1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59                                            const AMDGPUSubtarget &STI)
60     : TargetLowering(TM), Subtarget(&STI) {
61   // Lower floating point store/load to integer store/load to reduce the number
62   // of patterns in tablegen.
63   setOperationAction(ISD::LOAD, MVT::f32, Promote);
64   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65 
66   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
77 
78   setOperationAction(ISD::LOAD, MVT::i64, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
83 
84   setOperationAction(ISD::LOAD, MVT::f64, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
89 
90   // There are no 64-bit extloads. These should be done as a 32-bit extload and
91   // an extension to 64-bit.
92   for (MVT VT : MVT::integer_valuetypes()) {
93     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
94     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
96   }
97 
98   for (MVT VT : MVT::integer_valuetypes()) {
99     if (VT == MVT::i64)
100       continue;
101 
102     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
106 
107     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
111 
112     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_vector_valuetypes()) {
119     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
131   }
132 
133   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
134   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
137 
138   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
139   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
142 
143   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
147 
148   setOperationAction(ISD::STORE, MVT::f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 
151   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 
154   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
155   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 
157   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 
160   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
161   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 
163   setOperationAction(ISD::STORE, MVT::i64, Promote);
164   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
165 
166   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
167   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
168 
169   setOperationAction(ISD::STORE, MVT::f64, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
177 
178   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
179   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
184 
185   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
186   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
187   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
188   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
189 
190   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
191   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
192   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
193   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
194 
195   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
197   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
198   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
199 
200   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
201   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
202 
203   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
204   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
205 
206   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
207   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
208 
209   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
210   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
211 
212 
213   setOperationAction(ISD::Constant, MVT::i32, Legal);
214   setOperationAction(ISD::Constant, MVT::i64, Legal);
215   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
216   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
217 
218   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
219   setOperationAction(ISD::BRIND, MVT::Other, Expand);
220 
221   // This is totally unsupported, just custom lower to produce an error.
222   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
223 
224   // We need to custom lower some of the intrinsics
225   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
226   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
227 
228   // Library functions.  These default to Expand, but we have instructions
229   // for them.
230   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
231   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
232   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
233   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
234   setOperationAction(ISD::FABS,   MVT::f32, Legal);
235   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
236   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
237   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
238   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
239   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
240 
241   setOperationAction(ISD::FROUND, MVT::f32, Custom);
242   setOperationAction(ISD::FROUND, MVT::f64, Custom);
243 
244   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
245   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
246 
247   setOperationAction(ISD::FREM, MVT::f32, Custom);
248   setOperationAction(ISD::FREM, MVT::f64, Custom);
249 
250   // v_mad_f32 does not support denormals according to some sources.
251   if (!Subtarget->hasFP32Denormals())
252     setOperationAction(ISD::FMAD, MVT::f32, Legal);
253 
254   // Expand to fneg + fadd.
255   setOperationAction(ISD::FSUB, MVT::f64, Expand);
256 
257   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
258   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
259   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
260   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
261   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
262   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
263   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
264   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
265   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
266   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
267 
268   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
269     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
270     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
271     setOperationAction(ISD::FRINT, MVT::f64, Custom);
272     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
273   }
274 
275   if (!Subtarget->hasBFI()) {
276     // fcopysign can be done in a single instruction with BFI.
277     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
279   }
280 
281   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
282 
283   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
284   for (MVT VT : ScalarIntVTs) {
285     // These should use [SU]DIVREM, so set them to expand
286     setOperationAction(ISD::SDIV, VT, Expand);
287     setOperationAction(ISD::UDIV, VT, Expand);
288     setOperationAction(ISD::SREM, VT, Expand);
289     setOperationAction(ISD::UREM, VT, Expand);
290 
291     // GPU does not have divrem function for signed or unsigned.
292     setOperationAction(ISD::SDIVREM, VT, Custom);
293     setOperationAction(ISD::UDIVREM, VT, Custom);
294 
295     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
296     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
297     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
298 
299     setOperationAction(ISD::BSWAP, VT, Expand);
300     setOperationAction(ISD::CTTZ, VT, Expand);
301     setOperationAction(ISD::CTLZ, VT, Expand);
302   }
303 
304   if (!Subtarget->hasBCNT(32))
305     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
306 
307   if (!Subtarget->hasBCNT(64))
308     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
309 
310   // The hardware supports 32-bit ROTR, but not ROTL.
311   setOperationAction(ISD::ROTL, MVT::i32, Expand);
312   setOperationAction(ISD::ROTL, MVT::i64, Expand);
313   setOperationAction(ISD::ROTR, MVT::i64, Expand);
314 
315   setOperationAction(ISD::MUL, MVT::i64, Expand);
316   setOperationAction(ISD::MULHU, MVT::i64, Expand);
317   setOperationAction(ISD::MULHS, MVT::i64, Expand);
318   setOperationAction(ISD::UDIV, MVT::i32, Expand);
319   setOperationAction(ISD::UREM, MVT::i32, Expand);
320   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
321   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
322   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
323   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
324   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
325 
326   setOperationAction(ISD::SMIN, MVT::i32, Legal);
327   setOperationAction(ISD::UMIN, MVT::i32, Legal);
328   setOperationAction(ISD::SMAX, MVT::i32, Legal);
329   setOperationAction(ISD::UMAX, MVT::i32, Legal);
330 
331   if (Subtarget->hasFFBH())
332     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
333 
334   if (Subtarget->hasFFBL())
335     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
336 
337   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
338   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
339 
340   // We only really have 32-bit BFE instructions (and 16-bit on VI).
341   //
342   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
343   // effort to match them now. We want this to be false for i64 cases when the
344   // extraction isn't restricted to the upper or lower half. Ideally we would
345   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
346   // span the midpoint are probably relatively rare, so don't worry about them
347   // for now.
348   if (Subtarget->hasBFE())
349     setHasExtractBitsInsn(true);
350 
351   static const MVT::SimpleValueType VectorIntTypes[] = {
352     MVT::v2i32, MVT::v4i32
353   };
354 
355   for (MVT VT : VectorIntTypes) {
356     // Expand the following operations for the current type by default.
357     setOperationAction(ISD::ADD,  VT, Expand);
358     setOperationAction(ISD::AND,  VT, Expand);
359     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
360     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
361     setOperationAction(ISD::MUL,  VT, Expand);
362     setOperationAction(ISD::OR,   VT, Expand);
363     setOperationAction(ISD::SHL,  VT, Expand);
364     setOperationAction(ISD::SRA,  VT, Expand);
365     setOperationAction(ISD::SRL,  VT, Expand);
366     setOperationAction(ISD::ROTL, VT, Expand);
367     setOperationAction(ISD::ROTR, VT, Expand);
368     setOperationAction(ISD::SUB,  VT, Expand);
369     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
370     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
371     setOperationAction(ISD::SDIV, VT, Expand);
372     setOperationAction(ISD::UDIV, VT, Expand);
373     setOperationAction(ISD::SREM, VT, Expand);
374     setOperationAction(ISD::UREM, VT, Expand);
375     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
376     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
377     setOperationAction(ISD::SDIVREM, VT, Custom);
378     setOperationAction(ISD::UDIVREM, VT, Expand);
379     setOperationAction(ISD::ADDC, VT, Expand);
380     setOperationAction(ISD::SUBC, VT, Expand);
381     setOperationAction(ISD::ADDE, VT, Expand);
382     setOperationAction(ISD::SUBE, VT, Expand);
383     setOperationAction(ISD::SELECT, VT, Expand);
384     setOperationAction(ISD::VSELECT, VT, Expand);
385     setOperationAction(ISD::SELECT_CC, VT, Expand);
386     setOperationAction(ISD::XOR,  VT, Expand);
387     setOperationAction(ISD::BSWAP, VT, Expand);
388     setOperationAction(ISD::CTPOP, VT, Expand);
389     setOperationAction(ISD::CTTZ, VT, Expand);
390     setOperationAction(ISD::CTLZ, VT, Expand);
391     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
392   }
393 
394   static const MVT::SimpleValueType FloatVectorTypes[] = {
395     MVT::v2f32, MVT::v4f32
396   };
397 
398   for (MVT VT : FloatVectorTypes) {
399     setOperationAction(ISD::FABS, VT, Expand);
400     setOperationAction(ISD::FMINNUM, VT, Expand);
401     setOperationAction(ISD::FMAXNUM, VT, Expand);
402     setOperationAction(ISD::FADD, VT, Expand);
403     setOperationAction(ISD::FCEIL, VT, Expand);
404     setOperationAction(ISD::FCOS, VT, Expand);
405     setOperationAction(ISD::FDIV, VT, Expand);
406     setOperationAction(ISD::FEXP2, VT, Expand);
407     setOperationAction(ISD::FLOG2, VT, Expand);
408     setOperationAction(ISD::FREM, VT, Expand);
409     setOperationAction(ISD::FPOW, VT, Expand);
410     setOperationAction(ISD::FFLOOR, VT, Expand);
411     setOperationAction(ISD::FTRUNC, VT, Expand);
412     setOperationAction(ISD::FMUL, VT, Expand);
413     setOperationAction(ISD::FMA, VT, Expand);
414     setOperationAction(ISD::FRINT, VT, Expand);
415     setOperationAction(ISD::FNEARBYINT, VT, Expand);
416     setOperationAction(ISD::FSQRT, VT, Expand);
417     setOperationAction(ISD::FSIN, VT, Expand);
418     setOperationAction(ISD::FSUB, VT, Expand);
419     setOperationAction(ISD::FNEG, VT, Expand);
420     setOperationAction(ISD::VSELECT, VT, Expand);
421     setOperationAction(ISD::SELECT_CC, VT, Expand);
422     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
423     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
424   }
425 
426   // This causes using an unrolled select operation rather than expansion with
427   // bit operations. This is in general better, but the alternative using BFI
428   // instructions may be better if the select sources are SGPRs.
429   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
430   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
431 
432   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
433   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
434 
435   setBooleanContents(ZeroOrNegativeOneBooleanContent);
436   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
437 
438   setSchedulingPreference(Sched::RegPressure);
439   setJumpIsExpensive(true);
440 
441   // SI at least has hardware support for floating point exceptions, but no way
442   // of using or handling them is implemented. They are also optional in OpenCL
443   // (Section 7.3)
444   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
445 
446   setSelectIsExpensive(false);
447   PredictableSelectIsExpensive = false;
448 
449   // We want to find all load dependencies for long chains of stores to enable
450   // merging into very wide vectors. The problem is with vectors with > 4
451   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
452   // vectors are a legal type, even though we have to split the loads
453   // usually. When we can more precisely specify load legality per address
454   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
455   // smarter so that they can figure out what to do in 2 iterations without all
456   // N > 4 stores on the same chain.
457   GatherAllAliasesMaxDepth = 16;
458 
459   // FIXME: Need to really handle these.
460   MaxStoresPerMemcpy  = 4096;
461   MaxStoresPerMemmove = 4096;
462   MaxStoresPerMemset  = 4096;
463 
464   setTargetDAGCombine(ISD::BITCAST);
465   setTargetDAGCombine(ISD::AND);
466   setTargetDAGCombine(ISD::SHL);
467   setTargetDAGCombine(ISD::SRA);
468   setTargetDAGCombine(ISD::SRL);
469   setTargetDAGCombine(ISD::MUL);
470   setTargetDAGCombine(ISD::MULHU);
471   setTargetDAGCombine(ISD::MULHS);
472   setTargetDAGCombine(ISD::SELECT);
473   setTargetDAGCombine(ISD::SELECT_CC);
474   setTargetDAGCombine(ISD::STORE);
475   setTargetDAGCombine(ISD::FADD);
476   setTargetDAGCombine(ISD::FSUB);
477 }
478 
479 //===----------------------------------------------------------------------===//
480 // Target Information
481 //===----------------------------------------------------------------------===//
482 
483 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
484   return MVT::i32;
485 }
486 
487 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
488   return true;
489 }
490 
491 // The backend supports 32 and 64 bit floating point immediates.
492 // FIXME: Why are we reporting vectors of FP immediates as legal?
493 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
494   EVT ScalarVT = VT.getScalarType();
495   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
496 }
497 
498 // We don't want to shrink f64 / f32 constants.
499 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
500   EVT ScalarVT = VT.getScalarType();
501   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
502 }
503 
504 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
505                                                  ISD::LoadExtType,
506                                                  EVT NewVT) const {
507 
508   unsigned NewSize = NewVT.getStoreSizeInBits();
509 
510   // If we are reducing to a 32-bit load, this is always better.
511   if (NewSize == 32)
512     return true;
513 
514   EVT OldVT = N->getValueType(0);
515   unsigned OldSize = OldVT.getStoreSizeInBits();
516 
517   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
518   // extloads, so doing one requires using a buffer_load. In cases where we
519   // still couldn't use a scalar load, using the wider load shouldn't really
520   // hurt anything.
521 
522   // If the old size already had to be an extload, there's no harm in continuing
523   // to reduce the width.
524   return (OldSize < 32);
525 }
526 
527 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
528                                                    EVT CastTy) const {
529 
530   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
531 
532   if (LoadTy.getScalarType() == MVT::i32)
533     return false;
534 
535   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
536   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
537 
538   return (LScalarSize < CastScalarSize) ||
539          (CastScalarSize >= 32);
540 }
541 
542 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
543 // profitable with the expansion for 64-bit since it's generally good to
544 // speculate things.
545 // FIXME: These should really have the size as a parameter.
546 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
547   return true;
548 }
549 
550 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
551   return true;
552 }
553 
554 //===---------------------------------------------------------------------===//
555 // Target Properties
556 //===---------------------------------------------------------------------===//
557 
558 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
559   assert(VT.isFloatingPoint());
560   return VT == MVT::f32 || VT == MVT::f64;
561 }
562 
563 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
564   assert(VT.isFloatingPoint());
565   return VT == MVT::f32 || VT == MVT::f64;
566 }
567 
568 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
569                                                          unsigned NumElem,
570                                                          unsigned AS) const {
571   return true;
572 }
573 
574 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
575   // There are few operations which truly have vector input operands. Any vector
576   // operation is going to involve operations on each component, and a
577   // build_vector will be a copy per element, so it always makes sense to use a
578   // build_vector input in place of the extracted element to avoid a copy into a
579   // super register.
580   //
581   // We should probably only do this if all users are extracts only, but this
582   // should be the common case.
583   return true;
584 }
585 
586 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
587   // Truncate is just accessing a subregister.
588   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
589 }
590 
591 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
592   // Truncate is just accessing a subregister.
593   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
594          (Dest->getPrimitiveSizeInBits() % 32 == 0);
595 }
596 
597 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
598   unsigned SrcSize = Src->getScalarSizeInBits();
599   unsigned DestSize = Dest->getScalarSizeInBits();
600 
601   return SrcSize == 32 && DestSize == 64;
602 }
603 
604 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
605   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
606   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
607   // this will enable reducing 64-bit operations the 32-bit, which is always
608   // good.
609   return Src == MVT::i32 && Dest == MVT::i64;
610 }
611 
612 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
613   return isZExtFree(Val.getValueType(), VT2);
614 }
615 
616 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
617   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
618   // limited number of native 64-bit operations. Shrinking an operation to fit
619   // in a single 32-bit register should always be helpful. As currently used,
620   // this is much less general than the name suggests, and is only used in
621   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
622   // not profitable, and may actually be harmful.
623   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
624 }
625 
626 //===---------------------------------------------------------------------===//
627 // TargetLowering Callbacks
628 //===---------------------------------------------------------------------===//
629 
630 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
631                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
632 
633   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
634 }
635 
636 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
637                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
638 
639   State.AnalyzeReturn(Outs, RetCC_SI);
640 }
641 
642 SDValue
643 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
644                                   bool isVarArg,
645                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
646                                   const SmallVectorImpl<SDValue> &OutVals,
647                                   const SDLoc &DL, SelectionDAG &DAG) const {
648   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
649 }
650 
651 //===---------------------------------------------------------------------===//
652 // Target specific lowering
653 //===---------------------------------------------------------------------===//
654 
655 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
656                                         SmallVectorImpl<SDValue> &InVals) const {
657   SDValue Callee = CLI.Callee;
658   SelectionDAG &DAG = CLI.DAG;
659 
660   const Function &Fn = *DAG.getMachineFunction().getFunction();
661 
662   StringRef FuncName("<unknown>");
663 
664   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
665     FuncName = G->getSymbol();
666   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
667     FuncName = G->getGlobal()->getName();
668 
669   DiagnosticInfoUnsupported NoCalls(
670       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
671   DAG.getContext()->diagnose(NoCalls);
672 
673   for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
674     InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
675 
676   return DAG.getEntryNode();
677 }
678 
679 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
680                                                       SelectionDAG &DAG) const {
681   const Function &Fn = *DAG.getMachineFunction().getFunction();
682 
683   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
684                                             SDLoc(Op).getDebugLoc());
685   DAG.getContext()->diagnose(NoDynamicAlloca);
686   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
687   return DAG.getMergeValues(Ops, SDLoc());
688 }
689 
690 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
691                                              SelectionDAG &DAG) const {
692   switch (Op.getOpcode()) {
693   default:
694     Op->dump(&DAG);
695     llvm_unreachable("Custom lowering code for this"
696                      "instruction is not implemented yet!");
697     break;
698   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
699   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
700   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
701   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
702   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
703   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
704   case ISD::FREM: return LowerFREM(Op, DAG);
705   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
706   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
707   case ISD::FRINT: return LowerFRINT(Op, DAG);
708   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
709   case ISD::FROUND: return LowerFROUND(Op, DAG);
710   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
711   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
712   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
713   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
714   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
715   case ISD::CTLZ:
716   case ISD::CTLZ_ZERO_UNDEF:
717     return LowerCTLZ(Op, DAG);
718   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
719   }
720   return Op;
721 }
722 
723 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
724                                               SmallVectorImpl<SDValue> &Results,
725                                               SelectionDAG &DAG) const {
726   switch (N->getOpcode()) {
727   case ISD::SIGN_EXTEND_INREG:
728     // Different parts of legalization seem to interpret which type of
729     // sign_extend_inreg is the one to check for custom lowering. The extended
730     // from type is what really matters, but some places check for custom
731     // lowering of the result type. This results in trying to use
732     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
733     // nothing here and let the illegal result integer be handled normally.
734     return;
735   default:
736     return;
737   }
738 }
739 
740 static bool hasDefinedInitializer(const GlobalValue *GV) {
741   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
742   if (!GVar || !GVar->hasInitializer())
743     return false;
744 
745   return !isa<UndefValue>(GVar->getInitializer());
746 }
747 
748 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
749                                                  SDValue Op,
750                                                  SelectionDAG &DAG) const {
751 
752   const DataLayout &DL = DAG.getDataLayout();
753   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
754   const GlobalValue *GV = G->getGlobal();
755 
756   switch (G->getAddressSpace()) {
757   case AMDGPUAS::LOCAL_ADDRESS: {
758     // XXX: What does the value of G->getOffset() mean?
759     assert(G->getOffset() == 0 &&
760          "Do not know what to do with an non-zero offset");
761 
762     // TODO: We could emit code to handle the initialization somewhere.
763     if (hasDefinedInitializer(GV))
764       break;
765 
766     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
767     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
768   }
769   }
770 
771   const Function &Fn = *DAG.getMachineFunction().getFunction();
772   DiagnosticInfoUnsupported BadInit(
773       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
774   DAG.getContext()->diagnose(BadInit);
775   return SDValue();
776 }
777 
778 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
779                                                   SelectionDAG &DAG) const {
780   SmallVector<SDValue, 8> Args;
781 
782   for (const SDUse &U : Op->ops())
783     DAG.ExtractVectorElements(U.get(), Args);
784 
785   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
786 }
787 
788 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
789                                                      SelectionDAG &DAG) const {
790 
791   SmallVector<SDValue, 8> Args;
792   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
793   EVT VT = Op.getValueType();
794   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
795                             VT.getVectorNumElements());
796 
797   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
798 }
799 
800 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
801     SelectionDAG &DAG) const {
802   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
803   SDLoc DL(Op);
804   EVT VT = Op.getValueType();
805 
806   switch (IntrinsicID) {
807     default: return Op;
808     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
809       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
810                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
811 
812     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
813       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
814                          Op.getOperand(1),
815                          Op.getOperand(2),
816                          Op.getOperand(3));
817 
818     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
819       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
820                          Op.getOperand(1),
821                          Op.getOperand(2),
822                          Op.getOperand(3));
823   }
824 }
825 
826 /// \brief Generate Min/Max node
827 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
828                                                    SDValue LHS, SDValue RHS,
829                                                    SDValue True, SDValue False,
830                                                    SDValue CC,
831                                                    DAGCombinerInfo &DCI) const {
832   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
833     return SDValue();
834 
835   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
836     return SDValue();
837 
838   SelectionDAG &DAG = DCI.DAG;
839   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
840   switch (CCOpcode) {
841   case ISD::SETOEQ:
842   case ISD::SETONE:
843   case ISD::SETUNE:
844   case ISD::SETNE:
845   case ISD::SETUEQ:
846   case ISD::SETEQ:
847   case ISD::SETFALSE:
848   case ISD::SETFALSE2:
849   case ISD::SETTRUE:
850   case ISD::SETTRUE2:
851   case ISD::SETUO:
852   case ISD::SETO:
853     break;
854   case ISD::SETULE:
855   case ISD::SETULT: {
856     if (LHS == True)
857       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
858     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
859   }
860   case ISD::SETOLE:
861   case ISD::SETOLT:
862   case ISD::SETLE:
863   case ISD::SETLT: {
864     // Ordered. Assume ordered for undefined.
865 
866     // Only do this after legalization to avoid interfering with other combines
867     // which might occur.
868     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
869         !DCI.isCalledByLegalizer())
870       return SDValue();
871 
872     // We need to permute the operands to get the correct NaN behavior. The
873     // selected operand is the second one based on the failing compare with NaN,
874     // so permute it based on the compare type the hardware uses.
875     if (LHS == True)
876       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
877     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
878   }
879   case ISD::SETUGE:
880   case ISD::SETUGT: {
881     if (LHS == True)
882       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
883     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
884   }
885   case ISD::SETGT:
886   case ISD::SETGE:
887   case ISD::SETOGE:
888   case ISD::SETOGT: {
889     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
890         !DCI.isCalledByLegalizer())
891       return SDValue();
892 
893     if (LHS == True)
894       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
895     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
896   }
897   case ISD::SETCC_INVALID:
898     llvm_unreachable("Invalid setcc condcode!");
899   }
900   return SDValue();
901 }
902 
903 std::pair<SDValue, SDValue>
904 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
905   SDLoc SL(Op);
906 
907   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
908 
909   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
910   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
911 
912   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
913   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
914 
915   return std::make_pair(Lo, Hi);
916 }
917 
918 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
919   SDLoc SL(Op);
920 
921   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
922   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
923   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
924 }
925 
926 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
927   SDLoc SL(Op);
928 
929   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
930   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
931   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
932 }
933 
934 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
935                                               SelectionDAG &DAG) const {
936   LoadSDNode *Load = cast<LoadSDNode>(Op);
937   EVT VT = Op.getValueType();
938 
939 
940   // If this is a 2 element vector, we really want to scalarize and not create
941   // weird 1 element vectors.
942   if (VT.getVectorNumElements() == 2)
943     return scalarizeVectorLoad(Load, DAG);
944 
945   SDValue BasePtr = Load->getBasePtr();
946   EVT PtrVT = BasePtr.getValueType();
947   EVT MemVT = Load->getMemoryVT();
948   SDLoc SL(Op);
949 
950   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
951 
952   EVT LoVT, HiVT;
953   EVT LoMemVT, HiMemVT;
954   SDValue Lo, Hi;
955 
956   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
957   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
958   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
959 
960   unsigned Size = LoMemVT.getStoreSize();
961   unsigned BaseAlign = Load->getAlignment();
962   unsigned HiAlign = MinAlign(BaseAlign, Size);
963 
964   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
965                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
966                                   BaseAlign, Load->getMemOperand()->getFlags());
967   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
968                               DAG.getConstant(Size, SL, PtrVT));
969   SDValue HiLoad =
970       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
971                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
972                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
973 
974   SDValue Ops[] = {
975     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
976     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
977                 LoLoad.getValue(1), HiLoad.getValue(1))
978   };
979 
980   return DAG.getMergeValues(Ops, SL);
981 }
982 
983 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
984                                                SelectionDAG &DAG) const {
985   StoreSDNode *Store = cast<StoreSDNode>(Op);
986   SDValue Val = Store->getValue();
987   EVT VT = Val.getValueType();
988 
989   // If this is a 2 element vector, we really want to scalarize and not create
990   // weird 1 element vectors.
991   if (VT.getVectorNumElements() == 2)
992     return scalarizeVectorStore(Store, DAG);
993 
994   EVT MemVT = Store->getMemoryVT();
995   SDValue Chain = Store->getChain();
996   SDValue BasePtr = Store->getBasePtr();
997   SDLoc SL(Op);
998 
999   EVT LoVT, HiVT;
1000   EVT LoMemVT, HiMemVT;
1001   SDValue Lo, Hi;
1002 
1003   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1004   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1005   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1006 
1007   EVT PtrVT = BasePtr.getValueType();
1008   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1009                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1010                                               PtrVT));
1011 
1012   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1013   unsigned BaseAlign = Store->getAlignment();
1014   unsigned Size = LoMemVT.getStoreSize();
1015   unsigned HiAlign = MinAlign(BaseAlign, Size);
1016 
1017   SDValue LoStore =
1018       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1019                         Store->getMemOperand()->getFlags());
1020   SDValue HiStore =
1021       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1022                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1023 
1024   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1025 }
1026 
1027 // This is a shortcut for integer division because we have fast i32<->f32
1028 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1029 // float is enough to accurately represent up to a 24-bit signed integer.
1030 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1031                                             bool Sign) const {
1032   SDLoc DL(Op);
1033   EVT VT = Op.getValueType();
1034   SDValue LHS = Op.getOperand(0);
1035   SDValue RHS = Op.getOperand(1);
1036   MVT IntVT = MVT::i32;
1037   MVT FltVT = MVT::f32;
1038 
1039   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1040   if (LHSSignBits < 9)
1041     return SDValue();
1042 
1043   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1044   if (RHSSignBits < 9)
1045     return SDValue();
1046 
1047   unsigned BitSize = VT.getSizeInBits();
1048   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1049   unsigned DivBits = BitSize - SignBits;
1050   if (Sign)
1051     ++DivBits;
1052 
1053   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1054   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1055 
1056   SDValue jq = DAG.getConstant(1, DL, IntVT);
1057 
1058   if (Sign) {
1059     // char|short jq = ia ^ ib;
1060     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1061 
1062     // jq = jq >> (bitsize - 2)
1063     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1064                      DAG.getConstant(BitSize - 2, DL, VT));
1065 
1066     // jq = jq | 0x1
1067     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1068   }
1069 
1070   // int ia = (int)LHS;
1071   SDValue ia = LHS;
1072 
1073   // int ib, (int)RHS;
1074   SDValue ib = RHS;
1075 
1076   // float fa = (float)ia;
1077   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1078 
1079   // float fb = (float)ib;
1080   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1081 
1082   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1083                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1084 
1085   // fq = trunc(fq);
1086   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1087 
1088   // float fqneg = -fq;
1089   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1090 
1091   // float fr = mad(fqneg, fb, fa);
1092   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1093 
1094   // int iq = (int)fq;
1095   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1096 
1097   // fr = fabs(fr);
1098   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1099 
1100   // fb = fabs(fb);
1101   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1102 
1103   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1104 
1105   // int cv = fr >= fb;
1106   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1107 
1108   // jq = (cv ? jq : 0);
1109   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1110 
1111   // dst = iq + jq;
1112   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1113 
1114   // Rem needs compensation, it's easier to recompute it
1115   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1116   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1117 
1118   // Truncate to number of bits this divide really is.
1119   if (Sign) {
1120     SDValue InRegSize
1121       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1122     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1123     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1124   } else {
1125     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1126     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1127     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1128   }
1129 
1130   return DAG.getMergeValues({ Div, Rem }, DL);
1131 }
1132 
1133 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1134                                       SelectionDAG &DAG,
1135                                       SmallVectorImpl<SDValue> &Results) const {
1136   assert(Op.getValueType() == MVT::i64);
1137 
1138   SDLoc DL(Op);
1139   EVT VT = Op.getValueType();
1140   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1141 
1142   SDValue one = DAG.getConstant(1, DL, HalfVT);
1143   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1144 
1145   //HiLo split
1146   SDValue LHS = Op.getOperand(0);
1147   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1148   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1149 
1150   SDValue RHS = Op.getOperand(1);
1151   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1152   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1153 
1154   if (VT == MVT::i64 &&
1155     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1156     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1157 
1158     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1159                               LHS_Lo, RHS_Lo);
1160 
1161     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1162     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1163 
1164     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1165     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1166     return;
1167   }
1168 
1169   // Get Speculative values
1170   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1171   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1172 
1173   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1174   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1175   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1176 
1177   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1178   SDValue DIV_Lo = zero;
1179 
1180   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1181 
1182   for (unsigned i = 0; i < halfBitWidth; ++i) {
1183     const unsigned bitPos = halfBitWidth - i - 1;
1184     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1185     // Get value of high bit
1186     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1187     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1188     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1189 
1190     // Shift
1191     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1192     // Add LHS high bit
1193     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1194 
1195     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1196     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1197 
1198     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1199 
1200     // Update REM
1201     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1202     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1203   }
1204 
1205   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1206   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1207   Results.push_back(DIV);
1208   Results.push_back(REM);
1209 }
1210 
1211 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1212                                            SelectionDAG &DAG) const {
1213   SDLoc DL(Op);
1214   EVT VT = Op.getValueType();
1215 
1216   if (VT == MVT::i64) {
1217     SmallVector<SDValue, 2> Results;
1218     LowerUDIVREM64(Op, DAG, Results);
1219     return DAG.getMergeValues(Results, DL);
1220   }
1221 
1222   if (VT == MVT::i32) {
1223     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1224       return Res;
1225   }
1226 
1227   SDValue Num = Op.getOperand(0);
1228   SDValue Den = Op.getOperand(1);
1229 
1230   // RCP =  URECIP(Den) = 2^32 / Den + e
1231   // e is rounding error.
1232   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1233 
1234   // RCP_LO = mul(RCP, Den) */
1235   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1236 
1237   // RCP_HI = mulhu (RCP, Den) */
1238   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1239 
1240   // NEG_RCP_LO = -RCP_LO
1241   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1242                                                      RCP_LO);
1243 
1244   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1245   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1246                                            NEG_RCP_LO, RCP_LO,
1247                                            ISD::SETEQ);
1248   // Calculate the rounding error from the URECIP instruction
1249   // E = mulhu(ABS_RCP_LO, RCP)
1250   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1251 
1252   // RCP_A_E = RCP + E
1253   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1254 
1255   // RCP_S_E = RCP - E
1256   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1257 
1258   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1259   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1260                                      RCP_A_E, RCP_S_E,
1261                                      ISD::SETEQ);
1262   // Quotient = mulhu(Tmp0, Num)
1263   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1264 
1265   // Num_S_Remainder = Quotient * Den
1266   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1267 
1268   // Remainder = Num - Num_S_Remainder
1269   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1270 
1271   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1272   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1273                                                  DAG.getConstant(-1, DL, VT),
1274                                                  DAG.getConstant(0, DL, VT),
1275                                                  ISD::SETUGE);
1276   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1277   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1278                                                   Num_S_Remainder,
1279                                                   DAG.getConstant(-1, DL, VT),
1280                                                   DAG.getConstant(0, DL, VT),
1281                                                   ISD::SETUGE);
1282   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1283   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1284                                                Remainder_GE_Zero);
1285 
1286   // Calculate Division result:
1287 
1288   // Quotient_A_One = Quotient + 1
1289   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1290                                        DAG.getConstant(1, DL, VT));
1291 
1292   // Quotient_S_One = Quotient - 1
1293   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1294                                        DAG.getConstant(1, DL, VT));
1295 
1296   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1297   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1298                                      Quotient, Quotient_A_One, ISD::SETEQ);
1299 
1300   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1301   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1302                             Quotient_S_One, Div, ISD::SETEQ);
1303 
1304   // Calculate Rem result:
1305 
1306   // Remainder_S_Den = Remainder - Den
1307   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1308 
1309   // Remainder_A_Den = Remainder + Den
1310   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1311 
1312   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1313   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1314                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1315 
1316   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1317   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1318                             Remainder_A_Den, Rem, ISD::SETEQ);
1319   SDValue Ops[2] = {
1320     Div,
1321     Rem
1322   };
1323   return DAG.getMergeValues(Ops, DL);
1324 }
1325 
1326 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1327                                            SelectionDAG &DAG) const {
1328   SDLoc DL(Op);
1329   EVT VT = Op.getValueType();
1330 
1331   SDValue LHS = Op.getOperand(0);
1332   SDValue RHS = Op.getOperand(1);
1333 
1334   SDValue Zero = DAG.getConstant(0, DL, VT);
1335   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1336 
1337   if (VT == MVT::i32) {
1338     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1339       return Res;
1340   }
1341 
1342   if (VT == MVT::i64 &&
1343       DAG.ComputeNumSignBits(LHS) > 32 &&
1344       DAG.ComputeNumSignBits(RHS) > 32) {
1345     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1346 
1347     //HiLo split
1348     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1349     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1350     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1351                                  LHS_Lo, RHS_Lo);
1352     SDValue Res[2] = {
1353       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1354       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1355     };
1356     return DAG.getMergeValues(Res, DL);
1357   }
1358 
1359   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1360   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1361   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1362   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1363 
1364   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1365   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1366 
1367   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1368   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1369 
1370   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1371   SDValue Rem = Div.getValue(1);
1372 
1373   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1374   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1375 
1376   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1377   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1378 
1379   SDValue Res[2] = {
1380     Div,
1381     Rem
1382   };
1383   return DAG.getMergeValues(Res, DL);
1384 }
1385 
1386 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1387 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1388   SDLoc SL(Op);
1389   EVT VT = Op.getValueType();
1390   SDValue X = Op.getOperand(0);
1391   SDValue Y = Op.getOperand(1);
1392 
1393   // TODO: Should this propagate fast-math-flags?
1394 
1395   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1396   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1397   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1398 
1399   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1400 }
1401 
1402 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1403   SDLoc SL(Op);
1404   SDValue Src = Op.getOperand(0);
1405 
1406   // result = trunc(src)
1407   // if (src > 0.0 && src != result)
1408   //   result += 1.0
1409 
1410   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1411 
1412   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1413   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1414 
1415   EVT SetCCVT =
1416       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1417 
1418   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1419   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1420   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1421 
1422   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1423   // TODO: Should this propagate fast-math-flags?
1424   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1425 }
1426 
1427 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1428                                   SelectionDAG &DAG) {
1429   const unsigned FractBits = 52;
1430   const unsigned ExpBits = 11;
1431 
1432   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1433                                 Hi,
1434                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1435                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1436   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1437                             DAG.getConstant(1023, SL, MVT::i32));
1438 
1439   return Exp;
1440 }
1441 
1442 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1443   SDLoc SL(Op);
1444   SDValue Src = Op.getOperand(0);
1445 
1446   assert(Op.getValueType() == MVT::f64);
1447 
1448   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1449   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1450 
1451   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1452 
1453   // Extract the upper half, since this is where we will find the sign and
1454   // exponent.
1455   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1456 
1457   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1458 
1459   const unsigned FractBits = 52;
1460 
1461   // Extract the sign bit.
1462   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1463   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1464 
1465   // Extend back to to 64-bits.
1466   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1467   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1468 
1469   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1470   const SDValue FractMask
1471     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1472 
1473   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1474   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1475   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1476 
1477   EVT SetCCVT =
1478       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1479 
1480   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1481 
1482   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1483   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1484 
1485   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1486   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1487 
1488   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1489 }
1490 
1491 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1492   SDLoc SL(Op);
1493   SDValue Src = Op.getOperand(0);
1494 
1495   assert(Op.getValueType() == MVT::f64);
1496 
1497   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1498   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1499   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1500 
1501   // TODO: Should this propagate fast-math-flags?
1502 
1503   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1504   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1505 
1506   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1507 
1508   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1509   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1510 
1511   EVT SetCCVT =
1512       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1513   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1514 
1515   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1516 }
1517 
1518 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1519   // FNEARBYINT and FRINT are the same, except in their handling of FP
1520   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1521   // rint, so just treat them as equivalent.
1522   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1523 }
1524 
1525 // XXX - May require not supporting f32 denormals?
1526 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1527   SDLoc SL(Op);
1528   SDValue X = Op.getOperand(0);
1529 
1530   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1531 
1532   // TODO: Should this propagate fast-math-flags?
1533 
1534   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1535 
1536   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1537 
1538   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1539   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1540   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1541 
1542   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1543 
1544   EVT SetCCVT =
1545       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1546 
1547   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1548 
1549   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1550 
1551   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1552 }
1553 
1554 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1555   SDLoc SL(Op);
1556   SDValue X = Op.getOperand(0);
1557 
1558   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1559 
1560   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1561   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1562   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1563   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1564   EVT SetCCVT =
1565       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1566 
1567   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1568 
1569   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1570 
1571   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1572 
1573   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1574                                        MVT::i64);
1575 
1576   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1577   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1578                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1579                                           MVT::i64),
1580                           Exp);
1581 
1582   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1583   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1584                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1585                               ISD::SETNE);
1586 
1587   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1588                              D, DAG.getConstant(0, SL, MVT::i64));
1589   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1590 
1591   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1592   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1593 
1594   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1595   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1596   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1597 
1598   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1599                             ExpEqNegOne,
1600                             DAG.getConstantFP(1.0, SL, MVT::f64),
1601                             DAG.getConstantFP(0.0, SL, MVT::f64));
1602 
1603   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1604 
1605   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1606   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1607 
1608   return K;
1609 }
1610 
1611 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1612   EVT VT = Op.getValueType();
1613 
1614   if (VT == MVT::f32)
1615     return LowerFROUND32(Op, DAG);
1616 
1617   if (VT == MVT::f64)
1618     return LowerFROUND64(Op, DAG);
1619 
1620   llvm_unreachable("unhandled type");
1621 }
1622 
1623 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1624   SDLoc SL(Op);
1625   SDValue Src = Op.getOperand(0);
1626 
1627   // result = trunc(src);
1628   // if (src < 0.0 && src != result)
1629   //   result += -1.0.
1630 
1631   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1632 
1633   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1634   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1635 
1636   EVT SetCCVT =
1637       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1638 
1639   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1640   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1641   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1642 
1643   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1644   // TODO: Should this propagate fast-math-flags?
1645   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1646 }
1647 
1648 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1649   SDLoc SL(Op);
1650   SDValue Src = Op.getOperand(0);
1651   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1652 
1653   if (ZeroUndef && Src.getValueType() == MVT::i32)
1654     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1655 
1656   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1657 
1658   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1659   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1660 
1661   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1662   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1663 
1664   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1665                                    *DAG.getContext(), MVT::i32);
1666 
1667   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1668 
1669   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1670   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1671 
1672   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1673   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1674 
1675   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1676   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1677 
1678   if (!ZeroUndef) {
1679     // Test if the full 64-bit input is zero.
1680 
1681     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1682     // which we probably don't want.
1683     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1684     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1685 
1686     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1687     // with the same cycles, otherwise it is slower.
1688     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1689     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1690 
1691     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1692 
1693     // The instruction returns -1 for 0 input, but the defined intrinsic
1694     // behavior is to return the number of bits.
1695     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1696                           SrcIsZero, Bits32, NewCtlz);
1697   }
1698 
1699   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1700 }
1701 
1702 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1703                                                bool Signed) const {
1704   // Unsigned
1705   // cul2f(ulong u)
1706   //{
1707   //  uint lz = clz(u);
1708   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1709   //  u = (u << lz) & 0x7fffffffffffffffUL;
1710   //  ulong t = u & 0xffffffffffUL;
1711   //  uint v = (e << 23) | (uint)(u >> 40);
1712   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1713   //  return as_float(v + r);
1714   //}
1715   // Signed
1716   // cl2f(long l)
1717   //{
1718   //  long s = l >> 63;
1719   //  float r = cul2f((l + s) ^ s);
1720   //  return s ? -r : r;
1721   //}
1722 
1723   SDLoc SL(Op);
1724   SDValue Src = Op.getOperand(0);
1725   SDValue L = Src;
1726 
1727   SDValue S;
1728   if (Signed) {
1729     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1730     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1731 
1732     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1733     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1734   }
1735 
1736   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1737                                    *DAG.getContext(), MVT::f32);
1738 
1739 
1740   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1741   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1742   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1743   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1744 
1745   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1746   SDValue E = DAG.getSelect(SL, MVT::i32,
1747     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1748     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1749     ZeroI32);
1750 
1751   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1752     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1753     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1754 
1755   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1756                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1757 
1758   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1759                              U, DAG.getConstant(40, SL, MVT::i64));
1760 
1761   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1762     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1763     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1764 
1765   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1766   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1767   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1768 
1769   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1770 
1771   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1772 
1773   SDValue R = DAG.getSelect(SL, MVT::i32,
1774     RCmp,
1775     One,
1776     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1777   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1778   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1779 
1780   if (!Signed)
1781     return R;
1782 
1783   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1784   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1785 }
1786 
1787 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1788                                                bool Signed) const {
1789   SDLoc SL(Op);
1790   SDValue Src = Op.getOperand(0);
1791 
1792   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1793 
1794   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1795                            DAG.getConstant(0, SL, MVT::i32));
1796   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1797                            DAG.getConstant(1, SL, MVT::i32));
1798 
1799   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
1800                               SL, MVT::f64, Hi);
1801 
1802   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
1803 
1804   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
1805                               DAG.getConstant(32, SL, MVT::i32));
1806   // TODO: Should this propagate fast-math-flags?
1807   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
1808 }
1809 
1810 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1811                                                SelectionDAG &DAG) const {
1812   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1813          "operation should be legal");
1814 
1815   EVT DestVT = Op.getValueType();
1816 
1817   if (DestVT == MVT::f32)
1818     return LowerINT_TO_FP32(Op, DAG, false);
1819 
1820   assert(DestVT == MVT::f64);
1821   return LowerINT_TO_FP64(Op, DAG, false);
1822 }
1823 
1824 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
1825                                               SelectionDAG &DAG) const {
1826   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1827          "operation should be legal");
1828 
1829   EVT DestVT = Op.getValueType();
1830   if (DestVT == MVT::f32)
1831     return LowerINT_TO_FP32(Op, DAG, true);
1832 
1833   assert(DestVT == MVT::f64);
1834   return LowerINT_TO_FP64(Op, DAG, true);
1835 }
1836 
1837 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
1838                                                bool Signed) const {
1839   SDLoc SL(Op);
1840 
1841   SDValue Src = Op.getOperand(0);
1842 
1843   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1844 
1845   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
1846                                  MVT::f64);
1847   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
1848                                  MVT::f64);
1849   // TODO: Should this propagate fast-math-flags?
1850   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
1851 
1852   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
1853 
1854 
1855   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
1856 
1857   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
1858                            MVT::i32, FloorMul);
1859   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
1860 
1861   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
1862 
1863   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
1864 }
1865 
1866 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
1867                                               SelectionDAG &DAG) const {
1868   SDValue Src = Op.getOperand(0);
1869 
1870   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1871     return LowerFP64_TO_INT(Op, DAG, true);
1872 
1873   return SDValue();
1874 }
1875 
1876 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
1877                                               SelectionDAG &DAG) const {
1878   SDValue Src = Op.getOperand(0);
1879 
1880   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1881     return LowerFP64_TO_INT(Op, DAG, false);
1882 
1883   return SDValue();
1884 }
1885 
1886 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1887                                                      SelectionDAG &DAG) const {
1888   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1889   MVT VT = Op.getSimpleValueType();
1890   MVT ScalarVT = VT.getScalarType();
1891 
1892   assert(VT.isVector());
1893 
1894   SDValue Src = Op.getOperand(0);
1895   SDLoc DL(Op);
1896 
1897   // TODO: Don't scalarize on Evergreen?
1898   unsigned NElts = VT.getVectorNumElements();
1899   SmallVector<SDValue, 8> Args;
1900   DAG.ExtractVectorElements(Src, Args, 0, NElts);
1901 
1902   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
1903   for (unsigned I = 0; I < NElts; ++I)
1904     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
1905 
1906   return DAG.getBuildVector(VT, DL, Args);
1907 }
1908 
1909 //===----------------------------------------------------------------------===//
1910 // Custom DAG optimizations
1911 //===----------------------------------------------------------------------===//
1912 
1913 static bool isU24(SDValue Op, SelectionDAG &DAG) {
1914   APInt KnownZero, KnownOne;
1915   EVT VT = Op.getValueType();
1916   DAG.computeKnownBits(Op, KnownZero, KnownOne);
1917 
1918   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
1919 }
1920 
1921 static bool isI24(SDValue Op, SelectionDAG &DAG) {
1922   EVT VT = Op.getValueType();
1923 
1924   // In order for this to be a signed 24-bit value, bit 23, must
1925   // be a sign bit.
1926   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
1927                                      // as unsigned 24-bit values.
1928          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
1929 }
1930 
1931 static bool simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
1932 
1933   SelectionDAG &DAG = DCI.DAG;
1934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1935   EVT VT = Op.getValueType();
1936 
1937   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
1938   APInt KnownZero, KnownOne;
1939   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
1940   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) {
1941     DCI.CommitTargetLoweringOpt(TLO);
1942     return true;
1943   }
1944 
1945   return false;
1946 }
1947 
1948 template <typename IntTy>
1949 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
1950                                uint32_t Width, const SDLoc &DL) {
1951   if (Width + Offset < 32) {
1952     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
1953     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
1954     return DAG.getConstant(Result, DL, MVT::i32);
1955   }
1956 
1957   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
1958 }
1959 
1960 static bool hasVolatileUser(SDNode *Val) {
1961   for (SDNode *U : Val->uses()) {
1962     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
1963       if (M->isVolatile())
1964         return true;
1965     }
1966   }
1967 
1968   return false;
1969 }
1970 
1971 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
1972   // i32 vectors are the canonical memory type.
1973   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
1974     return false;
1975 
1976   if (!VT.isByteSized())
1977     return false;
1978 
1979   unsigned Size = VT.getStoreSize();
1980 
1981   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
1982     return false;
1983 
1984   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
1985     return false;
1986 
1987   return true;
1988 }
1989 
1990 // Replace load of an illegal type with a store of a bitcast to a friendlier
1991 // type.
1992 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
1993                                                  DAGCombinerInfo &DCI) const {
1994   if (!DCI.isBeforeLegalize())
1995     return SDValue();
1996 
1997   LoadSDNode *LN = cast<LoadSDNode>(N);
1998   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
1999     return SDValue();
2000 
2001   SDLoc SL(N);
2002   SelectionDAG &DAG = DCI.DAG;
2003   EVT VT = LN->getMemoryVT();
2004 
2005   unsigned Size = VT.getStoreSize();
2006   unsigned Align = LN->getAlignment();
2007   if (Align < Size && isTypeLegal(VT)) {
2008     bool IsFast;
2009     unsigned AS = LN->getAddressSpace();
2010 
2011     // Expand unaligned loads earlier than legalization. Due to visitation order
2012     // problems during legalization, the emitted instructions to pack and unpack
2013     // the bytes again are not eliminated in the case of an unaligned copy.
2014     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2015       if (VT.isVector())
2016         return scalarizeVectorLoad(LN, DAG);
2017 
2018       SDValue Ops[2];
2019       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2020       return DAG.getMergeValues(Ops, SDLoc(N));
2021     }
2022 
2023     if (!IsFast)
2024       return SDValue();
2025   }
2026 
2027   if (!shouldCombineMemoryType(VT))
2028     return SDValue();
2029 
2030   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2031 
2032   SDValue NewLoad
2033     = DAG.getLoad(NewVT, SL, LN->getChain(),
2034                   LN->getBasePtr(), LN->getMemOperand());
2035 
2036   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2037   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2038   return SDValue(N, 0);
2039 }
2040 
2041 // Replace store of an illegal type with a store of a bitcast to a friendlier
2042 // type.
2043 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2044                                                   DAGCombinerInfo &DCI) const {
2045   if (!DCI.isBeforeLegalize())
2046     return SDValue();
2047 
2048   StoreSDNode *SN = cast<StoreSDNode>(N);
2049   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2050     return SDValue();
2051 
2052   EVT VT = SN->getMemoryVT();
2053   unsigned Size = VT.getStoreSize();
2054 
2055   SDLoc SL(N);
2056   SelectionDAG &DAG = DCI.DAG;
2057   unsigned Align = SN->getAlignment();
2058   if (Align < Size && isTypeLegal(VT)) {
2059     bool IsFast;
2060     unsigned AS = SN->getAddressSpace();
2061 
2062     // Expand unaligned stores earlier than legalization. Due to visitation
2063     // order problems during legalization, the emitted instructions to pack and
2064     // unpack the bytes again are not eliminated in the case of an unaligned
2065     // copy.
2066     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2067       if (VT.isVector())
2068         return scalarizeVectorStore(SN, DAG);
2069 
2070       return expandUnalignedStore(SN, DAG);
2071     }
2072 
2073     if (!IsFast)
2074       return SDValue();
2075   }
2076 
2077   if (!shouldCombineMemoryType(VT))
2078     return SDValue();
2079 
2080   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2081   SDValue Val = SN->getValue();
2082 
2083   //DCI.AddToWorklist(Val.getNode());
2084 
2085   bool OtherUses = !Val.hasOneUse();
2086   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2087   if (OtherUses) {
2088     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2089     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2090   }
2091 
2092   return DAG.getStore(SN->getChain(), SL, CastVal,
2093                       SN->getBasePtr(), SN->getMemOperand());
2094 }
2095 
2096 // TODO: Should repeat for other bit ops.
2097 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N,
2098                                                 DAGCombinerInfo &DCI) const {
2099   if (N->getValueType(0) != MVT::i64)
2100     return SDValue();
2101 
2102   // Break up 64-bit and of a constant into two 32-bit ands. This will typically
2103   // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer
2104   // combine opportunities since most 64-bit operations are decomposed this way.
2105   // TODO: We won't want this for SALU especially if it is an inline immediate.
2106   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2107   if (!RHS)
2108     return SDValue();
2109 
2110   uint64_t Val = RHS->getZExtValue();
2111   if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) {
2112     // If either half of the constant is 0, this is really a 32-bit and, so
2113     // split it. If we can re-use the full materialized constant, keep it.
2114     return SDValue();
2115   }
2116 
2117   SDLoc SL(N);
2118   SelectionDAG &DAG = DCI.DAG;
2119 
2120   SDValue Lo, Hi;
2121   std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG);
2122 
2123   SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32);
2124   SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32);
2125 
2126   SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS);
2127   SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS);
2128 
2129   // Re-visit the ands. It's possible we eliminated one of them and it could
2130   // simplify the vector.
2131   DCI.AddToWorklist(Lo.getNode());
2132   DCI.AddToWorklist(Hi.getNode());
2133 
2134   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2135   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2136 }
2137 
2138 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2139                                                 DAGCombinerInfo &DCI) const {
2140   if (N->getValueType(0) != MVT::i64)
2141     return SDValue();
2142 
2143   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2144 
2145   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2146   // common case, splitting this into a move and a 32-bit shift is faster and
2147   // the same code size.
2148   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2149   if (!RHS)
2150     return SDValue();
2151 
2152   unsigned RHSVal = RHS->getZExtValue();
2153   if (RHSVal < 32)
2154     return SDValue();
2155 
2156   SDValue LHS = N->getOperand(0);
2157 
2158   SDLoc SL(N);
2159   SelectionDAG &DAG = DCI.DAG;
2160 
2161   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2162 
2163   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2164   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2165 
2166   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2167 
2168   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2169   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2170 }
2171 
2172 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2173                                                 DAGCombinerInfo &DCI) const {
2174   if (N->getValueType(0) != MVT::i64)
2175     return SDValue();
2176 
2177   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2178   if (!RHS)
2179     return SDValue();
2180 
2181   SelectionDAG &DAG = DCI.DAG;
2182   SDLoc SL(N);
2183   unsigned RHSVal = RHS->getZExtValue();
2184 
2185   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2186   if (RHSVal == 32) {
2187     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2188     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2189                                    DAG.getConstant(31, SL, MVT::i32));
2190 
2191     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2192     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2193   }
2194 
2195   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2196   if (RHSVal == 63) {
2197     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2198     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2199                                    DAG.getConstant(31, SL, MVT::i32));
2200     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2201     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2202   }
2203 
2204   return SDValue();
2205 }
2206 
2207 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2208                                                 DAGCombinerInfo &DCI) const {
2209   if (N->getValueType(0) != MVT::i64)
2210     return SDValue();
2211 
2212   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2213   if (!RHS)
2214     return SDValue();
2215 
2216   unsigned ShiftAmt = RHS->getZExtValue();
2217   if (ShiftAmt < 32)
2218     return SDValue();
2219 
2220   // srl i64:x, C for C >= 32
2221   // =>
2222   //   build_pair (srl hi_32(x), C - 32), 0
2223 
2224   SelectionDAG &DAG = DCI.DAG;
2225   SDLoc SL(N);
2226 
2227   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2228   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2229 
2230   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2231   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2232                            VecOp, One);
2233 
2234   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2235   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2236 
2237   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2238 
2239   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2240 }
2241 
2242 // We need to specifically handle i64 mul here to avoid unnecessary conversion
2243 // instructions. If we only match on the legalized i64 mul expansion,
2244 // SimplifyDemandedBits will be unable to remove them because there will be
2245 // multiple uses due to the separate mul + mulh[su].
2246 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
2247                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
2248   if (Size <= 32) {
2249     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2250     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
2251   }
2252 
2253   // Because we want to eliminate extension instructions before the
2254   // operation, we need to create a single user here (i.e. not the separate
2255   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
2256 
2257   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
2258 
2259   SDValue Mul = DAG.getNode(MulOpc, SL,
2260                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
2261 
2262   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
2263                      Mul.getValue(0), Mul.getValue(1));
2264 }
2265 
2266 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2267                                                 DAGCombinerInfo &DCI) const {
2268   EVT VT = N->getValueType(0);
2269 
2270   unsigned Size = VT.getSizeInBits();
2271   if (VT.isVector() || Size > 64)
2272     return SDValue();
2273 
2274   SelectionDAG &DAG = DCI.DAG;
2275   SDLoc DL(N);
2276 
2277   SDValue N0 = N->getOperand(0);
2278   SDValue N1 = N->getOperand(1);
2279   SDValue Mul;
2280 
2281   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2282     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2283     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2284     Mul = getMul24(DAG, DL, N0, N1, Size, false);
2285   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2286     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2287     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2288     Mul = getMul24(DAG, DL, N0, N1, Size, true);
2289   } else {
2290     return SDValue();
2291   }
2292 
2293   // We need to use sext even for MUL_U24, because MUL_U24 is used
2294   // for signed multiply of 8 and 16-bit types.
2295   return DAG.getSExtOrTrunc(Mul, DL, VT);
2296 }
2297 
2298 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
2299                                                   DAGCombinerInfo &DCI) const {
2300   EVT VT = N->getValueType(0);
2301 
2302   if (!Subtarget->hasMulI24() || VT.isVector())
2303     return SDValue();
2304 
2305   SelectionDAG &DAG = DCI.DAG;
2306   SDLoc DL(N);
2307 
2308   SDValue N0 = N->getOperand(0);
2309   SDValue N1 = N->getOperand(1);
2310 
2311   if (!isI24(N0, DAG) || !isI24(N1, DAG))
2312     return SDValue();
2313 
2314   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2315   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2316 
2317   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
2318   DCI.AddToWorklist(Mulhi.getNode());
2319   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
2320 }
2321 
2322 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
2323                                                   DAGCombinerInfo &DCI) const {
2324   EVT VT = N->getValueType(0);
2325 
2326   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
2327     return SDValue();
2328 
2329   SelectionDAG &DAG = DCI.DAG;
2330   SDLoc DL(N);
2331 
2332   SDValue N0 = N->getOperand(0);
2333   SDValue N1 = N->getOperand(1);
2334 
2335   if (!isU24(N0, DAG) || !isU24(N1, DAG))
2336     return SDValue();
2337 
2338   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2339   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2340 
2341   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
2342   DCI.AddToWorklist(Mulhi.getNode());
2343   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
2344 }
2345 
2346 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
2347   SDNode *N, DAGCombinerInfo &DCI) const {
2348   SelectionDAG &DAG = DCI.DAG;
2349 
2350   SDValue N0 = N->getOperand(0);
2351   SDValue N1 = N->getOperand(1);
2352 
2353   // Simplify demanded bits before splitting into multiple users.
2354   if (simplifyI24(N0, DCI) || simplifyI24(N1, DCI))
2355     return SDValue();
2356 
2357   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
2358 
2359   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2360   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
2361 
2362   SDLoc SL(N);
2363 
2364   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
2365   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
2366   return DAG.getMergeValues({ MulLo, MulHi }, SL);
2367 }
2368 
2369 static bool isNegativeOne(SDValue Val) {
2370   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2371     return C->isAllOnesValue();
2372   return false;
2373 }
2374 
2375 static bool isCtlzOpc(unsigned Opc) {
2376   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2377 }
2378 
2379 // Get FFBH node if the incoming op may have been type legalized from a smaller
2380 // type VT.
2381 // Need to match pre-legalized type because the generic legalization inserts the
2382 // add/sub between the select and compare.
2383 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG,
2384                            const SDLoc &SL, SDValue Op) {
2385   EVT VT = Op.getValueType();
2386   EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2387   if (LegalVT != MVT::i32)
2388     return SDValue();
2389 
2390   if (VT != MVT::i32)
2391     Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op);
2392 
2393   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op);
2394   if (VT != MVT::i32)
2395     FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH);
2396 
2397   return FFBH;
2398 }
2399 
2400 // The native instructions return -1 on 0 input. Optimize out a select that
2401 // produces -1 on 0.
2402 //
2403 // TODO: If zero is not undef, we could also do this if the output is compared
2404 // against the bitwidth.
2405 //
2406 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2407 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2408                                                  SDValue LHS, SDValue RHS,
2409                                                  DAGCombinerInfo &DCI) const {
2410   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2411   if (!CmpRhs || !CmpRhs->isNullValue())
2412     return SDValue();
2413 
2414   SelectionDAG &DAG = DCI.DAG;
2415   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2416   SDValue CmpLHS = Cond.getOperand(0);
2417 
2418   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2419   if (CCOpcode == ISD::SETEQ &&
2420       isCtlzOpc(RHS.getOpcode()) &&
2421       RHS.getOperand(0) == CmpLHS &&
2422       isNegativeOne(LHS)) {
2423     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2424   }
2425 
2426   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2427   if (CCOpcode == ISD::SETNE &&
2428       isCtlzOpc(LHS.getOpcode()) &&
2429       LHS.getOperand(0) == CmpLHS &&
2430       isNegativeOne(RHS)) {
2431     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2432   }
2433 
2434   return SDValue();
2435 }
2436 
2437 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2438                                                    DAGCombinerInfo &DCI) const {
2439   SDValue Cond = N->getOperand(0);
2440   if (Cond.getOpcode() != ISD::SETCC)
2441     return SDValue();
2442 
2443   EVT VT = N->getValueType(0);
2444   SDValue LHS = Cond.getOperand(0);
2445   SDValue RHS = Cond.getOperand(1);
2446   SDValue CC = Cond.getOperand(2);
2447 
2448   SDValue True = N->getOperand(1);
2449   SDValue False = N->getOperand(2);
2450 
2451   if (VT == MVT::f32 && Cond.hasOneUse()) {
2452     SDValue MinMax
2453       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2454     // Revisit this node so we can catch min3/max3/med3 patterns.
2455     //DCI.AddToWorklist(MinMax.getNode());
2456     return MinMax;
2457   }
2458 
2459   // There's no reason to not do this if the condition has other uses.
2460   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2461 }
2462 
2463 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2464                                                 DAGCombinerInfo &DCI) const {
2465   SelectionDAG &DAG = DCI.DAG;
2466   SDLoc DL(N);
2467 
2468   switch(N->getOpcode()) {
2469   default:
2470     break;
2471   case ISD::BITCAST: {
2472     EVT DestVT = N->getValueType(0);
2473     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
2474       break;
2475 
2476     // Fold bitcasts of constants.
2477     //
2478     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
2479     // TODO: Generalize and move to DAGCombiner
2480     SDValue Src = N->getOperand(0);
2481     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
2482       assert(Src.getValueType() == MVT::i64);
2483       SDLoc SL(N);
2484       uint64_t CVal = C->getZExtValue();
2485       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
2486                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2487                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2488     }
2489 
2490     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
2491       const APInt &Val = C->getValueAPF().bitcastToAPInt();
2492       SDLoc SL(N);
2493       uint64_t CVal = Val.getZExtValue();
2494       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2495                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2496                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2497 
2498       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
2499     }
2500 
2501     break;
2502   }
2503   case ISD::SHL: {
2504     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2505       break;
2506 
2507     return performShlCombine(N, DCI);
2508   }
2509   case ISD::SRL: {
2510     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2511       break;
2512 
2513     return performSrlCombine(N, DCI);
2514   }
2515   case ISD::SRA: {
2516     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2517       break;
2518 
2519     return performSraCombine(N, DCI);
2520   }
2521   case ISD::AND: {
2522     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2523       break;
2524 
2525     return performAndCombine(N, DCI);
2526   }
2527   case ISD::MUL:
2528     return performMulCombine(N, DCI);
2529   case ISD::MULHS:
2530     return performMulhsCombine(N, DCI);
2531   case ISD::MULHU:
2532     return performMulhuCombine(N, DCI);
2533   case AMDGPUISD::MUL_I24:
2534   case AMDGPUISD::MUL_U24:
2535   case AMDGPUISD::MULHI_I24:
2536   case AMDGPUISD::MULHI_U24: {
2537     SDValue N0 = N->getOperand(0);
2538     SDValue N1 = N->getOperand(1);
2539     simplifyI24(N0, DCI);
2540     simplifyI24(N1, DCI);
2541     return SDValue();
2542   }
2543   case AMDGPUISD::MUL_LOHI_I24:
2544   case AMDGPUISD::MUL_LOHI_U24:
2545     return performMulLoHi24Combine(N, DCI);
2546   case ISD::SELECT:
2547     return performSelectCombine(N, DCI);
2548   case AMDGPUISD::BFE_I32:
2549   case AMDGPUISD::BFE_U32: {
2550     assert(!N->getValueType(0).isVector() &&
2551            "Vector handling of BFE not implemented");
2552     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2553     if (!Width)
2554       break;
2555 
2556     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2557     if (WidthVal == 0)
2558       return DAG.getConstant(0, DL, MVT::i32);
2559 
2560     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2561     if (!Offset)
2562       break;
2563 
2564     SDValue BitsFrom = N->getOperand(0);
2565     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2566 
2567     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2568 
2569     if (OffsetVal == 0) {
2570       // This is already sign / zero extended, so try to fold away extra BFEs.
2571       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2572 
2573       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2574       if (OpSignBits >= SignBits)
2575         return BitsFrom;
2576 
2577       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2578       if (Signed) {
2579         // This is a sign_extend_inreg. Replace it to take advantage of existing
2580         // DAG Combines. If not eliminated, we will match back to BFE during
2581         // selection.
2582 
2583         // TODO: The sext_inreg of extended types ends, although we can could
2584         // handle them in a single BFE.
2585         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2586                            DAG.getValueType(SmallVT));
2587       }
2588 
2589       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2590     }
2591 
2592     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2593       if (Signed) {
2594         return constantFoldBFE<int32_t>(DAG,
2595                                         CVal->getSExtValue(),
2596                                         OffsetVal,
2597                                         WidthVal,
2598                                         DL);
2599       }
2600 
2601       return constantFoldBFE<uint32_t>(DAG,
2602                                        CVal->getZExtValue(),
2603                                        OffsetVal,
2604                                        WidthVal,
2605                                        DL);
2606     }
2607 
2608     if ((OffsetVal + WidthVal) >= 32) {
2609       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2610       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2611                          BitsFrom, ShiftVal);
2612     }
2613 
2614     if (BitsFrom.hasOneUse()) {
2615       APInt Demanded = APInt::getBitsSet(32,
2616                                          OffsetVal,
2617                                          OffsetVal + WidthVal);
2618 
2619       APInt KnownZero, KnownOne;
2620       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2621                                             !DCI.isBeforeLegalizeOps());
2622       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2623       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2624           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2625                                    KnownZero, KnownOne, TLO)) {
2626         DCI.CommitTargetLoweringOpt(TLO);
2627       }
2628     }
2629 
2630     break;
2631   }
2632   case ISD::LOAD:
2633     return performLoadCombine(N, DCI);
2634   case ISD::STORE:
2635     return performStoreCombine(N, DCI);
2636   }
2637   return SDValue();
2638 }
2639 
2640 //===----------------------------------------------------------------------===//
2641 // Helper functions
2642 //===----------------------------------------------------------------------===//
2643 
2644 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2645                                SelectionDAG &DAG,
2646                                const Function *F,
2647                                const SmallVectorImpl<ISD::InputArg> &Ins,
2648                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2649 
2650   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2651     if (Ins[i].ArgVT == Ins[i].VT) {
2652       OrigIns.push_back(Ins[i]);
2653       continue;
2654     }
2655 
2656     EVT VT;
2657     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2658       // Vector has been split into scalars.
2659       VT = Ins[i].ArgVT.getVectorElementType();
2660     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2661                Ins[i].ArgVT.getVectorElementType() !=
2662                Ins[i].VT.getVectorElementType()) {
2663       // Vector elements have been promoted
2664       VT = Ins[i].ArgVT;
2665     } else {
2666       // Vector has been spilt into smaller vectors.
2667       VT = Ins[i].VT;
2668     }
2669 
2670     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2671                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2672     OrigIns.push_back(Arg);
2673   }
2674 }
2675 
2676 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2677                                                   const TargetRegisterClass *RC,
2678                                                    unsigned Reg, EVT VT) const {
2679   MachineFunction &MF = DAG.getMachineFunction();
2680   MachineRegisterInfo &MRI = MF.getRegInfo();
2681   unsigned VirtualRegister;
2682   if (!MRI.isLiveIn(Reg)) {
2683     VirtualRegister = MRI.createVirtualRegister(RC);
2684     MRI.addLiveIn(Reg, VirtualRegister);
2685   } else {
2686     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2687   }
2688   return DAG.getRegister(VirtualRegister, VT);
2689 }
2690 
2691 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2692     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2693   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), 4);
2694   switch (Param) {
2695   case GRID_DIM:
2696     return ArgOffset;
2697   case GRID_OFFSET:
2698     return ArgOffset + 4;
2699   }
2700   llvm_unreachable("unexpected implicit parameter type");
2701 }
2702 
2703 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2704 
2705 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2706   switch ((AMDGPUISD::NodeType)Opcode) {
2707   case AMDGPUISD::FIRST_NUMBER: break;
2708   // AMDIL DAG nodes
2709   NODE_NAME_CASE(CALL);
2710   NODE_NAME_CASE(UMUL);
2711   NODE_NAME_CASE(BRANCH_COND);
2712 
2713   // AMDGPU DAG nodes
2714   NODE_NAME_CASE(ENDPGM)
2715   NODE_NAME_CASE(RETURN)
2716   NODE_NAME_CASE(DWORDADDR)
2717   NODE_NAME_CASE(FRACT)
2718   NODE_NAME_CASE(SETCC)
2719   NODE_NAME_CASE(CLAMP)
2720   NODE_NAME_CASE(COS_HW)
2721   NODE_NAME_CASE(SIN_HW)
2722   NODE_NAME_CASE(FMAX_LEGACY)
2723   NODE_NAME_CASE(FMIN_LEGACY)
2724   NODE_NAME_CASE(FMAX3)
2725   NODE_NAME_CASE(SMAX3)
2726   NODE_NAME_CASE(UMAX3)
2727   NODE_NAME_CASE(FMIN3)
2728   NODE_NAME_CASE(SMIN3)
2729   NODE_NAME_CASE(UMIN3)
2730   NODE_NAME_CASE(FMED3)
2731   NODE_NAME_CASE(SMED3)
2732   NODE_NAME_CASE(UMED3)
2733   NODE_NAME_CASE(URECIP)
2734   NODE_NAME_CASE(DIV_SCALE)
2735   NODE_NAME_CASE(DIV_FMAS)
2736   NODE_NAME_CASE(DIV_FIXUP)
2737   NODE_NAME_CASE(TRIG_PREOP)
2738   NODE_NAME_CASE(RCP)
2739   NODE_NAME_CASE(RSQ)
2740   NODE_NAME_CASE(RCP_LEGACY)
2741   NODE_NAME_CASE(RSQ_LEGACY)
2742   NODE_NAME_CASE(FMUL_LEGACY)
2743   NODE_NAME_CASE(RSQ_CLAMP)
2744   NODE_NAME_CASE(LDEXP)
2745   NODE_NAME_CASE(FP_CLASS)
2746   NODE_NAME_CASE(DOT4)
2747   NODE_NAME_CASE(CARRY)
2748   NODE_NAME_CASE(BORROW)
2749   NODE_NAME_CASE(BFE_U32)
2750   NODE_NAME_CASE(BFE_I32)
2751   NODE_NAME_CASE(BFI)
2752   NODE_NAME_CASE(BFM)
2753   NODE_NAME_CASE(FFBH_U32)
2754   NODE_NAME_CASE(FFBH_I32)
2755   NODE_NAME_CASE(MUL_U24)
2756   NODE_NAME_CASE(MUL_I24)
2757   NODE_NAME_CASE(MULHI_U24)
2758   NODE_NAME_CASE(MULHI_I24)
2759   NODE_NAME_CASE(MUL_LOHI_U24)
2760   NODE_NAME_CASE(MUL_LOHI_I24)
2761   NODE_NAME_CASE(MAD_U24)
2762   NODE_NAME_CASE(MAD_I24)
2763   NODE_NAME_CASE(TEXTURE_FETCH)
2764   NODE_NAME_CASE(EXPORT)
2765   NODE_NAME_CASE(CONST_ADDRESS)
2766   NODE_NAME_CASE(REGISTER_LOAD)
2767   NODE_NAME_CASE(REGISTER_STORE)
2768   NODE_NAME_CASE(LOAD_INPUT)
2769   NODE_NAME_CASE(SAMPLE)
2770   NODE_NAME_CASE(SAMPLEB)
2771   NODE_NAME_CASE(SAMPLED)
2772   NODE_NAME_CASE(SAMPLEL)
2773   NODE_NAME_CASE(CVT_F32_UBYTE0)
2774   NODE_NAME_CASE(CVT_F32_UBYTE1)
2775   NODE_NAME_CASE(CVT_F32_UBYTE2)
2776   NODE_NAME_CASE(CVT_F32_UBYTE3)
2777   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2778   NODE_NAME_CASE(CONST_DATA_PTR)
2779   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
2780   NODE_NAME_CASE(KILL)
2781   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2782   NODE_NAME_CASE(SENDMSG)
2783   NODE_NAME_CASE(INTERP_MOV)
2784   NODE_NAME_CASE(INTERP_P1)
2785   NODE_NAME_CASE(INTERP_P2)
2786   NODE_NAME_CASE(STORE_MSKOR)
2787   NODE_NAME_CASE(LOAD_CONSTANT)
2788   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2789   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
2790   NODE_NAME_CASE(ATOMIC_INC)
2791   NODE_NAME_CASE(ATOMIC_DEC)
2792   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2793   }
2794   return nullptr;
2795 }
2796 
2797 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2798                                                DAGCombinerInfo &DCI,
2799                                                unsigned &RefinementSteps,
2800                                                bool &UseOneConstNR) const {
2801   SelectionDAG &DAG = DCI.DAG;
2802   EVT VT = Operand.getValueType();
2803 
2804   if (VT == MVT::f32) {
2805     RefinementSteps = 0;
2806     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2807   }
2808 
2809   // TODO: There is also f64 rsq instruction, but the documentation is less
2810   // clear on its precision.
2811 
2812   return SDValue();
2813 }
2814 
2815 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2816                                                DAGCombinerInfo &DCI,
2817                                                unsigned &RefinementSteps) const {
2818   SelectionDAG &DAG = DCI.DAG;
2819   EVT VT = Operand.getValueType();
2820 
2821   if (VT == MVT::f32) {
2822     // Reciprocal, < 1 ulp error.
2823     //
2824     // This reciprocal approximation converges to < 0.5 ulp error with one
2825     // newton rhapson performed with two fused multiple adds (FMAs).
2826 
2827     RefinementSteps = 0;
2828     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2829   }
2830 
2831   // TODO: There is also f64 rcp instruction, but the documentation is less
2832   // clear on its precision.
2833 
2834   return SDValue();
2835 }
2836 
2837 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2838   const SDValue Op,
2839   APInt &KnownZero,
2840   APInt &KnownOne,
2841   const SelectionDAG &DAG,
2842   unsigned Depth) const {
2843 
2844   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2845 
2846   APInt KnownZero2;
2847   APInt KnownOne2;
2848   unsigned Opc = Op.getOpcode();
2849 
2850   switch (Opc) {
2851   default:
2852     break;
2853   case AMDGPUISD::CARRY:
2854   case AMDGPUISD::BORROW: {
2855     KnownZero = APInt::getHighBitsSet(32, 31);
2856     break;
2857   }
2858 
2859   case AMDGPUISD::BFE_I32:
2860   case AMDGPUISD::BFE_U32: {
2861     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2862     if (!CWidth)
2863       return;
2864 
2865     unsigned BitWidth = 32;
2866     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2867 
2868     if (Opc == AMDGPUISD::BFE_U32)
2869       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2870 
2871     break;
2872   }
2873   }
2874 }
2875 
2876 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2877   SDValue Op,
2878   const SelectionDAG &DAG,
2879   unsigned Depth) const {
2880   switch (Op.getOpcode()) {
2881   case AMDGPUISD::BFE_I32: {
2882     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2883     if (!Width)
2884       return 1;
2885 
2886     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2887     if (!isNullConstant(Op.getOperand(1)))
2888       return SignBits;
2889 
2890     // TODO: Could probably figure something out with non-0 offsets.
2891     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2892     return std::max(SignBits, Op0SignBits);
2893   }
2894 
2895   case AMDGPUISD::BFE_U32: {
2896     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2897     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2898   }
2899 
2900   case AMDGPUISD::CARRY:
2901   case AMDGPUISD::BORROW:
2902     return 31;
2903 
2904   default:
2905     return 1;
2906   }
2907 }
2908