1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f16, Custom); 324 setOperationAction(ISD::FREM, MVT::f32, Custom); 325 setOperationAction(ISD::FREM, MVT::f64, Custom); 326 327 // Expand to fneg + fadd. 328 setOperationAction(ISD::FSUB, MVT::f64, Expand); 329 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 337 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 359 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 360 361 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 363 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 364 365 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 366 for (MVT VT : ScalarIntVTs) { 367 // These should use [SU]DIVREM, so set them to expand 368 setOperationAction(ISD::SDIV, VT, Expand); 369 setOperationAction(ISD::UDIV, VT, Expand); 370 setOperationAction(ISD::SREM, VT, Expand); 371 setOperationAction(ISD::UREM, VT, Expand); 372 373 // GPU does not have divrem function for signed or unsigned. 374 setOperationAction(ISD::SDIVREM, VT, Custom); 375 setOperationAction(ISD::UDIVREM, VT, Custom); 376 377 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 378 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 379 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 380 381 setOperationAction(ISD::BSWAP, VT, Expand); 382 setOperationAction(ISD::CTTZ, VT, Expand); 383 setOperationAction(ISD::CTLZ, VT, Expand); 384 385 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 386 setOperationAction(ISD::ADDC, VT, Legal); 387 setOperationAction(ISD::SUBC, VT, Legal); 388 setOperationAction(ISD::ADDE, VT, Legal); 389 setOperationAction(ISD::SUBE, VT, Legal); 390 } 391 392 // The hardware supports 32-bit FSHR, but not FSHL. 393 setOperationAction(ISD::FSHR, MVT::i32, Legal); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MUL, MVT::i64, Expand); 401 setOperationAction(ISD::MULHU, MVT::i64, Expand); 402 setOperationAction(ISD::MULHS, MVT::i64, Expand); 403 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 404 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 405 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 406 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 407 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 408 409 setOperationAction(ISD::SMIN, MVT::i32, Legal); 410 setOperationAction(ISD::UMIN, MVT::i32, Legal); 411 setOperationAction(ISD::SMAX, MVT::i32, Legal); 412 setOperationAction(ISD::UMAX, MVT::i32, Legal); 413 414 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 415 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 416 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 418 419 static const MVT::SimpleValueType VectorIntTypes[] = { 420 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 421 }; 422 423 for (MVT VT : VectorIntTypes) { 424 // Expand the following operations for the current type by default. 425 setOperationAction(ISD::ADD, VT, Expand); 426 setOperationAction(ISD::AND, VT, Expand); 427 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 428 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 429 setOperationAction(ISD::MUL, VT, Expand); 430 setOperationAction(ISD::MULHU, VT, Expand); 431 setOperationAction(ISD::MULHS, VT, Expand); 432 setOperationAction(ISD::OR, VT, Expand); 433 setOperationAction(ISD::SHL, VT, Expand); 434 setOperationAction(ISD::SRA, VT, Expand); 435 setOperationAction(ISD::SRL, VT, Expand); 436 setOperationAction(ISD::ROTL, VT, Expand); 437 setOperationAction(ISD::ROTR, VT, Expand); 438 setOperationAction(ISD::SUB, VT, Expand); 439 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 440 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 441 setOperationAction(ISD::SDIV, VT, Expand); 442 setOperationAction(ISD::UDIV, VT, Expand); 443 setOperationAction(ISD::SREM, VT, Expand); 444 setOperationAction(ISD::UREM, VT, Expand); 445 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 446 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 447 setOperationAction(ISD::SDIVREM, VT, Expand); 448 setOperationAction(ISD::UDIVREM, VT, Expand); 449 setOperationAction(ISD::SELECT, VT, Expand); 450 setOperationAction(ISD::VSELECT, VT, Expand); 451 setOperationAction(ISD::SELECT_CC, VT, Expand); 452 setOperationAction(ISD::XOR, VT, Expand); 453 setOperationAction(ISD::BSWAP, VT, Expand); 454 setOperationAction(ISD::CTPOP, VT, Expand); 455 setOperationAction(ISD::CTTZ, VT, Expand); 456 setOperationAction(ISD::CTLZ, VT, Expand); 457 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 458 setOperationAction(ISD::SETCC, VT, Expand); 459 } 460 461 static const MVT::SimpleValueType FloatVectorTypes[] = { 462 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 463 }; 464 465 for (MVT VT : FloatVectorTypes) { 466 setOperationAction(ISD::FABS, VT, Expand); 467 setOperationAction(ISD::FMINNUM, VT, Expand); 468 setOperationAction(ISD::FMAXNUM, VT, Expand); 469 setOperationAction(ISD::FADD, VT, Expand); 470 setOperationAction(ISD::FCEIL, VT, Expand); 471 setOperationAction(ISD::FCOS, VT, Expand); 472 setOperationAction(ISD::FDIV, VT, Expand); 473 setOperationAction(ISD::FEXP2, VT, Expand); 474 setOperationAction(ISD::FEXP, VT, Expand); 475 setOperationAction(ISD::FLOG2, VT, Expand); 476 setOperationAction(ISD::FREM, VT, Expand); 477 setOperationAction(ISD::FLOG, VT, Expand); 478 setOperationAction(ISD::FLOG10, VT, Expand); 479 setOperationAction(ISD::FPOW, VT, Expand); 480 setOperationAction(ISD::FFLOOR, VT, Expand); 481 setOperationAction(ISD::FTRUNC, VT, Expand); 482 setOperationAction(ISD::FMUL, VT, Expand); 483 setOperationAction(ISD::FMA, VT, Expand); 484 setOperationAction(ISD::FRINT, VT, Expand); 485 setOperationAction(ISD::FNEARBYINT, VT, Expand); 486 setOperationAction(ISD::FSQRT, VT, Expand); 487 setOperationAction(ISD::FSIN, VT, Expand); 488 setOperationAction(ISD::FSUB, VT, Expand); 489 setOperationAction(ISD::FNEG, VT, Expand); 490 setOperationAction(ISD::VSELECT, VT, Expand); 491 setOperationAction(ISD::SELECT_CC, VT, Expand); 492 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 493 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 494 setOperationAction(ISD::SETCC, VT, Expand); 495 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 496 } 497 498 // This causes using an unrolled select operation rather than expansion with 499 // bit operations. This is in general better, but the alternative using BFI 500 // instructions may be better if the select sources are SGPRs. 501 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 502 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 503 504 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 505 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 506 507 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 508 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 509 510 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 511 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 512 513 // There are no libcalls of any kind. 514 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 515 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 516 517 setSchedulingPreference(Sched::RegPressure); 518 setJumpIsExpensive(true); 519 520 // FIXME: This is only partially true. If we have to do vector compares, any 521 // SGPR pair can be a condition register. If we have a uniform condition, we 522 // are better off doing SALU operations, where there is only one SCC. For now, 523 // we don't have a way of knowing during instruction selection if a condition 524 // will be uniform and we always use vector compares. Assume we are using 525 // vector compares until that is fixed. 526 setHasMultipleConditionRegisters(true); 527 528 setMinCmpXchgSizeInBits(32); 529 setSupportsUnalignedAtomics(false); 530 531 PredictableSelectIsExpensive = false; 532 533 // We want to find all load dependencies for long chains of stores to enable 534 // merging into very wide vectors. The problem is with vectors with > 4 535 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 536 // vectors are a legal type, even though we have to split the loads 537 // usually. When we can more precisely specify load legality per address 538 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 539 // smarter so that they can figure out what to do in 2 iterations without all 540 // N > 4 stores on the same chain. 541 GatherAllAliasesMaxDepth = 16; 542 543 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 544 // about these during lowering. 545 MaxStoresPerMemcpy = 0xffffffff; 546 MaxStoresPerMemmove = 0xffffffff; 547 MaxStoresPerMemset = 0xffffffff; 548 549 // The expansion for 64-bit division is enormous. 550 if (AMDGPUBypassSlowDiv) 551 addBypassSlowDiv(64, 32); 552 553 setTargetDAGCombine(ISD::BITCAST); 554 setTargetDAGCombine(ISD::SHL); 555 setTargetDAGCombine(ISD::SRA); 556 setTargetDAGCombine(ISD::SRL); 557 setTargetDAGCombine(ISD::TRUNCATE); 558 setTargetDAGCombine(ISD::MUL); 559 setTargetDAGCombine(ISD::MULHU); 560 setTargetDAGCombine(ISD::MULHS); 561 setTargetDAGCombine(ISD::SELECT); 562 setTargetDAGCombine(ISD::SELECT_CC); 563 setTargetDAGCombine(ISD::STORE); 564 setTargetDAGCombine(ISD::FADD); 565 setTargetDAGCombine(ISD::FSUB); 566 setTargetDAGCombine(ISD::FNEG); 567 setTargetDAGCombine(ISD::FABS); 568 setTargetDAGCombine(ISD::AssertZext); 569 setTargetDAGCombine(ISD::AssertSext); 570 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 571 } 572 573 //===----------------------------------------------------------------------===// 574 // Target Information 575 //===----------------------------------------------------------------------===// 576 577 LLVM_READNONE 578 static bool fnegFoldsIntoOp(unsigned Opc) { 579 switch (Opc) { 580 case ISD::FADD: 581 case ISD::FSUB: 582 case ISD::FMUL: 583 case ISD::FMA: 584 case ISD::FMAD: 585 case ISD::FMINNUM: 586 case ISD::FMAXNUM: 587 case ISD::FMINNUM_IEEE: 588 case ISD::FMAXNUM_IEEE: 589 case ISD::FSIN: 590 case ISD::FTRUNC: 591 case ISD::FRINT: 592 case ISD::FNEARBYINT: 593 case ISD::FCANONICALIZE: 594 case AMDGPUISD::RCP: 595 case AMDGPUISD::RCP_LEGACY: 596 case AMDGPUISD::RCP_IFLAG: 597 case AMDGPUISD::SIN_HW: 598 case AMDGPUISD::FMUL_LEGACY: 599 case AMDGPUISD::FMIN_LEGACY: 600 case AMDGPUISD::FMAX_LEGACY: 601 case AMDGPUISD::FMED3: 602 // TODO: handle llvm.amdgcn.fma.legacy 603 return true; 604 default: 605 return false; 606 } 607 } 608 609 /// \p returns true if the operation will definitely need to use a 64-bit 610 /// encoding, and thus will use a VOP3 encoding regardless of the source 611 /// modifiers. 612 LLVM_READONLY 613 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 614 return N->getNumOperands() > 2 || VT == MVT::f64; 615 } 616 617 // Most FP instructions support source modifiers, but this could be refined 618 // slightly. 619 LLVM_READONLY 620 static bool hasSourceMods(const SDNode *N) { 621 if (isa<MemSDNode>(N)) 622 return false; 623 624 switch (N->getOpcode()) { 625 case ISD::CopyToReg: 626 case ISD::SELECT: 627 case ISD::FDIV: 628 case ISD::FREM: 629 case ISD::INLINEASM: 630 case ISD::INLINEASM_BR: 631 case AMDGPUISD::DIV_SCALE: 632 case ISD::INTRINSIC_W_CHAIN: 633 634 // TODO: Should really be looking at the users of the bitcast. These are 635 // problematic because bitcasts are used to legalize all stores to integer 636 // types. 637 case ISD::BITCAST: 638 return false; 639 case ISD::INTRINSIC_WO_CHAIN: { 640 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 641 case Intrinsic::amdgcn_interp_p1: 642 case Intrinsic::amdgcn_interp_p2: 643 case Intrinsic::amdgcn_interp_mov: 644 case Intrinsic::amdgcn_interp_p1_f16: 645 case Intrinsic::amdgcn_interp_p2_f16: 646 return false; 647 default: 648 return true; 649 } 650 } 651 default: 652 return true; 653 } 654 } 655 656 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 657 unsigned CostThreshold) { 658 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 659 // it is truly free to use a source modifier in all cases. If there are 660 // multiple users but for each one will necessitate using VOP3, there will be 661 // a code size increase. Try to avoid increasing code size unless we know it 662 // will save on the instruction count. 663 unsigned NumMayIncreaseSize = 0; 664 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 665 666 // XXX - Should this limit number of uses to check? 667 for (const SDNode *U : N->uses()) { 668 if (!hasSourceMods(U)) 669 return false; 670 671 if (!opMustUseVOP3Encoding(U, VT)) { 672 if (++NumMayIncreaseSize > CostThreshold) 673 return false; 674 } 675 } 676 677 return true; 678 } 679 680 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 681 ISD::NodeType ExtendKind) const { 682 assert(!VT.isVector() && "only scalar expected"); 683 684 // Round to the next multiple of 32-bits. 685 unsigned Size = VT.getSizeInBits(); 686 if (Size <= 32) 687 return MVT::i32; 688 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 689 } 690 691 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 692 return MVT::i32; 693 } 694 695 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 696 return true; 697 } 698 699 // The backend supports 32 and 64 bit floating point immediates. 700 // FIXME: Why are we reporting vectors of FP immediates as legal? 701 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 702 bool ForCodeSize) const { 703 EVT ScalarVT = VT.getScalarType(); 704 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 705 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 706 } 707 708 // We don't want to shrink f64 / f32 constants. 709 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 710 EVT ScalarVT = VT.getScalarType(); 711 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 712 } 713 714 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 715 ISD::LoadExtType ExtTy, 716 EVT NewVT) const { 717 // TODO: This may be worth removing. Check regression tests for diffs. 718 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 719 return false; 720 721 unsigned NewSize = NewVT.getStoreSizeInBits(); 722 723 // If we are reducing to a 32-bit load or a smaller multi-dword load, 724 // this is always better. 725 if (NewSize >= 32) 726 return true; 727 728 EVT OldVT = N->getValueType(0); 729 unsigned OldSize = OldVT.getStoreSizeInBits(); 730 731 MemSDNode *MN = cast<MemSDNode>(N); 732 unsigned AS = MN->getAddressSpace(); 733 // Do not shrink an aligned scalar load to sub-dword. 734 // Scalar engine cannot do sub-dword loads. 735 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 736 (AS == AMDGPUAS::CONSTANT_ADDRESS || 737 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 738 (isa<LoadSDNode>(N) && 739 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 740 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 741 return false; 742 743 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 744 // extloads, so doing one requires using a buffer_load. In cases where we 745 // still couldn't use a scalar load, using the wider load shouldn't really 746 // hurt anything. 747 748 // If the old size already had to be an extload, there's no harm in continuing 749 // to reduce the width. 750 return (OldSize < 32); 751 } 752 753 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 754 const SelectionDAG &DAG, 755 const MachineMemOperand &MMO) const { 756 757 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 758 759 if (LoadTy.getScalarType() == MVT::i32) 760 return false; 761 762 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 763 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 764 765 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 766 return false; 767 768 bool Fast = false; 769 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 770 CastTy, MMO, &Fast) && 771 Fast; 772 } 773 774 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 775 // profitable with the expansion for 64-bit since it's generally good to 776 // speculate things. 777 // FIXME: These should really have the size as a parameter. 778 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 779 return true; 780 } 781 782 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 783 return true; 784 } 785 786 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 787 switch (N->getOpcode()) { 788 case ISD::EntryToken: 789 case ISD::TokenFactor: 790 return true; 791 case ISD::INTRINSIC_WO_CHAIN: { 792 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 793 switch (IntrID) { 794 case Intrinsic::amdgcn_readfirstlane: 795 case Intrinsic::amdgcn_readlane: 796 return true; 797 } 798 return false; 799 } 800 case ISD::LOAD: 801 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 802 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 803 return true; 804 return false; 805 } 806 return false; 807 } 808 809 SDValue AMDGPUTargetLowering::getNegatedExpression( 810 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 811 NegatibleCost &Cost, unsigned Depth) const { 812 813 switch (Op.getOpcode()) { 814 case ISD::FMA: 815 case ISD::FMAD: { 816 // Negating a fma is not free if it has users without source mods. 817 if (!allUsesHaveSourceMods(Op.getNode())) 818 return SDValue(); 819 break; 820 } 821 default: 822 break; 823 } 824 825 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 826 ForCodeSize, Cost, Depth); 827 } 828 829 //===---------------------------------------------------------------------===// 830 // Target Properties 831 //===---------------------------------------------------------------------===// 832 833 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 834 assert(VT.isFloatingPoint()); 835 836 // Packed operations do not have a fabs modifier. 837 return VT == MVT::f32 || VT == MVT::f64 || 838 (Subtarget->has16BitInsts() && VT == MVT::f16); 839 } 840 841 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 842 assert(VT.isFloatingPoint()); 843 return VT == MVT::f32 || VT == MVT::f64 || 844 (Subtarget->has16BitInsts() && VT == MVT::f16) || 845 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 846 } 847 848 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 849 unsigned NumElem, 850 unsigned AS) const { 851 return true; 852 } 853 854 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 855 // There are few operations which truly have vector input operands. Any vector 856 // operation is going to involve operations on each component, and a 857 // build_vector will be a copy per element, so it always makes sense to use a 858 // build_vector input in place of the extracted element to avoid a copy into a 859 // super register. 860 // 861 // We should probably only do this if all users are extracts only, but this 862 // should be the common case. 863 return true; 864 } 865 866 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 867 // Truncate is just accessing a subregister. 868 869 unsigned SrcSize = Source.getSizeInBits(); 870 unsigned DestSize = Dest.getSizeInBits(); 871 872 return DestSize < SrcSize && DestSize % 32 == 0 ; 873 } 874 875 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 876 // Truncate is just accessing a subregister. 877 878 unsigned SrcSize = Source->getScalarSizeInBits(); 879 unsigned DestSize = Dest->getScalarSizeInBits(); 880 881 if (DestSize== 16 && Subtarget->has16BitInsts()) 882 return SrcSize >= 32; 883 884 return DestSize < SrcSize && DestSize % 32 == 0; 885 } 886 887 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 888 unsigned SrcSize = Src->getScalarSizeInBits(); 889 unsigned DestSize = Dest->getScalarSizeInBits(); 890 891 if (SrcSize == 16 && Subtarget->has16BitInsts()) 892 return DestSize >= 32; 893 894 return SrcSize == 32 && DestSize == 64; 895 } 896 897 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 898 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 899 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 900 // this will enable reducing 64-bit operations the 32-bit, which is always 901 // good. 902 903 if (Src == MVT::i16) 904 return Dest == MVT::i32 ||Dest == MVT::i64 ; 905 906 return Src == MVT::i32 && Dest == MVT::i64; 907 } 908 909 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 910 return isZExtFree(Val.getValueType(), VT2); 911 } 912 913 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 914 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 915 // limited number of native 64-bit operations. Shrinking an operation to fit 916 // in a single 32-bit register should always be helpful. As currently used, 917 // this is much less general than the name suggests, and is only used in 918 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 919 // not profitable, and may actually be harmful. 920 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 921 } 922 923 //===---------------------------------------------------------------------===// 924 // TargetLowering Callbacks 925 //===---------------------------------------------------------------------===// 926 927 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 928 bool IsVarArg) { 929 switch (CC) { 930 case CallingConv::AMDGPU_VS: 931 case CallingConv::AMDGPU_GS: 932 case CallingConv::AMDGPU_PS: 933 case CallingConv::AMDGPU_CS: 934 case CallingConv::AMDGPU_HS: 935 case CallingConv::AMDGPU_ES: 936 case CallingConv::AMDGPU_LS: 937 return CC_AMDGPU; 938 case CallingConv::C: 939 case CallingConv::Fast: 940 case CallingConv::Cold: 941 return CC_AMDGPU_Func; 942 case CallingConv::AMDGPU_KERNEL: 943 case CallingConv::SPIR_KERNEL: 944 default: 945 report_fatal_error("Unsupported calling convention for call"); 946 } 947 } 948 949 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 950 bool IsVarArg) { 951 switch (CC) { 952 case CallingConv::AMDGPU_KERNEL: 953 case CallingConv::SPIR_KERNEL: 954 llvm_unreachable("kernels should not be handled here"); 955 case CallingConv::AMDGPU_VS: 956 case CallingConv::AMDGPU_GS: 957 case CallingConv::AMDGPU_PS: 958 case CallingConv::AMDGPU_CS: 959 case CallingConv::AMDGPU_HS: 960 case CallingConv::AMDGPU_ES: 961 case CallingConv::AMDGPU_LS: 962 return RetCC_SI_Shader; 963 case CallingConv::C: 964 case CallingConv::Fast: 965 case CallingConv::Cold: 966 return RetCC_AMDGPU_Func; 967 default: 968 report_fatal_error("Unsupported calling convention."); 969 } 970 } 971 972 /// The SelectionDAGBuilder will automatically promote function arguments 973 /// with illegal types. However, this does not work for the AMDGPU targets 974 /// since the function arguments are stored in memory as these illegal types. 975 /// In order to handle this properly we need to get the original types sizes 976 /// from the LLVM IR Function and fixup the ISD:InputArg values before 977 /// passing them to AnalyzeFormalArguments() 978 979 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 980 /// input values across multiple registers. Each item in the Ins array 981 /// represents a single value that will be stored in registers. Ins[x].VT is 982 /// the value type of the value that will be stored in the register, so 983 /// whatever SDNode we lower the argument to needs to be this type. 984 /// 985 /// In order to correctly lower the arguments we need to know the size of each 986 /// argument. Since Ins[x].VT gives us the size of the register that will 987 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 988 /// for the orignal function argument so that we can deduce the correct memory 989 /// type to use for Ins[x]. In most cases the correct memory type will be 990 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 991 /// we have a kernel argument of type v8i8, this argument will be split into 992 /// 8 parts and each part will be represented by its own item in the Ins array. 993 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 994 /// the argument before it was split. From this, we deduce that the memory type 995 /// for each individual part is i8. We pass the memory type as LocVT to the 996 /// calling convention analysis function and the register type (Ins[x].VT) as 997 /// the ValVT. 998 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 999 CCState &State, 1000 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1001 const MachineFunction &MF = State.getMachineFunction(); 1002 const Function &Fn = MF.getFunction(); 1003 LLVMContext &Ctx = Fn.getParent()->getContext(); 1004 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1005 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1006 CallingConv::ID CC = Fn.getCallingConv(); 1007 1008 Align MaxAlign = Align(1); 1009 uint64_t ExplicitArgOffset = 0; 1010 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1011 1012 unsigned InIndex = 0; 1013 1014 for (const Argument &Arg : Fn.args()) { 1015 const bool IsByRef = Arg.hasByRefAttr(); 1016 Type *BaseArgTy = Arg.getType(); 1017 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1018 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1019 if (!Alignment) 1020 Alignment = DL.getABITypeAlign(MemArgTy); 1021 MaxAlign = max(Alignment, MaxAlign); 1022 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1023 1024 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1025 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1026 1027 // We're basically throwing away everything passed into us and starting over 1028 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1029 // to us as computed in Ins. 1030 // 1031 // We also need to figure out what type legalization is trying to do to get 1032 // the correct memory offsets. 1033 1034 SmallVector<EVT, 16> ValueVTs; 1035 SmallVector<uint64_t, 16> Offsets; 1036 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1037 1038 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1039 Value != NumValues; ++Value) { 1040 uint64_t BasePartOffset = Offsets[Value]; 1041 1042 EVT ArgVT = ValueVTs[Value]; 1043 EVT MemVT = ArgVT; 1044 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1045 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1046 1047 if (NumRegs == 1) { 1048 // This argument is not split, so the IR type is the memory type. 1049 if (ArgVT.isExtended()) { 1050 // We have an extended type, like i24, so we should just use the 1051 // register type. 1052 MemVT = RegisterVT; 1053 } else { 1054 MemVT = ArgVT; 1055 } 1056 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1057 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1058 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1059 // We have a vector value which has been split into a vector with 1060 // the same scalar type, but fewer elements. This should handle 1061 // all the floating-point vector types. 1062 MemVT = RegisterVT; 1063 } else if (ArgVT.isVector() && 1064 ArgVT.getVectorNumElements() == NumRegs) { 1065 // This arg has been split so that each element is stored in a separate 1066 // register. 1067 MemVT = ArgVT.getScalarType(); 1068 } else if (ArgVT.isExtended()) { 1069 // We have an extended type, like i65. 1070 MemVT = RegisterVT; 1071 } else { 1072 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1073 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1074 if (RegisterVT.isInteger()) { 1075 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1076 } else if (RegisterVT.isVector()) { 1077 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1078 unsigned NumElements = RegisterVT.getVectorNumElements(); 1079 assert(MemoryBits % NumElements == 0); 1080 // This vector type has been split into another vector type with 1081 // a different elements size. 1082 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1083 MemoryBits / NumElements); 1084 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1085 } else { 1086 llvm_unreachable("cannot deduce memory type."); 1087 } 1088 } 1089 1090 // Convert one element vectors to scalar. 1091 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1092 MemVT = MemVT.getScalarType(); 1093 1094 // Round up vec3/vec5 argument. 1095 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1096 assert(MemVT.getVectorNumElements() == 3 || 1097 MemVT.getVectorNumElements() == 5); 1098 MemVT = MemVT.getPow2VectorType(State.getContext()); 1099 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1100 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1101 } 1102 1103 unsigned PartOffset = 0; 1104 for (unsigned i = 0; i != NumRegs; ++i) { 1105 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1106 BasePartOffset + PartOffset, 1107 MemVT.getSimpleVT(), 1108 CCValAssign::Full)); 1109 PartOffset += MemVT.getStoreSize(); 1110 } 1111 } 1112 } 1113 } 1114 1115 SDValue AMDGPUTargetLowering::LowerReturn( 1116 SDValue Chain, CallingConv::ID CallConv, 1117 bool isVarArg, 1118 const SmallVectorImpl<ISD::OutputArg> &Outs, 1119 const SmallVectorImpl<SDValue> &OutVals, 1120 const SDLoc &DL, SelectionDAG &DAG) const { 1121 // FIXME: Fails for r600 tests 1122 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1123 // "wave terminate should not have return values"); 1124 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1125 } 1126 1127 //===---------------------------------------------------------------------===// 1128 // Target specific lowering 1129 //===---------------------------------------------------------------------===// 1130 1131 /// Selects the correct CCAssignFn for a given CallingConvention value. 1132 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1133 bool IsVarArg) { 1134 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1135 } 1136 1137 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1138 bool IsVarArg) { 1139 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1140 } 1141 1142 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1143 SelectionDAG &DAG, 1144 MachineFrameInfo &MFI, 1145 int ClobberedFI) const { 1146 SmallVector<SDValue, 8> ArgChains; 1147 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1148 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1149 1150 // Include the original chain at the beginning of the list. When this is 1151 // used by target LowerCall hooks, this helps legalize find the 1152 // CALLSEQ_BEGIN node. 1153 ArgChains.push_back(Chain); 1154 1155 // Add a chain value for each stack argument corresponding 1156 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1157 UE = DAG.getEntryNode().getNode()->use_end(); 1158 U != UE; ++U) { 1159 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1160 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1161 if (FI->getIndex() < 0) { 1162 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1163 int64_t InLastByte = InFirstByte; 1164 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1165 1166 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1167 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1168 ArgChains.push_back(SDValue(L, 1)); 1169 } 1170 } 1171 } 1172 } 1173 1174 // Build a tokenfactor for all the chains. 1175 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1176 } 1177 1178 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1179 SmallVectorImpl<SDValue> &InVals, 1180 StringRef Reason) const { 1181 SDValue Callee = CLI.Callee; 1182 SelectionDAG &DAG = CLI.DAG; 1183 1184 const Function &Fn = DAG.getMachineFunction().getFunction(); 1185 1186 StringRef FuncName("<unknown>"); 1187 1188 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1189 FuncName = G->getSymbol(); 1190 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1191 FuncName = G->getGlobal()->getName(); 1192 1193 DiagnosticInfoUnsupported NoCalls( 1194 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1195 DAG.getContext()->diagnose(NoCalls); 1196 1197 if (!CLI.IsTailCall) { 1198 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1199 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1200 } 1201 1202 return DAG.getEntryNode(); 1203 } 1204 1205 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1206 SmallVectorImpl<SDValue> &InVals) const { 1207 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1208 } 1209 1210 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1211 SelectionDAG &DAG) const { 1212 const Function &Fn = DAG.getMachineFunction().getFunction(); 1213 1214 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1215 SDLoc(Op).getDebugLoc()); 1216 DAG.getContext()->diagnose(NoDynamicAlloca); 1217 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1218 return DAG.getMergeValues(Ops, SDLoc()); 1219 } 1220 1221 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1222 SelectionDAG &DAG) const { 1223 switch (Op.getOpcode()) { 1224 default: 1225 Op->print(errs(), &DAG); 1226 llvm_unreachable("Custom lowering code for this " 1227 "instruction is not implemented yet!"); 1228 break; 1229 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1230 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1231 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1232 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1233 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1234 case ISD::FREM: return LowerFREM(Op, DAG); 1235 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1236 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1237 case ISD::FRINT: return LowerFRINT(Op, DAG); 1238 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1239 case ISD::FROUND: return LowerFROUND(Op, DAG); 1240 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1241 case ISD::FLOG: 1242 return LowerFLOG(Op, DAG, numbers::ln2f); 1243 case ISD::FLOG10: 1244 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1245 case ISD::FEXP: 1246 return lowerFEXP(Op, DAG); 1247 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1248 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1249 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1250 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1251 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1252 case ISD::CTTZ: 1253 case ISD::CTTZ_ZERO_UNDEF: 1254 case ISD::CTLZ: 1255 case ISD::CTLZ_ZERO_UNDEF: 1256 return LowerCTLZ_CTTZ(Op, DAG); 1257 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1258 } 1259 return Op; 1260 } 1261 1262 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1263 SmallVectorImpl<SDValue> &Results, 1264 SelectionDAG &DAG) const { 1265 switch (N->getOpcode()) { 1266 case ISD::SIGN_EXTEND_INREG: 1267 // Different parts of legalization seem to interpret which type of 1268 // sign_extend_inreg is the one to check for custom lowering. The extended 1269 // from type is what really matters, but some places check for custom 1270 // lowering of the result type. This results in trying to use 1271 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1272 // nothing here and let the illegal result integer be handled normally. 1273 return; 1274 default: 1275 return; 1276 } 1277 } 1278 1279 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1280 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1281 if (!GVar || !GVar->hasInitializer()) 1282 return false; 1283 1284 return !isa<UndefValue>(GVar->getInitializer()); 1285 } 1286 1287 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1288 SDValue Op, 1289 SelectionDAG &DAG) const { 1290 1291 const DataLayout &DL = DAG.getDataLayout(); 1292 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1293 const GlobalValue *GV = G->getGlobal(); 1294 1295 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1296 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1297 if (!MFI->isEntryFunction()) { 1298 SDLoc DL(Op); 1299 const Function &Fn = DAG.getMachineFunction().getFunction(); 1300 DiagnosticInfoUnsupported BadLDSDecl( 1301 Fn, "local memory global used by non-kernel function", 1302 DL.getDebugLoc(), DS_Warning); 1303 DAG.getContext()->diagnose(BadLDSDecl); 1304 1305 // We currently don't have a way to correctly allocate LDS objects that 1306 // aren't directly associated with a kernel. We do force inlining of 1307 // functions that use local objects. However, if these dead functions are 1308 // not eliminated, we don't want a compile time error. Just emit a warning 1309 // and a trap, since there should be no callable path here. 1310 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1311 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1312 Trap, DAG.getRoot()); 1313 DAG.setRoot(OutputChain); 1314 return DAG.getUNDEF(Op.getValueType()); 1315 } 1316 1317 // XXX: What does the value of G->getOffset() mean? 1318 assert(G->getOffset() == 0 && 1319 "Do not know what to do with an non-zero offset"); 1320 1321 // TODO: We could emit code to handle the initialization somewhere. 1322 if (!hasDefinedInitializer(GV)) { 1323 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1324 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1325 } 1326 } 1327 1328 const Function &Fn = DAG.getMachineFunction().getFunction(); 1329 DiagnosticInfoUnsupported BadInit( 1330 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1331 DAG.getContext()->diagnose(BadInit); 1332 return SDValue(); 1333 } 1334 1335 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1336 SelectionDAG &DAG) const { 1337 SmallVector<SDValue, 8> Args; 1338 1339 EVT VT = Op.getValueType(); 1340 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1341 SDLoc SL(Op); 1342 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1343 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1344 1345 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1346 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1347 } 1348 1349 for (const SDUse &U : Op->ops()) 1350 DAG.ExtractVectorElements(U.get(), Args); 1351 1352 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1353 } 1354 1355 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1356 SelectionDAG &DAG) const { 1357 1358 SmallVector<SDValue, 8> Args; 1359 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1360 EVT VT = Op.getValueType(); 1361 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1362 VT.getVectorNumElements()); 1363 1364 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1365 } 1366 1367 /// Generate Min/Max node 1368 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1369 SDValue LHS, SDValue RHS, 1370 SDValue True, SDValue False, 1371 SDValue CC, 1372 DAGCombinerInfo &DCI) const { 1373 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1374 return SDValue(); 1375 1376 SelectionDAG &DAG = DCI.DAG; 1377 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1378 switch (CCOpcode) { 1379 case ISD::SETOEQ: 1380 case ISD::SETONE: 1381 case ISD::SETUNE: 1382 case ISD::SETNE: 1383 case ISD::SETUEQ: 1384 case ISD::SETEQ: 1385 case ISD::SETFALSE: 1386 case ISD::SETFALSE2: 1387 case ISD::SETTRUE: 1388 case ISD::SETTRUE2: 1389 case ISD::SETUO: 1390 case ISD::SETO: 1391 break; 1392 case ISD::SETULE: 1393 case ISD::SETULT: { 1394 if (LHS == True) 1395 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1396 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1397 } 1398 case ISD::SETOLE: 1399 case ISD::SETOLT: 1400 case ISD::SETLE: 1401 case ISD::SETLT: { 1402 // Ordered. Assume ordered for undefined. 1403 1404 // Only do this after legalization to avoid interfering with other combines 1405 // which might occur. 1406 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1407 !DCI.isCalledByLegalizer()) 1408 return SDValue(); 1409 1410 // We need to permute the operands to get the correct NaN behavior. The 1411 // selected operand is the second one based on the failing compare with NaN, 1412 // so permute it based on the compare type the hardware uses. 1413 if (LHS == True) 1414 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1415 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1416 } 1417 case ISD::SETUGE: 1418 case ISD::SETUGT: { 1419 if (LHS == True) 1420 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1421 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1422 } 1423 case ISD::SETGT: 1424 case ISD::SETGE: 1425 case ISD::SETOGE: 1426 case ISD::SETOGT: { 1427 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1428 !DCI.isCalledByLegalizer()) 1429 return SDValue(); 1430 1431 if (LHS == True) 1432 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1433 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1434 } 1435 case ISD::SETCC_INVALID: 1436 llvm_unreachable("Invalid setcc condcode!"); 1437 } 1438 return SDValue(); 1439 } 1440 1441 std::pair<SDValue, SDValue> 1442 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1443 SDLoc SL(Op); 1444 1445 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1446 1447 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1448 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1449 1450 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1451 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1452 1453 return std::make_pair(Lo, Hi); 1454 } 1455 1456 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1457 SDLoc SL(Op); 1458 1459 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1460 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1461 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1462 } 1463 1464 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1465 SDLoc SL(Op); 1466 1467 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1468 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1469 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1470 } 1471 1472 // Split a vector type into two parts. The first part is a power of two vector. 1473 // The second part is whatever is left over, and is a scalar if it would 1474 // otherwise be a 1-vector. 1475 std::pair<EVT, EVT> 1476 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1477 EVT LoVT, HiVT; 1478 EVT EltVT = VT.getVectorElementType(); 1479 unsigned NumElts = VT.getVectorNumElements(); 1480 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1481 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1482 HiVT = NumElts - LoNumElts == 1 1483 ? EltVT 1484 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1485 return std::make_pair(LoVT, HiVT); 1486 } 1487 1488 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1489 // scalar. 1490 std::pair<SDValue, SDValue> 1491 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1492 const EVT &LoVT, const EVT &HiVT, 1493 SelectionDAG &DAG) const { 1494 assert(LoVT.getVectorNumElements() + 1495 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1496 N.getValueType().getVectorNumElements() && 1497 "More vector elements requested than available!"); 1498 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1499 DAG.getVectorIdxConstant(0, DL)); 1500 SDValue Hi = DAG.getNode( 1501 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1502 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1503 return std::make_pair(Lo, Hi); 1504 } 1505 1506 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1507 SelectionDAG &DAG) const { 1508 LoadSDNode *Load = cast<LoadSDNode>(Op); 1509 EVT VT = Op.getValueType(); 1510 SDLoc SL(Op); 1511 1512 1513 // If this is a 2 element vector, we really want to scalarize and not create 1514 // weird 1 element vectors. 1515 if (VT.getVectorNumElements() == 2) { 1516 SDValue Ops[2]; 1517 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1518 return DAG.getMergeValues(Ops, SL); 1519 } 1520 1521 SDValue BasePtr = Load->getBasePtr(); 1522 EVT MemVT = Load->getMemoryVT(); 1523 1524 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1525 1526 EVT LoVT, HiVT; 1527 EVT LoMemVT, HiMemVT; 1528 SDValue Lo, Hi; 1529 1530 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1531 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1532 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1533 1534 unsigned Size = LoMemVT.getStoreSize(); 1535 unsigned BaseAlign = Load->getAlignment(); 1536 unsigned HiAlign = MinAlign(BaseAlign, Size); 1537 1538 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1539 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1540 BaseAlign, Load->getMemOperand()->getFlags()); 1541 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1542 SDValue HiLoad = 1543 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1544 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1545 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1546 1547 SDValue Join; 1548 if (LoVT == HiVT) { 1549 // This is the case that the vector is power of two so was evenly split. 1550 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1551 } else { 1552 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1553 DAG.getVectorIdxConstant(0, SL)); 1554 Join = DAG.getNode( 1555 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1556 VT, Join, HiLoad, 1557 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1558 } 1559 1560 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1561 LoLoad.getValue(1), HiLoad.getValue(1))}; 1562 1563 return DAG.getMergeValues(Ops, SL); 1564 } 1565 1566 // Widen a vector load from vec3 to vec4. 1567 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1568 SelectionDAG &DAG) const { 1569 LoadSDNode *Load = cast<LoadSDNode>(Op); 1570 EVT VT = Op.getValueType(); 1571 assert(VT.getVectorNumElements() == 3); 1572 SDValue BasePtr = Load->getBasePtr(); 1573 EVT MemVT = Load->getMemoryVT(); 1574 SDLoc SL(Op); 1575 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1576 unsigned BaseAlign = Load->getAlignment(); 1577 1578 EVT WideVT = 1579 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1580 EVT WideMemVT = 1581 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1582 SDValue WideLoad = DAG.getExtLoad( 1583 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1584 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1585 return DAG.getMergeValues( 1586 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1587 DAG.getVectorIdxConstant(0, SL)), 1588 WideLoad.getValue(1)}, 1589 SL); 1590 } 1591 1592 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1593 SelectionDAG &DAG) const { 1594 StoreSDNode *Store = cast<StoreSDNode>(Op); 1595 SDValue Val = Store->getValue(); 1596 EVT VT = Val.getValueType(); 1597 1598 // If this is a 2 element vector, we really want to scalarize and not create 1599 // weird 1 element vectors. 1600 if (VT.getVectorNumElements() == 2) 1601 return scalarizeVectorStore(Store, DAG); 1602 1603 EVT MemVT = Store->getMemoryVT(); 1604 SDValue Chain = Store->getChain(); 1605 SDValue BasePtr = Store->getBasePtr(); 1606 SDLoc SL(Op); 1607 1608 EVT LoVT, HiVT; 1609 EVT LoMemVT, HiMemVT; 1610 SDValue Lo, Hi; 1611 1612 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1613 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1614 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1615 1616 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1617 1618 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1619 unsigned BaseAlign = Store->getAlignment(); 1620 unsigned Size = LoMemVT.getStoreSize(); 1621 unsigned HiAlign = MinAlign(BaseAlign, Size); 1622 1623 SDValue LoStore = 1624 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1625 Store->getMemOperand()->getFlags()); 1626 SDValue HiStore = 1627 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1628 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1629 1630 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1631 } 1632 1633 // This is a shortcut for integer division because we have fast i32<->f32 1634 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1635 // float is enough to accurately represent up to a 24-bit signed integer. 1636 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1637 bool Sign) const { 1638 SDLoc DL(Op); 1639 EVT VT = Op.getValueType(); 1640 SDValue LHS = Op.getOperand(0); 1641 SDValue RHS = Op.getOperand(1); 1642 MVT IntVT = MVT::i32; 1643 MVT FltVT = MVT::f32; 1644 1645 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1646 if (LHSSignBits < 9) 1647 return SDValue(); 1648 1649 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1650 if (RHSSignBits < 9) 1651 return SDValue(); 1652 1653 unsigned BitSize = VT.getSizeInBits(); 1654 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1655 unsigned DivBits = BitSize - SignBits; 1656 if (Sign) 1657 ++DivBits; 1658 1659 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1660 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1661 1662 SDValue jq = DAG.getConstant(1, DL, IntVT); 1663 1664 if (Sign) { 1665 // char|short jq = ia ^ ib; 1666 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1667 1668 // jq = jq >> (bitsize - 2) 1669 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1670 DAG.getConstant(BitSize - 2, DL, VT)); 1671 1672 // jq = jq | 0x1 1673 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1674 } 1675 1676 // int ia = (int)LHS; 1677 SDValue ia = LHS; 1678 1679 // int ib, (int)RHS; 1680 SDValue ib = RHS; 1681 1682 // float fa = (float)ia; 1683 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1684 1685 // float fb = (float)ib; 1686 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1687 1688 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1689 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1690 1691 // fq = trunc(fq); 1692 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1693 1694 // float fqneg = -fq; 1695 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1696 1697 MachineFunction &MF = DAG.getMachineFunction(); 1698 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1699 1700 // float fr = mad(fqneg, fb, fa); 1701 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1702 (unsigned)ISD::FMA : 1703 !MFI->getMode().allFP32Denormals() ? 1704 (unsigned)ISD::FMAD : 1705 (unsigned)AMDGPUISD::FMAD_FTZ; 1706 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1707 1708 // int iq = (int)fq; 1709 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1710 1711 // fr = fabs(fr); 1712 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1713 1714 // fb = fabs(fb); 1715 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1716 1717 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1718 1719 // int cv = fr >= fb; 1720 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1721 1722 // jq = (cv ? jq : 0); 1723 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1724 1725 // dst = iq + jq; 1726 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1727 1728 // Rem needs compensation, it's easier to recompute it 1729 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1730 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1731 1732 // Truncate to number of bits this divide really is. 1733 if (Sign) { 1734 SDValue InRegSize 1735 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1736 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1737 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1738 } else { 1739 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1740 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1741 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1742 } 1743 1744 return DAG.getMergeValues({ Div, Rem }, DL); 1745 } 1746 1747 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1748 SelectionDAG &DAG, 1749 SmallVectorImpl<SDValue> &Results) const { 1750 SDLoc DL(Op); 1751 EVT VT = Op.getValueType(); 1752 1753 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1754 1755 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1756 1757 SDValue One = DAG.getConstant(1, DL, HalfVT); 1758 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1759 1760 //HiLo split 1761 SDValue LHS = Op.getOperand(0); 1762 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1763 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1764 1765 SDValue RHS = Op.getOperand(1); 1766 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1767 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1768 1769 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1770 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1771 1772 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1773 LHS_Lo, RHS_Lo); 1774 1775 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1776 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1777 1778 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1779 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1780 return; 1781 } 1782 1783 if (isTypeLegal(MVT::i64)) { 1784 MachineFunction &MF = DAG.getMachineFunction(); 1785 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1786 1787 // Compute denominator reciprocal. 1788 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1789 (unsigned)ISD::FMA : 1790 !MFI->getMode().allFP32Denormals() ? 1791 (unsigned)ISD::FMAD : 1792 (unsigned)AMDGPUISD::FMAD_FTZ; 1793 1794 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1795 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1796 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1797 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1798 Cvt_Lo); 1799 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1800 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1801 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1802 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1803 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1804 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1805 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1806 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1807 Mul1); 1808 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1809 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1810 SDValue Rcp64 = DAG.getBitcast(VT, 1811 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1812 1813 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1814 SDValue One64 = DAG.getConstant(1, DL, VT); 1815 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1816 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1817 1818 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1819 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1820 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1821 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1822 Zero); 1823 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1824 One); 1825 1826 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1827 Mulhi1_Lo, Zero1); 1828 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1829 Mulhi1_Hi, Add1_Lo.getValue(1)); 1830 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1831 SDValue Add1 = DAG.getBitcast(VT, 1832 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1833 1834 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1835 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1836 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1837 Zero); 1838 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1839 One); 1840 1841 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1842 Mulhi2_Lo, Zero1); 1843 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1844 Mulhi2_Hi, Add1_Lo.getValue(1)); 1845 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1846 Zero, Add2_Lo.getValue(1)); 1847 SDValue Add2 = DAG.getBitcast(VT, 1848 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1849 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1850 1851 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1852 1853 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1854 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1855 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1856 Mul3_Lo, Zero1); 1857 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1858 Mul3_Hi, Sub1_Lo.getValue(1)); 1859 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1860 SDValue Sub1 = DAG.getBitcast(VT, 1861 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1862 1863 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1864 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1865 ISD::SETUGE); 1866 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1867 ISD::SETUGE); 1868 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1869 1870 // TODO: Here and below portions of the code can be enclosed into if/endif. 1871 // Currently control flow is unconditional and we have 4 selects after 1872 // potential endif to substitute PHIs. 1873 1874 // if C3 != 0 ... 1875 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1876 RHS_Lo, Zero1); 1877 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1878 RHS_Hi, Sub1_Lo.getValue(1)); 1879 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1880 Zero, Sub2_Lo.getValue(1)); 1881 SDValue Sub2 = DAG.getBitcast(VT, 1882 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1883 1884 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1885 1886 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1887 ISD::SETUGE); 1888 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1889 ISD::SETUGE); 1890 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1891 1892 // if (C6 != 0) 1893 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1894 1895 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1896 RHS_Lo, Zero1); 1897 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1898 RHS_Hi, Sub2_Lo.getValue(1)); 1899 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1900 Zero, Sub3_Lo.getValue(1)); 1901 SDValue Sub3 = DAG.getBitcast(VT, 1902 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1903 1904 // endif C6 1905 // endif C3 1906 1907 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1908 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1909 1910 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1911 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1912 1913 Results.push_back(Div); 1914 Results.push_back(Rem); 1915 1916 return; 1917 } 1918 1919 // r600 expandion. 1920 // Get Speculative values 1921 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1922 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1923 1924 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1925 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1926 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1927 1928 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1929 SDValue DIV_Lo = Zero; 1930 1931 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1932 1933 for (unsigned i = 0; i < halfBitWidth; ++i) { 1934 const unsigned bitPos = halfBitWidth - i - 1; 1935 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1936 // Get value of high bit 1937 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1938 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1939 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1940 1941 // Shift 1942 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1943 // Add LHS high bit 1944 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1945 1946 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1947 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1948 1949 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1950 1951 // Update REM 1952 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1953 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1954 } 1955 1956 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1957 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1958 Results.push_back(DIV); 1959 Results.push_back(REM); 1960 } 1961 1962 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1963 SelectionDAG &DAG) const { 1964 SDLoc DL(Op); 1965 EVT VT = Op.getValueType(); 1966 1967 if (VT == MVT::i64) { 1968 SmallVector<SDValue, 2> Results; 1969 LowerUDIVREM64(Op, DAG, Results); 1970 return DAG.getMergeValues(Results, DL); 1971 } 1972 1973 if (VT == MVT::i32) { 1974 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1975 return Res; 1976 } 1977 1978 SDValue X = Op.getOperand(0); 1979 SDValue Y = Op.getOperand(1); 1980 1981 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 1982 // algorithm used here. 1983 1984 // Initial estimate of inv(y). 1985 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 1986 1987 // One round of UNR. 1988 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 1989 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 1990 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 1991 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 1992 1993 // Quotient/remainder estimate. 1994 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 1995 SDValue R = 1996 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 1997 1998 // First quotient/remainder refinement. 1999 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2000 SDValue One = DAG.getConstant(1, DL, VT); 2001 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2002 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2003 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2004 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2005 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2006 2007 // Second quotient/remainder refinement. 2008 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2009 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2010 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2011 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2012 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2013 2014 return DAG.getMergeValues({Q, R}, DL); 2015 } 2016 2017 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2018 SelectionDAG &DAG) const { 2019 SDLoc DL(Op); 2020 EVT VT = Op.getValueType(); 2021 2022 SDValue LHS = Op.getOperand(0); 2023 SDValue RHS = Op.getOperand(1); 2024 2025 SDValue Zero = DAG.getConstant(0, DL, VT); 2026 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2027 2028 if (VT == MVT::i32) { 2029 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2030 return Res; 2031 } 2032 2033 if (VT == MVT::i64 && 2034 DAG.ComputeNumSignBits(LHS) > 32 && 2035 DAG.ComputeNumSignBits(RHS) > 32) { 2036 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2037 2038 //HiLo split 2039 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2040 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2041 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2042 LHS_Lo, RHS_Lo); 2043 SDValue Res[2] = { 2044 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2045 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2046 }; 2047 return DAG.getMergeValues(Res, DL); 2048 } 2049 2050 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2051 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2052 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2053 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2054 2055 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2056 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2057 2058 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2059 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2060 2061 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2062 SDValue Rem = Div.getValue(1); 2063 2064 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2065 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2066 2067 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2068 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2069 2070 SDValue Res[2] = { 2071 Div, 2072 Rem 2073 }; 2074 return DAG.getMergeValues(Res, DL); 2075 } 2076 2077 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2078 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2079 SDLoc SL(Op); 2080 EVT VT = Op.getValueType(); 2081 auto Flags = Op->getFlags(); 2082 SDValue X = Op.getOperand(0); 2083 SDValue Y = Op.getOperand(1); 2084 2085 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2086 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2087 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2088 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2089 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2090 } 2091 2092 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2093 SDLoc SL(Op); 2094 SDValue Src = Op.getOperand(0); 2095 2096 // result = trunc(src) 2097 // if (src > 0.0 && src != result) 2098 // result += 1.0 2099 2100 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2101 2102 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2103 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2104 2105 EVT SetCCVT = 2106 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2107 2108 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2109 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2110 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2111 2112 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2113 // TODO: Should this propagate fast-math-flags? 2114 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2115 } 2116 2117 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2118 SelectionDAG &DAG) { 2119 const unsigned FractBits = 52; 2120 const unsigned ExpBits = 11; 2121 2122 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2123 Hi, 2124 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2125 DAG.getConstant(ExpBits, SL, MVT::i32)); 2126 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2127 DAG.getConstant(1023, SL, MVT::i32)); 2128 2129 return Exp; 2130 } 2131 2132 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2133 SDLoc SL(Op); 2134 SDValue Src = Op.getOperand(0); 2135 2136 assert(Op.getValueType() == MVT::f64); 2137 2138 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2139 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2140 2141 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2142 2143 // Extract the upper half, since this is where we will find the sign and 2144 // exponent. 2145 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2146 2147 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2148 2149 const unsigned FractBits = 52; 2150 2151 // Extract the sign bit. 2152 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2153 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2154 2155 // Extend back to 64-bits. 2156 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2157 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2158 2159 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2160 const SDValue FractMask 2161 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2162 2163 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2164 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2165 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2166 2167 EVT SetCCVT = 2168 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2169 2170 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2171 2172 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2173 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2174 2175 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2176 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2177 2178 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2179 } 2180 2181 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2182 SDLoc SL(Op); 2183 SDValue Src = Op.getOperand(0); 2184 2185 assert(Op.getValueType() == MVT::f64); 2186 2187 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2188 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2189 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2190 2191 // TODO: Should this propagate fast-math-flags? 2192 2193 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2194 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2195 2196 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2197 2198 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2199 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2200 2201 EVT SetCCVT = 2202 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2203 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2204 2205 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2206 } 2207 2208 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2209 // FNEARBYINT and FRINT are the same, except in their handling of FP 2210 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2211 // rint, so just treat them as equivalent. 2212 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2213 } 2214 2215 // XXX - May require not supporting f32 denormals? 2216 2217 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2218 // compare and vselect end up producing worse code than scalarizing the whole 2219 // operation. 2220 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2221 SDLoc SL(Op); 2222 SDValue X = Op.getOperand(0); 2223 EVT VT = Op.getValueType(); 2224 2225 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2226 2227 // TODO: Should this propagate fast-math-flags? 2228 2229 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2230 2231 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2232 2233 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2234 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2235 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2236 2237 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2238 2239 EVT SetCCVT = 2240 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2241 2242 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2243 2244 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2245 2246 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2247 } 2248 2249 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2250 SDLoc SL(Op); 2251 SDValue Src = Op.getOperand(0); 2252 2253 // result = trunc(src); 2254 // if (src < 0.0 && src != result) 2255 // result += -1.0. 2256 2257 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2258 2259 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2260 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2261 2262 EVT SetCCVT = 2263 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2264 2265 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2266 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2267 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2268 2269 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2270 // TODO: Should this propagate fast-math-flags? 2271 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2272 } 2273 2274 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2275 double Log2BaseInverted) const { 2276 EVT VT = Op.getValueType(); 2277 2278 SDLoc SL(Op); 2279 SDValue Operand = Op.getOperand(0); 2280 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2281 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2282 2283 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2284 } 2285 2286 // exp2(M_LOG2E_F * f); 2287 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2288 EVT VT = Op.getValueType(); 2289 SDLoc SL(Op); 2290 SDValue Src = Op.getOperand(0); 2291 2292 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2293 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2294 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2295 } 2296 2297 static bool isCtlzOpc(unsigned Opc) { 2298 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2299 } 2300 2301 static bool isCttzOpc(unsigned Opc) { 2302 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2303 } 2304 2305 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2306 SDLoc SL(Op); 2307 SDValue Src = Op.getOperand(0); 2308 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2309 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2310 2311 unsigned ISDOpc, NewOpc; 2312 if (isCtlzOpc(Op.getOpcode())) { 2313 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2314 NewOpc = AMDGPUISD::FFBH_U32; 2315 } else if (isCttzOpc(Op.getOpcode())) { 2316 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2317 NewOpc = AMDGPUISD::FFBL_B32; 2318 } else 2319 llvm_unreachable("Unexpected OPCode!!!"); 2320 2321 2322 if (ZeroUndef && Src.getValueType() == MVT::i32) 2323 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2324 2325 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2326 2327 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2328 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2329 2330 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2331 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2332 2333 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2334 *DAG.getContext(), MVT::i32); 2335 2336 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2337 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2338 2339 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2340 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2341 2342 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2343 SDValue Add, NewOpr; 2344 if (isCtlzOpc(Op.getOpcode())) { 2345 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2346 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2347 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2348 } else { 2349 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2350 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2351 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2352 } 2353 2354 if (!ZeroUndef) { 2355 // Test if the full 64-bit input is zero. 2356 2357 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2358 // which we probably don't want. 2359 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2360 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2361 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2362 2363 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2364 // with the same cycles, otherwise it is slower. 2365 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2366 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2367 2368 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2369 2370 // The instruction returns -1 for 0 input, but the defined intrinsic 2371 // behavior is to return the number of bits. 2372 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2373 SrcIsZero, Bits32, NewOpr); 2374 } 2375 2376 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2377 } 2378 2379 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2380 bool Signed) const { 2381 // Unsigned 2382 // cul2f(ulong u) 2383 //{ 2384 // uint lz = clz(u); 2385 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2386 // u = (u << lz) & 0x7fffffffffffffffUL; 2387 // ulong t = u & 0xffffffffffUL; 2388 // uint v = (e << 23) | (uint)(u >> 40); 2389 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2390 // return as_float(v + r); 2391 //} 2392 // Signed 2393 // cl2f(long l) 2394 //{ 2395 // long s = l >> 63; 2396 // float r = cul2f((l + s) ^ s); 2397 // return s ? -r : r; 2398 //} 2399 2400 SDLoc SL(Op); 2401 SDValue Src = Op.getOperand(0); 2402 SDValue L = Src; 2403 2404 SDValue S; 2405 if (Signed) { 2406 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2407 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2408 2409 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2410 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2411 } 2412 2413 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2414 *DAG.getContext(), MVT::f32); 2415 2416 2417 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2418 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2419 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2420 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2421 2422 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2423 SDValue E = DAG.getSelect(SL, MVT::i32, 2424 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2425 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2426 ZeroI32); 2427 2428 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2429 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2430 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2431 2432 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2433 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2434 2435 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2436 U, DAG.getConstant(40, SL, MVT::i64)); 2437 2438 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2439 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2440 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2441 2442 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2443 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2444 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2445 2446 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2447 2448 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2449 2450 SDValue R = DAG.getSelect(SL, MVT::i32, 2451 RCmp, 2452 One, 2453 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2454 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2455 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2456 2457 if (!Signed) 2458 return R; 2459 2460 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2461 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2462 } 2463 2464 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2465 bool Signed) const { 2466 SDLoc SL(Op); 2467 SDValue Src = Op.getOperand(0); 2468 2469 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2470 2471 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2472 DAG.getConstant(0, SL, MVT::i32)); 2473 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2474 DAG.getConstant(1, SL, MVT::i32)); 2475 2476 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2477 SL, MVT::f64, Hi); 2478 2479 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2480 2481 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2482 DAG.getConstant(32, SL, MVT::i32)); 2483 // TODO: Should this propagate fast-math-flags? 2484 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2485 } 2486 2487 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2488 SelectionDAG &DAG) const { 2489 // TODO: Factor out code common with LowerSINT_TO_FP. 2490 EVT DestVT = Op.getValueType(); 2491 SDValue Src = Op.getOperand(0); 2492 EVT SrcVT = Src.getValueType(); 2493 2494 if (SrcVT == MVT::i16) { 2495 if (DestVT == MVT::f16) 2496 return Op; 2497 SDLoc DL(Op); 2498 2499 // Promote src to i32 2500 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2501 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2502 } 2503 2504 assert(SrcVT == MVT::i64 && "operation should be legal"); 2505 2506 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2507 SDLoc DL(Op); 2508 2509 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2510 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2511 SDValue FPRound = 2512 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2513 2514 return FPRound; 2515 } 2516 2517 if (DestVT == MVT::f32) 2518 return LowerINT_TO_FP32(Op, DAG, false); 2519 2520 assert(DestVT == MVT::f64); 2521 return LowerINT_TO_FP64(Op, DAG, false); 2522 } 2523 2524 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2525 SelectionDAG &DAG) const { 2526 EVT DestVT = Op.getValueType(); 2527 2528 SDValue Src = Op.getOperand(0); 2529 EVT SrcVT = Src.getValueType(); 2530 2531 if (SrcVT == MVT::i16) { 2532 if (DestVT == MVT::f16) 2533 return Op; 2534 2535 SDLoc DL(Op); 2536 // Promote src to i32 2537 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2538 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2539 } 2540 2541 assert(SrcVT == MVT::i64 && "operation should be legal"); 2542 2543 // TODO: Factor out code common with LowerUINT_TO_FP. 2544 2545 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2546 SDLoc DL(Op); 2547 SDValue Src = Op.getOperand(0); 2548 2549 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2550 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2551 SDValue FPRound = 2552 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2553 2554 return FPRound; 2555 } 2556 2557 if (DestVT == MVT::f32) 2558 return LowerINT_TO_FP32(Op, DAG, true); 2559 2560 assert(DestVT == MVT::f64); 2561 return LowerINT_TO_FP64(Op, DAG, true); 2562 } 2563 2564 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2565 bool Signed) const { 2566 SDLoc SL(Op); 2567 2568 SDValue Src = Op.getOperand(0); 2569 2570 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2571 2572 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2573 MVT::f64); 2574 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2575 MVT::f64); 2576 // TODO: Should this propagate fast-math-flags? 2577 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2578 2579 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2580 2581 2582 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2583 2584 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2585 MVT::i32, FloorMul); 2586 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2587 2588 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2589 2590 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2591 } 2592 2593 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2594 SDLoc DL(Op); 2595 SDValue N0 = Op.getOperand(0); 2596 2597 // Convert to target node to get known bits 2598 if (N0.getValueType() == MVT::f32) 2599 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2600 2601 if (getTargetMachine().Options.UnsafeFPMath) { 2602 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2603 return SDValue(); 2604 } 2605 2606 assert(N0.getSimpleValueType() == MVT::f64); 2607 2608 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2609 const unsigned ExpMask = 0x7ff; 2610 const unsigned ExpBiasf64 = 1023; 2611 const unsigned ExpBiasf16 = 15; 2612 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2613 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2614 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2615 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2616 DAG.getConstant(32, DL, MVT::i64)); 2617 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2618 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2619 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2620 DAG.getConstant(20, DL, MVT::i64)); 2621 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2622 DAG.getConstant(ExpMask, DL, MVT::i32)); 2623 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2624 // add the f16 bias (15) to get the biased exponent for the f16 format. 2625 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2626 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2627 2628 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2629 DAG.getConstant(8, DL, MVT::i32)); 2630 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2631 DAG.getConstant(0xffe, DL, MVT::i32)); 2632 2633 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2634 DAG.getConstant(0x1ff, DL, MVT::i32)); 2635 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2636 2637 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2638 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2639 2640 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2641 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2642 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2643 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2644 2645 // N = M | (E << 12); 2646 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2647 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2648 DAG.getConstant(12, DL, MVT::i32))); 2649 2650 // B = clamp(1-E, 0, 13); 2651 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2652 One, E); 2653 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2654 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2655 DAG.getConstant(13, DL, MVT::i32)); 2656 2657 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2658 DAG.getConstant(0x1000, DL, MVT::i32)); 2659 2660 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2661 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2662 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2663 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2664 2665 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2666 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2667 DAG.getConstant(0x7, DL, MVT::i32)); 2668 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2669 DAG.getConstant(2, DL, MVT::i32)); 2670 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2671 One, Zero, ISD::SETEQ); 2672 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2673 One, Zero, ISD::SETGT); 2674 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2675 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2676 2677 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2678 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2679 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2680 I, V, ISD::SETEQ); 2681 2682 // Extract the sign bit. 2683 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2684 DAG.getConstant(16, DL, MVT::i32)); 2685 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2686 DAG.getConstant(0x8000, DL, MVT::i32)); 2687 2688 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2689 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2690 } 2691 2692 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2693 SelectionDAG &DAG) const { 2694 SDValue Src = Op.getOperand(0); 2695 2696 // TODO: Factor out code common with LowerFP_TO_UINT. 2697 2698 EVT SrcVT = Src.getValueType(); 2699 if (SrcVT == MVT::f16 || 2700 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2701 SDLoc DL(Op); 2702 2703 SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2704 return DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, FpToInt32); 2705 } 2706 2707 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2708 return LowerFP64_TO_INT(Op, DAG, true); 2709 2710 return SDValue(); 2711 } 2712 2713 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2714 SelectionDAG &DAG) const { 2715 SDValue Src = Op.getOperand(0); 2716 2717 // TODO: Factor out code common with LowerFP_TO_SINT. 2718 2719 EVT SrcVT = Src.getValueType(); 2720 if (SrcVT == MVT::f16 || 2721 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2722 SDLoc DL(Op); 2723 2724 SDValue FpToUInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2725 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, FpToUInt32); 2726 } 2727 2728 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2729 return LowerFP64_TO_INT(Op, DAG, false); 2730 2731 return SDValue(); 2732 } 2733 2734 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2735 SelectionDAG &DAG) const { 2736 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2737 MVT VT = Op.getSimpleValueType(); 2738 MVT ScalarVT = VT.getScalarType(); 2739 2740 assert(VT.isVector()); 2741 2742 SDValue Src = Op.getOperand(0); 2743 SDLoc DL(Op); 2744 2745 // TODO: Don't scalarize on Evergreen? 2746 unsigned NElts = VT.getVectorNumElements(); 2747 SmallVector<SDValue, 8> Args; 2748 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2749 2750 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2751 for (unsigned I = 0; I < NElts; ++I) 2752 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2753 2754 return DAG.getBuildVector(VT, DL, Args); 2755 } 2756 2757 //===----------------------------------------------------------------------===// 2758 // Custom DAG optimizations 2759 //===----------------------------------------------------------------------===// 2760 2761 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2762 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2763 } 2764 2765 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2766 EVT VT = Op.getValueType(); 2767 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2768 // as unsigned 24-bit values. 2769 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2770 } 2771 2772 static SDValue simplifyI24(SDNode *Node24, 2773 TargetLowering::DAGCombinerInfo &DCI) { 2774 SelectionDAG &DAG = DCI.DAG; 2775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2776 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2777 2778 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2779 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2780 unsigned NewOpcode = Node24->getOpcode(); 2781 if (IsIntrin) { 2782 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2783 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2784 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2785 } 2786 2787 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2788 2789 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2790 // the operands to have other uses, but will only perform simplifications that 2791 // involve bypassing some nodes for this user. 2792 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2793 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2794 if (DemandedLHS || DemandedRHS) 2795 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2796 DemandedLHS ? DemandedLHS : LHS, 2797 DemandedRHS ? DemandedRHS : RHS); 2798 2799 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2800 // operands if this node is the only user. 2801 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2802 return SDValue(Node24, 0); 2803 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2804 return SDValue(Node24, 0); 2805 2806 return SDValue(); 2807 } 2808 2809 template <typename IntTy> 2810 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2811 uint32_t Width, const SDLoc &DL) { 2812 if (Width + Offset < 32) { 2813 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2814 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2815 return DAG.getConstant(Result, DL, MVT::i32); 2816 } 2817 2818 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2819 } 2820 2821 static bool hasVolatileUser(SDNode *Val) { 2822 for (SDNode *U : Val->uses()) { 2823 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2824 if (M->isVolatile()) 2825 return true; 2826 } 2827 } 2828 2829 return false; 2830 } 2831 2832 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2833 // i32 vectors are the canonical memory type. 2834 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2835 return false; 2836 2837 if (!VT.isByteSized()) 2838 return false; 2839 2840 unsigned Size = VT.getStoreSize(); 2841 2842 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2843 return false; 2844 2845 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2846 return false; 2847 2848 return true; 2849 } 2850 2851 // Replace load of an illegal type with a store of a bitcast to a friendlier 2852 // type. 2853 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2854 DAGCombinerInfo &DCI) const { 2855 if (!DCI.isBeforeLegalize()) 2856 return SDValue(); 2857 2858 LoadSDNode *LN = cast<LoadSDNode>(N); 2859 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2860 return SDValue(); 2861 2862 SDLoc SL(N); 2863 SelectionDAG &DAG = DCI.DAG; 2864 EVT VT = LN->getMemoryVT(); 2865 2866 unsigned Size = VT.getStoreSize(); 2867 Align Alignment = LN->getAlign(); 2868 if (Alignment < Size && isTypeLegal(VT)) { 2869 bool IsFast; 2870 unsigned AS = LN->getAddressSpace(); 2871 2872 // Expand unaligned loads earlier than legalization. Due to visitation order 2873 // problems during legalization, the emitted instructions to pack and unpack 2874 // the bytes again are not eliminated in the case of an unaligned copy. 2875 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2876 LN->getMemOperand()->getFlags(), 2877 &IsFast)) { 2878 SDValue Ops[2]; 2879 2880 if (VT.isVector()) 2881 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2882 else 2883 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2884 2885 return DAG.getMergeValues(Ops, SDLoc(N)); 2886 } 2887 2888 if (!IsFast) 2889 return SDValue(); 2890 } 2891 2892 if (!shouldCombineMemoryType(VT)) 2893 return SDValue(); 2894 2895 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2896 2897 SDValue NewLoad 2898 = DAG.getLoad(NewVT, SL, LN->getChain(), 2899 LN->getBasePtr(), LN->getMemOperand()); 2900 2901 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2902 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2903 return SDValue(N, 0); 2904 } 2905 2906 // Replace store of an illegal type with a store of a bitcast to a friendlier 2907 // type. 2908 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2909 DAGCombinerInfo &DCI) const { 2910 if (!DCI.isBeforeLegalize()) 2911 return SDValue(); 2912 2913 StoreSDNode *SN = cast<StoreSDNode>(N); 2914 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2915 return SDValue(); 2916 2917 EVT VT = SN->getMemoryVT(); 2918 unsigned Size = VT.getStoreSize(); 2919 2920 SDLoc SL(N); 2921 SelectionDAG &DAG = DCI.DAG; 2922 Align Alignment = SN->getAlign(); 2923 if (Alignment < Size && isTypeLegal(VT)) { 2924 bool IsFast; 2925 unsigned AS = SN->getAddressSpace(); 2926 2927 // Expand unaligned stores earlier than legalization. Due to visitation 2928 // order problems during legalization, the emitted instructions to pack and 2929 // unpack the bytes again are not eliminated in the case of an unaligned 2930 // copy. 2931 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2932 SN->getMemOperand()->getFlags(), 2933 &IsFast)) { 2934 if (VT.isVector()) 2935 return scalarizeVectorStore(SN, DAG); 2936 2937 return expandUnalignedStore(SN, DAG); 2938 } 2939 2940 if (!IsFast) 2941 return SDValue(); 2942 } 2943 2944 if (!shouldCombineMemoryType(VT)) 2945 return SDValue(); 2946 2947 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2948 SDValue Val = SN->getValue(); 2949 2950 //DCI.AddToWorklist(Val.getNode()); 2951 2952 bool OtherUses = !Val.hasOneUse(); 2953 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2954 if (OtherUses) { 2955 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2956 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2957 } 2958 2959 return DAG.getStore(SN->getChain(), SL, CastVal, 2960 SN->getBasePtr(), SN->getMemOperand()); 2961 } 2962 2963 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2964 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2965 // issues. 2966 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2967 DAGCombinerInfo &DCI) const { 2968 SelectionDAG &DAG = DCI.DAG; 2969 SDValue N0 = N->getOperand(0); 2970 2971 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2972 // (vt2 (truncate (assertzext vt0:x, vt1))) 2973 if (N0.getOpcode() == ISD::TRUNCATE) { 2974 SDValue N1 = N->getOperand(1); 2975 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2976 SDLoc SL(N); 2977 2978 SDValue Src = N0.getOperand(0); 2979 EVT SrcVT = Src.getValueType(); 2980 if (SrcVT.bitsGE(ExtVT)) { 2981 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2982 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2983 } 2984 } 2985 2986 return SDValue(); 2987 } 2988 2989 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2990 SDNode *N, DAGCombinerInfo &DCI) const { 2991 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2992 switch (IID) { 2993 case Intrinsic::amdgcn_mul_i24: 2994 case Intrinsic::amdgcn_mul_u24: 2995 return simplifyI24(N, DCI); 2996 case Intrinsic::amdgcn_fract: 2997 case Intrinsic::amdgcn_rsq: 2998 case Intrinsic::amdgcn_rcp_legacy: 2999 case Intrinsic::amdgcn_rsq_legacy: 3000 case Intrinsic::amdgcn_rsq_clamp: 3001 case Intrinsic::amdgcn_ldexp: { 3002 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3003 SDValue Src = N->getOperand(1); 3004 return Src.isUndef() ? Src : SDValue(); 3005 } 3006 default: 3007 return SDValue(); 3008 } 3009 } 3010 3011 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3012 /// binary operation \p Opc to it with the corresponding constant operands. 3013 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3014 DAGCombinerInfo &DCI, const SDLoc &SL, 3015 unsigned Opc, SDValue LHS, 3016 uint32_t ValLo, uint32_t ValHi) const { 3017 SelectionDAG &DAG = DCI.DAG; 3018 SDValue Lo, Hi; 3019 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3020 3021 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3022 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3023 3024 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3025 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3026 3027 // Re-visit the ands. It's possible we eliminated one of them and it could 3028 // simplify the vector. 3029 DCI.AddToWorklist(Lo.getNode()); 3030 DCI.AddToWorklist(Hi.getNode()); 3031 3032 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3033 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3034 } 3035 3036 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3037 DAGCombinerInfo &DCI) const { 3038 EVT VT = N->getValueType(0); 3039 3040 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3041 if (!RHS) 3042 return SDValue(); 3043 3044 SDValue LHS = N->getOperand(0); 3045 unsigned RHSVal = RHS->getZExtValue(); 3046 if (!RHSVal) 3047 return LHS; 3048 3049 SDLoc SL(N); 3050 SelectionDAG &DAG = DCI.DAG; 3051 3052 switch (LHS->getOpcode()) { 3053 default: 3054 break; 3055 case ISD::ZERO_EXTEND: 3056 case ISD::SIGN_EXTEND: 3057 case ISD::ANY_EXTEND: { 3058 SDValue X = LHS->getOperand(0); 3059 3060 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3061 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3062 // Prefer build_vector as the canonical form if packed types are legal. 3063 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3064 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3065 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3066 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3067 } 3068 3069 // shl (ext x) => zext (shl x), if shift does not overflow int 3070 if (VT != MVT::i64) 3071 break; 3072 KnownBits Known = DAG.computeKnownBits(X); 3073 unsigned LZ = Known.countMinLeadingZeros(); 3074 if (LZ < RHSVal) 3075 break; 3076 EVT XVT = X.getValueType(); 3077 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3078 return DAG.getZExtOrTrunc(Shl, SL, VT); 3079 } 3080 } 3081 3082 if (VT != MVT::i64) 3083 return SDValue(); 3084 3085 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3086 3087 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3088 // common case, splitting this into a move and a 32-bit shift is faster and 3089 // the same code size. 3090 if (RHSVal < 32) 3091 return SDValue(); 3092 3093 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3094 3095 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3096 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3097 3098 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3099 3100 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3101 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3102 } 3103 3104 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3105 DAGCombinerInfo &DCI) const { 3106 if (N->getValueType(0) != MVT::i64) 3107 return SDValue(); 3108 3109 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3110 if (!RHS) 3111 return SDValue(); 3112 3113 SelectionDAG &DAG = DCI.DAG; 3114 SDLoc SL(N); 3115 unsigned RHSVal = RHS->getZExtValue(); 3116 3117 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3118 if (RHSVal == 32) { 3119 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3120 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3121 DAG.getConstant(31, SL, MVT::i32)); 3122 3123 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3124 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3125 } 3126 3127 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3128 if (RHSVal == 63) { 3129 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3130 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3131 DAG.getConstant(31, SL, MVT::i32)); 3132 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3133 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3134 } 3135 3136 return SDValue(); 3137 } 3138 3139 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3140 DAGCombinerInfo &DCI) const { 3141 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3142 if (!RHS) 3143 return SDValue(); 3144 3145 EVT VT = N->getValueType(0); 3146 SDValue LHS = N->getOperand(0); 3147 unsigned ShiftAmt = RHS->getZExtValue(); 3148 SelectionDAG &DAG = DCI.DAG; 3149 SDLoc SL(N); 3150 3151 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3152 // this improves the ability to match BFE patterns in isel. 3153 if (LHS.getOpcode() == ISD::AND) { 3154 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3155 if (Mask->getAPIntValue().isShiftedMask() && 3156 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3157 return DAG.getNode( 3158 ISD::AND, SL, VT, 3159 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3160 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3161 } 3162 } 3163 } 3164 3165 if (VT != MVT::i64) 3166 return SDValue(); 3167 3168 if (ShiftAmt < 32) 3169 return SDValue(); 3170 3171 // srl i64:x, C for C >= 32 3172 // => 3173 // build_pair (srl hi_32(x), C - 32), 0 3174 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3175 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3176 3177 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3178 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3179 3180 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3181 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3182 3183 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3184 3185 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3186 } 3187 3188 SDValue AMDGPUTargetLowering::performTruncateCombine( 3189 SDNode *N, DAGCombinerInfo &DCI) const { 3190 SDLoc SL(N); 3191 SelectionDAG &DAG = DCI.DAG; 3192 EVT VT = N->getValueType(0); 3193 SDValue Src = N->getOperand(0); 3194 3195 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3196 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3197 SDValue Vec = Src.getOperand(0); 3198 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3199 SDValue Elt0 = Vec.getOperand(0); 3200 EVT EltVT = Elt0.getValueType(); 3201 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3202 if (EltVT.isFloatingPoint()) { 3203 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3204 EltVT.changeTypeToInteger(), Elt0); 3205 } 3206 3207 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3208 } 3209 } 3210 } 3211 3212 // Equivalent of above for accessing the high element of a vector as an 3213 // integer operation. 3214 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3215 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3216 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3217 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3218 SDValue BV = stripBitcast(Src.getOperand(0)); 3219 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3220 BV.getValueType().getVectorNumElements() == 2) { 3221 SDValue SrcElt = BV.getOperand(1); 3222 EVT SrcEltVT = SrcElt.getValueType(); 3223 if (SrcEltVT.isFloatingPoint()) { 3224 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3225 SrcEltVT.changeTypeToInteger(), SrcElt); 3226 } 3227 3228 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3229 } 3230 } 3231 } 3232 } 3233 3234 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3235 // 3236 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3237 // i16 (trunc (srl (i32 (trunc x), K))) 3238 if (VT.getScalarSizeInBits() < 32) { 3239 EVT SrcVT = Src.getValueType(); 3240 if (SrcVT.getScalarSizeInBits() > 32 && 3241 (Src.getOpcode() == ISD::SRL || 3242 Src.getOpcode() == ISD::SRA || 3243 Src.getOpcode() == ISD::SHL)) { 3244 SDValue Amt = Src.getOperand(1); 3245 KnownBits Known = DAG.computeKnownBits(Amt); 3246 unsigned Size = VT.getScalarSizeInBits(); 3247 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3248 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3249 EVT MidVT = VT.isVector() ? 3250 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3251 VT.getVectorNumElements()) : MVT::i32; 3252 3253 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3254 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3255 Src.getOperand(0)); 3256 DCI.AddToWorklist(Trunc.getNode()); 3257 3258 if (Amt.getValueType() != NewShiftVT) { 3259 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3260 DCI.AddToWorklist(Amt.getNode()); 3261 } 3262 3263 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3264 Trunc, Amt); 3265 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3266 } 3267 } 3268 } 3269 3270 return SDValue(); 3271 } 3272 3273 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3274 // instructions. If we only match on the legalized i64 mul expansion, 3275 // SimplifyDemandedBits will be unable to remove them because there will be 3276 // multiple uses due to the separate mul + mulh[su]. 3277 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3278 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3279 if (Size <= 32) { 3280 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3281 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3282 } 3283 3284 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3285 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3286 3287 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3288 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3289 3290 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3291 } 3292 3293 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3294 DAGCombinerInfo &DCI) const { 3295 EVT VT = N->getValueType(0); 3296 3297 unsigned Size = VT.getSizeInBits(); 3298 if (VT.isVector() || Size > 64) 3299 return SDValue(); 3300 3301 // There are i16 integer mul/mad. 3302 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3303 return SDValue(); 3304 3305 SelectionDAG &DAG = DCI.DAG; 3306 SDLoc DL(N); 3307 3308 SDValue N0 = N->getOperand(0); 3309 SDValue N1 = N->getOperand(1); 3310 3311 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3312 // in the source into any_extends if the result of the mul is truncated. Since 3313 // we can assume the high bits are whatever we want, use the underlying value 3314 // to avoid the unknown high bits from interfering. 3315 if (N0.getOpcode() == ISD::ANY_EXTEND) 3316 N0 = N0.getOperand(0); 3317 3318 if (N1.getOpcode() == ISD::ANY_EXTEND) 3319 N1 = N1.getOperand(0); 3320 3321 SDValue Mul; 3322 3323 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3324 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3325 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3326 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3327 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3328 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3329 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3330 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3331 } else { 3332 return SDValue(); 3333 } 3334 3335 // We need to use sext even for MUL_U24, because MUL_U24 is used 3336 // for signed multiply of 8 and 16-bit types. 3337 return DAG.getSExtOrTrunc(Mul, DL, VT); 3338 } 3339 3340 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3341 DAGCombinerInfo &DCI) const { 3342 EVT VT = N->getValueType(0); 3343 3344 if (!Subtarget->hasMulI24() || VT.isVector()) 3345 return SDValue(); 3346 3347 SelectionDAG &DAG = DCI.DAG; 3348 SDLoc DL(N); 3349 3350 SDValue N0 = N->getOperand(0); 3351 SDValue N1 = N->getOperand(1); 3352 3353 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3354 return SDValue(); 3355 3356 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3357 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3358 3359 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3360 DCI.AddToWorklist(Mulhi.getNode()); 3361 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3362 } 3363 3364 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3365 DAGCombinerInfo &DCI) const { 3366 EVT VT = N->getValueType(0); 3367 3368 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3369 return SDValue(); 3370 3371 SelectionDAG &DAG = DCI.DAG; 3372 SDLoc DL(N); 3373 3374 SDValue N0 = N->getOperand(0); 3375 SDValue N1 = N->getOperand(1); 3376 3377 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3378 return SDValue(); 3379 3380 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3381 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3382 3383 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3384 DCI.AddToWorklist(Mulhi.getNode()); 3385 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3386 } 3387 3388 static bool isNegativeOne(SDValue Val) { 3389 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3390 return C->isAllOnesValue(); 3391 return false; 3392 } 3393 3394 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3395 SDValue Op, 3396 const SDLoc &DL, 3397 unsigned Opc) const { 3398 EVT VT = Op.getValueType(); 3399 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3400 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3401 LegalVT != MVT::i16)) 3402 return SDValue(); 3403 3404 if (VT != MVT::i32) 3405 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3406 3407 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3408 if (VT != MVT::i32) 3409 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3410 3411 return FFBX; 3412 } 3413 3414 // The native instructions return -1 on 0 input. Optimize out a select that 3415 // produces -1 on 0. 3416 // 3417 // TODO: If zero is not undef, we could also do this if the output is compared 3418 // against the bitwidth. 3419 // 3420 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3421 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3422 SDValue LHS, SDValue RHS, 3423 DAGCombinerInfo &DCI) const { 3424 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3425 if (!CmpRhs || !CmpRhs->isNullValue()) 3426 return SDValue(); 3427 3428 SelectionDAG &DAG = DCI.DAG; 3429 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3430 SDValue CmpLHS = Cond.getOperand(0); 3431 3432 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3433 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3434 if (CCOpcode == ISD::SETEQ && 3435 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3436 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3437 unsigned Opc = 3438 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3439 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3440 } 3441 3442 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3443 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3444 if (CCOpcode == ISD::SETNE && 3445 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3446 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3447 unsigned Opc = 3448 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3449 3450 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3451 } 3452 3453 return SDValue(); 3454 } 3455 3456 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3457 unsigned Op, 3458 const SDLoc &SL, 3459 SDValue Cond, 3460 SDValue N1, 3461 SDValue N2) { 3462 SelectionDAG &DAG = DCI.DAG; 3463 EVT VT = N1.getValueType(); 3464 3465 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3466 N1.getOperand(0), N2.getOperand(0)); 3467 DCI.AddToWorklist(NewSelect.getNode()); 3468 return DAG.getNode(Op, SL, VT, NewSelect); 3469 } 3470 3471 // Pull a free FP operation out of a select so it may fold into uses. 3472 // 3473 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3474 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3475 // 3476 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3477 // select c, (fabs x), +k -> fabs (select c, x, k) 3478 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3479 SDValue N) { 3480 SelectionDAG &DAG = DCI.DAG; 3481 SDValue Cond = N.getOperand(0); 3482 SDValue LHS = N.getOperand(1); 3483 SDValue RHS = N.getOperand(2); 3484 3485 EVT VT = N.getValueType(); 3486 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3487 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3488 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3489 SDLoc(N), Cond, LHS, RHS); 3490 } 3491 3492 bool Inv = false; 3493 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3494 std::swap(LHS, RHS); 3495 Inv = true; 3496 } 3497 3498 // TODO: Support vector constants. 3499 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3500 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3501 SDLoc SL(N); 3502 // If one side is an fneg/fabs and the other is a constant, we can push the 3503 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3504 SDValue NewLHS = LHS.getOperand(0); 3505 SDValue NewRHS = RHS; 3506 3507 // Careful: if the neg can be folded up, don't try to pull it back down. 3508 bool ShouldFoldNeg = true; 3509 3510 if (NewLHS.hasOneUse()) { 3511 unsigned Opc = NewLHS.getOpcode(); 3512 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3513 ShouldFoldNeg = false; 3514 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3515 ShouldFoldNeg = false; 3516 } 3517 3518 if (ShouldFoldNeg) { 3519 if (LHS.getOpcode() == ISD::FNEG) 3520 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3521 else if (CRHS->isNegative()) 3522 return SDValue(); 3523 3524 if (Inv) 3525 std::swap(NewLHS, NewRHS); 3526 3527 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3528 Cond, NewLHS, NewRHS); 3529 DCI.AddToWorklist(NewSelect.getNode()); 3530 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3531 } 3532 } 3533 3534 return SDValue(); 3535 } 3536 3537 3538 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3539 DAGCombinerInfo &DCI) const { 3540 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3541 return Folded; 3542 3543 SDValue Cond = N->getOperand(0); 3544 if (Cond.getOpcode() != ISD::SETCC) 3545 return SDValue(); 3546 3547 EVT VT = N->getValueType(0); 3548 SDValue LHS = Cond.getOperand(0); 3549 SDValue RHS = Cond.getOperand(1); 3550 SDValue CC = Cond.getOperand(2); 3551 3552 SDValue True = N->getOperand(1); 3553 SDValue False = N->getOperand(2); 3554 3555 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3556 SelectionDAG &DAG = DCI.DAG; 3557 if (DAG.isConstantValueOfAnyType(True) && 3558 !DAG.isConstantValueOfAnyType(False)) { 3559 // Swap cmp + select pair to move constant to false input. 3560 // This will allow using VOPC cndmasks more often. 3561 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3562 3563 SDLoc SL(N); 3564 ISD::CondCode NewCC = 3565 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3566 3567 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3568 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3569 } 3570 3571 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3572 SDValue MinMax 3573 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3574 // Revisit this node so we can catch min3/max3/med3 patterns. 3575 //DCI.AddToWorklist(MinMax.getNode()); 3576 return MinMax; 3577 } 3578 } 3579 3580 // There's no reason to not do this if the condition has other uses. 3581 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3582 } 3583 3584 static bool isInv2Pi(const APFloat &APF) { 3585 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3586 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3587 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3588 3589 return APF.bitwiseIsEqual(KF16) || 3590 APF.bitwiseIsEqual(KF32) || 3591 APF.bitwiseIsEqual(KF64); 3592 } 3593 3594 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3595 // additional cost to negate them. 3596 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3597 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3598 if (C->isZero() && !C->isNegative()) 3599 return true; 3600 3601 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3602 return true; 3603 } 3604 3605 return false; 3606 } 3607 3608 static unsigned inverseMinMax(unsigned Opc) { 3609 switch (Opc) { 3610 case ISD::FMAXNUM: 3611 return ISD::FMINNUM; 3612 case ISD::FMINNUM: 3613 return ISD::FMAXNUM; 3614 case ISD::FMAXNUM_IEEE: 3615 return ISD::FMINNUM_IEEE; 3616 case ISD::FMINNUM_IEEE: 3617 return ISD::FMAXNUM_IEEE; 3618 case AMDGPUISD::FMAX_LEGACY: 3619 return AMDGPUISD::FMIN_LEGACY; 3620 case AMDGPUISD::FMIN_LEGACY: 3621 return AMDGPUISD::FMAX_LEGACY; 3622 default: 3623 llvm_unreachable("invalid min/max opcode"); 3624 } 3625 } 3626 3627 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3628 DAGCombinerInfo &DCI) const { 3629 SelectionDAG &DAG = DCI.DAG; 3630 SDValue N0 = N->getOperand(0); 3631 EVT VT = N->getValueType(0); 3632 3633 unsigned Opc = N0.getOpcode(); 3634 3635 // If the input has multiple uses and we can either fold the negate down, or 3636 // the other uses cannot, give up. This both prevents unprofitable 3637 // transformations and infinite loops: we won't repeatedly try to fold around 3638 // a negate that has no 'good' form. 3639 if (N0.hasOneUse()) { 3640 // This may be able to fold into the source, but at a code size cost. Don't 3641 // fold if the fold into the user is free. 3642 if (allUsesHaveSourceMods(N, 0)) 3643 return SDValue(); 3644 } else { 3645 if (fnegFoldsIntoOp(Opc) && 3646 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3647 return SDValue(); 3648 } 3649 3650 SDLoc SL(N); 3651 switch (Opc) { 3652 case ISD::FADD: { 3653 if (!mayIgnoreSignedZero(N0)) 3654 return SDValue(); 3655 3656 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3657 SDValue LHS = N0.getOperand(0); 3658 SDValue RHS = N0.getOperand(1); 3659 3660 if (LHS.getOpcode() != ISD::FNEG) 3661 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3662 else 3663 LHS = LHS.getOperand(0); 3664 3665 if (RHS.getOpcode() != ISD::FNEG) 3666 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3667 else 3668 RHS = RHS.getOperand(0); 3669 3670 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3671 if (Res.getOpcode() != ISD::FADD) 3672 return SDValue(); // Op got folded away. 3673 if (!N0.hasOneUse()) 3674 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3675 return Res; 3676 } 3677 case ISD::FMUL: 3678 case AMDGPUISD::FMUL_LEGACY: { 3679 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3680 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3681 SDValue LHS = N0.getOperand(0); 3682 SDValue RHS = N0.getOperand(1); 3683 3684 if (LHS.getOpcode() == ISD::FNEG) 3685 LHS = LHS.getOperand(0); 3686 else if (RHS.getOpcode() == ISD::FNEG) 3687 RHS = RHS.getOperand(0); 3688 else 3689 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3690 3691 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3692 if (Res.getOpcode() != Opc) 3693 return SDValue(); // Op got folded away. 3694 if (!N0.hasOneUse()) 3695 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3696 return Res; 3697 } 3698 case ISD::FMA: 3699 case ISD::FMAD: { 3700 // TODO: handle llvm.amdgcn.fma.legacy 3701 if (!mayIgnoreSignedZero(N0)) 3702 return SDValue(); 3703 3704 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3705 SDValue LHS = N0.getOperand(0); 3706 SDValue MHS = N0.getOperand(1); 3707 SDValue RHS = N0.getOperand(2); 3708 3709 if (LHS.getOpcode() == ISD::FNEG) 3710 LHS = LHS.getOperand(0); 3711 else if (MHS.getOpcode() == ISD::FNEG) 3712 MHS = MHS.getOperand(0); 3713 else 3714 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3715 3716 if (RHS.getOpcode() != ISD::FNEG) 3717 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3718 else 3719 RHS = RHS.getOperand(0); 3720 3721 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3722 if (Res.getOpcode() != Opc) 3723 return SDValue(); // Op got folded away. 3724 if (!N0.hasOneUse()) 3725 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3726 return Res; 3727 } 3728 case ISD::FMAXNUM: 3729 case ISD::FMINNUM: 3730 case ISD::FMAXNUM_IEEE: 3731 case ISD::FMINNUM_IEEE: 3732 case AMDGPUISD::FMAX_LEGACY: 3733 case AMDGPUISD::FMIN_LEGACY: { 3734 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3735 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3736 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3737 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3738 3739 SDValue LHS = N0.getOperand(0); 3740 SDValue RHS = N0.getOperand(1); 3741 3742 // 0 doesn't have a negated inline immediate. 3743 // TODO: This constant check should be generalized to other operations. 3744 if (isConstantCostlierToNegate(RHS)) 3745 return SDValue(); 3746 3747 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3748 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3749 unsigned Opposite = inverseMinMax(Opc); 3750 3751 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3752 if (Res.getOpcode() != Opposite) 3753 return SDValue(); // Op got folded away. 3754 if (!N0.hasOneUse()) 3755 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3756 return Res; 3757 } 3758 case AMDGPUISD::FMED3: { 3759 SDValue Ops[3]; 3760 for (unsigned I = 0; I < 3; ++I) 3761 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3762 3763 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3764 if (Res.getOpcode() != AMDGPUISD::FMED3) 3765 return SDValue(); // Op got folded away. 3766 3767 if (!N0.hasOneUse()) { 3768 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3769 DAG.ReplaceAllUsesWith(N0, Neg); 3770 3771 for (SDNode *U : Neg->uses()) 3772 DCI.AddToWorklist(U); 3773 } 3774 3775 return Res; 3776 } 3777 case ISD::FP_EXTEND: 3778 case ISD::FTRUNC: 3779 case ISD::FRINT: 3780 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3781 case ISD::FSIN: 3782 case ISD::FCANONICALIZE: 3783 case AMDGPUISD::RCP: 3784 case AMDGPUISD::RCP_LEGACY: 3785 case AMDGPUISD::RCP_IFLAG: 3786 case AMDGPUISD::SIN_HW: { 3787 SDValue CvtSrc = N0.getOperand(0); 3788 if (CvtSrc.getOpcode() == ISD::FNEG) { 3789 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3790 // (fneg (rcp (fneg x))) -> (rcp x) 3791 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3792 } 3793 3794 if (!N0.hasOneUse()) 3795 return SDValue(); 3796 3797 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3798 // (fneg (rcp x)) -> (rcp (fneg x)) 3799 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3800 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3801 } 3802 case ISD::FP_ROUND: { 3803 SDValue CvtSrc = N0.getOperand(0); 3804 3805 if (CvtSrc.getOpcode() == ISD::FNEG) { 3806 // (fneg (fp_round (fneg x))) -> (fp_round x) 3807 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3808 CvtSrc.getOperand(0), N0.getOperand(1)); 3809 } 3810 3811 if (!N0.hasOneUse()) 3812 return SDValue(); 3813 3814 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3815 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3816 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3817 } 3818 case ISD::FP16_TO_FP: { 3819 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3820 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3821 // Put the fneg back as a legal source operation that can be matched later. 3822 SDLoc SL(N); 3823 3824 SDValue Src = N0.getOperand(0); 3825 EVT SrcVT = Src.getValueType(); 3826 3827 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3828 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3829 DAG.getConstant(0x8000, SL, SrcVT)); 3830 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3831 } 3832 default: 3833 return SDValue(); 3834 } 3835 } 3836 3837 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3838 DAGCombinerInfo &DCI) const { 3839 SelectionDAG &DAG = DCI.DAG; 3840 SDValue N0 = N->getOperand(0); 3841 3842 if (!N0.hasOneUse()) 3843 return SDValue(); 3844 3845 switch (N0.getOpcode()) { 3846 case ISD::FP16_TO_FP: { 3847 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3848 SDLoc SL(N); 3849 SDValue Src = N0.getOperand(0); 3850 EVT SrcVT = Src.getValueType(); 3851 3852 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3853 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3854 DAG.getConstant(0x7fff, SL, SrcVT)); 3855 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3856 } 3857 default: 3858 return SDValue(); 3859 } 3860 } 3861 3862 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3863 DAGCombinerInfo &DCI) const { 3864 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3865 if (!CFP) 3866 return SDValue(); 3867 3868 // XXX - Should this flush denormals? 3869 const APFloat &Val = CFP->getValueAPF(); 3870 APFloat One(Val.getSemantics(), "1.0"); 3871 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3872 } 3873 3874 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3875 DAGCombinerInfo &DCI) const { 3876 SelectionDAG &DAG = DCI.DAG; 3877 SDLoc DL(N); 3878 3879 switch(N->getOpcode()) { 3880 default: 3881 break; 3882 case ISD::BITCAST: { 3883 EVT DestVT = N->getValueType(0); 3884 3885 // Push casts through vector builds. This helps avoid emitting a large 3886 // number of copies when materializing floating point vector constants. 3887 // 3888 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3889 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3890 if (DestVT.isVector()) { 3891 SDValue Src = N->getOperand(0); 3892 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3893 EVT SrcVT = Src.getValueType(); 3894 unsigned NElts = DestVT.getVectorNumElements(); 3895 3896 if (SrcVT.getVectorNumElements() == NElts) { 3897 EVT DestEltVT = DestVT.getVectorElementType(); 3898 3899 SmallVector<SDValue, 8> CastedElts; 3900 SDLoc SL(N); 3901 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3902 SDValue Elt = Src.getOperand(I); 3903 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3904 } 3905 3906 return DAG.getBuildVector(DestVT, SL, CastedElts); 3907 } 3908 } 3909 } 3910 3911 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 3912 break; 3913 3914 // Fold bitcasts of constants. 3915 // 3916 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3917 // TODO: Generalize and move to DAGCombiner 3918 SDValue Src = N->getOperand(0); 3919 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3920 SDLoc SL(N); 3921 uint64_t CVal = C->getZExtValue(); 3922 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3923 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3924 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3925 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3926 } 3927 3928 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3929 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3930 SDLoc SL(N); 3931 uint64_t CVal = Val.getZExtValue(); 3932 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3933 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3934 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3935 3936 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3937 } 3938 3939 break; 3940 } 3941 case ISD::SHL: { 3942 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3943 break; 3944 3945 return performShlCombine(N, DCI); 3946 } 3947 case ISD::SRL: { 3948 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3949 break; 3950 3951 return performSrlCombine(N, DCI); 3952 } 3953 case ISD::SRA: { 3954 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3955 break; 3956 3957 return performSraCombine(N, DCI); 3958 } 3959 case ISD::TRUNCATE: 3960 return performTruncateCombine(N, DCI); 3961 case ISD::MUL: 3962 return performMulCombine(N, DCI); 3963 case ISD::MULHS: 3964 return performMulhsCombine(N, DCI); 3965 case ISD::MULHU: 3966 return performMulhuCombine(N, DCI); 3967 case AMDGPUISD::MUL_I24: 3968 case AMDGPUISD::MUL_U24: 3969 case AMDGPUISD::MULHI_I24: 3970 case AMDGPUISD::MULHI_U24: { 3971 if (SDValue V = simplifyI24(N, DCI)) 3972 return V; 3973 return SDValue(); 3974 } 3975 case ISD::SELECT: 3976 return performSelectCombine(N, DCI); 3977 case ISD::FNEG: 3978 return performFNegCombine(N, DCI); 3979 case ISD::FABS: 3980 return performFAbsCombine(N, DCI); 3981 case AMDGPUISD::BFE_I32: 3982 case AMDGPUISD::BFE_U32: { 3983 assert(!N->getValueType(0).isVector() && 3984 "Vector handling of BFE not implemented"); 3985 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3986 if (!Width) 3987 break; 3988 3989 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3990 if (WidthVal == 0) 3991 return DAG.getConstant(0, DL, MVT::i32); 3992 3993 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3994 if (!Offset) 3995 break; 3996 3997 SDValue BitsFrom = N->getOperand(0); 3998 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3999 4000 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4001 4002 if (OffsetVal == 0) { 4003 // This is already sign / zero extended, so try to fold away extra BFEs. 4004 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4005 4006 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4007 if (OpSignBits >= SignBits) 4008 return BitsFrom; 4009 4010 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4011 if (Signed) { 4012 // This is a sign_extend_inreg. Replace it to take advantage of existing 4013 // DAG Combines. If not eliminated, we will match back to BFE during 4014 // selection. 4015 4016 // TODO: The sext_inreg of extended types ends, although we can could 4017 // handle them in a single BFE. 4018 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4019 DAG.getValueType(SmallVT)); 4020 } 4021 4022 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4023 } 4024 4025 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4026 if (Signed) { 4027 return constantFoldBFE<int32_t>(DAG, 4028 CVal->getSExtValue(), 4029 OffsetVal, 4030 WidthVal, 4031 DL); 4032 } 4033 4034 return constantFoldBFE<uint32_t>(DAG, 4035 CVal->getZExtValue(), 4036 OffsetVal, 4037 WidthVal, 4038 DL); 4039 } 4040 4041 if ((OffsetVal + WidthVal) >= 32 && 4042 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4043 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4044 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4045 BitsFrom, ShiftVal); 4046 } 4047 4048 if (BitsFrom.hasOneUse()) { 4049 APInt Demanded = APInt::getBitsSet(32, 4050 OffsetVal, 4051 OffsetVal + WidthVal); 4052 4053 KnownBits Known; 4054 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4055 !DCI.isBeforeLegalizeOps()); 4056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4057 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4058 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4059 DCI.CommitTargetLoweringOpt(TLO); 4060 } 4061 } 4062 4063 break; 4064 } 4065 case ISD::LOAD: 4066 return performLoadCombine(N, DCI); 4067 case ISD::STORE: 4068 return performStoreCombine(N, DCI); 4069 case AMDGPUISD::RCP: 4070 case AMDGPUISD::RCP_IFLAG: 4071 return performRcpCombine(N, DCI); 4072 case ISD::AssertZext: 4073 case ISD::AssertSext: 4074 return performAssertSZExtCombine(N, DCI); 4075 case ISD::INTRINSIC_WO_CHAIN: 4076 return performIntrinsicWOChainCombine(N, DCI); 4077 } 4078 return SDValue(); 4079 } 4080 4081 //===----------------------------------------------------------------------===// 4082 // Helper functions 4083 //===----------------------------------------------------------------------===// 4084 4085 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4086 const TargetRegisterClass *RC, 4087 Register Reg, EVT VT, 4088 const SDLoc &SL, 4089 bool RawReg) const { 4090 MachineFunction &MF = DAG.getMachineFunction(); 4091 MachineRegisterInfo &MRI = MF.getRegInfo(); 4092 Register VReg; 4093 4094 if (!MRI.isLiveIn(Reg)) { 4095 VReg = MRI.createVirtualRegister(RC); 4096 MRI.addLiveIn(Reg, VReg); 4097 } else { 4098 VReg = MRI.getLiveInVirtReg(Reg); 4099 } 4100 4101 if (RawReg) 4102 return DAG.getRegister(VReg, VT); 4103 4104 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4105 } 4106 4107 // This may be called multiple times, and nothing prevents creating multiple 4108 // objects at the same offset. See if we already defined this object. 4109 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4110 int64_t Offset) { 4111 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4112 if (MFI.getObjectOffset(I) == Offset) { 4113 assert(MFI.getObjectSize(I) == Size); 4114 return I; 4115 } 4116 } 4117 4118 return MFI.CreateFixedObject(Size, Offset, true); 4119 } 4120 4121 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4122 EVT VT, 4123 const SDLoc &SL, 4124 int64_t Offset) const { 4125 MachineFunction &MF = DAG.getMachineFunction(); 4126 MachineFrameInfo &MFI = MF.getFrameInfo(); 4127 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4128 4129 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4130 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4131 4132 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4133 MachineMemOperand::MODereferenceable | 4134 MachineMemOperand::MOInvariant); 4135 } 4136 4137 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4138 const SDLoc &SL, 4139 SDValue Chain, 4140 SDValue ArgVal, 4141 int64_t Offset) const { 4142 MachineFunction &MF = DAG.getMachineFunction(); 4143 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4144 4145 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4146 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4147 MachineMemOperand::MODereferenceable); 4148 return Store; 4149 } 4150 4151 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4152 const TargetRegisterClass *RC, 4153 EVT VT, const SDLoc &SL, 4154 const ArgDescriptor &Arg) const { 4155 assert(Arg && "Attempting to load missing argument"); 4156 4157 SDValue V = Arg.isRegister() ? 4158 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4159 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4160 4161 if (!Arg.isMasked()) 4162 return V; 4163 4164 unsigned Mask = Arg.getMask(); 4165 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4166 V = DAG.getNode(ISD::SRL, SL, VT, V, 4167 DAG.getShiftAmountConstant(Shift, VT, SL)); 4168 return DAG.getNode(ISD::AND, SL, VT, V, 4169 DAG.getConstant(Mask >> Shift, SL, VT)); 4170 } 4171 4172 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4173 const MachineFunction &MF, const ImplicitParameter Param) const { 4174 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4175 const AMDGPUSubtarget &ST = 4176 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4177 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4178 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4179 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4180 ExplicitArgOffset; 4181 switch (Param) { 4182 case GRID_DIM: 4183 return ArgOffset; 4184 case GRID_OFFSET: 4185 return ArgOffset + 4; 4186 } 4187 llvm_unreachable("unexpected implicit parameter type"); 4188 } 4189 4190 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4191 4192 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4193 switch ((AMDGPUISD::NodeType)Opcode) { 4194 case AMDGPUISD::FIRST_NUMBER: break; 4195 // AMDIL DAG nodes 4196 NODE_NAME_CASE(UMUL); 4197 NODE_NAME_CASE(BRANCH_COND); 4198 4199 // AMDGPU DAG nodes 4200 NODE_NAME_CASE(IF) 4201 NODE_NAME_CASE(ELSE) 4202 NODE_NAME_CASE(LOOP) 4203 NODE_NAME_CASE(CALL) 4204 NODE_NAME_CASE(TC_RETURN) 4205 NODE_NAME_CASE(TRAP) 4206 NODE_NAME_CASE(RET_FLAG) 4207 NODE_NAME_CASE(RETURN_TO_EPILOG) 4208 NODE_NAME_CASE(ENDPGM) 4209 NODE_NAME_CASE(DWORDADDR) 4210 NODE_NAME_CASE(FRACT) 4211 NODE_NAME_CASE(SETCC) 4212 NODE_NAME_CASE(SETREG) 4213 NODE_NAME_CASE(DENORM_MODE) 4214 NODE_NAME_CASE(FMA_W_CHAIN) 4215 NODE_NAME_CASE(FMUL_W_CHAIN) 4216 NODE_NAME_CASE(CLAMP) 4217 NODE_NAME_CASE(COS_HW) 4218 NODE_NAME_CASE(SIN_HW) 4219 NODE_NAME_CASE(FMAX_LEGACY) 4220 NODE_NAME_CASE(FMIN_LEGACY) 4221 NODE_NAME_CASE(FMAX3) 4222 NODE_NAME_CASE(SMAX3) 4223 NODE_NAME_CASE(UMAX3) 4224 NODE_NAME_CASE(FMIN3) 4225 NODE_NAME_CASE(SMIN3) 4226 NODE_NAME_CASE(UMIN3) 4227 NODE_NAME_CASE(FMED3) 4228 NODE_NAME_CASE(SMED3) 4229 NODE_NAME_CASE(UMED3) 4230 NODE_NAME_CASE(FDOT2) 4231 NODE_NAME_CASE(URECIP) 4232 NODE_NAME_CASE(DIV_SCALE) 4233 NODE_NAME_CASE(DIV_FMAS) 4234 NODE_NAME_CASE(DIV_FIXUP) 4235 NODE_NAME_CASE(FMAD_FTZ) 4236 NODE_NAME_CASE(RCP) 4237 NODE_NAME_CASE(RSQ) 4238 NODE_NAME_CASE(RCP_LEGACY) 4239 NODE_NAME_CASE(RCP_IFLAG) 4240 NODE_NAME_CASE(FMUL_LEGACY) 4241 NODE_NAME_CASE(RSQ_CLAMP) 4242 NODE_NAME_CASE(LDEXP) 4243 NODE_NAME_CASE(FP_CLASS) 4244 NODE_NAME_CASE(DOT4) 4245 NODE_NAME_CASE(CARRY) 4246 NODE_NAME_CASE(BORROW) 4247 NODE_NAME_CASE(BFE_U32) 4248 NODE_NAME_CASE(BFE_I32) 4249 NODE_NAME_CASE(BFI) 4250 NODE_NAME_CASE(BFM) 4251 NODE_NAME_CASE(FFBH_U32) 4252 NODE_NAME_CASE(FFBH_I32) 4253 NODE_NAME_CASE(FFBL_B32) 4254 NODE_NAME_CASE(MUL_U24) 4255 NODE_NAME_CASE(MUL_I24) 4256 NODE_NAME_CASE(MULHI_U24) 4257 NODE_NAME_CASE(MULHI_I24) 4258 NODE_NAME_CASE(MAD_U24) 4259 NODE_NAME_CASE(MAD_I24) 4260 NODE_NAME_CASE(MAD_I64_I32) 4261 NODE_NAME_CASE(MAD_U64_U32) 4262 NODE_NAME_CASE(PERM) 4263 NODE_NAME_CASE(TEXTURE_FETCH) 4264 NODE_NAME_CASE(R600_EXPORT) 4265 NODE_NAME_CASE(CONST_ADDRESS) 4266 NODE_NAME_CASE(REGISTER_LOAD) 4267 NODE_NAME_CASE(REGISTER_STORE) 4268 NODE_NAME_CASE(SAMPLE) 4269 NODE_NAME_CASE(SAMPLEB) 4270 NODE_NAME_CASE(SAMPLED) 4271 NODE_NAME_CASE(SAMPLEL) 4272 NODE_NAME_CASE(CVT_F32_UBYTE0) 4273 NODE_NAME_CASE(CVT_F32_UBYTE1) 4274 NODE_NAME_CASE(CVT_F32_UBYTE2) 4275 NODE_NAME_CASE(CVT_F32_UBYTE3) 4276 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4277 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4278 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4279 NODE_NAME_CASE(CVT_PK_I16_I32) 4280 NODE_NAME_CASE(CVT_PK_U16_U32) 4281 NODE_NAME_CASE(FP_TO_FP16) 4282 NODE_NAME_CASE(FP16_ZEXT) 4283 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4284 NODE_NAME_CASE(CONST_DATA_PTR) 4285 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4286 NODE_NAME_CASE(LDS) 4287 NODE_NAME_CASE(DUMMY_CHAIN) 4288 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4289 NODE_NAME_CASE(LOAD_D16_HI) 4290 NODE_NAME_CASE(LOAD_D16_LO) 4291 NODE_NAME_CASE(LOAD_D16_HI_I8) 4292 NODE_NAME_CASE(LOAD_D16_HI_U8) 4293 NODE_NAME_CASE(LOAD_D16_LO_I8) 4294 NODE_NAME_CASE(LOAD_D16_LO_U8) 4295 NODE_NAME_CASE(STORE_MSKOR) 4296 NODE_NAME_CASE(LOAD_CONSTANT) 4297 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4298 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4299 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4300 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4301 NODE_NAME_CASE(DS_ORDERED_COUNT) 4302 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4303 NODE_NAME_CASE(ATOMIC_INC) 4304 NODE_NAME_CASE(ATOMIC_DEC) 4305 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4306 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4307 NODE_NAME_CASE(BUFFER_LOAD) 4308 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4309 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4310 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4311 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4312 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4313 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4314 NODE_NAME_CASE(SBUFFER_LOAD) 4315 NODE_NAME_CASE(BUFFER_STORE) 4316 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4317 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4318 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4319 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4320 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4321 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4322 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4323 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4324 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4325 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4326 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4327 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4328 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4329 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4330 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4331 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4332 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4333 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4334 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4335 4336 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4337 } 4338 return nullptr; 4339 } 4340 4341 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4342 SelectionDAG &DAG, int Enabled, 4343 int &RefinementSteps, 4344 bool &UseOneConstNR, 4345 bool Reciprocal) const { 4346 EVT VT = Operand.getValueType(); 4347 4348 if (VT == MVT::f32) { 4349 RefinementSteps = 0; 4350 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4351 } 4352 4353 // TODO: There is also f64 rsq instruction, but the documentation is less 4354 // clear on its precision. 4355 4356 return SDValue(); 4357 } 4358 4359 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4360 SelectionDAG &DAG, int Enabled, 4361 int &RefinementSteps) const { 4362 EVT VT = Operand.getValueType(); 4363 4364 if (VT == MVT::f32) { 4365 // Reciprocal, < 1 ulp error. 4366 // 4367 // This reciprocal approximation converges to < 0.5 ulp error with one 4368 // newton rhapson performed with two fused multiple adds (FMAs). 4369 4370 RefinementSteps = 0; 4371 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4372 } 4373 4374 // TODO: There is also f64 rcp instruction, but the documentation is less 4375 // clear on its precision. 4376 4377 return SDValue(); 4378 } 4379 4380 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4381 const SDValue Op, KnownBits &Known, 4382 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4383 4384 Known.resetAll(); // Don't know anything. 4385 4386 unsigned Opc = Op.getOpcode(); 4387 4388 switch (Opc) { 4389 default: 4390 break; 4391 case AMDGPUISD::CARRY: 4392 case AMDGPUISD::BORROW: { 4393 Known.Zero = APInt::getHighBitsSet(32, 31); 4394 break; 4395 } 4396 4397 case AMDGPUISD::BFE_I32: 4398 case AMDGPUISD::BFE_U32: { 4399 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4400 if (!CWidth) 4401 return; 4402 4403 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4404 4405 if (Opc == AMDGPUISD::BFE_U32) 4406 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4407 4408 break; 4409 } 4410 case AMDGPUISD::FP_TO_FP16: 4411 case AMDGPUISD::FP16_ZEXT: { 4412 unsigned BitWidth = Known.getBitWidth(); 4413 4414 // High bits are zero. 4415 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4416 break; 4417 } 4418 case AMDGPUISD::MUL_U24: 4419 case AMDGPUISD::MUL_I24: { 4420 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4421 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4422 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4423 RHSKnown.countMinTrailingZeros(); 4424 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4425 // Skip extra check if all bits are known zeros. 4426 if (TrailZ >= 32) 4427 break; 4428 4429 // Truncate to 24 bits. 4430 LHSKnown = LHSKnown.trunc(24); 4431 RHSKnown = RHSKnown.trunc(24); 4432 4433 if (Opc == AMDGPUISD::MUL_I24) { 4434 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4435 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4436 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4437 if (MaxValBits >= 32) 4438 break; 4439 bool LHSNegative = LHSKnown.isNegative(); 4440 bool LHSNonNegative = LHSKnown.isNonNegative(); 4441 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4442 bool RHSNegative = RHSKnown.isNegative(); 4443 bool RHSNonNegative = RHSKnown.isNonNegative(); 4444 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4445 4446 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4447 Known.Zero.setHighBits(32 - MaxValBits); 4448 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4449 Known.One.setHighBits(32 - MaxValBits); 4450 } else { 4451 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4452 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4453 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4454 if (MaxValBits >= 32) 4455 break; 4456 Known.Zero.setHighBits(32 - MaxValBits); 4457 } 4458 break; 4459 } 4460 case AMDGPUISD::PERM: { 4461 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4462 if (!CMask) 4463 return; 4464 4465 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4466 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4467 unsigned Sel = CMask->getZExtValue(); 4468 4469 for (unsigned I = 0; I < 32; I += 8) { 4470 unsigned SelBits = Sel & 0xff; 4471 if (SelBits < 4) { 4472 SelBits *= 8; 4473 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4474 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4475 } else if (SelBits < 7) { 4476 SelBits = (SelBits & 3) * 8; 4477 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4478 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4479 } else if (SelBits == 0x0c) { 4480 Known.Zero |= 0xFFull << I; 4481 } else if (SelBits > 0x0c) { 4482 Known.One |= 0xFFull << I; 4483 } 4484 Sel >>= 8; 4485 } 4486 break; 4487 } 4488 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4489 Known.Zero.setHighBits(24); 4490 break; 4491 } 4492 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4493 Known.Zero.setHighBits(16); 4494 break; 4495 } 4496 case AMDGPUISD::LDS: { 4497 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4498 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4499 4500 Known.Zero.setHighBits(16); 4501 Known.Zero.setLowBits(Log2(Alignment)); 4502 break; 4503 } 4504 case ISD::INTRINSIC_WO_CHAIN: { 4505 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4506 switch (IID) { 4507 case Intrinsic::amdgcn_mbcnt_lo: 4508 case Intrinsic::amdgcn_mbcnt_hi: { 4509 const GCNSubtarget &ST = 4510 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4511 // These return at most the wavefront size - 1. 4512 unsigned Size = Op.getValueType().getSizeInBits(); 4513 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4514 break; 4515 } 4516 default: 4517 break; 4518 } 4519 } 4520 } 4521 } 4522 4523 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4524 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4525 unsigned Depth) const { 4526 switch (Op.getOpcode()) { 4527 case AMDGPUISD::BFE_I32: { 4528 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4529 if (!Width) 4530 return 1; 4531 4532 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4533 if (!isNullConstant(Op.getOperand(1))) 4534 return SignBits; 4535 4536 // TODO: Could probably figure something out with non-0 offsets. 4537 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4538 return std::max(SignBits, Op0SignBits); 4539 } 4540 4541 case AMDGPUISD::BFE_U32: { 4542 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4543 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4544 } 4545 4546 case AMDGPUISD::CARRY: 4547 case AMDGPUISD::BORROW: 4548 return 31; 4549 case AMDGPUISD::BUFFER_LOAD_BYTE: 4550 return 25; 4551 case AMDGPUISD::BUFFER_LOAD_SHORT: 4552 return 17; 4553 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4554 return 24; 4555 case AMDGPUISD::BUFFER_LOAD_USHORT: 4556 return 16; 4557 case AMDGPUISD::FP_TO_FP16: 4558 case AMDGPUISD::FP16_ZEXT: 4559 return 16; 4560 default: 4561 return 1; 4562 } 4563 } 4564 4565 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4566 GISelKnownBits &Analysis, Register R, 4567 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4568 unsigned Depth) const { 4569 const MachineInstr *MI = MRI.getVRegDef(R); 4570 if (!MI) 4571 return 1; 4572 4573 // TODO: Check range metadata on MMO. 4574 switch (MI->getOpcode()) { 4575 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4576 return 25; 4577 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4578 return 17; 4579 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4580 return 24; 4581 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4582 return 16; 4583 default: 4584 return 1; 4585 } 4586 } 4587 4588 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4589 const SelectionDAG &DAG, 4590 bool SNaN, 4591 unsigned Depth) const { 4592 unsigned Opcode = Op.getOpcode(); 4593 switch (Opcode) { 4594 case AMDGPUISD::FMIN_LEGACY: 4595 case AMDGPUISD::FMAX_LEGACY: { 4596 if (SNaN) 4597 return true; 4598 4599 // TODO: Can check no nans on one of the operands for each one, but which 4600 // one? 4601 return false; 4602 } 4603 case AMDGPUISD::FMUL_LEGACY: 4604 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4605 if (SNaN) 4606 return true; 4607 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4608 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4609 } 4610 case AMDGPUISD::FMED3: 4611 case AMDGPUISD::FMIN3: 4612 case AMDGPUISD::FMAX3: 4613 case AMDGPUISD::FMAD_FTZ: { 4614 if (SNaN) 4615 return true; 4616 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4617 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4618 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4619 } 4620 case AMDGPUISD::CVT_F32_UBYTE0: 4621 case AMDGPUISD::CVT_F32_UBYTE1: 4622 case AMDGPUISD::CVT_F32_UBYTE2: 4623 case AMDGPUISD::CVT_F32_UBYTE3: 4624 return true; 4625 4626 case AMDGPUISD::RCP: 4627 case AMDGPUISD::RSQ: 4628 case AMDGPUISD::RCP_LEGACY: 4629 case AMDGPUISD::RSQ_CLAMP: { 4630 if (SNaN) 4631 return true; 4632 4633 // TODO: Need is known positive check. 4634 return false; 4635 } 4636 case AMDGPUISD::LDEXP: 4637 case AMDGPUISD::FRACT: { 4638 if (SNaN) 4639 return true; 4640 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4641 } 4642 case AMDGPUISD::DIV_SCALE: 4643 case AMDGPUISD::DIV_FMAS: 4644 case AMDGPUISD::DIV_FIXUP: 4645 // TODO: Refine on operands. 4646 return SNaN; 4647 case AMDGPUISD::SIN_HW: 4648 case AMDGPUISD::COS_HW: { 4649 // TODO: Need check for infinity 4650 return SNaN; 4651 } 4652 case ISD::INTRINSIC_WO_CHAIN: { 4653 unsigned IntrinsicID 4654 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4655 // TODO: Handle more intrinsics 4656 switch (IntrinsicID) { 4657 case Intrinsic::amdgcn_cubeid: 4658 return true; 4659 4660 case Intrinsic::amdgcn_frexp_mant: { 4661 if (SNaN) 4662 return true; 4663 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4664 } 4665 case Intrinsic::amdgcn_cvt_pkrtz: { 4666 if (SNaN) 4667 return true; 4668 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4669 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4670 } 4671 case Intrinsic::amdgcn_rcp: 4672 case Intrinsic::amdgcn_rsq: 4673 case Intrinsic::amdgcn_rcp_legacy: 4674 case Intrinsic::amdgcn_rsq_legacy: 4675 case Intrinsic::amdgcn_rsq_clamp: { 4676 if (SNaN) 4677 return true; 4678 4679 // TODO: Need is known positive check. 4680 return false; 4681 } 4682 case Intrinsic::amdgcn_trig_preop: 4683 case Intrinsic::amdgcn_fdot2: 4684 // TODO: Refine on operand 4685 return SNaN; 4686 case Intrinsic::amdgcn_fma_legacy: 4687 if (SNaN) 4688 return true; 4689 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4690 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4691 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4692 default: 4693 return false; 4694 } 4695 } 4696 default: 4697 return false; 4698 } 4699 } 4700 4701 TargetLowering::AtomicExpansionKind 4702 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4703 switch (RMW->getOperation()) { 4704 case AtomicRMWInst::Nand: 4705 case AtomicRMWInst::FAdd: 4706 case AtomicRMWInst::FSub: 4707 return AtomicExpansionKind::CmpXChg; 4708 default: 4709 return AtomicExpansionKind::None; 4710 } 4711 } 4712