1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 MachineFunction &MF = State.getMachineFunction(); 38 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 39 40 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 41 ArgFlags.getOrigAlign()); 42 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 43 return true; 44 } 45 46 #include "AMDGPUGenCallingConv.inc" 47 48 // Find a larger type to do a load / store of a vector with. 49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 50 unsigned StoreSize = VT.getStoreSizeInBits(); 51 if (StoreSize <= 32) 52 return EVT::getIntegerVT(Ctx, StoreSize); 53 54 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 55 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 56 } 57 58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 59 const AMDGPUSubtarget &STI) 60 : TargetLowering(TM), Subtarget(&STI) { 61 // Lower floating point store/load to integer store/load to reduce the number 62 // of patterns in tablegen. 63 setOperationAction(ISD::LOAD, MVT::f32, Promote); 64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 65 66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 68 69 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 71 72 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 74 75 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 77 78 setOperationAction(ISD::LOAD, MVT::i64, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 80 81 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 83 84 setOperationAction(ISD::LOAD, MVT::f64, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 86 87 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 89 90 // There are no 64-bit extloads. These should be done as a 32-bit extload and 91 // an extension to 64-bit. 92 for (MVT VT : MVT::integer_valuetypes()) { 93 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 94 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 95 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 96 } 97 98 for (MVT VT : MVT::integer_valuetypes()) { 99 if (VT == MVT::i64) 100 continue; 101 102 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 104 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 106 107 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 108 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 109 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 110 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 111 112 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 113 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 114 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 115 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 116 } 117 118 for (MVT VT : MVT::integer_vector_valuetypes()) { 119 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 121 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 123 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 125 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 130 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 131 } 132 133 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 134 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 137 138 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 139 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 140 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 142 143 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 147 148 setOperationAction(ISD::STORE, MVT::f32, Promote); 149 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 150 151 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 152 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 153 154 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 155 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 156 157 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 158 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 159 160 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 161 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 162 163 setOperationAction(ISD::STORE, MVT::i64, Promote); 164 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 165 166 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 167 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 168 169 setOperationAction(ISD::STORE, MVT::f64, Promote); 170 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 171 172 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 173 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 174 175 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 176 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 177 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 178 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 179 180 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 181 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 182 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 183 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 184 185 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 186 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 187 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 188 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 189 190 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 191 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 192 193 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 194 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 195 196 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 197 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 198 199 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 200 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 201 202 203 setOperationAction(ISD::Constant, MVT::i32, Legal); 204 setOperationAction(ISD::Constant, MVT::i64, Legal); 205 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 206 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 207 208 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 209 setOperationAction(ISD::BRIND, MVT::Other, Expand); 210 211 // This is totally unsupported, just custom lower to produce an error. 212 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 213 214 // We need to custom lower some of the intrinsics 215 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 216 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 217 218 // Library functions. These default to Expand, but we have instructions 219 // for them. 220 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 221 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 222 setOperationAction(ISD::FPOW, MVT::f32, Legal); 223 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 224 setOperationAction(ISD::FABS, MVT::f32, Legal); 225 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 226 setOperationAction(ISD::FRINT, MVT::f32, Legal); 227 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 228 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 229 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 230 231 setOperationAction(ISD::FROUND, MVT::f32, Custom); 232 setOperationAction(ISD::FROUND, MVT::f64, Custom); 233 234 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 235 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 236 237 setOperationAction(ISD::FREM, MVT::f32, Custom); 238 setOperationAction(ISD::FREM, MVT::f64, Custom); 239 240 // v_mad_f32 does not support denormals according to some sources. 241 if (!Subtarget->hasFP32Denormals()) 242 setOperationAction(ISD::FMAD, MVT::f32, Legal); 243 244 // Expand to fneg + fadd. 245 setOperationAction(ISD::FSUB, MVT::f64, Expand); 246 247 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 248 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 249 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 250 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 251 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 252 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 253 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 254 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 255 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 256 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 257 258 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 259 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 260 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 261 setOperationAction(ISD::FRINT, MVT::f64, Custom); 262 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 263 } 264 265 if (!Subtarget->hasBFI()) { 266 // fcopysign can be done in a single instruction with BFI. 267 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 268 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 269 } 270 271 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 272 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 273 274 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 275 for (MVT VT : ScalarIntVTs) { 276 // These should use [SU]DIVREM, so set them to expand 277 setOperationAction(ISD::SDIV, VT, Expand); 278 setOperationAction(ISD::UDIV, VT, Expand); 279 setOperationAction(ISD::SREM, VT, Expand); 280 setOperationAction(ISD::UREM, VT, Expand); 281 282 // GPU does not have divrem function for signed or unsigned. 283 setOperationAction(ISD::SDIVREM, VT, Custom); 284 setOperationAction(ISD::UDIVREM, VT, Custom); 285 286 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 287 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 288 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 289 290 setOperationAction(ISD::BSWAP, VT, Expand); 291 setOperationAction(ISD::CTTZ, VT, Expand); 292 setOperationAction(ISD::CTLZ, VT, Expand); 293 } 294 295 if (!Subtarget->hasBCNT(32)) 296 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 297 298 if (!Subtarget->hasBCNT(64)) 299 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 300 301 // The hardware supports 32-bit ROTR, but not ROTL. 302 setOperationAction(ISD::ROTL, MVT::i32, Expand); 303 setOperationAction(ISD::ROTL, MVT::i64, Expand); 304 setOperationAction(ISD::ROTR, MVT::i64, Expand); 305 306 setOperationAction(ISD::MUL, MVT::i64, Expand); 307 setOperationAction(ISD::MULHU, MVT::i64, Expand); 308 setOperationAction(ISD::MULHS, MVT::i64, Expand); 309 setOperationAction(ISD::UDIV, MVT::i32, Expand); 310 setOperationAction(ISD::UREM, MVT::i32, Expand); 311 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 312 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 313 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 314 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 315 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 316 317 setOperationAction(ISD::SMIN, MVT::i32, Legal); 318 setOperationAction(ISD::UMIN, MVT::i32, Legal); 319 setOperationAction(ISD::SMAX, MVT::i32, Legal); 320 setOperationAction(ISD::UMAX, MVT::i32, Legal); 321 322 if (Subtarget->hasFFBH()) 323 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 324 325 if (Subtarget->hasFFBL()) 326 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 327 328 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 329 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 330 331 // We only really have 32-bit BFE instructions (and 16-bit on VI). 332 // 333 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 334 // effort to match them now. We want this to be false for i64 cases when the 335 // extraction isn't restricted to the upper or lower half. Ideally we would 336 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 337 // span the midpoint are probably relatively rare, so don't worry about them 338 // for now. 339 if (Subtarget->hasBFE()) 340 setHasExtractBitsInsn(true); 341 342 static const MVT::SimpleValueType VectorIntTypes[] = { 343 MVT::v2i32, MVT::v4i32 344 }; 345 346 for (MVT VT : VectorIntTypes) { 347 // Expand the following operations for the current type by default. 348 setOperationAction(ISD::ADD, VT, Expand); 349 setOperationAction(ISD::AND, VT, Expand); 350 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 351 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 352 setOperationAction(ISD::MUL, VT, Expand); 353 setOperationAction(ISD::MULHU, VT, Expand); 354 setOperationAction(ISD::MULHS, VT, Expand); 355 setOperationAction(ISD::OR, VT, Expand); 356 setOperationAction(ISD::SHL, VT, Expand); 357 setOperationAction(ISD::SRA, VT, Expand); 358 setOperationAction(ISD::SRL, VT, Expand); 359 setOperationAction(ISD::ROTL, VT, Expand); 360 setOperationAction(ISD::ROTR, VT, Expand); 361 setOperationAction(ISD::SUB, VT, Expand); 362 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 363 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 364 setOperationAction(ISD::SDIV, VT, Expand); 365 setOperationAction(ISD::UDIV, VT, Expand); 366 setOperationAction(ISD::SREM, VT, Expand); 367 setOperationAction(ISD::UREM, VT, Expand); 368 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 369 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 370 setOperationAction(ISD::SDIVREM, VT, Custom); 371 setOperationAction(ISD::UDIVREM, VT, Expand); 372 setOperationAction(ISD::ADDC, VT, Expand); 373 setOperationAction(ISD::SUBC, VT, Expand); 374 setOperationAction(ISD::ADDE, VT, Expand); 375 setOperationAction(ISD::SUBE, VT, Expand); 376 setOperationAction(ISD::SELECT, VT, Expand); 377 setOperationAction(ISD::VSELECT, VT, Expand); 378 setOperationAction(ISD::SELECT_CC, VT, Expand); 379 setOperationAction(ISD::XOR, VT, Expand); 380 setOperationAction(ISD::BSWAP, VT, Expand); 381 setOperationAction(ISD::CTPOP, VT, Expand); 382 setOperationAction(ISD::CTTZ, VT, Expand); 383 setOperationAction(ISD::CTLZ, VT, Expand); 384 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 385 } 386 387 static const MVT::SimpleValueType FloatVectorTypes[] = { 388 MVT::v2f32, MVT::v4f32 389 }; 390 391 for (MVT VT : FloatVectorTypes) { 392 setOperationAction(ISD::FABS, VT, Expand); 393 setOperationAction(ISD::FMINNUM, VT, Expand); 394 setOperationAction(ISD::FMAXNUM, VT, Expand); 395 setOperationAction(ISD::FADD, VT, Expand); 396 setOperationAction(ISD::FCEIL, VT, Expand); 397 setOperationAction(ISD::FCOS, VT, Expand); 398 setOperationAction(ISD::FDIV, VT, Expand); 399 setOperationAction(ISD::FEXP2, VT, Expand); 400 setOperationAction(ISD::FLOG2, VT, Expand); 401 setOperationAction(ISD::FREM, VT, Expand); 402 setOperationAction(ISD::FPOW, VT, Expand); 403 setOperationAction(ISD::FFLOOR, VT, Expand); 404 setOperationAction(ISD::FTRUNC, VT, Expand); 405 setOperationAction(ISD::FMUL, VT, Expand); 406 setOperationAction(ISD::FMA, VT, Expand); 407 setOperationAction(ISD::FRINT, VT, Expand); 408 setOperationAction(ISD::FNEARBYINT, VT, Expand); 409 setOperationAction(ISD::FSQRT, VT, Expand); 410 setOperationAction(ISD::FSIN, VT, Expand); 411 setOperationAction(ISD::FSUB, VT, Expand); 412 setOperationAction(ISD::FNEG, VT, Expand); 413 setOperationAction(ISD::VSELECT, VT, Expand); 414 setOperationAction(ISD::SELECT_CC, VT, Expand); 415 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 416 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 417 } 418 419 // This causes using an unrolled select operation rather than expansion with 420 // bit operations. This is in general better, but the alternative using BFI 421 // instructions may be better if the select sources are SGPRs. 422 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 423 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 424 425 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 426 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 427 428 // There are no libcalls of any kind. 429 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 430 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 431 432 setBooleanContents(ZeroOrNegativeOneBooleanContent); 433 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 434 435 setSchedulingPreference(Sched::RegPressure); 436 setJumpIsExpensive(true); 437 setHasMultipleConditionRegisters(true); 438 439 // SI at least has hardware support for floating point exceptions, but no way 440 // of using or handling them is implemented. They are also optional in OpenCL 441 // (Section 7.3) 442 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 443 444 PredictableSelectIsExpensive = false; 445 446 // We want to find all load dependencies for long chains of stores to enable 447 // merging into very wide vectors. The problem is with vectors with > 4 448 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 449 // vectors are a legal type, even though we have to split the loads 450 // usually. When we can more precisely specify load legality per address 451 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 452 // smarter so that they can figure out what to do in 2 iterations without all 453 // N > 4 stores on the same chain. 454 GatherAllAliasesMaxDepth = 16; 455 456 // FIXME: Need to really handle these. 457 MaxStoresPerMemcpy = 4096; 458 MaxStoresPerMemmove = 4096; 459 MaxStoresPerMemset = 4096; 460 461 setTargetDAGCombine(ISD::BITCAST); 462 setTargetDAGCombine(ISD::SHL); 463 setTargetDAGCombine(ISD::SRA); 464 setTargetDAGCombine(ISD::SRL); 465 setTargetDAGCombine(ISD::MUL); 466 setTargetDAGCombine(ISD::MULHU); 467 setTargetDAGCombine(ISD::MULHS); 468 setTargetDAGCombine(ISD::SELECT); 469 setTargetDAGCombine(ISD::SELECT_CC); 470 setTargetDAGCombine(ISD::STORE); 471 setTargetDAGCombine(ISD::FADD); 472 setTargetDAGCombine(ISD::FSUB); 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Target Information 477 //===----------------------------------------------------------------------===// 478 479 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 480 return MVT::i32; 481 } 482 483 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 484 return true; 485 } 486 487 // The backend supports 32 and 64 bit floating point immediates. 488 // FIXME: Why are we reporting vectors of FP immediates as legal? 489 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 490 EVT ScalarVT = VT.getScalarType(); 491 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 492 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 493 } 494 495 // We don't want to shrink f64 / f32 constants. 496 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 497 EVT ScalarVT = VT.getScalarType(); 498 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 499 } 500 501 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 502 ISD::LoadExtType, 503 EVT NewVT) const { 504 505 unsigned NewSize = NewVT.getStoreSizeInBits(); 506 507 // If we are reducing to a 32-bit load, this is always better. 508 if (NewSize == 32) 509 return true; 510 511 EVT OldVT = N->getValueType(0); 512 unsigned OldSize = OldVT.getStoreSizeInBits(); 513 514 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 515 // extloads, so doing one requires using a buffer_load. In cases where we 516 // still couldn't use a scalar load, using the wider load shouldn't really 517 // hurt anything. 518 519 // If the old size already had to be an extload, there's no harm in continuing 520 // to reduce the width. 521 return (OldSize < 32); 522 } 523 524 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 525 EVT CastTy) const { 526 527 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 528 529 if (LoadTy.getScalarType() == MVT::i32) 530 return false; 531 532 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 533 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 534 535 return (LScalarSize < CastScalarSize) || 536 (CastScalarSize >= 32); 537 } 538 539 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 540 // profitable with the expansion for 64-bit since it's generally good to 541 // speculate things. 542 // FIXME: These should really have the size as a parameter. 543 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 544 return true; 545 } 546 547 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 548 return true; 549 } 550 551 //===---------------------------------------------------------------------===// 552 // Target Properties 553 //===---------------------------------------------------------------------===// 554 555 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 556 assert(VT.isFloatingPoint()); 557 return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() && 558 VT == MVT::f16); 559 } 560 561 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 562 return isFAbsFree(VT); 563 } 564 565 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 566 unsigned NumElem, 567 unsigned AS) const { 568 return true; 569 } 570 571 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 572 // There are few operations which truly have vector input operands. Any vector 573 // operation is going to involve operations on each component, and a 574 // build_vector will be a copy per element, so it always makes sense to use a 575 // build_vector input in place of the extracted element to avoid a copy into a 576 // super register. 577 // 578 // We should probably only do this if all users are extracts only, but this 579 // should be the common case. 580 return true; 581 } 582 583 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 584 // Truncate is just accessing a subregister. 585 586 unsigned SrcSize = Source.getSizeInBits(); 587 unsigned DestSize = Dest.getSizeInBits(); 588 589 return DestSize < SrcSize && DestSize % 32 == 0 ; 590 } 591 592 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 593 // Truncate is just accessing a subregister. 594 595 unsigned SrcSize = Source->getScalarSizeInBits(); 596 unsigned DestSize = Dest->getScalarSizeInBits(); 597 598 if (DestSize== 16 && Subtarget->has16BitInsts()) 599 return SrcSize >= 32; 600 601 return DestSize < SrcSize && DestSize % 32 == 0; 602 } 603 604 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 605 unsigned SrcSize = Src->getScalarSizeInBits(); 606 unsigned DestSize = Dest->getScalarSizeInBits(); 607 608 if (SrcSize == 16 && Subtarget->has16BitInsts()) 609 return DestSize >= 32; 610 611 return SrcSize == 32 && DestSize == 64; 612 } 613 614 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 615 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 616 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 617 // this will enable reducing 64-bit operations the 32-bit, which is always 618 // good. 619 620 if (Src == MVT::i16) 621 return Dest == MVT::i32 ||Dest == MVT::i64 ; 622 623 return Src == MVT::i32 && Dest == MVT::i64; 624 } 625 626 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 627 return isZExtFree(Val.getValueType(), VT2); 628 } 629 630 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 631 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 632 // limited number of native 64-bit operations. Shrinking an operation to fit 633 // in a single 32-bit register should always be helpful. As currently used, 634 // this is much less general than the name suggests, and is only used in 635 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 636 // not profitable, and may actually be harmful. 637 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 638 } 639 640 //===---------------------------------------------------------------------===// 641 // TargetLowering Callbacks 642 //===---------------------------------------------------------------------===// 643 644 /// The SelectionDAGBuilder will automatically promote function arguments 645 /// with illegal types. However, this does not work for the AMDGPU targets 646 /// since the function arguments are stored in memory as these illegal types. 647 /// In order to handle this properly we need to get the original types sizes 648 /// from the LLVM IR Function and fixup the ISD:InputArg values before 649 /// passing them to AnalyzeFormalArguments() 650 651 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 652 /// input values across multiple registers. Each item in the Ins array 653 /// represents a single value that will be stored in regsters. Ins[x].VT is 654 /// the value type of the value that will be stored in the register, so 655 /// whatever SDNode we lower the argument to needs to be this type. 656 /// 657 /// In order to correctly lower the arguments we need to know the size of each 658 /// argument. Since Ins[x].VT gives us the size of the register that will 659 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 660 /// for the orignal function argument so that we can deduce the correct memory 661 /// type to use for Ins[x]. In most cases the correct memory type will be 662 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 663 /// we have a kernel argument of type v8i8, this argument will be split into 664 /// 8 parts and each part will be represented by its own item in the Ins array. 665 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 666 /// the argument before it was split. From this, we deduce that the memory type 667 /// for each individual part is i8. We pass the memory type as LocVT to the 668 /// calling convention analysis function and the register type (Ins[x].VT) as 669 /// the ValVT. 670 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 671 const SmallVectorImpl<ISD::InputArg> &Ins) const { 672 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 673 const ISD::InputArg &In = Ins[i]; 674 EVT MemVT; 675 676 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 677 678 if (!Subtarget->isAmdHsaOS() && 679 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 680 // The ABI says the caller will extend these values to 32-bits. 681 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 682 } else if (NumRegs == 1) { 683 // This argument is not split, so the IR type is the memory type. 684 assert(!In.Flags.isSplit()); 685 if (In.ArgVT.isExtended()) { 686 // We have an extended type, like i24, so we should just use the register type 687 MemVT = In.VT; 688 } else { 689 MemVT = In.ArgVT; 690 } 691 } else if (In.ArgVT.isVector() && In.VT.isVector() && 692 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 693 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 694 // We have a vector value which has been split into a vector with 695 // the same scalar type, but fewer elements. This should handle 696 // all the floating-point vector types. 697 MemVT = In.VT; 698 } else if (In.ArgVT.isVector() && 699 In.ArgVT.getVectorNumElements() == NumRegs) { 700 // This arg has been split so that each element is stored in a separate 701 // register. 702 MemVT = In.ArgVT.getScalarType(); 703 } else if (In.ArgVT.isExtended()) { 704 // We have an extended type, like i65. 705 MemVT = In.VT; 706 } else { 707 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 708 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 709 if (In.VT.isInteger()) { 710 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 711 } else if (In.VT.isVector()) { 712 assert(!In.VT.getScalarType().isFloatingPoint()); 713 unsigned NumElements = In.VT.getVectorNumElements(); 714 assert(MemoryBits % NumElements == 0); 715 // This vector type has been split into another vector type with 716 // a different elements size. 717 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 718 MemoryBits / NumElements); 719 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 720 } else { 721 llvm_unreachable("cannot deduce memory type."); 722 } 723 } 724 725 // Convert one element vectors to scalar. 726 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 727 MemVT = MemVT.getScalarType(); 728 729 if (MemVT.isExtended()) { 730 // This should really only happen if we have vec3 arguments 731 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 732 MemVT = MemVT.getPow2VectorType(State.getContext()); 733 } 734 735 assert(MemVT.isSimple()); 736 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 737 State); 738 } 739 } 740 741 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 742 const SmallVectorImpl<ISD::InputArg> &Ins) const { 743 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 744 } 745 746 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 747 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 748 749 State.AnalyzeReturn(Outs, RetCC_SI); 750 } 751 752 SDValue 753 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 754 bool isVarArg, 755 const SmallVectorImpl<ISD::OutputArg> &Outs, 756 const SmallVectorImpl<SDValue> &OutVals, 757 const SDLoc &DL, SelectionDAG &DAG) const { 758 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 759 } 760 761 //===---------------------------------------------------------------------===// 762 // Target specific lowering 763 //===---------------------------------------------------------------------===// 764 765 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 766 SmallVectorImpl<SDValue> &InVals) const { 767 SDValue Callee = CLI.Callee; 768 SelectionDAG &DAG = CLI.DAG; 769 770 const Function &Fn = *DAG.getMachineFunction().getFunction(); 771 772 StringRef FuncName("<unknown>"); 773 774 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 775 FuncName = G->getSymbol(); 776 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 777 FuncName = G->getGlobal()->getName(); 778 779 DiagnosticInfoUnsupported NoCalls( 780 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 781 DAG.getContext()->diagnose(NoCalls); 782 783 if (!CLI.IsTailCall) { 784 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 785 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 786 } 787 788 return DAG.getEntryNode(); 789 } 790 791 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 792 SelectionDAG &DAG) const { 793 const Function &Fn = *DAG.getMachineFunction().getFunction(); 794 795 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 796 SDLoc(Op).getDebugLoc()); 797 DAG.getContext()->diagnose(NoDynamicAlloca); 798 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 799 return DAG.getMergeValues(Ops, SDLoc()); 800 } 801 802 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 803 SelectionDAG &DAG) const { 804 switch (Op.getOpcode()) { 805 default: 806 Op->dump(&DAG); 807 llvm_unreachable("Custom lowering code for this" 808 "instruction is not implemented yet!"); 809 break; 810 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 811 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 812 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 813 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 814 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 815 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 816 case ISD::FREM: return LowerFREM(Op, DAG); 817 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 818 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 819 case ISD::FRINT: return LowerFRINT(Op, DAG); 820 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 821 case ISD::FROUND: return LowerFROUND(Op, DAG); 822 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 823 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 824 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 825 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 826 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 827 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 828 case ISD::CTLZ: 829 case ISD::CTLZ_ZERO_UNDEF: 830 return LowerCTLZ(Op, DAG); 831 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 832 } 833 return Op; 834 } 835 836 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 837 SmallVectorImpl<SDValue> &Results, 838 SelectionDAG &DAG) const { 839 switch (N->getOpcode()) { 840 case ISD::SIGN_EXTEND_INREG: 841 // Different parts of legalization seem to interpret which type of 842 // sign_extend_inreg is the one to check for custom lowering. The extended 843 // from type is what really matters, but some places check for custom 844 // lowering of the result type. This results in trying to use 845 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 846 // nothing here and let the illegal result integer be handled normally. 847 return; 848 default: 849 return; 850 } 851 } 852 853 static bool hasDefinedInitializer(const GlobalValue *GV) { 854 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 855 if (!GVar || !GVar->hasInitializer()) 856 return false; 857 858 return !isa<UndefValue>(GVar->getInitializer()); 859 } 860 861 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 862 SDValue Op, 863 SelectionDAG &DAG) const { 864 865 const DataLayout &DL = DAG.getDataLayout(); 866 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 867 const GlobalValue *GV = G->getGlobal(); 868 869 switch (G->getAddressSpace()) { 870 case AMDGPUAS::LOCAL_ADDRESS: { 871 // XXX: What does the value of G->getOffset() mean? 872 assert(G->getOffset() == 0 && 873 "Do not know what to do with an non-zero offset"); 874 875 // TODO: We could emit code to handle the initialization somewhere. 876 if (hasDefinedInitializer(GV)) 877 break; 878 879 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 880 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 881 } 882 } 883 884 const Function &Fn = *DAG.getMachineFunction().getFunction(); 885 DiagnosticInfoUnsupported BadInit( 886 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 887 DAG.getContext()->diagnose(BadInit); 888 return SDValue(); 889 } 890 891 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 892 SelectionDAG &DAG) const { 893 SmallVector<SDValue, 8> Args; 894 895 for (const SDUse &U : Op->ops()) 896 DAG.ExtractVectorElements(U.get(), Args); 897 898 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 899 } 900 901 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 902 SelectionDAG &DAG) const { 903 904 SmallVector<SDValue, 8> Args; 905 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 906 EVT VT = Op.getValueType(); 907 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 908 VT.getVectorNumElements()); 909 910 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 911 } 912 913 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 914 SelectionDAG &DAG) const { 915 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 916 SDLoc DL(Op); 917 EVT VT = Op.getValueType(); 918 919 switch (IntrinsicID) { 920 default: return Op; 921 case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. 922 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 923 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 924 925 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 926 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 927 Op.getOperand(1), 928 Op.getOperand(2), 929 Op.getOperand(3)); 930 931 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 932 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 933 Op.getOperand(1), 934 Op.getOperand(2), 935 Op.getOperand(3)); 936 } 937 } 938 939 /// \brief Generate Min/Max node 940 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, 941 SDValue LHS, SDValue RHS, 942 SDValue True, SDValue False, 943 SDValue CC, 944 DAGCombinerInfo &DCI) const { 945 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 946 return SDValue(); 947 948 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 949 return SDValue(); 950 951 SelectionDAG &DAG = DCI.DAG; 952 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 953 switch (CCOpcode) { 954 case ISD::SETOEQ: 955 case ISD::SETONE: 956 case ISD::SETUNE: 957 case ISD::SETNE: 958 case ISD::SETUEQ: 959 case ISD::SETEQ: 960 case ISD::SETFALSE: 961 case ISD::SETFALSE2: 962 case ISD::SETTRUE: 963 case ISD::SETTRUE2: 964 case ISD::SETUO: 965 case ISD::SETO: 966 break; 967 case ISD::SETULE: 968 case ISD::SETULT: { 969 if (LHS == True) 970 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 971 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 972 } 973 case ISD::SETOLE: 974 case ISD::SETOLT: 975 case ISD::SETLE: 976 case ISD::SETLT: { 977 // Ordered. Assume ordered for undefined. 978 979 // Only do this after legalization to avoid interfering with other combines 980 // which might occur. 981 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 982 !DCI.isCalledByLegalizer()) 983 return SDValue(); 984 985 // We need to permute the operands to get the correct NaN behavior. The 986 // selected operand is the second one based on the failing compare with NaN, 987 // so permute it based on the compare type the hardware uses. 988 if (LHS == True) 989 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 990 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 991 } 992 case ISD::SETUGE: 993 case ISD::SETUGT: { 994 if (LHS == True) 995 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 996 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 997 } 998 case ISD::SETGT: 999 case ISD::SETGE: 1000 case ISD::SETOGE: 1001 case ISD::SETOGT: { 1002 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1003 !DCI.isCalledByLegalizer()) 1004 return SDValue(); 1005 1006 if (LHS == True) 1007 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1008 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1009 } 1010 case ISD::SETCC_INVALID: 1011 llvm_unreachable("Invalid setcc condcode!"); 1012 } 1013 return SDValue(); 1014 } 1015 1016 std::pair<SDValue, SDValue> 1017 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1018 SDLoc SL(Op); 1019 1020 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1021 1022 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1023 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1024 1025 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1026 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1027 1028 return std::make_pair(Lo, Hi); 1029 } 1030 1031 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1032 SDLoc SL(Op); 1033 1034 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1035 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1036 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1037 } 1038 1039 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1040 SDLoc SL(Op); 1041 1042 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1043 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1044 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1045 } 1046 1047 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1048 SelectionDAG &DAG) const { 1049 LoadSDNode *Load = cast<LoadSDNode>(Op); 1050 EVT VT = Op.getValueType(); 1051 1052 1053 // If this is a 2 element vector, we really want to scalarize and not create 1054 // weird 1 element vectors. 1055 if (VT.getVectorNumElements() == 2) 1056 return scalarizeVectorLoad(Load, DAG); 1057 1058 SDValue BasePtr = Load->getBasePtr(); 1059 EVT PtrVT = BasePtr.getValueType(); 1060 EVT MemVT = Load->getMemoryVT(); 1061 SDLoc SL(Op); 1062 1063 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1064 1065 EVT LoVT, HiVT; 1066 EVT LoMemVT, HiMemVT; 1067 SDValue Lo, Hi; 1068 1069 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1070 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1071 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1072 1073 unsigned Size = LoMemVT.getStoreSize(); 1074 unsigned BaseAlign = Load->getAlignment(); 1075 unsigned HiAlign = MinAlign(BaseAlign, Size); 1076 1077 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1078 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1079 BaseAlign, Load->getMemOperand()->getFlags()); 1080 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1081 DAG.getConstant(Size, SL, PtrVT)); 1082 SDValue HiLoad = 1083 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1084 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1085 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1086 1087 SDValue Ops[] = { 1088 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1089 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1090 LoLoad.getValue(1), HiLoad.getValue(1)) 1091 }; 1092 1093 return DAG.getMergeValues(Ops, SL); 1094 } 1095 1096 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1097 SelectionDAG &DAG) const { 1098 StoreSDNode *Store = cast<StoreSDNode>(Op); 1099 SDValue Val = Store->getValue(); 1100 EVT VT = Val.getValueType(); 1101 1102 // If this is a 2 element vector, we really want to scalarize and not create 1103 // weird 1 element vectors. 1104 if (VT.getVectorNumElements() == 2) 1105 return scalarizeVectorStore(Store, DAG); 1106 1107 EVT MemVT = Store->getMemoryVT(); 1108 SDValue Chain = Store->getChain(); 1109 SDValue BasePtr = Store->getBasePtr(); 1110 SDLoc SL(Op); 1111 1112 EVT LoVT, HiVT; 1113 EVT LoMemVT, HiMemVT; 1114 SDValue Lo, Hi; 1115 1116 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1117 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1118 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1119 1120 EVT PtrVT = BasePtr.getValueType(); 1121 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1122 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1123 PtrVT)); 1124 1125 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1126 unsigned BaseAlign = Store->getAlignment(); 1127 unsigned Size = LoMemVT.getStoreSize(); 1128 unsigned HiAlign = MinAlign(BaseAlign, Size); 1129 1130 SDValue LoStore = 1131 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1132 Store->getMemOperand()->getFlags()); 1133 SDValue HiStore = 1134 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1135 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1136 1137 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1138 } 1139 1140 // This is a shortcut for integer division because we have fast i32<->f32 1141 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1142 // float is enough to accurately represent up to a 24-bit signed integer. 1143 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1144 bool Sign) const { 1145 SDLoc DL(Op); 1146 EVT VT = Op.getValueType(); 1147 SDValue LHS = Op.getOperand(0); 1148 SDValue RHS = Op.getOperand(1); 1149 MVT IntVT = MVT::i32; 1150 MVT FltVT = MVT::f32; 1151 1152 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1153 if (LHSSignBits < 9) 1154 return SDValue(); 1155 1156 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1157 if (RHSSignBits < 9) 1158 return SDValue(); 1159 1160 unsigned BitSize = VT.getSizeInBits(); 1161 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1162 unsigned DivBits = BitSize - SignBits; 1163 if (Sign) 1164 ++DivBits; 1165 1166 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1167 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1168 1169 SDValue jq = DAG.getConstant(1, DL, IntVT); 1170 1171 if (Sign) { 1172 // char|short jq = ia ^ ib; 1173 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1174 1175 // jq = jq >> (bitsize - 2) 1176 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1177 DAG.getConstant(BitSize - 2, DL, VT)); 1178 1179 // jq = jq | 0x1 1180 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1181 } 1182 1183 // int ia = (int)LHS; 1184 SDValue ia = LHS; 1185 1186 // int ib, (int)RHS; 1187 SDValue ib = RHS; 1188 1189 // float fa = (float)ia; 1190 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1191 1192 // float fb = (float)ib; 1193 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1194 1195 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1196 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1197 1198 // fq = trunc(fq); 1199 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1200 1201 // float fqneg = -fq; 1202 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1203 1204 // float fr = mad(fqneg, fb, fa); 1205 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1206 1207 // int iq = (int)fq; 1208 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1209 1210 // fr = fabs(fr); 1211 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1212 1213 // fb = fabs(fb); 1214 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1215 1216 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1217 1218 // int cv = fr >= fb; 1219 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1220 1221 // jq = (cv ? jq : 0); 1222 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1223 1224 // dst = iq + jq; 1225 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1226 1227 // Rem needs compensation, it's easier to recompute it 1228 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1229 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1230 1231 // Truncate to number of bits this divide really is. 1232 if (Sign) { 1233 SDValue InRegSize 1234 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1235 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1236 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1237 } else { 1238 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1239 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1240 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1241 } 1242 1243 return DAG.getMergeValues({ Div, Rem }, DL); 1244 } 1245 1246 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1247 SelectionDAG &DAG, 1248 SmallVectorImpl<SDValue> &Results) const { 1249 assert(Op.getValueType() == MVT::i64); 1250 1251 SDLoc DL(Op); 1252 EVT VT = Op.getValueType(); 1253 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1254 1255 SDValue one = DAG.getConstant(1, DL, HalfVT); 1256 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1257 1258 //HiLo split 1259 SDValue LHS = Op.getOperand(0); 1260 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1261 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1262 1263 SDValue RHS = Op.getOperand(1); 1264 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1265 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1266 1267 if (VT == MVT::i64 && 1268 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1269 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1270 1271 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1272 LHS_Lo, RHS_Lo); 1273 1274 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1275 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1276 1277 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1278 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1279 return; 1280 } 1281 1282 // Get Speculative values 1283 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1284 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1285 1286 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1287 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1288 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1289 1290 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1291 SDValue DIV_Lo = zero; 1292 1293 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1294 1295 for (unsigned i = 0; i < halfBitWidth; ++i) { 1296 const unsigned bitPos = halfBitWidth - i - 1; 1297 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1298 // Get value of high bit 1299 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1300 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1301 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1302 1303 // Shift 1304 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1305 // Add LHS high bit 1306 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1307 1308 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1309 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1310 1311 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1312 1313 // Update REM 1314 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1315 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1316 } 1317 1318 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1319 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1320 Results.push_back(DIV); 1321 Results.push_back(REM); 1322 } 1323 1324 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1325 SelectionDAG &DAG) const { 1326 SDLoc DL(Op); 1327 EVT VT = Op.getValueType(); 1328 1329 if (VT == MVT::i64) { 1330 SmallVector<SDValue, 2> Results; 1331 LowerUDIVREM64(Op, DAG, Results); 1332 return DAG.getMergeValues(Results, DL); 1333 } 1334 1335 if (VT == MVT::i32) { 1336 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1337 return Res; 1338 } 1339 1340 SDValue Num = Op.getOperand(0); 1341 SDValue Den = Op.getOperand(1); 1342 1343 // RCP = URECIP(Den) = 2^32 / Den + e 1344 // e is rounding error. 1345 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1346 1347 // RCP_LO = mul(RCP, Den) */ 1348 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1349 1350 // RCP_HI = mulhu (RCP, Den) */ 1351 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1352 1353 // NEG_RCP_LO = -RCP_LO 1354 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1355 RCP_LO); 1356 1357 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1358 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1359 NEG_RCP_LO, RCP_LO, 1360 ISD::SETEQ); 1361 // Calculate the rounding error from the URECIP instruction 1362 // E = mulhu(ABS_RCP_LO, RCP) 1363 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1364 1365 // RCP_A_E = RCP + E 1366 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1367 1368 // RCP_S_E = RCP - E 1369 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1370 1371 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1372 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1373 RCP_A_E, RCP_S_E, 1374 ISD::SETEQ); 1375 // Quotient = mulhu(Tmp0, Num) 1376 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1377 1378 // Num_S_Remainder = Quotient * Den 1379 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1380 1381 // Remainder = Num - Num_S_Remainder 1382 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1383 1384 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1385 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1386 DAG.getConstant(-1, DL, VT), 1387 DAG.getConstant(0, DL, VT), 1388 ISD::SETUGE); 1389 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1390 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1391 Num_S_Remainder, 1392 DAG.getConstant(-1, DL, VT), 1393 DAG.getConstant(0, DL, VT), 1394 ISD::SETUGE); 1395 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1396 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1397 Remainder_GE_Zero); 1398 1399 // Calculate Division result: 1400 1401 // Quotient_A_One = Quotient + 1 1402 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1403 DAG.getConstant(1, DL, VT)); 1404 1405 // Quotient_S_One = Quotient - 1 1406 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1407 DAG.getConstant(1, DL, VT)); 1408 1409 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1410 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1411 Quotient, Quotient_A_One, ISD::SETEQ); 1412 1413 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1414 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1415 Quotient_S_One, Div, ISD::SETEQ); 1416 1417 // Calculate Rem result: 1418 1419 // Remainder_S_Den = Remainder - Den 1420 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1421 1422 // Remainder_A_Den = Remainder + Den 1423 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1424 1425 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1426 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1427 Remainder, Remainder_S_Den, ISD::SETEQ); 1428 1429 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1430 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1431 Remainder_A_Den, Rem, ISD::SETEQ); 1432 SDValue Ops[2] = { 1433 Div, 1434 Rem 1435 }; 1436 return DAG.getMergeValues(Ops, DL); 1437 } 1438 1439 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1440 SelectionDAG &DAG) const { 1441 SDLoc DL(Op); 1442 EVT VT = Op.getValueType(); 1443 1444 SDValue LHS = Op.getOperand(0); 1445 SDValue RHS = Op.getOperand(1); 1446 1447 SDValue Zero = DAG.getConstant(0, DL, VT); 1448 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1449 1450 if (VT == MVT::i32) { 1451 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1452 return Res; 1453 } 1454 1455 if (VT == MVT::i64 && 1456 DAG.ComputeNumSignBits(LHS) > 32 && 1457 DAG.ComputeNumSignBits(RHS) > 32) { 1458 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1459 1460 //HiLo split 1461 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1462 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1463 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1464 LHS_Lo, RHS_Lo); 1465 SDValue Res[2] = { 1466 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1467 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1468 }; 1469 return DAG.getMergeValues(Res, DL); 1470 } 1471 1472 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1473 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1474 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1475 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1476 1477 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1478 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1479 1480 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1481 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1482 1483 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1484 SDValue Rem = Div.getValue(1); 1485 1486 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1487 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1488 1489 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1490 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1491 1492 SDValue Res[2] = { 1493 Div, 1494 Rem 1495 }; 1496 return DAG.getMergeValues(Res, DL); 1497 } 1498 1499 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1500 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1501 SDLoc SL(Op); 1502 EVT VT = Op.getValueType(); 1503 SDValue X = Op.getOperand(0); 1504 SDValue Y = Op.getOperand(1); 1505 1506 // TODO: Should this propagate fast-math-flags? 1507 1508 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1509 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1510 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1511 1512 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1513 } 1514 1515 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1516 SDLoc SL(Op); 1517 SDValue Src = Op.getOperand(0); 1518 1519 // result = trunc(src) 1520 // if (src > 0.0 && src != result) 1521 // result += 1.0 1522 1523 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1524 1525 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1526 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1527 1528 EVT SetCCVT = 1529 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1530 1531 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1532 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1533 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1534 1535 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1536 // TODO: Should this propagate fast-math-flags? 1537 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1538 } 1539 1540 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1541 SelectionDAG &DAG) { 1542 const unsigned FractBits = 52; 1543 const unsigned ExpBits = 11; 1544 1545 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1546 Hi, 1547 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1548 DAG.getConstant(ExpBits, SL, MVT::i32)); 1549 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1550 DAG.getConstant(1023, SL, MVT::i32)); 1551 1552 return Exp; 1553 } 1554 1555 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1556 SDLoc SL(Op); 1557 SDValue Src = Op.getOperand(0); 1558 1559 assert(Op.getValueType() == MVT::f64); 1560 1561 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1562 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1563 1564 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1565 1566 // Extract the upper half, since this is where we will find the sign and 1567 // exponent. 1568 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1569 1570 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1571 1572 const unsigned FractBits = 52; 1573 1574 // Extract the sign bit. 1575 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1576 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1577 1578 // Extend back to to 64-bits. 1579 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1580 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1581 1582 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1583 const SDValue FractMask 1584 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1585 1586 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1587 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1588 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1589 1590 EVT SetCCVT = 1591 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1592 1593 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1594 1595 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1596 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1597 1598 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1599 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1600 1601 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1602 } 1603 1604 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1605 SDLoc SL(Op); 1606 SDValue Src = Op.getOperand(0); 1607 1608 assert(Op.getValueType() == MVT::f64); 1609 1610 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1611 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1612 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1613 1614 // TODO: Should this propagate fast-math-flags? 1615 1616 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1617 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1618 1619 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1620 1621 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1622 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1623 1624 EVT SetCCVT = 1625 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1626 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1627 1628 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1629 } 1630 1631 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1632 // FNEARBYINT and FRINT are the same, except in their handling of FP 1633 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1634 // rint, so just treat them as equivalent. 1635 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1636 } 1637 1638 // XXX - May require not supporting f32 denormals? 1639 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1640 SDLoc SL(Op); 1641 SDValue X = Op.getOperand(0); 1642 1643 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1644 1645 // TODO: Should this propagate fast-math-flags? 1646 1647 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1648 1649 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1650 1651 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1652 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1653 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1654 1655 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1656 1657 EVT SetCCVT = 1658 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1659 1660 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1661 1662 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1663 1664 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1665 } 1666 1667 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1668 SDLoc SL(Op); 1669 SDValue X = Op.getOperand(0); 1670 1671 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1672 1673 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1674 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1675 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1676 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1677 EVT SetCCVT = 1678 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1679 1680 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1681 1682 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1683 1684 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1685 1686 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1687 MVT::i64); 1688 1689 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1690 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1691 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1692 MVT::i64), 1693 Exp); 1694 1695 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1696 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1697 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1698 ISD::SETNE); 1699 1700 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1701 D, DAG.getConstant(0, SL, MVT::i64)); 1702 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1703 1704 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1705 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1706 1707 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1708 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1709 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1710 1711 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1712 ExpEqNegOne, 1713 DAG.getConstantFP(1.0, SL, MVT::f64), 1714 DAG.getConstantFP(0.0, SL, MVT::f64)); 1715 1716 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1717 1718 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1719 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1720 1721 return K; 1722 } 1723 1724 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1725 EVT VT = Op.getValueType(); 1726 1727 if (VT == MVT::f32) 1728 return LowerFROUND32(Op, DAG); 1729 1730 if (VT == MVT::f64) 1731 return LowerFROUND64(Op, DAG); 1732 1733 llvm_unreachable("unhandled type"); 1734 } 1735 1736 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1737 SDLoc SL(Op); 1738 SDValue Src = Op.getOperand(0); 1739 1740 // result = trunc(src); 1741 // if (src < 0.0 && src != result) 1742 // result += -1.0. 1743 1744 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1745 1746 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1747 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1748 1749 EVT SetCCVT = 1750 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1751 1752 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1753 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1754 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1755 1756 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1757 // TODO: Should this propagate fast-math-flags? 1758 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1759 } 1760 1761 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1762 SDLoc SL(Op); 1763 SDValue Src = Op.getOperand(0); 1764 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1765 1766 if (ZeroUndef && Src.getValueType() == MVT::i32) 1767 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1768 1769 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1770 1771 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1772 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1773 1774 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1775 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1776 1777 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1778 *DAG.getContext(), MVT::i32); 1779 1780 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1781 1782 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1783 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1784 1785 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1786 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1787 1788 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1789 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1790 1791 if (!ZeroUndef) { 1792 // Test if the full 64-bit input is zero. 1793 1794 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1795 // which we probably don't want. 1796 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1797 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1798 1799 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1800 // with the same cycles, otherwise it is slower. 1801 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1802 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1803 1804 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1805 1806 // The instruction returns -1 for 0 input, but the defined intrinsic 1807 // behavior is to return the number of bits. 1808 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1809 SrcIsZero, Bits32, NewCtlz); 1810 } 1811 1812 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1813 } 1814 1815 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1816 bool Signed) const { 1817 // Unsigned 1818 // cul2f(ulong u) 1819 //{ 1820 // uint lz = clz(u); 1821 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1822 // u = (u << lz) & 0x7fffffffffffffffUL; 1823 // ulong t = u & 0xffffffffffUL; 1824 // uint v = (e << 23) | (uint)(u >> 40); 1825 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1826 // return as_float(v + r); 1827 //} 1828 // Signed 1829 // cl2f(long l) 1830 //{ 1831 // long s = l >> 63; 1832 // float r = cul2f((l + s) ^ s); 1833 // return s ? -r : r; 1834 //} 1835 1836 SDLoc SL(Op); 1837 SDValue Src = Op.getOperand(0); 1838 SDValue L = Src; 1839 1840 SDValue S; 1841 if (Signed) { 1842 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1843 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1844 1845 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1846 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1847 } 1848 1849 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1850 *DAG.getContext(), MVT::f32); 1851 1852 1853 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1854 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1855 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1856 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1857 1858 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1859 SDValue E = DAG.getSelect(SL, MVT::i32, 1860 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1861 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1862 ZeroI32); 1863 1864 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1865 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1866 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1867 1868 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1869 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1870 1871 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1872 U, DAG.getConstant(40, SL, MVT::i64)); 1873 1874 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1875 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1876 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1877 1878 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1879 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1880 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1881 1882 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1883 1884 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1885 1886 SDValue R = DAG.getSelect(SL, MVT::i32, 1887 RCmp, 1888 One, 1889 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1890 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1891 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1892 1893 if (!Signed) 1894 return R; 1895 1896 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1897 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1898 } 1899 1900 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1901 bool Signed) const { 1902 SDLoc SL(Op); 1903 SDValue Src = Op.getOperand(0); 1904 1905 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1906 1907 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1908 DAG.getConstant(0, SL, MVT::i32)); 1909 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1910 DAG.getConstant(1, SL, MVT::i32)); 1911 1912 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 1913 SL, MVT::f64, Hi); 1914 1915 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 1916 1917 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 1918 DAG.getConstant(32, SL, MVT::i32)); 1919 // TODO: Should this propagate fast-math-flags? 1920 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 1921 } 1922 1923 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 1924 SelectionDAG &DAG) const { 1925 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1926 "operation should be legal"); 1927 1928 // TODO: Factor out code common with LowerSINT_TO_FP. 1929 1930 EVT DestVT = Op.getValueType(); 1931 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 1932 SDLoc DL(Op); 1933 SDValue Src = Op.getOperand(0); 1934 1935 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 1936 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 1937 SDValue FPRound = 1938 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 1939 1940 return FPRound; 1941 } 1942 1943 if (DestVT == MVT::f32) 1944 return LowerINT_TO_FP32(Op, DAG, false); 1945 1946 assert(DestVT == MVT::f64); 1947 return LowerINT_TO_FP64(Op, DAG, false); 1948 } 1949 1950 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 1951 SelectionDAG &DAG) const { 1952 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1953 "operation should be legal"); 1954 1955 // TODO: Factor out code common with LowerUINT_TO_FP. 1956 1957 EVT DestVT = Op.getValueType(); 1958 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 1959 SDLoc DL(Op); 1960 SDValue Src = Op.getOperand(0); 1961 1962 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 1963 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 1964 SDValue FPRound = 1965 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 1966 1967 return FPRound; 1968 } 1969 1970 if (DestVT == MVT::f32) 1971 return LowerINT_TO_FP32(Op, DAG, true); 1972 1973 assert(DestVT == MVT::f64); 1974 return LowerINT_TO_FP64(Op, DAG, true); 1975 } 1976 1977 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 1978 bool Signed) const { 1979 SDLoc SL(Op); 1980 1981 SDValue Src = Op.getOperand(0); 1982 1983 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1984 1985 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 1986 MVT::f64); 1987 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 1988 MVT::f64); 1989 // TODO: Should this propagate fast-math-flags? 1990 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 1991 1992 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 1993 1994 1995 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 1996 1997 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 1998 MVT::i32, FloorMul); 1999 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2000 2001 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2002 2003 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2004 } 2005 2006 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2007 2008 if (getTargetMachine().Options.UnsafeFPMath) { 2009 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2010 return SDValue(); 2011 } 2012 2013 SDLoc DL(Op); 2014 SDValue N0 = Op.getOperand(0); 2015 assert (N0.getSimpleValueType() == MVT::f64); 2016 2017 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2018 const unsigned ExpMask = 0x7ff; 2019 const unsigned ExpBiasf64 = 1023; 2020 const unsigned ExpBiasf16 = 15; 2021 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2022 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2023 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2024 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2025 DAG.getConstant(32, DL, MVT::i64)); 2026 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2027 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2028 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2029 DAG.getConstant(20, DL, MVT::i64)); 2030 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2031 DAG.getConstant(ExpMask, DL, MVT::i32)); 2032 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2033 // add the f16 bias (15) to get the biased exponent for the f16 format. 2034 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2035 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2036 2037 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2038 DAG.getConstant(8, DL, MVT::i32)); 2039 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2040 DAG.getConstant(0xffe, DL, MVT::i32)); 2041 2042 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2043 DAG.getConstant(0x1ff, DL, MVT::i32)); 2044 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2045 2046 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2047 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2048 2049 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2050 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2051 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2052 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2053 2054 // N = M | (E << 12); 2055 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2056 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2057 DAG.getConstant(12, DL, MVT::i32))); 2058 2059 // B = clamp(1-E, 0, 13); 2060 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2061 One, E); 2062 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2063 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2064 DAG.getConstant(13, DL, MVT::i32)); 2065 2066 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2067 DAG.getConstant(0x1000, DL, MVT::i32)); 2068 2069 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2070 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2071 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2072 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2073 2074 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2075 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2076 DAG.getConstant(0x7, DL, MVT::i32)); 2077 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2078 DAG.getConstant(2, DL, MVT::i32)); 2079 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2080 One, Zero, ISD::SETEQ); 2081 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2082 One, Zero, ISD::SETGT); 2083 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2084 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2085 2086 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2087 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2088 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2089 I, V, ISD::SETEQ); 2090 2091 // Extract the sign bit. 2092 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2093 DAG.getConstant(16, DL, MVT::i32)); 2094 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2095 DAG.getConstant(0x8000, DL, MVT::i32)); 2096 2097 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2098 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2099 } 2100 2101 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2102 SelectionDAG &DAG) const { 2103 SDValue Src = Op.getOperand(0); 2104 2105 // TODO: Factor out code common with LowerFP_TO_UINT. 2106 2107 EVT SrcVT = Src.getValueType(); 2108 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2109 SDLoc DL(Op); 2110 2111 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2112 SDValue FpToInt32 = 2113 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2114 2115 return FpToInt32; 2116 } 2117 2118 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2119 return LowerFP64_TO_INT(Op, DAG, true); 2120 2121 return SDValue(); 2122 } 2123 2124 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2125 SelectionDAG &DAG) const { 2126 SDValue Src = Op.getOperand(0); 2127 2128 // TODO: Factor out code common with LowerFP_TO_SINT. 2129 2130 EVT SrcVT = Src.getValueType(); 2131 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2132 SDLoc DL(Op); 2133 2134 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2135 SDValue FpToInt32 = 2136 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2137 2138 return FpToInt32; 2139 } 2140 2141 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2142 return LowerFP64_TO_INT(Op, DAG, false); 2143 2144 return SDValue(); 2145 } 2146 2147 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2148 SelectionDAG &DAG) const { 2149 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2150 MVT VT = Op.getSimpleValueType(); 2151 MVT ScalarVT = VT.getScalarType(); 2152 2153 assert(VT.isVector()); 2154 2155 SDValue Src = Op.getOperand(0); 2156 SDLoc DL(Op); 2157 2158 // TODO: Don't scalarize on Evergreen? 2159 unsigned NElts = VT.getVectorNumElements(); 2160 SmallVector<SDValue, 8> Args; 2161 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2162 2163 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2164 for (unsigned I = 0; I < NElts; ++I) 2165 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2166 2167 return DAG.getBuildVector(VT, DL, Args); 2168 } 2169 2170 //===----------------------------------------------------------------------===// 2171 // Custom DAG optimizations 2172 //===----------------------------------------------------------------------===// 2173 2174 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2175 APInt KnownZero, KnownOne; 2176 EVT VT = Op.getValueType(); 2177 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2178 2179 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2180 } 2181 2182 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2183 EVT VT = Op.getValueType(); 2184 2185 // In order for this to be a signed 24-bit value, bit 23, must 2186 // be a sign bit. 2187 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2188 // as unsigned 24-bit values. 2189 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2190 } 2191 2192 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2193 TargetLowering::DAGCombinerInfo &DCI) { 2194 2195 SelectionDAG &DAG = DCI.DAG; 2196 SDValue Op = Node24->getOperand(OpIdx); 2197 EVT VT = Op.getValueType(); 2198 2199 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2200 APInt KnownZero, KnownOne; 2201 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2202 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2203 return true; 2204 2205 return false; 2206 } 2207 2208 template <typename IntTy> 2209 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2210 uint32_t Width, const SDLoc &DL) { 2211 if (Width + Offset < 32) { 2212 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2213 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2214 return DAG.getConstant(Result, DL, MVT::i32); 2215 } 2216 2217 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2218 } 2219 2220 static bool hasVolatileUser(SDNode *Val) { 2221 for (SDNode *U : Val->uses()) { 2222 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2223 if (M->isVolatile()) 2224 return true; 2225 } 2226 } 2227 2228 return false; 2229 } 2230 2231 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2232 // i32 vectors are the canonical memory type. 2233 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2234 return false; 2235 2236 if (!VT.isByteSized()) 2237 return false; 2238 2239 unsigned Size = VT.getStoreSize(); 2240 2241 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2242 return false; 2243 2244 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2245 return false; 2246 2247 return true; 2248 } 2249 2250 // Replace load of an illegal type with a store of a bitcast to a friendlier 2251 // type. 2252 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2253 DAGCombinerInfo &DCI) const { 2254 if (!DCI.isBeforeLegalize()) 2255 return SDValue(); 2256 2257 LoadSDNode *LN = cast<LoadSDNode>(N); 2258 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2259 return SDValue(); 2260 2261 SDLoc SL(N); 2262 SelectionDAG &DAG = DCI.DAG; 2263 EVT VT = LN->getMemoryVT(); 2264 2265 unsigned Size = VT.getStoreSize(); 2266 unsigned Align = LN->getAlignment(); 2267 if (Align < Size && isTypeLegal(VT)) { 2268 bool IsFast; 2269 unsigned AS = LN->getAddressSpace(); 2270 2271 // Expand unaligned loads earlier than legalization. Due to visitation order 2272 // problems during legalization, the emitted instructions to pack and unpack 2273 // the bytes again are not eliminated in the case of an unaligned copy. 2274 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2275 if (VT.isVector()) 2276 return scalarizeVectorLoad(LN, DAG); 2277 2278 SDValue Ops[2]; 2279 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2280 return DAG.getMergeValues(Ops, SDLoc(N)); 2281 } 2282 2283 if (!IsFast) 2284 return SDValue(); 2285 } 2286 2287 if (!shouldCombineMemoryType(VT)) 2288 return SDValue(); 2289 2290 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2291 2292 SDValue NewLoad 2293 = DAG.getLoad(NewVT, SL, LN->getChain(), 2294 LN->getBasePtr(), LN->getMemOperand()); 2295 2296 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2297 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2298 return SDValue(N, 0); 2299 } 2300 2301 // Replace store of an illegal type with a store of a bitcast to a friendlier 2302 // type. 2303 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2304 DAGCombinerInfo &DCI) const { 2305 if (!DCI.isBeforeLegalize()) 2306 return SDValue(); 2307 2308 StoreSDNode *SN = cast<StoreSDNode>(N); 2309 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2310 return SDValue(); 2311 2312 EVT VT = SN->getMemoryVT(); 2313 unsigned Size = VT.getStoreSize(); 2314 2315 SDLoc SL(N); 2316 SelectionDAG &DAG = DCI.DAG; 2317 unsigned Align = SN->getAlignment(); 2318 if (Align < Size && isTypeLegal(VT)) { 2319 bool IsFast; 2320 unsigned AS = SN->getAddressSpace(); 2321 2322 // Expand unaligned stores earlier than legalization. Due to visitation 2323 // order problems during legalization, the emitted instructions to pack and 2324 // unpack the bytes again are not eliminated in the case of an unaligned 2325 // copy. 2326 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2327 if (VT.isVector()) 2328 return scalarizeVectorStore(SN, DAG); 2329 2330 return expandUnalignedStore(SN, DAG); 2331 } 2332 2333 if (!IsFast) 2334 return SDValue(); 2335 } 2336 2337 if (!shouldCombineMemoryType(VT)) 2338 return SDValue(); 2339 2340 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2341 SDValue Val = SN->getValue(); 2342 2343 //DCI.AddToWorklist(Val.getNode()); 2344 2345 bool OtherUses = !Val.hasOneUse(); 2346 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2347 if (OtherUses) { 2348 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2349 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2350 } 2351 2352 return DAG.getStore(SN->getChain(), SL, CastVal, 2353 SN->getBasePtr(), SN->getMemOperand()); 2354 } 2355 2356 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2357 /// binary operation \p Opc to it with the corresponding constant operands. 2358 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2359 DAGCombinerInfo &DCI, const SDLoc &SL, 2360 unsigned Opc, SDValue LHS, 2361 uint32_t ValLo, uint32_t ValHi) const { 2362 SelectionDAG &DAG = DCI.DAG; 2363 SDValue Lo, Hi; 2364 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2365 2366 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2367 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2368 2369 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2370 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2371 2372 // Re-visit the ands. It's possible we eliminated one of them and it could 2373 // simplify the vector. 2374 DCI.AddToWorklist(Lo.getNode()); 2375 DCI.AddToWorklist(Hi.getNode()); 2376 2377 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2378 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2379 } 2380 2381 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2382 DAGCombinerInfo &DCI) const { 2383 if (N->getValueType(0) != MVT::i64) 2384 return SDValue(); 2385 2386 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2387 2388 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2389 // common case, splitting this into a move and a 32-bit shift is faster and 2390 // the same code size. 2391 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2392 if (!RHS) 2393 return SDValue(); 2394 2395 unsigned RHSVal = RHS->getZExtValue(); 2396 if (RHSVal < 32) 2397 return SDValue(); 2398 2399 SDValue LHS = N->getOperand(0); 2400 2401 SDLoc SL(N); 2402 SelectionDAG &DAG = DCI.DAG; 2403 2404 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2405 2406 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2407 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2408 2409 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2410 2411 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2412 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2413 } 2414 2415 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2416 DAGCombinerInfo &DCI) const { 2417 if (N->getValueType(0) != MVT::i64) 2418 return SDValue(); 2419 2420 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2421 if (!RHS) 2422 return SDValue(); 2423 2424 SelectionDAG &DAG = DCI.DAG; 2425 SDLoc SL(N); 2426 unsigned RHSVal = RHS->getZExtValue(); 2427 2428 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2429 if (RHSVal == 32) { 2430 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2431 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2432 DAG.getConstant(31, SL, MVT::i32)); 2433 2434 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2435 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2436 } 2437 2438 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2439 if (RHSVal == 63) { 2440 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2441 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2442 DAG.getConstant(31, SL, MVT::i32)); 2443 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2444 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2445 } 2446 2447 return SDValue(); 2448 } 2449 2450 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2451 DAGCombinerInfo &DCI) const { 2452 if (N->getValueType(0) != MVT::i64) 2453 return SDValue(); 2454 2455 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2456 if (!RHS) 2457 return SDValue(); 2458 2459 unsigned ShiftAmt = RHS->getZExtValue(); 2460 if (ShiftAmt < 32) 2461 return SDValue(); 2462 2463 // srl i64:x, C for C >= 32 2464 // => 2465 // build_pair (srl hi_32(x), C - 32), 0 2466 2467 SelectionDAG &DAG = DCI.DAG; 2468 SDLoc SL(N); 2469 2470 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2471 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2472 2473 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2474 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2475 VecOp, One); 2476 2477 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2478 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2479 2480 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2481 2482 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2483 } 2484 2485 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2486 // instructions. If we only match on the legalized i64 mul expansion, 2487 // SimplifyDemandedBits will be unable to remove them because there will be 2488 // multiple uses due to the separate mul + mulh[su]. 2489 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2490 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2491 if (Size <= 32) { 2492 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2493 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2494 } 2495 2496 // Because we want to eliminate extension instructions before the 2497 // operation, we need to create a single user here (i.e. not the separate 2498 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2499 2500 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2501 2502 SDValue Mul = DAG.getNode(MulOpc, SL, 2503 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2504 2505 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2506 Mul.getValue(0), Mul.getValue(1)); 2507 } 2508 2509 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2510 DAGCombinerInfo &DCI) const { 2511 EVT VT = N->getValueType(0); 2512 2513 unsigned Size = VT.getSizeInBits(); 2514 if (VT.isVector() || Size > 64) 2515 return SDValue(); 2516 2517 // There are i16 integer mul/mad. 2518 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2519 return SDValue(); 2520 2521 SelectionDAG &DAG = DCI.DAG; 2522 SDLoc DL(N); 2523 2524 SDValue N0 = N->getOperand(0); 2525 SDValue N1 = N->getOperand(1); 2526 SDValue Mul; 2527 2528 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2529 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2530 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2531 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2532 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2533 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2534 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2535 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2536 } else { 2537 return SDValue(); 2538 } 2539 2540 // We need to use sext even for MUL_U24, because MUL_U24 is used 2541 // for signed multiply of 8 and 16-bit types. 2542 return DAG.getSExtOrTrunc(Mul, DL, VT); 2543 } 2544 2545 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2546 DAGCombinerInfo &DCI) const { 2547 EVT VT = N->getValueType(0); 2548 2549 if (!Subtarget->hasMulI24() || VT.isVector()) 2550 return SDValue(); 2551 2552 SelectionDAG &DAG = DCI.DAG; 2553 SDLoc DL(N); 2554 2555 SDValue N0 = N->getOperand(0); 2556 SDValue N1 = N->getOperand(1); 2557 2558 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2559 return SDValue(); 2560 2561 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2562 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2563 2564 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2565 DCI.AddToWorklist(Mulhi.getNode()); 2566 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2567 } 2568 2569 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2570 DAGCombinerInfo &DCI) const { 2571 EVT VT = N->getValueType(0); 2572 2573 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2574 return SDValue(); 2575 2576 SelectionDAG &DAG = DCI.DAG; 2577 SDLoc DL(N); 2578 2579 SDValue N0 = N->getOperand(0); 2580 SDValue N1 = N->getOperand(1); 2581 2582 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2583 return SDValue(); 2584 2585 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2586 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2587 2588 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2589 DCI.AddToWorklist(Mulhi.getNode()); 2590 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2591 } 2592 2593 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2594 SDNode *N, DAGCombinerInfo &DCI) const { 2595 SelectionDAG &DAG = DCI.DAG; 2596 2597 // Simplify demanded bits before splitting into multiple users. 2598 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2599 return SDValue(); 2600 2601 SDValue N0 = N->getOperand(0); 2602 SDValue N1 = N->getOperand(1); 2603 2604 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2605 2606 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2607 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2608 2609 SDLoc SL(N); 2610 2611 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2612 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2613 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2614 } 2615 2616 static bool isNegativeOne(SDValue Val) { 2617 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2618 return C->isAllOnesValue(); 2619 return false; 2620 } 2621 2622 static bool isCtlzOpc(unsigned Opc) { 2623 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2624 } 2625 2626 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2627 SDValue Op, 2628 const SDLoc &DL) const { 2629 EVT VT = Op.getValueType(); 2630 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2631 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2632 LegalVT != MVT::i16)) 2633 return SDValue(); 2634 2635 if (VT != MVT::i32) 2636 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2637 2638 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2639 if (VT != MVT::i32) 2640 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2641 2642 return FFBH; 2643 } 2644 2645 // The native instructions return -1 on 0 input. Optimize out a select that 2646 // produces -1 on 0. 2647 // 2648 // TODO: If zero is not undef, we could also do this if the output is compared 2649 // against the bitwidth. 2650 // 2651 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2652 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2653 SDValue LHS, SDValue RHS, 2654 DAGCombinerInfo &DCI) const { 2655 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2656 if (!CmpRhs || !CmpRhs->isNullValue()) 2657 return SDValue(); 2658 2659 SelectionDAG &DAG = DCI.DAG; 2660 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2661 SDValue CmpLHS = Cond.getOperand(0); 2662 2663 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2664 if (CCOpcode == ISD::SETEQ && 2665 isCtlzOpc(RHS.getOpcode()) && 2666 RHS.getOperand(0) == CmpLHS && 2667 isNegativeOne(LHS)) { 2668 return getFFBH_U32(DAG, CmpLHS, SL); 2669 } 2670 2671 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2672 if (CCOpcode == ISD::SETNE && 2673 isCtlzOpc(LHS.getOpcode()) && 2674 LHS.getOperand(0) == CmpLHS && 2675 isNegativeOne(RHS)) { 2676 return getFFBH_U32(DAG, CmpLHS, SL); 2677 } 2678 2679 return SDValue(); 2680 } 2681 2682 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2683 DAGCombinerInfo &DCI) const { 2684 SDValue Cond = N->getOperand(0); 2685 if (Cond.getOpcode() != ISD::SETCC) 2686 return SDValue(); 2687 2688 EVT VT = N->getValueType(0); 2689 SDValue LHS = Cond.getOperand(0); 2690 SDValue RHS = Cond.getOperand(1); 2691 SDValue CC = Cond.getOperand(2); 2692 2693 SDValue True = N->getOperand(1); 2694 SDValue False = N->getOperand(2); 2695 2696 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 2697 SelectionDAG &DAG = DCI.DAG; 2698 if ((DAG.isConstantValueOfAnyType(True) || 2699 DAG.isConstantValueOfAnyType(True)) && 2700 (!DAG.isConstantValueOfAnyType(False) && 2701 !DAG.isConstantValueOfAnyType(False))) { 2702 // Swap cmp + select pair to move constant to false input. 2703 // This will allow using VOPC cndmasks more often. 2704 // select (setcc x, y), k, x -> select (setcc y, x) x, x 2705 2706 SDLoc SL(N); 2707 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 2708 LHS.getValueType().isInteger()); 2709 2710 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 2711 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 2712 } 2713 } 2714 2715 if (VT == MVT::f32 && Cond.hasOneUse()) { 2716 SDValue MinMax 2717 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2718 // Revisit this node so we can catch min3/max3/med3 patterns. 2719 //DCI.AddToWorklist(MinMax.getNode()); 2720 return MinMax; 2721 } 2722 2723 // There's no reason to not do this if the condition has other uses. 2724 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2725 } 2726 2727 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2728 DAGCombinerInfo &DCI) const { 2729 SelectionDAG &DAG = DCI.DAG; 2730 SDLoc DL(N); 2731 2732 switch(N->getOpcode()) { 2733 default: 2734 break; 2735 case ISD::BITCAST: { 2736 EVT DestVT = N->getValueType(0); 2737 2738 // Push casts through vector builds. This helps avoid emitting a large 2739 // number of copies when materializing floating point vector constants. 2740 // 2741 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 2742 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 2743 if (DestVT.isVector()) { 2744 SDValue Src = N->getOperand(0); 2745 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2746 EVT SrcVT = Src.getValueType(); 2747 unsigned NElts = DestVT.getVectorNumElements(); 2748 2749 if (SrcVT.getVectorNumElements() == NElts) { 2750 EVT DestEltVT = DestVT.getVectorElementType(); 2751 2752 SmallVector<SDValue, 8> CastedElts; 2753 SDLoc SL(N); 2754 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 2755 SDValue Elt = Src.getOperand(I); 2756 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 2757 } 2758 2759 return DAG.getBuildVector(DestVT, SL, CastedElts); 2760 } 2761 } 2762 } 2763 2764 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2765 break; 2766 2767 // Fold bitcasts of constants. 2768 // 2769 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2770 // TODO: Generalize and move to DAGCombiner 2771 SDValue Src = N->getOperand(0); 2772 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2773 assert(Src.getValueType() == MVT::i64); 2774 SDLoc SL(N); 2775 uint64_t CVal = C->getZExtValue(); 2776 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2777 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2778 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2779 } 2780 2781 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2782 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2783 SDLoc SL(N); 2784 uint64_t CVal = Val.getZExtValue(); 2785 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2786 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2787 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2788 2789 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2790 } 2791 2792 break; 2793 } 2794 case ISD::SHL: { 2795 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2796 break; 2797 2798 return performShlCombine(N, DCI); 2799 } 2800 case ISD::SRL: { 2801 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2802 break; 2803 2804 return performSrlCombine(N, DCI); 2805 } 2806 case ISD::SRA: { 2807 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2808 break; 2809 2810 return performSraCombine(N, DCI); 2811 } 2812 case ISD::MUL: 2813 return performMulCombine(N, DCI); 2814 case ISD::MULHS: 2815 return performMulhsCombine(N, DCI); 2816 case ISD::MULHU: 2817 return performMulhuCombine(N, DCI); 2818 case AMDGPUISD::MUL_I24: 2819 case AMDGPUISD::MUL_U24: 2820 case AMDGPUISD::MULHI_I24: 2821 case AMDGPUISD::MULHI_U24: { 2822 // If the first call to simplify is successfull, then N may end up being 2823 // deleted, so we shouldn't call simplifyI24 again. 2824 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 2825 return SDValue(); 2826 } 2827 case AMDGPUISD::MUL_LOHI_I24: 2828 case AMDGPUISD::MUL_LOHI_U24: 2829 return performMulLoHi24Combine(N, DCI); 2830 case ISD::SELECT: 2831 return performSelectCombine(N, DCI); 2832 case AMDGPUISD::BFE_I32: 2833 case AMDGPUISD::BFE_U32: { 2834 assert(!N->getValueType(0).isVector() && 2835 "Vector handling of BFE not implemented"); 2836 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2837 if (!Width) 2838 break; 2839 2840 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2841 if (WidthVal == 0) 2842 return DAG.getConstant(0, DL, MVT::i32); 2843 2844 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2845 if (!Offset) 2846 break; 2847 2848 SDValue BitsFrom = N->getOperand(0); 2849 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2850 2851 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2852 2853 if (OffsetVal == 0) { 2854 // This is already sign / zero extended, so try to fold away extra BFEs. 2855 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2856 2857 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2858 if (OpSignBits >= SignBits) 2859 return BitsFrom; 2860 2861 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2862 if (Signed) { 2863 // This is a sign_extend_inreg. Replace it to take advantage of existing 2864 // DAG Combines. If not eliminated, we will match back to BFE during 2865 // selection. 2866 2867 // TODO: The sext_inreg of extended types ends, although we can could 2868 // handle them in a single BFE. 2869 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2870 DAG.getValueType(SmallVT)); 2871 } 2872 2873 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2874 } 2875 2876 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2877 if (Signed) { 2878 return constantFoldBFE<int32_t>(DAG, 2879 CVal->getSExtValue(), 2880 OffsetVal, 2881 WidthVal, 2882 DL); 2883 } 2884 2885 return constantFoldBFE<uint32_t>(DAG, 2886 CVal->getZExtValue(), 2887 OffsetVal, 2888 WidthVal, 2889 DL); 2890 } 2891 2892 if ((OffsetVal + WidthVal) >= 32) { 2893 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2894 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2895 BitsFrom, ShiftVal); 2896 } 2897 2898 if (BitsFrom.hasOneUse()) { 2899 APInt Demanded = APInt::getBitsSet(32, 2900 OffsetVal, 2901 OffsetVal + WidthVal); 2902 2903 APInt KnownZero, KnownOne; 2904 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2905 !DCI.isBeforeLegalizeOps()); 2906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2907 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2908 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2909 KnownZero, KnownOne, TLO)) { 2910 DCI.CommitTargetLoweringOpt(TLO); 2911 } 2912 } 2913 2914 break; 2915 } 2916 case ISD::LOAD: 2917 return performLoadCombine(N, DCI); 2918 case ISD::STORE: 2919 return performStoreCombine(N, DCI); 2920 } 2921 return SDValue(); 2922 } 2923 2924 //===----------------------------------------------------------------------===// 2925 // Helper functions 2926 //===----------------------------------------------------------------------===// 2927 2928 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2929 const TargetRegisterClass *RC, 2930 unsigned Reg, EVT VT) const { 2931 MachineFunction &MF = DAG.getMachineFunction(); 2932 MachineRegisterInfo &MRI = MF.getRegInfo(); 2933 unsigned VirtualRegister; 2934 if (!MRI.isLiveIn(Reg)) { 2935 VirtualRegister = MRI.createVirtualRegister(RC); 2936 MRI.addLiveIn(Reg, VirtualRegister); 2937 } else { 2938 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2939 } 2940 return DAG.getRegister(VirtualRegister, VT); 2941 } 2942 2943 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2944 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2945 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 2946 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 2947 switch (Param) { 2948 case GRID_DIM: 2949 return ArgOffset; 2950 case GRID_OFFSET: 2951 return ArgOffset + 4; 2952 } 2953 llvm_unreachable("unexpected implicit parameter type"); 2954 } 2955 2956 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2957 2958 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2959 switch ((AMDGPUISD::NodeType)Opcode) { 2960 case AMDGPUISD::FIRST_NUMBER: break; 2961 // AMDIL DAG nodes 2962 NODE_NAME_CASE(CALL); 2963 NODE_NAME_CASE(UMUL); 2964 NODE_NAME_CASE(BRANCH_COND); 2965 2966 // AMDGPU DAG nodes 2967 NODE_NAME_CASE(ENDPGM) 2968 NODE_NAME_CASE(RETURN) 2969 NODE_NAME_CASE(DWORDADDR) 2970 NODE_NAME_CASE(FRACT) 2971 NODE_NAME_CASE(SETCC) 2972 NODE_NAME_CASE(SETREG) 2973 NODE_NAME_CASE(FMA_W_CHAIN) 2974 NODE_NAME_CASE(FMUL_W_CHAIN) 2975 NODE_NAME_CASE(CLAMP) 2976 NODE_NAME_CASE(COS_HW) 2977 NODE_NAME_CASE(SIN_HW) 2978 NODE_NAME_CASE(FMAX_LEGACY) 2979 NODE_NAME_CASE(FMIN_LEGACY) 2980 NODE_NAME_CASE(FMAX3) 2981 NODE_NAME_CASE(SMAX3) 2982 NODE_NAME_CASE(UMAX3) 2983 NODE_NAME_CASE(FMIN3) 2984 NODE_NAME_CASE(SMIN3) 2985 NODE_NAME_CASE(UMIN3) 2986 NODE_NAME_CASE(FMED3) 2987 NODE_NAME_CASE(SMED3) 2988 NODE_NAME_CASE(UMED3) 2989 NODE_NAME_CASE(URECIP) 2990 NODE_NAME_CASE(DIV_SCALE) 2991 NODE_NAME_CASE(DIV_FMAS) 2992 NODE_NAME_CASE(DIV_FIXUP) 2993 NODE_NAME_CASE(TRIG_PREOP) 2994 NODE_NAME_CASE(RCP) 2995 NODE_NAME_CASE(RSQ) 2996 NODE_NAME_CASE(RCP_LEGACY) 2997 NODE_NAME_CASE(RSQ_LEGACY) 2998 NODE_NAME_CASE(FMUL_LEGACY) 2999 NODE_NAME_CASE(RSQ_CLAMP) 3000 NODE_NAME_CASE(LDEXP) 3001 NODE_NAME_CASE(FP_CLASS) 3002 NODE_NAME_CASE(DOT4) 3003 NODE_NAME_CASE(CARRY) 3004 NODE_NAME_CASE(BORROW) 3005 NODE_NAME_CASE(BFE_U32) 3006 NODE_NAME_CASE(BFE_I32) 3007 NODE_NAME_CASE(BFI) 3008 NODE_NAME_CASE(BFM) 3009 NODE_NAME_CASE(FFBH_U32) 3010 NODE_NAME_CASE(FFBH_I32) 3011 NODE_NAME_CASE(MUL_U24) 3012 NODE_NAME_CASE(MUL_I24) 3013 NODE_NAME_CASE(MULHI_U24) 3014 NODE_NAME_CASE(MULHI_I24) 3015 NODE_NAME_CASE(MUL_LOHI_U24) 3016 NODE_NAME_CASE(MUL_LOHI_I24) 3017 NODE_NAME_CASE(MAD_U24) 3018 NODE_NAME_CASE(MAD_I24) 3019 NODE_NAME_CASE(TEXTURE_FETCH) 3020 NODE_NAME_CASE(EXPORT) 3021 NODE_NAME_CASE(EXPORT_DONE) 3022 NODE_NAME_CASE(R600_EXPORT) 3023 NODE_NAME_CASE(CONST_ADDRESS) 3024 NODE_NAME_CASE(REGISTER_LOAD) 3025 NODE_NAME_CASE(REGISTER_STORE) 3026 NODE_NAME_CASE(LOAD_INPUT) 3027 NODE_NAME_CASE(SAMPLE) 3028 NODE_NAME_CASE(SAMPLEB) 3029 NODE_NAME_CASE(SAMPLED) 3030 NODE_NAME_CASE(SAMPLEL) 3031 NODE_NAME_CASE(CVT_F32_UBYTE0) 3032 NODE_NAME_CASE(CVT_F32_UBYTE1) 3033 NODE_NAME_CASE(CVT_F32_UBYTE2) 3034 NODE_NAME_CASE(CVT_F32_UBYTE3) 3035 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3036 NODE_NAME_CASE(CONST_DATA_PTR) 3037 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3038 NODE_NAME_CASE(KILL) 3039 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3040 NODE_NAME_CASE(SENDMSG) 3041 NODE_NAME_CASE(SENDMSGHALT) 3042 NODE_NAME_CASE(INTERP_MOV) 3043 NODE_NAME_CASE(INTERP_P1) 3044 NODE_NAME_CASE(INTERP_P2) 3045 NODE_NAME_CASE(STORE_MSKOR) 3046 NODE_NAME_CASE(LOAD_CONSTANT) 3047 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3048 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3049 NODE_NAME_CASE(ATOMIC_INC) 3050 NODE_NAME_CASE(ATOMIC_DEC) 3051 NODE_NAME_CASE(BUFFER_LOAD) 3052 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3053 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3054 } 3055 return nullptr; 3056 } 3057 3058 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3059 SelectionDAG &DAG, int Enabled, 3060 int &RefinementSteps, 3061 bool &UseOneConstNR, 3062 bool Reciprocal) const { 3063 EVT VT = Operand.getValueType(); 3064 3065 if (VT == MVT::f32) { 3066 RefinementSteps = 0; 3067 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3068 } 3069 3070 // TODO: There is also f64 rsq instruction, but the documentation is less 3071 // clear on its precision. 3072 3073 return SDValue(); 3074 } 3075 3076 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3077 SelectionDAG &DAG, int Enabled, 3078 int &RefinementSteps) const { 3079 EVT VT = Operand.getValueType(); 3080 3081 if (VT == MVT::f32) { 3082 // Reciprocal, < 1 ulp error. 3083 // 3084 // This reciprocal approximation converges to < 0.5 ulp error with one 3085 // newton rhapson performed with two fused multiple adds (FMAs). 3086 3087 RefinementSteps = 0; 3088 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3089 } 3090 3091 // TODO: There is also f64 rcp instruction, but the documentation is less 3092 // clear on its precision. 3093 3094 return SDValue(); 3095 } 3096 3097 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3098 const SDValue Op, 3099 APInt &KnownZero, 3100 APInt &KnownOne, 3101 const SelectionDAG &DAG, 3102 unsigned Depth) const { 3103 3104 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3105 3106 APInt KnownZero2; 3107 APInt KnownOne2; 3108 unsigned Opc = Op.getOpcode(); 3109 3110 switch (Opc) { 3111 default: 3112 break; 3113 case AMDGPUISD::CARRY: 3114 case AMDGPUISD::BORROW: { 3115 KnownZero = APInt::getHighBitsSet(32, 31); 3116 break; 3117 } 3118 3119 case AMDGPUISD::BFE_I32: 3120 case AMDGPUISD::BFE_U32: { 3121 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3122 if (!CWidth) 3123 return; 3124 3125 unsigned BitWidth = 32; 3126 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3127 3128 if (Opc == AMDGPUISD::BFE_U32) 3129 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3130 3131 break; 3132 } 3133 } 3134 } 3135 3136 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3137 SDValue Op, 3138 const SelectionDAG &DAG, 3139 unsigned Depth) const { 3140 switch (Op.getOpcode()) { 3141 case AMDGPUISD::BFE_I32: { 3142 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3143 if (!Width) 3144 return 1; 3145 3146 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3147 if (!isNullConstant(Op.getOperand(1))) 3148 return SignBits; 3149 3150 // TODO: Could probably figure something out with non-0 offsets. 3151 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3152 return std::max(SignBits, Op0SignBits); 3153 } 3154 3155 case AMDGPUISD::BFE_U32: { 3156 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3157 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3158 } 3159 3160 case AMDGPUISD::CARRY: 3161 case AMDGPUISD::BORROW: 3162 return 31; 3163 3164 default: 3165 return 1; 3166 } 3167 } 3168