1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
17 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
18 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
19 
20 #include "AMDGPUISelLowering.h"
21 #include "AMDGPU.h"
22 #include "AMDGPUCallLowering.h"
23 #include "AMDGPUFrameLowering.h"
24 #include "AMDGPUIntrinsicInfo.h"
25 #include "AMDGPURegisterInfo.h"
26 #include "AMDGPUSubtarget.h"
27 #include "AMDGPUTargetMachine.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "R600MachineFunctionInfo.h"
30 #include "SIInstrInfo.h"
31 #include "SIMachineFunctionInfo.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
41 
42 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
43                             CCValAssign::LocInfo LocInfo,
44                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
45   MachineFunction &MF = State.getMachineFunction();
46   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
47 
48   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
49                                          ArgFlags.getOrigAlign());
50   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
51   return true;
52 }
53 
54 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
55                            CCValAssign::LocInfo LocInfo,
56                            ISD::ArgFlagsTy ArgFlags, CCState &State,
57                            const TargetRegisterClass *RC,
58                            unsigned NumRegs) {
59   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
60   unsigned RegResult = State.AllocateReg(RegList);
61   if (RegResult == AMDGPU::NoRegister)
62     return false;
63 
64   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
65   return true;
66 }
67 
68 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
69                               CCValAssign::LocInfo LocInfo,
70                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
71   switch (LocVT.SimpleTy) {
72   case MVT::i64:
73   case MVT::f64:
74   case MVT::v2i32:
75   case MVT::v2f32: {
76     // Up to SGPR0-SGPR39
77     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
78                           &AMDGPU::SGPR_64RegClass, 20);
79   }
80   default:
81     return false;
82   }
83 }
84 
85 // Allocate up to VGPR31.
86 //
87 // TODO: Since there are no VGPR alignent requirements would it be better to
88 // split into individual scalar registers?
89 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
90                               CCValAssign::LocInfo LocInfo,
91                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
92   switch (LocVT.SimpleTy) {
93   case MVT::i64:
94   case MVT::f64:
95   case MVT::v2i32:
96   case MVT::v2f32: {
97     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
98                           &AMDGPU::VReg_64RegClass, 31);
99   }
100   case MVT::v4i32:
101   case MVT::v4f32:
102   case MVT::v2i64:
103   case MVT::v2f64: {
104     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
105                           &AMDGPU::VReg_128RegClass, 29);
106   }
107   case MVT::v8i32:
108   case MVT::v8f32: {
109     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
110                           &AMDGPU::VReg_256RegClass, 25);
111 
112   }
113   case MVT::v16i32:
114   case MVT::v16f32: {
115     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
116                           &AMDGPU::VReg_512RegClass, 17);
117 
118   }
119   default:
120     return false;
121   }
122 }
123 
124 #include "AMDGPUGenCallingConv.inc"
125 
126 // Find a larger type to do a load / store of a vector with.
127 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
128   unsigned StoreSize = VT.getStoreSizeInBits();
129   if (StoreSize <= 32)
130     return EVT::getIntegerVT(Ctx, StoreSize);
131 
132   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
133   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
134 }
135 
136 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
137   KnownBits Known;
138   EVT VT = Op.getValueType();
139   DAG.computeKnownBits(Op, Known);
140 
141   return VT.getSizeInBits() - Known.countMinLeadingZeros();
142 }
143 
144 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
145   EVT VT = Op.getValueType();
146 
147   // In order for this to be a signed 24-bit value, bit 23, must
148   // be a sign bit.
149   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
150 }
151 
152 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
153                                            const AMDGPUSubtarget &STI)
154     : TargetLowering(TM), Subtarget(&STI) {
155   AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
156   // Lower floating point store/load to integer store/load to reduce the number
157   // of patterns in tablegen.
158   setOperationAction(ISD::LOAD, MVT::f32, Promote);
159   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
160 
161   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
162   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
163 
164   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
165   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
166 
167   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
168   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
169 
170   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
171   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
172 
173   setOperationAction(ISD::LOAD, MVT::i64, Promote);
174   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
175 
176   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
177   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
178 
179   setOperationAction(ISD::LOAD, MVT::f64, Promote);
180   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
181 
182   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
183   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
184 
185   // There are no 64-bit extloads. These should be done as a 32-bit extload and
186   // an extension to 64-bit.
187   for (MVT VT : MVT::integer_valuetypes()) {
188     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
189     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
190     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
191   }
192 
193   for (MVT VT : MVT::integer_valuetypes()) {
194     if (VT == MVT::i64)
195       continue;
196 
197     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
198     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
199     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
200     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
201 
202     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
203     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
204     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
205     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
206 
207     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
208     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
209     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
210     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
211   }
212 
213   for (MVT VT : MVT::integer_vector_valuetypes()) {
214     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
215     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
216     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
217     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
218     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
219     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
220     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
221     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
222     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
223     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
224     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
225     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
226   }
227 
228   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
229   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
230   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
231   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
232 
233   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
234   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
235   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
236   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
237 
238   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
239   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
240   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
241   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
242 
243   setOperationAction(ISD::STORE, MVT::f32, Promote);
244   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
245 
246   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
247   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
248 
249   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
250   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
251 
252   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
253   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
254 
255   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
256   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
257 
258   setOperationAction(ISD::STORE, MVT::i64, Promote);
259   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
260 
261   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
262   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
263 
264   setOperationAction(ISD::STORE, MVT::f64, Promote);
265   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
266 
267   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
268   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
269 
270   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
271   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
272   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
273   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
274 
275   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
276   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
277   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
278   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
279 
280   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
281   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
282   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
283   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
284 
285   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
286   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
287 
288   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
289   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
290 
291   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
292   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
293 
294   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
295   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
296 
297 
298   setOperationAction(ISD::Constant, MVT::i32, Legal);
299   setOperationAction(ISD::Constant, MVT::i64, Legal);
300   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
301   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
302 
303   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
304   setOperationAction(ISD::BRIND, MVT::Other, Expand);
305 
306   // This is totally unsupported, just custom lower to produce an error.
307   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
308 
309   // Library functions.  These default to Expand, but we have instructions
310   // for them.
311   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
312   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
313   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
314   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
315   setOperationAction(ISD::FABS,   MVT::f32, Legal);
316   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
317   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
318   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
319   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
320   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
321 
322   setOperationAction(ISD::FROUND, MVT::f32, Custom);
323   setOperationAction(ISD::FROUND, MVT::f64, Custom);
324 
325   setOperationAction(ISD::FLOG, MVT::f32, Custom);
326   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
327 
328   if (Subtarget->has16BitInsts()) {
329     setOperationAction(ISD::FLOG, MVT::f16, Custom);
330     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
331   }
332 
333   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
334   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
335 
336   setOperationAction(ISD::FREM, MVT::f32, Custom);
337   setOperationAction(ISD::FREM, MVT::f64, Custom);
338 
339   // v_mad_f32 does not support denormals according to some sources.
340   if (!Subtarget->hasFP32Denormals())
341     setOperationAction(ISD::FMAD, MVT::f32, Legal);
342 
343   // Expand to fneg + fadd.
344   setOperationAction(ISD::FSUB, MVT::f64, Expand);
345 
346   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
347   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
348   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
349   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
350   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
351   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
352   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
353   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
354   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
355   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
356 
357   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
358     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
359     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
360     setOperationAction(ISD::FRINT, MVT::f64, Custom);
361     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
362   }
363 
364   if (!Subtarget->hasBFI()) {
365     // fcopysign can be done in a single instruction with BFI.
366     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
367     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
368   }
369 
370   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
371   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
372   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
373 
374   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
375   for (MVT VT : ScalarIntVTs) {
376     // These should use [SU]DIVREM, so set them to expand
377     setOperationAction(ISD::SDIV, VT, Expand);
378     setOperationAction(ISD::UDIV, VT, Expand);
379     setOperationAction(ISD::SREM, VT, Expand);
380     setOperationAction(ISD::UREM, VT, Expand);
381 
382     // GPU does not have divrem function for signed or unsigned.
383     setOperationAction(ISD::SDIVREM, VT, Custom);
384     setOperationAction(ISD::UDIVREM, VT, Custom);
385 
386     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
387     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
388     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
389 
390     setOperationAction(ISD::BSWAP, VT, Expand);
391     setOperationAction(ISD::CTTZ, VT, Expand);
392     setOperationAction(ISD::CTLZ, VT, Expand);
393   }
394 
395   if (!Subtarget->hasBCNT(32))
396     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
397 
398   if (!Subtarget->hasBCNT(64))
399     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
400 
401   // The hardware supports 32-bit ROTR, but not ROTL.
402   setOperationAction(ISD::ROTL, MVT::i32, Expand);
403   setOperationAction(ISD::ROTL, MVT::i64, Expand);
404   setOperationAction(ISD::ROTR, MVT::i64, Expand);
405 
406   setOperationAction(ISD::MUL, MVT::i64, Expand);
407   setOperationAction(ISD::MULHU, MVT::i64, Expand);
408   setOperationAction(ISD::MULHS, MVT::i64, Expand);
409   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
410   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
411   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
412   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
413   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
414 
415   setOperationAction(ISD::SMIN, MVT::i32, Legal);
416   setOperationAction(ISD::UMIN, MVT::i32, Legal);
417   setOperationAction(ISD::SMAX, MVT::i32, Legal);
418   setOperationAction(ISD::UMAX, MVT::i32, Legal);
419 
420   if (Subtarget->hasFFBH())
421     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
422 
423   if (Subtarget->hasFFBL())
424     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
425 
426   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
427   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
428   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
429   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
430 
431   // We only really have 32-bit BFE instructions (and 16-bit on VI).
432   //
433   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
434   // effort to match them now. We want this to be false for i64 cases when the
435   // extraction isn't restricted to the upper or lower half. Ideally we would
436   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
437   // span the midpoint are probably relatively rare, so don't worry about them
438   // for now.
439   if (Subtarget->hasBFE())
440     setHasExtractBitsInsn(true);
441 
442   static const MVT::SimpleValueType VectorIntTypes[] = {
443     MVT::v2i32, MVT::v4i32
444   };
445 
446   for (MVT VT : VectorIntTypes) {
447     // Expand the following operations for the current type by default.
448     setOperationAction(ISD::ADD,  VT, Expand);
449     setOperationAction(ISD::AND,  VT, Expand);
450     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
451     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
452     setOperationAction(ISD::MUL,  VT, Expand);
453     setOperationAction(ISD::MULHU, VT, Expand);
454     setOperationAction(ISD::MULHS, VT, Expand);
455     setOperationAction(ISD::OR,   VT, Expand);
456     setOperationAction(ISD::SHL,  VT, Expand);
457     setOperationAction(ISD::SRA,  VT, Expand);
458     setOperationAction(ISD::SRL,  VT, Expand);
459     setOperationAction(ISD::ROTL, VT, Expand);
460     setOperationAction(ISD::ROTR, VT, Expand);
461     setOperationAction(ISD::SUB,  VT, Expand);
462     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
463     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
464     setOperationAction(ISD::SDIV, VT, Expand);
465     setOperationAction(ISD::UDIV, VT, Expand);
466     setOperationAction(ISD::SREM, VT, Expand);
467     setOperationAction(ISD::UREM, VT, Expand);
468     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
469     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
470     setOperationAction(ISD::SDIVREM, VT, Custom);
471     setOperationAction(ISD::UDIVREM, VT, Expand);
472     setOperationAction(ISD::ADDC, VT, Expand);
473     setOperationAction(ISD::SUBC, VT, Expand);
474     setOperationAction(ISD::ADDE, VT, Expand);
475     setOperationAction(ISD::SUBE, VT, Expand);
476     setOperationAction(ISD::SELECT, VT, Expand);
477     setOperationAction(ISD::VSELECT, VT, Expand);
478     setOperationAction(ISD::SELECT_CC, VT, Expand);
479     setOperationAction(ISD::XOR,  VT, Expand);
480     setOperationAction(ISD::BSWAP, VT, Expand);
481     setOperationAction(ISD::CTPOP, VT, Expand);
482     setOperationAction(ISD::CTTZ, VT, Expand);
483     setOperationAction(ISD::CTLZ, VT, Expand);
484     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
485     setOperationAction(ISD::SETCC, VT, Expand);
486   }
487 
488   static const MVT::SimpleValueType FloatVectorTypes[] = {
489     MVT::v2f32, MVT::v4f32
490   };
491 
492   for (MVT VT : FloatVectorTypes) {
493     setOperationAction(ISD::FABS, VT, Expand);
494     setOperationAction(ISD::FMINNUM, VT, Expand);
495     setOperationAction(ISD::FMAXNUM, VT, Expand);
496     setOperationAction(ISD::FADD, VT, Expand);
497     setOperationAction(ISD::FCEIL, VT, Expand);
498     setOperationAction(ISD::FCOS, VT, Expand);
499     setOperationAction(ISD::FDIV, VT, Expand);
500     setOperationAction(ISD::FEXP2, VT, Expand);
501     setOperationAction(ISD::FLOG2, VT, Expand);
502     setOperationAction(ISD::FREM, VT, Expand);
503     setOperationAction(ISD::FLOG, VT, Expand);
504     setOperationAction(ISD::FLOG10, VT, Expand);
505     setOperationAction(ISD::FPOW, VT, Expand);
506     setOperationAction(ISD::FFLOOR, VT, Expand);
507     setOperationAction(ISD::FTRUNC, VT, Expand);
508     setOperationAction(ISD::FMUL, VT, Expand);
509     setOperationAction(ISD::FMA, VT, Expand);
510     setOperationAction(ISD::FRINT, VT, Expand);
511     setOperationAction(ISD::FNEARBYINT, VT, Expand);
512     setOperationAction(ISD::FSQRT, VT, Expand);
513     setOperationAction(ISD::FSIN, VT, Expand);
514     setOperationAction(ISD::FSUB, VT, Expand);
515     setOperationAction(ISD::FNEG, VT, Expand);
516     setOperationAction(ISD::VSELECT, VT, Expand);
517     setOperationAction(ISD::SELECT_CC, VT, Expand);
518     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
519     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
520     setOperationAction(ISD::SETCC, VT, Expand);
521   }
522 
523   // This causes using an unrolled select operation rather than expansion with
524   // bit operations. This is in general better, but the alternative using BFI
525   // instructions may be better if the select sources are SGPRs.
526   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
527   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
528 
529   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
530   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
531 
532   // There are no libcalls of any kind.
533   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
534     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
535 
536   setBooleanContents(ZeroOrNegativeOneBooleanContent);
537   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
538 
539   setSchedulingPreference(Sched::RegPressure);
540   setJumpIsExpensive(true);
541 
542   // FIXME: This is only partially true. If we have to do vector compares, any
543   // SGPR pair can be a condition register. If we have a uniform condition, we
544   // are better off doing SALU operations, where there is only one SCC. For now,
545   // we don't have a way of knowing during instruction selection if a condition
546   // will be uniform and we always use vector compares. Assume we are using
547   // vector compares until that is fixed.
548   setHasMultipleConditionRegisters(true);
549 
550   // SI at least has hardware support for floating point exceptions, but no way
551   // of using or handling them is implemented. They are also optional in OpenCL
552   // (Section 7.3)
553   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
554 
555   PredictableSelectIsExpensive = false;
556 
557   // We want to find all load dependencies for long chains of stores to enable
558   // merging into very wide vectors. The problem is with vectors with > 4
559   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
560   // vectors are a legal type, even though we have to split the loads
561   // usually. When we can more precisely specify load legality per address
562   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
563   // smarter so that they can figure out what to do in 2 iterations without all
564   // N > 4 stores on the same chain.
565   GatherAllAliasesMaxDepth = 16;
566 
567   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
568   // about these during lowering.
569   MaxStoresPerMemcpy  = 0xffffffff;
570   MaxStoresPerMemmove = 0xffffffff;
571   MaxStoresPerMemset  = 0xffffffff;
572 
573   setTargetDAGCombine(ISD::BITCAST);
574   setTargetDAGCombine(ISD::SHL);
575   setTargetDAGCombine(ISD::SRA);
576   setTargetDAGCombine(ISD::SRL);
577   setTargetDAGCombine(ISD::TRUNCATE);
578   setTargetDAGCombine(ISD::MUL);
579   setTargetDAGCombine(ISD::MULHU);
580   setTargetDAGCombine(ISD::MULHS);
581   setTargetDAGCombine(ISD::SELECT);
582   setTargetDAGCombine(ISD::SELECT_CC);
583   setTargetDAGCombine(ISD::STORE);
584   setTargetDAGCombine(ISD::FADD);
585   setTargetDAGCombine(ISD::FSUB);
586   setTargetDAGCombine(ISD::FNEG);
587   setTargetDAGCombine(ISD::FABS);
588   setTargetDAGCombine(ISD::AssertZext);
589   setTargetDAGCombine(ISD::AssertSext);
590 }
591 
592 //===----------------------------------------------------------------------===//
593 // Target Information
594 //===----------------------------------------------------------------------===//
595 
596 LLVM_READNONE
597 static bool fnegFoldsIntoOp(unsigned Opc) {
598   switch (Opc) {
599   case ISD::FADD:
600   case ISD::FSUB:
601   case ISD::FMUL:
602   case ISD::FMA:
603   case ISD::FMAD:
604   case ISD::FMINNUM:
605   case ISD::FMAXNUM:
606   case ISD::FSIN:
607   case ISD::FTRUNC:
608   case ISD::FRINT:
609   case ISD::FNEARBYINT:
610   case AMDGPUISD::RCP:
611   case AMDGPUISD::RCP_LEGACY:
612   case AMDGPUISD::SIN_HW:
613   case AMDGPUISD::FMUL_LEGACY:
614   case AMDGPUISD::FMIN_LEGACY:
615   case AMDGPUISD::FMAX_LEGACY:
616     return true;
617   default:
618     return false;
619   }
620 }
621 
622 /// \p returns true if the operation will definitely need to use a 64-bit
623 /// encoding, and thus will use a VOP3 encoding regardless of the source
624 /// modifiers.
625 LLVM_READONLY
626 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
627   return N->getNumOperands() > 2 || VT == MVT::f64;
628 }
629 
630 // Most FP instructions support source modifiers, but this could be refined
631 // slightly.
632 LLVM_READONLY
633 static bool hasSourceMods(const SDNode *N) {
634   if (isa<MemSDNode>(N))
635     return false;
636 
637   switch (N->getOpcode()) {
638   case ISD::CopyToReg:
639   case ISD::SELECT:
640   case ISD::FDIV:
641   case ISD::FREM:
642   case ISD::INLINEASM:
643   case AMDGPUISD::INTERP_P1:
644   case AMDGPUISD::INTERP_P2:
645   case AMDGPUISD::DIV_SCALE:
646 
647   // TODO: Should really be looking at the users of the bitcast. These are
648   // problematic because bitcasts are used to legalize all stores to integer
649   // types.
650   case ISD::BITCAST:
651     return false;
652   default:
653     return true;
654   }
655 }
656 
657 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
658                                                  unsigned CostThreshold) {
659   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
660   // it is truly free to use a source modifier in all cases. If there are
661   // multiple users but for each one will necessitate using VOP3, there will be
662   // a code size increase. Try to avoid increasing code size unless we know it
663   // will save on the instruction count.
664   unsigned NumMayIncreaseSize = 0;
665   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
666 
667   // XXX - Should this limit number of uses to check?
668   for (const SDNode *U : N->uses()) {
669     if (!hasSourceMods(U))
670       return false;
671 
672     if (!opMustUseVOP3Encoding(U, VT)) {
673       if (++NumMayIncreaseSize > CostThreshold)
674         return false;
675     }
676   }
677 
678   return true;
679 }
680 
681 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
682   return MVT::i32;
683 }
684 
685 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
686   return true;
687 }
688 
689 // The backend supports 32 and 64 bit floating point immediates.
690 // FIXME: Why are we reporting vectors of FP immediates as legal?
691 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
692   EVT ScalarVT = VT.getScalarType();
693   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
694          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
695 }
696 
697 // We don't want to shrink f64 / f32 constants.
698 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
699   EVT ScalarVT = VT.getScalarType();
700   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
701 }
702 
703 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
704                                                  ISD::LoadExtType,
705                                                  EVT NewVT) const {
706 
707   unsigned NewSize = NewVT.getStoreSizeInBits();
708 
709   // If we are reducing to a 32-bit load, this is always better.
710   if (NewSize == 32)
711     return true;
712 
713   EVT OldVT = N->getValueType(0);
714   unsigned OldSize = OldVT.getStoreSizeInBits();
715 
716   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
717   // extloads, so doing one requires using a buffer_load. In cases where we
718   // still couldn't use a scalar load, using the wider load shouldn't really
719   // hurt anything.
720 
721   // If the old size already had to be an extload, there's no harm in continuing
722   // to reduce the width.
723   return (OldSize < 32);
724 }
725 
726 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
727                                                    EVT CastTy) const {
728 
729   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
730 
731   if (LoadTy.getScalarType() == MVT::i32)
732     return false;
733 
734   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
735   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
736 
737   return (LScalarSize < CastScalarSize) ||
738          (CastScalarSize >= 32);
739 }
740 
741 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
742 // profitable with the expansion for 64-bit since it's generally good to
743 // speculate things.
744 // FIXME: These should really have the size as a parameter.
745 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
746   return true;
747 }
748 
749 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
750   return true;
751 }
752 
753 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
754   switch (N->getOpcode()) {
755     default:
756     return false;
757     case ISD::EntryToken:
758     case ISD::TokenFactor:
759       return true;
760     case ISD::INTRINSIC_WO_CHAIN:
761     {
762       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
763       switch (IntrID) {
764         default:
765         return false;
766         case Intrinsic::amdgcn_readfirstlane:
767         case Intrinsic::amdgcn_readlane:
768           return true;
769       }
770     }
771     break;
772     case ISD::LOAD:
773     {
774       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
775       if (L->getMemOperand()->getAddrSpace()
776       == Subtarget->getAMDGPUAS().CONSTANT_ADDRESS_32BIT)
777         return true;
778       return false;
779     }
780     break;
781   }
782 }
783 
784 bool AMDGPUTargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
785   FunctionLoweringInfo * FLI, DivergenceAnalysis * DA) const
786 {
787   switch (N->getOpcode()) {
788     case ISD::Register:
789     case ISD::CopyFromReg:
790     {
791       const RegisterSDNode *R = nullptr;
792       if (N->getOpcode() == ISD::Register) {
793         R = dyn_cast<RegisterSDNode>(N);
794       }
795       else {
796         R = dyn_cast<RegisterSDNode>(N->getOperand(1));
797       }
798       if (R)
799       {
800         const MachineFunction * MF = FLI->MF;
801         const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
802         const MachineRegisterInfo &MRI = MF->getRegInfo();
803         const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
804         unsigned Reg = R->getReg();
805         if (TRI.isPhysicalRegister(Reg))
806           return TRI.isVGPR(MRI, Reg);
807 
808         if (MRI.isLiveIn(Reg)) {
809           // workitem.id.x workitem.id.y workitem.id.z
810           // Any VGPR formal argument is also considered divergent
811           if ((MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_X) ||
812               (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Y) ||
813               (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Z) ||
814               (TRI.isVGPR(MRI, Reg)))
815               return true;
816           // Formal arguments of non-entry functions
817           // are conservatively considered divergent
818           else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
819             return true;
820         }
821         return !DA || DA->isDivergent(FLI->getValueFromVirtualReg(Reg));
822       }
823     }
824     break;
825     case ISD::LOAD: {
826       const LoadSDNode *L = dyn_cast<LoadSDNode>(N);
827       if (L->getMemOperand()->getAddrSpace() ==
828           Subtarget->getAMDGPUAS().PRIVATE_ADDRESS)
829         return true;
830     } break;
831     case ISD::CALLSEQ_END:
832     return true;
833     break;
834     case ISD::INTRINSIC_WO_CHAIN:
835     {
836 
837     }
838       return AMDGPU::isIntrinsicSourceOfDivergence(
839       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
840     case ISD::INTRINSIC_W_CHAIN:
841       return AMDGPU::isIntrinsicSourceOfDivergence(
842       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
843     // In some cases intrinsics that are a source of divergence have been
844     // lowered to AMDGPUISD so we also need to check those too.
845     case AMDGPUISD::INTERP_MOV:
846     case AMDGPUISD::INTERP_P1:
847     case AMDGPUISD::INTERP_P2:
848       return true;
849   }
850   return false;
851 }
852 
853 //===---------------------------------------------------------------------===//
854 // Target Properties
855 //===---------------------------------------------------------------------===//
856 
857 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
858   assert(VT.isFloatingPoint());
859 
860   // Packed operations do not have a fabs modifier.
861   return VT == MVT::f32 || VT == MVT::f64 ||
862          (Subtarget->has16BitInsts() && VT == MVT::f16);
863 }
864 
865 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
866   assert(VT.isFloatingPoint());
867   return VT == MVT::f32 || VT == MVT::f64 ||
868          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
869          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
870 }
871 
872 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
873                                                          unsigned NumElem,
874                                                          unsigned AS) const {
875   return true;
876 }
877 
878 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
879   // There are few operations which truly have vector input operands. Any vector
880   // operation is going to involve operations on each component, and a
881   // build_vector will be a copy per element, so it always makes sense to use a
882   // build_vector input in place of the extracted element to avoid a copy into a
883   // super register.
884   //
885   // We should probably only do this if all users are extracts only, but this
886   // should be the common case.
887   return true;
888 }
889 
890 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
891   // Truncate is just accessing a subregister.
892 
893   unsigned SrcSize = Source.getSizeInBits();
894   unsigned DestSize = Dest.getSizeInBits();
895 
896   return DestSize < SrcSize && DestSize % 32 == 0 ;
897 }
898 
899 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
900   // Truncate is just accessing a subregister.
901 
902   unsigned SrcSize = Source->getScalarSizeInBits();
903   unsigned DestSize = Dest->getScalarSizeInBits();
904 
905   if (DestSize== 16 && Subtarget->has16BitInsts())
906     return SrcSize >= 32;
907 
908   return DestSize < SrcSize && DestSize % 32 == 0;
909 }
910 
911 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
912   unsigned SrcSize = Src->getScalarSizeInBits();
913   unsigned DestSize = Dest->getScalarSizeInBits();
914 
915   if (SrcSize == 16 && Subtarget->has16BitInsts())
916     return DestSize >= 32;
917 
918   return SrcSize == 32 && DestSize == 64;
919 }
920 
921 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
922   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
923   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
924   // this will enable reducing 64-bit operations the 32-bit, which is always
925   // good.
926 
927   if (Src == MVT::i16)
928     return Dest == MVT::i32 ||Dest == MVT::i64 ;
929 
930   return Src == MVT::i32 && Dest == MVT::i64;
931 }
932 
933 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
934   return isZExtFree(Val.getValueType(), VT2);
935 }
936 
937 // v_mad_mix* support a conversion from f16 to f32.
938 //
939 // There is only one special case when denormals are enabled we don't currently,
940 // where this is OK to use.
941 bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode,
942                                            EVT DestVT, EVT SrcVT) const {
943   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
944           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
945          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
946          SrcVT.getScalarType() == MVT::f16;
947 }
948 
949 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
950   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
951   // limited number of native 64-bit operations. Shrinking an operation to fit
952   // in a single 32-bit register should always be helpful. As currently used,
953   // this is much less general than the name suggests, and is only used in
954   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
955   // not profitable, and may actually be harmful.
956   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
957 }
958 
959 //===---------------------------------------------------------------------===//
960 // TargetLowering Callbacks
961 //===---------------------------------------------------------------------===//
962 
963 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
964                                                   bool IsVarArg) {
965   switch (CC) {
966   case CallingConv::AMDGPU_KERNEL:
967   case CallingConv::SPIR_KERNEL:
968     return CC_AMDGPU_Kernel;
969   case CallingConv::AMDGPU_VS:
970   case CallingConv::AMDGPU_GS:
971   case CallingConv::AMDGPU_PS:
972   case CallingConv::AMDGPU_CS:
973   case CallingConv::AMDGPU_HS:
974   case CallingConv::AMDGPU_ES:
975   case CallingConv::AMDGPU_LS:
976     return CC_AMDGPU;
977   case CallingConv::C:
978   case CallingConv::Fast:
979   case CallingConv::Cold:
980     return CC_AMDGPU_Func;
981   default:
982     report_fatal_error("Unsupported calling convention.");
983   }
984 }
985 
986 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
987                                                     bool IsVarArg) {
988   switch (CC) {
989   case CallingConv::AMDGPU_KERNEL:
990   case CallingConv::SPIR_KERNEL:
991     return CC_AMDGPU_Kernel;
992   case CallingConv::AMDGPU_VS:
993   case CallingConv::AMDGPU_GS:
994   case CallingConv::AMDGPU_PS:
995   case CallingConv::AMDGPU_CS:
996   case CallingConv::AMDGPU_HS:
997   case CallingConv::AMDGPU_ES:
998   case CallingConv::AMDGPU_LS:
999     return RetCC_SI_Shader;
1000   case CallingConv::C:
1001   case CallingConv::Fast:
1002   case CallingConv::Cold:
1003     return RetCC_AMDGPU_Func;
1004   default:
1005     report_fatal_error("Unsupported calling convention.");
1006   }
1007 }
1008 
1009 /// The SelectionDAGBuilder will automatically promote function arguments
1010 /// with illegal types.  However, this does not work for the AMDGPU targets
1011 /// since the function arguments are stored in memory as these illegal types.
1012 /// In order to handle this properly we need to get the original types sizes
1013 /// from the LLVM IR Function and fixup the ISD:InputArg values before
1014 /// passing them to AnalyzeFormalArguments()
1015 
1016 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1017 /// input values across multiple registers.  Each item in the Ins array
1018 /// represents a single value that will be stored in registers.  Ins[x].VT is
1019 /// the value type of the value that will be stored in the register, so
1020 /// whatever SDNode we lower the argument to needs to be this type.
1021 ///
1022 /// In order to correctly lower the arguments we need to know the size of each
1023 /// argument.  Since Ins[x].VT gives us the size of the register that will
1024 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1025 /// for the orignal function argument so that we can deduce the correct memory
1026 /// type to use for Ins[x].  In most cases the correct memory type will be
1027 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
1028 /// we have a kernel argument of type v8i8, this argument will be split into
1029 /// 8 parts and each part will be represented by its own item in the Ins array.
1030 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1031 /// the argument before it was split.  From this, we deduce that the memory type
1032 /// for each individual part is i8.  We pass the memory type as LocVT to the
1033 /// calling convention analysis function and the register type (Ins[x].VT) as
1034 /// the ValVT.
1035 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
1036                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
1037   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
1038     const ISD::InputArg &In = Ins[i];
1039     EVT MemVT;
1040 
1041     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
1042 
1043     if (!Subtarget->isAmdHsaOS() &&
1044         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
1045       // The ABI says the caller will extend these values to 32-bits.
1046       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
1047     } else if (NumRegs == 1) {
1048       // This argument is not split, so the IR type is the memory type.
1049       assert(!In.Flags.isSplit());
1050       if (In.ArgVT.isExtended()) {
1051         // We have an extended type, like i24, so we should just use the register type
1052         MemVT = In.VT;
1053       } else {
1054         MemVT = In.ArgVT;
1055       }
1056     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
1057                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
1058       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
1059       // We have a vector value which has been split into a vector with
1060       // the same scalar type, but fewer elements.  This should handle
1061       // all the floating-point vector types.
1062       MemVT = In.VT;
1063     } else if (In.ArgVT.isVector() &&
1064                In.ArgVT.getVectorNumElements() == NumRegs) {
1065       // This arg has been split so that each element is stored in a separate
1066       // register.
1067       MemVT = In.ArgVT.getScalarType();
1068     } else if (In.ArgVT.isExtended()) {
1069       // We have an extended type, like i65.
1070       MemVT = In.VT;
1071     } else {
1072       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
1073       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
1074       if (In.VT.isInteger()) {
1075         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1076       } else if (In.VT.isVector()) {
1077         assert(!In.VT.getScalarType().isFloatingPoint());
1078         unsigned NumElements = In.VT.getVectorNumElements();
1079         assert(MemoryBits % NumElements == 0);
1080         // This vector type has been split into another vector type with
1081         // a different elements size.
1082         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1083                                          MemoryBits / NumElements);
1084         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1085       } else {
1086         llvm_unreachable("cannot deduce memory type.");
1087       }
1088     }
1089 
1090     // Convert one element vectors to scalar.
1091     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1092       MemVT = MemVT.getScalarType();
1093 
1094     if (MemVT.isExtended()) {
1095       // This should really only happen if we have vec3 arguments
1096       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
1097       MemVT = MemVT.getPow2VectorType(State.getContext());
1098     }
1099 
1100     assert(MemVT.isSimple());
1101     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
1102                     State);
1103   }
1104 }
1105 
1106 SDValue AMDGPUTargetLowering::LowerReturn(
1107   SDValue Chain, CallingConv::ID CallConv,
1108   bool isVarArg,
1109   const SmallVectorImpl<ISD::OutputArg> &Outs,
1110   const SmallVectorImpl<SDValue> &OutVals,
1111   const SDLoc &DL, SelectionDAG &DAG) const {
1112   // FIXME: Fails for r600 tests
1113   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1114   // "wave terminate should not have return values");
1115   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1116 }
1117 
1118 //===---------------------------------------------------------------------===//
1119 // Target specific lowering
1120 //===---------------------------------------------------------------------===//
1121 
1122 /// Selects the correct CCAssignFn for a given CallingConvention value.
1123 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1124                                                     bool IsVarArg) {
1125   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1126 }
1127 
1128 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1129                                                       bool IsVarArg) {
1130   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1131 }
1132 
1133 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1134                                                   SelectionDAG &DAG,
1135                                                   MachineFrameInfo &MFI,
1136                                                   int ClobberedFI) const {
1137   SmallVector<SDValue, 8> ArgChains;
1138   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1139   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1140 
1141   // Include the original chain at the beginning of the list. When this is
1142   // used by target LowerCall hooks, this helps legalize find the
1143   // CALLSEQ_BEGIN node.
1144   ArgChains.push_back(Chain);
1145 
1146   // Add a chain value for each stack argument corresponding
1147   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1148                             UE = DAG.getEntryNode().getNode()->use_end();
1149        U != UE; ++U) {
1150     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1151       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1152         if (FI->getIndex() < 0) {
1153           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1154           int64_t InLastByte = InFirstByte;
1155           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1156 
1157           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1158               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1159             ArgChains.push_back(SDValue(L, 1));
1160         }
1161       }
1162     }
1163   }
1164 
1165   // Build a tokenfactor for all the chains.
1166   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1167 }
1168 
1169 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1170                                                  SmallVectorImpl<SDValue> &InVals,
1171                                                  StringRef Reason) const {
1172   SDValue Callee = CLI.Callee;
1173   SelectionDAG &DAG = CLI.DAG;
1174 
1175   const Function &Fn = DAG.getMachineFunction().getFunction();
1176 
1177   StringRef FuncName("<unknown>");
1178 
1179   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1180     FuncName = G->getSymbol();
1181   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1182     FuncName = G->getGlobal()->getName();
1183 
1184   DiagnosticInfoUnsupported NoCalls(
1185     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1186   DAG.getContext()->diagnose(NoCalls);
1187 
1188   if (!CLI.IsTailCall) {
1189     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1190       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1191   }
1192 
1193   return DAG.getEntryNode();
1194 }
1195 
1196 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1197                                         SmallVectorImpl<SDValue> &InVals) const {
1198   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1199 }
1200 
1201 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1202                                                       SelectionDAG &DAG) const {
1203   const Function &Fn = DAG.getMachineFunction().getFunction();
1204 
1205   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1206                                             SDLoc(Op).getDebugLoc());
1207   DAG.getContext()->diagnose(NoDynamicAlloca);
1208   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1209   return DAG.getMergeValues(Ops, SDLoc());
1210 }
1211 
1212 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1213                                              SelectionDAG &DAG) const {
1214   switch (Op.getOpcode()) {
1215   default:
1216     Op->print(errs(), &DAG);
1217     llvm_unreachable("Custom lowering code for this"
1218                      "instruction is not implemented yet!");
1219     break;
1220   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1221   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1222   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1223   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1224   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1225   case ISD::FREM: return LowerFREM(Op, DAG);
1226   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1227   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1228   case ISD::FRINT: return LowerFRINT(Op, DAG);
1229   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1230   case ISD::FROUND: return LowerFROUND(Op, DAG);
1231   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1232   case ISD::FLOG:
1233     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1234   case ISD::FLOG10:
1235     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1236   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1237   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1238   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1239   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1240   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1241   case ISD::CTTZ:
1242   case ISD::CTTZ_ZERO_UNDEF:
1243   case ISD::CTLZ:
1244   case ISD::CTLZ_ZERO_UNDEF:
1245     return LowerCTLZ_CTTZ(Op, DAG);
1246   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1247   }
1248   return Op;
1249 }
1250 
1251 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1252                                               SmallVectorImpl<SDValue> &Results,
1253                                               SelectionDAG &DAG) const {
1254   switch (N->getOpcode()) {
1255   case ISD::SIGN_EXTEND_INREG:
1256     // Different parts of legalization seem to interpret which type of
1257     // sign_extend_inreg is the one to check for custom lowering. The extended
1258     // from type is what really matters, but some places check for custom
1259     // lowering of the result type. This results in trying to use
1260     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1261     // nothing here and let the illegal result integer be handled normally.
1262     return;
1263   default:
1264     return;
1265   }
1266 }
1267 
1268 static bool hasDefinedInitializer(const GlobalValue *GV) {
1269   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1270   if (!GVar || !GVar->hasInitializer())
1271     return false;
1272 
1273   return !isa<UndefValue>(GVar->getInitializer());
1274 }
1275 
1276 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1277                                                  SDValue Op,
1278                                                  SelectionDAG &DAG) const {
1279 
1280   const DataLayout &DL = DAG.getDataLayout();
1281   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1282   const GlobalValue *GV = G->getGlobal();
1283 
1284   if  (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) {
1285     // XXX: What does the value of G->getOffset() mean?
1286     assert(G->getOffset() == 0 &&
1287          "Do not know what to do with an non-zero offset");
1288 
1289     // TODO: We could emit code to handle the initialization somewhere.
1290     if (!hasDefinedInitializer(GV)) {
1291       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1292       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1293     }
1294   }
1295 
1296   const Function &Fn = DAG.getMachineFunction().getFunction();
1297   DiagnosticInfoUnsupported BadInit(
1298       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1299   DAG.getContext()->diagnose(BadInit);
1300   return SDValue();
1301 }
1302 
1303 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1304                                                   SelectionDAG &DAG) const {
1305   SmallVector<SDValue, 8> Args;
1306 
1307   for (const SDUse &U : Op->ops())
1308     DAG.ExtractVectorElements(U.get(), Args);
1309 
1310   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1311 }
1312 
1313 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1314                                                      SelectionDAG &DAG) const {
1315 
1316   SmallVector<SDValue, 8> Args;
1317   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1318   EVT VT = Op.getValueType();
1319   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1320                             VT.getVectorNumElements());
1321 
1322   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1323 }
1324 
1325 /// Generate Min/Max node
1326 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1327                                                    SDValue LHS, SDValue RHS,
1328                                                    SDValue True, SDValue False,
1329                                                    SDValue CC,
1330                                                    DAGCombinerInfo &DCI) const {
1331   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1332     return SDValue();
1333 
1334   SelectionDAG &DAG = DCI.DAG;
1335   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1336   switch (CCOpcode) {
1337   case ISD::SETOEQ:
1338   case ISD::SETONE:
1339   case ISD::SETUNE:
1340   case ISD::SETNE:
1341   case ISD::SETUEQ:
1342   case ISD::SETEQ:
1343   case ISD::SETFALSE:
1344   case ISD::SETFALSE2:
1345   case ISD::SETTRUE:
1346   case ISD::SETTRUE2:
1347   case ISD::SETUO:
1348   case ISD::SETO:
1349     break;
1350   case ISD::SETULE:
1351   case ISD::SETULT: {
1352     if (LHS == True)
1353       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1354     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1355   }
1356   case ISD::SETOLE:
1357   case ISD::SETOLT:
1358   case ISD::SETLE:
1359   case ISD::SETLT: {
1360     // Ordered. Assume ordered for undefined.
1361 
1362     // Only do this after legalization to avoid interfering with other combines
1363     // which might occur.
1364     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1365         !DCI.isCalledByLegalizer())
1366       return SDValue();
1367 
1368     // We need to permute the operands to get the correct NaN behavior. The
1369     // selected operand is the second one based on the failing compare with NaN,
1370     // so permute it based on the compare type the hardware uses.
1371     if (LHS == True)
1372       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1373     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1374   }
1375   case ISD::SETUGE:
1376   case ISD::SETUGT: {
1377     if (LHS == True)
1378       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1379     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1380   }
1381   case ISD::SETGT:
1382   case ISD::SETGE:
1383   case ISD::SETOGE:
1384   case ISD::SETOGT: {
1385     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1386         !DCI.isCalledByLegalizer())
1387       return SDValue();
1388 
1389     if (LHS == True)
1390       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1391     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1392   }
1393   case ISD::SETCC_INVALID:
1394     llvm_unreachable("Invalid setcc condcode!");
1395   }
1396   return SDValue();
1397 }
1398 
1399 std::pair<SDValue, SDValue>
1400 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1401   SDLoc SL(Op);
1402 
1403   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1404 
1405   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1406   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1407 
1408   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1409   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1410 
1411   return std::make_pair(Lo, Hi);
1412 }
1413 
1414 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1415   SDLoc SL(Op);
1416 
1417   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1418   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1419   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1420 }
1421 
1422 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1423   SDLoc SL(Op);
1424 
1425   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1426   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1427   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1428 }
1429 
1430 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1431                                               SelectionDAG &DAG) const {
1432   LoadSDNode *Load = cast<LoadSDNode>(Op);
1433   EVT VT = Op.getValueType();
1434 
1435 
1436   // If this is a 2 element vector, we really want to scalarize and not create
1437   // weird 1 element vectors.
1438   if (VT.getVectorNumElements() == 2)
1439     return scalarizeVectorLoad(Load, DAG);
1440 
1441   SDValue BasePtr = Load->getBasePtr();
1442   EVT MemVT = Load->getMemoryVT();
1443   SDLoc SL(Op);
1444 
1445   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1446 
1447   EVT LoVT, HiVT;
1448   EVT LoMemVT, HiMemVT;
1449   SDValue Lo, Hi;
1450 
1451   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1452   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1453   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1454 
1455   unsigned Size = LoMemVT.getStoreSize();
1456   unsigned BaseAlign = Load->getAlignment();
1457   unsigned HiAlign = MinAlign(BaseAlign, Size);
1458 
1459   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1460                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1461                                   BaseAlign, Load->getMemOperand()->getFlags());
1462   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1463   SDValue HiLoad =
1464       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1465                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1466                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1467 
1468   SDValue Ops[] = {
1469     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1470     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1471                 LoLoad.getValue(1), HiLoad.getValue(1))
1472   };
1473 
1474   return DAG.getMergeValues(Ops, SL);
1475 }
1476 
1477 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1478                                                SelectionDAG &DAG) const {
1479   StoreSDNode *Store = cast<StoreSDNode>(Op);
1480   SDValue Val = Store->getValue();
1481   EVT VT = Val.getValueType();
1482 
1483   // If this is a 2 element vector, we really want to scalarize and not create
1484   // weird 1 element vectors.
1485   if (VT.getVectorNumElements() == 2)
1486     return scalarizeVectorStore(Store, DAG);
1487 
1488   EVT MemVT = Store->getMemoryVT();
1489   SDValue Chain = Store->getChain();
1490   SDValue BasePtr = Store->getBasePtr();
1491   SDLoc SL(Op);
1492 
1493   EVT LoVT, HiVT;
1494   EVT LoMemVT, HiMemVT;
1495   SDValue Lo, Hi;
1496 
1497   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1498   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1499   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1500 
1501   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1502 
1503   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1504   unsigned BaseAlign = Store->getAlignment();
1505   unsigned Size = LoMemVT.getStoreSize();
1506   unsigned HiAlign = MinAlign(BaseAlign, Size);
1507 
1508   SDValue LoStore =
1509       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1510                         Store->getMemOperand()->getFlags());
1511   SDValue HiStore =
1512       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1513                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1514 
1515   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1516 }
1517 
1518 // This is a shortcut for integer division because we have fast i32<->f32
1519 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1520 // float is enough to accurately represent up to a 24-bit signed integer.
1521 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1522                                             bool Sign) const {
1523   SDLoc DL(Op);
1524   EVT VT = Op.getValueType();
1525   SDValue LHS = Op.getOperand(0);
1526   SDValue RHS = Op.getOperand(1);
1527   MVT IntVT = MVT::i32;
1528   MVT FltVT = MVT::f32;
1529 
1530   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1531   if (LHSSignBits < 9)
1532     return SDValue();
1533 
1534   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1535   if (RHSSignBits < 9)
1536     return SDValue();
1537 
1538   unsigned BitSize = VT.getSizeInBits();
1539   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1540   unsigned DivBits = BitSize - SignBits;
1541   if (Sign)
1542     ++DivBits;
1543 
1544   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1545   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1546 
1547   SDValue jq = DAG.getConstant(1, DL, IntVT);
1548 
1549   if (Sign) {
1550     // char|short jq = ia ^ ib;
1551     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1552 
1553     // jq = jq >> (bitsize - 2)
1554     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1555                      DAG.getConstant(BitSize - 2, DL, VT));
1556 
1557     // jq = jq | 0x1
1558     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1559   }
1560 
1561   // int ia = (int)LHS;
1562   SDValue ia = LHS;
1563 
1564   // int ib, (int)RHS;
1565   SDValue ib = RHS;
1566 
1567   // float fa = (float)ia;
1568   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1569 
1570   // float fb = (float)ib;
1571   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1572 
1573   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1574                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1575 
1576   // fq = trunc(fq);
1577   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1578 
1579   // float fqneg = -fq;
1580   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1581 
1582   // float fr = mad(fqneg, fb, fa);
1583   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1584                     (unsigned)AMDGPUISD::FMAD_FTZ :
1585                     (unsigned)ISD::FMAD;
1586   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1587 
1588   // int iq = (int)fq;
1589   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1590 
1591   // fr = fabs(fr);
1592   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1593 
1594   // fb = fabs(fb);
1595   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1596 
1597   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1598 
1599   // int cv = fr >= fb;
1600   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1601 
1602   // jq = (cv ? jq : 0);
1603   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1604 
1605   // dst = iq + jq;
1606   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1607 
1608   // Rem needs compensation, it's easier to recompute it
1609   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1610   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1611 
1612   // Truncate to number of bits this divide really is.
1613   if (Sign) {
1614     SDValue InRegSize
1615       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1616     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1617     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1618   } else {
1619     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1620     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1621     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1622   }
1623 
1624   return DAG.getMergeValues({ Div, Rem }, DL);
1625 }
1626 
1627 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1628                                       SelectionDAG &DAG,
1629                                       SmallVectorImpl<SDValue> &Results) const {
1630   SDLoc DL(Op);
1631   EVT VT = Op.getValueType();
1632 
1633   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1634 
1635   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1636 
1637   SDValue One = DAG.getConstant(1, DL, HalfVT);
1638   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1639 
1640   //HiLo split
1641   SDValue LHS = Op.getOperand(0);
1642   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1643   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1644 
1645   SDValue RHS = Op.getOperand(1);
1646   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1647   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1648 
1649   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1650       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1651 
1652     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1653                               LHS_Lo, RHS_Lo);
1654 
1655     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1656     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1657 
1658     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1659     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1660     return;
1661   }
1662 
1663   if (isTypeLegal(MVT::i64)) {
1664     // Compute denominator reciprocal.
1665     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1666                     (unsigned)AMDGPUISD::FMAD_FTZ :
1667                     (unsigned)ISD::FMAD;
1668 
1669     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1670     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1671     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1672       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1673       Cvt_Lo);
1674     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1675     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1676       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1677     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1678       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1679     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1680     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1681       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1682       Mul1);
1683     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1684     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1685     SDValue Rcp64 = DAG.getBitcast(VT,
1686                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1687 
1688     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1689     SDValue One64  = DAG.getConstant(1, DL, VT);
1690     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1691     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1692 
1693     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1694     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1695     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1696     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1697                                     Zero);
1698     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1699                                     One);
1700 
1701     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1702                                   Mulhi1_Lo, Zero1);
1703     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1704                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1705     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1706     SDValue Add1 = DAG.getBitcast(VT,
1707                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1708 
1709     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1710     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1711     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1712                                     Zero);
1713     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1714                                     One);
1715 
1716     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1717                                   Mulhi2_Lo, Zero1);
1718     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1719                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1720     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1721                                   Zero, Add2_Lo.getValue(1));
1722     SDValue Add2 = DAG.getBitcast(VT,
1723                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1724     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1725 
1726     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1727 
1728     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1729     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1730     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1731                                   Mul3_Lo, Zero1);
1732     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1733                                   Mul3_Hi, Sub1_Lo.getValue(1));
1734     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1735     SDValue Sub1 = DAG.getBitcast(VT,
1736                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1737 
1738     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1739     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1740                                  ISD::SETUGE);
1741     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1742                                  ISD::SETUGE);
1743     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1744 
1745     // TODO: Here and below portions of the code can be enclosed into if/endif.
1746     // Currently control flow is unconditional and we have 4 selects after
1747     // potential endif to substitute PHIs.
1748 
1749     // if C3 != 0 ...
1750     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1751                                   RHS_Lo, Zero1);
1752     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1753                                   RHS_Hi, Sub1_Lo.getValue(1));
1754     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1755                                   Zero, Sub2_Lo.getValue(1));
1756     SDValue Sub2 = DAG.getBitcast(VT,
1757                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1758 
1759     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1760 
1761     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1762                                  ISD::SETUGE);
1763     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1764                                  ISD::SETUGE);
1765     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1766 
1767     // if (C6 != 0)
1768     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1769 
1770     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1771                                   RHS_Lo, Zero1);
1772     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1773                                   RHS_Hi, Sub2_Lo.getValue(1));
1774     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1775                                   Zero, Sub3_Lo.getValue(1));
1776     SDValue Sub3 = DAG.getBitcast(VT,
1777                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1778 
1779     // endif C6
1780     // endif C3
1781 
1782     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1783     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1784 
1785     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1786     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1787 
1788     Results.push_back(Div);
1789     Results.push_back(Rem);
1790 
1791     return;
1792   }
1793 
1794   // r600 expandion.
1795   // Get Speculative values
1796   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1797   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1798 
1799   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1800   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1801   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1802 
1803   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1804   SDValue DIV_Lo = Zero;
1805 
1806   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1807 
1808   for (unsigned i = 0; i < halfBitWidth; ++i) {
1809     const unsigned bitPos = halfBitWidth - i - 1;
1810     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1811     // Get value of high bit
1812     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1813     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1814     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1815 
1816     // Shift
1817     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1818     // Add LHS high bit
1819     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1820 
1821     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1822     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1823 
1824     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1825 
1826     // Update REM
1827     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1828     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1829   }
1830 
1831   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1832   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1833   Results.push_back(DIV);
1834   Results.push_back(REM);
1835 }
1836 
1837 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1838                                            SelectionDAG &DAG) const {
1839   SDLoc DL(Op);
1840   EVT VT = Op.getValueType();
1841 
1842   if (VT == MVT::i64) {
1843     SmallVector<SDValue, 2> Results;
1844     LowerUDIVREM64(Op, DAG, Results);
1845     return DAG.getMergeValues(Results, DL);
1846   }
1847 
1848   if (VT == MVT::i32) {
1849     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1850       return Res;
1851   }
1852 
1853   SDValue Num = Op.getOperand(0);
1854   SDValue Den = Op.getOperand(1);
1855 
1856   // RCP =  URECIP(Den) = 2^32 / Den + e
1857   // e is rounding error.
1858   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1859 
1860   // RCP_LO = mul(RCP, Den) */
1861   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1862 
1863   // RCP_HI = mulhu (RCP, Den) */
1864   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1865 
1866   // NEG_RCP_LO = -RCP_LO
1867   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1868                                                      RCP_LO);
1869 
1870   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1871   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1872                                            NEG_RCP_LO, RCP_LO,
1873                                            ISD::SETEQ);
1874   // Calculate the rounding error from the URECIP instruction
1875   // E = mulhu(ABS_RCP_LO, RCP)
1876   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1877 
1878   // RCP_A_E = RCP + E
1879   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1880 
1881   // RCP_S_E = RCP - E
1882   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1883 
1884   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1885   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1886                                      RCP_A_E, RCP_S_E,
1887                                      ISD::SETEQ);
1888   // Quotient = mulhu(Tmp0, Num)
1889   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1890 
1891   // Num_S_Remainder = Quotient * Den
1892   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1893 
1894   // Remainder = Num - Num_S_Remainder
1895   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1896 
1897   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1898   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1899                                                  DAG.getConstant(-1, DL, VT),
1900                                                  DAG.getConstant(0, DL, VT),
1901                                                  ISD::SETUGE);
1902   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1903   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1904                                                   Num_S_Remainder,
1905                                                   DAG.getConstant(-1, DL, VT),
1906                                                   DAG.getConstant(0, DL, VT),
1907                                                   ISD::SETUGE);
1908   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1909   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1910                                                Remainder_GE_Zero);
1911 
1912   // Calculate Division result:
1913 
1914   // Quotient_A_One = Quotient + 1
1915   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1916                                        DAG.getConstant(1, DL, VT));
1917 
1918   // Quotient_S_One = Quotient - 1
1919   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1920                                        DAG.getConstant(1, DL, VT));
1921 
1922   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1923   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1924                                      Quotient, Quotient_A_One, ISD::SETEQ);
1925 
1926   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1927   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1928                             Quotient_S_One, Div, ISD::SETEQ);
1929 
1930   // Calculate Rem result:
1931 
1932   // Remainder_S_Den = Remainder - Den
1933   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1934 
1935   // Remainder_A_Den = Remainder + Den
1936   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1937 
1938   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1939   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1940                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1941 
1942   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1943   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1944                             Remainder_A_Den, Rem, ISD::SETEQ);
1945   SDValue Ops[2] = {
1946     Div,
1947     Rem
1948   };
1949   return DAG.getMergeValues(Ops, DL);
1950 }
1951 
1952 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1953                                            SelectionDAG &DAG) const {
1954   SDLoc DL(Op);
1955   EVT VT = Op.getValueType();
1956 
1957   SDValue LHS = Op.getOperand(0);
1958   SDValue RHS = Op.getOperand(1);
1959 
1960   SDValue Zero = DAG.getConstant(0, DL, VT);
1961   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1962 
1963   if (VT == MVT::i32) {
1964     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1965       return Res;
1966   }
1967 
1968   if (VT == MVT::i64 &&
1969       DAG.ComputeNumSignBits(LHS) > 32 &&
1970       DAG.ComputeNumSignBits(RHS) > 32) {
1971     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1972 
1973     //HiLo split
1974     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1975     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1976     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1977                                  LHS_Lo, RHS_Lo);
1978     SDValue Res[2] = {
1979       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1980       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1981     };
1982     return DAG.getMergeValues(Res, DL);
1983   }
1984 
1985   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1986   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1987   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1988   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1989 
1990   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1991   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1992 
1993   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1994   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1995 
1996   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1997   SDValue Rem = Div.getValue(1);
1998 
1999   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2000   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2001 
2002   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2003   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2004 
2005   SDValue Res[2] = {
2006     Div,
2007     Rem
2008   };
2009   return DAG.getMergeValues(Res, DL);
2010 }
2011 
2012 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2013 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2014   SDLoc SL(Op);
2015   EVT VT = Op.getValueType();
2016   SDValue X = Op.getOperand(0);
2017   SDValue Y = Op.getOperand(1);
2018 
2019   // TODO: Should this propagate fast-math-flags?
2020 
2021   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2022   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2023   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2024 
2025   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2026 }
2027 
2028 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2029   SDLoc SL(Op);
2030   SDValue Src = Op.getOperand(0);
2031 
2032   // result = trunc(src)
2033   // if (src > 0.0 && src != result)
2034   //   result += 1.0
2035 
2036   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2037 
2038   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2039   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2040 
2041   EVT SetCCVT =
2042       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2043 
2044   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2045   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2046   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2047 
2048   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2049   // TODO: Should this propagate fast-math-flags?
2050   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2051 }
2052 
2053 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2054                                   SelectionDAG &DAG) {
2055   const unsigned FractBits = 52;
2056   const unsigned ExpBits = 11;
2057 
2058   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2059                                 Hi,
2060                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2061                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2062   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2063                             DAG.getConstant(1023, SL, MVT::i32));
2064 
2065   return Exp;
2066 }
2067 
2068 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2069   SDLoc SL(Op);
2070   SDValue Src = Op.getOperand(0);
2071 
2072   assert(Op.getValueType() == MVT::f64);
2073 
2074   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2075   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2076 
2077   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2078 
2079   // Extract the upper half, since this is where we will find the sign and
2080   // exponent.
2081   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2082 
2083   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2084 
2085   const unsigned FractBits = 52;
2086 
2087   // Extract the sign bit.
2088   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2089   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2090 
2091   // Extend back to 64-bits.
2092   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2093   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2094 
2095   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2096   const SDValue FractMask
2097     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2098 
2099   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2100   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2101   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2102 
2103   EVT SetCCVT =
2104       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2105 
2106   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2107 
2108   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2109   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2110 
2111   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2112   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2113 
2114   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2115 }
2116 
2117 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2118   SDLoc SL(Op);
2119   SDValue Src = Op.getOperand(0);
2120 
2121   assert(Op.getValueType() == MVT::f64);
2122 
2123   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2124   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2125   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2126 
2127   // TODO: Should this propagate fast-math-flags?
2128 
2129   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2130   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2131 
2132   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2133 
2134   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2135   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2136 
2137   EVT SetCCVT =
2138       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2139   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2140 
2141   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2142 }
2143 
2144 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2145   // FNEARBYINT and FRINT are the same, except in their handling of FP
2146   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2147   // rint, so just treat them as equivalent.
2148   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2149 }
2150 
2151 // XXX - May require not supporting f32 denormals?
2152 
2153 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2154 // compare and vselect end up producing worse code than scalarizing the whole
2155 // operation.
2156 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2157   SDLoc SL(Op);
2158   SDValue X = Op.getOperand(0);
2159   EVT VT = Op.getValueType();
2160 
2161   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2162 
2163   // TODO: Should this propagate fast-math-flags?
2164 
2165   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2166 
2167   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2168 
2169   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2170   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2171   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2172 
2173   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2174 
2175   EVT SetCCVT =
2176       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2177 
2178   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2179 
2180   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2181 
2182   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2183 }
2184 
2185 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2186   SDLoc SL(Op);
2187   SDValue X = Op.getOperand(0);
2188 
2189   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2190 
2191   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2192   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2193   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2194   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2195   EVT SetCCVT =
2196       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2197 
2198   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2199 
2200   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2201 
2202   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2203 
2204   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2205                                        MVT::i64);
2206 
2207   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2208   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2209                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2210                                           MVT::i64),
2211                           Exp);
2212 
2213   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2214   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2215                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2216                               ISD::SETNE);
2217 
2218   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2219                              D, DAG.getConstant(0, SL, MVT::i64));
2220   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2221 
2222   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2223   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2224 
2225   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2226   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2227   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2228 
2229   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2230                             ExpEqNegOne,
2231                             DAG.getConstantFP(1.0, SL, MVT::f64),
2232                             DAG.getConstantFP(0.0, SL, MVT::f64));
2233 
2234   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2235 
2236   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2237   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2238 
2239   return K;
2240 }
2241 
2242 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2243   EVT VT = Op.getValueType();
2244 
2245   if (VT == MVT::f32 || VT == MVT::f16)
2246     return LowerFROUND32_16(Op, DAG);
2247 
2248   if (VT == MVT::f64)
2249     return LowerFROUND64(Op, DAG);
2250 
2251   llvm_unreachable("unhandled type");
2252 }
2253 
2254 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2255   SDLoc SL(Op);
2256   SDValue Src = Op.getOperand(0);
2257 
2258   // result = trunc(src);
2259   // if (src < 0.0 && src != result)
2260   //   result += -1.0.
2261 
2262   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2263 
2264   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2265   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2266 
2267   EVT SetCCVT =
2268       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2269 
2270   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2271   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2272   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2273 
2274   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2275   // TODO: Should this propagate fast-math-flags?
2276   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2277 }
2278 
2279 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2280                                         double Log2BaseInverted) const {
2281   EVT VT = Op.getValueType();
2282 
2283   SDLoc SL(Op);
2284   SDValue Operand = Op.getOperand(0);
2285   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2286   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2287 
2288   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2289 }
2290 
2291 static bool isCtlzOpc(unsigned Opc) {
2292   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2293 }
2294 
2295 static bool isCttzOpc(unsigned Opc) {
2296   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2297 }
2298 
2299 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2300   SDLoc SL(Op);
2301   SDValue Src = Op.getOperand(0);
2302   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2303                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2304 
2305   unsigned ISDOpc, NewOpc;
2306   if (isCtlzOpc(Op.getOpcode())) {
2307     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2308     NewOpc = AMDGPUISD::FFBH_U32;
2309   } else if (isCttzOpc(Op.getOpcode())) {
2310     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2311     NewOpc = AMDGPUISD::FFBL_B32;
2312   } else
2313     llvm_unreachable("Unexpected OPCode!!!");
2314 
2315 
2316   if (ZeroUndef && Src.getValueType() == MVT::i32)
2317     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2318 
2319   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2320 
2321   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2322   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2323 
2324   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2325   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2326 
2327   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2328                                    *DAG.getContext(), MVT::i32);
2329 
2330   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2331   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2332 
2333   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2334   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2335 
2336   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2337   SDValue Add, NewOpr;
2338   if (isCtlzOpc(Op.getOpcode())) {
2339     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2340     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2341     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2342   } else {
2343     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2344     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2345     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2346   }
2347 
2348   if (!ZeroUndef) {
2349     // Test if the full 64-bit input is zero.
2350 
2351     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2352     // which we probably don't want.
2353     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2354     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2355     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2356 
2357     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2358     // with the same cycles, otherwise it is slower.
2359     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2360     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2361 
2362     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2363 
2364     // The instruction returns -1 for 0 input, but the defined intrinsic
2365     // behavior is to return the number of bits.
2366     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2367                          SrcIsZero, Bits32, NewOpr);
2368   }
2369 
2370   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2371 }
2372 
2373 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2374                                                bool Signed) const {
2375   // Unsigned
2376   // cul2f(ulong u)
2377   //{
2378   //  uint lz = clz(u);
2379   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2380   //  u = (u << lz) & 0x7fffffffffffffffUL;
2381   //  ulong t = u & 0xffffffffffUL;
2382   //  uint v = (e << 23) | (uint)(u >> 40);
2383   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2384   //  return as_float(v + r);
2385   //}
2386   // Signed
2387   // cl2f(long l)
2388   //{
2389   //  long s = l >> 63;
2390   //  float r = cul2f((l + s) ^ s);
2391   //  return s ? -r : r;
2392   //}
2393 
2394   SDLoc SL(Op);
2395   SDValue Src = Op.getOperand(0);
2396   SDValue L = Src;
2397 
2398   SDValue S;
2399   if (Signed) {
2400     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2401     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2402 
2403     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2404     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2405   }
2406 
2407   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2408                                    *DAG.getContext(), MVT::f32);
2409 
2410 
2411   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2412   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2413   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2414   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2415 
2416   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2417   SDValue E = DAG.getSelect(SL, MVT::i32,
2418     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2419     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2420     ZeroI32);
2421 
2422   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2423     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2424     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2425 
2426   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2427                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2428 
2429   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2430                              U, DAG.getConstant(40, SL, MVT::i64));
2431 
2432   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2433     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2434     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2435 
2436   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2437   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2438   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2439 
2440   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2441 
2442   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2443 
2444   SDValue R = DAG.getSelect(SL, MVT::i32,
2445     RCmp,
2446     One,
2447     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2448   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2449   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2450 
2451   if (!Signed)
2452     return R;
2453 
2454   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2455   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2456 }
2457 
2458 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2459                                                bool Signed) const {
2460   SDLoc SL(Op);
2461   SDValue Src = Op.getOperand(0);
2462 
2463   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2464 
2465   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2466                            DAG.getConstant(0, SL, MVT::i32));
2467   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2468                            DAG.getConstant(1, SL, MVT::i32));
2469 
2470   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2471                               SL, MVT::f64, Hi);
2472 
2473   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2474 
2475   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2476                               DAG.getConstant(32, SL, MVT::i32));
2477   // TODO: Should this propagate fast-math-flags?
2478   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2479 }
2480 
2481 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2482                                                SelectionDAG &DAG) const {
2483   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2484          "operation should be legal");
2485 
2486   // TODO: Factor out code common with LowerSINT_TO_FP.
2487 
2488   EVT DestVT = Op.getValueType();
2489   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2490     SDLoc DL(Op);
2491     SDValue Src = Op.getOperand(0);
2492 
2493     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2494     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2495     SDValue FPRound =
2496         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2497 
2498     return FPRound;
2499   }
2500 
2501   if (DestVT == MVT::f32)
2502     return LowerINT_TO_FP32(Op, DAG, false);
2503 
2504   assert(DestVT == MVT::f64);
2505   return LowerINT_TO_FP64(Op, DAG, false);
2506 }
2507 
2508 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2509                                               SelectionDAG &DAG) const {
2510   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2511          "operation should be legal");
2512 
2513   // TODO: Factor out code common with LowerUINT_TO_FP.
2514 
2515   EVT DestVT = Op.getValueType();
2516   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2517     SDLoc DL(Op);
2518     SDValue Src = Op.getOperand(0);
2519 
2520     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2521     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2522     SDValue FPRound =
2523         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2524 
2525     return FPRound;
2526   }
2527 
2528   if (DestVT == MVT::f32)
2529     return LowerINT_TO_FP32(Op, DAG, true);
2530 
2531   assert(DestVT == MVT::f64);
2532   return LowerINT_TO_FP64(Op, DAG, true);
2533 }
2534 
2535 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2536                                                bool Signed) const {
2537   SDLoc SL(Op);
2538 
2539   SDValue Src = Op.getOperand(0);
2540 
2541   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2542 
2543   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2544                                  MVT::f64);
2545   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2546                                  MVT::f64);
2547   // TODO: Should this propagate fast-math-flags?
2548   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2549 
2550   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2551 
2552 
2553   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2554 
2555   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2556                            MVT::i32, FloorMul);
2557   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2558 
2559   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2560 
2561   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2562 }
2563 
2564 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2565   SDLoc DL(Op);
2566   SDValue N0 = Op.getOperand(0);
2567 
2568   // Convert to target node to get known bits
2569   if (N0.getValueType() == MVT::f32)
2570     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2571 
2572   if (getTargetMachine().Options.UnsafeFPMath) {
2573     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2574     return SDValue();
2575   }
2576 
2577   assert(N0.getSimpleValueType() == MVT::f64);
2578 
2579   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2580   const unsigned ExpMask = 0x7ff;
2581   const unsigned ExpBiasf64 = 1023;
2582   const unsigned ExpBiasf16 = 15;
2583   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2584   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2585   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2586   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2587                            DAG.getConstant(32, DL, MVT::i64));
2588   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2589   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2590   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2591                           DAG.getConstant(20, DL, MVT::i64));
2592   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2593                   DAG.getConstant(ExpMask, DL, MVT::i32));
2594   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2595   // add the f16 bias (15) to get the biased exponent for the f16 format.
2596   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2597                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2598 
2599   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2600                           DAG.getConstant(8, DL, MVT::i32));
2601   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2602                   DAG.getConstant(0xffe, DL, MVT::i32));
2603 
2604   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2605                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2606   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2607 
2608   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2609   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2610 
2611   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2612   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2613       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2614                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2615 
2616   // N = M | (E << 12);
2617   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2618       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2619                   DAG.getConstant(12, DL, MVT::i32)));
2620 
2621   // B = clamp(1-E, 0, 13);
2622   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2623                                   One, E);
2624   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2625   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2626                   DAG.getConstant(13, DL, MVT::i32));
2627 
2628   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2629                                    DAG.getConstant(0x1000, DL, MVT::i32));
2630 
2631   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2632   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2633   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2634   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2635 
2636   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2637   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2638                               DAG.getConstant(0x7, DL, MVT::i32));
2639   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2640                   DAG.getConstant(2, DL, MVT::i32));
2641   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2642                                One, Zero, ISD::SETEQ);
2643   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2644                                One, Zero, ISD::SETGT);
2645   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2646   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2647 
2648   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2649                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2650   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2651                       I, V, ISD::SETEQ);
2652 
2653   // Extract the sign bit.
2654   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2655                             DAG.getConstant(16, DL, MVT::i32));
2656   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2657                      DAG.getConstant(0x8000, DL, MVT::i32));
2658 
2659   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2660   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2661 }
2662 
2663 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2664                                               SelectionDAG &DAG) const {
2665   SDValue Src = Op.getOperand(0);
2666 
2667   // TODO: Factor out code common with LowerFP_TO_UINT.
2668 
2669   EVT SrcVT = Src.getValueType();
2670   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2671     SDLoc DL(Op);
2672 
2673     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2674     SDValue FpToInt32 =
2675         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2676 
2677     return FpToInt32;
2678   }
2679 
2680   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2681     return LowerFP64_TO_INT(Op, DAG, true);
2682 
2683   return SDValue();
2684 }
2685 
2686 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2687                                               SelectionDAG &DAG) const {
2688   SDValue Src = Op.getOperand(0);
2689 
2690   // TODO: Factor out code common with LowerFP_TO_SINT.
2691 
2692   EVT SrcVT = Src.getValueType();
2693   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2694     SDLoc DL(Op);
2695 
2696     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2697     SDValue FpToInt32 =
2698         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2699 
2700     return FpToInt32;
2701   }
2702 
2703   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2704     return LowerFP64_TO_INT(Op, DAG, false);
2705 
2706   return SDValue();
2707 }
2708 
2709 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2710                                                      SelectionDAG &DAG) const {
2711   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2712   MVT VT = Op.getSimpleValueType();
2713   MVT ScalarVT = VT.getScalarType();
2714 
2715   assert(VT.isVector());
2716 
2717   SDValue Src = Op.getOperand(0);
2718   SDLoc DL(Op);
2719 
2720   // TODO: Don't scalarize on Evergreen?
2721   unsigned NElts = VT.getVectorNumElements();
2722   SmallVector<SDValue, 8> Args;
2723   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2724 
2725   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2726   for (unsigned I = 0; I < NElts; ++I)
2727     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2728 
2729   return DAG.getBuildVector(VT, DL, Args);
2730 }
2731 
2732 //===----------------------------------------------------------------------===//
2733 // Custom DAG optimizations
2734 //===----------------------------------------------------------------------===//
2735 
2736 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2737   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2738 }
2739 
2740 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2741   EVT VT = Op.getValueType();
2742   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2743                                      // as unsigned 24-bit values.
2744     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2745 }
2746 
2747 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2748                         TargetLowering::DAGCombinerInfo &DCI) {
2749 
2750   SelectionDAG &DAG = DCI.DAG;
2751   SDValue Op = Node24->getOperand(OpIdx);
2752   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2753   EVT VT = Op.getValueType();
2754 
2755   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2756   APInt KnownZero, KnownOne;
2757   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2758   if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
2759     return true;
2760 
2761   return false;
2762 }
2763 
2764 template <typename IntTy>
2765 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2766                                uint32_t Width, const SDLoc &DL) {
2767   if (Width + Offset < 32) {
2768     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2769     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2770     return DAG.getConstant(Result, DL, MVT::i32);
2771   }
2772 
2773   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2774 }
2775 
2776 static bool hasVolatileUser(SDNode *Val) {
2777   for (SDNode *U : Val->uses()) {
2778     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2779       if (M->isVolatile())
2780         return true;
2781     }
2782   }
2783 
2784   return false;
2785 }
2786 
2787 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2788   // i32 vectors are the canonical memory type.
2789   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2790     return false;
2791 
2792   if (!VT.isByteSized())
2793     return false;
2794 
2795   unsigned Size = VT.getStoreSize();
2796 
2797   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2798     return false;
2799 
2800   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2801     return false;
2802 
2803   return true;
2804 }
2805 
2806 // Replace load of an illegal type with a store of a bitcast to a friendlier
2807 // type.
2808 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2809                                                  DAGCombinerInfo &DCI) const {
2810   if (!DCI.isBeforeLegalize())
2811     return SDValue();
2812 
2813   LoadSDNode *LN = cast<LoadSDNode>(N);
2814   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2815     return SDValue();
2816 
2817   SDLoc SL(N);
2818   SelectionDAG &DAG = DCI.DAG;
2819   EVT VT = LN->getMemoryVT();
2820 
2821   unsigned Size = VT.getStoreSize();
2822   unsigned Align = LN->getAlignment();
2823   if (Align < Size && isTypeLegal(VT)) {
2824     bool IsFast;
2825     unsigned AS = LN->getAddressSpace();
2826 
2827     // Expand unaligned loads earlier than legalization. Due to visitation order
2828     // problems during legalization, the emitted instructions to pack and unpack
2829     // the bytes again are not eliminated in the case of an unaligned copy.
2830     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2831       if (VT.isVector())
2832         return scalarizeVectorLoad(LN, DAG);
2833 
2834       SDValue Ops[2];
2835       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2836       return DAG.getMergeValues(Ops, SDLoc(N));
2837     }
2838 
2839     if (!IsFast)
2840       return SDValue();
2841   }
2842 
2843   if (!shouldCombineMemoryType(VT))
2844     return SDValue();
2845 
2846   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2847 
2848   SDValue NewLoad
2849     = DAG.getLoad(NewVT, SL, LN->getChain(),
2850                   LN->getBasePtr(), LN->getMemOperand());
2851 
2852   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2853   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2854   return SDValue(N, 0);
2855 }
2856 
2857 // Replace store of an illegal type with a store of a bitcast to a friendlier
2858 // type.
2859 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2860                                                   DAGCombinerInfo &DCI) const {
2861   if (!DCI.isBeforeLegalize())
2862     return SDValue();
2863 
2864   StoreSDNode *SN = cast<StoreSDNode>(N);
2865   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2866     return SDValue();
2867 
2868   EVT VT = SN->getMemoryVT();
2869   unsigned Size = VT.getStoreSize();
2870 
2871   SDLoc SL(N);
2872   SelectionDAG &DAG = DCI.DAG;
2873   unsigned Align = SN->getAlignment();
2874   if (Align < Size && isTypeLegal(VT)) {
2875     bool IsFast;
2876     unsigned AS = SN->getAddressSpace();
2877 
2878     // Expand unaligned stores earlier than legalization. Due to visitation
2879     // order problems during legalization, the emitted instructions to pack and
2880     // unpack the bytes again are not eliminated in the case of an unaligned
2881     // copy.
2882     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2883       if (VT.isVector())
2884         return scalarizeVectorStore(SN, DAG);
2885 
2886       return expandUnalignedStore(SN, DAG);
2887     }
2888 
2889     if (!IsFast)
2890       return SDValue();
2891   }
2892 
2893   if (!shouldCombineMemoryType(VT))
2894     return SDValue();
2895 
2896   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2897   SDValue Val = SN->getValue();
2898 
2899   //DCI.AddToWorklist(Val.getNode());
2900 
2901   bool OtherUses = !Val.hasOneUse();
2902   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2903   if (OtherUses) {
2904     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2905     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2906   }
2907 
2908   return DAG.getStore(SN->getChain(), SL, CastVal,
2909                       SN->getBasePtr(), SN->getMemOperand());
2910 }
2911 
2912 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N,
2913                                                   DAGCombinerInfo &DCI) const {
2914   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
2915   if (!CSrc)
2916     return SDValue();
2917 
2918   const APFloat &F = CSrc->getValueAPF();
2919   APFloat Zero = APFloat::getZero(F.getSemantics());
2920   APFloat::cmpResult Cmp0 = F.compare(Zero);
2921   if (Cmp0 == APFloat::cmpLessThan ||
2922       (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
2923     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
2924   }
2925 
2926   APFloat One(F.getSemantics(), "1.0");
2927   APFloat::cmpResult Cmp1 = F.compare(One);
2928   if (Cmp1 == APFloat::cmpGreaterThan)
2929     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
2930 
2931   return SDValue(CSrc, 0);
2932 }
2933 
2934 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2935 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2936 // issues.
2937 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2938                                                         DAGCombinerInfo &DCI) const {
2939   SelectionDAG &DAG = DCI.DAG;
2940   SDValue N0 = N->getOperand(0);
2941 
2942   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2943   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2944   if (N0.getOpcode() == ISD::TRUNCATE) {
2945     SDValue N1 = N->getOperand(1);
2946     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2947     SDLoc SL(N);
2948 
2949     SDValue Src = N0.getOperand(0);
2950     EVT SrcVT = Src.getValueType();
2951     if (SrcVT.bitsGE(ExtVT)) {
2952       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2953       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2954     }
2955   }
2956 
2957   return SDValue();
2958 }
2959 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2960 /// binary operation \p Opc to it with the corresponding constant operands.
2961 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2962   DAGCombinerInfo &DCI, const SDLoc &SL,
2963   unsigned Opc, SDValue LHS,
2964   uint32_t ValLo, uint32_t ValHi) const {
2965   SelectionDAG &DAG = DCI.DAG;
2966   SDValue Lo, Hi;
2967   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2968 
2969   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2970   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2971 
2972   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2973   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2974 
2975   // Re-visit the ands. It's possible we eliminated one of them and it could
2976   // simplify the vector.
2977   DCI.AddToWorklist(Lo.getNode());
2978   DCI.AddToWorklist(Hi.getNode());
2979 
2980   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2981   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2982 }
2983 
2984 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2985                                                 DAGCombinerInfo &DCI) const {
2986   EVT VT = N->getValueType(0);
2987 
2988   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2989   if (!RHS)
2990     return SDValue();
2991 
2992   SDValue LHS = N->getOperand(0);
2993   unsigned RHSVal = RHS->getZExtValue();
2994   if (!RHSVal)
2995     return LHS;
2996 
2997   SDLoc SL(N);
2998   SelectionDAG &DAG = DCI.DAG;
2999 
3000   switch (LHS->getOpcode()) {
3001   default:
3002     break;
3003   case ISD::ZERO_EXTEND:
3004   case ISD::SIGN_EXTEND:
3005   case ISD::ANY_EXTEND: {
3006     SDValue X = LHS->getOperand(0);
3007 
3008     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3009         isTypeLegal(MVT::v2i16)) {
3010       // Prefer build_vector as the canonical form if packed types are legal.
3011       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3012       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3013        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3014       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3015     }
3016 
3017     // shl (ext x) => zext (shl x), if shift does not overflow int
3018     if (VT != MVT::i64)
3019       break;
3020     KnownBits Known;
3021     DAG.computeKnownBits(X, Known);
3022     unsigned LZ = Known.countMinLeadingZeros();
3023     if (LZ < RHSVal)
3024       break;
3025     EVT XVT = X.getValueType();
3026     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3027     return DAG.getZExtOrTrunc(Shl, SL, VT);
3028   }
3029   }
3030 
3031   if (VT != MVT::i64)
3032     return SDValue();
3033 
3034   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3035 
3036   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3037   // common case, splitting this into a move and a 32-bit shift is faster and
3038   // the same code size.
3039   if (RHSVal < 32)
3040     return SDValue();
3041 
3042   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3043 
3044   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3045   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3046 
3047   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3048 
3049   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3050   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3051 }
3052 
3053 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3054                                                 DAGCombinerInfo &DCI) const {
3055   if (N->getValueType(0) != MVT::i64)
3056     return SDValue();
3057 
3058   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3059   if (!RHS)
3060     return SDValue();
3061 
3062   SelectionDAG &DAG = DCI.DAG;
3063   SDLoc SL(N);
3064   unsigned RHSVal = RHS->getZExtValue();
3065 
3066   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3067   if (RHSVal == 32) {
3068     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3069     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3070                                    DAG.getConstant(31, SL, MVT::i32));
3071 
3072     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3073     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3074   }
3075 
3076   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3077   if (RHSVal == 63) {
3078     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3079     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3080                                    DAG.getConstant(31, SL, MVT::i32));
3081     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3082     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3083   }
3084 
3085   return SDValue();
3086 }
3087 
3088 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3089                                                 DAGCombinerInfo &DCI) const {
3090   if (N->getValueType(0) != MVT::i64)
3091     return SDValue();
3092 
3093   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3094   if (!RHS)
3095     return SDValue();
3096 
3097   unsigned ShiftAmt = RHS->getZExtValue();
3098   if (ShiftAmt < 32)
3099     return SDValue();
3100 
3101   // srl i64:x, C for C >= 32
3102   // =>
3103   //   build_pair (srl hi_32(x), C - 32), 0
3104 
3105   SelectionDAG &DAG = DCI.DAG;
3106   SDLoc SL(N);
3107 
3108   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3109   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3110 
3111   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
3112   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
3113                            VecOp, One);
3114 
3115   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3116   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3117 
3118   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3119 
3120   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3121 }
3122 
3123 SDValue AMDGPUTargetLowering::performTruncateCombine(
3124   SDNode *N, DAGCombinerInfo &DCI) const {
3125   SDLoc SL(N);
3126   SelectionDAG &DAG = DCI.DAG;
3127   EVT VT = N->getValueType(0);
3128   SDValue Src = N->getOperand(0);
3129 
3130   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3131   if (Src.getOpcode() == ISD::BITCAST) {
3132     SDValue Vec = Src.getOperand(0);
3133     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3134       SDValue Elt0 = Vec.getOperand(0);
3135       EVT EltVT = Elt0.getValueType();
3136       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3137         if (EltVT.isFloatingPoint()) {
3138           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3139                              EltVT.changeTypeToInteger(), Elt0);
3140         }
3141 
3142         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3143       }
3144     }
3145   }
3146 
3147   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3148   //
3149   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3150   //     i16 (trunc (srl (i32 (trunc x), K)))
3151   if (VT.getScalarSizeInBits() < 32) {
3152     EVT SrcVT = Src.getValueType();
3153     if (SrcVT.getScalarSizeInBits() > 32 &&
3154         (Src.getOpcode() == ISD::SRL ||
3155          Src.getOpcode() == ISD::SRA ||
3156          Src.getOpcode() == ISD::SHL)) {
3157       SDValue Amt = Src.getOperand(1);
3158       KnownBits Known;
3159       DAG.computeKnownBits(Amt, Known);
3160       unsigned Size = VT.getScalarSizeInBits();
3161       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3162           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3163         EVT MidVT = VT.isVector() ?
3164           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3165                            VT.getVectorNumElements()) : MVT::i32;
3166 
3167         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3168         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3169                                     Src.getOperand(0));
3170         DCI.AddToWorklist(Trunc.getNode());
3171 
3172         if (Amt.getValueType() != NewShiftVT) {
3173           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3174           DCI.AddToWorklist(Amt.getNode());
3175         }
3176 
3177         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3178                                           Trunc, Amt);
3179         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3180       }
3181     }
3182   }
3183 
3184   return SDValue();
3185 }
3186 
3187 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3188 // instructions. If we only match on the legalized i64 mul expansion,
3189 // SimplifyDemandedBits will be unable to remove them because there will be
3190 // multiple uses due to the separate mul + mulh[su].
3191 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3192                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3193   if (Size <= 32) {
3194     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3195     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3196   }
3197 
3198   // Because we want to eliminate extension instructions before the
3199   // operation, we need to create a single user here (i.e. not the separate
3200   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3201 
3202   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3203 
3204   SDValue Mul = DAG.getNode(MulOpc, SL,
3205                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3206 
3207   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3208                      Mul.getValue(0), Mul.getValue(1));
3209 }
3210 
3211 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3212                                                 DAGCombinerInfo &DCI) const {
3213   EVT VT = N->getValueType(0);
3214 
3215   unsigned Size = VT.getSizeInBits();
3216   if (VT.isVector() || Size > 64)
3217     return SDValue();
3218 
3219   // There are i16 integer mul/mad.
3220   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3221     return SDValue();
3222 
3223   SelectionDAG &DAG = DCI.DAG;
3224   SDLoc DL(N);
3225 
3226   SDValue N0 = N->getOperand(0);
3227   SDValue N1 = N->getOperand(1);
3228 
3229   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3230   // in the source into any_extends if the result of the mul is truncated. Since
3231   // we can assume the high bits are whatever we want, use the underlying value
3232   // to avoid the unknown high bits from interfering.
3233   if (N0.getOpcode() == ISD::ANY_EXTEND)
3234     N0 = N0.getOperand(0);
3235 
3236   if (N1.getOpcode() == ISD::ANY_EXTEND)
3237     N1 = N1.getOperand(0);
3238 
3239   SDValue Mul;
3240 
3241   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3242     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3243     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3244     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3245   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3246     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3247     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3248     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3249   } else {
3250     return SDValue();
3251   }
3252 
3253   // We need to use sext even for MUL_U24, because MUL_U24 is used
3254   // for signed multiply of 8 and 16-bit types.
3255   return DAG.getSExtOrTrunc(Mul, DL, VT);
3256 }
3257 
3258 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3259                                                   DAGCombinerInfo &DCI) const {
3260   EVT VT = N->getValueType(0);
3261 
3262   if (!Subtarget->hasMulI24() || VT.isVector())
3263     return SDValue();
3264 
3265   SelectionDAG &DAG = DCI.DAG;
3266   SDLoc DL(N);
3267 
3268   SDValue N0 = N->getOperand(0);
3269   SDValue N1 = N->getOperand(1);
3270 
3271   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3272     return SDValue();
3273 
3274   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3275   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3276 
3277   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3278   DCI.AddToWorklist(Mulhi.getNode());
3279   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3280 }
3281 
3282 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3283                                                   DAGCombinerInfo &DCI) const {
3284   EVT VT = N->getValueType(0);
3285 
3286   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3287     return SDValue();
3288 
3289   SelectionDAG &DAG = DCI.DAG;
3290   SDLoc DL(N);
3291 
3292   SDValue N0 = N->getOperand(0);
3293   SDValue N1 = N->getOperand(1);
3294 
3295   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3296     return SDValue();
3297 
3298   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3299   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3300 
3301   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3302   DCI.AddToWorklist(Mulhi.getNode());
3303   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3304 }
3305 
3306 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3307   SDNode *N, DAGCombinerInfo &DCI) const {
3308   SelectionDAG &DAG = DCI.DAG;
3309 
3310   // Simplify demanded bits before splitting into multiple users.
3311   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
3312     return SDValue();
3313 
3314   SDValue N0 = N->getOperand(0);
3315   SDValue N1 = N->getOperand(1);
3316 
3317   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3318 
3319   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3320   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3321 
3322   SDLoc SL(N);
3323 
3324   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3325   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3326   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3327 }
3328 
3329 static bool isNegativeOne(SDValue Val) {
3330   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3331     return C->isAllOnesValue();
3332   return false;
3333 }
3334 
3335 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3336                                           SDValue Op,
3337                                           const SDLoc &DL,
3338                                           unsigned Opc) const {
3339   EVT VT = Op.getValueType();
3340   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3341   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3342                               LegalVT != MVT::i16))
3343     return SDValue();
3344 
3345   if (VT != MVT::i32)
3346     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3347 
3348   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3349   if (VT != MVT::i32)
3350     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3351 
3352   return FFBX;
3353 }
3354 
3355 // The native instructions return -1 on 0 input. Optimize out a select that
3356 // produces -1 on 0.
3357 //
3358 // TODO: If zero is not undef, we could also do this if the output is compared
3359 // against the bitwidth.
3360 //
3361 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3362 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3363                                                  SDValue LHS, SDValue RHS,
3364                                                  DAGCombinerInfo &DCI) const {
3365   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3366   if (!CmpRhs || !CmpRhs->isNullValue())
3367     return SDValue();
3368 
3369   SelectionDAG &DAG = DCI.DAG;
3370   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3371   SDValue CmpLHS = Cond.getOperand(0);
3372 
3373   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3374                                            AMDGPUISD::FFBH_U32;
3375 
3376   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3377   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3378   if (CCOpcode == ISD::SETEQ &&
3379       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3380       RHS.getOperand(0) == CmpLHS &&
3381       isNegativeOne(LHS)) {
3382     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3383   }
3384 
3385   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3386   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3387   if (CCOpcode == ISD::SETNE &&
3388       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3389       LHS.getOperand(0) == CmpLHS &&
3390       isNegativeOne(RHS)) {
3391     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3392   }
3393 
3394   return SDValue();
3395 }
3396 
3397 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3398                                          unsigned Op,
3399                                          const SDLoc &SL,
3400                                          SDValue Cond,
3401                                          SDValue N1,
3402                                          SDValue N2) {
3403   SelectionDAG &DAG = DCI.DAG;
3404   EVT VT = N1.getValueType();
3405 
3406   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3407                                   N1.getOperand(0), N2.getOperand(0));
3408   DCI.AddToWorklist(NewSelect.getNode());
3409   return DAG.getNode(Op, SL, VT, NewSelect);
3410 }
3411 
3412 // Pull a free FP operation out of a select so it may fold into uses.
3413 //
3414 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3415 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3416 //
3417 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3418 // select c, (fabs x), +k -> fabs (select c, x, k)
3419 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3420                                     SDValue N) {
3421   SelectionDAG &DAG = DCI.DAG;
3422   SDValue Cond = N.getOperand(0);
3423   SDValue LHS = N.getOperand(1);
3424   SDValue RHS = N.getOperand(2);
3425 
3426   EVT VT = N.getValueType();
3427   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3428       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3429     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3430                                      SDLoc(N), Cond, LHS, RHS);
3431   }
3432 
3433   bool Inv = false;
3434   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3435     std::swap(LHS, RHS);
3436     Inv = true;
3437   }
3438 
3439   // TODO: Support vector constants.
3440   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3441   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3442     SDLoc SL(N);
3443     // If one side is an fneg/fabs and the other is a constant, we can push the
3444     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3445     SDValue NewLHS = LHS.getOperand(0);
3446     SDValue NewRHS = RHS;
3447 
3448     // Careful: if the neg can be folded up, don't try to pull it back down.
3449     bool ShouldFoldNeg = true;
3450 
3451     if (NewLHS.hasOneUse()) {
3452       unsigned Opc = NewLHS.getOpcode();
3453       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3454         ShouldFoldNeg = false;
3455       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3456         ShouldFoldNeg = false;
3457     }
3458 
3459     if (ShouldFoldNeg) {
3460       if (LHS.getOpcode() == ISD::FNEG)
3461         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3462       else if (CRHS->isNegative())
3463         return SDValue();
3464 
3465       if (Inv)
3466         std::swap(NewLHS, NewRHS);
3467 
3468       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3469                                       Cond, NewLHS, NewRHS);
3470       DCI.AddToWorklist(NewSelect.getNode());
3471       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3472     }
3473   }
3474 
3475   return SDValue();
3476 }
3477 
3478 
3479 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3480                                                    DAGCombinerInfo &DCI) const {
3481   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3482     return Folded;
3483 
3484   SDValue Cond = N->getOperand(0);
3485   if (Cond.getOpcode() != ISD::SETCC)
3486     return SDValue();
3487 
3488   EVT VT = N->getValueType(0);
3489   SDValue LHS = Cond.getOperand(0);
3490   SDValue RHS = Cond.getOperand(1);
3491   SDValue CC = Cond.getOperand(2);
3492 
3493   SDValue True = N->getOperand(1);
3494   SDValue False = N->getOperand(2);
3495 
3496   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3497     SelectionDAG &DAG = DCI.DAG;
3498     if ((DAG.isConstantValueOfAnyType(True) ||
3499          DAG.isConstantValueOfAnyType(True)) &&
3500         (!DAG.isConstantValueOfAnyType(False) &&
3501          !DAG.isConstantValueOfAnyType(False))) {
3502       // Swap cmp + select pair to move constant to false input.
3503       // This will allow using VOPC cndmasks more often.
3504       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3505 
3506       SDLoc SL(N);
3507       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3508                                             LHS.getValueType().isInteger());
3509 
3510       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3511       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3512     }
3513 
3514     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3515       SDValue MinMax
3516         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3517       // Revisit this node so we can catch min3/max3/med3 patterns.
3518       //DCI.AddToWorklist(MinMax.getNode());
3519       return MinMax;
3520     }
3521   }
3522 
3523   // There's no reason to not do this if the condition has other uses.
3524   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3525 }
3526 
3527 static bool isConstantFPZero(SDValue N) {
3528   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
3529     return C->isZero() && !C->isNegative();
3530   return false;
3531 }
3532 
3533 static unsigned inverseMinMax(unsigned Opc) {
3534   switch (Opc) {
3535   case ISD::FMAXNUM:
3536     return ISD::FMINNUM;
3537   case ISD::FMINNUM:
3538     return ISD::FMAXNUM;
3539   case AMDGPUISD::FMAX_LEGACY:
3540     return AMDGPUISD::FMIN_LEGACY;
3541   case AMDGPUISD::FMIN_LEGACY:
3542     return  AMDGPUISD::FMAX_LEGACY;
3543   default:
3544     llvm_unreachable("invalid min/max opcode");
3545   }
3546 }
3547 
3548 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3549                                                  DAGCombinerInfo &DCI) const {
3550   SelectionDAG &DAG = DCI.DAG;
3551   SDValue N0 = N->getOperand(0);
3552   EVT VT = N->getValueType(0);
3553 
3554   unsigned Opc = N0.getOpcode();
3555 
3556   // If the input has multiple uses and we can either fold the negate down, or
3557   // the other uses cannot, give up. This both prevents unprofitable
3558   // transformations and infinite loops: we won't repeatedly try to fold around
3559   // a negate that has no 'good' form.
3560   if (N0.hasOneUse()) {
3561     // This may be able to fold into the source, but at a code size cost. Don't
3562     // fold if the fold into the user is free.
3563     if (allUsesHaveSourceMods(N, 0))
3564       return SDValue();
3565   } else {
3566     if (fnegFoldsIntoOp(Opc) &&
3567         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3568       return SDValue();
3569   }
3570 
3571   SDLoc SL(N);
3572   switch (Opc) {
3573   case ISD::FADD: {
3574     if (!mayIgnoreSignedZero(N0))
3575       return SDValue();
3576 
3577     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3578     SDValue LHS = N0.getOperand(0);
3579     SDValue RHS = N0.getOperand(1);
3580 
3581     if (LHS.getOpcode() != ISD::FNEG)
3582       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3583     else
3584       LHS = LHS.getOperand(0);
3585 
3586     if (RHS.getOpcode() != ISD::FNEG)
3587       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3588     else
3589       RHS = RHS.getOperand(0);
3590 
3591     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3592     if (!N0.hasOneUse())
3593       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3594     return Res;
3595   }
3596   case ISD::FMUL:
3597   case AMDGPUISD::FMUL_LEGACY: {
3598     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3599     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3600     SDValue LHS = N0.getOperand(0);
3601     SDValue RHS = N0.getOperand(1);
3602 
3603     if (LHS.getOpcode() == ISD::FNEG)
3604       LHS = LHS.getOperand(0);
3605     else if (RHS.getOpcode() == ISD::FNEG)
3606       RHS = RHS.getOperand(0);
3607     else
3608       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3609 
3610     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3611     if (!N0.hasOneUse())
3612       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3613     return Res;
3614   }
3615   case ISD::FMA:
3616   case ISD::FMAD: {
3617     if (!mayIgnoreSignedZero(N0))
3618       return SDValue();
3619 
3620     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3621     SDValue LHS = N0.getOperand(0);
3622     SDValue MHS = N0.getOperand(1);
3623     SDValue RHS = N0.getOperand(2);
3624 
3625     if (LHS.getOpcode() == ISD::FNEG)
3626       LHS = LHS.getOperand(0);
3627     else if (MHS.getOpcode() == ISD::FNEG)
3628       MHS = MHS.getOperand(0);
3629     else
3630       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3631 
3632     if (RHS.getOpcode() != ISD::FNEG)
3633       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3634     else
3635       RHS = RHS.getOperand(0);
3636 
3637     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3638     if (!N0.hasOneUse())
3639       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3640     return Res;
3641   }
3642   case ISD::FMAXNUM:
3643   case ISD::FMINNUM:
3644   case AMDGPUISD::FMAX_LEGACY:
3645   case AMDGPUISD::FMIN_LEGACY: {
3646     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3647     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3648     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3649     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3650 
3651     SDValue LHS = N0.getOperand(0);
3652     SDValue RHS = N0.getOperand(1);
3653 
3654     // 0 doesn't have a negated inline immediate.
3655     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
3656     // operations.
3657     if (isConstantFPZero(RHS))
3658       return SDValue();
3659 
3660     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3661     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3662     unsigned Opposite = inverseMinMax(Opc);
3663 
3664     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3665     if (!N0.hasOneUse())
3666       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3667     return Res;
3668   }
3669   case ISD::FP_EXTEND:
3670   case ISD::FTRUNC:
3671   case ISD::FRINT:
3672   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3673   case ISD::FSIN:
3674   case AMDGPUISD::RCP:
3675   case AMDGPUISD::RCP_LEGACY:
3676   case AMDGPUISD::SIN_HW: {
3677     SDValue CvtSrc = N0.getOperand(0);
3678     if (CvtSrc.getOpcode() == ISD::FNEG) {
3679       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3680       // (fneg (rcp (fneg x))) -> (rcp x)
3681       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3682     }
3683 
3684     if (!N0.hasOneUse())
3685       return SDValue();
3686 
3687     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3688     // (fneg (rcp x)) -> (rcp (fneg x))
3689     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3690     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3691   }
3692   case ISD::FP_ROUND: {
3693     SDValue CvtSrc = N0.getOperand(0);
3694 
3695     if (CvtSrc.getOpcode() == ISD::FNEG) {
3696       // (fneg (fp_round (fneg x))) -> (fp_round x)
3697       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3698                          CvtSrc.getOperand(0), N0.getOperand(1));
3699     }
3700 
3701     if (!N0.hasOneUse())
3702       return SDValue();
3703 
3704     // (fneg (fp_round x)) -> (fp_round (fneg x))
3705     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3706     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3707   }
3708   case ISD::FP16_TO_FP: {
3709     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3710     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3711     // Put the fneg back as a legal source operation that can be matched later.
3712     SDLoc SL(N);
3713 
3714     SDValue Src = N0.getOperand(0);
3715     EVT SrcVT = Src.getValueType();
3716 
3717     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3718     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3719                                   DAG.getConstant(0x8000, SL, SrcVT));
3720     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3721   }
3722   default:
3723     return SDValue();
3724   }
3725 }
3726 
3727 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3728                                                  DAGCombinerInfo &DCI) const {
3729   SelectionDAG &DAG = DCI.DAG;
3730   SDValue N0 = N->getOperand(0);
3731 
3732   if (!N0.hasOneUse())
3733     return SDValue();
3734 
3735   switch (N0.getOpcode()) {
3736   case ISD::FP16_TO_FP: {
3737     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3738     SDLoc SL(N);
3739     SDValue Src = N0.getOperand(0);
3740     EVT SrcVT = Src.getValueType();
3741 
3742     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3743     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3744                                   DAG.getConstant(0x7fff, SL, SrcVT));
3745     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3746   }
3747   default:
3748     return SDValue();
3749   }
3750 }
3751 
3752 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3753                                                 DAGCombinerInfo &DCI) const {
3754   SelectionDAG &DAG = DCI.DAG;
3755   SDLoc DL(N);
3756 
3757   switch(N->getOpcode()) {
3758   default:
3759     break;
3760   case ISD::BITCAST: {
3761     EVT DestVT = N->getValueType(0);
3762 
3763     // Push casts through vector builds. This helps avoid emitting a large
3764     // number of copies when materializing floating point vector constants.
3765     //
3766     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3767     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3768     if (DestVT.isVector()) {
3769       SDValue Src = N->getOperand(0);
3770       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3771         EVT SrcVT = Src.getValueType();
3772         unsigned NElts = DestVT.getVectorNumElements();
3773 
3774         if (SrcVT.getVectorNumElements() == NElts) {
3775           EVT DestEltVT = DestVT.getVectorElementType();
3776 
3777           SmallVector<SDValue, 8> CastedElts;
3778           SDLoc SL(N);
3779           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3780             SDValue Elt = Src.getOperand(I);
3781             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3782           }
3783 
3784           return DAG.getBuildVector(DestVT, SL, CastedElts);
3785         }
3786       }
3787     }
3788 
3789     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3790       break;
3791 
3792     // Fold bitcasts of constants.
3793     //
3794     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3795     // TODO: Generalize and move to DAGCombiner
3796     SDValue Src = N->getOperand(0);
3797     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3798       assert(Src.getValueType() == MVT::i64);
3799       SDLoc SL(N);
3800       uint64_t CVal = C->getZExtValue();
3801       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3802                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3803                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3804     }
3805 
3806     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3807       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3808       SDLoc SL(N);
3809       uint64_t CVal = Val.getZExtValue();
3810       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3811                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3812                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3813 
3814       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3815     }
3816 
3817     break;
3818   }
3819   case ISD::SHL: {
3820     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3821       break;
3822 
3823     return performShlCombine(N, DCI);
3824   }
3825   case ISD::SRL: {
3826     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3827       break;
3828 
3829     return performSrlCombine(N, DCI);
3830   }
3831   case ISD::SRA: {
3832     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3833       break;
3834 
3835     return performSraCombine(N, DCI);
3836   }
3837   case ISD::TRUNCATE:
3838     return performTruncateCombine(N, DCI);
3839   case ISD::MUL:
3840     return performMulCombine(N, DCI);
3841   case ISD::MULHS:
3842     return performMulhsCombine(N, DCI);
3843   case ISD::MULHU:
3844     return performMulhuCombine(N, DCI);
3845   case AMDGPUISD::MUL_I24:
3846   case AMDGPUISD::MUL_U24:
3847   case AMDGPUISD::MULHI_I24:
3848   case AMDGPUISD::MULHI_U24: {
3849     // If the first call to simplify is successfull, then N may end up being
3850     // deleted, so we shouldn't call simplifyI24 again.
3851     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3852     return SDValue();
3853   }
3854   case AMDGPUISD::MUL_LOHI_I24:
3855   case AMDGPUISD::MUL_LOHI_U24:
3856     return performMulLoHi24Combine(N, DCI);
3857   case ISD::SELECT:
3858     return performSelectCombine(N, DCI);
3859   case ISD::FNEG:
3860     return performFNegCombine(N, DCI);
3861   case ISD::FABS:
3862     return performFAbsCombine(N, DCI);
3863   case AMDGPUISD::BFE_I32:
3864   case AMDGPUISD::BFE_U32: {
3865     assert(!N->getValueType(0).isVector() &&
3866            "Vector handling of BFE not implemented");
3867     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3868     if (!Width)
3869       break;
3870 
3871     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3872     if (WidthVal == 0)
3873       return DAG.getConstant(0, DL, MVT::i32);
3874 
3875     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3876     if (!Offset)
3877       break;
3878 
3879     SDValue BitsFrom = N->getOperand(0);
3880     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3881 
3882     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3883 
3884     if (OffsetVal == 0) {
3885       // This is already sign / zero extended, so try to fold away extra BFEs.
3886       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3887 
3888       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3889       if (OpSignBits >= SignBits)
3890         return BitsFrom;
3891 
3892       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3893       if (Signed) {
3894         // This is a sign_extend_inreg. Replace it to take advantage of existing
3895         // DAG Combines. If not eliminated, we will match back to BFE during
3896         // selection.
3897 
3898         // TODO: The sext_inreg of extended types ends, although we can could
3899         // handle them in a single BFE.
3900         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3901                            DAG.getValueType(SmallVT));
3902       }
3903 
3904       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3905     }
3906 
3907     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3908       if (Signed) {
3909         return constantFoldBFE<int32_t>(DAG,
3910                                         CVal->getSExtValue(),
3911                                         OffsetVal,
3912                                         WidthVal,
3913                                         DL);
3914       }
3915 
3916       return constantFoldBFE<uint32_t>(DAG,
3917                                        CVal->getZExtValue(),
3918                                        OffsetVal,
3919                                        WidthVal,
3920                                        DL);
3921     }
3922 
3923     if ((OffsetVal + WidthVal) >= 32 &&
3924         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
3925       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3926       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3927                          BitsFrom, ShiftVal);
3928     }
3929 
3930     if (BitsFrom.hasOneUse()) {
3931       APInt Demanded = APInt::getBitsSet(32,
3932                                          OffsetVal,
3933                                          OffsetVal + WidthVal);
3934 
3935       KnownBits Known;
3936       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3937                                             !DCI.isBeforeLegalizeOps());
3938       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3939       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
3940           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
3941         DCI.CommitTargetLoweringOpt(TLO);
3942       }
3943     }
3944 
3945     break;
3946   }
3947   case ISD::LOAD:
3948     return performLoadCombine(N, DCI);
3949   case ISD::STORE:
3950     return performStoreCombine(N, DCI);
3951   case AMDGPUISD::CLAMP:
3952     return performClampCombine(N, DCI);
3953   case AMDGPUISD::RCP: {
3954     if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
3955       // XXX - Should this flush denormals?
3956       const APFloat &Val = CFP->getValueAPF();
3957       APFloat One(Val.getSemantics(), "1.0");
3958       return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3959     }
3960 
3961     break;
3962   }
3963   case ISD::AssertZext:
3964   case ISD::AssertSext:
3965     return performAssertSZExtCombine(N, DCI);
3966   }
3967   return SDValue();
3968 }
3969 
3970 //===----------------------------------------------------------------------===//
3971 // Helper functions
3972 //===----------------------------------------------------------------------===//
3973 
3974 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3975                                                    const TargetRegisterClass *RC,
3976                                                    unsigned Reg, EVT VT,
3977                                                    const SDLoc &SL,
3978                                                    bool RawReg) const {
3979   MachineFunction &MF = DAG.getMachineFunction();
3980   MachineRegisterInfo &MRI = MF.getRegInfo();
3981   unsigned VReg;
3982 
3983   if (!MRI.isLiveIn(Reg)) {
3984     VReg = MRI.createVirtualRegister(RC);
3985     MRI.addLiveIn(Reg, VReg);
3986   } else {
3987     VReg = MRI.getLiveInVirtReg(Reg);
3988   }
3989 
3990   if (RawReg)
3991     return DAG.getRegister(VReg, VT);
3992 
3993   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
3994 }
3995 
3996 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
3997                                                   EVT VT,
3998                                                   const SDLoc &SL,
3999                                                   int64_t Offset) const {
4000   MachineFunction &MF = DAG.getMachineFunction();
4001   MachineFrameInfo &MFI = MF.getFrameInfo();
4002 
4003   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
4004   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4005   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4006 
4007   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4008                      MachineMemOperand::MODereferenceable |
4009                      MachineMemOperand::MOInvariant);
4010 }
4011 
4012 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4013                                                    const SDLoc &SL,
4014                                                    SDValue Chain,
4015                                                    SDValue StackPtr,
4016                                                    SDValue ArgVal,
4017                                                    int64_t Offset) const {
4018   MachineFunction &MF = DAG.getMachineFunction();
4019   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4020 
4021   SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset);
4022   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4023                                MachineMemOperand::MODereferenceable);
4024   return Store;
4025 }
4026 
4027 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4028                                              const TargetRegisterClass *RC,
4029                                              EVT VT, const SDLoc &SL,
4030                                              const ArgDescriptor &Arg) const {
4031   assert(Arg && "Attempting to load missing argument");
4032 
4033   if (Arg.isRegister())
4034     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
4035   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4036 }
4037 
4038 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4039     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
4040   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
4041   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
4042   switch (Param) {
4043   case GRID_DIM:
4044     return ArgOffset;
4045   case GRID_OFFSET:
4046     return ArgOffset + 4;
4047   }
4048   llvm_unreachable("unexpected implicit parameter type");
4049 }
4050 
4051 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4052 
4053 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4054   switch ((AMDGPUISD::NodeType)Opcode) {
4055   case AMDGPUISD::FIRST_NUMBER: break;
4056   // AMDIL DAG nodes
4057   NODE_NAME_CASE(UMUL);
4058   NODE_NAME_CASE(BRANCH_COND);
4059 
4060   // AMDGPU DAG nodes
4061   NODE_NAME_CASE(IF)
4062   NODE_NAME_CASE(ELSE)
4063   NODE_NAME_CASE(LOOP)
4064   NODE_NAME_CASE(CALL)
4065   NODE_NAME_CASE(TC_RETURN)
4066   NODE_NAME_CASE(TRAP)
4067   NODE_NAME_CASE(RET_FLAG)
4068   NODE_NAME_CASE(RETURN_TO_EPILOG)
4069   NODE_NAME_CASE(ENDPGM)
4070   NODE_NAME_CASE(DWORDADDR)
4071   NODE_NAME_CASE(FRACT)
4072   NODE_NAME_CASE(SETCC)
4073   NODE_NAME_CASE(SETREG)
4074   NODE_NAME_CASE(FMA_W_CHAIN)
4075   NODE_NAME_CASE(FMUL_W_CHAIN)
4076   NODE_NAME_CASE(CLAMP)
4077   NODE_NAME_CASE(COS_HW)
4078   NODE_NAME_CASE(SIN_HW)
4079   NODE_NAME_CASE(FMAX_LEGACY)
4080   NODE_NAME_CASE(FMIN_LEGACY)
4081   NODE_NAME_CASE(FMAX3)
4082   NODE_NAME_CASE(SMAX3)
4083   NODE_NAME_CASE(UMAX3)
4084   NODE_NAME_CASE(FMIN3)
4085   NODE_NAME_CASE(SMIN3)
4086   NODE_NAME_CASE(UMIN3)
4087   NODE_NAME_CASE(FMED3)
4088   NODE_NAME_CASE(SMED3)
4089   NODE_NAME_CASE(UMED3)
4090   NODE_NAME_CASE(URECIP)
4091   NODE_NAME_CASE(DIV_SCALE)
4092   NODE_NAME_CASE(DIV_FMAS)
4093   NODE_NAME_CASE(DIV_FIXUP)
4094   NODE_NAME_CASE(FMAD_FTZ)
4095   NODE_NAME_CASE(TRIG_PREOP)
4096   NODE_NAME_CASE(RCP)
4097   NODE_NAME_CASE(RSQ)
4098   NODE_NAME_CASE(RCP_LEGACY)
4099   NODE_NAME_CASE(RSQ_LEGACY)
4100   NODE_NAME_CASE(FMUL_LEGACY)
4101   NODE_NAME_CASE(RSQ_CLAMP)
4102   NODE_NAME_CASE(LDEXP)
4103   NODE_NAME_CASE(FP_CLASS)
4104   NODE_NAME_CASE(DOT4)
4105   NODE_NAME_CASE(CARRY)
4106   NODE_NAME_CASE(BORROW)
4107   NODE_NAME_CASE(BFE_U32)
4108   NODE_NAME_CASE(BFE_I32)
4109   NODE_NAME_CASE(BFI)
4110   NODE_NAME_CASE(BFM)
4111   NODE_NAME_CASE(FFBH_U32)
4112   NODE_NAME_CASE(FFBH_I32)
4113   NODE_NAME_CASE(FFBL_B32)
4114   NODE_NAME_CASE(MUL_U24)
4115   NODE_NAME_CASE(MUL_I24)
4116   NODE_NAME_CASE(MULHI_U24)
4117   NODE_NAME_CASE(MULHI_I24)
4118   NODE_NAME_CASE(MUL_LOHI_U24)
4119   NODE_NAME_CASE(MUL_LOHI_I24)
4120   NODE_NAME_CASE(MAD_U24)
4121   NODE_NAME_CASE(MAD_I24)
4122   NODE_NAME_CASE(MAD_I64_I32)
4123   NODE_NAME_CASE(MAD_U64_U32)
4124   NODE_NAME_CASE(TEXTURE_FETCH)
4125   NODE_NAME_CASE(EXPORT)
4126   NODE_NAME_CASE(EXPORT_DONE)
4127   NODE_NAME_CASE(R600_EXPORT)
4128   NODE_NAME_CASE(CONST_ADDRESS)
4129   NODE_NAME_CASE(REGISTER_LOAD)
4130   NODE_NAME_CASE(REGISTER_STORE)
4131   NODE_NAME_CASE(SAMPLE)
4132   NODE_NAME_CASE(SAMPLEB)
4133   NODE_NAME_CASE(SAMPLED)
4134   NODE_NAME_CASE(SAMPLEL)
4135   NODE_NAME_CASE(CVT_F32_UBYTE0)
4136   NODE_NAME_CASE(CVT_F32_UBYTE1)
4137   NODE_NAME_CASE(CVT_F32_UBYTE2)
4138   NODE_NAME_CASE(CVT_F32_UBYTE3)
4139   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4140   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4141   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4142   NODE_NAME_CASE(CVT_PK_I16_I32)
4143   NODE_NAME_CASE(CVT_PK_U16_U32)
4144   NODE_NAME_CASE(FP_TO_FP16)
4145   NODE_NAME_CASE(FP16_ZEXT)
4146   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4147   NODE_NAME_CASE(CONST_DATA_PTR)
4148   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4149   NODE_NAME_CASE(KILL)
4150   NODE_NAME_CASE(DUMMY_CHAIN)
4151   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4152   NODE_NAME_CASE(INIT_EXEC)
4153   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4154   NODE_NAME_CASE(SENDMSG)
4155   NODE_NAME_CASE(SENDMSGHALT)
4156   NODE_NAME_CASE(INTERP_MOV)
4157   NODE_NAME_CASE(INTERP_P1)
4158   NODE_NAME_CASE(INTERP_P2)
4159   NODE_NAME_CASE(STORE_MSKOR)
4160   NODE_NAME_CASE(LOAD_CONSTANT)
4161   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4162   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
4163   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4164   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4165   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4166   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4167   NODE_NAME_CASE(ATOMIC_INC)
4168   NODE_NAME_CASE(ATOMIC_DEC)
4169   NODE_NAME_CASE(ATOMIC_LOAD_FADD)
4170   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4171   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4172   NODE_NAME_CASE(BUFFER_LOAD)
4173   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4174   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4175   NODE_NAME_CASE(BUFFER_STORE)
4176   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4177   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4178   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4179   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4180   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4181   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4182   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4183   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4184   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4185   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4186   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4187   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4188   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4189   NODE_NAME_CASE(IMAGE_LOAD)
4190   NODE_NAME_CASE(IMAGE_LOAD_MIP)
4191   NODE_NAME_CASE(IMAGE_STORE)
4192   NODE_NAME_CASE(IMAGE_STORE_MIP)
4193   // Basic sample.
4194   NODE_NAME_CASE(IMAGE_SAMPLE)
4195   NODE_NAME_CASE(IMAGE_SAMPLE_CL)
4196   NODE_NAME_CASE(IMAGE_SAMPLE_D)
4197   NODE_NAME_CASE(IMAGE_SAMPLE_D_CL)
4198   NODE_NAME_CASE(IMAGE_SAMPLE_L)
4199   NODE_NAME_CASE(IMAGE_SAMPLE_B)
4200   NODE_NAME_CASE(IMAGE_SAMPLE_B_CL)
4201   NODE_NAME_CASE(IMAGE_SAMPLE_LZ)
4202   NODE_NAME_CASE(IMAGE_SAMPLE_CD)
4203   NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL)
4204   // Sample with comparison.
4205   NODE_NAME_CASE(IMAGE_SAMPLE_C)
4206   NODE_NAME_CASE(IMAGE_SAMPLE_C_CL)
4207   NODE_NAME_CASE(IMAGE_SAMPLE_C_D)
4208   NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL)
4209   NODE_NAME_CASE(IMAGE_SAMPLE_C_L)
4210   NODE_NAME_CASE(IMAGE_SAMPLE_C_B)
4211   NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL)
4212   NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ)
4213   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD)
4214   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL)
4215   // Sample with offsets.
4216   NODE_NAME_CASE(IMAGE_SAMPLE_O)
4217   NODE_NAME_CASE(IMAGE_SAMPLE_CL_O)
4218   NODE_NAME_CASE(IMAGE_SAMPLE_D_O)
4219   NODE_NAME_CASE(IMAGE_SAMPLE_D_CL_O)
4220   NODE_NAME_CASE(IMAGE_SAMPLE_L_O)
4221   NODE_NAME_CASE(IMAGE_SAMPLE_B_O)
4222   NODE_NAME_CASE(IMAGE_SAMPLE_B_CL_O)
4223   NODE_NAME_CASE(IMAGE_SAMPLE_LZ_O)
4224   NODE_NAME_CASE(IMAGE_SAMPLE_CD_O)
4225   NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL_O)
4226   // Sample with comparison and offsets.
4227   NODE_NAME_CASE(IMAGE_SAMPLE_C_O)
4228   NODE_NAME_CASE(IMAGE_SAMPLE_C_CL_O)
4229   NODE_NAME_CASE(IMAGE_SAMPLE_C_D_O)
4230   NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL_O)
4231   NODE_NAME_CASE(IMAGE_SAMPLE_C_L_O)
4232   NODE_NAME_CASE(IMAGE_SAMPLE_C_B_O)
4233   NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL_O)
4234   NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ_O)
4235   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_O)
4236   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL_O)
4237   // Basic gather4.
4238   NODE_NAME_CASE(IMAGE_GATHER4)
4239   NODE_NAME_CASE(IMAGE_GATHER4_CL)
4240   NODE_NAME_CASE(IMAGE_GATHER4_L)
4241   NODE_NAME_CASE(IMAGE_GATHER4_B)
4242   NODE_NAME_CASE(IMAGE_GATHER4_B_CL)
4243   NODE_NAME_CASE(IMAGE_GATHER4_LZ)
4244   // Gather4 with comparison.
4245   NODE_NAME_CASE(IMAGE_GATHER4_C)
4246   NODE_NAME_CASE(IMAGE_GATHER4_C_CL)
4247   NODE_NAME_CASE(IMAGE_GATHER4_C_L)
4248   NODE_NAME_CASE(IMAGE_GATHER4_C_B)
4249   NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL)
4250   NODE_NAME_CASE(IMAGE_GATHER4_C_LZ)
4251   // Gather4 with offsets.
4252   NODE_NAME_CASE(IMAGE_GATHER4_O)
4253   NODE_NAME_CASE(IMAGE_GATHER4_CL_O)
4254   NODE_NAME_CASE(IMAGE_GATHER4_L_O)
4255   NODE_NAME_CASE(IMAGE_GATHER4_B_O)
4256   NODE_NAME_CASE(IMAGE_GATHER4_B_CL_O)
4257   NODE_NAME_CASE(IMAGE_GATHER4_LZ_O)
4258   // Gather4 with comparison and offsets.
4259   NODE_NAME_CASE(IMAGE_GATHER4_C_O)
4260   NODE_NAME_CASE(IMAGE_GATHER4_C_CL_O)
4261   NODE_NAME_CASE(IMAGE_GATHER4_C_L_O)
4262   NODE_NAME_CASE(IMAGE_GATHER4_C_B_O)
4263   NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL_O)
4264   NODE_NAME_CASE(IMAGE_GATHER4_C_LZ_O)
4265 
4266   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4267   }
4268   return nullptr;
4269 }
4270 
4271 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4272                                               SelectionDAG &DAG, int Enabled,
4273                                               int &RefinementSteps,
4274                                               bool &UseOneConstNR,
4275                                               bool Reciprocal) const {
4276   EVT VT = Operand.getValueType();
4277 
4278   if (VT == MVT::f32) {
4279     RefinementSteps = 0;
4280     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4281   }
4282 
4283   // TODO: There is also f64 rsq instruction, but the documentation is less
4284   // clear on its precision.
4285 
4286   return SDValue();
4287 }
4288 
4289 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4290                                                SelectionDAG &DAG, int Enabled,
4291                                                int &RefinementSteps) const {
4292   EVT VT = Operand.getValueType();
4293 
4294   if (VT == MVT::f32) {
4295     // Reciprocal, < 1 ulp error.
4296     //
4297     // This reciprocal approximation converges to < 0.5 ulp error with one
4298     // newton rhapson performed with two fused multiple adds (FMAs).
4299 
4300     RefinementSteps = 0;
4301     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4302   }
4303 
4304   // TODO: There is also f64 rcp instruction, but the documentation is less
4305   // clear on its precision.
4306 
4307   return SDValue();
4308 }
4309 
4310 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4311     const SDValue Op, KnownBits &Known,
4312     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4313 
4314   Known.resetAll(); // Don't know anything.
4315 
4316   unsigned Opc = Op.getOpcode();
4317 
4318   switch (Opc) {
4319   default:
4320     break;
4321   case AMDGPUISD::CARRY:
4322   case AMDGPUISD::BORROW: {
4323     Known.Zero = APInt::getHighBitsSet(32, 31);
4324     break;
4325   }
4326 
4327   case AMDGPUISD::BFE_I32:
4328   case AMDGPUISD::BFE_U32: {
4329     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4330     if (!CWidth)
4331       return;
4332 
4333     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4334 
4335     if (Opc == AMDGPUISD::BFE_U32)
4336       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4337 
4338     break;
4339   }
4340   case AMDGPUISD::FP_TO_FP16:
4341   case AMDGPUISD::FP16_ZEXT: {
4342     unsigned BitWidth = Known.getBitWidth();
4343 
4344     // High bits are zero.
4345     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4346     break;
4347   }
4348   case AMDGPUISD::MUL_U24:
4349   case AMDGPUISD::MUL_I24: {
4350     KnownBits LHSKnown, RHSKnown;
4351     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
4352     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
4353 
4354     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4355                       RHSKnown.countMinTrailingZeros();
4356     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4357 
4358     unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
4359     unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
4360     unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4361     if (MaxValBits >= 32)
4362       break;
4363     bool Negative = false;
4364     if (Opc == AMDGPUISD::MUL_I24) {
4365       bool LHSNegative = !!(LHSKnown.One  & (1 << 23));
4366       bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
4367       bool RHSNegative = !!(RHSKnown.One  & (1 << 23));
4368       bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
4369       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4370         break;
4371       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4372     }
4373     if (Negative)
4374       Known.One.setHighBits(32 - MaxValBits);
4375     else
4376       Known.Zero.setHighBits(32 - MaxValBits);
4377     break;
4378   }
4379   case ISD::INTRINSIC_WO_CHAIN: {
4380     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4381     switch (IID) {
4382     case Intrinsic::amdgcn_mbcnt_lo:
4383     case Intrinsic::amdgcn_mbcnt_hi: {
4384       // These return at most the wavefront size - 1.
4385       unsigned Size = Op.getValueType().getSizeInBits();
4386       Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2());
4387       break;
4388     }
4389     default:
4390       break;
4391     }
4392   }
4393   }
4394 }
4395 
4396 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4397     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4398     unsigned Depth) const {
4399   switch (Op.getOpcode()) {
4400   case AMDGPUISD::BFE_I32: {
4401     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4402     if (!Width)
4403       return 1;
4404 
4405     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4406     if (!isNullConstant(Op.getOperand(1)))
4407       return SignBits;
4408 
4409     // TODO: Could probably figure something out with non-0 offsets.
4410     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4411     return std::max(SignBits, Op0SignBits);
4412   }
4413 
4414   case AMDGPUISD::BFE_U32: {
4415     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4416     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4417   }
4418 
4419   case AMDGPUISD::CARRY:
4420   case AMDGPUISD::BORROW:
4421     return 31;
4422   case AMDGPUISD::FP_TO_FP16:
4423   case AMDGPUISD::FP16_ZEXT:
4424     return 16;
4425   default:
4426     return 1;
4427   }
4428 }
4429