1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 17 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 18 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 19 20 #include "AMDGPUISelLowering.h" 21 #include "AMDGPU.h" 22 #include "AMDGPUCallLowering.h" 23 #include "AMDGPUFrameLowering.h" 24 #include "AMDGPUIntrinsicInfo.h" 25 #include "AMDGPURegisterInfo.h" 26 #include "AMDGPUSubtarget.h" 27 #include "AMDGPUTargetMachine.h" 28 #include "Utils/AMDGPUBaseInfo.h" 29 #include "R600MachineFunctionInfo.h" 30 #include "SIInstrInfo.h" 31 #include "SIMachineFunctionInfo.h" 32 #include "llvm/CodeGen/CallingConvLower.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/Support/KnownBits.h" 40 using namespace llvm; 41 42 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 43 CCValAssign::LocInfo LocInfo, 44 ISD::ArgFlagsTy ArgFlags, CCState &State) { 45 MachineFunction &MF = State.getMachineFunction(); 46 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 47 48 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 49 ArgFlags.getOrigAlign()); 50 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 51 return true; 52 } 53 54 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 55 CCValAssign::LocInfo LocInfo, 56 ISD::ArgFlagsTy ArgFlags, CCState &State, 57 const TargetRegisterClass *RC, 58 unsigned NumRegs) { 59 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 60 unsigned RegResult = State.AllocateReg(RegList); 61 if (RegResult == AMDGPU::NoRegister) 62 return false; 63 64 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 65 return true; 66 } 67 68 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 69 CCValAssign::LocInfo LocInfo, 70 ISD::ArgFlagsTy ArgFlags, CCState &State) { 71 switch (LocVT.SimpleTy) { 72 case MVT::i64: 73 case MVT::f64: 74 case MVT::v2i32: 75 case MVT::v2f32: { 76 // Up to SGPR0-SGPR39 77 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 78 &AMDGPU::SGPR_64RegClass, 20); 79 } 80 default: 81 return false; 82 } 83 } 84 85 // Allocate up to VGPR31. 86 // 87 // TODO: Since there are no VGPR alignent requirements would it be better to 88 // split into individual scalar registers? 89 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 90 CCValAssign::LocInfo LocInfo, 91 ISD::ArgFlagsTy ArgFlags, CCState &State) { 92 switch (LocVT.SimpleTy) { 93 case MVT::i64: 94 case MVT::f64: 95 case MVT::v2i32: 96 case MVT::v2f32: { 97 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 98 &AMDGPU::VReg_64RegClass, 31); 99 } 100 case MVT::v4i32: 101 case MVT::v4f32: 102 case MVT::v2i64: 103 case MVT::v2f64: { 104 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 105 &AMDGPU::VReg_128RegClass, 29); 106 } 107 case MVT::v8i32: 108 case MVT::v8f32: { 109 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 110 &AMDGPU::VReg_256RegClass, 25); 111 112 } 113 case MVT::v16i32: 114 case MVT::v16f32: { 115 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 116 &AMDGPU::VReg_512RegClass, 17); 117 118 } 119 default: 120 return false; 121 } 122 } 123 124 #include "AMDGPUGenCallingConv.inc" 125 126 // Find a larger type to do a load / store of a vector with. 127 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 128 unsigned StoreSize = VT.getStoreSizeInBits(); 129 if (StoreSize <= 32) 130 return EVT::getIntegerVT(Ctx, StoreSize); 131 132 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 133 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 134 } 135 136 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 137 KnownBits Known; 138 EVT VT = Op.getValueType(); 139 DAG.computeKnownBits(Op, Known); 140 141 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 142 } 143 144 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 145 EVT VT = Op.getValueType(); 146 147 // In order for this to be a signed 24-bit value, bit 23, must 148 // be a sign bit. 149 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 150 } 151 152 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 153 const AMDGPUSubtarget &STI) 154 : TargetLowering(TM), Subtarget(&STI) { 155 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 156 // Lower floating point store/load to integer store/load to reduce the number 157 // of patterns in tablegen. 158 setOperationAction(ISD::LOAD, MVT::f32, Promote); 159 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 160 161 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 162 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 163 164 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 165 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 166 167 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 168 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 169 170 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 171 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 172 173 setOperationAction(ISD::LOAD, MVT::i64, Promote); 174 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 175 176 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 177 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 178 179 setOperationAction(ISD::LOAD, MVT::f64, Promote); 180 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 181 182 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 183 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 184 185 // There are no 64-bit extloads. These should be done as a 32-bit extload and 186 // an extension to 64-bit. 187 for (MVT VT : MVT::integer_valuetypes()) { 188 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 189 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 190 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 191 } 192 193 for (MVT VT : MVT::integer_valuetypes()) { 194 if (VT == MVT::i64) 195 continue; 196 197 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 199 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 200 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 201 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 203 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 204 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 206 207 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 208 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 210 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 211 } 212 213 for (MVT VT : MVT::integer_vector_valuetypes()) { 214 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 215 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 216 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 217 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 218 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 219 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 220 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 221 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 222 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 224 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 225 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 226 } 227 228 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 232 233 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 237 238 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 239 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 240 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 241 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 242 243 setOperationAction(ISD::STORE, MVT::f32, Promote); 244 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 245 246 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 247 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 248 249 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 250 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 251 252 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 253 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 254 255 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 256 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 257 258 setOperationAction(ISD::STORE, MVT::i64, Promote); 259 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 260 261 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 262 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 263 264 setOperationAction(ISD::STORE, MVT::f64, Promote); 265 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 266 267 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 268 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 269 270 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 271 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 272 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 274 275 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 276 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 277 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 279 280 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 281 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 282 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 283 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 284 285 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 286 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 287 288 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 289 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 290 291 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 292 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 293 294 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 295 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 296 297 298 setOperationAction(ISD::Constant, MVT::i32, Legal); 299 setOperationAction(ISD::Constant, MVT::i64, Legal); 300 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 301 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 302 303 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 304 setOperationAction(ISD::BRIND, MVT::Other, Expand); 305 306 // This is totally unsupported, just custom lower to produce an error. 307 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 308 309 // Library functions. These default to Expand, but we have instructions 310 // for them. 311 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 312 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 313 setOperationAction(ISD::FPOW, MVT::f32, Legal); 314 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 315 setOperationAction(ISD::FABS, MVT::f32, Legal); 316 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 317 setOperationAction(ISD::FRINT, MVT::f32, Legal); 318 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 319 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 320 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 321 322 setOperationAction(ISD::FROUND, MVT::f32, Custom); 323 setOperationAction(ISD::FROUND, MVT::f64, Custom); 324 325 setOperationAction(ISD::FLOG, MVT::f32, Custom); 326 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 327 328 if (Subtarget->has16BitInsts()) { 329 setOperationAction(ISD::FLOG, MVT::f16, Custom); 330 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 331 } 332 333 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 334 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 335 336 setOperationAction(ISD::FREM, MVT::f32, Custom); 337 setOperationAction(ISD::FREM, MVT::f64, Custom); 338 339 // v_mad_f32 does not support denormals according to some sources. 340 if (!Subtarget->hasFP32Denormals()) 341 setOperationAction(ISD::FMAD, MVT::f32, Legal); 342 343 // Expand to fneg + fadd. 344 setOperationAction(ISD::FSUB, MVT::f64, Expand); 345 346 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 347 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 348 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 349 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 356 357 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 358 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 359 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 360 setOperationAction(ISD::FRINT, MVT::f64, Custom); 361 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 362 } 363 364 if (!Subtarget->hasBFI()) { 365 // fcopysign can be done in a single instruction with BFI. 366 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 367 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 368 } 369 370 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 371 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 372 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 373 374 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 375 for (MVT VT : ScalarIntVTs) { 376 // These should use [SU]DIVREM, so set them to expand 377 setOperationAction(ISD::SDIV, VT, Expand); 378 setOperationAction(ISD::UDIV, VT, Expand); 379 setOperationAction(ISD::SREM, VT, Expand); 380 setOperationAction(ISD::UREM, VT, Expand); 381 382 // GPU does not have divrem function for signed or unsigned. 383 setOperationAction(ISD::SDIVREM, VT, Custom); 384 setOperationAction(ISD::UDIVREM, VT, Custom); 385 386 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 387 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 388 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 389 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTTZ, VT, Expand); 392 setOperationAction(ISD::CTLZ, VT, Expand); 393 } 394 395 if (!Subtarget->hasBCNT(32)) 396 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 397 398 if (!Subtarget->hasBCNT(64)) 399 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 400 401 // The hardware supports 32-bit ROTR, but not ROTL. 402 setOperationAction(ISD::ROTL, MVT::i32, Expand); 403 setOperationAction(ISD::ROTL, MVT::i64, Expand); 404 setOperationAction(ISD::ROTR, MVT::i64, Expand); 405 406 setOperationAction(ISD::MUL, MVT::i64, Expand); 407 setOperationAction(ISD::MULHU, MVT::i64, Expand); 408 setOperationAction(ISD::MULHS, MVT::i64, Expand); 409 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 410 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 411 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 412 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 413 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 414 415 setOperationAction(ISD::SMIN, MVT::i32, Legal); 416 setOperationAction(ISD::UMIN, MVT::i32, Legal); 417 setOperationAction(ISD::SMAX, MVT::i32, Legal); 418 setOperationAction(ISD::UMAX, MVT::i32, Legal); 419 420 if (Subtarget->hasFFBH()) 421 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 422 423 if (Subtarget->hasFFBL()) 424 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 425 426 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 427 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 428 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 429 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 430 431 // We only really have 32-bit BFE instructions (and 16-bit on VI). 432 // 433 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 434 // effort to match them now. We want this to be false for i64 cases when the 435 // extraction isn't restricted to the upper or lower half. Ideally we would 436 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 437 // span the midpoint are probably relatively rare, so don't worry about them 438 // for now. 439 if (Subtarget->hasBFE()) 440 setHasExtractBitsInsn(true); 441 442 static const MVT::SimpleValueType VectorIntTypes[] = { 443 MVT::v2i32, MVT::v4i32 444 }; 445 446 for (MVT VT : VectorIntTypes) { 447 // Expand the following operations for the current type by default. 448 setOperationAction(ISD::ADD, VT, Expand); 449 setOperationAction(ISD::AND, VT, Expand); 450 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 451 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 452 setOperationAction(ISD::MUL, VT, Expand); 453 setOperationAction(ISD::MULHU, VT, Expand); 454 setOperationAction(ISD::MULHS, VT, Expand); 455 setOperationAction(ISD::OR, VT, Expand); 456 setOperationAction(ISD::SHL, VT, Expand); 457 setOperationAction(ISD::SRA, VT, Expand); 458 setOperationAction(ISD::SRL, VT, Expand); 459 setOperationAction(ISD::ROTL, VT, Expand); 460 setOperationAction(ISD::ROTR, VT, Expand); 461 setOperationAction(ISD::SUB, VT, Expand); 462 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 463 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 464 setOperationAction(ISD::SDIV, VT, Expand); 465 setOperationAction(ISD::UDIV, VT, Expand); 466 setOperationAction(ISD::SREM, VT, Expand); 467 setOperationAction(ISD::UREM, VT, Expand); 468 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 469 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 470 setOperationAction(ISD::SDIVREM, VT, Custom); 471 setOperationAction(ISD::UDIVREM, VT, Expand); 472 setOperationAction(ISD::ADDC, VT, Expand); 473 setOperationAction(ISD::SUBC, VT, Expand); 474 setOperationAction(ISD::ADDE, VT, Expand); 475 setOperationAction(ISD::SUBE, VT, Expand); 476 setOperationAction(ISD::SELECT, VT, Expand); 477 setOperationAction(ISD::VSELECT, VT, Expand); 478 setOperationAction(ISD::SELECT_CC, VT, Expand); 479 setOperationAction(ISD::XOR, VT, Expand); 480 setOperationAction(ISD::BSWAP, VT, Expand); 481 setOperationAction(ISD::CTPOP, VT, Expand); 482 setOperationAction(ISD::CTTZ, VT, Expand); 483 setOperationAction(ISD::CTLZ, VT, Expand); 484 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 485 setOperationAction(ISD::SETCC, VT, Expand); 486 } 487 488 static const MVT::SimpleValueType FloatVectorTypes[] = { 489 MVT::v2f32, MVT::v4f32 490 }; 491 492 for (MVT VT : FloatVectorTypes) { 493 setOperationAction(ISD::FABS, VT, Expand); 494 setOperationAction(ISD::FMINNUM, VT, Expand); 495 setOperationAction(ISD::FMAXNUM, VT, Expand); 496 setOperationAction(ISD::FADD, VT, Expand); 497 setOperationAction(ISD::FCEIL, VT, Expand); 498 setOperationAction(ISD::FCOS, VT, Expand); 499 setOperationAction(ISD::FDIV, VT, Expand); 500 setOperationAction(ISD::FEXP2, VT, Expand); 501 setOperationAction(ISD::FLOG2, VT, Expand); 502 setOperationAction(ISD::FREM, VT, Expand); 503 setOperationAction(ISD::FLOG, VT, Expand); 504 setOperationAction(ISD::FLOG10, VT, Expand); 505 setOperationAction(ISD::FPOW, VT, Expand); 506 setOperationAction(ISD::FFLOOR, VT, Expand); 507 setOperationAction(ISD::FTRUNC, VT, Expand); 508 setOperationAction(ISD::FMUL, VT, Expand); 509 setOperationAction(ISD::FMA, VT, Expand); 510 setOperationAction(ISD::FRINT, VT, Expand); 511 setOperationAction(ISD::FNEARBYINT, VT, Expand); 512 setOperationAction(ISD::FSQRT, VT, Expand); 513 setOperationAction(ISD::FSIN, VT, Expand); 514 setOperationAction(ISD::FSUB, VT, Expand); 515 setOperationAction(ISD::FNEG, VT, Expand); 516 setOperationAction(ISD::VSELECT, VT, Expand); 517 setOperationAction(ISD::SELECT_CC, VT, Expand); 518 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 519 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 520 setOperationAction(ISD::SETCC, VT, Expand); 521 } 522 523 // This causes using an unrolled select operation rather than expansion with 524 // bit operations. This is in general better, but the alternative using BFI 525 // instructions may be better if the select sources are SGPRs. 526 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 527 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 528 529 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 530 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 531 532 // There are no libcalls of any kind. 533 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 534 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 535 536 setBooleanContents(ZeroOrNegativeOneBooleanContent); 537 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 538 539 setSchedulingPreference(Sched::RegPressure); 540 setJumpIsExpensive(true); 541 542 // FIXME: This is only partially true. If we have to do vector compares, any 543 // SGPR pair can be a condition register. If we have a uniform condition, we 544 // are better off doing SALU operations, where there is only one SCC. For now, 545 // we don't have a way of knowing during instruction selection if a condition 546 // will be uniform and we always use vector compares. Assume we are using 547 // vector compares until that is fixed. 548 setHasMultipleConditionRegisters(true); 549 550 // SI at least has hardware support for floating point exceptions, but no way 551 // of using or handling them is implemented. They are also optional in OpenCL 552 // (Section 7.3) 553 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 554 555 PredictableSelectIsExpensive = false; 556 557 // We want to find all load dependencies for long chains of stores to enable 558 // merging into very wide vectors. The problem is with vectors with > 4 559 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 560 // vectors are a legal type, even though we have to split the loads 561 // usually. When we can more precisely specify load legality per address 562 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 563 // smarter so that they can figure out what to do in 2 iterations without all 564 // N > 4 stores on the same chain. 565 GatherAllAliasesMaxDepth = 16; 566 567 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 568 // about these during lowering. 569 MaxStoresPerMemcpy = 0xffffffff; 570 MaxStoresPerMemmove = 0xffffffff; 571 MaxStoresPerMemset = 0xffffffff; 572 573 setTargetDAGCombine(ISD::BITCAST); 574 setTargetDAGCombine(ISD::SHL); 575 setTargetDAGCombine(ISD::SRA); 576 setTargetDAGCombine(ISD::SRL); 577 setTargetDAGCombine(ISD::TRUNCATE); 578 setTargetDAGCombine(ISD::MUL); 579 setTargetDAGCombine(ISD::MULHU); 580 setTargetDAGCombine(ISD::MULHS); 581 setTargetDAGCombine(ISD::SELECT); 582 setTargetDAGCombine(ISD::SELECT_CC); 583 setTargetDAGCombine(ISD::STORE); 584 setTargetDAGCombine(ISD::FADD); 585 setTargetDAGCombine(ISD::FSUB); 586 setTargetDAGCombine(ISD::FNEG); 587 setTargetDAGCombine(ISD::FABS); 588 setTargetDAGCombine(ISD::AssertZext); 589 setTargetDAGCombine(ISD::AssertSext); 590 } 591 592 //===----------------------------------------------------------------------===// 593 // Target Information 594 //===----------------------------------------------------------------------===// 595 596 LLVM_READNONE 597 static bool fnegFoldsIntoOp(unsigned Opc) { 598 switch (Opc) { 599 case ISD::FADD: 600 case ISD::FSUB: 601 case ISD::FMUL: 602 case ISD::FMA: 603 case ISD::FMAD: 604 case ISD::FMINNUM: 605 case ISD::FMAXNUM: 606 case ISD::FSIN: 607 case ISD::FTRUNC: 608 case ISD::FRINT: 609 case ISD::FNEARBYINT: 610 case AMDGPUISD::RCP: 611 case AMDGPUISD::RCP_LEGACY: 612 case AMDGPUISD::SIN_HW: 613 case AMDGPUISD::FMUL_LEGACY: 614 case AMDGPUISD::FMIN_LEGACY: 615 case AMDGPUISD::FMAX_LEGACY: 616 return true; 617 default: 618 return false; 619 } 620 } 621 622 /// \p returns true if the operation will definitely need to use a 64-bit 623 /// encoding, and thus will use a VOP3 encoding regardless of the source 624 /// modifiers. 625 LLVM_READONLY 626 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 627 return N->getNumOperands() > 2 || VT == MVT::f64; 628 } 629 630 // Most FP instructions support source modifiers, but this could be refined 631 // slightly. 632 LLVM_READONLY 633 static bool hasSourceMods(const SDNode *N) { 634 if (isa<MemSDNode>(N)) 635 return false; 636 637 switch (N->getOpcode()) { 638 case ISD::CopyToReg: 639 case ISD::SELECT: 640 case ISD::FDIV: 641 case ISD::FREM: 642 case ISD::INLINEASM: 643 case AMDGPUISD::INTERP_P1: 644 case AMDGPUISD::INTERP_P2: 645 case AMDGPUISD::DIV_SCALE: 646 647 // TODO: Should really be looking at the users of the bitcast. These are 648 // problematic because bitcasts are used to legalize all stores to integer 649 // types. 650 case ISD::BITCAST: 651 return false; 652 default: 653 return true; 654 } 655 } 656 657 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 658 unsigned CostThreshold) { 659 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 660 // it is truly free to use a source modifier in all cases. If there are 661 // multiple users but for each one will necessitate using VOP3, there will be 662 // a code size increase. Try to avoid increasing code size unless we know it 663 // will save on the instruction count. 664 unsigned NumMayIncreaseSize = 0; 665 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 666 667 // XXX - Should this limit number of uses to check? 668 for (const SDNode *U : N->uses()) { 669 if (!hasSourceMods(U)) 670 return false; 671 672 if (!opMustUseVOP3Encoding(U, VT)) { 673 if (++NumMayIncreaseSize > CostThreshold) 674 return false; 675 } 676 } 677 678 return true; 679 } 680 681 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 682 return MVT::i32; 683 } 684 685 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 686 return true; 687 } 688 689 // The backend supports 32 and 64 bit floating point immediates. 690 // FIXME: Why are we reporting vectors of FP immediates as legal? 691 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 692 EVT ScalarVT = VT.getScalarType(); 693 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 694 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 695 } 696 697 // We don't want to shrink f64 / f32 constants. 698 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 699 EVT ScalarVT = VT.getScalarType(); 700 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 701 } 702 703 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 704 ISD::LoadExtType, 705 EVT NewVT) const { 706 707 unsigned NewSize = NewVT.getStoreSizeInBits(); 708 709 // If we are reducing to a 32-bit load, this is always better. 710 if (NewSize == 32) 711 return true; 712 713 EVT OldVT = N->getValueType(0); 714 unsigned OldSize = OldVT.getStoreSizeInBits(); 715 716 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 717 // extloads, so doing one requires using a buffer_load. In cases where we 718 // still couldn't use a scalar load, using the wider load shouldn't really 719 // hurt anything. 720 721 // If the old size already had to be an extload, there's no harm in continuing 722 // to reduce the width. 723 return (OldSize < 32); 724 } 725 726 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 727 EVT CastTy) const { 728 729 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 730 731 if (LoadTy.getScalarType() == MVT::i32) 732 return false; 733 734 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 735 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 736 737 return (LScalarSize < CastScalarSize) || 738 (CastScalarSize >= 32); 739 } 740 741 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 742 // profitable with the expansion for 64-bit since it's generally good to 743 // speculate things. 744 // FIXME: These should really have the size as a parameter. 745 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 746 return true; 747 } 748 749 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 750 return true; 751 } 752 753 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 754 switch (N->getOpcode()) { 755 default: 756 return false; 757 case ISD::EntryToken: 758 case ISD::TokenFactor: 759 return true; 760 case ISD::INTRINSIC_WO_CHAIN: 761 { 762 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 763 switch (IntrID) { 764 default: 765 return false; 766 case Intrinsic::amdgcn_readfirstlane: 767 case Intrinsic::amdgcn_readlane: 768 return true; 769 } 770 } 771 break; 772 case ISD::LOAD: 773 { 774 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 775 if (L->getMemOperand()->getAddrSpace() 776 == Subtarget->getAMDGPUAS().CONSTANT_ADDRESS_32BIT) 777 return true; 778 return false; 779 } 780 break; 781 } 782 } 783 784 bool AMDGPUTargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, 785 FunctionLoweringInfo * FLI, DivergenceAnalysis * DA) const 786 { 787 switch (N->getOpcode()) { 788 case ISD::Register: 789 case ISD::CopyFromReg: 790 { 791 const RegisterSDNode *R = nullptr; 792 if (N->getOpcode() == ISD::Register) { 793 R = dyn_cast<RegisterSDNode>(N); 794 } 795 else { 796 R = dyn_cast<RegisterSDNode>(N->getOperand(1)); 797 } 798 if (R) 799 { 800 const MachineFunction * MF = FLI->MF; 801 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 802 const MachineRegisterInfo &MRI = MF->getRegInfo(); 803 const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); 804 unsigned Reg = R->getReg(); 805 if (TRI.isPhysicalRegister(Reg)) 806 return TRI.isVGPR(MRI, Reg); 807 808 if (MRI.isLiveIn(Reg)) { 809 // workitem.id.x workitem.id.y workitem.id.z 810 // Any VGPR formal argument is also considered divergent 811 if ((MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_X) || 812 (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Y) || 813 (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Z) || 814 (TRI.isVGPR(MRI, Reg))) 815 return true; 816 // Formal arguments of non-entry functions 817 // are conservatively considered divergent 818 else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) 819 return true; 820 } 821 return !DA || DA->isDivergent(FLI->getValueFromVirtualReg(Reg)); 822 } 823 } 824 break; 825 case ISD::LOAD: { 826 const LoadSDNode *L = dyn_cast<LoadSDNode>(N); 827 if (L->getMemOperand()->getAddrSpace() == 828 Subtarget->getAMDGPUAS().PRIVATE_ADDRESS) 829 return true; 830 } break; 831 case ISD::CALLSEQ_END: 832 return true; 833 break; 834 case ISD::INTRINSIC_WO_CHAIN: 835 { 836 837 } 838 return AMDGPU::isIntrinsicSourceOfDivergence( 839 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 840 case ISD::INTRINSIC_W_CHAIN: 841 return AMDGPU::isIntrinsicSourceOfDivergence( 842 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 843 // In some cases intrinsics that are a source of divergence have been 844 // lowered to AMDGPUISD so we also need to check those too. 845 case AMDGPUISD::INTERP_MOV: 846 case AMDGPUISD::INTERP_P1: 847 case AMDGPUISD::INTERP_P2: 848 return true; 849 } 850 return false; 851 } 852 853 //===---------------------------------------------------------------------===// 854 // Target Properties 855 //===---------------------------------------------------------------------===// 856 857 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 858 assert(VT.isFloatingPoint()); 859 860 // Packed operations do not have a fabs modifier. 861 return VT == MVT::f32 || VT == MVT::f64 || 862 (Subtarget->has16BitInsts() && VT == MVT::f16); 863 } 864 865 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 866 assert(VT.isFloatingPoint()); 867 return VT == MVT::f32 || VT == MVT::f64 || 868 (Subtarget->has16BitInsts() && VT == MVT::f16) || 869 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 870 } 871 872 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 873 unsigned NumElem, 874 unsigned AS) const { 875 return true; 876 } 877 878 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 879 // There are few operations which truly have vector input operands. Any vector 880 // operation is going to involve operations on each component, and a 881 // build_vector will be a copy per element, so it always makes sense to use a 882 // build_vector input in place of the extracted element to avoid a copy into a 883 // super register. 884 // 885 // We should probably only do this if all users are extracts only, but this 886 // should be the common case. 887 return true; 888 } 889 890 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 891 // Truncate is just accessing a subregister. 892 893 unsigned SrcSize = Source.getSizeInBits(); 894 unsigned DestSize = Dest.getSizeInBits(); 895 896 return DestSize < SrcSize && DestSize % 32 == 0 ; 897 } 898 899 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 900 // Truncate is just accessing a subregister. 901 902 unsigned SrcSize = Source->getScalarSizeInBits(); 903 unsigned DestSize = Dest->getScalarSizeInBits(); 904 905 if (DestSize== 16 && Subtarget->has16BitInsts()) 906 return SrcSize >= 32; 907 908 return DestSize < SrcSize && DestSize % 32 == 0; 909 } 910 911 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 912 unsigned SrcSize = Src->getScalarSizeInBits(); 913 unsigned DestSize = Dest->getScalarSizeInBits(); 914 915 if (SrcSize == 16 && Subtarget->has16BitInsts()) 916 return DestSize >= 32; 917 918 return SrcSize == 32 && DestSize == 64; 919 } 920 921 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 922 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 923 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 924 // this will enable reducing 64-bit operations the 32-bit, which is always 925 // good. 926 927 if (Src == MVT::i16) 928 return Dest == MVT::i32 ||Dest == MVT::i64 ; 929 930 return Src == MVT::i32 && Dest == MVT::i64; 931 } 932 933 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 934 return isZExtFree(Val.getValueType(), VT2); 935 } 936 937 // v_mad_mix* support a conversion from f16 to f32. 938 // 939 // There is only one special case when denormals are enabled we don't currently, 940 // where this is OK to use. 941 bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode, 942 EVT DestVT, EVT SrcVT) const { 943 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 944 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 945 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && 946 SrcVT.getScalarType() == MVT::f16; 947 } 948 949 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 950 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 951 // limited number of native 64-bit operations. Shrinking an operation to fit 952 // in a single 32-bit register should always be helpful. As currently used, 953 // this is much less general than the name suggests, and is only used in 954 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 955 // not profitable, and may actually be harmful. 956 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 957 } 958 959 //===---------------------------------------------------------------------===// 960 // TargetLowering Callbacks 961 //===---------------------------------------------------------------------===// 962 963 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 964 bool IsVarArg) { 965 switch (CC) { 966 case CallingConv::AMDGPU_KERNEL: 967 case CallingConv::SPIR_KERNEL: 968 return CC_AMDGPU_Kernel; 969 case CallingConv::AMDGPU_VS: 970 case CallingConv::AMDGPU_GS: 971 case CallingConv::AMDGPU_PS: 972 case CallingConv::AMDGPU_CS: 973 case CallingConv::AMDGPU_HS: 974 case CallingConv::AMDGPU_ES: 975 case CallingConv::AMDGPU_LS: 976 return CC_AMDGPU; 977 case CallingConv::C: 978 case CallingConv::Fast: 979 case CallingConv::Cold: 980 return CC_AMDGPU_Func; 981 default: 982 report_fatal_error("Unsupported calling convention."); 983 } 984 } 985 986 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 987 bool IsVarArg) { 988 switch (CC) { 989 case CallingConv::AMDGPU_KERNEL: 990 case CallingConv::SPIR_KERNEL: 991 return CC_AMDGPU_Kernel; 992 case CallingConv::AMDGPU_VS: 993 case CallingConv::AMDGPU_GS: 994 case CallingConv::AMDGPU_PS: 995 case CallingConv::AMDGPU_CS: 996 case CallingConv::AMDGPU_HS: 997 case CallingConv::AMDGPU_ES: 998 case CallingConv::AMDGPU_LS: 999 return RetCC_SI_Shader; 1000 case CallingConv::C: 1001 case CallingConv::Fast: 1002 case CallingConv::Cold: 1003 return RetCC_AMDGPU_Func; 1004 default: 1005 report_fatal_error("Unsupported calling convention."); 1006 } 1007 } 1008 1009 /// The SelectionDAGBuilder will automatically promote function arguments 1010 /// with illegal types. However, this does not work for the AMDGPU targets 1011 /// since the function arguments are stored in memory as these illegal types. 1012 /// In order to handle this properly we need to get the original types sizes 1013 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1014 /// passing them to AnalyzeFormalArguments() 1015 1016 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1017 /// input values across multiple registers. Each item in the Ins array 1018 /// represents a single value that will be stored in registers. Ins[x].VT is 1019 /// the value type of the value that will be stored in the register, so 1020 /// whatever SDNode we lower the argument to needs to be this type. 1021 /// 1022 /// In order to correctly lower the arguments we need to know the size of each 1023 /// argument. Since Ins[x].VT gives us the size of the register that will 1024 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1025 /// for the orignal function argument so that we can deduce the correct memory 1026 /// type to use for Ins[x]. In most cases the correct memory type will be 1027 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1028 /// we have a kernel argument of type v8i8, this argument will be split into 1029 /// 8 parts and each part will be represented by its own item in the Ins array. 1030 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1031 /// the argument before it was split. From this, we deduce that the memory type 1032 /// for each individual part is i8. We pass the memory type as LocVT to the 1033 /// calling convention analysis function and the register type (Ins[x].VT) as 1034 /// the ValVT. 1035 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 1036 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1037 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 1038 const ISD::InputArg &In = Ins[i]; 1039 EVT MemVT; 1040 1041 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 1042 1043 if (!Subtarget->isAmdHsaOS() && 1044 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 1045 // The ABI says the caller will extend these values to 32-bits. 1046 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 1047 } else if (NumRegs == 1) { 1048 // This argument is not split, so the IR type is the memory type. 1049 assert(!In.Flags.isSplit()); 1050 if (In.ArgVT.isExtended()) { 1051 // We have an extended type, like i24, so we should just use the register type 1052 MemVT = In.VT; 1053 } else { 1054 MemVT = In.ArgVT; 1055 } 1056 } else if (In.ArgVT.isVector() && In.VT.isVector() && 1057 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 1058 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 1059 // We have a vector value which has been split into a vector with 1060 // the same scalar type, but fewer elements. This should handle 1061 // all the floating-point vector types. 1062 MemVT = In.VT; 1063 } else if (In.ArgVT.isVector() && 1064 In.ArgVT.getVectorNumElements() == NumRegs) { 1065 // This arg has been split so that each element is stored in a separate 1066 // register. 1067 MemVT = In.ArgVT.getScalarType(); 1068 } else if (In.ArgVT.isExtended()) { 1069 // We have an extended type, like i65. 1070 MemVT = In.VT; 1071 } else { 1072 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 1073 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 1074 if (In.VT.isInteger()) { 1075 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1076 } else if (In.VT.isVector()) { 1077 assert(!In.VT.getScalarType().isFloatingPoint()); 1078 unsigned NumElements = In.VT.getVectorNumElements(); 1079 assert(MemoryBits % NumElements == 0); 1080 // This vector type has been split into another vector type with 1081 // a different elements size. 1082 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1083 MemoryBits / NumElements); 1084 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1085 } else { 1086 llvm_unreachable("cannot deduce memory type."); 1087 } 1088 } 1089 1090 // Convert one element vectors to scalar. 1091 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1092 MemVT = MemVT.getScalarType(); 1093 1094 if (MemVT.isExtended()) { 1095 // This should really only happen if we have vec3 arguments 1096 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 1097 MemVT = MemVT.getPow2VectorType(State.getContext()); 1098 } 1099 1100 assert(MemVT.isSimple()); 1101 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 1102 State); 1103 } 1104 } 1105 1106 SDValue AMDGPUTargetLowering::LowerReturn( 1107 SDValue Chain, CallingConv::ID CallConv, 1108 bool isVarArg, 1109 const SmallVectorImpl<ISD::OutputArg> &Outs, 1110 const SmallVectorImpl<SDValue> &OutVals, 1111 const SDLoc &DL, SelectionDAG &DAG) const { 1112 // FIXME: Fails for r600 tests 1113 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1114 // "wave terminate should not have return values"); 1115 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1116 } 1117 1118 //===---------------------------------------------------------------------===// 1119 // Target specific lowering 1120 //===---------------------------------------------------------------------===// 1121 1122 /// Selects the correct CCAssignFn for a given CallingConvention value. 1123 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1124 bool IsVarArg) { 1125 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1126 } 1127 1128 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1129 bool IsVarArg) { 1130 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1131 } 1132 1133 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1134 SelectionDAG &DAG, 1135 MachineFrameInfo &MFI, 1136 int ClobberedFI) const { 1137 SmallVector<SDValue, 8> ArgChains; 1138 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1139 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1140 1141 // Include the original chain at the beginning of the list. When this is 1142 // used by target LowerCall hooks, this helps legalize find the 1143 // CALLSEQ_BEGIN node. 1144 ArgChains.push_back(Chain); 1145 1146 // Add a chain value for each stack argument corresponding 1147 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1148 UE = DAG.getEntryNode().getNode()->use_end(); 1149 U != UE; ++U) { 1150 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1151 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1152 if (FI->getIndex() < 0) { 1153 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1154 int64_t InLastByte = InFirstByte; 1155 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1156 1157 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1158 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1159 ArgChains.push_back(SDValue(L, 1)); 1160 } 1161 } 1162 } 1163 } 1164 1165 // Build a tokenfactor for all the chains. 1166 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1167 } 1168 1169 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1170 SmallVectorImpl<SDValue> &InVals, 1171 StringRef Reason) const { 1172 SDValue Callee = CLI.Callee; 1173 SelectionDAG &DAG = CLI.DAG; 1174 1175 const Function &Fn = DAG.getMachineFunction().getFunction(); 1176 1177 StringRef FuncName("<unknown>"); 1178 1179 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1180 FuncName = G->getSymbol(); 1181 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1182 FuncName = G->getGlobal()->getName(); 1183 1184 DiagnosticInfoUnsupported NoCalls( 1185 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1186 DAG.getContext()->diagnose(NoCalls); 1187 1188 if (!CLI.IsTailCall) { 1189 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1190 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1191 } 1192 1193 return DAG.getEntryNode(); 1194 } 1195 1196 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1197 SmallVectorImpl<SDValue> &InVals) const { 1198 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1199 } 1200 1201 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1202 SelectionDAG &DAG) const { 1203 const Function &Fn = DAG.getMachineFunction().getFunction(); 1204 1205 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1206 SDLoc(Op).getDebugLoc()); 1207 DAG.getContext()->diagnose(NoDynamicAlloca); 1208 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1209 return DAG.getMergeValues(Ops, SDLoc()); 1210 } 1211 1212 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1213 SelectionDAG &DAG) const { 1214 switch (Op.getOpcode()) { 1215 default: 1216 Op->print(errs(), &DAG); 1217 llvm_unreachable("Custom lowering code for this" 1218 "instruction is not implemented yet!"); 1219 break; 1220 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1221 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1222 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1223 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1224 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1225 case ISD::FREM: return LowerFREM(Op, DAG); 1226 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1227 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1228 case ISD::FRINT: return LowerFRINT(Op, DAG); 1229 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1230 case ISD::FROUND: return LowerFROUND(Op, DAG); 1231 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1232 case ISD::FLOG: 1233 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1234 case ISD::FLOG10: 1235 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1236 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1237 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1238 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1239 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1240 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1241 case ISD::CTTZ: 1242 case ISD::CTTZ_ZERO_UNDEF: 1243 case ISD::CTLZ: 1244 case ISD::CTLZ_ZERO_UNDEF: 1245 return LowerCTLZ_CTTZ(Op, DAG); 1246 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1247 } 1248 return Op; 1249 } 1250 1251 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1252 SmallVectorImpl<SDValue> &Results, 1253 SelectionDAG &DAG) const { 1254 switch (N->getOpcode()) { 1255 case ISD::SIGN_EXTEND_INREG: 1256 // Different parts of legalization seem to interpret which type of 1257 // sign_extend_inreg is the one to check for custom lowering. The extended 1258 // from type is what really matters, but some places check for custom 1259 // lowering of the result type. This results in trying to use 1260 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1261 // nothing here and let the illegal result integer be handled normally. 1262 return; 1263 default: 1264 return; 1265 } 1266 } 1267 1268 static bool hasDefinedInitializer(const GlobalValue *GV) { 1269 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1270 if (!GVar || !GVar->hasInitializer()) 1271 return false; 1272 1273 return !isa<UndefValue>(GVar->getInitializer()); 1274 } 1275 1276 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1277 SDValue Op, 1278 SelectionDAG &DAG) const { 1279 1280 const DataLayout &DL = DAG.getDataLayout(); 1281 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1282 const GlobalValue *GV = G->getGlobal(); 1283 1284 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1285 // XXX: What does the value of G->getOffset() mean? 1286 assert(G->getOffset() == 0 && 1287 "Do not know what to do with an non-zero offset"); 1288 1289 // TODO: We could emit code to handle the initialization somewhere. 1290 if (!hasDefinedInitializer(GV)) { 1291 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1292 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1293 } 1294 } 1295 1296 const Function &Fn = DAG.getMachineFunction().getFunction(); 1297 DiagnosticInfoUnsupported BadInit( 1298 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1299 DAG.getContext()->diagnose(BadInit); 1300 return SDValue(); 1301 } 1302 1303 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1304 SelectionDAG &DAG) const { 1305 SmallVector<SDValue, 8> Args; 1306 1307 for (const SDUse &U : Op->ops()) 1308 DAG.ExtractVectorElements(U.get(), Args); 1309 1310 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1311 } 1312 1313 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1314 SelectionDAG &DAG) const { 1315 1316 SmallVector<SDValue, 8> Args; 1317 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1318 EVT VT = Op.getValueType(); 1319 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1320 VT.getVectorNumElements()); 1321 1322 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1323 } 1324 1325 /// Generate Min/Max node 1326 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1327 SDValue LHS, SDValue RHS, 1328 SDValue True, SDValue False, 1329 SDValue CC, 1330 DAGCombinerInfo &DCI) const { 1331 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1332 return SDValue(); 1333 1334 SelectionDAG &DAG = DCI.DAG; 1335 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1336 switch (CCOpcode) { 1337 case ISD::SETOEQ: 1338 case ISD::SETONE: 1339 case ISD::SETUNE: 1340 case ISD::SETNE: 1341 case ISD::SETUEQ: 1342 case ISD::SETEQ: 1343 case ISD::SETFALSE: 1344 case ISD::SETFALSE2: 1345 case ISD::SETTRUE: 1346 case ISD::SETTRUE2: 1347 case ISD::SETUO: 1348 case ISD::SETO: 1349 break; 1350 case ISD::SETULE: 1351 case ISD::SETULT: { 1352 if (LHS == True) 1353 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1354 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1355 } 1356 case ISD::SETOLE: 1357 case ISD::SETOLT: 1358 case ISD::SETLE: 1359 case ISD::SETLT: { 1360 // Ordered. Assume ordered for undefined. 1361 1362 // Only do this after legalization to avoid interfering with other combines 1363 // which might occur. 1364 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1365 !DCI.isCalledByLegalizer()) 1366 return SDValue(); 1367 1368 // We need to permute the operands to get the correct NaN behavior. The 1369 // selected operand is the second one based on the failing compare with NaN, 1370 // so permute it based on the compare type the hardware uses. 1371 if (LHS == True) 1372 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1373 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1374 } 1375 case ISD::SETUGE: 1376 case ISD::SETUGT: { 1377 if (LHS == True) 1378 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1379 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1380 } 1381 case ISD::SETGT: 1382 case ISD::SETGE: 1383 case ISD::SETOGE: 1384 case ISD::SETOGT: { 1385 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1386 !DCI.isCalledByLegalizer()) 1387 return SDValue(); 1388 1389 if (LHS == True) 1390 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1391 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1392 } 1393 case ISD::SETCC_INVALID: 1394 llvm_unreachable("Invalid setcc condcode!"); 1395 } 1396 return SDValue(); 1397 } 1398 1399 std::pair<SDValue, SDValue> 1400 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1401 SDLoc SL(Op); 1402 1403 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1404 1405 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1406 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1407 1408 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1409 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1410 1411 return std::make_pair(Lo, Hi); 1412 } 1413 1414 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1415 SDLoc SL(Op); 1416 1417 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1418 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1419 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1420 } 1421 1422 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1423 SDLoc SL(Op); 1424 1425 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1426 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1427 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1428 } 1429 1430 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1431 SelectionDAG &DAG) const { 1432 LoadSDNode *Load = cast<LoadSDNode>(Op); 1433 EVT VT = Op.getValueType(); 1434 1435 1436 // If this is a 2 element vector, we really want to scalarize and not create 1437 // weird 1 element vectors. 1438 if (VT.getVectorNumElements() == 2) 1439 return scalarizeVectorLoad(Load, DAG); 1440 1441 SDValue BasePtr = Load->getBasePtr(); 1442 EVT MemVT = Load->getMemoryVT(); 1443 SDLoc SL(Op); 1444 1445 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1446 1447 EVT LoVT, HiVT; 1448 EVT LoMemVT, HiMemVT; 1449 SDValue Lo, Hi; 1450 1451 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1452 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1453 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1454 1455 unsigned Size = LoMemVT.getStoreSize(); 1456 unsigned BaseAlign = Load->getAlignment(); 1457 unsigned HiAlign = MinAlign(BaseAlign, Size); 1458 1459 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1460 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1461 BaseAlign, Load->getMemOperand()->getFlags()); 1462 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1463 SDValue HiLoad = 1464 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1465 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1466 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1467 1468 SDValue Ops[] = { 1469 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1470 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1471 LoLoad.getValue(1), HiLoad.getValue(1)) 1472 }; 1473 1474 return DAG.getMergeValues(Ops, SL); 1475 } 1476 1477 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1478 SelectionDAG &DAG) const { 1479 StoreSDNode *Store = cast<StoreSDNode>(Op); 1480 SDValue Val = Store->getValue(); 1481 EVT VT = Val.getValueType(); 1482 1483 // If this is a 2 element vector, we really want to scalarize and not create 1484 // weird 1 element vectors. 1485 if (VT.getVectorNumElements() == 2) 1486 return scalarizeVectorStore(Store, DAG); 1487 1488 EVT MemVT = Store->getMemoryVT(); 1489 SDValue Chain = Store->getChain(); 1490 SDValue BasePtr = Store->getBasePtr(); 1491 SDLoc SL(Op); 1492 1493 EVT LoVT, HiVT; 1494 EVT LoMemVT, HiMemVT; 1495 SDValue Lo, Hi; 1496 1497 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1498 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1499 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1500 1501 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1502 1503 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1504 unsigned BaseAlign = Store->getAlignment(); 1505 unsigned Size = LoMemVT.getStoreSize(); 1506 unsigned HiAlign = MinAlign(BaseAlign, Size); 1507 1508 SDValue LoStore = 1509 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1510 Store->getMemOperand()->getFlags()); 1511 SDValue HiStore = 1512 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1513 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1514 1515 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1516 } 1517 1518 // This is a shortcut for integer division because we have fast i32<->f32 1519 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1520 // float is enough to accurately represent up to a 24-bit signed integer. 1521 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1522 bool Sign) const { 1523 SDLoc DL(Op); 1524 EVT VT = Op.getValueType(); 1525 SDValue LHS = Op.getOperand(0); 1526 SDValue RHS = Op.getOperand(1); 1527 MVT IntVT = MVT::i32; 1528 MVT FltVT = MVT::f32; 1529 1530 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1531 if (LHSSignBits < 9) 1532 return SDValue(); 1533 1534 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1535 if (RHSSignBits < 9) 1536 return SDValue(); 1537 1538 unsigned BitSize = VT.getSizeInBits(); 1539 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1540 unsigned DivBits = BitSize - SignBits; 1541 if (Sign) 1542 ++DivBits; 1543 1544 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1545 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1546 1547 SDValue jq = DAG.getConstant(1, DL, IntVT); 1548 1549 if (Sign) { 1550 // char|short jq = ia ^ ib; 1551 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1552 1553 // jq = jq >> (bitsize - 2) 1554 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1555 DAG.getConstant(BitSize - 2, DL, VT)); 1556 1557 // jq = jq | 0x1 1558 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1559 } 1560 1561 // int ia = (int)LHS; 1562 SDValue ia = LHS; 1563 1564 // int ib, (int)RHS; 1565 SDValue ib = RHS; 1566 1567 // float fa = (float)ia; 1568 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1569 1570 // float fb = (float)ib; 1571 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1572 1573 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1574 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1575 1576 // fq = trunc(fq); 1577 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1578 1579 // float fqneg = -fq; 1580 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1581 1582 // float fr = mad(fqneg, fb, fa); 1583 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1584 (unsigned)AMDGPUISD::FMAD_FTZ : 1585 (unsigned)ISD::FMAD; 1586 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1587 1588 // int iq = (int)fq; 1589 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1590 1591 // fr = fabs(fr); 1592 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1593 1594 // fb = fabs(fb); 1595 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1596 1597 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1598 1599 // int cv = fr >= fb; 1600 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1601 1602 // jq = (cv ? jq : 0); 1603 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1604 1605 // dst = iq + jq; 1606 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1607 1608 // Rem needs compensation, it's easier to recompute it 1609 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1610 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1611 1612 // Truncate to number of bits this divide really is. 1613 if (Sign) { 1614 SDValue InRegSize 1615 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1616 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1617 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1618 } else { 1619 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1620 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1621 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1622 } 1623 1624 return DAG.getMergeValues({ Div, Rem }, DL); 1625 } 1626 1627 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1628 SelectionDAG &DAG, 1629 SmallVectorImpl<SDValue> &Results) const { 1630 SDLoc DL(Op); 1631 EVT VT = Op.getValueType(); 1632 1633 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1634 1635 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1636 1637 SDValue One = DAG.getConstant(1, DL, HalfVT); 1638 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1639 1640 //HiLo split 1641 SDValue LHS = Op.getOperand(0); 1642 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1643 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1644 1645 SDValue RHS = Op.getOperand(1); 1646 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1647 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1648 1649 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1650 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1651 1652 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1653 LHS_Lo, RHS_Lo); 1654 1655 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1656 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1657 1658 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1659 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1660 return; 1661 } 1662 1663 if (isTypeLegal(MVT::i64)) { 1664 // Compute denominator reciprocal. 1665 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1666 (unsigned)AMDGPUISD::FMAD_FTZ : 1667 (unsigned)ISD::FMAD; 1668 1669 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1670 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1671 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1672 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1673 Cvt_Lo); 1674 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1675 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1676 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1677 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1678 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1679 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1680 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1681 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1682 Mul1); 1683 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1684 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1685 SDValue Rcp64 = DAG.getBitcast(VT, 1686 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1687 1688 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1689 SDValue One64 = DAG.getConstant(1, DL, VT); 1690 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1691 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1692 1693 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1694 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1695 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1696 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1697 Zero); 1698 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1699 One); 1700 1701 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1702 Mulhi1_Lo, Zero1); 1703 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1704 Mulhi1_Hi, Add1_Lo.getValue(1)); 1705 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1706 SDValue Add1 = DAG.getBitcast(VT, 1707 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1708 1709 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1710 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1711 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1712 Zero); 1713 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1714 One); 1715 1716 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1717 Mulhi2_Lo, Zero1); 1718 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1719 Mulhi2_Hi, Add1_Lo.getValue(1)); 1720 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1721 Zero, Add2_Lo.getValue(1)); 1722 SDValue Add2 = DAG.getBitcast(VT, 1723 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1724 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1725 1726 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1727 1728 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1729 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1730 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1731 Mul3_Lo, Zero1); 1732 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1733 Mul3_Hi, Sub1_Lo.getValue(1)); 1734 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1735 SDValue Sub1 = DAG.getBitcast(VT, 1736 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1737 1738 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1739 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1740 ISD::SETUGE); 1741 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1742 ISD::SETUGE); 1743 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1744 1745 // TODO: Here and below portions of the code can be enclosed into if/endif. 1746 // Currently control flow is unconditional and we have 4 selects after 1747 // potential endif to substitute PHIs. 1748 1749 // if C3 != 0 ... 1750 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1751 RHS_Lo, Zero1); 1752 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1753 RHS_Hi, Sub1_Lo.getValue(1)); 1754 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1755 Zero, Sub2_Lo.getValue(1)); 1756 SDValue Sub2 = DAG.getBitcast(VT, 1757 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1758 1759 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1760 1761 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1762 ISD::SETUGE); 1763 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1764 ISD::SETUGE); 1765 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1766 1767 // if (C6 != 0) 1768 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1769 1770 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1771 RHS_Lo, Zero1); 1772 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1773 RHS_Hi, Sub2_Lo.getValue(1)); 1774 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1775 Zero, Sub3_Lo.getValue(1)); 1776 SDValue Sub3 = DAG.getBitcast(VT, 1777 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1778 1779 // endif C6 1780 // endif C3 1781 1782 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1783 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1784 1785 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1786 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1787 1788 Results.push_back(Div); 1789 Results.push_back(Rem); 1790 1791 return; 1792 } 1793 1794 // r600 expandion. 1795 // Get Speculative values 1796 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1797 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1798 1799 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1800 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1801 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1802 1803 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1804 SDValue DIV_Lo = Zero; 1805 1806 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1807 1808 for (unsigned i = 0; i < halfBitWidth; ++i) { 1809 const unsigned bitPos = halfBitWidth - i - 1; 1810 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1811 // Get value of high bit 1812 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1813 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1814 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1815 1816 // Shift 1817 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1818 // Add LHS high bit 1819 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1820 1821 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1822 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1823 1824 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1825 1826 // Update REM 1827 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1828 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1829 } 1830 1831 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1832 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1833 Results.push_back(DIV); 1834 Results.push_back(REM); 1835 } 1836 1837 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1838 SelectionDAG &DAG) const { 1839 SDLoc DL(Op); 1840 EVT VT = Op.getValueType(); 1841 1842 if (VT == MVT::i64) { 1843 SmallVector<SDValue, 2> Results; 1844 LowerUDIVREM64(Op, DAG, Results); 1845 return DAG.getMergeValues(Results, DL); 1846 } 1847 1848 if (VT == MVT::i32) { 1849 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1850 return Res; 1851 } 1852 1853 SDValue Num = Op.getOperand(0); 1854 SDValue Den = Op.getOperand(1); 1855 1856 // RCP = URECIP(Den) = 2^32 / Den + e 1857 // e is rounding error. 1858 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1859 1860 // RCP_LO = mul(RCP, Den) */ 1861 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1862 1863 // RCP_HI = mulhu (RCP, Den) */ 1864 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1865 1866 // NEG_RCP_LO = -RCP_LO 1867 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1868 RCP_LO); 1869 1870 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1871 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1872 NEG_RCP_LO, RCP_LO, 1873 ISD::SETEQ); 1874 // Calculate the rounding error from the URECIP instruction 1875 // E = mulhu(ABS_RCP_LO, RCP) 1876 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1877 1878 // RCP_A_E = RCP + E 1879 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1880 1881 // RCP_S_E = RCP - E 1882 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1883 1884 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1885 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1886 RCP_A_E, RCP_S_E, 1887 ISD::SETEQ); 1888 // Quotient = mulhu(Tmp0, Num) 1889 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1890 1891 // Num_S_Remainder = Quotient * Den 1892 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1893 1894 // Remainder = Num - Num_S_Remainder 1895 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1896 1897 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1898 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1899 DAG.getConstant(-1, DL, VT), 1900 DAG.getConstant(0, DL, VT), 1901 ISD::SETUGE); 1902 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1903 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1904 Num_S_Remainder, 1905 DAG.getConstant(-1, DL, VT), 1906 DAG.getConstant(0, DL, VT), 1907 ISD::SETUGE); 1908 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1909 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1910 Remainder_GE_Zero); 1911 1912 // Calculate Division result: 1913 1914 // Quotient_A_One = Quotient + 1 1915 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1916 DAG.getConstant(1, DL, VT)); 1917 1918 // Quotient_S_One = Quotient - 1 1919 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1920 DAG.getConstant(1, DL, VT)); 1921 1922 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1923 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1924 Quotient, Quotient_A_One, ISD::SETEQ); 1925 1926 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1927 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1928 Quotient_S_One, Div, ISD::SETEQ); 1929 1930 // Calculate Rem result: 1931 1932 // Remainder_S_Den = Remainder - Den 1933 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1934 1935 // Remainder_A_Den = Remainder + Den 1936 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1937 1938 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1939 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1940 Remainder, Remainder_S_Den, ISD::SETEQ); 1941 1942 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1943 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1944 Remainder_A_Den, Rem, ISD::SETEQ); 1945 SDValue Ops[2] = { 1946 Div, 1947 Rem 1948 }; 1949 return DAG.getMergeValues(Ops, DL); 1950 } 1951 1952 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1953 SelectionDAG &DAG) const { 1954 SDLoc DL(Op); 1955 EVT VT = Op.getValueType(); 1956 1957 SDValue LHS = Op.getOperand(0); 1958 SDValue RHS = Op.getOperand(1); 1959 1960 SDValue Zero = DAG.getConstant(0, DL, VT); 1961 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1962 1963 if (VT == MVT::i32) { 1964 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1965 return Res; 1966 } 1967 1968 if (VT == MVT::i64 && 1969 DAG.ComputeNumSignBits(LHS) > 32 && 1970 DAG.ComputeNumSignBits(RHS) > 32) { 1971 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1972 1973 //HiLo split 1974 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1975 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1976 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1977 LHS_Lo, RHS_Lo); 1978 SDValue Res[2] = { 1979 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1980 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1981 }; 1982 return DAG.getMergeValues(Res, DL); 1983 } 1984 1985 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1986 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1987 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1988 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1989 1990 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1991 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1992 1993 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1994 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1995 1996 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1997 SDValue Rem = Div.getValue(1); 1998 1999 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2000 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2001 2002 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2003 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2004 2005 SDValue Res[2] = { 2006 Div, 2007 Rem 2008 }; 2009 return DAG.getMergeValues(Res, DL); 2010 } 2011 2012 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2013 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2014 SDLoc SL(Op); 2015 EVT VT = Op.getValueType(); 2016 SDValue X = Op.getOperand(0); 2017 SDValue Y = Op.getOperand(1); 2018 2019 // TODO: Should this propagate fast-math-flags? 2020 2021 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2022 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2023 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2024 2025 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2026 } 2027 2028 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2029 SDLoc SL(Op); 2030 SDValue Src = Op.getOperand(0); 2031 2032 // result = trunc(src) 2033 // if (src > 0.0 && src != result) 2034 // result += 1.0 2035 2036 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2037 2038 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2039 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2040 2041 EVT SetCCVT = 2042 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2043 2044 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2045 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2046 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2047 2048 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2049 // TODO: Should this propagate fast-math-flags? 2050 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2051 } 2052 2053 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2054 SelectionDAG &DAG) { 2055 const unsigned FractBits = 52; 2056 const unsigned ExpBits = 11; 2057 2058 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2059 Hi, 2060 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2061 DAG.getConstant(ExpBits, SL, MVT::i32)); 2062 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2063 DAG.getConstant(1023, SL, MVT::i32)); 2064 2065 return Exp; 2066 } 2067 2068 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2069 SDLoc SL(Op); 2070 SDValue Src = Op.getOperand(0); 2071 2072 assert(Op.getValueType() == MVT::f64); 2073 2074 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2075 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2076 2077 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2078 2079 // Extract the upper half, since this is where we will find the sign and 2080 // exponent. 2081 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2082 2083 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2084 2085 const unsigned FractBits = 52; 2086 2087 // Extract the sign bit. 2088 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2089 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2090 2091 // Extend back to 64-bits. 2092 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2093 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2094 2095 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2096 const SDValue FractMask 2097 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2098 2099 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2100 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2101 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2102 2103 EVT SetCCVT = 2104 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2105 2106 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2107 2108 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2109 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2110 2111 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2112 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2113 2114 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2115 } 2116 2117 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2118 SDLoc SL(Op); 2119 SDValue Src = Op.getOperand(0); 2120 2121 assert(Op.getValueType() == MVT::f64); 2122 2123 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2124 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2125 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2126 2127 // TODO: Should this propagate fast-math-flags? 2128 2129 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2130 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2131 2132 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2133 2134 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2135 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2136 2137 EVT SetCCVT = 2138 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2139 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2140 2141 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2142 } 2143 2144 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2145 // FNEARBYINT and FRINT are the same, except in their handling of FP 2146 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2147 // rint, so just treat them as equivalent. 2148 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2149 } 2150 2151 // XXX - May require not supporting f32 denormals? 2152 2153 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2154 // compare and vselect end up producing worse code than scalarizing the whole 2155 // operation. 2156 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2157 SDLoc SL(Op); 2158 SDValue X = Op.getOperand(0); 2159 EVT VT = Op.getValueType(); 2160 2161 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2162 2163 // TODO: Should this propagate fast-math-flags? 2164 2165 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2166 2167 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2168 2169 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2170 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2171 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2172 2173 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2174 2175 EVT SetCCVT = 2176 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2177 2178 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2179 2180 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2181 2182 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2183 } 2184 2185 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2186 SDLoc SL(Op); 2187 SDValue X = Op.getOperand(0); 2188 2189 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2190 2191 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2192 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2193 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2194 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2195 EVT SetCCVT = 2196 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2197 2198 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2199 2200 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2201 2202 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2203 2204 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2205 MVT::i64); 2206 2207 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2208 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2209 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2210 MVT::i64), 2211 Exp); 2212 2213 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2214 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2215 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2216 ISD::SETNE); 2217 2218 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2219 D, DAG.getConstant(0, SL, MVT::i64)); 2220 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2221 2222 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2223 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2224 2225 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2226 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2227 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2228 2229 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2230 ExpEqNegOne, 2231 DAG.getConstantFP(1.0, SL, MVT::f64), 2232 DAG.getConstantFP(0.0, SL, MVT::f64)); 2233 2234 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2235 2236 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2237 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2238 2239 return K; 2240 } 2241 2242 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2243 EVT VT = Op.getValueType(); 2244 2245 if (VT == MVT::f32 || VT == MVT::f16) 2246 return LowerFROUND32_16(Op, DAG); 2247 2248 if (VT == MVT::f64) 2249 return LowerFROUND64(Op, DAG); 2250 2251 llvm_unreachable("unhandled type"); 2252 } 2253 2254 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2255 SDLoc SL(Op); 2256 SDValue Src = Op.getOperand(0); 2257 2258 // result = trunc(src); 2259 // if (src < 0.0 && src != result) 2260 // result += -1.0. 2261 2262 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2263 2264 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2265 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2266 2267 EVT SetCCVT = 2268 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2269 2270 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2271 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2272 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2273 2274 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2275 // TODO: Should this propagate fast-math-flags? 2276 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2277 } 2278 2279 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2280 double Log2BaseInverted) const { 2281 EVT VT = Op.getValueType(); 2282 2283 SDLoc SL(Op); 2284 SDValue Operand = Op.getOperand(0); 2285 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2286 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2287 2288 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2289 } 2290 2291 static bool isCtlzOpc(unsigned Opc) { 2292 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2293 } 2294 2295 static bool isCttzOpc(unsigned Opc) { 2296 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2297 } 2298 2299 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2300 SDLoc SL(Op); 2301 SDValue Src = Op.getOperand(0); 2302 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2303 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2304 2305 unsigned ISDOpc, NewOpc; 2306 if (isCtlzOpc(Op.getOpcode())) { 2307 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2308 NewOpc = AMDGPUISD::FFBH_U32; 2309 } else if (isCttzOpc(Op.getOpcode())) { 2310 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2311 NewOpc = AMDGPUISD::FFBL_B32; 2312 } else 2313 llvm_unreachable("Unexpected OPCode!!!"); 2314 2315 2316 if (ZeroUndef && Src.getValueType() == MVT::i32) 2317 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2318 2319 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2320 2321 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2322 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2323 2324 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2325 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2326 2327 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2328 *DAG.getContext(), MVT::i32); 2329 2330 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2331 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2332 2333 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2334 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2335 2336 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2337 SDValue Add, NewOpr; 2338 if (isCtlzOpc(Op.getOpcode())) { 2339 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2340 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2341 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2342 } else { 2343 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2344 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2345 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2346 } 2347 2348 if (!ZeroUndef) { 2349 // Test if the full 64-bit input is zero. 2350 2351 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2352 // which we probably don't want. 2353 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2354 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2355 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2356 2357 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2358 // with the same cycles, otherwise it is slower. 2359 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2360 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2361 2362 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2363 2364 // The instruction returns -1 for 0 input, but the defined intrinsic 2365 // behavior is to return the number of bits. 2366 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2367 SrcIsZero, Bits32, NewOpr); 2368 } 2369 2370 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2371 } 2372 2373 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2374 bool Signed) const { 2375 // Unsigned 2376 // cul2f(ulong u) 2377 //{ 2378 // uint lz = clz(u); 2379 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2380 // u = (u << lz) & 0x7fffffffffffffffUL; 2381 // ulong t = u & 0xffffffffffUL; 2382 // uint v = (e << 23) | (uint)(u >> 40); 2383 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2384 // return as_float(v + r); 2385 //} 2386 // Signed 2387 // cl2f(long l) 2388 //{ 2389 // long s = l >> 63; 2390 // float r = cul2f((l + s) ^ s); 2391 // return s ? -r : r; 2392 //} 2393 2394 SDLoc SL(Op); 2395 SDValue Src = Op.getOperand(0); 2396 SDValue L = Src; 2397 2398 SDValue S; 2399 if (Signed) { 2400 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2401 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2402 2403 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2404 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2405 } 2406 2407 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2408 *DAG.getContext(), MVT::f32); 2409 2410 2411 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2412 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2413 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2414 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2415 2416 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2417 SDValue E = DAG.getSelect(SL, MVT::i32, 2418 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2419 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2420 ZeroI32); 2421 2422 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2423 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2424 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2425 2426 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2427 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2428 2429 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2430 U, DAG.getConstant(40, SL, MVT::i64)); 2431 2432 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2433 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2434 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2435 2436 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2437 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2438 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2439 2440 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2441 2442 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2443 2444 SDValue R = DAG.getSelect(SL, MVT::i32, 2445 RCmp, 2446 One, 2447 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2448 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2449 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2450 2451 if (!Signed) 2452 return R; 2453 2454 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2455 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2456 } 2457 2458 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2459 bool Signed) const { 2460 SDLoc SL(Op); 2461 SDValue Src = Op.getOperand(0); 2462 2463 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2464 2465 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2466 DAG.getConstant(0, SL, MVT::i32)); 2467 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2468 DAG.getConstant(1, SL, MVT::i32)); 2469 2470 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2471 SL, MVT::f64, Hi); 2472 2473 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2474 2475 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2476 DAG.getConstant(32, SL, MVT::i32)); 2477 // TODO: Should this propagate fast-math-flags? 2478 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2479 } 2480 2481 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2482 SelectionDAG &DAG) const { 2483 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2484 "operation should be legal"); 2485 2486 // TODO: Factor out code common with LowerSINT_TO_FP. 2487 2488 EVT DestVT = Op.getValueType(); 2489 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2490 SDLoc DL(Op); 2491 SDValue Src = Op.getOperand(0); 2492 2493 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2494 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2495 SDValue FPRound = 2496 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2497 2498 return FPRound; 2499 } 2500 2501 if (DestVT == MVT::f32) 2502 return LowerINT_TO_FP32(Op, DAG, false); 2503 2504 assert(DestVT == MVT::f64); 2505 return LowerINT_TO_FP64(Op, DAG, false); 2506 } 2507 2508 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2509 SelectionDAG &DAG) const { 2510 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2511 "operation should be legal"); 2512 2513 // TODO: Factor out code common with LowerUINT_TO_FP. 2514 2515 EVT DestVT = Op.getValueType(); 2516 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2517 SDLoc DL(Op); 2518 SDValue Src = Op.getOperand(0); 2519 2520 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2521 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2522 SDValue FPRound = 2523 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2524 2525 return FPRound; 2526 } 2527 2528 if (DestVT == MVT::f32) 2529 return LowerINT_TO_FP32(Op, DAG, true); 2530 2531 assert(DestVT == MVT::f64); 2532 return LowerINT_TO_FP64(Op, DAG, true); 2533 } 2534 2535 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2536 bool Signed) const { 2537 SDLoc SL(Op); 2538 2539 SDValue Src = Op.getOperand(0); 2540 2541 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2542 2543 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2544 MVT::f64); 2545 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2546 MVT::f64); 2547 // TODO: Should this propagate fast-math-flags? 2548 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2549 2550 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2551 2552 2553 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2554 2555 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2556 MVT::i32, FloorMul); 2557 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2558 2559 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2560 2561 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2562 } 2563 2564 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2565 SDLoc DL(Op); 2566 SDValue N0 = Op.getOperand(0); 2567 2568 // Convert to target node to get known bits 2569 if (N0.getValueType() == MVT::f32) 2570 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2571 2572 if (getTargetMachine().Options.UnsafeFPMath) { 2573 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2574 return SDValue(); 2575 } 2576 2577 assert(N0.getSimpleValueType() == MVT::f64); 2578 2579 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2580 const unsigned ExpMask = 0x7ff; 2581 const unsigned ExpBiasf64 = 1023; 2582 const unsigned ExpBiasf16 = 15; 2583 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2584 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2585 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2586 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2587 DAG.getConstant(32, DL, MVT::i64)); 2588 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2589 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2590 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2591 DAG.getConstant(20, DL, MVT::i64)); 2592 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2593 DAG.getConstant(ExpMask, DL, MVT::i32)); 2594 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2595 // add the f16 bias (15) to get the biased exponent for the f16 format. 2596 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2597 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2598 2599 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2600 DAG.getConstant(8, DL, MVT::i32)); 2601 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2602 DAG.getConstant(0xffe, DL, MVT::i32)); 2603 2604 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2605 DAG.getConstant(0x1ff, DL, MVT::i32)); 2606 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2607 2608 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2609 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2610 2611 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2612 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2613 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2614 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2615 2616 // N = M | (E << 12); 2617 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2618 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2619 DAG.getConstant(12, DL, MVT::i32))); 2620 2621 // B = clamp(1-E, 0, 13); 2622 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2623 One, E); 2624 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2625 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2626 DAG.getConstant(13, DL, MVT::i32)); 2627 2628 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2629 DAG.getConstant(0x1000, DL, MVT::i32)); 2630 2631 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2632 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2633 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2634 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2635 2636 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2637 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2638 DAG.getConstant(0x7, DL, MVT::i32)); 2639 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2640 DAG.getConstant(2, DL, MVT::i32)); 2641 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2642 One, Zero, ISD::SETEQ); 2643 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2644 One, Zero, ISD::SETGT); 2645 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2646 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2647 2648 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2649 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2650 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2651 I, V, ISD::SETEQ); 2652 2653 // Extract the sign bit. 2654 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2655 DAG.getConstant(16, DL, MVT::i32)); 2656 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2657 DAG.getConstant(0x8000, DL, MVT::i32)); 2658 2659 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2660 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2661 } 2662 2663 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2664 SelectionDAG &DAG) const { 2665 SDValue Src = Op.getOperand(0); 2666 2667 // TODO: Factor out code common with LowerFP_TO_UINT. 2668 2669 EVT SrcVT = Src.getValueType(); 2670 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2671 SDLoc DL(Op); 2672 2673 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2674 SDValue FpToInt32 = 2675 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2676 2677 return FpToInt32; 2678 } 2679 2680 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2681 return LowerFP64_TO_INT(Op, DAG, true); 2682 2683 return SDValue(); 2684 } 2685 2686 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2687 SelectionDAG &DAG) const { 2688 SDValue Src = Op.getOperand(0); 2689 2690 // TODO: Factor out code common with LowerFP_TO_SINT. 2691 2692 EVT SrcVT = Src.getValueType(); 2693 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2694 SDLoc DL(Op); 2695 2696 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2697 SDValue FpToInt32 = 2698 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2699 2700 return FpToInt32; 2701 } 2702 2703 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2704 return LowerFP64_TO_INT(Op, DAG, false); 2705 2706 return SDValue(); 2707 } 2708 2709 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2710 SelectionDAG &DAG) const { 2711 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2712 MVT VT = Op.getSimpleValueType(); 2713 MVT ScalarVT = VT.getScalarType(); 2714 2715 assert(VT.isVector()); 2716 2717 SDValue Src = Op.getOperand(0); 2718 SDLoc DL(Op); 2719 2720 // TODO: Don't scalarize on Evergreen? 2721 unsigned NElts = VT.getVectorNumElements(); 2722 SmallVector<SDValue, 8> Args; 2723 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2724 2725 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2726 for (unsigned I = 0; I < NElts; ++I) 2727 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2728 2729 return DAG.getBuildVector(VT, DL, Args); 2730 } 2731 2732 //===----------------------------------------------------------------------===// 2733 // Custom DAG optimizations 2734 //===----------------------------------------------------------------------===// 2735 2736 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2737 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2738 } 2739 2740 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2741 EVT VT = Op.getValueType(); 2742 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2743 // as unsigned 24-bit values. 2744 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2745 } 2746 2747 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2748 TargetLowering::DAGCombinerInfo &DCI) { 2749 2750 SelectionDAG &DAG = DCI.DAG; 2751 SDValue Op = Node24->getOperand(OpIdx); 2752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2753 EVT VT = Op.getValueType(); 2754 2755 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2756 APInt KnownZero, KnownOne; 2757 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2758 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2759 return true; 2760 2761 return false; 2762 } 2763 2764 template <typename IntTy> 2765 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2766 uint32_t Width, const SDLoc &DL) { 2767 if (Width + Offset < 32) { 2768 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2769 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2770 return DAG.getConstant(Result, DL, MVT::i32); 2771 } 2772 2773 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2774 } 2775 2776 static bool hasVolatileUser(SDNode *Val) { 2777 for (SDNode *U : Val->uses()) { 2778 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2779 if (M->isVolatile()) 2780 return true; 2781 } 2782 } 2783 2784 return false; 2785 } 2786 2787 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2788 // i32 vectors are the canonical memory type. 2789 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2790 return false; 2791 2792 if (!VT.isByteSized()) 2793 return false; 2794 2795 unsigned Size = VT.getStoreSize(); 2796 2797 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2798 return false; 2799 2800 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2801 return false; 2802 2803 return true; 2804 } 2805 2806 // Replace load of an illegal type with a store of a bitcast to a friendlier 2807 // type. 2808 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2809 DAGCombinerInfo &DCI) const { 2810 if (!DCI.isBeforeLegalize()) 2811 return SDValue(); 2812 2813 LoadSDNode *LN = cast<LoadSDNode>(N); 2814 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2815 return SDValue(); 2816 2817 SDLoc SL(N); 2818 SelectionDAG &DAG = DCI.DAG; 2819 EVT VT = LN->getMemoryVT(); 2820 2821 unsigned Size = VT.getStoreSize(); 2822 unsigned Align = LN->getAlignment(); 2823 if (Align < Size && isTypeLegal(VT)) { 2824 bool IsFast; 2825 unsigned AS = LN->getAddressSpace(); 2826 2827 // Expand unaligned loads earlier than legalization. Due to visitation order 2828 // problems during legalization, the emitted instructions to pack and unpack 2829 // the bytes again are not eliminated in the case of an unaligned copy. 2830 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2831 if (VT.isVector()) 2832 return scalarizeVectorLoad(LN, DAG); 2833 2834 SDValue Ops[2]; 2835 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2836 return DAG.getMergeValues(Ops, SDLoc(N)); 2837 } 2838 2839 if (!IsFast) 2840 return SDValue(); 2841 } 2842 2843 if (!shouldCombineMemoryType(VT)) 2844 return SDValue(); 2845 2846 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2847 2848 SDValue NewLoad 2849 = DAG.getLoad(NewVT, SL, LN->getChain(), 2850 LN->getBasePtr(), LN->getMemOperand()); 2851 2852 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2853 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2854 return SDValue(N, 0); 2855 } 2856 2857 // Replace store of an illegal type with a store of a bitcast to a friendlier 2858 // type. 2859 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2860 DAGCombinerInfo &DCI) const { 2861 if (!DCI.isBeforeLegalize()) 2862 return SDValue(); 2863 2864 StoreSDNode *SN = cast<StoreSDNode>(N); 2865 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2866 return SDValue(); 2867 2868 EVT VT = SN->getMemoryVT(); 2869 unsigned Size = VT.getStoreSize(); 2870 2871 SDLoc SL(N); 2872 SelectionDAG &DAG = DCI.DAG; 2873 unsigned Align = SN->getAlignment(); 2874 if (Align < Size && isTypeLegal(VT)) { 2875 bool IsFast; 2876 unsigned AS = SN->getAddressSpace(); 2877 2878 // Expand unaligned stores earlier than legalization. Due to visitation 2879 // order problems during legalization, the emitted instructions to pack and 2880 // unpack the bytes again are not eliminated in the case of an unaligned 2881 // copy. 2882 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2883 if (VT.isVector()) 2884 return scalarizeVectorStore(SN, DAG); 2885 2886 return expandUnalignedStore(SN, DAG); 2887 } 2888 2889 if (!IsFast) 2890 return SDValue(); 2891 } 2892 2893 if (!shouldCombineMemoryType(VT)) 2894 return SDValue(); 2895 2896 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2897 SDValue Val = SN->getValue(); 2898 2899 //DCI.AddToWorklist(Val.getNode()); 2900 2901 bool OtherUses = !Val.hasOneUse(); 2902 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2903 if (OtherUses) { 2904 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2905 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2906 } 2907 2908 return DAG.getStore(SN->getChain(), SL, CastVal, 2909 SN->getBasePtr(), SN->getMemOperand()); 2910 } 2911 2912 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2913 DAGCombinerInfo &DCI) const { 2914 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2915 if (!CSrc) 2916 return SDValue(); 2917 2918 const APFloat &F = CSrc->getValueAPF(); 2919 APFloat Zero = APFloat::getZero(F.getSemantics()); 2920 APFloat::cmpResult Cmp0 = F.compare(Zero); 2921 if (Cmp0 == APFloat::cmpLessThan || 2922 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2923 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2924 } 2925 2926 APFloat One(F.getSemantics(), "1.0"); 2927 APFloat::cmpResult Cmp1 = F.compare(One); 2928 if (Cmp1 == APFloat::cmpGreaterThan) 2929 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2930 2931 return SDValue(CSrc, 0); 2932 } 2933 2934 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2935 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2936 // issues. 2937 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2938 DAGCombinerInfo &DCI) const { 2939 SelectionDAG &DAG = DCI.DAG; 2940 SDValue N0 = N->getOperand(0); 2941 2942 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2943 // (vt2 (truncate (assertzext vt0:x, vt1))) 2944 if (N0.getOpcode() == ISD::TRUNCATE) { 2945 SDValue N1 = N->getOperand(1); 2946 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2947 SDLoc SL(N); 2948 2949 SDValue Src = N0.getOperand(0); 2950 EVT SrcVT = Src.getValueType(); 2951 if (SrcVT.bitsGE(ExtVT)) { 2952 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2953 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2954 } 2955 } 2956 2957 return SDValue(); 2958 } 2959 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2960 /// binary operation \p Opc to it with the corresponding constant operands. 2961 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2962 DAGCombinerInfo &DCI, const SDLoc &SL, 2963 unsigned Opc, SDValue LHS, 2964 uint32_t ValLo, uint32_t ValHi) const { 2965 SelectionDAG &DAG = DCI.DAG; 2966 SDValue Lo, Hi; 2967 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2968 2969 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2970 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2971 2972 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2973 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2974 2975 // Re-visit the ands. It's possible we eliminated one of them and it could 2976 // simplify the vector. 2977 DCI.AddToWorklist(Lo.getNode()); 2978 DCI.AddToWorklist(Hi.getNode()); 2979 2980 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2981 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2982 } 2983 2984 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2985 DAGCombinerInfo &DCI) const { 2986 EVT VT = N->getValueType(0); 2987 2988 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2989 if (!RHS) 2990 return SDValue(); 2991 2992 SDValue LHS = N->getOperand(0); 2993 unsigned RHSVal = RHS->getZExtValue(); 2994 if (!RHSVal) 2995 return LHS; 2996 2997 SDLoc SL(N); 2998 SelectionDAG &DAG = DCI.DAG; 2999 3000 switch (LHS->getOpcode()) { 3001 default: 3002 break; 3003 case ISD::ZERO_EXTEND: 3004 case ISD::SIGN_EXTEND: 3005 case ISD::ANY_EXTEND: { 3006 SDValue X = LHS->getOperand(0); 3007 3008 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3009 isTypeLegal(MVT::v2i16)) { 3010 // Prefer build_vector as the canonical form if packed types are legal. 3011 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3012 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3013 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3014 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3015 } 3016 3017 // shl (ext x) => zext (shl x), if shift does not overflow int 3018 if (VT != MVT::i64) 3019 break; 3020 KnownBits Known; 3021 DAG.computeKnownBits(X, Known); 3022 unsigned LZ = Known.countMinLeadingZeros(); 3023 if (LZ < RHSVal) 3024 break; 3025 EVT XVT = X.getValueType(); 3026 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3027 return DAG.getZExtOrTrunc(Shl, SL, VT); 3028 } 3029 } 3030 3031 if (VT != MVT::i64) 3032 return SDValue(); 3033 3034 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3035 3036 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3037 // common case, splitting this into a move and a 32-bit shift is faster and 3038 // the same code size. 3039 if (RHSVal < 32) 3040 return SDValue(); 3041 3042 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3043 3044 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3045 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3046 3047 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3048 3049 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3050 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3051 } 3052 3053 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3054 DAGCombinerInfo &DCI) const { 3055 if (N->getValueType(0) != MVT::i64) 3056 return SDValue(); 3057 3058 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3059 if (!RHS) 3060 return SDValue(); 3061 3062 SelectionDAG &DAG = DCI.DAG; 3063 SDLoc SL(N); 3064 unsigned RHSVal = RHS->getZExtValue(); 3065 3066 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3067 if (RHSVal == 32) { 3068 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3069 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3070 DAG.getConstant(31, SL, MVT::i32)); 3071 3072 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3073 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3074 } 3075 3076 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3077 if (RHSVal == 63) { 3078 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3079 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3080 DAG.getConstant(31, SL, MVT::i32)); 3081 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3082 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3083 } 3084 3085 return SDValue(); 3086 } 3087 3088 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3089 DAGCombinerInfo &DCI) const { 3090 if (N->getValueType(0) != MVT::i64) 3091 return SDValue(); 3092 3093 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3094 if (!RHS) 3095 return SDValue(); 3096 3097 unsigned ShiftAmt = RHS->getZExtValue(); 3098 if (ShiftAmt < 32) 3099 return SDValue(); 3100 3101 // srl i64:x, C for C >= 32 3102 // => 3103 // build_pair (srl hi_32(x), C - 32), 0 3104 3105 SelectionDAG &DAG = DCI.DAG; 3106 SDLoc SL(N); 3107 3108 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3109 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3110 3111 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 3112 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 3113 VecOp, One); 3114 3115 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3116 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3117 3118 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3119 3120 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3121 } 3122 3123 SDValue AMDGPUTargetLowering::performTruncateCombine( 3124 SDNode *N, DAGCombinerInfo &DCI) const { 3125 SDLoc SL(N); 3126 SelectionDAG &DAG = DCI.DAG; 3127 EVT VT = N->getValueType(0); 3128 SDValue Src = N->getOperand(0); 3129 3130 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3131 if (Src.getOpcode() == ISD::BITCAST) { 3132 SDValue Vec = Src.getOperand(0); 3133 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3134 SDValue Elt0 = Vec.getOperand(0); 3135 EVT EltVT = Elt0.getValueType(); 3136 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3137 if (EltVT.isFloatingPoint()) { 3138 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3139 EltVT.changeTypeToInteger(), Elt0); 3140 } 3141 3142 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3143 } 3144 } 3145 } 3146 3147 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3148 // 3149 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3150 // i16 (trunc (srl (i32 (trunc x), K))) 3151 if (VT.getScalarSizeInBits() < 32) { 3152 EVT SrcVT = Src.getValueType(); 3153 if (SrcVT.getScalarSizeInBits() > 32 && 3154 (Src.getOpcode() == ISD::SRL || 3155 Src.getOpcode() == ISD::SRA || 3156 Src.getOpcode() == ISD::SHL)) { 3157 SDValue Amt = Src.getOperand(1); 3158 KnownBits Known; 3159 DAG.computeKnownBits(Amt, Known); 3160 unsigned Size = VT.getScalarSizeInBits(); 3161 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3162 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3163 EVT MidVT = VT.isVector() ? 3164 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3165 VT.getVectorNumElements()) : MVT::i32; 3166 3167 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3168 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3169 Src.getOperand(0)); 3170 DCI.AddToWorklist(Trunc.getNode()); 3171 3172 if (Amt.getValueType() != NewShiftVT) { 3173 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3174 DCI.AddToWorklist(Amt.getNode()); 3175 } 3176 3177 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3178 Trunc, Amt); 3179 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3180 } 3181 } 3182 } 3183 3184 return SDValue(); 3185 } 3186 3187 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3188 // instructions. If we only match on the legalized i64 mul expansion, 3189 // SimplifyDemandedBits will be unable to remove them because there will be 3190 // multiple uses due to the separate mul + mulh[su]. 3191 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3192 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3193 if (Size <= 32) { 3194 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3195 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3196 } 3197 3198 // Because we want to eliminate extension instructions before the 3199 // operation, we need to create a single user here (i.e. not the separate 3200 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3201 3202 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3203 3204 SDValue Mul = DAG.getNode(MulOpc, SL, 3205 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3206 3207 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3208 Mul.getValue(0), Mul.getValue(1)); 3209 } 3210 3211 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3212 DAGCombinerInfo &DCI) const { 3213 EVT VT = N->getValueType(0); 3214 3215 unsigned Size = VT.getSizeInBits(); 3216 if (VT.isVector() || Size > 64) 3217 return SDValue(); 3218 3219 // There are i16 integer mul/mad. 3220 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3221 return SDValue(); 3222 3223 SelectionDAG &DAG = DCI.DAG; 3224 SDLoc DL(N); 3225 3226 SDValue N0 = N->getOperand(0); 3227 SDValue N1 = N->getOperand(1); 3228 3229 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3230 // in the source into any_extends if the result of the mul is truncated. Since 3231 // we can assume the high bits are whatever we want, use the underlying value 3232 // to avoid the unknown high bits from interfering. 3233 if (N0.getOpcode() == ISD::ANY_EXTEND) 3234 N0 = N0.getOperand(0); 3235 3236 if (N1.getOpcode() == ISD::ANY_EXTEND) 3237 N1 = N1.getOperand(0); 3238 3239 SDValue Mul; 3240 3241 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3242 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3243 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3244 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3245 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3246 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3247 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3248 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3249 } else { 3250 return SDValue(); 3251 } 3252 3253 // We need to use sext even for MUL_U24, because MUL_U24 is used 3254 // for signed multiply of 8 and 16-bit types. 3255 return DAG.getSExtOrTrunc(Mul, DL, VT); 3256 } 3257 3258 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3259 DAGCombinerInfo &DCI) const { 3260 EVT VT = N->getValueType(0); 3261 3262 if (!Subtarget->hasMulI24() || VT.isVector()) 3263 return SDValue(); 3264 3265 SelectionDAG &DAG = DCI.DAG; 3266 SDLoc DL(N); 3267 3268 SDValue N0 = N->getOperand(0); 3269 SDValue N1 = N->getOperand(1); 3270 3271 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3272 return SDValue(); 3273 3274 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3275 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3276 3277 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3278 DCI.AddToWorklist(Mulhi.getNode()); 3279 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3280 } 3281 3282 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3283 DAGCombinerInfo &DCI) const { 3284 EVT VT = N->getValueType(0); 3285 3286 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3287 return SDValue(); 3288 3289 SelectionDAG &DAG = DCI.DAG; 3290 SDLoc DL(N); 3291 3292 SDValue N0 = N->getOperand(0); 3293 SDValue N1 = N->getOperand(1); 3294 3295 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3296 return SDValue(); 3297 3298 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3299 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3300 3301 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3302 DCI.AddToWorklist(Mulhi.getNode()); 3303 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3304 } 3305 3306 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3307 SDNode *N, DAGCombinerInfo &DCI) const { 3308 SelectionDAG &DAG = DCI.DAG; 3309 3310 // Simplify demanded bits before splitting into multiple users. 3311 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 3312 return SDValue(); 3313 3314 SDValue N0 = N->getOperand(0); 3315 SDValue N1 = N->getOperand(1); 3316 3317 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3318 3319 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3320 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3321 3322 SDLoc SL(N); 3323 3324 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3325 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3326 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3327 } 3328 3329 static bool isNegativeOne(SDValue Val) { 3330 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3331 return C->isAllOnesValue(); 3332 return false; 3333 } 3334 3335 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3336 SDValue Op, 3337 const SDLoc &DL, 3338 unsigned Opc) const { 3339 EVT VT = Op.getValueType(); 3340 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3341 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3342 LegalVT != MVT::i16)) 3343 return SDValue(); 3344 3345 if (VT != MVT::i32) 3346 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3347 3348 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3349 if (VT != MVT::i32) 3350 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3351 3352 return FFBX; 3353 } 3354 3355 // The native instructions return -1 on 0 input. Optimize out a select that 3356 // produces -1 on 0. 3357 // 3358 // TODO: If zero is not undef, we could also do this if the output is compared 3359 // against the bitwidth. 3360 // 3361 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3362 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3363 SDValue LHS, SDValue RHS, 3364 DAGCombinerInfo &DCI) const { 3365 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3366 if (!CmpRhs || !CmpRhs->isNullValue()) 3367 return SDValue(); 3368 3369 SelectionDAG &DAG = DCI.DAG; 3370 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3371 SDValue CmpLHS = Cond.getOperand(0); 3372 3373 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3374 AMDGPUISD::FFBH_U32; 3375 3376 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3377 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3378 if (CCOpcode == ISD::SETEQ && 3379 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3380 RHS.getOperand(0) == CmpLHS && 3381 isNegativeOne(LHS)) { 3382 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3383 } 3384 3385 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3386 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3387 if (CCOpcode == ISD::SETNE && 3388 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3389 LHS.getOperand(0) == CmpLHS && 3390 isNegativeOne(RHS)) { 3391 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3392 } 3393 3394 return SDValue(); 3395 } 3396 3397 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3398 unsigned Op, 3399 const SDLoc &SL, 3400 SDValue Cond, 3401 SDValue N1, 3402 SDValue N2) { 3403 SelectionDAG &DAG = DCI.DAG; 3404 EVT VT = N1.getValueType(); 3405 3406 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3407 N1.getOperand(0), N2.getOperand(0)); 3408 DCI.AddToWorklist(NewSelect.getNode()); 3409 return DAG.getNode(Op, SL, VT, NewSelect); 3410 } 3411 3412 // Pull a free FP operation out of a select so it may fold into uses. 3413 // 3414 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3415 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3416 // 3417 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3418 // select c, (fabs x), +k -> fabs (select c, x, k) 3419 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3420 SDValue N) { 3421 SelectionDAG &DAG = DCI.DAG; 3422 SDValue Cond = N.getOperand(0); 3423 SDValue LHS = N.getOperand(1); 3424 SDValue RHS = N.getOperand(2); 3425 3426 EVT VT = N.getValueType(); 3427 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3428 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3429 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3430 SDLoc(N), Cond, LHS, RHS); 3431 } 3432 3433 bool Inv = false; 3434 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3435 std::swap(LHS, RHS); 3436 Inv = true; 3437 } 3438 3439 // TODO: Support vector constants. 3440 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3441 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3442 SDLoc SL(N); 3443 // If one side is an fneg/fabs and the other is a constant, we can push the 3444 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3445 SDValue NewLHS = LHS.getOperand(0); 3446 SDValue NewRHS = RHS; 3447 3448 // Careful: if the neg can be folded up, don't try to pull it back down. 3449 bool ShouldFoldNeg = true; 3450 3451 if (NewLHS.hasOneUse()) { 3452 unsigned Opc = NewLHS.getOpcode(); 3453 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3454 ShouldFoldNeg = false; 3455 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3456 ShouldFoldNeg = false; 3457 } 3458 3459 if (ShouldFoldNeg) { 3460 if (LHS.getOpcode() == ISD::FNEG) 3461 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3462 else if (CRHS->isNegative()) 3463 return SDValue(); 3464 3465 if (Inv) 3466 std::swap(NewLHS, NewRHS); 3467 3468 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3469 Cond, NewLHS, NewRHS); 3470 DCI.AddToWorklist(NewSelect.getNode()); 3471 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3472 } 3473 } 3474 3475 return SDValue(); 3476 } 3477 3478 3479 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3480 DAGCombinerInfo &DCI) const { 3481 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3482 return Folded; 3483 3484 SDValue Cond = N->getOperand(0); 3485 if (Cond.getOpcode() != ISD::SETCC) 3486 return SDValue(); 3487 3488 EVT VT = N->getValueType(0); 3489 SDValue LHS = Cond.getOperand(0); 3490 SDValue RHS = Cond.getOperand(1); 3491 SDValue CC = Cond.getOperand(2); 3492 3493 SDValue True = N->getOperand(1); 3494 SDValue False = N->getOperand(2); 3495 3496 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3497 SelectionDAG &DAG = DCI.DAG; 3498 if ((DAG.isConstantValueOfAnyType(True) || 3499 DAG.isConstantValueOfAnyType(True)) && 3500 (!DAG.isConstantValueOfAnyType(False) && 3501 !DAG.isConstantValueOfAnyType(False))) { 3502 // Swap cmp + select pair to move constant to false input. 3503 // This will allow using VOPC cndmasks more often. 3504 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3505 3506 SDLoc SL(N); 3507 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3508 LHS.getValueType().isInteger()); 3509 3510 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3511 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3512 } 3513 3514 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3515 SDValue MinMax 3516 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3517 // Revisit this node so we can catch min3/max3/med3 patterns. 3518 //DCI.AddToWorklist(MinMax.getNode()); 3519 return MinMax; 3520 } 3521 } 3522 3523 // There's no reason to not do this if the condition has other uses. 3524 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3525 } 3526 3527 static bool isConstantFPZero(SDValue N) { 3528 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3529 return C->isZero() && !C->isNegative(); 3530 return false; 3531 } 3532 3533 static unsigned inverseMinMax(unsigned Opc) { 3534 switch (Opc) { 3535 case ISD::FMAXNUM: 3536 return ISD::FMINNUM; 3537 case ISD::FMINNUM: 3538 return ISD::FMAXNUM; 3539 case AMDGPUISD::FMAX_LEGACY: 3540 return AMDGPUISD::FMIN_LEGACY; 3541 case AMDGPUISD::FMIN_LEGACY: 3542 return AMDGPUISD::FMAX_LEGACY; 3543 default: 3544 llvm_unreachable("invalid min/max opcode"); 3545 } 3546 } 3547 3548 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3549 DAGCombinerInfo &DCI) const { 3550 SelectionDAG &DAG = DCI.DAG; 3551 SDValue N0 = N->getOperand(0); 3552 EVT VT = N->getValueType(0); 3553 3554 unsigned Opc = N0.getOpcode(); 3555 3556 // If the input has multiple uses and we can either fold the negate down, or 3557 // the other uses cannot, give up. This both prevents unprofitable 3558 // transformations and infinite loops: we won't repeatedly try to fold around 3559 // a negate that has no 'good' form. 3560 if (N0.hasOneUse()) { 3561 // This may be able to fold into the source, but at a code size cost. Don't 3562 // fold if the fold into the user is free. 3563 if (allUsesHaveSourceMods(N, 0)) 3564 return SDValue(); 3565 } else { 3566 if (fnegFoldsIntoOp(Opc) && 3567 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3568 return SDValue(); 3569 } 3570 3571 SDLoc SL(N); 3572 switch (Opc) { 3573 case ISD::FADD: { 3574 if (!mayIgnoreSignedZero(N0)) 3575 return SDValue(); 3576 3577 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3578 SDValue LHS = N0.getOperand(0); 3579 SDValue RHS = N0.getOperand(1); 3580 3581 if (LHS.getOpcode() != ISD::FNEG) 3582 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3583 else 3584 LHS = LHS.getOperand(0); 3585 3586 if (RHS.getOpcode() != ISD::FNEG) 3587 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3588 else 3589 RHS = RHS.getOperand(0); 3590 3591 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3592 if (!N0.hasOneUse()) 3593 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3594 return Res; 3595 } 3596 case ISD::FMUL: 3597 case AMDGPUISD::FMUL_LEGACY: { 3598 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3599 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3600 SDValue LHS = N0.getOperand(0); 3601 SDValue RHS = N0.getOperand(1); 3602 3603 if (LHS.getOpcode() == ISD::FNEG) 3604 LHS = LHS.getOperand(0); 3605 else if (RHS.getOpcode() == ISD::FNEG) 3606 RHS = RHS.getOperand(0); 3607 else 3608 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3609 3610 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3611 if (!N0.hasOneUse()) 3612 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3613 return Res; 3614 } 3615 case ISD::FMA: 3616 case ISD::FMAD: { 3617 if (!mayIgnoreSignedZero(N0)) 3618 return SDValue(); 3619 3620 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3621 SDValue LHS = N0.getOperand(0); 3622 SDValue MHS = N0.getOperand(1); 3623 SDValue RHS = N0.getOperand(2); 3624 3625 if (LHS.getOpcode() == ISD::FNEG) 3626 LHS = LHS.getOperand(0); 3627 else if (MHS.getOpcode() == ISD::FNEG) 3628 MHS = MHS.getOperand(0); 3629 else 3630 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3631 3632 if (RHS.getOpcode() != ISD::FNEG) 3633 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3634 else 3635 RHS = RHS.getOperand(0); 3636 3637 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3638 if (!N0.hasOneUse()) 3639 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3640 return Res; 3641 } 3642 case ISD::FMAXNUM: 3643 case ISD::FMINNUM: 3644 case AMDGPUISD::FMAX_LEGACY: 3645 case AMDGPUISD::FMIN_LEGACY: { 3646 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3647 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3648 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3649 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3650 3651 SDValue LHS = N0.getOperand(0); 3652 SDValue RHS = N0.getOperand(1); 3653 3654 // 0 doesn't have a negated inline immediate. 3655 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3656 // operations. 3657 if (isConstantFPZero(RHS)) 3658 return SDValue(); 3659 3660 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3661 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3662 unsigned Opposite = inverseMinMax(Opc); 3663 3664 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3665 if (!N0.hasOneUse()) 3666 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3667 return Res; 3668 } 3669 case ISD::FP_EXTEND: 3670 case ISD::FTRUNC: 3671 case ISD::FRINT: 3672 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3673 case ISD::FSIN: 3674 case AMDGPUISD::RCP: 3675 case AMDGPUISD::RCP_LEGACY: 3676 case AMDGPUISD::SIN_HW: { 3677 SDValue CvtSrc = N0.getOperand(0); 3678 if (CvtSrc.getOpcode() == ISD::FNEG) { 3679 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3680 // (fneg (rcp (fneg x))) -> (rcp x) 3681 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3682 } 3683 3684 if (!N0.hasOneUse()) 3685 return SDValue(); 3686 3687 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3688 // (fneg (rcp x)) -> (rcp (fneg x)) 3689 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3690 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3691 } 3692 case ISD::FP_ROUND: { 3693 SDValue CvtSrc = N0.getOperand(0); 3694 3695 if (CvtSrc.getOpcode() == ISD::FNEG) { 3696 // (fneg (fp_round (fneg x))) -> (fp_round x) 3697 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3698 CvtSrc.getOperand(0), N0.getOperand(1)); 3699 } 3700 3701 if (!N0.hasOneUse()) 3702 return SDValue(); 3703 3704 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3705 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3706 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3707 } 3708 case ISD::FP16_TO_FP: { 3709 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3710 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3711 // Put the fneg back as a legal source operation that can be matched later. 3712 SDLoc SL(N); 3713 3714 SDValue Src = N0.getOperand(0); 3715 EVT SrcVT = Src.getValueType(); 3716 3717 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3718 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3719 DAG.getConstant(0x8000, SL, SrcVT)); 3720 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3721 } 3722 default: 3723 return SDValue(); 3724 } 3725 } 3726 3727 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3728 DAGCombinerInfo &DCI) const { 3729 SelectionDAG &DAG = DCI.DAG; 3730 SDValue N0 = N->getOperand(0); 3731 3732 if (!N0.hasOneUse()) 3733 return SDValue(); 3734 3735 switch (N0.getOpcode()) { 3736 case ISD::FP16_TO_FP: { 3737 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3738 SDLoc SL(N); 3739 SDValue Src = N0.getOperand(0); 3740 EVT SrcVT = Src.getValueType(); 3741 3742 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3743 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3744 DAG.getConstant(0x7fff, SL, SrcVT)); 3745 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3746 } 3747 default: 3748 return SDValue(); 3749 } 3750 } 3751 3752 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3753 DAGCombinerInfo &DCI) const { 3754 SelectionDAG &DAG = DCI.DAG; 3755 SDLoc DL(N); 3756 3757 switch(N->getOpcode()) { 3758 default: 3759 break; 3760 case ISD::BITCAST: { 3761 EVT DestVT = N->getValueType(0); 3762 3763 // Push casts through vector builds. This helps avoid emitting a large 3764 // number of copies when materializing floating point vector constants. 3765 // 3766 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3767 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3768 if (DestVT.isVector()) { 3769 SDValue Src = N->getOperand(0); 3770 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3771 EVT SrcVT = Src.getValueType(); 3772 unsigned NElts = DestVT.getVectorNumElements(); 3773 3774 if (SrcVT.getVectorNumElements() == NElts) { 3775 EVT DestEltVT = DestVT.getVectorElementType(); 3776 3777 SmallVector<SDValue, 8> CastedElts; 3778 SDLoc SL(N); 3779 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3780 SDValue Elt = Src.getOperand(I); 3781 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3782 } 3783 3784 return DAG.getBuildVector(DestVT, SL, CastedElts); 3785 } 3786 } 3787 } 3788 3789 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3790 break; 3791 3792 // Fold bitcasts of constants. 3793 // 3794 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3795 // TODO: Generalize and move to DAGCombiner 3796 SDValue Src = N->getOperand(0); 3797 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3798 assert(Src.getValueType() == MVT::i64); 3799 SDLoc SL(N); 3800 uint64_t CVal = C->getZExtValue(); 3801 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3802 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3803 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3804 } 3805 3806 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3807 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3808 SDLoc SL(N); 3809 uint64_t CVal = Val.getZExtValue(); 3810 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3811 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3812 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3813 3814 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3815 } 3816 3817 break; 3818 } 3819 case ISD::SHL: { 3820 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3821 break; 3822 3823 return performShlCombine(N, DCI); 3824 } 3825 case ISD::SRL: { 3826 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3827 break; 3828 3829 return performSrlCombine(N, DCI); 3830 } 3831 case ISD::SRA: { 3832 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3833 break; 3834 3835 return performSraCombine(N, DCI); 3836 } 3837 case ISD::TRUNCATE: 3838 return performTruncateCombine(N, DCI); 3839 case ISD::MUL: 3840 return performMulCombine(N, DCI); 3841 case ISD::MULHS: 3842 return performMulhsCombine(N, DCI); 3843 case ISD::MULHU: 3844 return performMulhuCombine(N, DCI); 3845 case AMDGPUISD::MUL_I24: 3846 case AMDGPUISD::MUL_U24: 3847 case AMDGPUISD::MULHI_I24: 3848 case AMDGPUISD::MULHI_U24: { 3849 // If the first call to simplify is successfull, then N may end up being 3850 // deleted, so we shouldn't call simplifyI24 again. 3851 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3852 return SDValue(); 3853 } 3854 case AMDGPUISD::MUL_LOHI_I24: 3855 case AMDGPUISD::MUL_LOHI_U24: 3856 return performMulLoHi24Combine(N, DCI); 3857 case ISD::SELECT: 3858 return performSelectCombine(N, DCI); 3859 case ISD::FNEG: 3860 return performFNegCombine(N, DCI); 3861 case ISD::FABS: 3862 return performFAbsCombine(N, DCI); 3863 case AMDGPUISD::BFE_I32: 3864 case AMDGPUISD::BFE_U32: { 3865 assert(!N->getValueType(0).isVector() && 3866 "Vector handling of BFE not implemented"); 3867 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3868 if (!Width) 3869 break; 3870 3871 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3872 if (WidthVal == 0) 3873 return DAG.getConstant(0, DL, MVT::i32); 3874 3875 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3876 if (!Offset) 3877 break; 3878 3879 SDValue BitsFrom = N->getOperand(0); 3880 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3881 3882 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3883 3884 if (OffsetVal == 0) { 3885 // This is already sign / zero extended, so try to fold away extra BFEs. 3886 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3887 3888 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3889 if (OpSignBits >= SignBits) 3890 return BitsFrom; 3891 3892 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3893 if (Signed) { 3894 // This is a sign_extend_inreg. Replace it to take advantage of existing 3895 // DAG Combines. If not eliminated, we will match back to BFE during 3896 // selection. 3897 3898 // TODO: The sext_inreg of extended types ends, although we can could 3899 // handle them in a single BFE. 3900 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3901 DAG.getValueType(SmallVT)); 3902 } 3903 3904 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3905 } 3906 3907 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3908 if (Signed) { 3909 return constantFoldBFE<int32_t>(DAG, 3910 CVal->getSExtValue(), 3911 OffsetVal, 3912 WidthVal, 3913 DL); 3914 } 3915 3916 return constantFoldBFE<uint32_t>(DAG, 3917 CVal->getZExtValue(), 3918 OffsetVal, 3919 WidthVal, 3920 DL); 3921 } 3922 3923 if ((OffsetVal + WidthVal) >= 32 && 3924 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3925 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3926 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3927 BitsFrom, ShiftVal); 3928 } 3929 3930 if (BitsFrom.hasOneUse()) { 3931 APInt Demanded = APInt::getBitsSet(32, 3932 OffsetVal, 3933 OffsetVal + WidthVal); 3934 3935 KnownBits Known; 3936 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3937 !DCI.isBeforeLegalizeOps()); 3938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3939 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3940 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3941 DCI.CommitTargetLoweringOpt(TLO); 3942 } 3943 } 3944 3945 break; 3946 } 3947 case ISD::LOAD: 3948 return performLoadCombine(N, DCI); 3949 case ISD::STORE: 3950 return performStoreCombine(N, DCI); 3951 case AMDGPUISD::CLAMP: 3952 return performClampCombine(N, DCI); 3953 case AMDGPUISD::RCP: { 3954 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3955 // XXX - Should this flush denormals? 3956 const APFloat &Val = CFP->getValueAPF(); 3957 APFloat One(Val.getSemantics(), "1.0"); 3958 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3959 } 3960 3961 break; 3962 } 3963 case ISD::AssertZext: 3964 case ISD::AssertSext: 3965 return performAssertSZExtCombine(N, DCI); 3966 } 3967 return SDValue(); 3968 } 3969 3970 //===----------------------------------------------------------------------===// 3971 // Helper functions 3972 //===----------------------------------------------------------------------===// 3973 3974 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3975 const TargetRegisterClass *RC, 3976 unsigned Reg, EVT VT, 3977 const SDLoc &SL, 3978 bool RawReg) const { 3979 MachineFunction &MF = DAG.getMachineFunction(); 3980 MachineRegisterInfo &MRI = MF.getRegInfo(); 3981 unsigned VReg; 3982 3983 if (!MRI.isLiveIn(Reg)) { 3984 VReg = MRI.createVirtualRegister(RC); 3985 MRI.addLiveIn(Reg, VReg); 3986 } else { 3987 VReg = MRI.getLiveInVirtReg(Reg); 3988 } 3989 3990 if (RawReg) 3991 return DAG.getRegister(VReg, VT); 3992 3993 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3994 } 3995 3996 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3997 EVT VT, 3998 const SDLoc &SL, 3999 int64_t Offset) const { 4000 MachineFunction &MF = DAG.getMachineFunction(); 4001 MachineFrameInfo &MFI = MF.getFrameInfo(); 4002 4003 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 4004 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4005 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4006 4007 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4008 MachineMemOperand::MODereferenceable | 4009 MachineMemOperand::MOInvariant); 4010 } 4011 4012 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4013 const SDLoc &SL, 4014 SDValue Chain, 4015 SDValue StackPtr, 4016 SDValue ArgVal, 4017 int64_t Offset) const { 4018 MachineFunction &MF = DAG.getMachineFunction(); 4019 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4020 4021 SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset); 4022 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4023 MachineMemOperand::MODereferenceable); 4024 return Store; 4025 } 4026 4027 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4028 const TargetRegisterClass *RC, 4029 EVT VT, const SDLoc &SL, 4030 const ArgDescriptor &Arg) const { 4031 assert(Arg && "Attempting to load missing argument"); 4032 4033 if (Arg.isRegister()) 4034 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4035 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4036 } 4037 4038 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4039 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 4040 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 4041 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 4042 switch (Param) { 4043 case GRID_DIM: 4044 return ArgOffset; 4045 case GRID_OFFSET: 4046 return ArgOffset + 4; 4047 } 4048 llvm_unreachable("unexpected implicit parameter type"); 4049 } 4050 4051 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4052 4053 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4054 switch ((AMDGPUISD::NodeType)Opcode) { 4055 case AMDGPUISD::FIRST_NUMBER: break; 4056 // AMDIL DAG nodes 4057 NODE_NAME_CASE(UMUL); 4058 NODE_NAME_CASE(BRANCH_COND); 4059 4060 // AMDGPU DAG nodes 4061 NODE_NAME_CASE(IF) 4062 NODE_NAME_CASE(ELSE) 4063 NODE_NAME_CASE(LOOP) 4064 NODE_NAME_CASE(CALL) 4065 NODE_NAME_CASE(TC_RETURN) 4066 NODE_NAME_CASE(TRAP) 4067 NODE_NAME_CASE(RET_FLAG) 4068 NODE_NAME_CASE(RETURN_TO_EPILOG) 4069 NODE_NAME_CASE(ENDPGM) 4070 NODE_NAME_CASE(DWORDADDR) 4071 NODE_NAME_CASE(FRACT) 4072 NODE_NAME_CASE(SETCC) 4073 NODE_NAME_CASE(SETREG) 4074 NODE_NAME_CASE(FMA_W_CHAIN) 4075 NODE_NAME_CASE(FMUL_W_CHAIN) 4076 NODE_NAME_CASE(CLAMP) 4077 NODE_NAME_CASE(COS_HW) 4078 NODE_NAME_CASE(SIN_HW) 4079 NODE_NAME_CASE(FMAX_LEGACY) 4080 NODE_NAME_CASE(FMIN_LEGACY) 4081 NODE_NAME_CASE(FMAX3) 4082 NODE_NAME_CASE(SMAX3) 4083 NODE_NAME_CASE(UMAX3) 4084 NODE_NAME_CASE(FMIN3) 4085 NODE_NAME_CASE(SMIN3) 4086 NODE_NAME_CASE(UMIN3) 4087 NODE_NAME_CASE(FMED3) 4088 NODE_NAME_CASE(SMED3) 4089 NODE_NAME_CASE(UMED3) 4090 NODE_NAME_CASE(URECIP) 4091 NODE_NAME_CASE(DIV_SCALE) 4092 NODE_NAME_CASE(DIV_FMAS) 4093 NODE_NAME_CASE(DIV_FIXUP) 4094 NODE_NAME_CASE(FMAD_FTZ) 4095 NODE_NAME_CASE(TRIG_PREOP) 4096 NODE_NAME_CASE(RCP) 4097 NODE_NAME_CASE(RSQ) 4098 NODE_NAME_CASE(RCP_LEGACY) 4099 NODE_NAME_CASE(RSQ_LEGACY) 4100 NODE_NAME_CASE(FMUL_LEGACY) 4101 NODE_NAME_CASE(RSQ_CLAMP) 4102 NODE_NAME_CASE(LDEXP) 4103 NODE_NAME_CASE(FP_CLASS) 4104 NODE_NAME_CASE(DOT4) 4105 NODE_NAME_CASE(CARRY) 4106 NODE_NAME_CASE(BORROW) 4107 NODE_NAME_CASE(BFE_U32) 4108 NODE_NAME_CASE(BFE_I32) 4109 NODE_NAME_CASE(BFI) 4110 NODE_NAME_CASE(BFM) 4111 NODE_NAME_CASE(FFBH_U32) 4112 NODE_NAME_CASE(FFBH_I32) 4113 NODE_NAME_CASE(FFBL_B32) 4114 NODE_NAME_CASE(MUL_U24) 4115 NODE_NAME_CASE(MUL_I24) 4116 NODE_NAME_CASE(MULHI_U24) 4117 NODE_NAME_CASE(MULHI_I24) 4118 NODE_NAME_CASE(MUL_LOHI_U24) 4119 NODE_NAME_CASE(MUL_LOHI_I24) 4120 NODE_NAME_CASE(MAD_U24) 4121 NODE_NAME_CASE(MAD_I24) 4122 NODE_NAME_CASE(MAD_I64_I32) 4123 NODE_NAME_CASE(MAD_U64_U32) 4124 NODE_NAME_CASE(TEXTURE_FETCH) 4125 NODE_NAME_CASE(EXPORT) 4126 NODE_NAME_CASE(EXPORT_DONE) 4127 NODE_NAME_CASE(R600_EXPORT) 4128 NODE_NAME_CASE(CONST_ADDRESS) 4129 NODE_NAME_CASE(REGISTER_LOAD) 4130 NODE_NAME_CASE(REGISTER_STORE) 4131 NODE_NAME_CASE(SAMPLE) 4132 NODE_NAME_CASE(SAMPLEB) 4133 NODE_NAME_CASE(SAMPLED) 4134 NODE_NAME_CASE(SAMPLEL) 4135 NODE_NAME_CASE(CVT_F32_UBYTE0) 4136 NODE_NAME_CASE(CVT_F32_UBYTE1) 4137 NODE_NAME_CASE(CVT_F32_UBYTE2) 4138 NODE_NAME_CASE(CVT_F32_UBYTE3) 4139 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4140 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4141 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4142 NODE_NAME_CASE(CVT_PK_I16_I32) 4143 NODE_NAME_CASE(CVT_PK_U16_U32) 4144 NODE_NAME_CASE(FP_TO_FP16) 4145 NODE_NAME_CASE(FP16_ZEXT) 4146 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4147 NODE_NAME_CASE(CONST_DATA_PTR) 4148 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4149 NODE_NAME_CASE(KILL) 4150 NODE_NAME_CASE(DUMMY_CHAIN) 4151 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4152 NODE_NAME_CASE(INIT_EXEC) 4153 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4154 NODE_NAME_CASE(SENDMSG) 4155 NODE_NAME_CASE(SENDMSGHALT) 4156 NODE_NAME_CASE(INTERP_MOV) 4157 NODE_NAME_CASE(INTERP_P1) 4158 NODE_NAME_CASE(INTERP_P2) 4159 NODE_NAME_CASE(STORE_MSKOR) 4160 NODE_NAME_CASE(LOAD_CONSTANT) 4161 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4162 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 4163 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4164 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4165 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4166 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4167 NODE_NAME_CASE(ATOMIC_INC) 4168 NODE_NAME_CASE(ATOMIC_DEC) 4169 NODE_NAME_CASE(ATOMIC_LOAD_FADD) 4170 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4171 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4172 NODE_NAME_CASE(BUFFER_LOAD) 4173 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4174 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4175 NODE_NAME_CASE(BUFFER_STORE) 4176 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4177 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4178 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4179 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4180 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4181 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4182 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4183 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4184 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4185 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4186 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4187 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4188 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4189 NODE_NAME_CASE(IMAGE_LOAD) 4190 NODE_NAME_CASE(IMAGE_LOAD_MIP) 4191 NODE_NAME_CASE(IMAGE_STORE) 4192 NODE_NAME_CASE(IMAGE_STORE_MIP) 4193 // Basic sample. 4194 NODE_NAME_CASE(IMAGE_SAMPLE) 4195 NODE_NAME_CASE(IMAGE_SAMPLE_CL) 4196 NODE_NAME_CASE(IMAGE_SAMPLE_D) 4197 NODE_NAME_CASE(IMAGE_SAMPLE_D_CL) 4198 NODE_NAME_CASE(IMAGE_SAMPLE_L) 4199 NODE_NAME_CASE(IMAGE_SAMPLE_B) 4200 NODE_NAME_CASE(IMAGE_SAMPLE_B_CL) 4201 NODE_NAME_CASE(IMAGE_SAMPLE_LZ) 4202 NODE_NAME_CASE(IMAGE_SAMPLE_CD) 4203 NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL) 4204 // Sample with comparison. 4205 NODE_NAME_CASE(IMAGE_SAMPLE_C) 4206 NODE_NAME_CASE(IMAGE_SAMPLE_C_CL) 4207 NODE_NAME_CASE(IMAGE_SAMPLE_C_D) 4208 NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL) 4209 NODE_NAME_CASE(IMAGE_SAMPLE_C_L) 4210 NODE_NAME_CASE(IMAGE_SAMPLE_C_B) 4211 NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL) 4212 NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ) 4213 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD) 4214 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL) 4215 // Sample with offsets. 4216 NODE_NAME_CASE(IMAGE_SAMPLE_O) 4217 NODE_NAME_CASE(IMAGE_SAMPLE_CL_O) 4218 NODE_NAME_CASE(IMAGE_SAMPLE_D_O) 4219 NODE_NAME_CASE(IMAGE_SAMPLE_D_CL_O) 4220 NODE_NAME_CASE(IMAGE_SAMPLE_L_O) 4221 NODE_NAME_CASE(IMAGE_SAMPLE_B_O) 4222 NODE_NAME_CASE(IMAGE_SAMPLE_B_CL_O) 4223 NODE_NAME_CASE(IMAGE_SAMPLE_LZ_O) 4224 NODE_NAME_CASE(IMAGE_SAMPLE_CD_O) 4225 NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL_O) 4226 // Sample with comparison and offsets. 4227 NODE_NAME_CASE(IMAGE_SAMPLE_C_O) 4228 NODE_NAME_CASE(IMAGE_SAMPLE_C_CL_O) 4229 NODE_NAME_CASE(IMAGE_SAMPLE_C_D_O) 4230 NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL_O) 4231 NODE_NAME_CASE(IMAGE_SAMPLE_C_L_O) 4232 NODE_NAME_CASE(IMAGE_SAMPLE_C_B_O) 4233 NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL_O) 4234 NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ_O) 4235 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_O) 4236 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL_O) 4237 // Basic gather4. 4238 NODE_NAME_CASE(IMAGE_GATHER4) 4239 NODE_NAME_CASE(IMAGE_GATHER4_CL) 4240 NODE_NAME_CASE(IMAGE_GATHER4_L) 4241 NODE_NAME_CASE(IMAGE_GATHER4_B) 4242 NODE_NAME_CASE(IMAGE_GATHER4_B_CL) 4243 NODE_NAME_CASE(IMAGE_GATHER4_LZ) 4244 // Gather4 with comparison. 4245 NODE_NAME_CASE(IMAGE_GATHER4_C) 4246 NODE_NAME_CASE(IMAGE_GATHER4_C_CL) 4247 NODE_NAME_CASE(IMAGE_GATHER4_C_L) 4248 NODE_NAME_CASE(IMAGE_GATHER4_C_B) 4249 NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL) 4250 NODE_NAME_CASE(IMAGE_GATHER4_C_LZ) 4251 // Gather4 with offsets. 4252 NODE_NAME_CASE(IMAGE_GATHER4_O) 4253 NODE_NAME_CASE(IMAGE_GATHER4_CL_O) 4254 NODE_NAME_CASE(IMAGE_GATHER4_L_O) 4255 NODE_NAME_CASE(IMAGE_GATHER4_B_O) 4256 NODE_NAME_CASE(IMAGE_GATHER4_B_CL_O) 4257 NODE_NAME_CASE(IMAGE_GATHER4_LZ_O) 4258 // Gather4 with comparison and offsets. 4259 NODE_NAME_CASE(IMAGE_GATHER4_C_O) 4260 NODE_NAME_CASE(IMAGE_GATHER4_C_CL_O) 4261 NODE_NAME_CASE(IMAGE_GATHER4_C_L_O) 4262 NODE_NAME_CASE(IMAGE_GATHER4_C_B_O) 4263 NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL_O) 4264 NODE_NAME_CASE(IMAGE_GATHER4_C_LZ_O) 4265 4266 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4267 } 4268 return nullptr; 4269 } 4270 4271 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4272 SelectionDAG &DAG, int Enabled, 4273 int &RefinementSteps, 4274 bool &UseOneConstNR, 4275 bool Reciprocal) const { 4276 EVT VT = Operand.getValueType(); 4277 4278 if (VT == MVT::f32) { 4279 RefinementSteps = 0; 4280 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4281 } 4282 4283 // TODO: There is also f64 rsq instruction, but the documentation is less 4284 // clear on its precision. 4285 4286 return SDValue(); 4287 } 4288 4289 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4290 SelectionDAG &DAG, int Enabled, 4291 int &RefinementSteps) const { 4292 EVT VT = Operand.getValueType(); 4293 4294 if (VT == MVT::f32) { 4295 // Reciprocal, < 1 ulp error. 4296 // 4297 // This reciprocal approximation converges to < 0.5 ulp error with one 4298 // newton rhapson performed with two fused multiple adds (FMAs). 4299 4300 RefinementSteps = 0; 4301 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4302 } 4303 4304 // TODO: There is also f64 rcp instruction, but the documentation is less 4305 // clear on its precision. 4306 4307 return SDValue(); 4308 } 4309 4310 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4311 const SDValue Op, KnownBits &Known, 4312 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4313 4314 Known.resetAll(); // Don't know anything. 4315 4316 unsigned Opc = Op.getOpcode(); 4317 4318 switch (Opc) { 4319 default: 4320 break; 4321 case AMDGPUISD::CARRY: 4322 case AMDGPUISD::BORROW: { 4323 Known.Zero = APInt::getHighBitsSet(32, 31); 4324 break; 4325 } 4326 4327 case AMDGPUISD::BFE_I32: 4328 case AMDGPUISD::BFE_U32: { 4329 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4330 if (!CWidth) 4331 return; 4332 4333 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4334 4335 if (Opc == AMDGPUISD::BFE_U32) 4336 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4337 4338 break; 4339 } 4340 case AMDGPUISD::FP_TO_FP16: 4341 case AMDGPUISD::FP16_ZEXT: { 4342 unsigned BitWidth = Known.getBitWidth(); 4343 4344 // High bits are zero. 4345 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4346 break; 4347 } 4348 case AMDGPUISD::MUL_U24: 4349 case AMDGPUISD::MUL_I24: { 4350 KnownBits LHSKnown, RHSKnown; 4351 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 4352 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 4353 4354 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4355 RHSKnown.countMinTrailingZeros(); 4356 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4357 4358 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 4359 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 4360 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4361 if (MaxValBits >= 32) 4362 break; 4363 bool Negative = false; 4364 if (Opc == AMDGPUISD::MUL_I24) { 4365 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 4366 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 4367 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 4368 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 4369 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4370 break; 4371 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4372 } 4373 if (Negative) 4374 Known.One.setHighBits(32 - MaxValBits); 4375 else 4376 Known.Zero.setHighBits(32 - MaxValBits); 4377 break; 4378 } 4379 case ISD::INTRINSIC_WO_CHAIN: { 4380 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4381 switch (IID) { 4382 case Intrinsic::amdgcn_mbcnt_lo: 4383 case Intrinsic::amdgcn_mbcnt_hi: { 4384 // These return at most the wavefront size - 1. 4385 unsigned Size = Op.getValueType().getSizeInBits(); 4386 Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2()); 4387 break; 4388 } 4389 default: 4390 break; 4391 } 4392 } 4393 } 4394 } 4395 4396 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4397 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4398 unsigned Depth) const { 4399 switch (Op.getOpcode()) { 4400 case AMDGPUISD::BFE_I32: { 4401 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4402 if (!Width) 4403 return 1; 4404 4405 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4406 if (!isNullConstant(Op.getOperand(1))) 4407 return SignBits; 4408 4409 // TODO: Could probably figure something out with non-0 offsets. 4410 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4411 return std::max(SignBits, Op0SignBits); 4412 } 4413 4414 case AMDGPUISD::BFE_U32: { 4415 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4416 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4417 } 4418 4419 case AMDGPUISD::CARRY: 4420 case AMDGPUISD::BORROW: 4421 return 31; 4422 case AMDGPUISD::FP_TO_FP16: 4423 case AMDGPUISD::FP16_ZEXT: 4424 return 16; 4425 default: 4426 return 1; 4427 } 4428 } 4429