MF.getFunction();
939   LLVMContext &Ctx = Fn.getParent()->getContext();
940   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
941   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
942   CallingConv::ID CC = Fn.getCallingConv();
943 
944   unsigned MaxAlign = 1;
945   uint64_t ExplicitArgOffset = 0;
946   const DataLayout &DL = Fn.getParent()->getDataLayout();
947 
948   unsigned InIndex = 0;
949 
950   for (const Argument &Arg : Fn.args()) {
951     Type *BaseArgTy = Arg.getType();
952     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
953     MaxAlign = std::max(Align, MaxAlign);
954     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
955 
956     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
957     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
958 
959     // We're basically throwing away everything passed into us and starting over
960     // to get accurate in-memory offsets. The "PartOffset" is completely useless
961     // to us as computed in Ins.
962     //
963     // We also need to figure out what type legalization is trying to do to get
964     // the correct memory offsets.
965 
966     SmallVector<EVT, 16> ValueVTs;
967     SmallVector<uint64_t, 16> Offsets;
968     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
969 
970     for (unsigned Value = 0, NumValues = ValueVTs.size();
971          Value != NumValues; ++Value) {
972       uint64_t BasePartOffset = Offsets[Value];
973 
974       EVT ArgVT = ValueVTs[Value];
975       EVT MemVT = ArgVT;
976       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
977       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
978 
979       if (NumRegs == 1) {
980         // This argument is not split, so the IR type is the memory type.
981         if (ArgVT.isExtended()) {
982           // We have an extended type, like i24, so we should just use the
983           // register type.
984           MemVT = RegisterVT;
985         } else {
986           MemVT = ArgVT;
987         }
988       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
989                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
990         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
991         // We have a vector value which has been split into a vector with
992         // the same scalar type, but fewer elements.  This should handle
993         // all the floating-point vector types.
994         MemVT = RegisterVT;
995       } else if (ArgVT.isVector() &&
996                  ArgVT.getVectorNumElements() == NumRegs) {
997         // This arg has been split so that each element is stored in a separate
998         // register.
999         MemVT = ArgVT.getScalarType();
1000       } else if (ArgVT.isExtended()) {
1001         // We have an extended type, like i65.
1002         MemVT = RegisterVT;
1003       } else {
1004         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1005         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1006         if (RegisterVT.isInteger()) {
1007           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1008         } else if (RegisterVT.isVector()) {
1009           assert(!RegisterVT.getScalarType().isFloatingPoint());
1010           unsigned NumElements = RegisterVT.getVectorNumElements();
1011           assert(MemoryBits % NumElements == 0);
1012           // This vector type has been split into another vector type with
1013           // a different elements size.
1014           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1015                                            MemoryBits / NumElements);
1016           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1017         } else {
1018           llvm_unreachable("cannot deduce memory type.");
1019         }
1020       }
1021 
1022       // Convert one element vectors to scalar.
1023       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1024         MemVT = MemVT.getScalarType();
1025 
1026       // Round up vec3/vec5 argument.
1027       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1028         assert(MemVT.getVectorNumElements() == 3 ||
1029                MemVT.getVectorNumElements() == 5);
1030         MemVT = MemVT.getPow2VectorType(State.getContext());
1031       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1032         MemVT = MemVT.getRoundIntegerType(State.getContext());
1033       }
1034 
1035       unsigned PartOffset = 0;
1036       for (unsigned i = 0; i != NumRegs; ++i) {
1037         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1038                                                BasePartOffset + PartOffset,
1039                                                MemVT.getSimpleVT(),
1040                                                CCValAssign::Full));
1041         PartOffset += MemVT.getStoreSize();
1042       }
1043     }
1044   }
1045 }
1046 
1047 SDValue AMDGPUTargetLowering::LowerReturn(
1048   SDValue Chain, CallingConv::ID CallConv,
1049   bool isVarArg,
1050   const SmallVectorImpl<ISD::OutputArg> &Outs,
1051   const SmallVectorImpl<SDValue> &OutVals,
1052   const SDLoc &DL, SelectionDAG &DAG) const {
1053   // FIXME: Fails for r600 tests
1054   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1055   // "wave terminate should not have return values");
1056   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1057 }
1058 
1059 //===---------------------------------------------------------------------===//
1060 // Target specific lowering
1061 //===---------------------------------------------------------------------===//
1062 
1063 /// Selects the correct CCAssignFn for a given CallingConvention value.
1064 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1065                                                     bool IsVarArg) {
1066   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1067 }
1068 
1069 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1070                                                       bool IsVarArg) {
1071   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1072 }
1073 
1074 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1075                                                   SelectionDAG &DAG,
1076                                                   MachineFrameInfo &MFI,
1077                                                   int ClobberedFI) const {
1078   SmallVector<SDValue, 8> ArgChains;
1079   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1080   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1081 
1082   // Include the original chain at the beginning of the list. When this is
1083   // used by target LowerCall hooks, this helps legalize find the
1084   // CALLSEQ_BEGIN node.
1085   ArgChains.push_back(Chain);
1086 
1087   // Add a chain value for each stack argument corresponding
1088   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1089                             UE = DAG.getEntryNode().getNode()->use_end();
1090        U != UE; ++U) {
1091     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1092       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1093         if (FI->getIndex() < 0) {
1094           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1095           int64_t InLastByte = InFirstByte;
1096           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1097 
1098           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1099               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1100             ArgChains.push_back(SDValue(L, 1));
1101         }
1102       }
1103     }
1104   }
1105 
1106   // Build a tokenfactor for all the chains.
1107   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1108 }
1109 
1110 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1111                                                  SmallVectorImpl<SDValue> &InVals,
1112                                                  StringRef Reason) const {
1113   SDValue Callee = CLI.Callee;
1114   SelectionDAG &DAG = CLI.DAG;
1115 
1116   const Function &Fn = DAG.getMachineFunction().getFunction();
1117 
1118   StringRef FuncName("<unknown>");
1119 
1120   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1121     FuncName = G->getSymbol();
1122   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1123     FuncName = G->getGlobal()->getName();
1124 
1125   DiagnosticInfoUnsupported NoCalls(
1126     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1127   DAG.getContext()->diagnose(NoCalls);
1128 
1129   if (!CLI.IsTailCall) {
1130     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1131       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1132   }
1133 
1134   return DAG.getEntryNode();
1135 }
1136 
1137 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1138                                         SmallVectorImpl<SDValue> &InVals) const {
1139   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1140 }
1141 
1142 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1143                                                       SelectionDAG &DAG) const {
1144   const Function &Fn = DAG.getMachineFunction().getFunction();
1145 
1146   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1147                                             SDLoc(Op).getDebugLoc());
1148   DAG.getContext()->diagnose(NoDynamicAlloca);
1149   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1150   return DAG.getMergeValues(Ops, SDLoc());
1151 }
1152 
1153 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1154                                              SelectionDAG &DAG) const {
1155   switch (Op.getOpcode()) {
1156   default:
1157     Op->print(errs(), &DAG);
1158     llvm_unreachable("Custom lowering code for this"
1159                      "instruction is not implemented yet!");
1160     break;
1161   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1162   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1163   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1164   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1165   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1166   case ISD::FREM: return LowerFREM(Op, DAG);
1167   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1168   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1169   case ISD::FRINT: return LowerFRINT(Op, DAG);
1170   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1171   case ISD::FROUND: return LowerFROUND(Op, DAG);
1172   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1173   case ISD::FLOG:
1174     return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef);
1175   case ISD::FLOG10:
1176     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1177   case ISD::FEXP:
1178     return lowerFEXP(Op, DAG);
1179   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1180   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1181   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1182   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1183   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1184   case ISD::CTTZ:
1185   case ISD::CTTZ_ZERO_UNDEF:
1186   case ISD::CTLZ:
1187   case ISD::CTLZ_ZERO_UNDEF:
1188     return LowerCTLZ_CTTZ(Op, DAG);
1189   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1190   }
1191   return Op;
1192 }
1193 
1194 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1195                                               SmallVectorImpl<SDValue> &Results,
1196                                               SelectionDAG &DAG) const {
1197   switch (N->getOpcode()) {
1198   case ISD::SIGN_EXTEND_INREG:
1199     // Different parts of legalization seem to interpret which type of
1200     // sign_extend_inreg is the one to check for custom lowering. The extended
1201     // from type is what really matters, but some places check for custom
1202     // lowering of the result type. This results in trying to use
1203     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1204     // nothing here and let the illegal result integer be handled normally.
1205     return;
1206   default:
1207     return;
1208   }
1209 }
1210 
1211 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1212   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1213   if (!GVar || !GVar->hasInitializer())
1214     return false;
1215 
1216   return !isa<UndefValue>(GVar->getInitializer());
1217 }
1218 
1219 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1220                                                  SDValue Op,
1221                                                  SelectionDAG &DAG) const {
1222 
1223   const DataLayout &DL = DAG.getDataLayout();
1224   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1225   const GlobalValue *GV = G->getGlobal();
1226 
1227   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1228       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1229     if (!MFI->isEntryFunction()) {
1230       const Function &Fn = DAG.getMachineFunction().getFunction();
1231       DiagnosticInfoUnsupported BadLDSDecl(
1232         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1233       DAG.getContext()->diagnose(BadLDSDecl);
1234     }
1235 
1236     // XXX: What does the value of G->getOffset() mean?
1237     assert(G->getOffset() == 0 &&
1238          "Do not know what to do with an non-zero offset");
1239 
1240     // TODO: We could emit code to handle the initialization somewhere.
1241     if (!hasDefinedInitializer(GV)) {
1242       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1243       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1244     }
1245   }
1246 
1247   const Function &Fn = DAG.getMachineFunction().getFunction();
1248   DiagnosticInfoUnsupported BadInit(
1249       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1250   DAG.getContext()->diagnose(BadInit);
1251   return SDValue();
1252 }
1253 
1254 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1255                                                   SelectionDAG &DAG) const {
1256   SmallVector<SDValue, 8> Args;
1257 
1258   EVT VT = Op.getValueType();
1259   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1260     SDLoc SL(Op);
1261     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1262     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1263 
1264     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1265     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1266   }
1267 
1268   for (const SDUse &U : Op->ops())
1269     DAG.ExtractVectorElements(U.get(), Args);
1270 
1271   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1272 }
1273 
1274 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1275                                                      SelectionDAG &DAG) const {
1276 
1277   SmallVector<SDValue, 8> Args;
1278   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1279   EVT VT = Op.getValueType();
1280   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1281                             VT.getVectorNumElements());
1282 
1283   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1284 }
1285 
1286 /// Generate Min/Max node
1287 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1288                                                    SDValue LHS, SDValue RHS,
1289                                                    SDValue True, SDValue False,
1290                                                    SDValue CC,
1291                                                    DAGCombinerInfo &DCI) const {
1292   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1293     return SDValue();
1294 
1295   SelectionDAG &DAG = DCI.DAG;
1296   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1297   switch (CCOpcode) {
1298   case ISD::SETOEQ:
1299   case ISD::SETONE:
1300   case ISD::SETUNE:
1301   case ISD::SETNE:
1302   case ISD::SETUEQ:
1303   case ISD::SETEQ:
1304   case ISD::SETFALSE:
1305   case ISD::SETFALSE2:
1306   case ISD::SETTRUE:
1307   case ISD::SETTRUE2:
1308   case ISD::SETUO:
1309   case ISD::SETO:
1310     break;
1311   case ISD::SETULE:
1312   case ISD::SETULT: {
1313     if (LHS == True)
1314       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1315     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1316   }
1317   case ISD::SETOLE:
1318   case ISD::SETOLT:
1319   case ISD::SETLE:
1320   case ISD::SETLT: {
1321     // Ordered. Assume ordered for undefined.
1322 
1323     // Only do this after legalization to avoid interfering with other combines
1324     // which might occur.
1325     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1326         !DCI.isCalledByLegalizer())
1327       return SDValue();
1328 
1329     // We need to permute the operands to get the correct NaN behavior. The
1330     // selected operand is the second one based on the failing compare with NaN,
1331     // so permute it based on the compare type the hardware uses.
1332     if (LHS == True)
1333       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1334     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1335   }
1336   case ISD::SETUGE:
1337   case ISD::SETUGT: {
1338     if (LHS == True)
1339       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1340     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1341   }
1342   case ISD::SETGT:
1343   case ISD::SETGE:
1344   case ISD::SETOGE:
1345   case ISD::SETOGT: {
1346     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1347         !DCI.isCalledByLegalizer())
1348       return SDValue();
1349 
1350     if (LHS == True)
1351       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1352     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1353   }
1354   case ISD::SETCC_INVALID:
1355     llvm_unreachable("Invalid setcc condcode!");
1356   }
1357   return SDValue();
1358 }
1359 
1360 std::pair<SDValue, SDValue>
1361 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1362   SDLoc SL(Op);
1363 
1364   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1365 
1366   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1367   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1368 
1369   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1370   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1371 
1372   return std::make_pair(Lo, Hi);
1373 }
1374 
1375 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1376   SDLoc SL(Op);
1377 
1378   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1379   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1380   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1381 }
1382 
1383 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1384   SDLoc SL(Op);
1385 
1386   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1387   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1388   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1389 }
1390 
1391 // Split a vector type into two parts. The first part is a power of two vector.
1392 // The second part is whatever is left over, and is a scalar if it would
1393 // otherwise be a 1-vector.
1394 std::pair<EVT, EVT>
1395 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1396   EVT LoVT, HiVT;
1397   EVT EltVT = VT.getVectorElementType();
1398   unsigned NumElts = VT.getVectorNumElements();
1399   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1400   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1401   HiVT = NumElts - LoNumElts == 1
1402              ? EltVT
1403              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1404   return std::make_pair(LoVT, HiVT);
1405 }
1406 
1407 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1408 // scalar.
1409 std::pair<SDValue, SDValue>
1410 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1411                                   const EVT &LoVT, const EVT &HiVT,
1412                                   SelectionDAG &DAG) const {
1413   assert(LoVT.getVectorNumElements() +
1414                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1415              N.getValueType().getVectorNumElements() &&
1416          "More vector elements requested than available!");
1417   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1418                            DAG.getVectorIdxConstant(0, DL));
1419   SDValue Hi = DAG.getNode(
1420       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1421       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1422   return std::make_pair(Lo, Hi);
1423 }
1424 
1425 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1426                                               SelectionDAG &DAG) const {
1427   LoadSDNode *Load = cast<LoadSDNode>(Op);
1428   EVT VT = Op.getValueType();
1429   SDLoc SL(Op);
1430 
1431 
1432   // If this is a 2 element vector, we really want to scalarize and not create
1433   // weird 1 element vectors.
1434   if (VT.getVectorNumElements() == 2) {
1435     SDValue Ops[2];
1436     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1437     return DAG.getMergeValues(Ops, SL);
1438   }
1439 
1440   SDValue BasePtr = Load->getBasePtr();
1441   EVT MemVT = Load->getMemoryVT();
1442 
1443   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1444 
1445   EVT LoVT, HiVT;
1446   EVT LoMemVT, HiMemVT;
1447   SDValue Lo, Hi;
1448 
1449   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1450   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1451   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1452 
1453   unsigned Size = LoMemVT.getStoreSize();
1454   unsigned BaseAlign = Load->getAlignment();
1455   unsigned HiAlign = MinAlign(BaseAlign, Size);
1456 
1457   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1458                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1459                                   BaseAlign, Load->getMemOperand()->getFlags());
1460   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1461   SDValue HiLoad =
1462       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1463                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1464                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1465 
1466   SDValue Join;
1467   if (LoVT == HiVT) {
1468     // This is the case that the vector is power of two so was evenly split.
1469     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1470   } else {
1471     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1472                        DAG.getVectorIdxConstant(0, SL));
1473     Join = DAG.getNode(
1474         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1475         VT, Join, HiLoad,
1476         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1477   }
1478 
1479   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1480                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1481 
1482   return DAG.getMergeValues(Ops, SL);
1483 }
1484 
1485 // Widen a vector load from vec3 to vec4.
1486 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1487                                               SelectionDAG &DAG) const {
1488   LoadSDNode *Load = cast<LoadSDNode>(Op);
1489   EVT VT = Op.getValueType();
1490   assert(VT.getVectorNumElements() == 3);
1491   SDValue BasePtr = Load->getBasePtr();
1492   EVT MemVT = Load->getMemoryVT();
1493   SDLoc SL(Op);
1494   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1495   unsigned BaseAlign = Load->getAlignment();
1496 
1497   EVT WideVT =
1498       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1499   EVT WideMemVT =
1500       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1501   SDValue WideLoad = DAG.getExtLoad(
1502       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1503       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1504   return DAG.getMergeValues(
1505       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1506                    DAG.getVectorIdxConstant(0, SL)),
1507        WideLoad.getValue(1)},
1508       SL);
1509 }
1510 
1511 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1512                                                SelectionDAG &DAG) const {
1513   StoreSDNode *Store = cast<StoreSDNode>(Op);
1514   SDValue Val = Store->getValue();
1515   EVT VT = Val.getValueType();
1516 
1517   // If this is a 2 element vector, we really want to scalarize and not create
1518   // weird 1 element vectors.
1519   if (VT.getVectorNumElements() == 2)
1520     return scalarizeVectorStore(Store, DAG);
1521 
1522   EVT MemVT = Store->getMemoryVT();
1523   SDValue Chain = Store->getChain();
1524   SDValue BasePtr = Store->getBasePtr();
1525   SDLoc SL(Op);
1526 
1527   EVT LoVT, HiVT;
1528   EVT LoMemVT, HiMemVT;
1529   SDValue Lo, Hi;
1530 
1531   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1532   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1533   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1534 
1535   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1536 
1537   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1538   unsigned BaseAlign = Store->getAlignment();
1539   unsigned Size = LoMemVT.getStoreSize();
1540   unsigned HiAlign = MinAlign(BaseAlign, Size);
1541 
1542   SDValue LoStore =
1543       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1544                         Store->getMemOperand()->getFlags());
1545   SDValue HiStore =
1546       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1547                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1548 
1549   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1550 }
1551 
1552 // This is a shortcut for integer division because we have fast i32<->f32
1553 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1554 // float is enough to accurately represent up to a 24-bit signed integer.
1555 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1556                                             bool Sign) const {
1557   SDLoc DL(Op);
1558   EVT VT = Op.getValueType();
1559   SDValue LHS = Op.getOperand(0);
1560   SDValue RHS = Op.getOperand(1);
1561   MVT IntVT = MVT::i32;
1562   MVT FltVT = MVT::f32;
1563 
1564   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1565   if (LHSSignBits < 9)
1566     return SDValue();
1567 
1568   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1569   if (RHSSignBits < 9)
1570     return SDValue();
1571 
1572   unsigned BitSize = VT.getSizeInBits();
1573   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1574   unsigned DivBits = BitSize - SignBits;
1575   if (Sign)
1576     ++DivBits;
1577 
1578   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1579   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1580 
1581   SDValue jq = DAG.getConstant(1, DL, IntVT);
1582 
1583   if (Sign) {
1584     // char|short jq = ia ^ ib;
1585     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1586 
1587     // jq = jq >> (bitsize - 2)
1588     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1589                      DAG.getConstant(BitSize - 2, DL, VT));
1590 
1591     // jq = jq | 0x1
1592     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1593   }
1594 
1595   // int ia = (int)LHS;
1596   SDValue ia = LHS;
1597 
1598   // int ib, (int)RHS;
1599   SDValue ib = RHS;
1600 
1601   // float fa = (float)ia;
1602   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1603 
1604   // float fb = (float)ib;
1605   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1606 
1607   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1608                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1609 
1610   // fq = trunc(fq);
1611   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1612 
1613   // float fqneg = -fq;
1614   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1615 
1616   MachineFunction &MF = DAG.getMachineFunction();
1617   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1618 
1619   // float fr = mad(fqneg, fb, fa);
1620   unsigned OpCode = MFI->getMode().allFP32Denormals() ?
1621                     (unsigned)AMDGPUISD::FMAD_FTZ :
1622                     (unsigned)ISD::FMAD;
1623   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1624 
1625   // int iq = (int)fq;
1626   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1627 
1628   // fr = fabs(fr);
1629   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1630 
1631   // fb = fabs(fb);
1632   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1633 
1634   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1635 
1636   // int cv = fr >= fb;
1637   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1638 
1639   // jq = (cv ? jq : 0);
1640   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1641 
1642   // dst = iq + jq;
1643   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1644 
1645   // Rem needs compensation, it's easier to recompute it
1646   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1647   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1648 
1649   // Truncate to number of bits this divide really is.
1650   if (Sign) {
1651     SDValue InRegSize
1652       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1653     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1654     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1655   } else {
1656     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1657     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1658     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1659   }
1660 
1661   return DAG.getMergeValues({ Div, Rem }, DL);
1662 }
1663 
1664 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1665                                       SelectionDAG &DAG,
1666                                       SmallVectorImpl<SDValue> &Results) const {
1667   SDLoc DL(Op);
1668   EVT VT = Op.getValueType();
1669 
1670   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1671 
1672   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1673 
1674   SDValue One = DAG.getConstant(1, DL, HalfVT);
1675   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1676 
1677   //HiLo split
1678   SDValue LHS = Op.getOperand(0);
1679   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1680   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1681 
1682   SDValue RHS = Op.getOperand(1);
1683   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1684   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1685 
1686   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1687       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1688 
1689     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1690                               LHS_Lo, RHS_Lo);
1691 
1692     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1693     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1694 
1695     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1696     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1697     return;
1698   }
1699 
1700   if (isTypeLegal(MVT::i64)) {
1701     MachineFunction &MF = DAG.getMachineFunction();
1702     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1703 
1704     // Compute denominator reciprocal.
1705     unsigned FMAD = MFI->getMode().allFP32Denormals() ?
1706                     (unsigned)AMDGPUISD::FMAD_FTZ :
1707                     (unsigned)ISD::FMAD;
1708 
1709     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1710     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1711     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1712       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1713       Cvt_Lo);
1714     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1715     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1716       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1717     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1718       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1719     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1720     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1721       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1722       Mul1);
1723     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1724     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1725     SDValue Rcp64 = DAG.getBitcast(VT,
1726                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1727 
1728     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1729     SDValue One64  = DAG.getConstant(1, DL, VT);
1730     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1731     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1732 
1733     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1734     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1735     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1736     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1737                                     Zero);
1738     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1739                                     One);
1740 
1741     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1742                                   Mulhi1_Lo, Zero1);
1743     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1744                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1745     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1746     SDValue Add1 = DAG.getBitcast(VT,
1747                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1748 
1749     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1750     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1751     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1752                                     Zero);
1753     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1754                                     One);
1755 
1756     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1757                                   Mulhi2_Lo, Zero1);
1758     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1759                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1760     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1761                                   Zero, Add2_Lo.getValue(1));
1762     SDValue Add2 = DAG.getBitcast(VT,
1763                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1764     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1765 
1766     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1767 
1768     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1769     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1770     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1771                                   Mul3_Lo, Zero1);
1772     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1773                                   Mul3_Hi, Sub1_Lo.getValue(1));
1774     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1775     SDValue Sub1 = DAG.getBitcast(VT,
1776                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1777 
1778     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1779     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1780                                  ISD::SETUGE);
1781     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1782                                  ISD::SETUGE);
1783     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1784 
1785     // TODO: Here and below portions of the code can be enclosed into if/endif.
1786     // Currently control flow is unconditional and we have 4 selects after
1787     // potential endif to substitute PHIs.
1788 
1789     // if C3 != 0 ...
1790     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1791                                   RHS_Lo, Zero1);
1792     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1793                                   RHS_Hi, Sub1_Lo.getValue(1));
1794     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1795                                   Zero, Sub2_Lo.getValue(1));
1796     SDValue Sub2 = DAG.getBitcast(VT,
1797                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1798 
1799     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1800 
1801     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1802                                  ISD::SETUGE);
1803     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1804                                  ISD::SETUGE);
1805     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1806 
1807     // if (C6 != 0)
1808     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1809 
1810     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1811                                   RHS_Lo, Zero1);
1812     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1813                                   RHS_Hi, Sub2_Lo.getValue(1));
1814     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1815                                   Zero, Sub3_Lo.getValue(1));
1816     SDValue Sub3 = DAG.getBitcast(VT,
1817                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1818 
1819     // endif C6
1820     // endif C3
1821 
1822     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1823     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1824 
1825     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1826     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1827 
1828     Results.push_back(Div);
1829     Results.push_back(Rem);
1830 
1831     return;
1832   }
1833 
1834   // r600 expandion.
1835   // Get Speculative values
1836   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1837   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1838 
1839   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1840   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1841   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1842 
1843   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1844   SDValue DIV_Lo = Zero;
1845 
1846   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1847 
1848   for (unsigned i = 0; i < halfBitWidth; ++i) {
1849     const unsigned bitPos = halfBitWidth - i - 1;
1850     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1851     // Get value of high bit
1852     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1853     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1854     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1855 
1856     // Shift
1857     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1858     // Add LHS high bit
1859     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1860 
1861     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1862     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1863 
1864     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1865 
1866     // Update REM
1867     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1868     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1869   }
1870 
1871   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1872   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1873   Results.push_back(DIV);
1874   Results.push_back(REM);
1875 }
1876 
1877 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1878                                            SelectionDAG &DAG) const {
1879   SDLoc DL(Op);
1880   EVT VT = Op.getValueType();
1881 
1882   if (VT == MVT::i64) {
1883     SmallVector<SDValue, 2> Results;
1884     LowerUDIVREM64(Op, DAG, Results);
1885     return DAG.getMergeValues(Results, DL);
1886   }
1887 
1888   if (VT == MVT::i32) {
1889     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1890       return Res;
1891   }
1892 
1893   SDValue Num = Op.getOperand(0);
1894   SDValue Den = Op.getOperand(1);
1895 
1896   // RCP =  URECIP(Den) = 2^32 / Den + e
1897   // e is rounding error.
1898   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1899 
1900   // RCP_LO = mul(RCP, Den) */
1901   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1902 
1903   // RCP_HI = mulhu (RCP, Den) */
1904   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1905 
1906   // NEG_RCP_LO = -RCP_LO
1907   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1908                                                      RCP_LO);
1909 
1910   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1911   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1912                                            NEG_RCP_LO, RCP_LO,
1913                                            ISD::SETEQ);
1914   // Calculate the rounding error from the URECIP instruction
1915   // E = mulhu(ABS_RCP_LO, RCP)
1916   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1917 
1918   // RCP_A_E = RCP + E
1919   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1920 
1921   // RCP_S_E = RCP - E
1922   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1923 
1924   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1925   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1926                                      RCP_A_E, RCP_S_E,
1927                                      ISD::SETEQ);
1928   // Quotient = mulhu(Tmp0, Num)
1929   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1930 
1931   // Num_S_Remainder = Quotient * Den
1932   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1933 
1934   // Remainder = Num - Num_S_Remainder
1935   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1936 
1937   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1938   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1939                                                  DAG.getConstant(-1, DL, VT),
1940                                                  DAG.getConstant(0, DL, VT),
1941                                                  ISD::SETUGE);
1942   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1943   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1944                                                   Num_S_Remainder,
1945                                                   DAG.getConstant(-1, DL, VT),
1946                                                   DAG.getConstant(0, DL, VT),
1947                                                   ISD::SETUGE);
1948   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1949   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1950                                                Remainder_GE_Zero);
1951 
1952   // Calculate Division result:
1953 
1954   // Quotient_A_One = Quotient + 1
1955   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1956                                        DAG.getConstant(1, DL, VT));
1957 
1958   // Quotient_S_One = Quotient - 1
1959   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1960                                        DAG.getConstant(1, DL, VT));
1961 
1962   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1963   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1964                                      Quotient, Quotient_A_One, ISD::SETEQ);
1965 
1966   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1967   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1968                             Quotient_S_One, Div, ISD::SETEQ);
1969 
1970   // Calculate Rem result:
1971 
1972   // Remainder_S_Den = Remainder - Den
1973   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1974 
1975   // Remainder_A_Den = Remainder + Den
1976   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1977 
1978   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1979   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1980                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1981 
1982   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1983   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1984                             Remainder_A_Den, Rem, ISD::SETEQ);
1985   SDValue Ops[2] = {
1986     Div,
1987     Rem
1988   };
1989   return DAG.getMergeValues(Ops, DL);
1990 }
1991 
1992 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1993                                            SelectionDAG &DAG) const {
1994   SDLoc DL(Op);
1995   EVT VT = Op.getValueType();
1996 
1997   SDValue LHS = Op.getOperand(0);
1998   SDValue RHS = Op.getOperand(1);
1999 
2000   SDValue Zero = DAG.getConstant(0, DL, VT);
2001   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2002 
2003   if (VT == MVT::i32) {
2004     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2005       return Res;
2006   }
2007 
2008   if (VT == MVT::i64 &&
2009       DAG.ComputeNumSignBits(LHS) > 32 &&
2010       DAG.ComputeNumSignBits(RHS) > 32) {
2011     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2012 
2013     //HiLo split
2014     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2015     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2016     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2017                                  LHS_Lo, RHS_Lo);
2018     SDValue Res[2] = {
2019       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2020       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2021     };
2022     return DAG.getMergeValues(Res, DL);
2023   }
2024 
2025   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2026   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2027   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2028   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2029 
2030   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2031   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2032 
2033   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2034   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2035 
2036   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2037   SDValue Rem = Div.getValue(1);
2038 
2039   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2040   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2041 
2042   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2043   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2044 
2045   SDValue Res[2] = {
2046     Div,
2047     Rem
2048   };
2049   return DAG.getMergeValues(Res, DL);
2050 }
2051 
2052 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2053 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2054   SDLoc SL(Op);
2055   EVT VT = Op.getValueType();
2056   SDValue X = Op.getOperand(0);
2057   SDValue Y = Op.getOperand(1);
2058 
2059   // TODO: Should this propagate fast-math-flags?
2060 
2061   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2062   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2063   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2064 
2065   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2066 }
2067 
2068 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2069   SDLoc SL(Op);
2070   SDValue Src = Op.getOperand(0);
2071 
2072   // result = trunc(src)
2073   // if (src > 0.0 && src != result)
2074   //   result += 1.0
2075 
2076   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2077 
2078   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2079   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2080 
2081   EVT SetCCVT =
2082       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2083 
2084   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2085   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2086   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2087 
2088   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2089   // TODO: Should this propagate fast-math-flags?
2090   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2091 }
2092 
2093 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2094                                   SelectionDAG &DAG) {
2095   const unsigned FractBits = 52;
2096   const unsigned ExpBits = 11;
2097 
2098   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2099                                 Hi,
2100                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2101                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2102   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2103                             DAG.getConstant(1023, SL, MVT::i32));
2104 
2105   return Exp;
2106 }
2107 
2108 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2109   SDLoc SL(Op);
2110   SDValue Src = Op.getOperand(0);
2111 
2112   assert(Op.getValueType() == MVT::f64);
2113 
2114   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2115   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2116 
2117   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2118 
2119   // Extract the upper half, since this is where we will find the sign and
2120   // exponent.
2121   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2122 
2123   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2124 
2125   const unsigned FractBits = 52;
2126 
2127   // Extract the sign bit.
2128   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2129   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2130 
2131   // Extend back to 64-bits.
2132   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2133   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2134 
2135   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2136   const SDValue FractMask
2137     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2138 
2139   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2140   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2141   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2142 
2143   EVT SetCCVT =
2144       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2145 
2146   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2147 
2148   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2149   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2150 
2151   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2152   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2153 
2154   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2155 }
2156 
2157 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2158   SDLoc SL(Op);
2159   SDValue Src = Op.getOperand(0);
2160 
2161   assert(Op.getValueType() == MVT::f64);
2162 
2163   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2164   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2165   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2166 
2167   // TODO: Should this propagate fast-math-flags?
2168 
2169   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2170   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2171 
2172   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2173 
2174   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2175   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2176 
2177   EVT SetCCVT =
2178       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2179   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2180 
2181   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2182 }
2183 
2184 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2185   // FNEARBYINT and FRINT are the same, except in their handling of FP
2186   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2187   // rint, so just treat them as equivalent.
2188   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2189 }
2190 
2191 // XXX - May require not supporting f32 denormals?
2192 
2193 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2194 // compare and vselect end up producing worse code than scalarizing the whole
2195 // operation.
2196 SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op,
2197                                                       SelectionDAG &DAG) const {
2198   SDLoc SL(Op);
2199   SDValue X = Op.getOperand(0);
2200   EVT VT = Op.getValueType();
2201 
2202   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2203 
2204   // TODO: Should this propagate fast-math-flags?
2205 
2206   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2207 
2208   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2209 
2210   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2211   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2212   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2213 
2214   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2215 
2216   EVT SetCCVT =
2217       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2218 
2219   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2220 
2221   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2222 
2223   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2224 }
2225 
2226 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2227   SDLoc SL(Op);
2228   SDValue X = Op.getOperand(0);
2229 
2230   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2231 
2232   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2233   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2234   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2235   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2236   EVT SetCCVT =
2237       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2238 
2239   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2240 
2241   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2242 
2243   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2244 
2245   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2246                                        MVT::i64);
2247 
2248   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2249   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2250                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2251                                           MVT::i64),
2252                           Exp);
2253 
2254   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2255   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2256                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2257                               ISD::SETNE);
2258 
2259   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2260                              D, DAG.getConstant(0, SL, MVT::i64));
2261   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2262 
2263   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2264   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2265 
2266   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2267   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2268   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2269 
2270   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2271                             ExpEqNegOne,
2272                             DAG.getConstantFP(1.0, SL, MVT::f64),
2273                             DAG.getConstantFP(0.0, SL, MVT::f64));
2274 
2275   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2276 
2277   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2278   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2279 
2280   return K;
2281 }
2282 
2283 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2284   EVT VT = Op.getValueType();
2285 
2286   if (isOperationLegal(ISD::FTRUNC, VT))
2287     return LowerFROUND_LegalFTRUNC(Op, DAG);
2288 
2289   if (VT == MVT::f64)
2290     return LowerFROUND64(Op, DAG);
2291 
2292   llvm_unreachable("unhandled type");
2293 }
2294 
2295 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2296   SDLoc SL(Op);
2297   SDValue Src = Op.getOperand(0);
2298 
2299   // result = trunc(src);
2300   // if (src < 0.0 && src != result)
2301   //   result += -1.0.
2302 
2303   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2304 
2305   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2306   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2307 
2308   EVT SetCCVT =
2309       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2310 
2311   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2312   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2313   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2314 
2315   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2316   // TODO: Should this propagate fast-math-flags?
2317   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2318 }
2319 
2320 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2321                                         double Log2BaseInverted) const {
2322   EVT VT = Op.getValueType();
2323 
2324   SDLoc SL(Op);
2325   SDValue Operand = Op.getOperand(0);
2326   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2327   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2328 
2329   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2330 }
2331 
2332 // exp2(M_LOG2E_F * f);
2333 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2334   EVT VT = Op.getValueType();
2335   SDLoc SL(Op);
2336   SDValue Src = Op.getOperand(0);
2337 
2338   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2339   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2340   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2341 }
2342 
2343 static bool isCtlzOpc(unsigned Opc) {
2344   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2345 }
2346 
2347 static bool isCttzOpc(unsigned Opc) {
2348   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2349 }
2350 
2351 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2352   SDLoc SL(Op);
2353   SDValue Src = Op.getOperand(0);
2354   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2355                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2356 
2357   unsigned ISDOpc, NewOpc;
2358   if (isCtlzOpc(Op.getOpcode())) {
2359     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2360     NewOpc = AMDGPUISD::FFBH_U32;
2361   } else if (isCttzOpc(Op.getOpcode())) {
2362     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2363     NewOpc = AMDGPUISD::FFBL_B32;
2364   } else
2365     llvm_unreachable("Unexpected OPCode!!!");
2366 
2367 
2368   if (ZeroUndef && Src.getValueType() == MVT::i32)
2369     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2370 
2371   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2372 
2373   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2374   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2375 
2376   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2377   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2378 
2379   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2380                                    *DAG.getContext(), MVT::i32);
2381 
2382   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2383   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2384 
2385   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2386   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2387 
2388   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2389   SDValue Add, NewOpr;
2390   if (isCtlzOpc(Op.getOpcode())) {
2391     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2392     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2393     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2394   } else {
2395     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2396     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2397     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2398   }
2399 
2400   if (!ZeroUndef) {
2401     // Test if the full 64-bit input is zero.
2402 
2403     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2404     // which we probably don't want.
2405     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2406     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2407     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2408 
2409     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2410     // with the same cycles, otherwise it is slower.
2411     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2412     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2413 
2414     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2415 
2416     // The instruction returns -1 for 0 input, but the defined intrinsic
2417     // behavior is to return the number of bits.
2418     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2419                          SrcIsZero, Bits32, NewOpr);
2420   }
2421 
2422   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2423 }
2424 
2425 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2426                                                bool Signed) const {
2427   // Unsigned
2428   // cul2f(ulong u)
2429   //{
2430   //  uint lz = clz(u);
2431   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2432   //  u = (u << lz) & 0x7fffffffffffffffUL;
2433   //  ulong t = u & 0xffffffffffUL;
2434   //  uint v = (e << 23) | (uint)(u >> 40);
2435   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2436   //  return as_float(v + r);
2437   //}
2438   // Signed
2439   // cl2f(long l)
2440   //{
2441   //  long s = l >> 63;
2442   //  float r = cul2f((l + s) ^ s);
2443   //  return s ? -r : r;
2444   //}
2445 
2446   SDLoc SL(Op);
2447   SDValue Src = Op.getOperand(0);
2448   SDValue L = Src;
2449 
2450   SDValue S;
2451   if (Signed) {
2452     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2453     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2454 
2455     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2456     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2457   }
2458 
2459   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2460                                    *DAG.getContext(), MVT::f32);
2461 
2462 
2463   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2464   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2465   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2466   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2467 
2468   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2469   SDValue E = DAG.getSelect(SL, MVT::i32,
2470     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2471     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2472     ZeroI32);
2473 
2474   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2475     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2476     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2477 
2478   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2479                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2480 
2481   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2482                              U, DAG.getConstant(40, SL, MVT::i64));
2483 
2484   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2485     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2486     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2487 
2488   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2489   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2490   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2491 
2492   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2493 
2494   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2495 
2496   SDValue R = DAG.getSelect(SL, MVT::i32,
2497     RCmp,
2498     One,
2499     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2500   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2501   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2502 
2503   if (!Signed)
2504     return R;
2505 
2506   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2507   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2508 }
2509 
2510 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2511                                                bool Signed) const {
2512   SDLoc SL(Op);
2513   SDValue Src = Op.getOperand(0);
2514 
2515   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2516 
2517   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2518                            DAG.getConstant(0, SL, MVT::i32));
2519   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2520                            DAG.getConstant(1, SL, MVT::i32));
2521 
2522   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2523                               SL, MVT::f64, Hi);
2524 
2525   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2526 
2527   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2528                               DAG.getConstant(32, SL, MVT::i32));
2529   // TODO: Should this propagate fast-math-flags?
2530   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2531 }
2532 
2533 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2534                                                SelectionDAG &DAG) const {
2535   // TODO: Factor out code common with LowerSINT_TO_FP.
2536   EVT DestVT = Op.getValueType();
2537   SDValue Src = Op.getOperand(0);
2538   EVT SrcVT = Src.getValueType();
2539 
2540   if (SrcVT == MVT::i16) {
2541     if (DestVT == MVT::f16)
2542       return Op;
2543     SDLoc DL(Op);
2544 
2545     // Promote src to i32
2546     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2547     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2548   }
2549 
2550   assert(SrcVT == MVT::i64 && "operation should be legal");
2551 
2552   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2553     SDLoc DL(Op);
2554 
2555     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2556     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2557     SDValue FPRound =
2558         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2559 
2560     return FPRound;
2561   }
2562 
2563   if (DestVT == MVT::f32)
2564     return LowerINT_TO_FP32(Op, DAG, false);
2565 
2566   assert(DestVT == MVT::f64);
2567   return LowerINT_TO_FP64(Op, DAG, false);
2568 }
2569 
2570 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2571                                               SelectionDAG &DAG) const {
2572   EVT DestVT = Op.getValueType();
2573 
2574   SDValue Src = Op.getOperand(0);
2575   EVT SrcVT = Src.getValueType();
2576 
2577   if (SrcVT == MVT::i16) {
2578     if (DestVT == MVT::f16)
2579       return Op;
2580 
2581     SDLoc DL(Op);
2582     // Promote src to i32
2583     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2584     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2585   }
2586 
2587   assert(SrcVT == MVT::i64 && "operation should be legal");
2588 
2589   // TODO: Factor out code common with LowerUINT_TO_FP.
2590 
2591   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2592     SDLoc DL(Op);
2593     SDValue Src = Op.getOperand(0);
2594 
2595     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2596     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2597     SDValue FPRound =
2598         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2599 
2600     return FPRound;
2601   }
2602 
2603   if (DestVT == MVT::f32)
2604     return LowerINT_TO_FP32(Op, DAG, true);
2605 
2606   assert(DestVT == MVT::f64);
2607   return LowerINT_TO_FP64(Op, DAG, true);
2608 }
2609 
2610 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2611                                                bool Signed) const {
2612   SDLoc SL(Op);
2613 
2614   SDValue Src = Op.getOperand(0);
2615 
2616   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2617 
2618   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2619                                  MVT::f64);
2620   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2621                                  MVT::f64);
2622   // TODO: Should this propagate fast-math-flags?
2623   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2624 
2625   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2626 
2627 
2628   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2629 
2630   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2631                            MVT::i32, FloorMul);
2632   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2633 
2634   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2635 
2636   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2637 }
2638 
2639 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2640   SDLoc DL(Op);
2641   SDValue N0 = Op.getOperand(0);
2642 
2643   // Convert to target node to get known bits
2644   if (N0.getValueType() == MVT::f32)
2645     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2646 
2647   if (getTargetMachine().Options.UnsafeFPMath) {
2648     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2649     return SDValue();
2650   }
2651 
2652   assert(N0.getSimpleValueType() == MVT::f64);
2653 
2654   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2655   const unsigned ExpMask = 0x7ff;
2656   const unsigned ExpBiasf64 = 1023;
2657   const unsigned ExpBiasf16 = 15;
2658   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2659   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2660   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2661   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2662                            DAG.getConstant(32, DL, MVT::i64));
2663   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2664   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2665   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2666                           DAG.getConstant(20, DL, MVT::i64));
2667   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2668                   DAG.getConstant(ExpMask, DL, MVT::i32));
2669   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2670   // add the f16 bias (15) to get the biased exponent for the f16 format.
2671   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2672                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2673 
2674   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2675                           DAG.getConstant(8, DL, MVT::i32));
2676   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2677                   DAG.getConstant(0xffe, DL, MVT::i32));
2678 
2679   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2680                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2681   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2682 
2683   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2684   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2685 
2686   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2687   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2688       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2689                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2690 
2691   // N = M | (E << 12);
2692   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2693       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2694                   DAG.getConstant(12, DL, MVT::i32)));
2695 
2696   // B = clamp(1-E, 0, 13);
2697   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2698                                   One, E);
2699   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2700   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2701                   DAG.getConstant(13, DL, MVT::i32));
2702 
2703   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2704                                    DAG.getConstant(0x1000, DL, MVT::i32));
2705 
2706   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2707   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2708   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2709   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2710 
2711   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2712   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2713                               DAG.getConstant(0x7, DL, MVT::i32));
2714   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2715                   DAG.getConstant(2, DL, MVT::i32));
2716   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2717                                One, Zero, ISD::SETEQ);
2718   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2719                                One, Zero, ISD::SETGT);
2720   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2721   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2722 
2723   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2724                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2725   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2726                       I, V, ISD::SETEQ);
2727 
2728   // Extract the sign bit.
2729   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2730                             DAG.getConstant(16, DL, MVT::i32));
2731   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2732                      DAG.getConstant(0x8000, DL, MVT::i32));
2733 
2734   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2735   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2736 }
2737 
2738 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2739                                               SelectionDAG &DAG) const {
2740   SDValue Src = Op.getOperand(0);
2741 
2742   // TODO: Factor out code common with LowerFP_TO_UINT.
2743 
2744   EVT SrcVT = Src.getValueType();
2745   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2746     SDLoc DL(Op);
2747 
2748     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2749     SDValue FpToInt32 =
2750         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2751 
2752     return FpToInt32;
2753   }
2754 
2755   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2756     return LowerFP64_TO_INT(Op, DAG, true);
2757 
2758   return SDValue();
2759 }
2760 
2761 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2762                                               SelectionDAG &DAG) const {
2763   SDValue Src = Op.getOperand(0);
2764 
2765   // TODO: Factor out code common with LowerFP_TO_SINT.
2766 
2767   EVT SrcVT = Src.getValueType();
2768   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2769     SDLoc DL(Op);
2770 
2771     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2772     SDValue FpToInt32 =
2773         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2774 
2775     return FpToInt32;
2776   }
2777 
2778   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2779     return LowerFP64_TO_INT(Op, DAG, false);
2780 
2781   return SDValue();
2782 }
2783 
2784 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2785                                                      SelectionDAG &DAG) const {
2786   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2787   MVT VT = Op.getSimpleValueType();
2788   MVT ScalarVT = VT.getScalarType();
2789 
2790   assert(VT.isVector());
2791 
2792   SDValue Src = Op.getOperand(0);
2793   SDLoc DL(Op);
2794 
2795   // TODO: Don't scalarize on Evergreen?
2796   unsigned NElts = VT.getVectorNumElements();
2797   SmallVector<SDValue, 8> Args;
2798   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2799 
2800   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2801   for (unsigned I = 0; I < NElts; ++I)
2802     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2803 
2804   return DAG.getBuildVector(VT, DL, Args);
2805 }
2806 
2807 //===----------------------------------------------------------------------===//
2808 // Custom DAG optimizations
2809 //===----------------------------------------------------------------------===//
2810 
2811 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2812   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2813 }
2814 
2815 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2816   EVT VT = Op.getValueType();
2817   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2818                                      // as unsigned 24-bit values.
2819     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2820 }
2821 
2822 static SDValue simplifyI24(SDNode *Node24,
2823                            TargetLowering::DAGCombinerInfo &DCI) {
2824   SelectionDAG &DAG = DCI.DAG;
2825   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2826 
2827   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2828   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2829   unsigned NewOpcode = Node24->getOpcode();
2830   if (IsIntrin) {
2831     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2832     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2833       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2834   }
2835 
2836   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2837 
2838   // First try to simplify using GetDemandedBits which allows the operands to
2839   // have other uses, but will only perform simplifications that involve
2840   // bypassing some nodes for this user.
2841   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2842   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2843   if (DemandedLHS || DemandedRHS)
2844     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2845                        DemandedLHS ? DemandedLHS : LHS,
2846                        DemandedRHS ? DemandedRHS : RHS);
2847 
2848   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2849   // operands if this node is the only user.
2850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2851   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2852     return SDValue(Node24, 0);
2853   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2854     return SDValue(Node24, 0);
2855 
2856   return SDValue();
2857 }
2858 
2859 template <typename IntTy>
2860 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2861                                uint32_t Width, const SDLoc &DL) {
2862   if (Width + Offset < 32) {
2863     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2864     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2865     return DAG.getConstant(Result, DL, MVT::i32);
2866   }
2867 
2868   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2869 }
2870 
2871 static bool hasVolatileUser(SDNode *Val) {
2872   for (SDNode *U : Val->uses()) {
2873     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2874       if (M->isVolatile())
2875         return true;
2876     }
2877   }
2878 
2879   return false;
2880 }
2881 
2882 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2883   // i32 vectors are the canonical memory type.
2884   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2885     return false;
2886 
2887   if (!VT.isByteSized())
2888     return false;
2889 
2890   unsigned Size = VT.getStoreSize();
2891 
2892   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2893     return false;
2894 
2895   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2896     return false;
2897 
2898   return true;
2899 }
2900 
2901 // Replace load of an illegal type with a store of a bitcast to a friendlier
2902 // type.
2903 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2904                                                  DAGCombinerInfo &DCI) const {
2905   if (!DCI.isBeforeLegalize())
2906     return SDValue();
2907 
2908   LoadSDNode *LN = cast<LoadSDNode>(N);
2909   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2910     return SDValue();
2911 
2912   SDLoc SL(N);
2913   SelectionDAG &DAG = DCI.DAG;
2914   EVT VT = LN->getMemoryVT();
2915 
2916   unsigned Size = VT.getStoreSize();
2917   unsigned Align = LN->getAlignment();
2918   if (Align < Size && isTypeLegal(VT)) {
2919     bool IsFast;
2920     unsigned AS = LN->getAddressSpace();
2921 
2922     // Expand unaligned loads earlier than legalization. Due to visitation order
2923     // problems during legalization, the emitted instructions to pack and unpack
2924     // the bytes again are not eliminated in the case of an unaligned copy.
2925     if (!allowsMisalignedMemoryAccesses(
2926             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2927       SDValue Ops[2];
2928 
2929       if (VT.isVector())
2930         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2931       else
2932         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2933 
2934       return DAG.getMergeValues(Ops, SDLoc(N));
2935     }
2936 
2937     if (!IsFast)
2938       return SDValue();
2939   }
2940 
2941   if (!shouldCombineMemoryType(VT))
2942     return SDValue();
2943 
2944   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2945 
2946   SDValue NewLoad
2947     = DAG.getLoad(NewVT, SL, LN->getChain(),
2948                   LN->getBasePtr(), LN->getMemOperand());
2949 
2950   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2951   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2952   return SDValue(N, 0);
2953 }
2954 
2955 // Replace store of an illegal type with a store of a bitcast to a friendlier
2956 // type.
2957 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2958                                                   DAGCombinerInfo &DCI) const {
2959   if (!DCI.isBeforeLegalize())
2960     return SDValue();
2961 
2962   StoreSDNode *SN = cast<StoreSDNode>(N);
2963   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2964     return SDValue();
2965 
2966   EVT VT = SN->getMemoryVT();
2967   unsigned Size = VT.getStoreSize();
2968 
2969   SDLoc SL(N);
2970   SelectionDAG &DAG = DCI.DAG;
2971   unsigned Align = SN->getAlignment();
2972   if (Align < Size && isTypeLegal(VT)) {
2973     bool IsFast;
2974     unsigned AS = SN->getAddressSpace();
2975 
2976     // Expand unaligned stores earlier than legalization. Due to visitation
2977     // order problems during legalization, the emitted instructions to pack and
2978     // unpack the bytes again are not eliminated in the case of an unaligned
2979     // copy.
2980     if (!allowsMisalignedMemoryAccesses(
2981             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2982       if (VT.isVector())
2983         return scalarizeVectorStore(SN, DAG);
2984 
2985       return expandUnalignedStore(SN, DAG);
2986     }
2987 
2988     if (!IsFast)
2989       return SDValue();
2990   }
2991 
2992   if (!shouldCombineMemoryType(VT))
2993     return SDValue();
2994 
2995   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2996   SDValue Val = SN->getValue();
2997 
2998   //DCI.AddToWorklist(Val.getNode());
2999 
3000   bool OtherUses = !Val.hasOneUse();
3001   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3002   if (OtherUses) {
3003     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3004     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3005   }
3006 
3007   return DAG.getStore(SN->getChain(), SL, CastVal,
3008                       SN->getBasePtr(), SN->getMemOperand());
3009 }
3010 
3011 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3012 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3013 // issues.
3014 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3015                                                         DAGCombinerInfo &DCI) const {
3016   SelectionDAG &DAG = DCI.DAG;
3017   SDValue N0 = N->getOperand(0);
3018 
3019   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3020   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3021   if (N0.getOpcode() == ISD::TRUNCATE) {
3022     SDValue N1 = N->getOperand(1);
3023     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3024     SDLoc SL(N);
3025 
3026     SDValue Src = N0.getOperand(0);
3027     EVT SrcVT = Src.getValueType();
3028     if (SrcVT.bitsGE(ExtVT)) {
3029       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3030       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3031     }
3032   }
3033 
3034   return SDValue();
3035 }
3036 
3037 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3038   SDNode *N, DAGCombinerInfo &DCI) const {
3039   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3040   switch (IID) {
3041   case Intrinsic::amdgcn_mul_i24:
3042   case Intrinsic::amdgcn_mul_u24:
3043     return simplifyI24(N, DCI);
3044   default:
3045     return SDValue();
3046   }
3047 }
3048 
3049 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3050 /// binary operation \p Opc to it with the corresponding constant operands.
3051 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3052   DAGCombinerInfo &DCI, const SDLoc &SL,
3053   unsigned Opc, SDValue LHS,
3054   uint32_t ValLo, uint32_t ValHi) const {
3055   SelectionDAG &DAG = DCI.DAG;
3056   SDValue Lo, Hi;
3057   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3058 
3059   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3060   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3061 
3062   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3063   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3064 
3065   // Re-visit the ands. It's possible we eliminated one of them and it could
3066   // simplify the vector.
3067   DCI.AddToWorklist(Lo.getNode());
3068   DCI.AddToWorklist(Hi.getNode());
3069 
3070   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3071   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3072 }
3073 
3074 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3075                                                 DAGCombinerInfo &DCI) const {
3076   EVT VT = N->getValueType(0);
3077 
3078   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3079   if (!RHS)
3080     return SDValue();
3081 
3082   SDValue LHS = N->getOperand(0);
3083   unsigned RHSVal = RHS->getZExtValue();
3084   if (!RHSVal)
3085     return LHS;
3086 
3087   SDLoc SL(N);
3088   SelectionDAG &DAG = DCI.DAG;
3089 
3090   switch (LHS->getOpcode()) {
3091   default:
3092     break;
3093   case ISD::ZERO_EXTEND:
3094   case ISD::SIGN_EXTEND:
3095   case ISD::ANY_EXTEND: {
3096     SDValue X = LHS->getOperand(0);
3097 
3098     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3099         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3100       // Prefer build_vector as the canonical form if packed types are legal.
3101       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3102       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3103        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3104       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3105     }
3106 
3107     // shl (ext x) => zext (shl x), if shift does not overflow int
3108     if (VT != MVT::i64)
3109       break;
3110     KnownBits Known = DAG.computeKnownBits(X);
3111     unsigned LZ = Known.countMinLeadingZeros();
3112     if (LZ < RHSVal)
3113       break;
3114     EVT XVT = X.getValueType();
3115     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3116     return DAG.getZExtOrTrunc(Shl, SL, VT);
3117   }
3118   }
3119 
3120   if (VT != MVT::i64)
3121     return SDValue();
3122 
3123   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3124 
3125   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3126   // common case, splitting this into a move and a 32-bit shift is faster and
3127   // the same code size.
3128   if (RHSVal < 32)
3129     return SDValue();
3130 
3131   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3132 
3133   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3134   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3135 
3136   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3137 
3138   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3139   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3140 }
3141 
3142 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3143                                                 DAGCombinerInfo &DCI) const {
3144   if (N->getValueType(0) != MVT::i64)
3145     return SDValue();
3146 
3147   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3148   if (!RHS)
3149     return SDValue();
3150 
3151   SelectionDAG &DAG = DCI.DAG;
3152   SDLoc SL(N);
3153   unsigned RHSVal = RHS->getZExtValue();
3154 
3155   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3156   if (RHSVal == 32) {
3157     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3158     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3159                                    DAG.getConstant(31, SL, MVT::i32));
3160 
3161     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3162     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3163   }
3164 
3165   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3166   if (RHSVal == 63) {
3167     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3168     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3169                                    DAG.getConstant(31, SL, MVT::i32));
3170     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3171     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3172   }
3173 
3174   return SDValue();
3175 }
3176 
3177 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3178                                                 DAGCombinerInfo &DCI) const {
3179   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3180   if (!RHS)
3181     return SDValue();
3182 
3183   EVT VT = N->getValueType(0);
3184   SDValue LHS = N->getOperand(0);
3185   unsigned ShiftAmt = RHS->getZExtValue();
3186   SelectionDAG &DAG = DCI.DAG;
3187   SDLoc SL(N);
3188 
3189   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3190   // this improves the ability to match BFE patterns in isel.
3191   if (LHS.getOpcode() == ISD::AND) {
3192     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3193       if (Mask->getAPIntValue().isShiftedMask() &&
3194           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3195         return DAG.getNode(
3196             ISD::AND, SL, VT,
3197             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3198             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3199       }
3200     }
3201   }
3202 
3203   if (VT != MVT::i64)
3204     return SDValue();
3205 
3206   if (ShiftAmt < 32)
3207     return SDValue();
3208 
3209   // srl i64:x, C for C >= 32
3210   // =>
3211   //   build_pair (srl hi_32(x), C - 32), 0
3212   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3213   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3214 
3215   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3216   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3217 
3218   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3219   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3220 
3221   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3222 
3223   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3224 }
3225 
3226 SDValue AMDGPUTargetLowering::performTruncateCombine(
3227   SDNode *N, DAGCombinerInfo &DCI) const {
3228   SDLoc SL(N);
3229   SelectionDAG &DAG = DCI.DAG;
3230   EVT VT = N->getValueType(0);
3231   SDValue Src = N->getOperand(0);
3232 
3233   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3234   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3235     SDValue Vec = Src.getOperand(0);
3236     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3237       SDValue Elt0 = Vec.getOperand(0);
3238       EVT EltVT = Elt0.getValueType();
3239       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3240         if (EltVT.isFloatingPoint()) {
3241           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3242                              EltVT.changeTypeToInteger(), Elt0);
3243         }
3244 
3245         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3246       }
3247     }
3248   }
3249 
3250   // Equivalent of above for accessing the high element of a vector as an
3251   // integer operation.
3252   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3253   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3254     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3255       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3256         SDValue BV = stripBitcast(Src.getOperand(0));
3257         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3258             BV.getValueType().getVectorNumElements() == 2) {
3259           SDValue SrcElt = BV.getOperand(1);
3260           EVT SrcEltVT = SrcElt.getValueType();
3261           if (SrcEltVT.isFloatingPoint()) {
3262             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3263                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3264           }
3265 
3266           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3267         }
3268       }
3269     }
3270   }
3271 
3272   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3273   //
3274   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3275   //     i16 (trunc (srl (i32 (trunc x), K)))
3276   if (VT.getScalarSizeInBits() < 32) {
3277     EVT SrcVT = Src.getValueType();
3278     if (SrcVT.getScalarSizeInBits() > 32 &&
3279         (Src.getOpcode() == ISD::SRL ||
3280          Src.getOpcode() == ISD::SRA ||
3281          Src.getOpcode() == ISD::SHL)) {
3282       SDValue Amt = Src.getOperand(1);
3283       KnownBits Known = DAG.computeKnownBits(Amt);
3284       unsigned Size = VT.getScalarSizeInBits();
3285       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3286           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3287         EVT MidVT = VT.isVector() ?
3288           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3289                            VT.getVectorNumElements()) : MVT::i32;
3290 
3291         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3292         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3293                                     Src.getOperand(0));
3294         DCI.AddToWorklist(Trunc.getNode());
3295 
3296         if (Amt.getValueType() != NewShiftVT) {
3297           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3298           DCI.AddToWorklist(Amt.getNode());
3299         }
3300 
3301         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3302                                           Trunc, Amt);
3303         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3304       }
3305     }
3306   }
3307 
3308   return SDValue();
3309 }
3310 
3311 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3312 // instructions. If we only match on the legalized i64 mul expansion,
3313 // SimplifyDemandedBits will be unable to remove them because there will be
3314 // multiple uses due to the separate mul + mulh[su].
3315 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3316                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3317   if (Size <= 32) {
3318     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3319     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3320   }
3321 
3322   // Because we want to eliminate extension instructions before the
3323   // operation, we need to create a single user here (i.e. not the separate
3324   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3325 
3326   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3327 
3328   SDValue Mul = DAG.getNode(MulOpc, SL,
3329                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3330 
3331   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3332                      Mul.getValue(0), Mul.getValue(1));
3333 }
3334 
3335 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3336                                                 DAGCombinerInfo &DCI) const {
3337   EVT VT = N->getValueType(0);
3338 
3339   unsigned Size = VT.getSizeInBits();
3340   if (VT.isVector() || Size > 64)
3341     return SDValue();
3342 
3343   // There are i16 integer mul/mad.
3344   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3345     return SDValue();
3346 
3347   SelectionDAG &DAG = DCI.DAG;
3348   SDLoc DL(N);
3349 
3350   SDValue N0 = N->getOperand(0);
3351   SDValue N1 = N->getOperand(1);
3352 
3353   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3354   // in the source into any_extends if the result of the mul is truncated. Since
3355   // we can assume the high bits are whatever we want, use the underlying value
3356   // to avoid the unknown high bits from interfering.
3357   if (N0.getOpcode() == ISD::ANY_EXTEND)
3358     N0 = N0.getOperand(0);
3359 
3360   if (N1.getOpcode() == ISD::ANY_EXTEND)
3361     N1 = N1.getOperand(0);
3362 
3363   SDValue Mul;
3364 
3365   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3366     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3367     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3368     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3369   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3370     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3371     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3372     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3373   } else {
3374     return SDValue();
3375   }
3376 
3377   // We need to use sext even for MUL_U24, because MUL_U24 is used
3378   // for signed multiply of 8 and 16-bit types.
3379   return DAG.getSExtOrTrunc(Mul, DL, VT);
3380 }
3381 
3382 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3383                                                   DAGCombinerInfo &DCI) const {
3384   EVT VT = N->getValueType(0);
3385 
3386   if (!Subtarget->hasMulI24() || VT.isVector())
3387     return SDValue();
3388 
3389   SelectionDAG &DAG = DCI.DAG;
3390   SDLoc DL(N);
3391 
3392   SDValue N0 = N->getOperand(0);
3393   SDValue N1 = N->getOperand(1);
3394 
3395   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3396     return SDValue();
3397 
3398   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3399   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3400 
3401   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3402   DCI.AddToWorklist(Mulhi.getNode());
3403   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3404 }
3405 
3406 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3407                                                   DAGCombinerInfo &DCI) const {
3408   EVT VT = N->getValueType(0);
3409 
3410   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3411     return SDValue();
3412 
3413   SelectionDAG &DAG = DCI.DAG;
3414   SDLoc DL(N);
3415 
3416   SDValue N0 = N->getOperand(0);
3417   SDValue N1 = N->getOperand(1);
3418 
3419   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3420     return SDValue();
3421 
3422   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3423   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3424 
3425   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3426   DCI.AddToWorklist(Mulhi.getNode());
3427   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3428 }
3429 
3430 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3431   SDNode *N, DAGCombinerInfo &DCI) const {
3432   SelectionDAG &DAG = DCI.DAG;
3433 
3434   // Simplify demanded bits before splitting into multiple users.
3435   if (SDValue V = simplifyI24(N, DCI))
3436     return V;
3437 
3438   SDValue N0 = N->getOperand(0);
3439   SDValue N1 = N->getOperand(1);
3440 
3441   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3442 
3443   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3444   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3445 
3446   SDLoc SL(N);
3447 
3448   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3449   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3450   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3451 }
3452 
3453 static bool isNegativeOne(SDValue Val) {
3454   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3455     return C->isAllOnesValue();
3456   return false;
3457 }
3458 
3459 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3460                                           SDValue Op,
3461                                           const SDLoc &DL,
3462                                           unsigned Opc) const {
3463   EVT VT = Op.getValueType();
3464   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3465   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3466                               LegalVT != MVT::i16))
3467     return SDValue();
3468 
3469   if (VT != MVT::i32)
3470     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3471 
3472   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3473   if (VT != MVT::i32)
3474     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3475 
3476   return FFBX;
3477 }
3478 
3479 // The native instructions return -1 on 0 input. Optimize out a select that
3480 // produces -1 on 0.
3481 //
3482 // TODO: If zero is not undef, we could also do this if the output is compared
3483 // against the bitwidth.
3484 //
3485 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3486 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3487                                                  SDValue LHS, SDValue RHS,
3488                                                  DAGCombinerInfo &DCI) const {
3489   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3490   if (!CmpRhs || !CmpRhs->isNullValue())
3491     return SDValue();
3492 
3493   SelectionDAG &DAG = DCI.DAG;
3494   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3495   SDValue CmpLHS = Cond.getOperand(0);
3496 
3497   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3498                                            AMDGPUISD::FFBH_U32;
3499 
3500   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3501   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3502   if (CCOpcode == ISD::SETEQ &&
3503       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3504       RHS.getOperand(0) == CmpLHS &&
3505       isNegativeOne(LHS)) {
3506     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3507   }
3508 
3509   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3510   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3511   if (CCOpcode == ISD::SETNE &&
3512       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3513       LHS.getOperand(0) == CmpLHS &&
3514       isNegativeOne(RHS)) {
3515     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3516   }
3517 
3518   return SDValue();
3519 }
3520 
3521 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3522                                          unsigned Op,
3523                                          const SDLoc &SL,
3524                                          SDValue Cond,
3525                                          SDValue N1,
3526                                          SDValue N2) {
3527   SelectionDAG &DAG = DCI.DAG;
3528   EVT VT = N1.getValueType();
3529 
3530   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3531                                   N1.getOperand(0), N2.getOperand(0));
3532   DCI.AddToWorklist(NewSelect.getNode());
3533   return DAG.getNode(Op, SL, VT, NewSelect);
3534 }
3535 
3536 // Pull a free FP operation out of a select so it may fold into uses.
3537 //
3538 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3539 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3540 //
3541 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3542 // select c, (fabs x), +k -> fabs (select c, x, k)
3543 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3544                                     SDValue N) {
3545   SelectionDAG &DAG = DCI.DAG;
3546   SDValue Cond = N.getOperand(0);
3547   SDValue LHS = N.getOperand(1);
3548   SDValue RHS = N.getOperand(2);
3549 
3550   EVT VT = N.getValueType();
3551   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3552       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3553     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3554                                      SDLoc(N), Cond, LHS, RHS);
3555   }
3556 
3557   bool Inv = false;
3558   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3559     std::swap(LHS, RHS);
3560     Inv = true;
3561   }
3562 
3563   // TODO: Support vector constants.
3564   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3565   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3566     SDLoc SL(N);
3567     // If one side is an fneg/fabs and the other is a constant, we can push the
3568     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3569     SDValue NewLHS = LHS.getOperand(0);
3570     SDValue NewRHS = RHS;
3571 
3572     // Careful: if the neg can be folded up, don't try to pull it back down.
3573     bool ShouldFoldNeg = true;
3574 
3575     if (NewLHS.hasOneUse()) {
3576       unsigned Opc = NewLHS.getOpcode();
3577       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3578         ShouldFoldNeg = false;
3579       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3580         ShouldFoldNeg = false;
3581     }
3582 
3583     if (ShouldFoldNeg) {
3584       if (LHS.getOpcode() == ISD::FNEG)
3585         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3586       else if (CRHS->isNegative())
3587         return SDValue();
3588 
3589       if (Inv)
3590         std::swap(NewLHS, NewRHS);
3591 
3592       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3593                                       Cond, NewLHS, NewRHS);
3594       DCI.AddToWorklist(NewSelect.getNode());
3595       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3596     }
3597   }
3598 
3599   return SDValue();
3600 }
3601 
3602 
3603 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3604                                                    DAGCombinerInfo &DCI) const {
3605   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3606     return Folded;
3607 
3608   SDValue Cond = N->getOperand(0);
3609   if (Cond.getOpcode() != ISD::SETCC)
3610     return SDValue();
3611 
3612   EVT VT = N->getValueType(0);
3613   SDValue LHS = Cond.getOperand(0);
3614   SDValue RHS = Cond.getOperand(1);
3615   SDValue CC = Cond.getOperand(2);
3616 
3617   SDValue True = N->getOperand(1);
3618   SDValue False = N->getOperand(2);
3619 
3620   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3621     SelectionDAG &DAG = DCI.DAG;
3622     if (DAG.isConstantValueOfAnyType(True) &&
3623         !DAG.isConstantValueOfAnyType(False)) {
3624       // Swap cmp + select pair to move constant to false input.
3625       // This will allow using VOPC cndmasks more often.
3626       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3627 
3628       SDLoc SL(N);
3629       ISD::CondCode NewCC =
3630           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3631 
3632       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3633       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3634     }
3635 
3636     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3637       SDValue MinMax
3638         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3639       // Revisit this node so we can catch min3/max3/med3 patterns.
3640       //DCI.AddToWorklist(MinMax.getNode());
3641       return MinMax;
3642     }
3643   }
3644 
3645   // There's no reason to not do this if the condition has other uses.
3646   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3647 }
3648 
3649 static bool isInv2Pi(const APFloat &APF) {
3650   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3651   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3652   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3653 
3654   return APF.bitwiseIsEqual(KF16) ||
3655          APF.bitwiseIsEqual(KF32) ||
3656          APF.bitwiseIsEqual(KF64);
3657 }
3658 
3659 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3660 // additional cost to negate them.
3661 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3662   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3663     if (C->isZero() && !C->isNegative())
3664       return true;
3665 
3666     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3667       return true;
3668   }
3669 
3670   return false;
3671 }
3672 
3673 static unsigned inverseMinMax(unsigned Opc) {
3674   switch (Opc) {
3675   case ISD::FMAXNUM:
3676     return ISD::FMINNUM;
3677   case ISD::FMINNUM:
3678     return ISD::FMAXNUM;
3679   case ISD::FMAXNUM_IEEE:
3680     return ISD::FMINNUM_IEEE;
3681   case ISD::FMINNUM_IEEE:
3682     return ISD::FMAXNUM_IEEE;
3683   case AMDGPUISD::FMAX_LEGACY:
3684     return AMDGPUISD::FMIN_LEGACY;
3685   case AMDGPUISD::FMIN_LEGACY:
3686     return  AMDGPUISD::FMAX_LEGACY;
3687   default:
3688     llvm_unreachable("invalid min/max opcode");
3689   }
3690 }
3691 
3692 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3693                                                  DAGCombinerInfo &DCI) const {
3694   SelectionDAG &DAG = DCI.DAG;
3695   SDValue N0 = N->getOperand(0);
3696   EVT VT = N->getValueType(0);
3697 
3698   unsigned Opc = N0.getOpcode();
3699 
3700   // If the input has multiple uses and we can either fold the negate down, or
3701   // the other uses cannot, give up. This both prevents unprofitable
3702   // transformations and infinite loops: we won't repeatedly try to fold around
3703   // a negate that has no 'good' form.
3704   if (N0.hasOneUse()) {
3705     // This may be able to fold into the source, but at a code size cost. Don't
3706     // fold if the fold into the user is free.
3707     if (allUsesHaveSourceMods(N, 0))
3708       return SDValue();
3709   } else {
3710     if (fnegFoldsIntoOp(Opc) &&
3711         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3712       return SDValue();
3713   }
3714 
3715   SDLoc SL(N);
3716   switch (Opc) {
3717   case ISD::FADD: {
3718     if (!mayIgnoreSignedZero(N0))
3719       return SDValue();
3720 
3721     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3722     SDValue LHS = N0.getOperand(0);
3723     SDValue RHS = N0.getOperand(1);
3724 
3725     if (LHS.getOpcode() != ISD::FNEG)
3726       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3727     else
3728       LHS = LHS.getOperand(0);
3729 
3730     if (RHS.getOpcode() != ISD::FNEG)
3731       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3732     else
3733       RHS = RHS.getOperand(0);
3734 
3735     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3736     if (Res.getOpcode() != ISD::FADD)
3737       return SDValue(); // Op got folded away.
3738     if (!N0.hasOneUse())
3739       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3740     return Res;
3741   }
3742   case ISD::FMUL:
3743   case AMDGPUISD::FMUL_LEGACY: {
3744     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3745     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3746     SDValue LHS = N0.getOperand(0);
3747     SDValue RHS = N0.getOperand(1);
3748 
3749     if (LHS.getOpcode() == ISD::FNEG)
3750       LHS = LHS.getOperand(0);
3751     else if (RHS.getOpcode() == ISD::FNEG)
3752       RHS = RHS.getOperand(0);
3753     else
3754       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3755 
3756     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3757     if (Res.getOpcode() != Opc)
3758       return SDValue(); // Op got folded away.
3759     if (!N0.hasOneUse())
3760       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3761     return Res;
3762   }
3763   case ISD::FMA:
3764   case ISD::FMAD: {
3765     if (!mayIgnoreSignedZero(N0))
3766       return SDValue();
3767 
3768     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3769     SDValue LHS = N0.getOperand(0);
3770     SDValue MHS = N0.getOperand(1);
3771     SDValue RHS = N0.getOperand(2);
3772 
3773     if (LHS.getOpcode() == ISD::FNEG)
3774       LHS = LHS.getOperand(0);
3775     else if (MHS.getOpcode() == ISD::FNEG)
3776       MHS = MHS.getOperand(0);
3777     else
3778       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3779 
3780     if (RHS.getOpcode() != ISD::FNEG)
3781       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3782     else
3783       RHS = RHS.getOperand(0);
3784 
3785     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3786     if (Res.getOpcode() != Opc)
3787       return SDValue(); // Op got folded away.
3788     if (!N0.hasOneUse())
3789       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3790     return Res;
3791   }
3792   case ISD::FMAXNUM:
3793   case ISD::FMINNUM:
3794   case ISD::FMAXNUM_IEEE:
3795   case ISD::FMINNUM_IEEE:
3796   case AMDGPUISD::FMAX_LEGACY:
3797   case AMDGPUISD::FMIN_LEGACY: {
3798     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3799     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3800     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3801     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3802 
3803     SDValue LHS = N0.getOperand(0);
3804     SDValue RHS = N0.getOperand(1);
3805 
3806     // 0 doesn't have a negated inline immediate.
3807     // TODO: This constant check should be generalized to other operations.
3808     if (isConstantCostlierToNegate(RHS))
3809       return SDValue();
3810 
3811     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3812     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3813     unsigned Opposite = inverseMinMax(Opc);
3814 
3815     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3816     if (Res.getOpcode() != Opposite)
3817       return SDValue(); // Op got folded away.
3818     if (!N0.hasOneUse())
3819       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3820     return Res;
3821   }
3822   case AMDGPUISD::FMED3: {
3823     SDValue Ops[3];
3824     for (unsigned I = 0; I < 3; ++I)
3825       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3826 
3827     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3828     if (Res.getOpcode() != AMDGPUISD::FMED3)
3829       return SDValue(); // Op got folded away.
3830     if (!N0.hasOneUse())
3831       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3832     return Res;
3833   }
3834   case ISD::FP_EXTEND:
3835   case ISD::FTRUNC:
3836   case ISD::FRINT:
3837   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3838   case ISD::FSIN:
3839   case ISD::FCANONICALIZE:
3840   case AMDGPUISD::RCP:
3841   case AMDGPUISD::RCP_LEGACY:
3842   case AMDGPUISD::RCP_IFLAG:
3843   case AMDGPUISD::SIN_HW: {
3844     SDValue CvtSrc = N0.getOperand(0);
3845     if (CvtSrc.getOpcode() == ISD::FNEG) {
3846       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3847       // (fneg (rcp (fneg x))) -> (rcp x)
3848       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3849     }
3850 
3851     if (!N0.hasOneUse())
3852       return SDValue();
3853 
3854     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3855     // (fneg (rcp x)) -> (rcp (fneg x))
3856     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3857     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3858   }
3859   case ISD::FP_ROUND: {
3860     SDValue CvtSrc = N0.getOperand(0);
3861 
3862     if (CvtSrc.getOpcode() == ISD::FNEG) {
3863       // (fneg (fp_round (fneg x))) -> (fp_round x)
3864       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3865                          CvtSrc.getOperand(0), N0.getOperand(1));
3866     }
3867 
3868     if (!N0.hasOneUse())
3869       return SDValue();
3870 
3871     // (fneg (fp_round x)) -> (fp_round (fneg x))
3872     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3873     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3874   }
3875   case ISD::FP16_TO_FP: {
3876     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3877     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3878     // Put the fneg back as a legal source operation that can be matched later.
3879     SDLoc SL(N);
3880 
3881     SDValue Src = N0.getOperand(0);
3882     EVT SrcVT = Src.getValueType();
3883 
3884     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3885     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3886                                   DAG.getConstant(0x8000, SL, SrcVT));
3887     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3888   }
3889   default:
3890     return SDValue();
3891   }
3892 }
3893 
3894 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3895                                                  DAGCombinerInfo &DCI) const {
3896   SelectionDAG &DAG = DCI.DAG;
3897   SDValue N0 = N->getOperand(0);
3898 
3899   if (!N0.hasOneUse())
3900     return SDValue();
3901 
3902   switch (N0.getOpcode()) {
3903   case ISD::FP16_TO_FP: {
3904     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3905     SDLoc SL(N);
3906     SDValue Src = N0.getOperand(0);
3907     EVT SrcVT = Src.getValueType();
3908 
3909     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3910     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3911                                   DAG.getConstant(0x7fff, SL, SrcVT));
3912     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3913   }
3914   default:
3915     return SDValue();
3916   }
3917 }
3918 
3919 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3920                                                 DAGCombinerInfo &DCI) const {
3921   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3922   if (!CFP)
3923     return SDValue();
3924 
3925   // XXX - Should this flush denormals?
3926   const APFloat &Val = CFP->getValueAPF();
3927   APFloat One(Val.getSemantics(), "1.0");
3928   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3929 }
3930 
3931 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3932                                                 DAGCombinerInfo &DCI) const {
3933   SelectionDAG &DAG = DCI.DAG;
3934   SDLoc DL(N);
3935 
3936   switch(N->getOpcode()) {
3937   default:
3938     break;
3939   case ISD::BITCAST: {
3940     EVT DestVT = N->getValueType(0);
3941 
3942     // Push casts through vector builds. This helps avoid emitting a large
3943     // number of copies when materializing floating point vector constants.
3944     //
3945     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3946     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3947     if (DestVT.isVector()) {
3948       SDValue Src = N->getOperand(0);
3949       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3950         EVT SrcVT = Src.getValueType();
3951         unsigned NElts = DestVT.getVectorNumElements();
3952 
3953         if (SrcVT.getVectorNumElements() == NElts) {
3954           EVT DestEltVT = DestVT.getVectorElementType();
3955 
3956           SmallVector<SDValue, 8> CastedElts;
3957           SDLoc SL(N);
3958           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3959             SDValue Elt = Src.getOperand(I);
3960             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3961           }
3962 
3963           return DAG.getBuildVector(DestVT, SL, CastedElts);
3964         }
3965       }
3966     }
3967 
3968     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3969       break;
3970 
3971     // Fold bitcasts of constants.
3972     //
3973     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3974     // TODO: Generalize and move to DAGCombiner
3975     SDValue Src = N->getOperand(0);
3976     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3977       if (Src.getValueType() == MVT::i64) {
3978         SDLoc SL(N);
3979         uint64_t CVal = C->getZExtValue();
3980         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3981                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3982                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3983         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3984       }
3985     }
3986 
3987     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3988       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3989       SDLoc SL(N);
3990       uint64_t CVal = Val.getZExtValue();
3991       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3992                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3993                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3994 
3995       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3996     }
3997 
3998     break;
3999   }
4000   case ISD::SHL: {
4001     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4002       break;
4003 
4004     return performShlCombine(N, DCI);
4005   }
4006   case ISD::SRL: {
4007     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4008       break;
4009 
4010     return performSrlCombine(N, DCI);
4011   }
4012   case ISD::SRA: {
4013     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4014       break;
4015 
4016     return performSraCombine(N, DCI);
4017   }
4018   case ISD::TRUNCATE:
4019     return performTruncateCombine(N, DCI);
4020   case ISD::MUL:
4021     return performMulCombine(N, DCI);
4022   case ISD::MULHS:
4023     return performMulhsCombine(N, DCI);
4024   case ISD::MULHU:
4025     return performMulhuCombine(N, DCI);
4026   case AMDGPUISD::MUL_I24:
4027   case AMDGPUISD::MUL_U24:
4028   case AMDGPUISD::MULHI_I24:
4029   case AMDGPUISD::MULHI_U24: {
4030     if (SDValue V = simplifyI24(N, DCI))
4031       return V;
4032     return SDValue();
4033   }
4034   case AMDGPUISD::MUL_LOHI_I24:
4035   case AMDGPUISD::MUL_LOHI_U24:
4036     return performMulLoHi24Combine(N, DCI);
4037   case ISD::SELECT:
4038     return performSelectCombine(N, DCI);
4039   case ISD::FNEG:
4040     return performFNegCombine(N, DCI);
4041   case ISD::FABS:
4042     return performFAbsCombine(N, DCI);
4043   case AMDGPUISD::BFE_I32:
4044   case AMDGPUISD::BFE_U32: {
4045     assert(!N->getValueType(0).isVector() &&
4046            "Vector handling of BFE not implemented");
4047     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4048     if (!Width)
4049       break;
4050 
4051     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4052     if (WidthVal == 0)
4053       return DAG.getConstant(0, DL, MVT::i32);
4054 
4055     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4056     if (!Offset)
4057       break;
4058 
4059     SDValue BitsFrom = N->getOperand(0);
4060     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4061 
4062     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4063 
4064     if (OffsetVal == 0) {
4065       // This is already sign / zero extended, so try to fold away extra BFEs.
4066       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4067 
4068       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4069       if (OpSignBits >= SignBits)
4070         return BitsFrom;
4071 
4072       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4073       if (Signed) {
4074         // This is a sign_extend_inreg. Replace it to take advantage of existing
4075         // DAG Combines. If not eliminated, we will match back to BFE during
4076         // selection.
4077 
4078         // TODO: The sext_inreg of extended types ends, although we can could
4079         // handle them in a single BFE.
4080         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4081                            DAG.getValueType(SmallVT));
4082       }
4083 
4084       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4085     }
4086 
4087     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4088       if (Signed) {
4089         return constantFoldBFE<int32_t>(DAG,
4090                                         CVal->getSExtValue(),
4091                                         OffsetVal,
4092                                         WidthVal,
4093                                         DL);
4094       }
4095 
4096       return constantFoldBFE<uint32_t>(DAG,
4097                                        CVal->getZExtValue(),
4098                                        OffsetVal,
4099                                        WidthVal,
4100                                        DL);
4101     }
4102 
4103     if ((OffsetVal + WidthVal) >= 32 &&
4104         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4105       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4106       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4107                          BitsFrom, ShiftVal);
4108     }
4109 
4110     if (BitsFrom.hasOneUse()) {
4111       APInt Demanded = APInt::getBitsSet(32,
4112                                          OffsetVal,
4113                                          OffsetVal + WidthVal);
4114 
4115       KnownBits Known;
4116       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4117                                             !DCI.isBeforeLegalizeOps());
4118       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4119       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4120           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4121         DCI.CommitTargetLoweringOpt(TLO);
4122       }
4123     }
4124 
4125     break;
4126   }
4127   case ISD::LOAD:
4128     return performLoadCombine(N, DCI);
4129   case ISD::STORE:
4130     return performStoreCombine(N, DCI);
4131   case AMDGPUISD::RCP:
4132   case AMDGPUISD::RCP_IFLAG:
4133     return performRcpCombine(N, DCI);
4134   case ISD::AssertZext:
4135   case ISD::AssertSext:
4136     return performAssertSZExtCombine(N, DCI);
4137   case ISD::INTRINSIC_WO_CHAIN:
4138     return performIntrinsicWOChainCombine(N, DCI);
4139   }
4140   return SDValue();
4141 }
4142 
4143 //===----------------------------------------------------------------------===//
4144 // Helper functions
4145 //===----------------------------------------------------------------------===//
4146 
4147 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4148                                                    const TargetRegisterClass *RC,
4149                                                    unsigned Reg, EVT VT,
4150                                                    const SDLoc &SL,
4151                                                    bool RawReg) const {
4152   MachineFunction &MF = DAG.getMachineFunction();
4153   MachineRegisterInfo &MRI = MF.getRegInfo();
4154   unsigned VReg;
4155 
4156   if (!MRI.isLiveIn(Reg)) {
4157     VReg = MRI.createVirtualRegister(RC);
4158     MRI.addLiveIn(Reg, VReg);
4159   } else {
4160     VReg = MRI.getLiveInVirtReg(Reg);
4161   }
4162 
4163   if (RawReg)
4164     return DAG.getRegister(VReg, VT);
4165 
4166   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4167 }
4168 
4169 // This may be called multiple times, and nothing prevents creating multiple
4170 // objects at the same offset. See if we already defined this object.
4171 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4172                                        int64_t Offset) {
4173   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4174     if (MFI.getObjectOffset(I) == Offset) {
4175       assert(MFI.getObjectSize(I) == Size);
4176       return I;
4177     }
4178   }
4179 
4180   return MFI.CreateFixedObject(Size, Offset, true);
4181 }
4182 
4183 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4184                                                   EVT VT,
4185                                                   const SDLoc &SL,
4186                                                   int64_t Offset) const {
4187   MachineFunction &MF = DAG.getMachineFunction();
4188   MachineFrameInfo &MFI = MF.getFrameInfo();
4189   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4190 
4191   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4192   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4193 
4194   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4195                      MachineMemOperand::MODereferenceable |
4196                      MachineMemOperand::MOInvariant);
4197 }
4198 
4199 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4200                                                    const SDLoc &SL,
4201                                                    SDValue Chain,
4202                                                    SDValue ArgVal,
4203                                                    int64_t Offset) const {
4204   MachineFunction &MF = DAG.getMachineFunction();
4205   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4206 
4207   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4208   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4209                                MachineMemOperand::MODereferenceable);
4210   return Store;
4211 }
4212 
4213 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4214                                              const TargetRegisterClass *RC,
4215                                              EVT VT, const SDLoc &SL,
4216                                              const ArgDescriptor &Arg) const {
4217   assert(Arg && "Attempting to load missing argument");
4218 
4219   SDValue V = Arg.isRegister() ?
4220     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4221     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4222 
4223   if (!Arg.isMasked())
4224     return V;
4225 
4226   unsigned Mask = Arg.getMask();
4227   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4228   V = DAG.getNode(ISD::SRL, SL, VT, V,
4229                   DAG.getShiftAmountConstant(Shift, VT, SL));
4230   return DAG.getNode(ISD::AND, SL, VT, V,
4231                      DAG.getConstant(Mask >> Shift, SL, VT));
4232 }
4233 
4234 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4235     const MachineFunction &MF, const ImplicitParameter Param) const {
4236   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4237   const AMDGPUSubtarget &ST =
4238       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4239   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4240   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4241   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4242                        ExplicitArgOffset;
4243   switch (Param) {
4244   case GRID_DIM:
4245     return ArgOffset;
4246   case GRID_OFFSET:
4247     return ArgOffset + 4;
4248   }
4249   llvm_unreachable("unexpected implicit parameter type");
4250 }
4251 
4252 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4253 
4254 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4255   switch ((AMDGPUISD::NodeType)Opcode) {
4256   case AMDGPUISD::FIRST_NUMBER: break;
4257   // AMDIL DAG nodes
4258   NODE_NAME_CASE(UMUL);
4259   NODE_NAME_CASE(BRANCH_COND);
4260 
4261   // AMDGPU DAG nodes
4262   NODE_NAME_CASE(IF)
4263   NODE_NAME_CASE(ELSE)
4264   NODE_NAME_CASE(LOOP)
4265   NODE_NAME_CASE(CALL)
4266   NODE_NAME_CASE(TC_RETURN)
4267   NODE_NAME_CASE(TRAP)
4268   NODE_NAME_CASE(RET_FLAG)
4269   NODE_NAME_CASE(RETURN_TO_EPILOG)
4270   NODE_NAME_CASE(ENDPGM)
4271   NODE_NAME_CASE(DWORDADDR)
4272   NODE_NAME_CASE(FRACT)
4273   NODE_NAME_CASE(SETCC)
4274   NODE_NAME_CASE(SETREG)
4275   NODE_NAME_CASE(DENORM_MODE)
4276   NODE_NAME_CASE(FMA_W_CHAIN)
4277   NODE_NAME_CASE(FMUL_W_CHAIN)
4278   NODE_NAME_CASE(CLAMP)
4279   NODE_NAME_CASE(COS_HW)
4280   NODE_NAME_CASE(SIN_HW)
4281   NODE_NAME_CASE(FMAX_LEGACY)
4282   NODE_NAME_CASE(FMIN_LEGACY)
4283   NODE_NAME_CASE(FMAX3)
4284   NODE_NAME_CASE(SMAX3)
4285   NODE_NAME_CASE(UMAX3)
4286   NODE_NAME_CASE(FMIN3)
4287   NODE_NAME_CASE(SMIN3)
4288   NODE_NAME_CASE(UMIN3)
4289   NODE_NAME_CASE(FMED3)
4290   NODE_NAME_CASE(SMED3)
4291   NODE_NAME_CASE(UMED3)
4292   NODE_NAME_CASE(FDOT2)
4293   NODE_NAME_CASE(URECIP)
4294   NODE_NAME_CASE(DIV_SCALE)
4295   NODE_NAME_CASE(DIV_FMAS)
4296   NODE_NAME_CASE(DIV_FIXUP)
4297   NODE_NAME_CASE(FMAD_FTZ)
4298   NODE_NAME_CASE(TRIG_PREOP)
4299   NODE_NAME_CASE(RCP)
4300   NODE_NAME_CASE(RSQ)
4301   NODE_NAME_CASE(RCP_LEGACY)
4302   NODE_NAME_CASE(RSQ_LEGACY)
4303   NODE_NAME_CASE(RCP_IFLAG)
4304   NODE_NAME_CASE(FMUL_LEGACY)
4305   NODE_NAME_CASE(RSQ_CLAMP)
4306   NODE_NAME_CASE(LDEXP)
4307   NODE_NAME_CASE(FP_CLASS)
4308   NODE_NAME_CASE(DOT4)
4309   NODE_NAME_CASE(CARRY)
4310   NODE_NAME_CASE(BORROW)
4311   NODE_NAME_CASE(BFE_U32)
4312   NODE_NAME_CASE(BFE_I32)
4313   NODE_NAME_CASE(BFI)
4314   NODE_NAME_CASE(BFM)
4315   NODE_NAME_CASE(FFBH_U32)
4316   NODE_NAME_CASE(FFBH_I32)
4317   NODE_NAME_CASE(FFBL_B32)
4318   NODE_NAME_CASE(MUL_U24)
4319   NODE_NAME_CASE(MUL_I24)
4320   NODE_NAME_CASE(MULHI_U24)
4321   NODE_NAME_CASE(MULHI_I24)
4322   NODE_NAME_CASE(MUL_LOHI_U24)
4323   NODE_NAME_CASE(MUL_LOHI_I24)
4324   NODE_NAME_CASE(MAD_U24)
4325   NODE_NAME_CASE(MAD_I24)
4326   NODE_NAME_CASE(MAD_I64_I32)
4327   NODE_NAME_CASE(MAD_U64_U32)
4328   NODE_NAME_CASE(PERM)
4329   NODE_NAME_CASE(TEXTURE_FETCH)
4330   NODE_NAME_CASE(R600_EXPORT)
4331   NODE_NAME_CASE(CONST_ADDRESS)
4332   NODE_NAME_CASE(REGISTER_LOAD)
4333   NODE_NAME_CASE(REGISTER_STORE)
4334   NODE_NAME_CASE(SAMPLE)
4335   NODE_NAME_CASE(SAMPLEB)
4336   NODE_NAME_CASE(SAMPLED)
4337   NODE_NAME_CASE(SAMPLEL)
4338   NODE_NAME_CASE(CVT_F32_UBYTE0)
4339   NODE_NAME_CASE(CVT_F32_UBYTE1)
4340   NODE_NAME_CASE(CVT_F32_UBYTE2)
4341   NODE_NAME_CASE(CVT_F32_UBYTE3)
4342   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4343   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4344   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4345   NODE_NAME_CASE(CVT_PK_I16_I32)
4346   NODE_NAME_CASE(CVT_PK_U16_U32)
4347   NODE_NAME_CASE(FP_TO_FP16)
4348   NODE_NAME_CASE(FP16_ZEXT)
4349   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4350   NODE_NAME_CASE(CONST_DATA_PTR)
4351   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4352   NODE_NAME_CASE(LDS)
4353   NODE_NAME_CASE(DUMMY_CHAIN)
4354   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4355   NODE_NAME_CASE(LOAD_D16_HI)
4356   NODE_NAME_CASE(LOAD_D16_LO)
4357   NODE_NAME_CASE(LOAD_D16_HI_I8)
4358   NODE_NAME_CASE(LOAD_D16_HI_U8)
4359   NODE_NAME_CASE(LOAD_D16_LO_I8)
4360   NODE_NAME_CASE(LOAD_D16_LO_U8)
4361   NODE_NAME_CASE(STORE_MSKOR)
4362   NODE_NAME_CASE(LOAD_CONSTANT)
4363   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4364   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4365   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4366   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4367   NODE_NAME_CASE(DS_ORDERED_COUNT)
4368   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4369   NODE_NAME_CASE(ATOMIC_INC)
4370   NODE_NAME_CASE(ATOMIC_DEC)
4371   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4372   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4373   NODE_NAME_CASE(BUFFER_LOAD)
4374   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4375   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4376   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4377   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4378   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4379   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4380   NODE_NAME_CASE(SBUFFER_LOAD)
4381   NODE_NAME_CASE(BUFFER_STORE)
4382   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4383   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4384   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4385   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4386   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4387   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4388   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4389   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4390   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4391   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4392   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4393   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4394   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4395   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4396   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4397   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4398   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4399   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4400   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4401   NODE_NAME_CASE(ATOMIC_PK_FADD)
4402 
4403   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4404   }
4405   return nullptr;
4406 }
4407 
4408 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4409                                               SelectionDAG &DAG, int Enabled,
4410                                               int &RefinementSteps,
4411                                               bool &UseOneConstNR,
4412                                               bool Reciprocal) const {
4413   EVT VT = Operand.getValueType();
4414 
4415   if (VT == MVT::f32) {
4416     RefinementSteps = 0;
4417     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4418   }
4419 
4420   // TODO: There is also f64 rsq instruction, but the documentation is less
4421   // clear on its precision.
4422 
4423   return SDValue();
4424 }
4425 
4426 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4427                                                SelectionDAG &DAG, int Enabled,
4428                                                int &RefinementSteps) const {
4429   EVT VT = Operand.getValueType();
4430 
4431   if (VT == MVT::f32) {
4432     // Reciprocal, < 1 ulp error.
4433     //
4434     // This reciprocal approximation converges to < 0.5 ulp error with one
4435     // newton rhapson performed with two fused multiple adds (FMAs).
4436 
4437     RefinementSteps = 0;
4438     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4439   }
4440 
4441   // TODO: There is also f64 rcp instruction, but the documentation is less
4442   // clear on its precision.
4443 
4444   return SDValue();
4445 }
4446 
4447 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4448     const SDValue Op, KnownBits &Known,
4449     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4450 
4451   Known.resetAll(); // Don't know anything.
4452 
4453   unsigned Opc = Op.getOpcode();
4454 
4455   switch (Opc) {
4456   default:
4457     break;
4458   case AMDGPUISD::CARRY:
4459   case AMDGPUISD::BORROW: {
4460     Known.Zero = APInt::getHighBitsSet(32, 31);
4461     break;
4462   }
4463 
4464   case AMDGPUISD::BFE_I32:
4465   case AMDGPUISD::BFE_U32: {
4466     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4467     if (!CWidth)
4468       return;
4469 
4470     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4471 
4472     if (Opc == AMDGPUISD::BFE_U32)
4473       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4474 
4475     break;
4476   }
4477   case AMDGPUISD::FP_TO_FP16:
4478   case AMDGPUISD::FP16_ZEXT: {
4479     unsigned BitWidth = Known.getBitWidth();
4480 
4481     // High bits are zero.
4482     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4483     break;
4484   }
4485   case AMDGPUISD::MUL_U24:
4486   case AMDGPUISD::MUL_I24: {
4487     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4488     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4489     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4490                       RHSKnown.countMinTrailingZeros();
4491     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4492     // Skip extra check if all bits are known zeros.
4493     if (TrailZ >= 32)
4494       break;
4495 
4496     // Truncate to 24 bits.
4497     LHSKnown = LHSKnown.trunc(24);
4498     RHSKnown = RHSKnown.trunc(24);
4499 
4500     if (Opc == AMDGPUISD::MUL_I24) {
4501       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4502       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4503       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4504       if (MaxValBits >= 32)
4505         break;
4506       bool LHSNegative = LHSKnown.isNegative();
4507       bool LHSNonNegative = LHSKnown.isNonNegative();
4508       bool LHSPositive = LHSKnown.isStrictlyPositive();
4509       bool RHSNegative = RHSKnown.isNegative();
4510       bool RHSNonNegative = RHSKnown.isNonNegative();
4511       bool RHSPositive = RHSKnown.isStrictlyPositive();
4512 
4513       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4514         Known.Zero.setHighBits(32 - MaxValBits);
4515       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4516         Known.One.setHighBits(32 - MaxValBits);
4517     } else {
4518       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4519       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4520       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4521       if (MaxValBits >= 32)
4522         break;
4523       Known.Zero.setHighBits(32 - MaxValBits);
4524     }
4525     break;
4526   }
4527   case AMDGPUISD::PERM: {
4528     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4529     if (!CMask)
4530       return;
4531 
4532     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4533     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4534     unsigned Sel = CMask->getZExtValue();
4535 
4536     for (unsigned I = 0; I < 32; I += 8) {
4537       unsigned SelBits = Sel & 0xff;
4538       if (SelBits < 4) {
4539         SelBits *= 8;
4540         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4541         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4542       } else if (SelBits < 7) {
4543         SelBits = (SelBits & 3) * 8;
4544         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4545         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4546       } else if (SelBits == 0x0c) {
4547         Known.Zero |= 0xFFull << I;
4548       } else if (SelBits > 0x0c) {
4549         Known.One |= 0xFFull << I;
4550       }
4551       Sel >>= 8;
4552     }
4553     break;
4554   }
4555   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4556     Known.Zero.setHighBits(24);
4557     break;
4558   }
4559   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4560     Known.Zero.setHighBits(16);
4561     break;
4562   }
4563   case AMDGPUISD::LDS: {
4564     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4565     unsigned Align = GA->getGlobal()->getAlignment();
4566 
4567     Known.Zero.setHighBits(16);
4568     if (Align)
4569       Known.Zero.setLowBits(Log2_32(Align));
4570     break;
4571   }
4572   case ISD::INTRINSIC_WO_CHAIN: {
4573     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4574     switch (IID) {
4575     case Intrinsic::amdgcn_mbcnt_lo:
4576     case Intrinsic::amdgcn_mbcnt_hi: {
4577       const GCNSubtarget &ST =
4578           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4579       // These return at most the wavefront size - 1.
4580       unsigned Size = Op.getValueType().getSizeInBits();
4581       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4582       break;
4583     }
4584     default:
4585       break;
4586     }
4587   }
4588   }
4589 }
4590 
4591 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4592     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4593     unsigned Depth) const {
4594   switch (Op.getOpcode()) {
4595   case AMDGPUISD::BFE_I32: {
4596     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4597     if (!Width)
4598       return 1;
4599 
4600     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4601     if (!isNullConstant(Op.getOperand(1)))
4602       return SignBits;
4603 
4604     // TODO: Could probably figure something out with non-0 offsets.
4605     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4606     return std::max(SignBits, Op0SignBits);
4607   }
4608 
4609   case AMDGPUISD::BFE_U32: {
4610     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4611     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4612   }
4613 
4614   case AMDGPUISD::CARRY:
4615   case AMDGPUISD::BORROW:
4616     return 31;
4617   case AMDGPUISD::BUFFER_LOAD_BYTE:
4618     return 25;
4619   case AMDGPUISD::BUFFER_LOAD_SHORT:
4620     return 17;
4621   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4622     return 24;
4623   case AMDGPUISD::BUFFER_LOAD_USHORT:
4624     return 16;
4625   case AMDGPUISD::FP_TO_FP16:
4626   case AMDGPUISD::FP16_ZEXT:
4627     return 16;
4628   default:
4629     return 1;
4630   }
4631 }
4632 
4633 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4634                                                         const SelectionDAG &DAG,
4635                                                         bool SNaN,
4636                                                         unsigned Depth) const {
4637   unsigned Opcode = Op.getOpcode();
4638   switch (Opcode) {
4639   case AMDGPUISD::FMIN_LEGACY:
4640   case AMDGPUISD::FMAX_LEGACY: {
4641     if (SNaN)
4642       return true;
4643 
4644     // TODO: Can check no nans on one of the operands for each one, but which
4645     // one?
4646     return false;
4647   }
4648   case AMDGPUISD::FMUL_LEGACY:
4649   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4650     if (SNaN)
4651       return true;
4652     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4653            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4654   }
4655   case AMDGPUISD::FMED3:
4656   case AMDGPUISD::FMIN3:
4657   case AMDGPUISD::FMAX3:
4658   case AMDGPUISD::FMAD_FTZ: {
4659     if (SNaN)
4660       return true;
4661     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4662            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4663            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4664   }
4665   case AMDGPUISD::CVT_F32_UBYTE0:
4666   case AMDGPUISD::CVT_F32_UBYTE1:
4667   case AMDGPUISD::CVT_F32_UBYTE2:
4668   case AMDGPUISD::CVT_F32_UBYTE3:
4669     return true;
4670 
4671   case AMDGPUISD::RCP:
4672   case AMDGPUISD::RSQ:
4673   case AMDGPUISD::RCP_LEGACY:
4674   case AMDGPUISD::RSQ_LEGACY:
4675   case AMDGPUISD::RSQ_CLAMP: {
4676     if (SNaN)
4677       return true;
4678 
4679     // TODO: Need is known positive check.
4680     return false;
4681   }
4682   case AMDGPUISD::LDEXP:
4683   case AMDGPUISD::FRACT: {
4684     if (SNaN)
4685       return true;
4686     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4687   }
4688   case AMDGPUISD::DIV_SCALE:
4689   case AMDGPUISD::DIV_FMAS:
4690   case AMDGPUISD::DIV_FIXUP:
4691   case AMDGPUISD::TRIG_PREOP:
4692     // TODO: Refine on operands.
4693     return SNaN;
4694   case AMDGPUISD::SIN_HW:
4695   case AMDGPUISD::COS_HW: {
4696     // TODO: Need check for infinity
4697     return SNaN;
4698   }
4699   case ISD::INTRINSIC_WO_CHAIN: {
4700     unsigned IntrinsicID
4701       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4702     // TODO: Handle more intrinsics
4703     switch (IntrinsicID) {
4704     case Intrinsic::amdgcn_cubeid:
4705       return true;
4706 
4707     case Intrinsic::amdgcn_frexp_mant: {
4708       if (SNaN)
4709         return true;
4710       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4711     }
4712     case Intrinsic::amdgcn_cvt_pkrtz: {
4713       if (SNaN)
4714         return true;
4715       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4716              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4717     }
4718     case Intrinsic::amdgcn_fdot2:
4719       // TODO: Refine on operand
4720       return SNaN;
4721     default:
4722       return false;
4723     }
4724   }
4725   default:
4726     return false;
4727   }
4728 }
4729 
4730 TargetLowering::AtomicExpansionKind
4731 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4732   switch (RMW->getOperation()) {
4733   case AtomicRMWInst::Nand:
4734   case AtomicRMWInst::FAdd:
4735   case AtomicRMWInst::FSub:
4736     return AtomicExpansionKind::CmpXChg;
4737   default:
4738     return AtomicExpansionKind::None;
4739   }
4740 }
4741