1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 #include "AMDGPUGenCallingConv.inc" 32 33 static cl::opt<bool> AMDGPUBypassSlowDiv( 34 "amdgpu-bypass-slow-div", 35 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 36 cl::init(true)); 37 38 // Find a larger type to do a load / store of a vector with. 39 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 40 unsigned StoreSize = VT.getStoreSizeInBits(); 41 if (StoreSize <= 32) 42 return EVT::getIntegerVT(Ctx, StoreSize); 43 44 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 45 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 46 } 47 48 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 49 return DAG.computeKnownBits(Op).countMaxActiveBits(); 50 } 51 52 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 53 // In order for this to be a signed 24-bit value, bit 23, must 54 // be a sign bit. 55 return DAG.ComputeMaxSignificantBits(Op); 56 } 57 58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 59 const AMDGPUSubtarget &STI) 60 : TargetLowering(TM), Subtarget(&STI) { 61 // Lower floating point store/load to integer store/load to reduce the number 62 // of patterns in tablegen. 63 setOperationAction(ISD::LOAD, MVT::f32, Promote); 64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 65 66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 68 69 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 71 72 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 74 75 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 77 78 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 80 81 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 83 84 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 86 87 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 89 90 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 92 93 setOperationAction(ISD::LOAD, MVT::i64, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 95 96 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 98 99 setOperationAction(ISD::LOAD, MVT::f64, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 101 102 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 104 105 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 107 108 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 110 111 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 113 114 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 116 117 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 119 120 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 122 123 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 124 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 125 126 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 127 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 128 129 // There are no 64-bit extloads. These should be done as a 32-bit extload and 130 // an extension to 64-bit. 131 for (MVT VT : MVT::integer_valuetypes()) { 132 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 134 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 135 } 136 137 for (MVT VT : MVT::integer_valuetypes()) { 138 if (VT == MVT::i64) 139 continue; 140 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 145 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 150 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 155 } 156 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 158 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 173 } 174 175 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 182 183 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 188 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 189 190 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 193 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 196 197 setOperationAction(ISD::STORE, MVT::f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 199 200 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 205 206 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 208 209 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 211 212 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 214 215 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 217 218 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 219 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 220 221 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 223 224 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 225 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 226 227 setOperationAction(ISD::STORE, MVT::i64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 229 230 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 232 233 setOperationAction(ISD::STORE, MVT::f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 235 236 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 238 239 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 241 242 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 244 245 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 247 248 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 250 251 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 253 254 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 256 257 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 259 260 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 262 263 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 264 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 265 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 266 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 267 268 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 269 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 270 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 271 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 272 273 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 274 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 275 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 276 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 277 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 278 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 279 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 280 281 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 282 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 283 284 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 285 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 286 287 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 288 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 289 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 290 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 291 292 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 293 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 295 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 296 297 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 298 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 299 300 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 301 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 302 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 303 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 304 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 306 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 307 308 setOperationAction(ISD::Constant, MVT::i32, Legal); 309 setOperationAction(ISD::Constant, MVT::i64, Legal); 310 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 311 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 312 313 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 314 setOperationAction(ISD::BRIND, MVT::Other, Expand); 315 316 // This is totally unsupported, just custom lower to produce an error. 317 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 318 319 // Library functions. These default to Expand, but we have instructions 320 // for them. 321 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 322 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 323 setOperationAction(ISD::FPOW, MVT::f32, Legal); 324 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 325 setOperationAction(ISD::FABS, MVT::f32, Legal); 326 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 327 setOperationAction(ISD::FRINT, MVT::f32, Legal); 328 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 329 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 330 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 331 332 setOperationAction(ISD::FROUND, MVT::f32, Custom); 333 setOperationAction(ISD::FROUND, MVT::f64, Custom); 334 335 setOperationAction(ISD::FLOG, MVT::f32, Custom); 336 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 337 setOperationAction(ISD::FEXP, MVT::f32, Custom); 338 339 340 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 341 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 342 343 setOperationAction(ISD::FREM, MVT::f16, Custom); 344 setOperationAction(ISD::FREM, MVT::f32, Custom); 345 setOperationAction(ISD::FREM, MVT::f64, Custom); 346 347 // Expand to fneg + fadd. 348 setOperationAction(ISD::FSUB, MVT::f64, Expand); 349 350 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 351 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 352 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 362 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 363 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 364 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f16, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i16, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 394 395 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 396 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 397 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 398 399 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 400 for (MVT VT : ScalarIntVTs) { 401 // These should use [SU]DIVREM, so set them to expand 402 setOperationAction(ISD::SDIV, VT, Expand); 403 setOperationAction(ISD::UDIV, VT, Expand); 404 setOperationAction(ISD::SREM, VT, Expand); 405 setOperationAction(ISD::UREM, VT, Expand); 406 407 // GPU does not have divrem function for signed or unsigned. 408 setOperationAction(ISD::SDIVREM, VT, Custom); 409 setOperationAction(ISD::UDIVREM, VT, Custom); 410 411 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 412 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 413 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 414 415 setOperationAction(ISD::BSWAP, VT, Expand); 416 setOperationAction(ISD::CTTZ, VT, Expand); 417 setOperationAction(ISD::CTLZ, VT, Expand); 418 419 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 420 setOperationAction(ISD::ADDC, VT, Legal); 421 setOperationAction(ISD::SUBC, VT, Legal); 422 setOperationAction(ISD::ADDE, VT, Legal); 423 setOperationAction(ISD::SUBE, VT, Legal); 424 } 425 426 // The hardware supports 32-bit FSHR, but not FSHL. 427 setOperationAction(ISD::FSHR, MVT::i32, Legal); 428 429 // The hardware supports 32-bit ROTR, but not ROTL. 430 setOperationAction(ISD::ROTL, MVT::i32, Expand); 431 setOperationAction(ISD::ROTL, MVT::i64, Expand); 432 setOperationAction(ISD::ROTR, MVT::i64, Expand); 433 434 setOperationAction(ISD::MULHU, MVT::i16, Expand); 435 setOperationAction(ISD::MULHS, MVT::i16, Expand); 436 437 setOperationAction(ISD::MUL, MVT::i64, Expand); 438 setOperationAction(ISD::MULHU, MVT::i64, Expand); 439 setOperationAction(ISD::MULHS, MVT::i64, Expand); 440 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 441 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 442 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 443 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 444 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 445 446 setOperationAction(ISD::SMIN, MVT::i32, Legal); 447 setOperationAction(ISD::UMIN, MVT::i32, Legal); 448 setOperationAction(ISD::SMAX, MVT::i32, Legal); 449 setOperationAction(ISD::UMAX, MVT::i32, Legal); 450 451 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 452 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 453 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 454 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 455 456 static const MVT::SimpleValueType VectorIntTypes[] = { 457 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 458 459 for (MVT VT : VectorIntTypes) { 460 // Expand the following operations for the current type by default. 461 setOperationAction(ISD::ADD, VT, Expand); 462 setOperationAction(ISD::AND, VT, Expand); 463 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 464 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 465 setOperationAction(ISD::MUL, VT, Expand); 466 setOperationAction(ISD::MULHU, VT, Expand); 467 setOperationAction(ISD::MULHS, VT, Expand); 468 setOperationAction(ISD::OR, VT, Expand); 469 setOperationAction(ISD::SHL, VT, Expand); 470 setOperationAction(ISD::SRA, VT, Expand); 471 setOperationAction(ISD::SRL, VT, Expand); 472 setOperationAction(ISD::ROTL, VT, Expand); 473 setOperationAction(ISD::ROTR, VT, Expand); 474 setOperationAction(ISD::SUB, VT, Expand); 475 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 476 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 477 setOperationAction(ISD::SDIV, VT, Expand); 478 setOperationAction(ISD::UDIV, VT, Expand); 479 setOperationAction(ISD::SREM, VT, Expand); 480 setOperationAction(ISD::UREM, VT, Expand); 481 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 482 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 483 setOperationAction(ISD::SDIVREM, VT, Expand); 484 setOperationAction(ISD::UDIVREM, VT, Expand); 485 setOperationAction(ISD::SELECT, VT, Expand); 486 setOperationAction(ISD::VSELECT, VT, Expand); 487 setOperationAction(ISD::SELECT_CC, VT, Expand); 488 setOperationAction(ISD::XOR, VT, Expand); 489 setOperationAction(ISD::BSWAP, VT, Expand); 490 setOperationAction(ISD::CTPOP, VT, Expand); 491 setOperationAction(ISD::CTTZ, VT, Expand); 492 setOperationAction(ISD::CTLZ, VT, Expand); 493 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 494 setOperationAction(ISD::SETCC, VT, Expand); 495 } 496 497 static const MVT::SimpleValueType FloatVectorTypes[] = { 498 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 499 500 for (MVT VT : FloatVectorTypes) { 501 setOperationAction(ISD::FABS, VT, Expand); 502 setOperationAction(ISD::FMINNUM, VT, Expand); 503 setOperationAction(ISD::FMAXNUM, VT, Expand); 504 setOperationAction(ISD::FADD, VT, Expand); 505 setOperationAction(ISD::FCEIL, VT, Expand); 506 setOperationAction(ISD::FCOS, VT, Expand); 507 setOperationAction(ISD::FDIV, VT, Expand); 508 setOperationAction(ISD::FEXP2, VT, Expand); 509 setOperationAction(ISD::FEXP, VT, Expand); 510 setOperationAction(ISD::FLOG2, VT, Expand); 511 setOperationAction(ISD::FREM, VT, Expand); 512 setOperationAction(ISD::FLOG, VT, Expand); 513 setOperationAction(ISD::FLOG10, VT, Expand); 514 setOperationAction(ISD::FPOW, VT, Expand); 515 setOperationAction(ISD::FFLOOR, VT, Expand); 516 setOperationAction(ISD::FTRUNC, VT, Expand); 517 setOperationAction(ISD::FMUL, VT, Expand); 518 setOperationAction(ISD::FMA, VT, Expand); 519 setOperationAction(ISD::FRINT, VT, Expand); 520 setOperationAction(ISD::FNEARBYINT, VT, Expand); 521 setOperationAction(ISD::FSQRT, VT, Expand); 522 setOperationAction(ISD::FSIN, VT, Expand); 523 setOperationAction(ISD::FSUB, VT, Expand); 524 setOperationAction(ISD::FNEG, VT, Expand); 525 setOperationAction(ISD::VSELECT, VT, Expand); 526 setOperationAction(ISD::SELECT_CC, VT, Expand); 527 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 528 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 529 setOperationAction(ISD::SETCC, VT, Expand); 530 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 531 } 532 533 // This causes using an unrolled select operation rather than expansion with 534 // bit operations. This is in general better, but the alternative using BFI 535 // instructions may be better if the select sources are SGPRs. 536 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 537 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 538 539 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 540 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 541 542 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 543 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 544 545 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 546 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 547 548 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 549 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 550 551 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 552 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 553 554 // There are no libcalls of any kind. 555 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 556 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 557 558 setSchedulingPreference(Sched::RegPressure); 559 setJumpIsExpensive(true); 560 561 // FIXME: This is only partially true. If we have to do vector compares, any 562 // SGPR pair can be a condition register. If we have a uniform condition, we 563 // are better off doing SALU operations, where there is only one SCC. For now, 564 // we don't have a way of knowing during instruction selection if a condition 565 // will be uniform and we always use vector compares. Assume we are using 566 // vector compares until that is fixed. 567 setHasMultipleConditionRegisters(true); 568 569 setMinCmpXchgSizeInBits(32); 570 setSupportsUnalignedAtomics(false); 571 572 PredictableSelectIsExpensive = false; 573 574 // We want to find all load dependencies for long chains of stores to enable 575 // merging into very wide vectors. The problem is with vectors with > 4 576 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 577 // vectors are a legal type, even though we have to split the loads 578 // usually. When we can more precisely specify load legality per address 579 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 580 // smarter so that they can figure out what to do in 2 iterations without all 581 // N > 4 stores on the same chain. 582 GatherAllAliasesMaxDepth = 16; 583 584 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 585 // about these during lowering. 586 MaxStoresPerMemcpy = 0xffffffff; 587 MaxStoresPerMemmove = 0xffffffff; 588 MaxStoresPerMemset = 0xffffffff; 589 590 // The expansion for 64-bit division is enormous. 591 if (AMDGPUBypassSlowDiv) 592 addBypassSlowDiv(64, 32); 593 594 setTargetDAGCombine({ISD::BITCAST, ISD::SHL, 595 ISD::SRA, ISD::SRL, 596 ISD::TRUNCATE, ISD::MUL, 597 ISD::SMUL_LOHI, ISD::UMUL_LOHI, 598 ISD::MULHU, ISD::MULHS, 599 ISD::SELECT, ISD::SELECT_CC, 600 ISD::STORE, ISD::FADD, 601 ISD::FSUB, ISD::FNEG, 602 ISD::FABS, ISD::AssertZext, 603 ISD::AssertSext, ISD::INTRINSIC_WO_CHAIN}); 604 } 605 606 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 607 if (getTargetMachine().Options.NoSignedZerosFPMath) 608 return true; 609 610 const auto Flags = Op.getNode()->getFlags(); 611 if (Flags.hasNoSignedZeros()) 612 return true; 613 614 return false; 615 } 616 617 //===----------------------------------------------------------------------===// 618 // Target Information 619 //===----------------------------------------------------------------------===// 620 621 LLVM_READNONE 622 static bool fnegFoldsIntoOp(unsigned Opc) { 623 switch (Opc) { 624 case ISD::FADD: 625 case ISD::FSUB: 626 case ISD::FMUL: 627 case ISD::FMA: 628 case ISD::FMAD: 629 case ISD::FMINNUM: 630 case ISD::FMAXNUM: 631 case ISD::FMINNUM_IEEE: 632 case ISD::FMAXNUM_IEEE: 633 case ISD::FSIN: 634 case ISD::FTRUNC: 635 case ISD::FRINT: 636 case ISD::FNEARBYINT: 637 case ISD::FCANONICALIZE: 638 case AMDGPUISD::RCP: 639 case AMDGPUISD::RCP_LEGACY: 640 case AMDGPUISD::RCP_IFLAG: 641 case AMDGPUISD::SIN_HW: 642 case AMDGPUISD::FMUL_LEGACY: 643 case AMDGPUISD::FMIN_LEGACY: 644 case AMDGPUISD::FMAX_LEGACY: 645 case AMDGPUISD::FMED3: 646 // TODO: handle llvm.amdgcn.fma.legacy 647 return true; 648 default: 649 return false; 650 } 651 } 652 653 /// \p returns true if the operation will definitely need to use a 64-bit 654 /// encoding, and thus will use a VOP3 encoding regardless of the source 655 /// modifiers. 656 LLVM_READONLY 657 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 658 return N->getNumOperands() > 2 || VT == MVT::f64; 659 } 660 661 // Most FP instructions support source modifiers, but this could be refined 662 // slightly. 663 LLVM_READONLY 664 static bool hasSourceMods(const SDNode *N) { 665 if (isa<MemSDNode>(N)) 666 return false; 667 668 switch (N->getOpcode()) { 669 case ISD::CopyToReg: 670 case ISD::SELECT: 671 case ISD::FDIV: 672 case ISD::FREM: 673 case ISD::INLINEASM: 674 case ISD::INLINEASM_BR: 675 case AMDGPUISD::DIV_SCALE: 676 case ISD::INTRINSIC_W_CHAIN: 677 678 // TODO: Should really be looking at the users of the bitcast. These are 679 // problematic because bitcasts are used to legalize all stores to integer 680 // types. 681 case ISD::BITCAST: 682 return false; 683 case ISD::INTRINSIC_WO_CHAIN: { 684 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 685 case Intrinsic::amdgcn_interp_p1: 686 case Intrinsic::amdgcn_interp_p2: 687 case Intrinsic::amdgcn_interp_mov: 688 case Intrinsic::amdgcn_interp_p1_f16: 689 case Intrinsic::amdgcn_interp_p2_f16: 690 return false; 691 default: 692 return true; 693 } 694 } 695 default: 696 return true; 697 } 698 } 699 700 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 701 unsigned CostThreshold) { 702 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 703 // it is truly free to use a source modifier in all cases. If there are 704 // multiple users but for each one will necessitate using VOP3, there will be 705 // a code size increase. Try to avoid increasing code size unless we know it 706 // will save on the instruction count. 707 unsigned NumMayIncreaseSize = 0; 708 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 709 710 // XXX - Should this limit number of uses to check? 711 for (const SDNode *U : N->uses()) { 712 if (!hasSourceMods(U)) 713 return false; 714 715 if (!opMustUseVOP3Encoding(U, VT)) { 716 if (++NumMayIncreaseSize > CostThreshold) 717 return false; 718 } 719 } 720 721 return true; 722 } 723 724 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 725 ISD::NodeType ExtendKind) const { 726 assert(!VT.isVector() && "only scalar expected"); 727 728 // Round to the next multiple of 32-bits. 729 unsigned Size = VT.getSizeInBits(); 730 if (Size <= 32) 731 return MVT::i32; 732 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 733 } 734 735 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 736 return MVT::i32; 737 } 738 739 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 740 return true; 741 } 742 743 // The backend supports 32 and 64 bit floating point immediates. 744 // FIXME: Why are we reporting vectors of FP immediates as legal? 745 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 746 bool ForCodeSize) const { 747 EVT ScalarVT = VT.getScalarType(); 748 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 749 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 750 } 751 752 // We don't want to shrink f64 / f32 constants. 753 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 754 EVT ScalarVT = VT.getScalarType(); 755 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 756 } 757 758 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 759 ISD::LoadExtType ExtTy, 760 EVT NewVT) const { 761 // TODO: This may be worth removing. Check regression tests for diffs. 762 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 763 return false; 764 765 unsigned NewSize = NewVT.getStoreSizeInBits(); 766 767 // If we are reducing to a 32-bit load or a smaller multi-dword load, 768 // this is always better. 769 if (NewSize >= 32) 770 return true; 771 772 EVT OldVT = N->getValueType(0); 773 unsigned OldSize = OldVT.getStoreSizeInBits(); 774 775 MemSDNode *MN = cast<MemSDNode>(N); 776 unsigned AS = MN->getAddressSpace(); 777 // Do not shrink an aligned scalar load to sub-dword. 778 // Scalar engine cannot do sub-dword loads. 779 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 780 (AS == AMDGPUAS::CONSTANT_ADDRESS || 781 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 782 (isa<LoadSDNode>(N) && 783 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 784 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 785 return false; 786 787 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 788 // extloads, so doing one requires using a buffer_load. In cases where we 789 // still couldn't use a scalar load, using the wider load shouldn't really 790 // hurt anything. 791 792 // If the old size already had to be an extload, there's no harm in continuing 793 // to reduce the width. 794 return (OldSize < 32); 795 } 796 797 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 798 const SelectionDAG &DAG, 799 const MachineMemOperand &MMO) const { 800 801 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 802 803 if (LoadTy.getScalarType() == MVT::i32) 804 return false; 805 806 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 807 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 808 809 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 810 return false; 811 812 bool Fast = false; 813 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 814 CastTy, MMO, &Fast) && 815 Fast; 816 } 817 818 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 819 // profitable with the expansion for 64-bit since it's generally good to 820 // speculate things. 821 // FIXME: These should really have the size as a parameter. 822 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 823 return true; 824 } 825 826 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 827 return true; 828 } 829 830 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 831 switch (N->getOpcode()) { 832 case ISD::EntryToken: 833 case ISD::TokenFactor: 834 return true; 835 case ISD::INTRINSIC_WO_CHAIN: { 836 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 837 switch (IntrID) { 838 case Intrinsic::amdgcn_readfirstlane: 839 case Intrinsic::amdgcn_readlane: 840 return true; 841 } 842 return false; 843 } 844 case ISD::LOAD: 845 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 846 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 847 return true; 848 return false; 849 case AMDGPUISD::SETCC: // ballot-style instruction 850 return true; 851 } 852 return false; 853 } 854 855 SDValue AMDGPUTargetLowering::getNegatedExpression( 856 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 857 NegatibleCost &Cost, unsigned Depth) const { 858 859 switch (Op.getOpcode()) { 860 case ISD::FMA: 861 case ISD::FMAD: { 862 // Negating a fma is not free if it has users without source mods. 863 if (!allUsesHaveSourceMods(Op.getNode())) 864 return SDValue(); 865 break; 866 } 867 default: 868 break; 869 } 870 871 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 872 ForCodeSize, Cost, Depth); 873 } 874 875 //===---------------------------------------------------------------------===// 876 // Target Properties 877 //===---------------------------------------------------------------------===// 878 879 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 880 assert(VT.isFloatingPoint()); 881 882 // Packed operations do not have a fabs modifier. 883 return VT == MVT::f32 || VT == MVT::f64 || 884 (Subtarget->has16BitInsts() && VT == MVT::f16); 885 } 886 887 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 888 assert(VT.isFloatingPoint()); 889 // Report this based on the end legalized type. 890 VT = VT.getScalarType(); 891 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 892 } 893 894 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 895 unsigned NumElem, 896 unsigned AS) const { 897 return true; 898 } 899 900 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 901 // There are few operations which truly have vector input operands. Any vector 902 // operation is going to involve operations on each component, and a 903 // build_vector will be a copy per element, so it always makes sense to use a 904 // build_vector input in place of the extracted element to avoid a copy into a 905 // super register. 906 // 907 // We should probably only do this if all users are extracts only, but this 908 // should be the common case. 909 return true; 910 } 911 912 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 913 // Truncate is just accessing a subregister. 914 915 unsigned SrcSize = Source.getSizeInBits(); 916 unsigned DestSize = Dest.getSizeInBits(); 917 918 return DestSize < SrcSize && DestSize % 32 == 0 ; 919 } 920 921 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 922 // Truncate is just accessing a subregister. 923 924 unsigned SrcSize = Source->getScalarSizeInBits(); 925 unsigned DestSize = Dest->getScalarSizeInBits(); 926 927 if (DestSize== 16 && Subtarget->has16BitInsts()) 928 return SrcSize >= 32; 929 930 return DestSize < SrcSize && DestSize % 32 == 0; 931 } 932 933 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 934 unsigned SrcSize = Src->getScalarSizeInBits(); 935 unsigned DestSize = Dest->getScalarSizeInBits(); 936 937 if (SrcSize == 16 && Subtarget->has16BitInsts()) 938 return DestSize >= 32; 939 940 return SrcSize == 32 && DestSize == 64; 941 } 942 943 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 944 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 945 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 946 // this will enable reducing 64-bit operations the 32-bit, which is always 947 // good. 948 949 if (Src == MVT::i16) 950 return Dest == MVT::i32 ||Dest == MVT::i64 ; 951 952 return Src == MVT::i32 && Dest == MVT::i64; 953 } 954 955 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 956 return isZExtFree(Val.getValueType(), VT2); 957 } 958 959 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 960 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 961 // limited number of native 64-bit operations. Shrinking an operation to fit 962 // in a single 32-bit register should always be helpful. As currently used, 963 // this is much less general than the name suggests, and is only used in 964 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 965 // not profitable, and may actually be harmful. 966 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 967 } 968 969 //===---------------------------------------------------------------------===// 970 // TargetLowering Callbacks 971 //===---------------------------------------------------------------------===// 972 973 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 974 bool IsVarArg) { 975 switch (CC) { 976 case CallingConv::AMDGPU_VS: 977 case CallingConv::AMDGPU_GS: 978 case CallingConv::AMDGPU_PS: 979 case CallingConv::AMDGPU_CS: 980 case CallingConv::AMDGPU_HS: 981 case CallingConv::AMDGPU_ES: 982 case CallingConv::AMDGPU_LS: 983 return CC_AMDGPU; 984 case CallingConv::C: 985 case CallingConv::Fast: 986 case CallingConv::Cold: 987 return CC_AMDGPU_Func; 988 case CallingConv::AMDGPU_Gfx: 989 return CC_SI_Gfx; 990 case CallingConv::AMDGPU_KERNEL: 991 case CallingConv::SPIR_KERNEL: 992 default: 993 report_fatal_error("Unsupported calling convention for call"); 994 } 995 } 996 997 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 998 bool IsVarArg) { 999 switch (CC) { 1000 case CallingConv::AMDGPU_KERNEL: 1001 case CallingConv::SPIR_KERNEL: 1002 llvm_unreachable("kernels should not be handled here"); 1003 case CallingConv::AMDGPU_VS: 1004 case CallingConv::AMDGPU_GS: 1005 case CallingConv::AMDGPU_PS: 1006 case CallingConv::AMDGPU_CS: 1007 case CallingConv::AMDGPU_HS: 1008 case CallingConv::AMDGPU_ES: 1009 case CallingConv::AMDGPU_LS: 1010 return RetCC_SI_Shader; 1011 case CallingConv::AMDGPU_Gfx: 1012 return RetCC_SI_Gfx; 1013 case CallingConv::C: 1014 case CallingConv::Fast: 1015 case CallingConv::Cold: 1016 return RetCC_AMDGPU_Func; 1017 default: 1018 report_fatal_error("Unsupported calling convention."); 1019 } 1020 } 1021 1022 /// The SelectionDAGBuilder will automatically promote function arguments 1023 /// with illegal types. However, this does not work for the AMDGPU targets 1024 /// since the function arguments are stored in memory as these illegal types. 1025 /// In order to handle this properly we need to get the original types sizes 1026 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1027 /// passing them to AnalyzeFormalArguments() 1028 1029 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1030 /// input values across multiple registers. Each item in the Ins array 1031 /// represents a single value that will be stored in registers. Ins[x].VT is 1032 /// the value type of the value that will be stored in the register, so 1033 /// whatever SDNode we lower the argument to needs to be this type. 1034 /// 1035 /// In order to correctly lower the arguments we need to know the size of each 1036 /// argument. Since Ins[x].VT gives us the size of the register that will 1037 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1038 /// for the original function argument so that we can deduce the correct memory 1039 /// type to use for Ins[x]. In most cases the correct memory type will be 1040 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1041 /// we have a kernel argument of type v8i8, this argument will be split into 1042 /// 8 parts and each part will be represented by its own item in the Ins array. 1043 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1044 /// the argument before it was split. From this, we deduce that the memory type 1045 /// for each individual part is i8. We pass the memory type as LocVT to the 1046 /// calling convention analysis function and the register type (Ins[x].VT) as 1047 /// the ValVT. 1048 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1049 CCState &State, 1050 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1051 const MachineFunction &MF = State.getMachineFunction(); 1052 const Function &Fn = MF.getFunction(); 1053 LLVMContext &Ctx = Fn.getParent()->getContext(); 1054 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1055 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1056 CallingConv::ID CC = Fn.getCallingConv(); 1057 1058 Align MaxAlign = Align(1); 1059 uint64_t ExplicitArgOffset = 0; 1060 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1061 1062 unsigned InIndex = 0; 1063 1064 for (const Argument &Arg : Fn.args()) { 1065 const bool IsByRef = Arg.hasByRefAttr(); 1066 Type *BaseArgTy = Arg.getType(); 1067 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1068 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1069 if (!Alignment) 1070 Alignment = DL.getABITypeAlign(MemArgTy); 1071 MaxAlign = max(Alignment, MaxAlign); 1072 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1073 1074 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1075 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1076 1077 // We're basically throwing away everything passed into us and starting over 1078 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1079 // to us as computed in Ins. 1080 // 1081 // We also need to figure out what type legalization is trying to do to get 1082 // the correct memory offsets. 1083 1084 SmallVector<EVT, 16> ValueVTs; 1085 SmallVector<uint64_t, 16> Offsets; 1086 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1087 1088 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1089 Value != NumValues; ++Value) { 1090 uint64_t BasePartOffset = Offsets[Value]; 1091 1092 EVT ArgVT = ValueVTs[Value]; 1093 EVT MemVT = ArgVT; 1094 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1095 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1096 1097 if (NumRegs == 1) { 1098 // This argument is not split, so the IR type is the memory type. 1099 if (ArgVT.isExtended()) { 1100 // We have an extended type, like i24, so we should just use the 1101 // register type. 1102 MemVT = RegisterVT; 1103 } else { 1104 MemVT = ArgVT; 1105 } 1106 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1107 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1108 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1109 // We have a vector value which has been split into a vector with 1110 // the same scalar type, but fewer elements. This should handle 1111 // all the floating-point vector types. 1112 MemVT = RegisterVT; 1113 } else if (ArgVT.isVector() && 1114 ArgVT.getVectorNumElements() == NumRegs) { 1115 // This arg has been split so that each element is stored in a separate 1116 // register. 1117 MemVT = ArgVT.getScalarType(); 1118 } else if (ArgVT.isExtended()) { 1119 // We have an extended type, like i65. 1120 MemVT = RegisterVT; 1121 } else { 1122 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1123 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1124 if (RegisterVT.isInteger()) { 1125 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1126 } else if (RegisterVT.isVector()) { 1127 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1128 unsigned NumElements = RegisterVT.getVectorNumElements(); 1129 assert(MemoryBits % NumElements == 0); 1130 // This vector type has been split into another vector type with 1131 // a different elements size. 1132 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1133 MemoryBits / NumElements); 1134 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1135 } else { 1136 llvm_unreachable("cannot deduce memory type."); 1137 } 1138 } 1139 1140 // Convert one element vectors to scalar. 1141 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1142 MemVT = MemVT.getScalarType(); 1143 1144 // Round up vec3/vec5 argument. 1145 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1146 assert(MemVT.getVectorNumElements() == 3 || 1147 MemVT.getVectorNumElements() == 5); 1148 MemVT = MemVT.getPow2VectorType(State.getContext()); 1149 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1150 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1151 } 1152 1153 unsigned PartOffset = 0; 1154 for (unsigned i = 0; i != NumRegs; ++i) { 1155 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1156 BasePartOffset + PartOffset, 1157 MemVT.getSimpleVT(), 1158 CCValAssign::Full)); 1159 PartOffset += MemVT.getStoreSize(); 1160 } 1161 } 1162 } 1163 } 1164 1165 SDValue AMDGPUTargetLowering::LowerReturn( 1166 SDValue Chain, CallingConv::ID CallConv, 1167 bool isVarArg, 1168 const SmallVectorImpl<ISD::OutputArg> &Outs, 1169 const SmallVectorImpl<SDValue> &OutVals, 1170 const SDLoc &DL, SelectionDAG &DAG) const { 1171 // FIXME: Fails for r600 tests 1172 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1173 // "wave terminate should not have return values"); 1174 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1175 } 1176 1177 //===---------------------------------------------------------------------===// 1178 // Target specific lowering 1179 //===---------------------------------------------------------------------===// 1180 1181 /// Selects the correct CCAssignFn for a given CallingConvention value. 1182 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1183 bool IsVarArg) { 1184 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1185 } 1186 1187 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1188 bool IsVarArg) { 1189 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1190 } 1191 1192 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1193 SelectionDAG &DAG, 1194 MachineFrameInfo &MFI, 1195 int ClobberedFI) const { 1196 SmallVector<SDValue, 8> ArgChains; 1197 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1198 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1199 1200 // Include the original chain at the beginning of the list. When this is 1201 // used by target LowerCall hooks, this helps legalize find the 1202 // CALLSEQ_BEGIN node. 1203 ArgChains.push_back(Chain); 1204 1205 // Add a chain value for each stack argument corresponding 1206 for (SDNode *U : DAG.getEntryNode().getNode()->uses()) { 1207 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) { 1208 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1209 if (FI->getIndex() < 0) { 1210 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1211 int64_t InLastByte = InFirstByte; 1212 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1213 1214 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1215 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1216 ArgChains.push_back(SDValue(L, 1)); 1217 } 1218 } 1219 } 1220 } 1221 1222 // Build a tokenfactor for all the chains. 1223 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1224 } 1225 1226 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1227 SmallVectorImpl<SDValue> &InVals, 1228 StringRef Reason) const { 1229 SDValue Callee = CLI.Callee; 1230 SelectionDAG &DAG = CLI.DAG; 1231 1232 const Function &Fn = DAG.getMachineFunction().getFunction(); 1233 1234 StringRef FuncName("<unknown>"); 1235 1236 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1237 FuncName = G->getSymbol(); 1238 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1239 FuncName = G->getGlobal()->getName(); 1240 1241 DiagnosticInfoUnsupported NoCalls( 1242 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1243 DAG.getContext()->diagnose(NoCalls); 1244 1245 if (!CLI.IsTailCall) { 1246 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1247 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1248 } 1249 1250 return DAG.getEntryNode(); 1251 } 1252 1253 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1254 SmallVectorImpl<SDValue> &InVals) const { 1255 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1256 } 1257 1258 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1259 SelectionDAG &DAG) const { 1260 const Function &Fn = DAG.getMachineFunction().getFunction(); 1261 1262 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1263 SDLoc(Op).getDebugLoc()); 1264 DAG.getContext()->diagnose(NoDynamicAlloca); 1265 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1266 return DAG.getMergeValues(Ops, SDLoc()); 1267 } 1268 1269 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1270 SelectionDAG &DAG) const { 1271 switch (Op.getOpcode()) { 1272 default: 1273 Op->print(errs(), &DAG); 1274 llvm_unreachable("Custom lowering code for this " 1275 "instruction is not implemented yet!"); 1276 break; 1277 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1278 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1279 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1280 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1281 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1282 case ISD::FREM: return LowerFREM(Op, DAG); 1283 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1284 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1285 case ISD::FRINT: return LowerFRINT(Op, DAG); 1286 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1287 case ISD::FROUND: return LowerFROUND(Op, DAG); 1288 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1289 case ISD::FLOG: 1290 return LowerFLOG(Op, DAG, numbers::ln2f); 1291 case ISD::FLOG10: 1292 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1293 case ISD::FEXP: 1294 return lowerFEXP(Op, DAG); 1295 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1296 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1297 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1298 case ISD::FP_TO_SINT: 1299 case ISD::FP_TO_UINT: 1300 return LowerFP_TO_INT(Op, DAG); 1301 case ISD::CTTZ: 1302 case ISD::CTTZ_ZERO_UNDEF: 1303 case ISD::CTLZ: 1304 case ISD::CTLZ_ZERO_UNDEF: 1305 return LowerCTLZ_CTTZ(Op, DAG); 1306 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1307 } 1308 return Op; 1309 } 1310 1311 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1312 SmallVectorImpl<SDValue> &Results, 1313 SelectionDAG &DAG) const { 1314 switch (N->getOpcode()) { 1315 case ISD::SIGN_EXTEND_INREG: 1316 // Different parts of legalization seem to interpret which type of 1317 // sign_extend_inreg is the one to check for custom lowering. The extended 1318 // from type is what really matters, but some places check for custom 1319 // lowering of the result type. This results in trying to use 1320 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1321 // nothing here and let the illegal result integer be handled normally. 1322 return; 1323 default: 1324 return; 1325 } 1326 } 1327 1328 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1329 SDValue Op, 1330 SelectionDAG &DAG) const { 1331 1332 const DataLayout &DL = DAG.getDataLayout(); 1333 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1334 const GlobalValue *GV = G->getGlobal(); 1335 1336 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1337 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1338 if (!MFI->isModuleEntryFunction() && 1339 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1340 SDLoc DL(Op); 1341 const Function &Fn = DAG.getMachineFunction().getFunction(); 1342 DiagnosticInfoUnsupported BadLDSDecl( 1343 Fn, "local memory global used by non-kernel function", 1344 DL.getDebugLoc(), DS_Warning); 1345 DAG.getContext()->diagnose(BadLDSDecl); 1346 1347 // We currently don't have a way to correctly allocate LDS objects that 1348 // aren't directly associated with a kernel. We do force inlining of 1349 // functions that use local objects. However, if these dead functions are 1350 // not eliminated, we don't want a compile time error. Just emit a warning 1351 // and a trap, since there should be no callable path here. 1352 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1353 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1354 Trap, DAG.getRoot()); 1355 DAG.setRoot(OutputChain); 1356 return DAG.getUNDEF(Op.getValueType()); 1357 } 1358 1359 // XXX: What does the value of G->getOffset() mean? 1360 assert(G->getOffset() == 0 && 1361 "Do not know what to do with an non-zero offset"); 1362 1363 // TODO: We could emit code to handle the initialization somewhere. 1364 // We ignore the initializer for now and legalize it to allow selection. 1365 // The initializer will anyway get errored out during assembly emission. 1366 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1367 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1368 } 1369 return SDValue(); 1370 } 1371 1372 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1373 SelectionDAG &DAG) const { 1374 SmallVector<SDValue, 8> Args; 1375 1376 EVT VT = Op.getValueType(); 1377 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1378 SDLoc SL(Op); 1379 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1380 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1381 1382 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1383 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1384 } 1385 1386 for (const SDUse &U : Op->ops()) 1387 DAG.ExtractVectorElements(U.get(), Args); 1388 1389 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1390 } 1391 1392 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1393 SelectionDAG &DAG) const { 1394 1395 SmallVector<SDValue, 8> Args; 1396 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1397 EVT VT = Op.getValueType(); 1398 EVT SrcVT = Op.getOperand(0).getValueType(); 1399 1400 // For these types, we have some TableGen patterns except if the index is 1 1401 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1402 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1403 Start != 1) 1404 return Op; 1405 1406 if (((SrcVT == MVT::v8f16 && VT == MVT::v4f16) || 1407 (SrcVT == MVT::v8i16 && VT == MVT::v4i16)) && 1408 (Start == 0 || Start == 4)) 1409 return Op; 1410 1411 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1412 VT.getVectorNumElements()); 1413 1414 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1415 } 1416 1417 /// Generate Min/Max node 1418 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1419 SDValue LHS, SDValue RHS, 1420 SDValue True, SDValue False, 1421 SDValue CC, 1422 DAGCombinerInfo &DCI) const { 1423 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1424 return SDValue(); 1425 1426 SelectionDAG &DAG = DCI.DAG; 1427 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1428 switch (CCOpcode) { 1429 case ISD::SETOEQ: 1430 case ISD::SETONE: 1431 case ISD::SETUNE: 1432 case ISD::SETNE: 1433 case ISD::SETUEQ: 1434 case ISD::SETEQ: 1435 case ISD::SETFALSE: 1436 case ISD::SETFALSE2: 1437 case ISD::SETTRUE: 1438 case ISD::SETTRUE2: 1439 case ISD::SETUO: 1440 case ISD::SETO: 1441 break; 1442 case ISD::SETULE: 1443 case ISD::SETULT: { 1444 if (LHS == True) 1445 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1446 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1447 } 1448 case ISD::SETOLE: 1449 case ISD::SETOLT: 1450 case ISD::SETLE: 1451 case ISD::SETLT: { 1452 // Ordered. Assume ordered for undefined. 1453 1454 // Only do this after legalization to avoid interfering with other combines 1455 // which might occur. 1456 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1457 !DCI.isCalledByLegalizer()) 1458 return SDValue(); 1459 1460 // We need to permute the operands to get the correct NaN behavior. The 1461 // selected operand is the second one based on the failing compare with NaN, 1462 // so permute it based on the compare type the hardware uses. 1463 if (LHS == True) 1464 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1465 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1466 } 1467 case ISD::SETUGE: 1468 case ISD::SETUGT: { 1469 if (LHS == True) 1470 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1471 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1472 } 1473 case ISD::SETGT: 1474 case ISD::SETGE: 1475 case ISD::SETOGE: 1476 case ISD::SETOGT: { 1477 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1478 !DCI.isCalledByLegalizer()) 1479 return SDValue(); 1480 1481 if (LHS == True) 1482 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1483 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1484 } 1485 case ISD::SETCC_INVALID: 1486 llvm_unreachable("Invalid setcc condcode!"); 1487 } 1488 return SDValue(); 1489 } 1490 1491 std::pair<SDValue, SDValue> 1492 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1493 SDLoc SL(Op); 1494 1495 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1496 1497 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1498 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1499 1500 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1501 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1502 1503 return std::make_pair(Lo, Hi); 1504 } 1505 1506 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1507 SDLoc SL(Op); 1508 1509 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1510 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1511 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1512 } 1513 1514 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1515 SDLoc SL(Op); 1516 1517 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1518 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1519 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1520 } 1521 1522 // Split a vector type into two parts. The first part is a power of two vector. 1523 // The second part is whatever is left over, and is a scalar if it would 1524 // otherwise be a 1-vector. 1525 std::pair<EVT, EVT> 1526 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1527 EVT LoVT, HiVT; 1528 EVT EltVT = VT.getVectorElementType(); 1529 unsigned NumElts = VT.getVectorNumElements(); 1530 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1531 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1532 HiVT = NumElts - LoNumElts == 1 1533 ? EltVT 1534 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1535 return std::make_pair(LoVT, HiVT); 1536 } 1537 1538 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1539 // scalar. 1540 std::pair<SDValue, SDValue> 1541 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1542 const EVT &LoVT, const EVT &HiVT, 1543 SelectionDAG &DAG) const { 1544 assert(LoVT.getVectorNumElements() + 1545 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1546 N.getValueType().getVectorNumElements() && 1547 "More vector elements requested than available!"); 1548 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1549 DAG.getVectorIdxConstant(0, DL)); 1550 SDValue Hi = DAG.getNode( 1551 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1552 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1553 return std::make_pair(Lo, Hi); 1554 } 1555 1556 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1557 SelectionDAG &DAG) const { 1558 LoadSDNode *Load = cast<LoadSDNode>(Op); 1559 EVT VT = Op.getValueType(); 1560 SDLoc SL(Op); 1561 1562 1563 // If this is a 2 element vector, we really want to scalarize and not create 1564 // weird 1 element vectors. 1565 if (VT.getVectorNumElements() == 2) { 1566 SDValue Ops[2]; 1567 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1568 return DAG.getMergeValues(Ops, SL); 1569 } 1570 1571 SDValue BasePtr = Load->getBasePtr(); 1572 EVT MemVT = Load->getMemoryVT(); 1573 1574 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1575 1576 EVT LoVT, HiVT; 1577 EVT LoMemVT, HiMemVT; 1578 SDValue Lo, Hi; 1579 1580 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1581 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1582 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1583 1584 unsigned Size = LoMemVT.getStoreSize(); 1585 unsigned BaseAlign = Load->getAlignment(); 1586 unsigned HiAlign = MinAlign(BaseAlign, Size); 1587 1588 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1589 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1590 BaseAlign, Load->getMemOperand()->getFlags()); 1591 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1592 SDValue HiLoad = 1593 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1594 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1595 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1596 1597 SDValue Join; 1598 if (LoVT == HiVT) { 1599 // This is the case that the vector is power of two so was evenly split. 1600 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1601 } else { 1602 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1603 DAG.getVectorIdxConstant(0, SL)); 1604 Join = DAG.getNode( 1605 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1606 VT, Join, HiLoad, 1607 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1608 } 1609 1610 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1611 LoLoad.getValue(1), HiLoad.getValue(1))}; 1612 1613 return DAG.getMergeValues(Ops, SL); 1614 } 1615 1616 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1617 SelectionDAG &DAG) const { 1618 LoadSDNode *Load = cast<LoadSDNode>(Op); 1619 EVT VT = Op.getValueType(); 1620 SDValue BasePtr = Load->getBasePtr(); 1621 EVT MemVT = Load->getMemoryVT(); 1622 SDLoc SL(Op); 1623 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1624 unsigned BaseAlign = Load->getAlignment(); 1625 unsigned NumElements = MemVT.getVectorNumElements(); 1626 1627 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1628 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1629 if (NumElements != 3 || 1630 (BaseAlign < 8 && 1631 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1632 return SplitVectorLoad(Op, DAG); 1633 1634 assert(NumElements == 3); 1635 1636 EVT WideVT = 1637 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1638 EVT WideMemVT = 1639 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1640 SDValue WideLoad = DAG.getExtLoad( 1641 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1642 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1643 return DAG.getMergeValues( 1644 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1645 DAG.getVectorIdxConstant(0, SL)), 1646 WideLoad.getValue(1)}, 1647 SL); 1648 } 1649 1650 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1651 SelectionDAG &DAG) const { 1652 StoreSDNode *Store = cast<StoreSDNode>(Op); 1653 SDValue Val = Store->getValue(); 1654 EVT VT = Val.getValueType(); 1655 1656 // If this is a 2 element vector, we really want to scalarize and not create 1657 // weird 1 element vectors. 1658 if (VT.getVectorNumElements() == 2) 1659 return scalarizeVectorStore(Store, DAG); 1660 1661 EVT MemVT = Store->getMemoryVT(); 1662 SDValue Chain = Store->getChain(); 1663 SDValue BasePtr = Store->getBasePtr(); 1664 SDLoc SL(Op); 1665 1666 EVT LoVT, HiVT; 1667 EVT LoMemVT, HiMemVT; 1668 SDValue Lo, Hi; 1669 1670 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1671 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1672 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1673 1674 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1675 1676 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1677 unsigned BaseAlign = Store->getAlignment(); 1678 unsigned Size = LoMemVT.getStoreSize(); 1679 unsigned HiAlign = MinAlign(BaseAlign, Size); 1680 1681 SDValue LoStore = 1682 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1683 Store->getMemOperand()->getFlags()); 1684 SDValue HiStore = 1685 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1686 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1687 1688 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1689 } 1690 1691 // This is a shortcut for integer division because we have fast i32<->f32 1692 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1693 // float is enough to accurately represent up to a 24-bit signed integer. 1694 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1695 bool Sign) const { 1696 SDLoc DL(Op); 1697 EVT VT = Op.getValueType(); 1698 SDValue LHS = Op.getOperand(0); 1699 SDValue RHS = Op.getOperand(1); 1700 MVT IntVT = MVT::i32; 1701 MVT FltVT = MVT::f32; 1702 1703 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1704 if (LHSSignBits < 9) 1705 return SDValue(); 1706 1707 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1708 if (RHSSignBits < 9) 1709 return SDValue(); 1710 1711 unsigned BitSize = VT.getSizeInBits(); 1712 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1713 unsigned DivBits = BitSize - SignBits; 1714 if (Sign) 1715 ++DivBits; 1716 1717 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1718 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1719 1720 SDValue jq = DAG.getConstant(1, DL, IntVT); 1721 1722 if (Sign) { 1723 // char|short jq = ia ^ ib; 1724 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1725 1726 // jq = jq >> (bitsize - 2) 1727 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1728 DAG.getConstant(BitSize - 2, DL, VT)); 1729 1730 // jq = jq | 0x1 1731 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1732 } 1733 1734 // int ia = (int)LHS; 1735 SDValue ia = LHS; 1736 1737 // int ib, (int)RHS; 1738 SDValue ib = RHS; 1739 1740 // float fa = (float)ia; 1741 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1742 1743 // float fb = (float)ib; 1744 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1745 1746 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1747 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1748 1749 // fq = trunc(fq); 1750 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1751 1752 // float fqneg = -fq; 1753 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1754 1755 MachineFunction &MF = DAG.getMachineFunction(); 1756 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1757 1758 // float fr = mad(fqneg, fb, fa); 1759 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1760 (unsigned)ISD::FMA : 1761 !MFI->getMode().allFP32Denormals() ? 1762 (unsigned)ISD::FMAD : 1763 (unsigned)AMDGPUISD::FMAD_FTZ; 1764 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1765 1766 // int iq = (int)fq; 1767 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1768 1769 // fr = fabs(fr); 1770 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1771 1772 // fb = fabs(fb); 1773 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1774 1775 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1776 1777 // int cv = fr >= fb; 1778 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1779 1780 // jq = (cv ? jq : 0); 1781 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1782 1783 // dst = iq + jq; 1784 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1785 1786 // Rem needs compensation, it's easier to recompute it 1787 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1788 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1789 1790 // Truncate to number of bits this divide really is. 1791 if (Sign) { 1792 SDValue InRegSize 1793 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1794 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1795 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1796 } else { 1797 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1798 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1799 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1800 } 1801 1802 return DAG.getMergeValues({ Div, Rem }, DL); 1803 } 1804 1805 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1806 SelectionDAG &DAG, 1807 SmallVectorImpl<SDValue> &Results) const { 1808 SDLoc DL(Op); 1809 EVT VT = Op.getValueType(); 1810 1811 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1812 1813 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1814 1815 SDValue One = DAG.getConstant(1, DL, HalfVT); 1816 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1817 1818 //HiLo split 1819 SDValue LHS = Op.getOperand(0); 1820 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1821 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1822 1823 SDValue RHS = Op.getOperand(1); 1824 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1825 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1826 1827 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1828 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1829 1830 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1831 LHS_Lo, RHS_Lo); 1832 1833 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1834 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1835 1836 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1837 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1838 return; 1839 } 1840 1841 if (isTypeLegal(MVT::i64)) { 1842 // The algorithm here is based on ideas from "Software Integer Division", 1843 // Tom Rodeheffer, August 2008. 1844 1845 MachineFunction &MF = DAG.getMachineFunction(); 1846 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1847 1848 // Compute denominator reciprocal. 1849 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1850 (unsigned)ISD::FMA : 1851 !MFI->getMode().allFP32Denormals() ? 1852 (unsigned)ISD::FMAD : 1853 (unsigned)AMDGPUISD::FMAD_FTZ; 1854 1855 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1856 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1857 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1858 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1859 Cvt_Lo); 1860 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1861 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1862 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1863 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1864 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1865 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1866 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1867 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1868 Mul1); 1869 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1870 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1871 SDValue Rcp64 = DAG.getBitcast(VT, 1872 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1873 1874 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1875 SDValue One64 = DAG.getConstant(1, DL, VT); 1876 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1877 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1878 1879 // First round of UNR (Unsigned integer Newton-Raphson). 1880 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1881 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1882 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1883 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1884 Zero); 1885 SDValue Mulhi1_Hi = 1886 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One); 1887 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1888 Mulhi1_Lo, Zero1); 1889 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1890 Mulhi1_Hi, Add1_Lo.getValue(1)); 1891 SDValue Add1 = DAG.getBitcast(VT, 1892 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1893 1894 // Second round of UNR. 1895 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1896 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1897 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1898 Zero); 1899 SDValue Mulhi2_Hi = 1900 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One); 1901 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1902 Mulhi2_Lo, Zero1); 1903 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi, 1904 Mulhi2_Hi, Add2_Lo.getValue(1)); 1905 SDValue Add2 = DAG.getBitcast(VT, 1906 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1907 1908 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1909 1910 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1911 1912 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1913 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1914 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1915 Mul3_Lo, Zero1); 1916 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1917 Mul3_Hi, Sub1_Lo.getValue(1)); 1918 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1919 SDValue Sub1 = DAG.getBitcast(VT, 1920 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1921 1922 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1923 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1924 ISD::SETUGE); 1925 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1926 ISD::SETUGE); 1927 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1928 1929 // TODO: Here and below portions of the code can be enclosed into if/endif. 1930 // Currently control flow is unconditional and we have 4 selects after 1931 // potential endif to substitute PHIs. 1932 1933 // if C3 != 0 ... 1934 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1935 RHS_Lo, Zero1); 1936 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1937 RHS_Hi, Sub1_Lo.getValue(1)); 1938 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1939 Zero, Sub2_Lo.getValue(1)); 1940 SDValue Sub2 = DAG.getBitcast(VT, 1941 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1942 1943 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1944 1945 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1946 ISD::SETUGE); 1947 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1948 ISD::SETUGE); 1949 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1950 1951 // if (C6 != 0) 1952 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1953 1954 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1955 RHS_Lo, Zero1); 1956 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1957 RHS_Hi, Sub2_Lo.getValue(1)); 1958 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1959 Zero, Sub3_Lo.getValue(1)); 1960 SDValue Sub3 = DAG.getBitcast(VT, 1961 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1962 1963 // endif C6 1964 // endif C3 1965 1966 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1967 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1968 1969 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1970 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1971 1972 Results.push_back(Div); 1973 Results.push_back(Rem); 1974 1975 return; 1976 } 1977 1978 // r600 expandion. 1979 // Get Speculative values 1980 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1981 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1982 1983 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1984 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1985 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1986 1987 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1988 SDValue DIV_Lo = Zero; 1989 1990 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1991 1992 for (unsigned i = 0; i < halfBitWidth; ++i) { 1993 const unsigned bitPos = halfBitWidth - i - 1; 1994 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1995 // Get value of high bit 1996 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1997 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1998 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1999 2000 // Shift 2001 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2002 // Add LHS high bit 2003 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2004 2005 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2006 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2007 2008 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2009 2010 // Update REM 2011 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2012 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2013 } 2014 2015 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2016 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2017 Results.push_back(DIV); 2018 Results.push_back(REM); 2019 } 2020 2021 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2022 SelectionDAG &DAG) const { 2023 SDLoc DL(Op); 2024 EVT VT = Op.getValueType(); 2025 2026 if (VT == MVT::i64) { 2027 SmallVector<SDValue, 2> Results; 2028 LowerUDIVREM64(Op, DAG, Results); 2029 return DAG.getMergeValues(Results, DL); 2030 } 2031 2032 if (VT == MVT::i32) { 2033 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2034 return Res; 2035 } 2036 2037 SDValue X = Op.getOperand(0); 2038 SDValue Y = Op.getOperand(1); 2039 2040 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2041 // algorithm used here. 2042 2043 // Initial estimate of inv(y). 2044 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2045 2046 // One round of UNR. 2047 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2048 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2049 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2050 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2051 2052 // Quotient/remainder estimate. 2053 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2054 SDValue R = 2055 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2056 2057 // First quotient/remainder refinement. 2058 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2059 SDValue One = DAG.getConstant(1, DL, VT); 2060 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2061 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2062 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2063 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2064 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2065 2066 // Second quotient/remainder refinement. 2067 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2068 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2069 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2070 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2071 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2072 2073 return DAG.getMergeValues({Q, R}, DL); 2074 } 2075 2076 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2077 SelectionDAG &DAG) const { 2078 SDLoc DL(Op); 2079 EVT VT = Op.getValueType(); 2080 2081 SDValue LHS = Op.getOperand(0); 2082 SDValue RHS = Op.getOperand(1); 2083 2084 SDValue Zero = DAG.getConstant(0, DL, VT); 2085 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2086 2087 if (VT == MVT::i32) { 2088 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2089 return Res; 2090 } 2091 2092 if (VT == MVT::i64 && 2093 DAG.ComputeNumSignBits(LHS) > 32 && 2094 DAG.ComputeNumSignBits(RHS) > 32) { 2095 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2096 2097 //HiLo split 2098 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2099 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2100 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2101 LHS_Lo, RHS_Lo); 2102 SDValue Res[2] = { 2103 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2104 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2105 }; 2106 return DAG.getMergeValues(Res, DL); 2107 } 2108 2109 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2110 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2111 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2112 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2113 2114 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2115 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2116 2117 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2118 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2119 2120 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2121 SDValue Rem = Div.getValue(1); 2122 2123 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2124 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2125 2126 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2127 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2128 2129 SDValue Res[2] = { 2130 Div, 2131 Rem 2132 }; 2133 return DAG.getMergeValues(Res, DL); 2134 } 2135 2136 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2137 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2138 SDLoc SL(Op); 2139 EVT VT = Op.getValueType(); 2140 auto Flags = Op->getFlags(); 2141 SDValue X = Op.getOperand(0); 2142 SDValue Y = Op.getOperand(1); 2143 2144 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2145 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2146 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2147 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2148 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2149 } 2150 2151 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2152 SDLoc SL(Op); 2153 SDValue Src = Op.getOperand(0); 2154 2155 // result = trunc(src) 2156 // if (src > 0.0 && src != result) 2157 // result += 1.0 2158 2159 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2160 2161 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2162 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2163 2164 EVT SetCCVT = 2165 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2166 2167 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2168 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2169 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2170 2171 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2172 // TODO: Should this propagate fast-math-flags? 2173 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2174 } 2175 2176 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2177 SelectionDAG &DAG) { 2178 const unsigned FractBits = 52; 2179 const unsigned ExpBits = 11; 2180 2181 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2182 Hi, 2183 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2184 DAG.getConstant(ExpBits, SL, MVT::i32)); 2185 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2186 DAG.getConstant(1023, SL, MVT::i32)); 2187 2188 return Exp; 2189 } 2190 2191 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2192 SDLoc SL(Op); 2193 SDValue Src = Op.getOperand(0); 2194 2195 assert(Op.getValueType() == MVT::f64); 2196 2197 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2198 2199 // Extract the upper half, since this is where we will find the sign and 2200 // exponent. 2201 SDValue Hi = getHiHalf64(Src, DAG); 2202 2203 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2204 2205 const unsigned FractBits = 52; 2206 2207 // Extract the sign bit. 2208 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2209 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2210 2211 // Extend back to 64-bits. 2212 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2213 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2214 2215 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2216 const SDValue FractMask 2217 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2218 2219 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2220 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2221 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2222 2223 EVT SetCCVT = 2224 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2225 2226 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2227 2228 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2229 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2230 2231 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2232 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2233 2234 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2235 } 2236 2237 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2238 SDLoc SL(Op); 2239 SDValue Src = Op.getOperand(0); 2240 2241 assert(Op.getValueType() == MVT::f64); 2242 2243 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2244 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2245 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2246 2247 // TODO: Should this propagate fast-math-flags? 2248 2249 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2250 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2251 2252 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2253 2254 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2255 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2256 2257 EVT SetCCVT = 2258 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2259 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2260 2261 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2262 } 2263 2264 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2265 // FNEARBYINT and FRINT are the same, except in their handling of FP 2266 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2267 // rint, so just treat them as equivalent. 2268 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2269 } 2270 2271 // XXX - May require not supporting f32 denormals? 2272 2273 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2274 // compare and vselect end up producing worse code than scalarizing the whole 2275 // operation. 2276 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2277 SDLoc SL(Op); 2278 SDValue X = Op.getOperand(0); 2279 EVT VT = Op.getValueType(); 2280 2281 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2282 2283 // TODO: Should this propagate fast-math-flags? 2284 2285 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2286 2287 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2288 2289 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2290 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2291 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2292 2293 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2294 2295 EVT SetCCVT = 2296 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2297 2298 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2299 2300 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2301 2302 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2303 } 2304 2305 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2306 SDLoc SL(Op); 2307 SDValue Src = Op.getOperand(0); 2308 2309 // result = trunc(src); 2310 // if (src < 0.0 && src != result) 2311 // result += -1.0. 2312 2313 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2314 2315 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2316 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2317 2318 EVT SetCCVT = 2319 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2320 2321 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2322 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2323 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2324 2325 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2326 // TODO: Should this propagate fast-math-flags? 2327 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2328 } 2329 2330 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2331 double Log2BaseInverted) const { 2332 EVT VT = Op.getValueType(); 2333 2334 SDLoc SL(Op); 2335 SDValue Operand = Op.getOperand(0); 2336 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2337 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2338 2339 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2340 } 2341 2342 // exp2(M_LOG2E_F * f); 2343 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2344 EVT VT = Op.getValueType(); 2345 SDLoc SL(Op); 2346 SDValue Src = Op.getOperand(0); 2347 2348 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2349 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2350 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2351 } 2352 2353 static bool isCtlzOpc(unsigned Opc) { 2354 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2355 } 2356 2357 static bool isCttzOpc(unsigned Opc) { 2358 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2359 } 2360 2361 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2362 SDLoc SL(Op); 2363 SDValue Src = Op.getOperand(0); 2364 2365 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2366 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2367 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2368 2369 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2370 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2371 2372 if (Src.getValueType() == MVT::i32) { 2373 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2374 // (cttz hi:lo) -> (umin (ffbl src), 32) 2375 // (ctlz_zero_undef src) -> (ffbh src) 2376 // (cttz_zero_undef src) -> (ffbl src) 2377 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2378 if (!ZeroUndef) { 2379 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2380 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2381 } 2382 return NewOpr; 2383 } 2384 2385 SDValue Lo, Hi; 2386 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2387 2388 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2389 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2390 2391 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2392 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2393 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2394 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2395 2396 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2397 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2398 if (Ctlz) 2399 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2400 else 2401 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2402 2403 SDValue NewOpr; 2404 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2405 if (!ZeroUndef) { 2406 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2407 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2408 } 2409 2410 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2411 } 2412 2413 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2414 bool Signed) const { 2415 // The regular method converting a 64-bit integer to float roughly consists of 2416 // 2 steps: normalization and rounding. In fact, after normalization, the 2417 // conversion from a 64-bit integer to a float is essentially the same as the 2418 // one from a 32-bit integer. The only difference is that it has more 2419 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2420 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2421 // converted into the correct float number. The basic steps for the unsigned 2422 // conversion are illustrated in the following pseudo code: 2423 // 2424 // f32 uitofp(i64 u) { 2425 // i32 hi, lo = split(u); 2426 // // Only count the leading zeros in hi as we have native support of the 2427 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2428 // // reduced to a 32-bit one automatically. 2429 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2430 // u <<= shamt; 2431 // hi, lo = split(u); 2432 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2433 // // convert it as a 32-bit integer and scale the result back. 2434 // return uitofp(hi) * 2^(32 - shamt); 2435 // } 2436 // 2437 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2438 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2439 // converted instead followed by negation based its sign bit. 2440 2441 SDLoc SL(Op); 2442 SDValue Src = Op.getOperand(0); 2443 2444 SDValue Lo, Hi; 2445 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2446 SDValue Sign; 2447 SDValue ShAmt; 2448 if (Signed && Subtarget->isGCN()) { 2449 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2450 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2451 // account. That is, the maximal shift is 2452 // - 32 if Lo and Hi have opposite signs; 2453 // - 33 if Lo and Hi have the same sign. 2454 // 2455 // Or, MaxShAmt = 33 + OppositeSign, where 2456 // 2457 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2458 // - -1 if Lo and Hi have opposite signs; and 2459 // - 0 otherwise. 2460 // 2461 // All in all, ShAmt is calculated as 2462 // 2463 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2464 // 2465 // or 2466 // 2467 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2468 // 2469 // to reduce the critical path. 2470 SDValue OppositeSign = DAG.getNode( 2471 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2472 DAG.getConstant(31, SL, MVT::i32)); 2473 SDValue MaxShAmt = 2474 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2475 OppositeSign); 2476 // Count the leading sign bits. 2477 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2478 // Different from unsigned conversion, the shift should be one bit less to 2479 // preserve the sign bit. 2480 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2481 DAG.getConstant(1, SL, MVT::i32)); 2482 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2483 } else { 2484 if (Signed) { 2485 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2486 // absolute value first. 2487 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2488 DAG.getConstant(63, SL, MVT::i64)); 2489 SDValue Abs = 2490 DAG.getNode(ISD::XOR, SL, MVT::i64, 2491 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2492 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2493 } 2494 // Count the leading zeros. 2495 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2496 // The shift amount for signed integers is [0, 32]. 2497 } 2498 // Normalize the given 64-bit integer. 2499 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2500 // Split it again. 2501 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2502 // Calculate the adjust bit for rounding. 2503 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2504 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2505 DAG.getConstant(1, SL, MVT::i32), Lo); 2506 // Get the 32-bit normalized integer. 2507 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2508 // Convert the normalized 32-bit integer into f32. 2509 unsigned Opc = 2510 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2511 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2512 2513 // Finally, need to scale back the converted floating number as the original 2514 // 64-bit integer is converted as a 32-bit one. 2515 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2516 ShAmt); 2517 // On GCN, use LDEXP directly. 2518 if (Subtarget->isGCN()) 2519 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2520 2521 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2522 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2523 // exponent is enough to avoid overflowing into the sign bit. 2524 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2525 DAG.getConstant(23, SL, MVT::i32)); 2526 SDValue IVal = 2527 DAG.getNode(ISD::ADD, SL, MVT::i32, 2528 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2529 if (Signed) { 2530 // Set the sign bit. 2531 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2532 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2533 DAG.getConstant(31, SL, MVT::i32)); 2534 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2535 } 2536 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2537 } 2538 2539 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2540 bool Signed) const { 2541 SDLoc SL(Op); 2542 SDValue Src = Op.getOperand(0); 2543 2544 SDValue Lo, Hi; 2545 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2546 2547 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2548 SL, MVT::f64, Hi); 2549 2550 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2551 2552 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2553 DAG.getConstant(32, SL, MVT::i32)); 2554 // TODO: Should this propagate fast-math-flags? 2555 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2556 } 2557 2558 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2559 SelectionDAG &DAG) const { 2560 // TODO: Factor out code common with LowerSINT_TO_FP. 2561 EVT DestVT = Op.getValueType(); 2562 SDValue Src = Op.getOperand(0); 2563 EVT SrcVT = Src.getValueType(); 2564 2565 if (SrcVT == MVT::i16) { 2566 if (DestVT == MVT::f16) 2567 return Op; 2568 SDLoc DL(Op); 2569 2570 // Promote src to i32 2571 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2572 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2573 } 2574 2575 assert(SrcVT == MVT::i64 && "operation should be legal"); 2576 2577 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2578 SDLoc DL(Op); 2579 2580 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2581 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2582 SDValue FPRound = 2583 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2584 2585 return FPRound; 2586 } 2587 2588 if (DestVT == MVT::f32) 2589 return LowerINT_TO_FP32(Op, DAG, false); 2590 2591 assert(DestVT == MVT::f64); 2592 return LowerINT_TO_FP64(Op, DAG, false); 2593 } 2594 2595 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2596 SelectionDAG &DAG) const { 2597 EVT DestVT = Op.getValueType(); 2598 2599 SDValue Src = Op.getOperand(0); 2600 EVT SrcVT = Src.getValueType(); 2601 2602 if (SrcVT == MVT::i16) { 2603 if (DestVT == MVT::f16) 2604 return Op; 2605 2606 SDLoc DL(Op); 2607 // Promote src to i32 2608 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2609 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2610 } 2611 2612 assert(SrcVT == MVT::i64 && "operation should be legal"); 2613 2614 // TODO: Factor out code common with LowerUINT_TO_FP. 2615 2616 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2617 SDLoc DL(Op); 2618 SDValue Src = Op.getOperand(0); 2619 2620 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2621 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2622 SDValue FPRound = 2623 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2624 2625 return FPRound; 2626 } 2627 2628 if (DestVT == MVT::f32) 2629 return LowerINT_TO_FP32(Op, DAG, true); 2630 2631 assert(DestVT == MVT::f64); 2632 return LowerINT_TO_FP64(Op, DAG, true); 2633 } 2634 2635 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2636 bool Signed) const { 2637 SDLoc SL(Op); 2638 2639 SDValue Src = Op.getOperand(0); 2640 EVT SrcVT = Src.getValueType(); 2641 2642 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2643 2644 // The basic idea of converting a floating point number into a pair of 32-bit 2645 // integers is illustrated as follows: 2646 // 2647 // tf := trunc(val); 2648 // hif := floor(tf * 2^-32); 2649 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2650 // hi := fptoi(hif); 2651 // lo := fptoi(lof); 2652 // 2653 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2654 SDValue Sign; 2655 if (Signed && SrcVT == MVT::f32) { 2656 // However, a 32-bit floating point number has only 23 bits mantissa and 2657 // it's not enough to hold all the significant bits of `lof` if val is 2658 // negative. To avoid the loss of precision, We need to take the absolute 2659 // value after truncating and flip the result back based on the original 2660 // signedness. 2661 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2662 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2663 DAG.getConstant(31, SL, MVT::i32)); 2664 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2665 } 2666 2667 SDValue K0, K1; 2668 if (SrcVT == MVT::f64) { 2669 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2670 SL, SrcVT); 2671 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2672 SL, SrcVT); 2673 } else { 2674 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2675 SrcVT); 2676 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2677 SrcVT); 2678 } 2679 // TODO: Should this propagate fast-math-flags? 2680 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2681 2682 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2683 2684 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2685 2686 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2687 : ISD::FP_TO_UINT, 2688 SL, MVT::i32, FloorMul); 2689 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2690 2691 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2692 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2693 2694 if (Signed && SrcVT == MVT::f32) { 2695 assert(Sign); 2696 // Flip the result based on the signedness, which is either all 0s or 1s. 2697 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2698 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2699 // r := xor(r, sign) - sign; 2700 Result = 2701 DAG.getNode(ISD::SUB, SL, MVT::i64, 2702 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2703 } 2704 2705 return Result; 2706 } 2707 2708 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2709 SDLoc DL(Op); 2710 SDValue N0 = Op.getOperand(0); 2711 2712 // Convert to target node to get known bits 2713 if (N0.getValueType() == MVT::f32) 2714 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2715 2716 if (getTargetMachine().Options.UnsafeFPMath) { 2717 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2718 return SDValue(); 2719 } 2720 2721 assert(N0.getSimpleValueType() == MVT::f64); 2722 2723 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2724 const unsigned ExpMask = 0x7ff; 2725 const unsigned ExpBiasf64 = 1023; 2726 const unsigned ExpBiasf16 = 15; 2727 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2728 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2729 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2730 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2731 DAG.getConstant(32, DL, MVT::i64)); 2732 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2733 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2734 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2735 DAG.getConstant(20, DL, MVT::i64)); 2736 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2737 DAG.getConstant(ExpMask, DL, MVT::i32)); 2738 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2739 // add the f16 bias (15) to get the biased exponent for the f16 format. 2740 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2741 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2742 2743 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2744 DAG.getConstant(8, DL, MVT::i32)); 2745 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2746 DAG.getConstant(0xffe, DL, MVT::i32)); 2747 2748 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2749 DAG.getConstant(0x1ff, DL, MVT::i32)); 2750 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2751 2752 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2753 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2754 2755 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2756 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2757 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2758 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2759 2760 // N = M | (E << 12); 2761 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2762 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2763 DAG.getConstant(12, DL, MVT::i32))); 2764 2765 // B = clamp(1-E, 0, 13); 2766 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2767 One, E); 2768 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2769 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2770 DAG.getConstant(13, DL, MVT::i32)); 2771 2772 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2773 DAG.getConstant(0x1000, DL, MVT::i32)); 2774 2775 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2776 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2777 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2778 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2779 2780 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2781 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2782 DAG.getConstant(0x7, DL, MVT::i32)); 2783 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2784 DAG.getConstant(2, DL, MVT::i32)); 2785 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2786 One, Zero, ISD::SETEQ); 2787 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2788 One, Zero, ISD::SETGT); 2789 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2790 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2791 2792 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2793 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2794 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2795 I, V, ISD::SETEQ); 2796 2797 // Extract the sign bit. 2798 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2799 DAG.getConstant(16, DL, MVT::i32)); 2800 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2801 DAG.getConstant(0x8000, DL, MVT::i32)); 2802 2803 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2804 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2805 } 2806 2807 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2808 SelectionDAG &DAG) const { 2809 SDValue Src = Op.getOperand(0); 2810 unsigned OpOpcode = Op.getOpcode(); 2811 EVT SrcVT = Src.getValueType(); 2812 EVT DestVT = Op.getValueType(); 2813 2814 // Will be selected natively 2815 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2816 return Op; 2817 2818 // Promote i16 to i32 2819 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2820 SDLoc DL(Op); 2821 2822 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2823 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2824 } 2825 2826 if (SrcVT == MVT::f16 || 2827 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2828 SDLoc DL(Op); 2829 2830 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2831 unsigned Ext = 2832 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2833 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2834 } 2835 2836 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2837 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2838 2839 return SDValue(); 2840 } 2841 2842 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2843 SelectionDAG &DAG) const { 2844 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2845 MVT VT = Op.getSimpleValueType(); 2846 MVT ScalarVT = VT.getScalarType(); 2847 2848 assert(VT.isVector()); 2849 2850 SDValue Src = Op.getOperand(0); 2851 SDLoc DL(Op); 2852 2853 // TODO: Don't scalarize on Evergreen? 2854 unsigned NElts = VT.getVectorNumElements(); 2855 SmallVector<SDValue, 8> Args; 2856 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2857 2858 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2859 for (unsigned I = 0; I < NElts; ++I) 2860 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2861 2862 return DAG.getBuildVector(VT, DL, Args); 2863 } 2864 2865 //===----------------------------------------------------------------------===// 2866 // Custom DAG optimizations 2867 //===----------------------------------------------------------------------===// 2868 2869 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2870 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2871 } 2872 2873 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2874 EVT VT = Op.getValueType(); 2875 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2876 // as unsigned 24-bit values. 2877 AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; 2878 } 2879 2880 static SDValue simplifyMul24(SDNode *Node24, 2881 TargetLowering::DAGCombinerInfo &DCI) { 2882 SelectionDAG &DAG = DCI.DAG; 2883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2884 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2885 2886 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2887 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2888 unsigned NewOpcode = Node24->getOpcode(); 2889 if (IsIntrin) { 2890 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2891 switch (IID) { 2892 case Intrinsic::amdgcn_mul_i24: 2893 NewOpcode = AMDGPUISD::MUL_I24; 2894 break; 2895 case Intrinsic::amdgcn_mul_u24: 2896 NewOpcode = AMDGPUISD::MUL_U24; 2897 break; 2898 case Intrinsic::amdgcn_mulhi_i24: 2899 NewOpcode = AMDGPUISD::MULHI_I24; 2900 break; 2901 case Intrinsic::amdgcn_mulhi_u24: 2902 NewOpcode = AMDGPUISD::MULHI_U24; 2903 break; 2904 default: 2905 llvm_unreachable("Expected 24-bit mul intrinsic"); 2906 } 2907 } 2908 2909 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2910 2911 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2912 // the operands to have other uses, but will only perform simplifications that 2913 // involve bypassing some nodes for this user. 2914 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2915 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2916 if (DemandedLHS || DemandedRHS) 2917 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2918 DemandedLHS ? DemandedLHS : LHS, 2919 DemandedRHS ? DemandedRHS : RHS); 2920 2921 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2922 // operands if this node is the only user. 2923 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2924 return SDValue(Node24, 0); 2925 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2926 return SDValue(Node24, 0); 2927 2928 return SDValue(); 2929 } 2930 2931 template <typename IntTy> 2932 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2933 uint32_t Width, const SDLoc &DL) { 2934 if (Width + Offset < 32) { 2935 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2936 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2937 return DAG.getConstant(Result, DL, MVT::i32); 2938 } 2939 2940 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2941 } 2942 2943 static bool hasVolatileUser(SDNode *Val) { 2944 for (SDNode *U : Val->uses()) { 2945 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2946 if (M->isVolatile()) 2947 return true; 2948 } 2949 } 2950 2951 return false; 2952 } 2953 2954 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2955 // i32 vectors are the canonical memory type. 2956 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2957 return false; 2958 2959 if (!VT.isByteSized()) 2960 return false; 2961 2962 unsigned Size = VT.getStoreSize(); 2963 2964 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2965 return false; 2966 2967 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2968 return false; 2969 2970 return true; 2971 } 2972 2973 // Replace load of an illegal type with a store of a bitcast to a friendlier 2974 // type. 2975 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2976 DAGCombinerInfo &DCI) const { 2977 if (!DCI.isBeforeLegalize()) 2978 return SDValue(); 2979 2980 LoadSDNode *LN = cast<LoadSDNode>(N); 2981 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2982 return SDValue(); 2983 2984 SDLoc SL(N); 2985 SelectionDAG &DAG = DCI.DAG; 2986 EVT VT = LN->getMemoryVT(); 2987 2988 unsigned Size = VT.getStoreSize(); 2989 Align Alignment = LN->getAlign(); 2990 if (Alignment < Size && isTypeLegal(VT)) { 2991 bool IsFast; 2992 unsigned AS = LN->getAddressSpace(); 2993 2994 // Expand unaligned loads earlier than legalization. Due to visitation order 2995 // problems during legalization, the emitted instructions to pack and unpack 2996 // the bytes again are not eliminated in the case of an unaligned copy. 2997 if (!allowsMisalignedMemoryAccesses( 2998 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 2999 if (VT.isVector()) 3000 return SplitVectorLoad(SDValue(LN, 0), DAG); 3001 3002 SDValue Ops[2]; 3003 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3004 3005 return DAG.getMergeValues(Ops, SDLoc(N)); 3006 } 3007 3008 if (!IsFast) 3009 return SDValue(); 3010 } 3011 3012 if (!shouldCombineMemoryType(VT)) 3013 return SDValue(); 3014 3015 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3016 3017 SDValue NewLoad 3018 = DAG.getLoad(NewVT, SL, LN->getChain(), 3019 LN->getBasePtr(), LN->getMemOperand()); 3020 3021 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3022 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3023 return SDValue(N, 0); 3024 } 3025 3026 // Replace store of an illegal type with a store of a bitcast to a friendlier 3027 // type. 3028 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3029 DAGCombinerInfo &DCI) const { 3030 if (!DCI.isBeforeLegalize()) 3031 return SDValue(); 3032 3033 StoreSDNode *SN = cast<StoreSDNode>(N); 3034 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3035 return SDValue(); 3036 3037 EVT VT = SN->getMemoryVT(); 3038 unsigned Size = VT.getStoreSize(); 3039 3040 SDLoc SL(N); 3041 SelectionDAG &DAG = DCI.DAG; 3042 Align Alignment = SN->getAlign(); 3043 if (Alignment < Size && isTypeLegal(VT)) { 3044 bool IsFast; 3045 unsigned AS = SN->getAddressSpace(); 3046 3047 // Expand unaligned stores earlier than legalization. Due to visitation 3048 // order problems during legalization, the emitted instructions to pack and 3049 // unpack the bytes again are not eliminated in the case of an unaligned 3050 // copy. 3051 if (!allowsMisalignedMemoryAccesses( 3052 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3053 if (VT.isVector()) 3054 return SplitVectorStore(SDValue(SN, 0), DAG); 3055 3056 return expandUnalignedStore(SN, DAG); 3057 } 3058 3059 if (!IsFast) 3060 return SDValue(); 3061 } 3062 3063 if (!shouldCombineMemoryType(VT)) 3064 return SDValue(); 3065 3066 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3067 SDValue Val = SN->getValue(); 3068 3069 //DCI.AddToWorklist(Val.getNode()); 3070 3071 bool OtherUses = !Val.hasOneUse(); 3072 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3073 if (OtherUses) { 3074 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3075 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3076 } 3077 3078 return DAG.getStore(SN->getChain(), SL, CastVal, 3079 SN->getBasePtr(), SN->getMemOperand()); 3080 } 3081 3082 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3083 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3084 // issues. 3085 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3086 DAGCombinerInfo &DCI) const { 3087 SelectionDAG &DAG = DCI.DAG; 3088 SDValue N0 = N->getOperand(0); 3089 3090 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3091 // (vt2 (truncate (assertzext vt0:x, vt1))) 3092 if (N0.getOpcode() == ISD::TRUNCATE) { 3093 SDValue N1 = N->getOperand(1); 3094 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3095 SDLoc SL(N); 3096 3097 SDValue Src = N0.getOperand(0); 3098 EVT SrcVT = Src.getValueType(); 3099 if (SrcVT.bitsGE(ExtVT)) { 3100 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3101 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3102 } 3103 } 3104 3105 return SDValue(); 3106 } 3107 3108 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3109 SDNode *N, DAGCombinerInfo &DCI) const { 3110 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3111 switch (IID) { 3112 case Intrinsic::amdgcn_mul_i24: 3113 case Intrinsic::amdgcn_mul_u24: 3114 case Intrinsic::amdgcn_mulhi_i24: 3115 case Intrinsic::amdgcn_mulhi_u24: 3116 return simplifyMul24(N, DCI); 3117 case Intrinsic::amdgcn_fract: 3118 case Intrinsic::amdgcn_rsq: 3119 case Intrinsic::amdgcn_rcp_legacy: 3120 case Intrinsic::amdgcn_rsq_legacy: 3121 case Intrinsic::amdgcn_rsq_clamp: 3122 case Intrinsic::amdgcn_ldexp: { 3123 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3124 SDValue Src = N->getOperand(1); 3125 return Src.isUndef() ? Src : SDValue(); 3126 } 3127 default: 3128 return SDValue(); 3129 } 3130 } 3131 3132 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3133 /// binary operation \p Opc to it with the corresponding constant operands. 3134 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3135 DAGCombinerInfo &DCI, const SDLoc &SL, 3136 unsigned Opc, SDValue LHS, 3137 uint32_t ValLo, uint32_t ValHi) const { 3138 SelectionDAG &DAG = DCI.DAG; 3139 SDValue Lo, Hi; 3140 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3141 3142 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3143 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3144 3145 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3146 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3147 3148 // Re-visit the ands. It's possible we eliminated one of them and it could 3149 // simplify the vector. 3150 DCI.AddToWorklist(Lo.getNode()); 3151 DCI.AddToWorklist(Hi.getNode()); 3152 3153 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3154 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3155 } 3156 3157 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3158 DAGCombinerInfo &DCI) const { 3159 EVT VT = N->getValueType(0); 3160 3161 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3162 if (!RHS) 3163 return SDValue(); 3164 3165 SDValue LHS = N->getOperand(0); 3166 unsigned RHSVal = RHS->getZExtValue(); 3167 if (!RHSVal) 3168 return LHS; 3169 3170 SDLoc SL(N); 3171 SelectionDAG &DAG = DCI.DAG; 3172 3173 switch (LHS->getOpcode()) { 3174 default: 3175 break; 3176 case ISD::ZERO_EXTEND: 3177 case ISD::SIGN_EXTEND: 3178 case ISD::ANY_EXTEND: { 3179 SDValue X = LHS->getOperand(0); 3180 3181 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3182 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3183 // Prefer build_vector as the canonical form if packed types are legal. 3184 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3185 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3186 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3187 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3188 } 3189 3190 // shl (ext x) => zext (shl x), if shift does not overflow int 3191 if (VT != MVT::i64) 3192 break; 3193 KnownBits Known = DAG.computeKnownBits(X); 3194 unsigned LZ = Known.countMinLeadingZeros(); 3195 if (LZ < RHSVal) 3196 break; 3197 EVT XVT = X.getValueType(); 3198 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3199 return DAG.getZExtOrTrunc(Shl, SL, VT); 3200 } 3201 } 3202 3203 if (VT != MVT::i64) 3204 return SDValue(); 3205 3206 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3207 3208 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3209 // common case, splitting this into a move and a 32-bit shift is faster and 3210 // the same code size. 3211 if (RHSVal < 32) 3212 return SDValue(); 3213 3214 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3215 3216 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3217 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3218 3219 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3220 3221 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3222 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3223 } 3224 3225 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3226 DAGCombinerInfo &DCI) const { 3227 if (N->getValueType(0) != MVT::i64) 3228 return SDValue(); 3229 3230 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3231 if (!RHS) 3232 return SDValue(); 3233 3234 SelectionDAG &DAG = DCI.DAG; 3235 SDLoc SL(N); 3236 unsigned RHSVal = RHS->getZExtValue(); 3237 3238 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3239 if (RHSVal == 32) { 3240 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3241 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3242 DAG.getConstant(31, SL, MVT::i32)); 3243 3244 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3245 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3246 } 3247 3248 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3249 if (RHSVal == 63) { 3250 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3251 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3252 DAG.getConstant(31, SL, MVT::i32)); 3253 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3254 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3255 } 3256 3257 return SDValue(); 3258 } 3259 3260 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3261 DAGCombinerInfo &DCI) const { 3262 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3263 if (!RHS) 3264 return SDValue(); 3265 3266 EVT VT = N->getValueType(0); 3267 SDValue LHS = N->getOperand(0); 3268 unsigned ShiftAmt = RHS->getZExtValue(); 3269 SelectionDAG &DAG = DCI.DAG; 3270 SDLoc SL(N); 3271 3272 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3273 // this improves the ability to match BFE patterns in isel. 3274 if (LHS.getOpcode() == ISD::AND) { 3275 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3276 unsigned MaskIdx, MaskLen; 3277 if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) && 3278 MaskIdx == ShiftAmt) { 3279 return DAG.getNode( 3280 ISD::AND, SL, VT, 3281 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3282 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3283 } 3284 } 3285 } 3286 3287 if (VT != MVT::i64) 3288 return SDValue(); 3289 3290 if (ShiftAmt < 32) 3291 return SDValue(); 3292 3293 // srl i64:x, C for C >= 32 3294 // => 3295 // build_pair (srl hi_32(x), C - 32), 0 3296 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3297 3298 SDValue Hi = getHiHalf64(LHS, DAG); 3299 3300 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3301 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3302 3303 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3304 3305 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3306 } 3307 3308 SDValue AMDGPUTargetLowering::performTruncateCombine( 3309 SDNode *N, DAGCombinerInfo &DCI) const { 3310 SDLoc SL(N); 3311 SelectionDAG &DAG = DCI.DAG; 3312 EVT VT = N->getValueType(0); 3313 SDValue Src = N->getOperand(0); 3314 3315 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3316 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3317 SDValue Vec = Src.getOperand(0); 3318 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3319 SDValue Elt0 = Vec.getOperand(0); 3320 EVT EltVT = Elt0.getValueType(); 3321 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3322 if (EltVT.isFloatingPoint()) { 3323 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3324 EltVT.changeTypeToInteger(), Elt0); 3325 } 3326 3327 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3328 } 3329 } 3330 } 3331 3332 // Equivalent of above for accessing the high element of a vector as an 3333 // integer operation. 3334 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3335 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3336 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3337 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3338 SDValue BV = stripBitcast(Src.getOperand(0)); 3339 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3340 BV.getValueType().getVectorNumElements() == 2) { 3341 SDValue SrcElt = BV.getOperand(1); 3342 EVT SrcEltVT = SrcElt.getValueType(); 3343 if (SrcEltVT.isFloatingPoint()) { 3344 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3345 SrcEltVT.changeTypeToInteger(), SrcElt); 3346 } 3347 3348 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3349 } 3350 } 3351 } 3352 } 3353 3354 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3355 // 3356 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3357 // i16 (trunc (srl (i32 (trunc x), K))) 3358 if (VT.getScalarSizeInBits() < 32) { 3359 EVT SrcVT = Src.getValueType(); 3360 if (SrcVT.getScalarSizeInBits() > 32 && 3361 (Src.getOpcode() == ISD::SRL || 3362 Src.getOpcode() == ISD::SRA || 3363 Src.getOpcode() == ISD::SHL)) { 3364 SDValue Amt = Src.getOperand(1); 3365 KnownBits Known = DAG.computeKnownBits(Amt); 3366 unsigned Size = VT.getScalarSizeInBits(); 3367 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3368 (Known.countMaxActiveBits() <= Log2_32(Size))) { 3369 EVT MidVT = VT.isVector() ? 3370 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3371 VT.getVectorNumElements()) : MVT::i32; 3372 3373 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3374 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3375 Src.getOperand(0)); 3376 DCI.AddToWorklist(Trunc.getNode()); 3377 3378 if (Amt.getValueType() != NewShiftVT) { 3379 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3380 DCI.AddToWorklist(Amt.getNode()); 3381 } 3382 3383 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3384 Trunc, Amt); 3385 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3386 } 3387 } 3388 } 3389 3390 return SDValue(); 3391 } 3392 3393 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3394 // instructions. If we only match on the legalized i64 mul expansion, 3395 // SimplifyDemandedBits will be unable to remove them because there will be 3396 // multiple uses due to the separate mul + mulh[su]. 3397 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3398 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3399 if (Size <= 32) { 3400 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3401 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3402 } 3403 3404 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3405 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3406 3407 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3408 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3409 3410 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3411 } 3412 3413 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3414 DAGCombinerInfo &DCI) const { 3415 EVT VT = N->getValueType(0); 3416 3417 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3418 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3419 // unnecessarily). isDivergent() is used as an approximation of whether the 3420 // value is in an SGPR. 3421 if (!N->isDivergent()) 3422 return SDValue(); 3423 3424 unsigned Size = VT.getSizeInBits(); 3425 if (VT.isVector() || Size > 64) 3426 return SDValue(); 3427 3428 // There are i16 integer mul/mad. 3429 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3430 return SDValue(); 3431 3432 SelectionDAG &DAG = DCI.DAG; 3433 SDLoc DL(N); 3434 3435 SDValue N0 = N->getOperand(0); 3436 SDValue N1 = N->getOperand(1); 3437 3438 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3439 // in the source into any_extends if the result of the mul is truncated. Since 3440 // we can assume the high bits are whatever we want, use the underlying value 3441 // to avoid the unknown high bits from interfering. 3442 if (N0.getOpcode() == ISD::ANY_EXTEND) 3443 N0 = N0.getOperand(0); 3444 3445 if (N1.getOpcode() == ISD::ANY_EXTEND) 3446 N1 = N1.getOperand(0); 3447 3448 SDValue Mul; 3449 3450 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3451 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3452 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3453 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3454 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3455 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3456 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3457 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3458 } else { 3459 return SDValue(); 3460 } 3461 3462 // We need to use sext even for MUL_U24, because MUL_U24 is used 3463 // for signed multiply of 8 and 16-bit types. 3464 return DAG.getSExtOrTrunc(Mul, DL, VT); 3465 } 3466 3467 SDValue 3468 AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N, 3469 DAGCombinerInfo &DCI) const { 3470 if (N->getValueType(0) != MVT::i32) 3471 return SDValue(); 3472 3473 SelectionDAG &DAG = DCI.DAG; 3474 SDLoc DL(N); 3475 3476 SDValue N0 = N->getOperand(0); 3477 SDValue N1 = N->getOperand(1); 3478 3479 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3480 // in the source into any_extends if the result of the mul is truncated. Since 3481 // we can assume the high bits are whatever we want, use the underlying value 3482 // to avoid the unknown high bits from interfering. 3483 if (N0.getOpcode() == ISD::ANY_EXTEND) 3484 N0 = N0.getOperand(0); 3485 if (N1.getOpcode() == ISD::ANY_EXTEND) 3486 N1 = N1.getOperand(0); 3487 3488 // Try to use two fast 24-bit multiplies (one for each half of the result) 3489 // instead of one slow extending multiply. 3490 unsigned LoOpcode, HiOpcode; 3491 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3492 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3493 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3494 LoOpcode = AMDGPUISD::MUL_U24; 3495 HiOpcode = AMDGPUISD::MULHI_U24; 3496 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3497 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3498 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3499 LoOpcode = AMDGPUISD::MUL_I24; 3500 HiOpcode = AMDGPUISD::MULHI_I24; 3501 } else { 3502 return SDValue(); 3503 } 3504 3505 SDValue Lo = DAG.getNode(LoOpcode, DL, MVT::i32, N0, N1); 3506 SDValue Hi = DAG.getNode(HiOpcode, DL, MVT::i32, N0, N1); 3507 DCI.CombineTo(N, Lo, Hi); 3508 return SDValue(N, 0); 3509 } 3510 3511 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3512 DAGCombinerInfo &DCI) const { 3513 EVT VT = N->getValueType(0); 3514 3515 if (!Subtarget->hasMulI24() || VT.isVector()) 3516 return SDValue(); 3517 3518 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3519 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3520 // unnecessarily). isDivergent() is used as an approximation of whether the 3521 // value is in an SGPR. 3522 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3523 // valu op anyway) 3524 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3525 return SDValue(); 3526 3527 SelectionDAG &DAG = DCI.DAG; 3528 SDLoc DL(N); 3529 3530 SDValue N0 = N->getOperand(0); 3531 SDValue N1 = N->getOperand(1); 3532 3533 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3534 return SDValue(); 3535 3536 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3537 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3538 3539 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3540 DCI.AddToWorklist(Mulhi.getNode()); 3541 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3542 } 3543 3544 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3545 DAGCombinerInfo &DCI) const { 3546 EVT VT = N->getValueType(0); 3547 3548 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3549 return SDValue(); 3550 3551 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3552 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3553 // unnecessarily). isDivergent() is used as an approximation of whether the 3554 // value is in an SGPR. 3555 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3556 // valu op anyway) 3557 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3558 return SDValue(); 3559 3560 SelectionDAG &DAG = DCI.DAG; 3561 SDLoc DL(N); 3562 3563 SDValue N0 = N->getOperand(0); 3564 SDValue N1 = N->getOperand(1); 3565 3566 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3567 return SDValue(); 3568 3569 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3570 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3571 3572 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3573 DCI.AddToWorklist(Mulhi.getNode()); 3574 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3575 } 3576 3577 static bool isNegativeOne(SDValue Val) { 3578 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3579 return C->isAllOnes(); 3580 return false; 3581 } 3582 3583 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3584 SDValue Op, 3585 const SDLoc &DL, 3586 unsigned Opc) const { 3587 EVT VT = Op.getValueType(); 3588 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3589 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3590 LegalVT != MVT::i16)) 3591 return SDValue(); 3592 3593 if (VT != MVT::i32) 3594 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3595 3596 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3597 if (VT != MVT::i32) 3598 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3599 3600 return FFBX; 3601 } 3602 3603 // The native instructions return -1 on 0 input. Optimize out a select that 3604 // produces -1 on 0. 3605 // 3606 // TODO: If zero is not undef, we could also do this if the output is compared 3607 // against the bitwidth. 3608 // 3609 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3610 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3611 SDValue LHS, SDValue RHS, 3612 DAGCombinerInfo &DCI) const { 3613 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3614 if (!CmpRhs || !CmpRhs->isZero()) 3615 return SDValue(); 3616 3617 SelectionDAG &DAG = DCI.DAG; 3618 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3619 SDValue CmpLHS = Cond.getOperand(0); 3620 3621 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3622 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3623 if (CCOpcode == ISD::SETEQ && 3624 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3625 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3626 unsigned Opc = 3627 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3628 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3629 } 3630 3631 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3632 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3633 if (CCOpcode == ISD::SETNE && 3634 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3635 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3636 unsigned Opc = 3637 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3638 3639 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3640 } 3641 3642 return SDValue(); 3643 } 3644 3645 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3646 unsigned Op, 3647 const SDLoc &SL, 3648 SDValue Cond, 3649 SDValue N1, 3650 SDValue N2) { 3651 SelectionDAG &DAG = DCI.DAG; 3652 EVT VT = N1.getValueType(); 3653 3654 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3655 N1.getOperand(0), N2.getOperand(0)); 3656 DCI.AddToWorklist(NewSelect.getNode()); 3657 return DAG.getNode(Op, SL, VT, NewSelect); 3658 } 3659 3660 // Pull a free FP operation out of a select so it may fold into uses. 3661 // 3662 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3663 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3664 // 3665 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3666 // select c, (fabs x), +k -> fabs (select c, x, k) 3667 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3668 SDValue N) { 3669 SelectionDAG &DAG = DCI.DAG; 3670 SDValue Cond = N.getOperand(0); 3671 SDValue LHS = N.getOperand(1); 3672 SDValue RHS = N.getOperand(2); 3673 3674 EVT VT = N.getValueType(); 3675 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3676 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3677 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3678 SDLoc(N), Cond, LHS, RHS); 3679 } 3680 3681 bool Inv = false; 3682 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3683 std::swap(LHS, RHS); 3684 Inv = true; 3685 } 3686 3687 // TODO: Support vector constants. 3688 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3689 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3690 SDLoc SL(N); 3691 // If one side is an fneg/fabs and the other is a constant, we can push the 3692 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3693 SDValue NewLHS = LHS.getOperand(0); 3694 SDValue NewRHS = RHS; 3695 3696 // Careful: if the neg can be folded up, don't try to pull it back down. 3697 bool ShouldFoldNeg = true; 3698 3699 if (NewLHS.hasOneUse()) { 3700 unsigned Opc = NewLHS.getOpcode(); 3701 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3702 ShouldFoldNeg = false; 3703 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3704 ShouldFoldNeg = false; 3705 } 3706 3707 if (ShouldFoldNeg) { 3708 if (LHS.getOpcode() == ISD::FNEG) 3709 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3710 else if (CRHS->isNegative()) 3711 return SDValue(); 3712 3713 if (Inv) 3714 std::swap(NewLHS, NewRHS); 3715 3716 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3717 Cond, NewLHS, NewRHS); 3718 DCI.AddToWorklist(NewSelect.getNode()); 3719 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3720 } 3721 } 3722 3723 return SDValue(); 3724 } 3725 3726 3727 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3728 DAGCombinerInfo &DCI) const { 3729 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3730 return Folded; 3731 3732 SDValue Cond = N->getOperand(0); 3733 if (Cond.getOpcode() != ISD::SETCC) 3734 return SDValue(); 3735 3736 EVT VT = N->getValueType(0); 3737 SDValue LHS = Cond.getOperand(0); 3738 SDValue RHS = Cond.getOperand(1); 3739 SDValue CC = Cond.getOperand(2); 3740 3741 SDValue True = N->getOperand(1); 3742 SDValue False = N->getOperand(2); 3743 3744 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3745 SelectionDAG &DAG = DCI.DAG; 3746 if (DAG.isConstantValueOfAnyType(True) && 3747 !DAG.isConstantValueOfAnyType(False)) { 3748 // Swap cmp + select pair to move constant to false input. 3749 // This will allow using VOPC cndmasks more often. 3750 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3751 3752 SDLoc SL(N); 3753 ISD::CondCode NewCC = 3754 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3755 3756 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3757 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3758 } 3759 3760 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3761 SDValue MinMax 3762 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3763 // Revisit this node so we can catch min3/max3/med3 patterns. 3764 //DCI.AddToWorklist(MinMax.getNode()); 3765 return MinMax; 3766 } 3767 } 3768 3769 // There's no reason to not do this if the condition has other uses. 3770 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3771 } 3772 3773 static bool isInv2Pi(const APFloat &APF) { 3774 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3775 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3776 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3777 3778 return APF.bitwiseIsEqual(KF16) || 3779 APF.bitwiseIsEqual(KF32) || 3780 APF.bitwiseIsEqual(KF64); 3781 } 3782 3783 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3784 // additional cost to negate them. 3785 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3786 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3787 if (C->isZero() && !C->isNegative()) 3788 return true; 3789 3790 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3791 return true; 3792 } 3793 3794 return false; 3795 } 3796 3797 static unsigned inverseMinMax(unsigned Opc) { 3798 switch (Opc) { 3799 case ISD::FMAXNUM: 3800 return ISD::FMINNUM; 3801 case ISD::FMINNUM: 3802 return ISD::FMAXNUM; 3803 case ISD::FMAXNUM_IEEE: 3804 return ISD::FMINNUM_IEEE; 3805 case ISD::FMINNUM_IEEE: 3806 return ISD::FMAXNUM_IEEE; 3807 case AMDGPUISD::FMAX_LEGACY: 3808 return AMDGPUISD::FMIN_LEGACY; 3809 case AMDGPUISD::FMIN_LEGACY: 3810 return AMDGPUISD::FMAX_LEGACY; 3811 default: 3812 llvm_unreachable("invalid min/max opcode"); 3813 } 3814 } 3815 3816 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3817 DAGCombinerInfo &DCI) const { 3818 SelectionDAG &DAG = DCI.DAG; 3819 SDValue N0 = N->getOperand(0); 3820 EVT VT = N->getValueType(0); 3821 3822 unsigned Opc = N0.getOpcode(); 3823 3824 // If the input has multiple uses and we can either fold the negate down, or 3825 // the other uses cannot, give up. This both prevents unprofitable 3826 // transformations and infinite loops: we won't repeatedly try to fold around 3827 // a negate that has no 'good' form. 3828 if (N0.hasOneUse()) { 3829 // This may be able to fold into the source, but at a code size cost. Don't 3830 // fold if the fold into the user is free. 3831 if (allUsesHaveSourceMods(N, 0)) 3832 return SDValue(); 3833 } else { 3834 if (fnegFoldsIntoOp(Opc) && 3835 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3836 return SDValue(); 3837 } 3838 3839 SDLoc SL(N); 3840 switch (Opc) { 3841 case ISD::FADD: { 3842 if (!mayIgnoreSignedZero(N0)) 3843 return SDValue(); 3844 3845 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3846 SDValue LHS = N0.getOperand(0); 3847 SDValue RHS = N0.getOperand(1); 3848 3849 if (LHS.getOpcode() != ISD::FNEG) 3850 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3851 else 3852 LHS = LHS.getOperand(0); 3853 3854 if (RHS.getOpcode() != ISD::FNEG) 3855 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3856 else 3857 RHS = RHS.getOperand(0); 3858 3859 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3860 if (Res.getOpcode() != ISD::FADD) 3861 return SDValue(); // Op got folded away. 3862 if (!N0.hasOneUse()) 3863 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3864 return Res; 3865 } 3866 case ISD::FMUL: 3867 case AMDGPUISD::FMUL_LEGACY: { 3868 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3869 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3870 SDValue LHS = N0.getOperand(0); 3871 SDValue RHS = N0.getOperand(1); 3872 3873 if (LHS.getOpcode() == ISD::FNEG) 3874 LHS = LHS.getOperand(0); 3875 else if (RHS.getOpcode() == ISD::FNEG) 3876 RHS = RHS.getOperand(0); 3877 else 3878 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3879 3880 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3881 if (Res.getOpcode() != Opc) 3882 return SDValue(); // Op got folded away. 3883 if (!N0.hasOneUse()) 3884 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3885 return Res; 3886 } 3887 case ISD::FMA: 3888 case ISD::FMAD: { 3889 // TODO: handle llvm.amdgcn.fma.legacy 3890 if (!mayIgnoreSignedZero(N0)) 3891 return SDValue(); 3892 3893 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3894 SDValue LHS = N0.getOperand(0); 3895 SDValue MHS = N0.getOperand(1); 3896 SDValue RHS = N0.getOperand(2); 3897 3898 if (LHS.getOpcode() == ISD::FNEG) 3899 LHS = LHS.getOperand(0); 3900 else if (MHS.getOpcode() == ISD::FNEG) 3901 MHS = MHS.getOperand(0); 3902 else 3903 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3904 3905 if (RHS.getOpcode() != ISD::FNEG) 3906 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3907 else 3908 RHS = RHS.getOperand(0); 3909 3910 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3911 if (Res.getOpcode() != Opc) 3912 return SDValue(); // Op got folded away. 3913 if (!N0.hasOneUse()) 3914 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3915 return Res; 3916 } 3917 case ISD::FMAXNUM: 3918 case ISD::FMINNUM: 3919 case ISD::FMAXNUM_IEEE: 3920 case ISD::FMINNUM_IEEE: 3921 case AMDGPUISD::FMAX_LEGACY: 3922 case AMDGPUISD::FMIN_LEGACY: { 3923 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3924 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3925 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3926 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3927 3928 SDValue LHS = N0.getOperand(0); 3929 SDValue RHS = N0.getOperand(1); 3930 3931 // 0 doesn't have a negated inline immediate. 3932 // TODO: This constant check should be generalized to other operations. 3933 if (isConstantCostlierToNegate(RHS)) 3934 return SDValue(); 3935 3936 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3937 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3938 unsigned Opposite = inverseMinMax(Opc); 3939 3940 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3941 if (Res.getOpcode() != Opposite) 3942 return SDValue(); // Op got folded away. 3943 if (!N0.hasOneUse()) 3944 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3945 return Res; 3946 } 3947 case AMDGPUISD::FMED3: { 3948 SDValue Ops[3]; 3949 for (unsigned I = 0; I < 3; ++I) 3950 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3951 3952 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3953 if (Res.getOpcode() != AMDGPUISD::FMED3) 3954 return SDValue(); // Op got folded away. 3955 3956 if (!N0.hasOneUse()) { 3957 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3958 DAG.ReplaceAllUsesWith(N0, Neg); 3959 3960 for (SDNode *U : Neg->uses()) 3961 DCI.AddToWorklist(U); 3962 } 3963 3964 return Res; 3965 } 3966 case ISD::FP_EXTEND: 3967 case ISD::FTRUNC: 3968 case ISD::FRINT: 3969 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3970 case ISD::FSIN: 3971 case ISD::FCANONICALIZE: 3972 case AMDGPUISD::RCP: 3973 case AMDGPUISD::RCP_LEGACY: 3974 case AMDGPUISD::RCP_IFLAG: 3975 case AMDGPUISD::SIN_HW: { 3976 SDValue CvtSrc = N0.getOperand(0); 3977 if (CvtSrc.getOpcode() == ISD::FNEG) { 3978 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3979 // (fneg (rcp (fneg x))) -> (rcp x) 3980 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3981 } 3982 3983 if (!N0.hasOneUse()) 3984 return SDValue(); 3985 3986 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3987 // (fneg (rcp x)) -> (rcp (fneg x)) 3988 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3989 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3990 } 3991 case ISD::FP_ROUND: { 3992 SDValue CvtSrc = N0.getOperand(0); 3993 3994 if (CvtSrc.getOpcode() == ISD::FNEG) { 3995 // (fneg (fp_round (fneg x))) -> (fp_round x) 3996 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3997 CvtSrc.getOperand(0), N0.getOperand(1)); 3998 } 3999 4000 if (!N0.hasOneUse()) 4001 return SDValue(); 4002 4003 // (fneg (fp_round x)) -> (fp_round (fneg x)) 4004 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 4005 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 4006 } 4007 case ISD::FP16_TO_FP: { 4008 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 4009 // f16, but legalization of f16 fneg ends up pulling it out of the source. 4010 // Put the fneg back as a legal source operation that can be matched later. 4011 SDLoc SL(N); 4012 4013 SDValue Src = N0.getOperand(0); 4014 EVT SrcVT = Src.getValueType(); 4015 4016 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 4017 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 4018 DAG.getConstant(0x8000, SL, SrcVT)); 4019 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 4020 } 4021 default: 4022 return SDValue(); 4023 } 4024 } 4025 4026 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 4027 DAGCombinerInfo &DCI) const { 4028 SelectionDAG &DAG = DCI.DAG; 4029 SDValue N0 = N->getOperand(0); 4030 4031 if (!N0.hasOneUse()) 4032 return SDValue(); 4033 4034 switch (N0.getOpcode()) { 4035 case ISD::FP16_TO_FP: { 4036 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 4037 SDLoc SL(N); 4038 SDValue Src = N0.getOperand(0); 4039 EVT SrcVT = Src.getValueType(); 4040 4041 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 4042 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 4043 DAG.getConstant(0x7fff, SL, SrcVT)); 4044 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 4045 } 4046 default: 4047 return SDValue(); 4048 } 4049 } 4050 4051 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4052 DAGCombinerInfo &DCI) const { 4053 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4054 if (!CFP) 4055 return SDValue(); 4056 4057 // XXX - Should this flush denormals? 4058 const APFloat &Val = CFP->getValueAPF(); 4059 APFloat One(Val.getSemantics(), "1.0"); 4060 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4061 } 4062 4063 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4064 DAGCombinerInfo &DCI) const { 4065 SelectionDAG &DAG = DCI.DAG; 4066 SDLoc DL(N); 4067 4068 switch(N->getOpcode()) { 4069 default: 4070 break; 4071 case ISD::BITCAST: { 4072 EVT DestVT = N->getValueType(0); 4073 4074 // Push casts through vector builds. This helps avoid emitting a large 4075 // number of copies when materializing floating point vector constants. 4076 // 4077 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4078 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4079 if (DestVT.isVector()) { 4080 SDValue Src = N->getOperand(0); 4081 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4082 EVT SrcVT = Src.getValueType(); 4083 unsigned NElts = DestVT.getVectorNumElements(); 4084 4085 if (SrcVT.getVectorNumElements() == NElts) { 4086 EVT DestEltVT = DestVT.getVectorElementType(); 4087 4088 SmallVector<SDValue, 8> CastedElts; 4089 SDLoc SL(N); 4090 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4091 SDValue Elt = Src.getOperand(I); 4092 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4093 } 4094 4095 return DAG.getBuildVector(DestVT, SL, CastedElts); 4096 } 4097 } 4098 } 4099 4100 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4101 break; 4102 4103 // Fold bitcasts of constants. 4104 // 4105 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4106 // TODO: Generalize and move to DAGCombiner 4107 SDValue Src = N->getOperand(0); 4108 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4109 SDLoc SL(N); 4110 uint64_t CVal = C->getZExtValue(); 4111 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4112 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4113 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4114 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4115 } 4116 4117 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4118 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4119 SDLoc SL(N); 4120 uint64_t CVal = Val.getZExtValue(); 4121 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4122 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4123 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4124 4125 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4126 } 4127 4128 break; 4129 } 4130 case ISD::SHL: { 4131 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4132 break; 4133 4134 return performShlCombine(N, DCI); 4135 } 4136 case ISD::SRL: { 4137 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4138 break; 4139 4140 return performSrlCombine(N, DCI); 4141 } 4142 case ISD::SRA: { 4143 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4144 break; 4145 4146 return performSraCombine(N, DCI); 4147 } 4148 case ISD::TRUNCATE: 4149 return performTruncateCombine(N, DCI); 4150 case ISD::MUL: 4151 return performMulCombine(N, DCI); 4152 case ISD::SMUL_LOHI: 4153 case ISD::UMUL_LOHI: 4154 return performMulLoHiCombine(N, DCI); 4155 case ISD::MULHS: 4156 return performMulhsCombine(N, DCI); 4157 case ISD::MULHU: 4158 return performMulhuCombine(N, DCI); 4159 case AMDGPUISD::MUL_I24: 4160 case AMDGPUISD::MUL_U24: 4161 case AMDGPUISD::MULHI_I24: 4162 case AMDGPUISD::MULHI_U24: 4163 return simplifyMul24(N, DCI); 4164 case ISD::SELECT: 4165 return performSelectCombine(N, DCI); 4166 case ISD::FNEG: 4167 return performFNegCombine(N, DCI); 4168 case ISD::FABS: 4169 return performFAbsCombine(N, DCI); 4170 case AMDGPUISD::BFE_I32: 4171 case AMDGPUISD::BFE_U32: { 4172 assert(!N->getValueType(0).isVector() && 4173 "Vector handling of BFE not implemented"); 4174 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4175 if (!Width) 4176 break; 4177 4178 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4179 if (WidthVal == 0) 4180 return DAG.getConstant(0, DL, MVT::i32); 4181 4182 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4183 if (!Offset) 4184 break; 4185 4186 SDValue BitsFrom = N->getOperand(0); 4187 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4188 4189 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4190 4191 if (OffsetVal == 0) { 4192 // This is already sign / zero extended, so try to fold away extra BFEs. 4193 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4194 4195 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4196 if (OpSignBits >= SignBits) 4197 return BitsFrom; 4198 4199 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4200 if (Signed) { 4201 // This is a sign_extend_inreg. Replace it to take advantage of existing 4202 // DAG Combines. If not eliminated, we will match back to BFE during 4203 // selection. 4204 4205 // TODO: The sext_inreg of extended types ends, although we can could 4206 // handle them in a single BFE. 4207 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4208 DAG.getValueType(SmallVT)); 4209 } 4210 4211 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4212 } 4213 4214 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4215 if (Signed) { 4216 return constantFoldBFE<int32_t>(DAG, 4217 CVal->getSExtValue(), 4218 OffsetVal, 4219 WidthVal, 4220 DL); 4221 } 4222 4223 return constantFoldBFE<uint32_t>(DAG, 4224 CVal->getZExtValue(), 4225 OffsetVal, 4226 WidthVal, 4227 DL); 4228 } 4229 4230 if ((OffsetVal + WidthVal) >= 32 && 4231 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4232 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4233 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4234 BitsFrom, ShiftVal); 4235 } 4236 4237 if (BitsFrom.hasOneUse()) { 4238 APInt Demanded = APInt::getBitsSet(32, 4239 OffsetVal, 4240 OffsetVal + WidthVal); 4241 4242 KnownBits Known; 4243 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4244 !DCI.isBeforeLegalizeOps()); 4245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4246 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4247 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4248 DCI.CommitTargetLoweringOpt(TLO); 4249 } 4250 } 4251 4252 break; 4253 } 4254 case ISD::LOAD: 4255 return performLoadCombine(N, DCI); 4256 case ISD::STORE: 4257 return performStoreCombine(N, DCI); 4258 case AMDGPUISD::RCP: 4259 case AMDGPUISD::RCP_IFLAG: 4260 return performRcpCombine(N, DCI); 4261 case ISD::AssertZext: 4262 case ISD::AssertSext: 4263 return performAssertSZExtCombine(N, DCI); 4264 case ISD::INTRINSIC_WO_CHAIN: 4265 return performIntrinsicWOChainCombine(N, DCI); 4266 } 4267 return SDValue(); 4268 } 4269 4270 //===----------------------------------------------------------------------===// 4271 // Helper functions 4272 //===----------------------------------------------------------------------===// 4273 4274 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4275 const TargetRegisterClass *RC, 4276 Register Reg, EVT VT, 4277 const SDLoc &SL, 4278 bool RawReg) const { 4279 MachineFunction &MF = DAG.getMachineFunction(); 4280 MachineRegisterInfo &MRI = MF.getRegInfo(); 4281 Register VReg; 4282 4283 if (!MRI.isLiveIn(Reg)) { 4284 VReg = MRI.createVirtualRegister(RC); 4285 MRI.addLiveIn(Reg, VReg); 4286 } else { 4287 VReg = MRI.getLiveInVirtReg(Reg); 4288 } 4289 4290 if (RawReg) 4291 return DAG.getRegister(VReg, VT); 4292 4293 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4294 } 4295 4296 // This may be called multiple times, and nothing prevents creating multiple 4297 // objects at the same offset. See if we already defined this object. 4298 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4299 int64_t Offset) { 4300 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4301 if (MFI.getObjectOffset(I) == Offset) { 4302 assert(MFI.getObjectSize(I) == Size); 4303 return I; 4304 } 4305 } 4306 4307 return MFI.CreateFixedObject(Size, Offset, true); 4308 } 4309 4310 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4311 EVT VT, 4312 const SDLoc &SL, 4313 int64_t Offset) const { 4314 MachineFunction &MF = DAG.getMachineFunction(); 4315 MachineFrameInfo &MFI = MF.getFrameInfo(); 4316 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4317 4318 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4319 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4320 4321 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4322 MachineMemOperand::MODereferenceable | 4323 MachineMemOperand::MOInvariant); 4324 } 4325 4326 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4327 const SDLoc &SL, 4328 SDValue Chain, 4329 SDValue ArgVal, 4330 int64_t Offset) const { 4331 MachineFunction &MF = DAG.getMachineFunction(); 4332 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4333 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4334 4335 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4336 // Stores to the argument stack area are relative to the stack pointer. 4337 SDValue SP = 4338 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4339 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4340 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4341 MachineMemOperand::MODereferenceable); 4342 return Store; 4343 } 4344 4345 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4346 const TargetRegisterClass *RC, 4347 EVT VT, const SDLoc &SL, 4348 const ArgDescriptor &Arg) const { 4349 assert(Arg && "Attempting to load missing argument"); 4350 4351 SDValue V = Arg.isRegister() ? 4352 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4353 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4354 4355 if (!Arg.isMasked()) 4356 return V; 4357 4358 unsigned Mask = Arg.getMask(); 4359 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4360 V = DAG.getNode(ISD::SRL, SL, VT, V, 4361 DAG.getShiftAmountConstant(Shift, VT, SL)); 4362 return DAG.getNode(ISD::AND, SL, VT, V, 4363 DAG.getConstant(Mask >> Shift, SL, VT)); 4364 } 4365 4366 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4367 const MachineFunction &MF, const ImplicitParameter Param) const { 4368 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4369 const AMDGPUSubtarget &ST = 4370 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4371 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4372 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4373 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4374 ExplicitArgOffset; 4375 switch (Param) { 4376 case FIRST_IMPLICIT: 4377 return ArgOffset; 4378 case PRIVATE_BASE: 4379 return ArgOffset + AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET; 4380 case SHARED_BASE: 4381 return ArgOffset + AMDGPU::ImplicitArg::SHARED_BASE_OFFSET; 4382 case QUEUE_PTR: 4383 return ArgOffset + AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET; 4384 } 4385 llvm_unreachable("unexpected implicit parameter type"); 4386 } 4387 4388 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4389 4390 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4391 switch ((AMDGPUISD::NodeType)Opcode) { 4392 case AMDGPUISD::FIRST_NUMBER: break; 4393 // AMDIL DAG nodes 4394 NODE_NAME_CASE(UMUL); 4395 NODE_NAME_CASE(BRANCH_COND); 4396 4397 // AMDGPU DAG nodes 4398 NODE_NAME_CASE(IF) 4399 NODE_NAME_CASE(ELSE) 4400 NODE_NAME_CASE(LOOP) 4401 NODE_NAME_CASE(CALL) 4402 NODE_NAME_CASE(TC_RETURN) 4403 NODE_NAME_CASE(TRAP) 4404 NODE_NAME_CASE(RET_FLAG) 4405 NODE_NAME_CASE(RETURN_TO_EPILOG) 4406 NODE_NAME_CASE(ENDPGM) 4407 NODE_NAME_CASE(DWORDADDR) 4408 NODE_NAME_CASE(FRACT) 4409 NODE_NAME_CASE(SETCC) 4410 NODE_NAME_CASE(SETREG) 4411 NODE_NAME_CASE(DENORM_MODE) 4412 NODE_NAME_CASE(FMA_W_CHAIN) 4413 NODE_NAME_CASE(FMUL_W_CHAIN) 4414 NODE_NAME_CASE(CLAMP) 4415 NODE_NAME_CASE(COS_HW) 4416 NODE_NAME_CASE(SIN_HW) 4417 NODE_NAME_CASE(FMAX_LEGACY) 4418 NODE_NAME_CASE(FMIN_LEGACY) 4419 NODE_NAME_CASE(FMAX3) 4420 NODE_NAME_CASE(SMAX3) 4421 NODE_NAME_CASE(UMAX3) 4422 NODE_NAME_CASE(FMIN3) 4423 NODE_NAME_CASE(SMIN3) 4424 NODE_NAME_CASE(UMIN3) 4425 NODE_NAME_CASE(FMED3) 4426 NODE_NAME_CASE(SMED3) 4427 NODE_NAME_CASE(UMED3) 4428 NODE_NAME_CASE(FDOT2) 4429 NODE_NAME_CASE(URECIP) 4430 NODE_NAME_CASE(DIV_SCALE) 4431 NODE_NAME_CASE(DIV_FMAS) 4432 NODE_NAME_CASE(DIV_FIXUP) 4433 NODE_NAME_CASE(FMAD_FTZ) 4434 NODE_NAME_CASE(RCP) 4435 NODE_NAME_CASE(RSQ) 4436 NODE_NAME_CASE(RCP_LEGACY) 4437 NODE_NAME_CASE(RCP_IFLAG) 4438 NODE_NAME_CASE(FMUL_LEGACY) 4439 NODE_NAME_CASE(RSQ_CLAMP) 4440 NODE_NAME_CASE(LDEXP) 4441 NODE_NAME_CASE(FP_CLASS) 4442 NODE_NAME_CASE(DOT4) 4443 NODE_NAME_CASE(CARRY) 4444 NODE_NAME_CASE(BORROW) 4445 NODE_NAME_CASE(BFE_U32) 4446 NODE_NAME_CASE(BFE_I32) 4447 NODE_NAME_CASE(BFI) 4448 NODE_NAME_CASE(BFM) 4449 NODE_NAME_CASE(FFBH_U32) 4450 NODE_NAME_CASE(FFBH_I32) 4451 NODE_NAME_CASE(FFBL_B32) 4452 NODE_NAME_CASE(MUL_U24) 4453 NODE_NAME_CASE(MUL_I24) 4454 NODE_NAME_CASE(MULHI_U24) 4455 NODE_NAME_CASE(MULHI_I24) 4456 NODE_NAME_CASE(MAD_U24) 4457 NODE_NAME_CASE(MAD_I24) 4458 NODE_NAME_CASE(MAD_I64_I32) 4459 NODE_NAME_CASE(MAD_U64_U32) 4460 NODE_NAME_CASE(PERM) 4461 NODE_NAME_CASE(TEXTURE_FETCH) 4462 NODE_NAME_CASE(R600_EXPORT) 4463 NODE_NAME_CASE(CONST_ADDRESS) 4464 NODE_NAME_CASE(REGISTER_LOAD) 4465 NODE_NAME_CASE(REGISTER_STORE) 4466 NODE_NAME_CASE(SAMPLE) 4467 NODE_NAME_CASE(SAMPLEB) 4468 NODE_NAME_CASE(SAMPLED) 4469 NODE_NAME_CASE(SAMPLEL) 4470 NODE_NAME_CASE(CVT_F32_UBYTE0) 4471 NODE_NAME_CASE(CVT_F32_UBYTE1) 4472 NODE_NAME_CASE(CVT_F32_UBYTE2) 4473 NODE_NAME_CASE(CVT_F32_UBYTE3) 4474 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4475 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4476 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4477 NODE_NAME_CASE(CVT_PK_I16_I32) 4478 NODE_NAME_CASE(CVT_PK_U16_U32) 4479 NODE_NAME_CASE(FP_TO_FP16) 4480 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4481 NODE_NAME_CASE(CONST_DATA_PTR) 4482 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4483 NODE_NAME_CASE(LDS) 4484 NODE_NAME_CASE(FPTRUNC_ROUND_UPWARD) 4485 NODE_NAME_CASE(FPTRUNC_ROUND_DOWNWARD) 4486 NODE_NAME_CASE(DUMMY_CHAIN) 4487 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4488 NODE_NAME_CASE(LOAD_D16_HI) 4489 NODE_NAME_CASE(LOAD_D16_LO) 4490 NODE_NAME_CASE(LOAD_D16_HI_I8) 4491 NODE_NAME_CASE(LOAD_D16_HI_U8) 4492 NODE_NAME_CASE(LOAD_D16_LO_I8) 4493 NODE_NAME_CASE(LOAD_D16_LO_U8) 4494 NODE_NAME_CASE(STORE_MSKOR) 4495 NODE_NAME_CASE(LOAD_CONSTANT) 4496 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4497 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4498 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4499 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4500 NODE_NAME_CASE(DS_ORDERED_COUNT) 4501 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4502 NODE_NAME_CASE(ATOMIC_INC) 4503 NODE_NAME_CASE(ATOMIC_DEC) 4504 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4505 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4506 NODE_NAME_CASE(BUFFER_LOAD) 4507 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4508 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4509 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4510 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4511 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4512 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4513 NODE_NAME_CASE(SBUFFER_LOAD) 4514 NODE_NAME_CASE(BUFFER_STORE) 4515 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4516 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4517 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4518 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4519 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4520 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4521 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4522 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4523 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4524 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4525 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4526 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4527 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4528 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4529 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4530 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4531 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4532 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4533 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4534 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4535 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4536 4537 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4538 } 4539 return nullptr; 4540 } 4541 4542 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4543 SelectionDAG &DAG, int Enabled, 4544 int &RefinementSteps, 4545 bool &UseOneConstNR, 4546 bool Reciprocal) const { 4547 EVT VT = Operand.getValueType(); 4548 4549 if (VT == MVT::f32) { 4550 RefinementSteps = 0; 4551 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4552 } 4553 4554 // TODO: There is also f64 rsq instruction, but the documentation is less 4555 // clear on its precision. 4556 4557 return SDValue(); 4558 } 4559 4560 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4561 SelectionDAG &DAG, int Enabled, 4562 int &RefinementSteps) const { 4563 EVT VT = Operand.getValueType(); 4564 4565 if (VT == MVT::f32) { 4566 // Reciprocal, < 1 ulp error. 4567 // 4568 // This reciprocal approximation converges to < 0.5 ulp error with one 4569 // newton rhapson performed with two fused multiple adds (FMAs). 4570 4571 RefinementSteps = 0; 4572 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4573 } 4574 4575 // TODO: There is also f64 rcp instruction, but the documentation is less 4576 // clear on its precision. 4577 4578 return SDValue(); 4579 } 4580 4581 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4582 const SDValue Op, KnownBits &Known, 4583 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4584 4585 Known.resetAll(); // Don't know anything. 4586 4587 unsigned Opc = Op.getOpcode(); 4588 4589 switch (Opc) { 4590 default: 4591 break; 4592 case AMDGPUISD::CARRY: 4593 case AMDGPUISD::BORROW: { 4594 Known.Zero = APInt::getHighBitsSet(32, 31); 4595 break; 4596 } 4597 4598 case AMDGPUISD::BFE_I32: 4599 case AMDGPUISD::BFE_U32: { 4600 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4601 if (!CWidth) 4602 return; 4603 4604 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4605 4606 if (Opc == AMDGPUISD::BFE_U32) 4607 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4608 4609 break; 4610 } 4611 case AMDGPUISD::FP_TO_FP16: { 4612 unsigned BitWidth = Known.getBitWidth(); 4613 4614 // High bits are zero. 4615 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4616 break; 4617 } 4618 case AMDGPUISD::MUL_U24: 4619 case AMDGPUISD::MUL_I24: { 4620 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4621 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4622 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4623 RHSKnown.countMinTrailingZeros(); 4624 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4625 // Skip extra check if all bits are known zeros. 4626 if (TrailZ >= 32) 4627 break; 4628 4629 // Truncate to 24 bits. 4630 LHSKnown = LHSKnown.trunc(24); 4631 RHSKnown = RHSKnown.trunc(24); 4632 4633 if (Opc == AMDGPUISD::MUL_I24) { 4634 unsigned LHSValBits = LHSKnown.countMaxSignificantBits(); 4635 unsigned RHSValBits = RHSKnown.countMaxSignificantBits(); 4636 unsigned MaxValBits = LHSValBits + RHSValBits; 4637 if (MaxValBits > 32) 4638 break; 4639 unsigned SignBits = 32 - MaxValBits + 1; 4640 bool LHSNegative = LHSKnown.isNegative(); 4641 bool LHSNonNegative = LHSKnown.isNonNegative(); 4642 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4643 bool RHSNegative = RHSKnown.isNegative(); 4644 bool RHSNonNegative = RHSKnown.isNonNegative(); 4645 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4646 4647 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4648 Known.Zero.setHighBits(SignBits); 4649 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4650 Known.One.setHighBits(SignBits); 4651 } else { 4652 unsigned LHSValBits = LHSKnown.countMaxActiveBits(); 4653 unsigned RHSValBits = RHSKnown.countMaxActiveBits(); 4654 unsigned MaxValBits = LHSValBits + RHSValBits; 4655 if (MaxValBits >= 32) 4656 break; 4657 Known.Zero.setBitsFrom(MaxValBits); 4658 } 4659 break; 4660 } 4661 case AMDGPUISD::PERM: { 4662 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4663 if (!CMask) 4664 return; 4665 4666 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4667 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4668 unsigned Sel = CMask->getZExtValue(); 4669 4670 for (unsigned I = 0; I < 32; I += 8) { 4671 unsigned SelBits = Sel & 0xff; 4672 if (SelBits < 4) { 4673 SelBits *= 8; 4674 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4675 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4676 } else if (SelBits < 7) { 4677 SelBits = (SelBits & 3) * 8; 4678 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4679 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4680 } else if (SelBits == 0x0c) { 4681 Known.Zero |= 0xFFull << I; 4682 } else if (SelBits > 0x0c) { 4683 Known.One |= 0xFFull << I; 4684 } 4685 Sel >>= 8; 4686 } 4687 break; 4688 } 4689 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4690 Known.Zero.setHighBits(24); 4691 break; 4692 } 4693 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4694 Known.Zero.setHighBits(16); 4695 break; 4696 } 4697 case AMDGPUISD::LDS: { 4698 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4699 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4700 4701 Known.Zero.setHighBits(16); 4702 Known.Zero.setLowBits(Log2(Alignment)); 4703 break; 4704 } 4705 case ISD::INTRINSIC_WO_CHAIN: { 4706 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4707 switch (IID) { 4708 case Intrinsic::amdgcn_mbcnt_lo: 4709 case Intrinsic::amdgcn_mbcnt_hi: { 4710 const GCNSubtarget &ST = 4711 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4712 // These return at most the wavefront size - 1. 4713 unsigned Size = Op.getValueType().getSizeInBits(); 4714 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4715 break; 4716 } 4717 default: 4718 break; 4719 } 4720 } 4721 } 4722 } 4723 4724 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4725 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4726 unsigned Depth) const { 4727 switch (Op.getOpcode()) { 4728 case AMDGPUISD::BFE_I32: { 4729 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4730 if (!Width) 4731 return 1; 4732 4733 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4734 if (!isNullConstant(Op.getOperand(1))) 4735 return SignBits; 4736 4737 // TODO: Could probably figure something out with non-0 offsets. 4738 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4739 return std::max(SignBits, Op0SignBits); 4740 } 4741 4742 case AMDGPUISD::BFE_U32: { 4743 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4744 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4745 } 4746 4747 case AMDGPUISD::CARRY: 4748 case AMDGPUISD::BORROW: 4749 return 31; 4750 case AMDGPUISD::BUFFER_LOAD_BYTE: 4751 return 25; 4752 case AMDGPUISD::BUFFER_LOAD_SHORT: 4753 return 17; 4754 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4755 return 24; 4756 case AMDGPUISD::BUFFER_LOAD_USHORT: 4757 return 16; 4758 case AMDGPUISD::FP_TO_FP16: 4759 return 16; 4760 default: 4761 return 1; 4762 } 4763 } 4764 4765 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4766 GISelKnownBits &Analysis, Register R, 4767 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4768 unsigned Depth) const { 4769 const MachineInstr *MI = MRI.getVRegDef(R); 4770 if (!MI) 4771 return 1; 4772 4773 // TODO: Check range metadata on MMO. 4774 switch (MI->getOpcode()) { 4775 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4776 return 25; 4777 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4778 return 17; 4779 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4780 return 24; 4781 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4782 return 16; 4783 default: 4784 return 1; 4785 } 4786 } 4787 4788 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4789 const SelectionDAG &DAG, 4790 bool SNaN, 4791 unsigned Depth) const { 4792 unsigned Opcode = Op.getOpcode(); 4793 switch (Opcode) { 4794 case AMDGPUISD::FMIN_LEGACY: 4795 case AMDGPUISD::FMAX_LEGACY: { 4796 if (SNaN) 4797 return true; 4798 4799 // TODO: Can check no nans on one of the operands for each one, but which 4800 // one? 4801 return false; 4802 } 4803 case AMDGPUISD::FMUL_LEGACY: 4804 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4805 if (SNaN) 4806 return true; 4807 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4808 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4809 } 4810 case AMDGPUISD::FMED3: 4811 case AMDGPUISD::FMIN3: 4812 case AMDGPUISD::FMAX3: 4813 case AMDGPUISD::FMAD_FTZ: { 4814 if (SNaN) 4815 return true; 4816 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4817 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4818 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4819 } 4820 case AMDGPUISD::CVT_F32_UBYTE0: 4821 case AMDGPUISD::CVT_F32_UBYTE1: 4822 case AMDGPUISD::CVT_F32_UBYTE2: 4823 case AMDGPUISD::CVT_F32_UBYTE3: 4824 return true; 4825 4826 case AMDGPUISD::RCP: 4827 case AMDGPUISD::RSQ: 4828 case AMDGPUISD::RCP_LEGACY: 4829 case AMDGPUISD::RSQ_CLAMP: { 4830 if (SNaN) 4831 return true; 4832 4833 // TODO: Need is known positive check. 4834 return false; 4835 } 4836 case AMDGPUISD::LDEXP: 4837 case AMDGPUISD::FRACT: { 4838 if (SNaN) 4839 return true; 4840 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4841 } 4842 case AMDGPUISD::DIV_SCALE: 4843 case AMDGPUISD::DIV_FMAS: 4844 case AMDGPUISD::DIV_FIXUP: 4845 // TODO: Refine on operands. 4846 return SNaN; 4847 case AMDGPUISD::SIN_HW: 4848 case AMDGPUISD::COS_HW: { 4849 // TODO: Need check for infinity 4850 return SNaN; 4851 } 4852 case ISD::INTRINSIC_WO_CHAIN: { 4853 unsigned IntrinsicID 4854 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4855 // TODO: Handle more intrinsics 4856 switch (IntrinsicID) { 4857 case Intrinsic::amdgcn_cubeid: 4858 return true; 4859 4860 case Intrinsic::amdgcn_frexp_mant: { 4861 if (SNaN) 4862 return true; 4863 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4864 } 4865 case Intrinsic::amdgcn_cvt_pkrtz: { 4866 if (SNaN) 4867 return true; 4868 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4869 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4870 } 4871 case Intrinsic::amdgcn_rcp: 4872 case Intrinsic::amdgcn_rsq: 4873 case Intrinsic::amdgcn_rcp_legacy: 4874 case Intrinsic::amdgcn_rsq_legacy: 4875 case Intrinsic::amdgcn_rsq_clamp: { 4876 if (SNaN) 4877 return true; 4878 4879 // TODO: Need is known positive check. 4880 return false; 4881 } 4882 case Intrinsic::amdgcn_trig_preop: 4883 case Intrinsic::amdgcn_fdot2: 4884 // TODO: Refine on operand 4885 return SNaN; 4886 case Intrinsic::amdgcn_fma_legacy: 4887 if (SNaN) 4888 return true; 4889 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4890 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4891 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4892 default: 4893 return false; 4894 } 4895 } 4896 default: 4897 return false; 4898 } 4899 } 4900 4901 TargetLowering::AtomicExpansionKind 4902 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4903 switch (RMW->getOperation()) { 4904 case AtomicRMWInst::Nand: 4905 case AtomicRMWInst::FAdd: 4906 case AtomicRMWInst::FSub: 4907 return AtomicExpansionKind::CmpXChg; 4908 default: 4909 return AtomicExpansionKind::None; 4910 } 4911 } 4912 4913 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal( 4914 unsigned Opc, LLT Ty1, LLT Ty2) const { 4915 return (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)) && 4916 Ty2 == LLT::scalar(32); 4917 } 4918