1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 #include "AMDGPUGenCallingConv.inc" 31 32 static cl::opt<bool> AMDGPUBypassSlowDiv( 33 "amdgpu-bypass-slow-div", 34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 35 cl::init(true)); 36 37 // Find a larger type to do a load / store of a vector with. 38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 39 unsigned StoreSize = VT.getStoreSizeInBits(); 40 if (StoreSize <= 32) 41 return EVT::getIntegerVT(Ctx, StoreSize); 42 43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 45 } 46 47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 48 EVT VT = Op.getValueType(); 49 KnownBits Known = DAG.computeKnownBits(Op); 50 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 51 } 52 53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 54 EVT VT = Op.getValueType(); 55 56 // In order for this to be a signed 24-bit value, bit 23, must 57 // be a sign bit. 58 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 59 } 60 61 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 62 const AMDGPUSubtarget &STI) 63 : TargetLowering(TM), Subtarget(&STI) { 64 // Lower floating point store/load to integer store/load to reduce the number 65 // of patterns in tablegen. 66 setOperationAction(ISD::LOAD, MVT::f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 68 69 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 71 72 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 74 75 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 77 78 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 80 81 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 83 84 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 86 87 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 89 90 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 92 93 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 95 96 setOperationAction(ISD::LOAD, MVT::i64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 98 99 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 101 102 setOperationAction(ISD::LOAD, MVT::f64, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 104 105 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 107 108 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 110 111 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 113 114 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 116 117 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 119 120 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 122 123 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 124 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 125 126 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 127 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 128 129 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 130 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 131 132 // There are no 64-bit extloads. These should be done as a 32-bit extload and 133 // an extension to 64-bit. 134 for (MVT VT : MVT::integer_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 138 } 139 140 for (MVT VT : MVT::integer_valuetypes()) { 141 if (VT == MVT::i64) 142 continue; 143 144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 146 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 147 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 148 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 150 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 151 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 152 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 153 154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 158 } 159 160 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 173 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 174 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 175 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 176 } 177 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 182 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 185 186 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 188 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 192 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 197 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 198 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 199 200 setOperationAction(ISD::STORE, MVT::f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 205 206 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 208 209 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 211 212 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 214 215 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 217 218 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 219 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 220 221 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 223 224 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 225 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 226 227 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 229 230 setOperationAction(ISD::STORE, MVT::i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 232 233 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 235 236 setOperationAction(ISD::STORE, MVT::f64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 238 239 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 241 242 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 244 245 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 247 248 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 250 251 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 253 254 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 256 257 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 259 260 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 262 263 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 264 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 265 266 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 267 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 268 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 269 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 270 271 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 272 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 273 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 274 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 275 276 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 277 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 278 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 279 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 280 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 281 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 283 284 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 285 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 286 287 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 288 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 289 290 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 291 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 292 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 293 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 294 295 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 296 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 297 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 298 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 299 300 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 301 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 302 303 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 304 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 306 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 307 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 308 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 309 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 310 311 setOperationAction(ISD::Constant, MVT::i32, Legal); 312 setOperationAction(ISD::Constant, MVT::i64, Legal); 313 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 314 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 315 316 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 317 setOperationAction(ISD::BRIND, MVT::Other, Expand); 318 319 // This is totally unsupported, just custom lower to produce an error. 320 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 321 322 // Library functions. These default to Expand, but we have instructions 323 // for them. 324 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 325 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 326 setOperationAction(ISD::FPOW, MVT::f32, Legal); 327 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 328 setOperationAction(ISD::FABS, MVT::f32, Legal); 329 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 330 setOperationAction(ISD::FRINT, MVT::f32, Legal); 331 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 332 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 333 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 334 335 setOperationAction(ISD::FROUND, MVT::f32, Custom); 336 setOperationAction(ISD::FROUND, MVT::f64, Custom); 337 338 setOperationAction(ISD::FLOG, MVT::f32, Custom); 339 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 340 setOperationAction(ISD::FEXP, MVT::f32, Custom); 341 342 343 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 344 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 345 346 setOperationAction(ISD::FREM, MVT::f16, Custom); 347 setOperationAction(ISD::FREM, MVT::f32, Custom); 348 setOperationAction(ISD::FREM, MVT::f64, Custom); 349 350 // Expand to fneg + fadd. 351 setOperationAction(ISD::FSUB, MVT::f64, Expand); 352 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 362 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 363 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 364 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 394 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 395 396 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 397 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 398 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 399 400 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 401 for (MVT VT : ScalarIntVTs) { 402 // These should use [SU]DIVREM, so set them to expand 403 setOperationAction(ISD::SDIV, VT, Expand); 404 setOperationAction(ISD::UDIV, VT, Expand); 405 setOperationAction(ISD::SREM, VT, Expand); 406 setOperationAction(ISD::UREM, VT, Expand); 407 408 // GPU does not have divrem function for signed or unsigned. 409 setOperationAction(ISD::SDIVREM, VT, Custom); 410 setOperationAction(ISD::UDIVREM, VT, Custom); 411 412 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 413 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 414 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 415 416 setOperationAction(ISD::BSWAP, VT, Expand); 417 setOperationAction(ISD::CTTZ, VT, Expand); 418 setOperationAction(ISD::CTLZ, VT, Expand); 419 420 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 421 setOperationAction(ISD::ADDC, VT, Legal); 422 setOperationAction(ISD::SUBC, VT, Legal); 423 setOperationAction(ISD::ADDE, VT, Legal); 424 setOperationAction(ISD::SUBE, VT, Legal); 425 } 426 427 // The hardware supports 32-bit FSHR, but not FSHL. 428 setOperationAction(ISD::FSHR, MVT::i32, Legal); 429 430 // The hardware supports 32-bit ROTR, but not ROTL. 431 setOperationAction(ISD::ROTL, MVT::i32, Expand); 432 setOperationAction(ISD::ROTL, MVT::i64, Expand); 433 setOperationAction(ISD::ROTR, MVT::i64, Expand); 434 435 setOperationAction(ISD::MULHU, MVT::i16, Expand); 436 setOperationAction(ISD::MULHS, MVT::i16, Expand); 437 438 setOperationAction(ISD::MUL, MVT::i64, Expand); 439 setOperationAction(ISD::MULHU, MVT::i64, Expand); 440 setOperationAction(ISD::MULHS, MVT::i64, Expand); 441 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 442 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 443 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 444 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 445 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 446 447 setOperationAction(ISD::SMIN, MVT::i32, Legal); 448 setOperationAction(ISD::UMIN, MVT::i32, Legal); 449 setOperationAction(ISD::SMAX, MVT::i32, Legal); 450 setOperationAction(ISD::UMAX, MVT::i32, Legal); 451 452 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 453 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 454 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 455 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 456 457 static const MVT::SimpleValueType VectorIntTypes[] = { 458 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 459 460 for (MVT VT : VectorIntTypes) { 461 // Expand the following operations for the current type by default. 462 setOperationAction(ISD::ADD, VT, Expand); 463 setOperationAction(ISD::AND, VT, Expand); 464 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 465 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 466 setOperationAction(ISD::MUL, VT, Expand); 467 setOperationAction(ISD::MULHU, VT, Expand); 468 setOperationAction(ISD::MULHS, VT, Expand); 469 setOperationAction(ISD::OR, VT, Expand); 470 setOperationAction(ISD::SHL, VT, Expand); 471 setOperationAction(ISD::SRA, VT, Expand); 472 setOperationAction(ISD::SRL, VT, Expand); 473 setOperationAction(ISD::ROTL, VT, Expand); 474 setOperationAction(ISD::ROTR, VT, Expand); 475 setOperationAction(ISD::SUB, VT, Expand); 476 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 477 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 478 setOperationAction(ISD::SDIV, VT, Expand); 479 setOperationAction(ISD::UDIV, VT, Expand); 480 setOperationAction(ISD::SREM, VT, Expand); 481 setOperationAction(ISD::UREM, VT, Expand); 482 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 483 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 484 setOperationAction(ISD::SDIVREM, VT, Expand); 485 setOperationAction(ISD::UDIVREM, VT, Expand); 486 setOperationAction(ISD::SELECT, VT, Expand); 487 setOperationAction(ISD::VSELECT, VT, Expand); 488 setOperationAction(ISD::SELECT_CC, VT, Expand); 489 setOperationAction(ISD::XOR, VT, Expand); 490 setOperationAction(ISD::BSWAP, VT, Expand); 491 setOperationAction(ISD::CTPOP, VT, Expand); 492 setOperationAction(ISD::CTTZ, VT, Expand); 493 setOperationAction(ISD::CTLZ, VT, Expand); 494 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 495 setOperationAction(ISD::SETCC, VT, Expand); 496 } 497 498 static const MVT::SimpleValueType FloatVectorTypes[] = { 499 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 500 501 for (MVT VT : FloatVectorTypes) { 502 setOperationAction(ISD::FABS, VT, Expand); 503 setOperationAction(ISD::FMINNUM, VT, Expand); 504 setOperationAction(ISD::FMAXNUM, VT, Expand); 505 setOperationAction(ISD::FADD, VT, Expand); 506 setOperationAction(ISD::FCEIL, VT, Expand); 507 setOperationAction(ISD::FCOS, VT, Expand); 508 setOperationAction(ISD::FDIV, VT, Expand); 509 setOperationAction(ISD::FEXP2, VT, Expand); 510 setOperationAction(ISD::FEXP, VT, Expand); 511 setOperationAction(ISD::FLOG2, VT, Expand); 512 setOperationAction(ISD::FREM, VT, Expand); 513 setOperationAction(ISD::FLOG, VT, Expand); 514 setOperationAction(ISD::FLOG10, VT, Expand); 515 setOperationAction(ISD::FPOW, VT, Expand); 516 setOperationAction(ISD::FFLOOR, VT, Expand); 517 setOperationAction(ISD::FTRUNC, VT, Expand); 518 setOperationAction(ISD::FMUL, VT, Expand); 519 setOperationAction(ISD::FMA, VT, Expand); 520 setOperationAction(ISD::FRINT, VT, Expand); 521 setOperationAction(ISD::FNEARBYINT, VT, Expand); 522 setOperationAction(ISD::FSQRT, VT, Expand); 523 setOperationAction(ISD::FSIN, VT, Expand); 524 setOperationAction(ISD::FSUB, VT, Expand); 525 setOperationAction(ISD::FNEG, VT, Expand); 526 setOperationAction(ISD::VSELECT, VT, Expand); 527 setOperationAction(ISD::SELECT_CC, VT, Expand); 528 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 529 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 530 setOperationAction(ISD::SETCC, VT, Expand); 531 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 532 } 533 534 // This causes using an unrolled select operation rather than expansion with 535 // bit operations. This is in general better, but the alternative using BFI 536 // instructions may be better if the select sources are SGPRs. 537 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 538 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 539 540 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 541 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 542 543 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 544 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 545 546 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 547 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 548 549 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 550 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 551 552 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 553 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 554 555 // There are no libcalls of any kind. 556 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 557 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 558 559 setSchedulingPreference(Sched::RegPressure); 560 setJumpIsExpensive(true); 561 562 // FIXME: This is only partially true. If we have to do vector compares, any 563 // SGPR pair can be a condition register. If we have a uniform condition, we 564 // are better off doing SALU operations, where there is only one SCC. For now, 565 // we don't have a way of knowing during instruction selection if a condition 566 // will be uniform and we always use vector compares. Assume we are using 567 // vector compares until that is fixed. 568 setHasMultipleConditionRegisters(true); 569 570 setMinCmpXchgSizeInBits(32); 571 setSupportsUnalignedAtomics(false); 572 573 PredictableSelectIsExpensive = false; 574 575 // We want to find all load dependencies for long chains of stores to enable 576 // merging into very wide vectors. The problem is with vectors with > 4 577 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 578 // vectors are a legal type, even though we have to split the loads 579 // usually. When we can more precisely specify load legality per address 580 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 581 // smarter so that they can figure out what to do in 2 iterations without all 582 // N > 4 stores on the same chain. 583 GatherAllAliasesMaxDepth = 16; 584 585 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 586 // about these during lowering. 587 MaxStoresPerMemcpy = 0xffffffff; 588 MaxStoresPerMemmove = 0xffffffff; 589 MaxStoresPerMemset = 0xffffffff; 590 591 // The expansion for 64-bit division is enormous. 592 if (AMDGPUBypassSlowDiv) 593 addBypassSlowDiv(64, 32); 594 595 setTargetDAGCombine(ISD::BITCAST); 596 setTargetDAGCombine(ISD::SHL); 597 setTargetDAGCombine(ISD::SRA); 598 setTargetDAGCombine(ISD::SRL); 599 setTargetDAGCombine(ISD::TRUNCATE); 600 setTargetDAGCombine(ISD::MUL); 601 setTargetDAGCombine(ISD::MULHU); 602 setTargetDAGCombine(ISD::MULHS); 603 setTargetDAGCombine(ISD::SELECT); 604 setTargetDAGCombine(ISD::SELECT_CC); 605 setTargetDAGCombine(ISD::STORE); 606 setTargetDAGCombine(ISD::FADD); 607 setTargetDAGCombine(ISD::FSUB); 608 setTargetDAGCombine(ISD::FNEG); 609 setTargetDAGCombine(ISD::FABS); 610 setTargetDAGCombine(ISD::AssertZext); 611 setTargetDAGCombine(ISD::AssertSext); 612 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 613 } 614 615 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 616 if (getTargetMachine().Options.NoSignedZerosFPMath) 617 return true; 618 619 const auto Flags = Op.getNode()->getFlags(); 620 if (Flags.hasNoSignedZeros()) 621 return true; 622 623 return false; 624 } 625 626 //===----------------------------------------------------------------------===// 627 // Target Information 628 //===----------------------------------------------------------------------===// 629 630 LLVM_READNONE 631 static bool fnegFoldsIntoOp(unsigned Opc) { 632 switch (Opc) { 633 case ISD::FADD: 634 case ISD::FSUB: 635 case ISD::FMUL: 636 case ISD::FMA: 637 case ISD::FMAD: 638 case ISD::FMINNUM: 639 case ISD::FMAXNUM: 640 case ISD::FMINNUM_IEEE: 641 case ISD::FMAXNUM_IEEE: 642 case ISD::FSIN: 643 case ISD::FTRUNC: 644 case ISD::FRINT: 645 case ISD::FNEARBYINT: 646 case ISD::FCANONICALIZE: 647 case AMDGPUISD::RCP: 648 case AMDGPUISD::RCP_LEGACY: 649 case AMDGPUISD::RCP_IFLAG: 650 case AMDGPUISD::SIN_HW: 651 case AMDGPUISD::FMUL_LEGACY: 652 case AMDGPUISD::FMIN_LEGACY: 653 case AMDGPUISD::FMAX_LEGACY: 654 case AMDGPUISD::FMED3: 655 // TODO: handle llvm.amdgcn.fma.legacy 656 return true; 657 default: 658 return false; 659 } 660 } 661 662 /// \p returns true if the operation will definitely need to use a 64-bit 663 /// encoding, and thus will use a VOP3 encoding regardless of the source 664 /// modifiers. 665 LLVM_READONLY 666 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 667 return N->getNumOperands() > 2 || VT == MVT::f64; 668 } 669 670 // Most FP instructions support source modifiers, but this could be refined 671 // slightly. 672 LLVM_READONLY 673 static bool hasSourceMods(const SDNode *N) { 674 if (isa<MemSDNode>(N)) 675 return false; 676 677 switch (N->getOpcode()) { 678 case ISD::CopyToReg: 679 case ISD::SELECT: 680 case ISD::FDIV: 681 case ISD::FREM: 682 case ISD::INLINEASM: 683 case ISD::INLINEASM_BR: 684 case AMDGPUISD::DIV_SCALE: 685 case ISD::INTRINSIC_W_CHAIN: 686 687 // TODO: Should really be looking at the users of the bitcast. These are 688 // problematic because bitcasts are used to legalize all stores to integer 689 // types. 690 case ISD::BITCAST: 691 return false; 692 case ISD::INTRINSIC_WO_CHAIN: { 693 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 694 case Intrinsic::amdgcn_interp_p1: 695 case Intrinsic::amdgcn_interp_p2: 696 case Intrinsic::amdgcn_interp_mov: 697 case Intrinsic::amdgcn_interp_p1_f16: 698 case Intrinsic::amdgcn_interp_p2_f16: 699 return false; 700 default: 701 return true; 702 } 703 } 704 default: 705 return true; 706 } 707 } 708 709 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 710 unsigned CostThreshold) { 711 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 712 // it is truly free to use a source modifier in all cases. If there are 713 // multiple users but for each one will necessitate using VOP3, there will be 714 // a code size increase. Try to avoid increasing code size unless we know it 715 // will save on the instruction count. 716 unsigned NumMayIncreaseSize = 0; 717 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 718 719 // XXX - Should this limit number of uses to check? 720 for (const SDNode *U : N->uses()) { 721 if (!hasSourceMods(U)) 722 return false; 723 724 if (!opMustUseVOP3Encoding(U, VT)) { 725 if (++NumMayIncreaseSize > CostThreshold) 726 return false; 727 } 728 } 729 730 return true; 731 } 732 733 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 734 ISD::NodeType ExtendKind) const { 735 assert(!VT.isVector() && "only scalar expected"); 736 737 // Round to the next multiple of 32-bits. 738 unsigned Size = VT.getSizeInBits(); 739 if (Size <= 32) 740 return MVT::i32; 741 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 742 } 743 744 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 745 return MVT::i32; 746 } 747 748 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 749 return true; 750 } 751 752 // The backend supports 32 and 64 bit floating point immediates. 753 // FIXME: Why are we reporting vectors of FP immediates as legal? 754 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 755 bool ForCodeSize) const { 756 EVT ScalarVT = VT.getScalarType(); 757 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 758 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 759 } 760 761 // We don't want to shrink f64 / f32 constants. 762 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 763 EVT ScalarVT = VT.getScalarType(); 764 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 765 } 766 767 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 768 ISD::LoadExtType ExtTy, 769 EVT NewVT) const { 770 // TODO: This may be worth removing. Check regression tests for diffs. 771 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 772 return false; 773 774 unsigned NewSize = NewVT.getStoreSizeInBits(); 775 776 // If we are reducing to a 32-bit load or a smaller multi-dword load, 777 // this is always better. 778 if (NewSize >= 32) 779 return true; 780 781 EVT OldVT = N->getValueType(0); 782 unsigned OldSize = OldVT.getStoreSizeInBits(); 783 784 MemSDNode *MN = cast<MemSDNode>(N); 785 unsigned AS = MN->getAddressSpace(); 786 // Do not shrink an aligned scalar load to sub-dword. 787 // Scalar engine cannot do sub-dword loads. 788 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 789 (AS == AMDGPUAS::CONSTANT_ADDRESS || 790 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 791 (isa<LoadSDNode>(N) && 792 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 793 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 794 return false; 795 796 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 797 // extloads, so doing one requires using a buffer_load. In cases where we 798 // still couldn't use a scalar load, using the wider load shouldn't really 799 // hurt anything. 800 801 // If the old size already had to be an extload, there's no harm in continuing 802 // to reduce the width. 803 return (OldSize < 32); 804 } 805 806 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 807 const SelectionDAG &DAG, 808 const MachineMemOperand &MMO) const { 809 810 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 811 812 if (LoadTy.getScalarType() == MVT::i32) 813 return false; 814 815 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 816 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 817 818 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 819 return false; 820 821 bool Fast = false; 822 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 823 CastTy, MMO, &Fast) && 824 Fast; 825 } 826 827 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 828 // profitable with the expansion for 64-bit since it's generally good to 829 // speculate things. 830 // FIXME: These should really have the size as a parameter. 831 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 832 return true; 833 } 834 835 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 836 return true; 837 } 838 839 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 840 switch (N->getOpcode()) { 841 case ISD::EntryToken: 842 case ISD::TokenFactor: 843 return true; 844 case ISD::INTRINSIC_WO_CHAIN: { 845 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 846 switch (IntrID) { 847 case Intrinsic::amdgcn_readfirstlane: 848 case Intrinsic::amdgcn_readlane: 849 return true; 850 } 851 return false; 852 } 853 case ISD::LOAD: 854 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 855 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 856 return true; 857 return false; 858 } 859 return false; 860 } 861 862 SDValue AMDGPUTargetLowering::getNegatedExpression( 863 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 864 NegatibleCost &Cost, unsigned Depth) const { 865 866 switch (Op.getOpcode()) { 867 case ISD::FMA: 868 case ISD::FMAD: { 869 // Negating a fma is not free if it has users without source mods. 870 if (!allUsesHaveSourceMods(Op.getNode())) 871 return SDValue(); 872 break; 873 } 874 default: 875 break; 876 } 877 878 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 879 ForCodeSize, Cost, Depth); 880 } 881 882 //===---------------------------------------------------------------------===// 883 // Target Properties 884 //===---------------------------------------------------------------------===// 885 886 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 887 assert(VT.isFloatingPoint()); 888 889 // Packed operations do not have a fabs modifier. 890 return VT == MVT::f32 || VT == MVT::f64 || 891 (Subtarget->has16BitInsts() && VT == MVT::f16); 892 } 893 894 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 895 assert(VT.isFloatingPoint()); 896 // Report this based on the end legalized type. 897 VT = VT.getScalarType(); 898 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 899 } 900 901 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 902 unsigned NumElem, 903 unsigned AS) const { 904 return true; 905 } 906 907 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 908 // There are few operations which truly have vector input operands. Any vector 909 // operation is going to involve operations on each component, and a 910 // build_vector will be a copy per element, so it always makes sense to use a 911 // build_vector input in place of the extracted element to avoid a copy into a 912 // super register. 913 // 914 // We should probably only do this if all users are extracts only, but this 915 // should be the common case. 916 return true; 917 } 918 919 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 920 // Truncate is just accessing a subregister. 921 922 unsigned SrcSize = Source.getSizeInBits(); 923 unsigned DestSize = Dest.getSizeInBits(); 924 925 return DestSize < SrcSize && DestSize % 32 == 0 ; 926 } 927 928 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 929 // Truncate is just accessing a subregister. 930 931 unsigned SrcSize = Source->getScalarSizeInBits(); 932 unsigned DestSize = Dest->getScalarSizeInBits(); 933 934 if (DestSize== 16 && Subtarget->has16BitInsts()) 935 return SrcSize >= 32; 936 937 return DestSize < SrcSize && DestSize % 32 == 0; 938 } 939 940 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 941 unsigned SrcSize = Src->getScalarSizeInBits(); 942 unsigned DestSize = Dest->getScalarSizeInBits(); 943 944 if (SrcSize == 16 && Subtarget->has16BitInsts()) 945 return DestSize >= 32; 946 947 return SrcSize == 32 && DestSize == 64; 948 } 949 950 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 951 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 952 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 953 // this will enable reducing 64-bit operations the 32-bit, which is always 954 // good. 955 956 if (Src == MVT::i16) 957 return Dest == MVT::i32 ||Dest == MVT::i64 ; 958 959 return Src == MVT::i32 && Dest == MVT::i64; 960 } 961 962 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 963 return isZExtFree(Val.getValueType(), VT2); 964 } 965 966 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 967 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 968 // limited number of native 64-bit operations. Shrinking an operation to fit 969 // in a single 32-bit register should always be helpful. As currently used, 970 // this is much less general than the name suggests, and is only used in 971 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 972 // not profitable, and may actually be harmful. 973 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 974 } 975 976 //===---------------------------------------------------------------------===// 977 // TargetLowering Callbacks 978 //===---------------------------------------------------------------------===// 979 980 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 981 bool IsVarArg) { 982 switch (CC) { 983 case CallingConv::AMDGPU_VS: 984 case CallingConv::AMDGPU_GS: 985 case CallingConv::AMDGPU_PS: 986 case CallingConv::AMDGPU_CS: 987 case CallingConv::AMDGPU_HS: 988 case CallingConv::AMDGPU_ES: 989 case CallingConv::AMDGPU_LS: 990 return CC_AMDGPU; 991 case CallingConv::C: 992 case CallingConv::Fast: 993 case CallingConv::Cold: 994 return CC_AMDGPU_Func; 995 case CallingConv::AMDGPU_Gfx: 996 return CC_SI_Gfx; 997 case CallingConv::AMDGPU_KERNEL: 998 case CallingConv::SPIR_KERNEL: 999 default: 1000 report_fatal_error("Unsupported calling convention for call"); 1001 } 1002 } 1003 1004 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 1005 bool IsVarArg) { 1006 switch (CC) { 1007 case CallingConv::AMDGPU_KERNEL: 1008 case CallingConv::SPIR_KERNEL: 1009 llvm_unreachable("kernels should not be handled here"); 1010 case CallingConv::AMDGPU_VS: 1011 case CallingConv::AMDGPU_GS: 1012 case CallingConv::AMDGPU_PS: 1013 case CallingConv::AMDGPU_CS: 1014 case CallingConv::AMDGPU_HS: 1015 case CallingConv::AMDGPU_ES: 1016 case CallingConv::AMDGPU_LS: 1017 return RetCC_SI_Shader; 1018 case CallingConv::AMDGPU_Gfx: 1019 return RetCC_SI_Gfx; 1020 case CallingConv::C: 1021 case CallingConv::Fast: 1022 case CallingConv::Cold: 1023 return RetCC_AMDGPU_Func; 1024 default: 1025 report_fatal_error("Unsupported calling convention."); 1026 } 1027 } 1028 1029 /// The SelectionDAGBuilder will automatically promote function arguments 1030 /// with illegal types. However, this does not work for the AMDGPU targets 1031 /// since the function arguments are stored in memory as these illegal types. 1032 /// In order to handle this properly we need to get the original types sizes 1033 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1034 /// passing them to AnalyzeFormalArguments() 1035 1036 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1037 /// input values across multiple registers. Each item in the Ins array 1038 /// represents a single value that will be stored in registers. Ins[x].VT is 1039 /// the value type of the value that will be stored in the register, so 1040 /// whatever SDNode we lower the argument to needs to be this type. 1041 /// 1042 /// In order to correctly lower the arguments we need to know the size of each 1043 /// argument. Since Ins[x].VT gives us the size of the register that will 1044 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1045 /// for the original function argument so that we can deduce the correct memory 1046 /// type to use for Ins[x]. In most cases the correct memory type will be 1047 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1048 /// we have a kernel argument of type v8i8, this argument will be split into 1049 /// 8 parts and each part will be represented by its own item in the Ins array. 1050 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1051 /// the argument before it was split. From this, we deduce that the memory type 1052 /// for each individual part is i8. We pass the memory type as LocVT to the 1053 /// calling convention analysis function and the register type (Ins[x].VT) as 1054 /// the ValVT. 1055 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1056 CCState &State, 1057 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1058 const MachineFunction &MF = State.getMachineFunction(); 1059 const Function &Fn = MF.getFunction(); 1060 LLVMContext &Ctx = Fn.getParent()->getContext(); 1061 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1062 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1063 CallingConv::ID CC = Fn.getCallingConv(); 1064 1065 Align MaxAlign = Align(1); 1066 uint64_t ExplicitArgOffset = 0; 1067 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1068 1069 unsigned InIndex = 0; 1070 1071 for (const Argument &Arg : Fn.args()) { 1072 const bool IsByRef = Arg.hasByRefAttr(); 1073 Type *BaseArgTy = Arg.getType(); 1074 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1075 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1076 if (!Alignment) 1077 Alignment = DL.getABITypeAlign(MemArgTy); 1078 MaxAlign = max(Alignment, MaxAlign); 1079 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1080 1081 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1082 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1083 1084 // We're basically throwing away everything passed into us and starting over 1085 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1086 // to us as computed in Ins. 1087 // 1088 // We also need to figure out what type legalization is trying to do to get 1089 // the correct memory offsets. 1090 1091 SmallVector<EVT, 16> ValueVTs; 1092 SmallVector<uint64_t, 16> Offsets; 1093 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1094 1095 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1096 Value != NumValues; ++Value) { 1097 uint64_t BasePartOffset = Offsets[Value]; 1098 1099 EVT ArgVT = ValueVTs[Value]; 1100 EVT MemVT = ArgVT; 1101 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1102 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1103 1104 if (NumRegs == 1) { 1105 // This argument is not split, so the IR type is the memory type. 1106 if (ArgVT.isExtended()) { 1107 // We have an extended type, like i24, so we should just use the 1108 // register type. 1109 MemVT = RegisterVT; 1110 } else { 1111 MemVT = ArgVT; 1112 } 1113 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1114 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1115 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1116 // We have a vector value which has been split into a vector with 1117 // the same scalar type, but fewer elements. This should handle 1118 // all the floating-point vector types. 1119 MemVT = RegisterVT; 1120 } else if (ArgVT.isVector() && 1121 ArgVT.getVectorNumElements() == NumRegs) { 1122 // This arg has been split so that each element is stored in a separate 1123 // register. 1124 MemVT = ArgVT.getScalarType(); 1125 } else if (ArgVT.isExtended()) { 1126 // We have an extended type, like i65. 1127 MemVT = RegisterVT; 1128 } else { 1129 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1130 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1131 if (RegisterVT.isInteger()) { 1132 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1133 } else if (RegisterVT.isVector()) { 1134 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1135 unsigned NumElements = RegisterVT.getVectorNumElements(); 1136 assert(MemoryBits % NumElements == 0); 1137 // This vector type has been split into another vector type with 1138 // a different elements size. 1139 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1140 MemoryBits / NumElements); 1141 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1142 } else { 1143 llvm_unreachable("cannot deduce memory type."); 1144 } 1145 } 1146 1147 // Convert one element vectors to scalar. 1148 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1149 MemVT = MemVT.getScalarType(); 1150 1151 // Round up vec3/vec5 argument. 1152 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1153 assert(MemVT.getVectorNumElements() == 3 || 1154 MemVT.getVectorNumElements() == 5); 1155 MemVT = MemVT.getPow2VectorType(State.getContext()); 1156 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1157 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1158 } 1159 1160 unsigned PartOffset = 0; 1161 for (unsigned i = 0; i != NumRegs; ++i) { 1162 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1163 BasePartOffset + PartOffset, 1164 MemVT.getSimpleVT(), 1165 CCValAssign::Full)); 1166 PartOffset += MemVT.getStoreSize(); 1167 } 1168 } 1169 } 1170 } 1171 1172 SDValue AMDGPUTargetLowering::LowerReturn( 1173 SDValue Chain, CallingConv::ID CallConv, 1174 bool isVarArg, 1175 const SmallVectorImpl<ISD::OutputArg> &Outs, 1176 const SmallVectorImpl<SDValue> &OutVals, 1177 const SDLoc &DL, SelectionDAG &DAG) const { 1178 // FIXME: Fails for r600 tests 1179 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1180 // "wave terminate should not have return values"); 1181 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1182 } 1183 1184 //===---------------------------------------------------------------------===// 1185 // Target specific lowering 1186 //===---------------------------------------------------------------------===// 1187 1188 /// Selects the correct CCAssignFn for a given CallingConvention value. 1189 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1190 bool IsVarArg) { 1191 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1192 } 1193 1194 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1195 bool IsVarArg) { 1196 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1197 } 1198 1199 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1200 SelectionDAG &DAG, 1201 MachineFrameInfo &MFI, 1202 int ClobberedFI) const { 1203 SmallVector<SDValue, 8> ArgChains; 1204 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1205 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1206 1207 // Include the original chain at the beginning of the list. When this is 1208 // used by target LowerCall hooks, this helps legalize find the 1209 // CALLSEQ_BEGIN node. 1210 ArgChains.push_back(Chain); 1211 1212 // Add a chain value for each stack argument corresponding 1213 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1214 UE = DAG.getEntryNode().getNode()->use_end(); 1215 U != UE; ++U) { 1216 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1217 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1218 if (FI->getIndex() < 0) { 1219 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1220 int64_t InLastByte = InFirstByte; 1221 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1222 1223 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1224 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1225 ArgChains.push_back(SDValue(L, 1)); 1226 } 1227 } 1228 } 1229 } 1230 1231 // Build a tokenfactor for all the chains. 1232 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1233 } 1234 1235 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1236 SmallVectorImpl<SDValue> &InVals, 1237 StringRef Reason) const { 1238 SDValue Callee = CLI.Callee; 1239 SelectionDAG &DAG = CLI.DAG; 1240 1241 const Function &Fn = DAG.getMachineFunction().getFunction(); 1242 1243 StringRef FuncName("<unknown>"); 1244 1245 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1246 FuncName = G->getSymbol(); 1247 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1248 FuncName = G->getGlobal()->getName(); 1249 1250 DiagnosticInfoUnsupported NoCalls( 1251 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1252 DAG.getContext()->diagnose(NoCalls); 1253 1254 if (!CLI.IsTailCall) { 1255 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1256 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1257 } 1258 1259 return DAG.getEntryNode(); 1260 } 1261 1262 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1263 SmallVectorImpl<SDValue> &InVals) const { 1264 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1265 } 1266 1267 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1268 SelectionDAG &DAG) const { 1269 const Function &Fn = DAG.getMachineFunction().getFunction(); 1270 1271 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1272 SDLoc(Op).getDebugLoc()); 1273 DAG.getContext()->diagnose(NoDynamicAlloca); 1274 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1275 return DAG.getMergeValues(Ops, SDLoc()); 1276 } 1277 1278 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1279 SelectionDAG &DAG) const { 1280 switch (Op.getOpcode()) { 1281 default: 1282 Op->print(errs(), &DAG); 1283 llvm_unreachable("Custom lowering code for this " 1284 "instruction is not implemented yet!"); 1285 break; 1286 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1287 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1288 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1289 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1290 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1291 case ISD::FREM: return LowerFREM(Op, DAG); 1292 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1293 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1294 case ISD::FRINT: return LowerFRINT(Op, DAG); 1295 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1296 case ISD::FROUND: return LowerFROUND(Op, DAG); 1297 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1298 case ISD::FLOG: 1299 return LowerFLOG(Op, DAG, numbers::ln2f); 1300 case ISD::FLOG10: 1301 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1302 case ISD::FEXP: 1303 return lowerFEXP(Op, DAG); 1304 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1305 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1306 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1307 case ISD::FP_TO_SINT: 1308 case ISD::FP_TO_UINT: 1309 return LowerFP_TO_INT(Op, DAG); 1310 case ISD::CTTZ: 1311 case ISD::CTTZ_ZERO_UNDEF: 1312 case ISD::CTLZ: 1313 case ISD::CTLZ_ZERO_UNDEF: 1314 return LowerCTLZ_CTTZ(Op, DAG); 1315 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1316 } 1317 return Op; 1318 } 1319 1320 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1321 SmallVectorImpl<SDValue> &Results, 1322 SelectionDAG &DAG) const { 1323 switch (N->getOpcode()) { 1324 case ISD::SIGN_EXTEND_INREG: 1325 // Different parts of legalization seem to interpret which type of 1326 // sign_extend_inreg is the one to check for custom lowering. The extended 1327 // from type is what really matters, but some places check for custom 1328 // lowering of the result type. This results in trying to use 1329 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1330 // nothing here and let the illegal result integer be handled normally. 1331 return; 1332 default: 1333 return; 1334 } 1335 } 1336 1337 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1338 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1339 if (!GVar || !GVar->hasInitializer()) 1340 return false; 1341 1342 return !isa<UndefValue>(GVar->getInitializer()); 1343 } 1344 1345 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1346 SDValue Op, 1347 SelectionDAG &DAG) const { 1348 1349 const DataLayout &DL = DAG.getDataLayout(); 1350 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1351 const GlobalValue *GV = G->getGlobal(); 1352 1353 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1354 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1355 if (!MFI->isModuleEntryFunction() && 1356 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1357 SDLoc DL(Op); 1358 const Function &Fn = DAG.getMachineFunction().getFunction(); 1359 DiagnosticInfoUnsupported BadLDSDecl( 1360 Fn, "local memory global used by non-kernel function", 1361 DL.getDebugLoc(), DS_Warning); 1362 DAG.getContext()->diagnose(BadLDSDecl); 1363 1364 // We currently don't have a way to correctly allocate LDS objects that 1365 // aren't directly associated with a kernel. We do force inlining of 1366 // functions that use local objects. However, if these dead functions are 1367 // not eliminated, we don't want a compile time error. Just emit a warning 1368 // and a trap, since there should be no callable path here. 1369 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1370 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1371 Trap, DAG.getRoot()); 1372 DAG.setRoot(OutputChain); 1373 return DAG.getUNDEF(Op.getValueType()); 1374 } 1375 1376 // XXX: What does the value of G->getOffset() mean? 1377 assert(G->getOffset() == 0 && 1378 "Do not know what to do with an non-zero offset"); 1379 1380 // TODO: We could emit code to handle the initialization somewhere. 1381 // We ignore the initializer for now and legalize it to allow selection. 1382 // The initializer will anyway get errored out during assembly emission. 1383 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1384 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1385 } 1386 return SDValue(); 1387 } 1388 1389 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1390 SelectionDAG &DAG) const { 1391 SmallVector<SDValue, 8> Args; 1392 1393 EVT VT = Op.getValueType(); 1394 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1395 SDLoc SL(Op); 1396 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1397 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1398 1399 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1400 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1401 } 1402 1403 for (const SDUse &U : Op->ops()) 1404 DAG.ExtractVectorElements(U.get(), Args); 1405 1406 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1407 } 1408 1409 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1410 SelectionDAG &DAG) const { 1411 1412 SmallVector<SDValue, 8> Args; 1413 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1414 EVT VT = Op.getValueType(); 1415 EVT SrcVT = Op.getOperand(0).getValueType(); 1416 1417 // For these types, we have some TableGen patterns except if the index is 1 1418 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1419 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1420 Start != 1) 1421 return Op; 1422 1423 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1424 VT.getVectorNumElements()); 1425 1426 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1427 } 1428 1429 /// Generate Min/Max node 1430 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1431 SDValue LHS, SDValue RHS, 1432 SDValue True, SDValue False, 1433 SDValue CC, 1434 DAGCombinerInfo &DCI) const { 1435 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1436 return SDValue(); 1437 1438 SelectionDAG &DAG = DCI.DAG; 1439 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1440 switch (CCOpcode) { 1441 case ISD::SETOEQ: 1442 case ISD::SETONE: 1443 case ISD::SETUNE: 1444 case ISD::SETNE: 1445 case ISD::SETUEQ: 1446 case ISD::SETEQ: 1447 case ISD::SETFALSE: 1448 case ISD::SETFALSE2: 1449 case ISD::SETTRUE: 1450 case ISD::SETTRUE2: 1451 case ISD::SETUO: 1452 case ISD::SETO: 1453 break; 1454 case ISD::SETULE: 1455 case ISD::SETULT: { 1456 if (LHS == True) 1457 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1458 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1459 } 1460 case ISD::SETOLE: 1461 case ISD::SETOLT: 1462 case ISD::SETLE: 1463 case ISD::SETLT: { 1464 // Ordered. Assume ordered for undefined. 1465 1466 // Only do this after legalization to avoid interfering with other combines 1467 // which might occur. 1468 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1469 !DCI.isCalledByLegalizer()) 1470 return SDValue(); 1471 1472 // We need to permute the operands to get the correct NaN behavior. The 1473 // selected operand is the second one based on the failing compare with NaN, 1474 // so permute it based on the compare type the hardware uses. 1475 if (LHS == True) 1476 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1477 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1478 } 1479 case ISD::SETUGE: 1480 case ISD::SETUGT: { 1481 if (LHS == True) 1482 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1483 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1484 } 1485 case ISD::SETGT: 1486 case ISD::SETGE: 1487 case ISD::SETOGE: 1488 case ISD::SETOGT: { 1489 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1490 !DCI.isCalledByLegalizer()) 1491 return SDValue(); 1492 1493 if (LHS == True) 1494 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1495 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1496 } 1497 case ISD::SETCC_INVALID: 1498 llvm_unreachable("Invalid setcc condcode!"); 1499 } 1500 return SDValue(); 1501 } 1502 1503 std::pair<SDValue, SDValue> 1504 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1505 SDLoc SL(Op); 1506 1507 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1508 1509 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1510 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1511 1512 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1513 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1514 1515 return std::make_pair(Lo, Hi); 1516 } 1517 1518 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1519 SDLoc SL(Op); 1520 1521 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1522 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1523 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1524 } 1525 1526 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1527 SDLoc SL(Op); 1528 1529 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1530 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1531 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1532 } 1533 1534 // Split a vector type into two parts. The first part is a power of two vector. 1535 // The second part is whatever is left over, and is a scalar if it would 1536 // otherwise be a 1-vector. 1537 std::pair<EVT, EVT> 1538 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1539 EVT LoVT, HiVT; 1540 EVT EltVT = VT.getVectorElementType(); 1541 unsigned NumElts = VT.getVectorNumElements(); 1542 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1543 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1544 HiVT = NumElts - LoNumElts == 1 1545 ? EltVT 1546 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1547 return std::make_pair(LoVT, HiVT); 1548 } 1549 1550 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1551 // scalar. 1552 std::pair<SDValue, SDValue> 1553 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1554 const EVT &LoVT, const EVT &HiVT, 1555 SelectionDAG &DAG) const { 1556 assert(LoVT.getVectorNumElements() + 1557 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1558 N.getValueType().getVectorNumElements() && 1559 "More vector elements requested than available!"); 1560 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1561 DAG.getVectorIdxConstant(0, DL)); 1562 SDValue Hi = DAG.getNode( 1563 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1564 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1565 return std::make_pair(Lo, Hi); 1566 } 1567 1568 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1569 SelectionDAG &DAG) const { 1570 LoadSDNode *Load = cast<LoadSDNode>(Op); 1571 EVT VT = Op.getValueType(); 1572 SDLoc SL(Op); 1573 1574 1575 // If this is a 2 element vector, we really want to scalarize and not create 1576 // weird 1 element vectors. 1577 if (VT.getVectorNumElements() == 2) { 1578 SDValue Ops[2]; 1579 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1580 return DAG.getMergeValues(Ops, SL); 1581 } 1582 1583 SDValue BasePtr = Load->getBasePtr(); 1584 EVT MemVT = Load->getMemoryVT(); 1585 1586 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1587 1588 EVT LoVT, HiVT; 1589 EVT LoMemVT, HiMemVT; 1590 SDValue Lo, Hi; 1591 1592 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1593 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1594 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1595 1596 unsigned Size = LoMemVT.getStoreSize(); 1597 unsigned BaseAlign = Load->getAlignment(); 1598 unsigned HiAlign = MinAlign(BaseAlign, Size); 1599 1600 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1601 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1602 BaseAlign, Load->getMemOperand()->getFlags()); 1603 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1604 SDValue HiLoad = 1605 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1606 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1607 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1608 1609 SDValue Join; 1610 if (LoVT == HiVT) { 1611 // This is the case that the vector is power of two so was evenly split. 1612 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1613 } else { 1614 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1615 DAG.getVectorIdxConstant(0, SL)); 1616 Join = DAG.getNode( 1617 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1618 VT, Join, HiLoad, 1619 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1620 } 1621 1622 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1623 LoLoad.getValue(1), HiLoad.getValue(1))}; 1624 1625 return DAG.getMergeValues(Ops, SL); 1626 } 1627 1628 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1629 SelectionDAG &DAG) const { 1630 LoadSDNode *Load = cast<LoadSDNode>(Op); 1631 EVT VT = Op.getValueType(); 1632 SDValue BasePtr = Load->getBasePtr(); 1633 EVT MemVT = Load->getMemoryVT(); 1634 SDLoc SL(Op); 1635 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1636 unsigned BaseAlign = Load->getAlignment(); 1637 unsigned NumElements = MemVT.getVectorNumElements(); 1638 1639 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1640 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1641 if (NumElements != 3 || 1642 (BaseAlign < 8 && 1643 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1644 return SplitVectorLoad(Op, DAG); 1645 1646 assert(NumElements == 3); 1647 1648 EVT WideVT = 1649 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1650 EVT WideMemVT = 1651 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1652 SDValue WideLoad = DAG.getExtLoad( 1653 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1654 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1655 return DAG.getMergeValues( 1656 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1657 DAG.getVectorIdxConstant(0, SL)), 1658 WideLoad.getValue(1)}, 1659 SL); 1660 } 1661 1662 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1663 SelectionDAG &DAG) const { 1664 StoreSDNode *Store = cast<StoreSDNode>(Op); 1665 SDValue Val = Store->getValue(); 1666 EVT VT = Val.getValueType(); 1667 1668 // If this is a 2 element vector, we really want to scalarize and not create 1669 // weird 1 element vectors. 1670 if (VT.getVectorNumElements() == 2) 1671 return scalarizeVectorStore(Store, DAG); 1672 1673 EVT MemVT = Store->getMemoryVT(); 1674 SDValue Chain = Store->getChain(); 1675 SDValue BasePtr = Store->getBasePtr(); 1676 SDLoc SL(Op); 1677 1678 EVT LoVT, HiVT; 1679 EVT LoMemVT, HiMemVT; 1680 SDValue Lo, Hi; 1681 1682 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1683 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1684 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1685 1686 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1687 1688 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1689 unsigned BaseAlign = Store->getAlignment(); 1690 unsigned Size = LoMemVT.getStoreSize(); 1691 unsigned HiAlign = MinAlign(BaseAlign, Size); 1692 1693 SDValue LoStore = 1694 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1695 Store->getMemOperand()->getFlags()); 1696 SDValue HiStore = 1697 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1698 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1699 1700 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1701 } 1702 1703 // This is a shortcut for integer division because we have fast i32<->f32 1704 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1705 // float is enough to accurately represent up to a 24-bit signed integer. 1706 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1707 bool Sign) const { 1708 SDLoc DL(Op); 1709 EVT VT = Op.getValueType(); 1710 SDValue LHS = Op.getOperand(0); 1711 SDValue RHS = Op.getOperand(1); 1712 MVT IntVT = MVT::i32; 1713 MVT FltVT = MVT::f32; 1714 1715 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1716 if (LHSSignBits < 9) 1717 return SDValue(); 1718 1719 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1720 if (RHSSignBits < 9) 1721 return SDValue(); 1722 1723 unsigned BitSize = VT.getSizeInBits(); 1724 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1725 unsigned DivBits = BitSize - SignBits; 1726 if (Sign) 1727 ++DivBits; 1728 1729 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1730 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1731 1732 SDValue jq = DAG.getConstant(1, DL, IntVT); 1733 1734 if (Sign) { 1735 // char|short jq = ia ^ ib; 1736 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1737 1738 // jq = jq >> (bitsize - 2) 1739 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1740 DAG.getConstant(BitSize - 2, DL, VT)); 1741 1742 // jq = jq | 0x1 1743 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1744 } 1745 1746 // int ia = (int)LHS; 1747 SDValue ia = LHS; 1748 1749 // int ib, (int)RHS; 1750 SDValue ib = RHS; 1751 1752 // float fa = (float)ia; 1753 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1754 1755 // float fb = (float)ib; 1756 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1757 1758 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1759 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1760 1761 // fq = trunc(fq); 1762 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1763 1764 // float fqneg = -fq; 1765 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1766 1767 MachineFunction &MF = DAG.getMachineFunction(); 1768 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1769 1770 // float fr = mad(fqneg, fb, fa); 1771 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1772 (unsigned)ISD::FMA : 1773 !MFI->getMode().allFP32Denormals() ? 1774 (unsigned)ISD::FMAD : 1775 (unsigned)AMDGPUISD::FMAD_FTZ; 1776 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1777 1778 // int iq = (int)fq; 1779 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1780 1781 // fr = fabs(fr); 1782 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1783 1784 // fb = fabs(fb); 1785 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1786 1787 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1788 1789 // int cv = fr >= fb; 1790 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1791 1792 // jq = (cv ? jq : 0); 1793 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1794 1795 // dst = iq + jq; 1796 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1797 1798 // Rem needs compensation, it's easier to recompute it 1799 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1800 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1801 1802 // Truncate to number of bits this divide really is. 1803 if (Sign) { 1804 SDValue InRegSize 1805 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1806 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1807 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1808 } else { 1809 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1810 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1811 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1812 } 1813 1814 return DAG.getMergeValues({ Div, Rem }, DL); 1815 } 1816 1817 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1818 SelectionDAG &DAG, 1819 SmallVectorImpl<SDValue> &Results) const { 1820 SDLoc DL(Op); 1821 EVT VT = Op.getValueType(); 1822 1823 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1824 1825 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1826 1827 SDValue One = DAG.getConstant(1, DL, HalfVT); 1828 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1829 1830 //HiLo split 1831 SDValue LHS = Op.getOperand(0); 1832 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1833 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1834 1835 SDValue RHS = Op.getOperand(1); 1836 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1837 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1838 1839 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1840 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1841 1842 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1843 LHS_Lo, RHS_Lo); 1844 1845 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1846 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1847 1848 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1849 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1850 return; 1851 } 1852 1853 if (isTypeLegal(MVT::i64)) { 1854 MachineFunction &MF = DAG.getMachineFunction(); 1855 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1856 1857 // Compute denominator reciprocal. 1858 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1859 (unsigned)ISD::FMA : 1860 !MFI->getMode().allFP32Denormals() ? 1861 (unsigned)ISD::FMAD : 1862 (unsigned)AMDGPUISD::FMAD_FTZ; 1863 1864 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1865 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1866 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1867 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1868 Cvt_Lo); 1869 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1870 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1871 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1872 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1873 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1874 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1875 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1876 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1877 Mul1); 1878 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1879 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1880 SDValue Rcp64 = DAG.getBitcast(VT, 1881 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1882 1883 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1884 SDValue One64 = DAG.getConstant(1, DL, VT); 1885 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1886 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1887 1888 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1889 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1890 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1891 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1892 Zero); 1893 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1894 One); 1895 1896 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1897 Mulhi1_Lo, Zero1); 1898 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1899 Mulhi1_Hi, Add1_Lo.getValue(1)); 1900 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1901 SDValue Add1 = DAG.getBitcast(VT, 1902 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1903 1904 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1905 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1906 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1907 Zero); 1908 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1909 One); 1910 1911 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1912 Mulhi2_Lo, Zero1); 1913 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1914 Mulhi2_Hi, Add1_Lo.getValue(1)); 1915 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1916 Zero, Add2_Lo.getValue(1)); 1917 SDValue Add2 = DAG.getBitcast(VT, 1918 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1919 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1920 1921 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1922 1923 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1924 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1925 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1926 Mul3_Lo, Zero1); 1927 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1928 Mul3_Hi, Sub1_Lo.getValue(1)); 1929 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1930 SDValue Sub1 = DAG.getBitcast(VT, 1931 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1932 1933 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1934 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1935 ISD::SETUGE); 1936 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1937 ISD::SETUGE); 1938 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1939 1940 // TODO: Here and below portions of the code can be enclosed into if/endif. 1941 // Currently control flow is unconditional and we have 4 selects after 1942 // potential endif to substitute PHIs. 1943 1944 // if C3 != 0 ... 1945 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1946 RHS_Lo, Zero1); 1947 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1948 RHS_Hi, Sub1_Lo.getValue(1)); 1949 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1950 Zero, Sub2_Lo.getValue(1)); 1951 SDValue Sub2 = DAG.getBitcast(VT, 1952 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1953 1954 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1955 1956 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1957 ISD::SETUGE); 1958 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1959 ISD::SETUGE); 1960 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1961 1962 // if (C6 != 0) 1963 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1964 1965 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1966 RHS_Lo, Zero1); 1967 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1968 RHS_Hi, Sub2_Lo.getValue(1)); 1969 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1970 Zero, Sub3_Lo.getValue(1)); 1971 SDValue Sub3 = DAG.getBitcast(VT, 1972 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1973 1974 // endif C6 1975 // endif C3 1976 1977 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1978 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1979 1980 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1981 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1982 1983 Results.push_back(Div); 1984 Results.push_back(Rem); 1985 1986 return; 1987 } 1988 1989 // r600 expandion. 1990 // Get Speculative values 1991 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1992 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1993 1994 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1995 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1996 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1997 1998 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1999 SDValue DIV_Lo = Zero; 2000 2001 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 2002 2003 for (unsigned i = 0; i < halfBitWidth; ++i) { 2004 const unsigned bitPos = halfBitWidth - i - 1; 2005 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 2006 // Get value of high bit 2007 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 2008 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 2009 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 2010 2011 // Shift 2012 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2013 // Add LHS high bit 2014 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2015 2016 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2017 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2018 2019 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2020 2021 // Update REM 2022 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2023 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2024 } 2025 2026 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2027 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2028 Results.push_back(DIV); 2029 Results.push_back(REM); 2030 } 2031 2032 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2033 SelectionDAG &DAG) const { 2034 SDLoc DL(Op); 2035 EVT VT = Op.getValueType(); 2036 2037 if (VT == MVT::i64) { 2038 SmallVector<SDValue, 2> Results; 2039 LowerUDIVREM64(Op, DAG, Results); 2040 return DAG.getMergeValues(Results, DL); 2041 } 2042 2043 if (VT == MVT::i32) { 2044 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2045 return Res; 2046 } 2047 2048 SDValue X = Op.getOperand(0); 2049 SDValue Y = Op.getOperand(1); 2050 2051 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2052 // algorithm used here. 2053 2054 // Initial estimate of inv(y). 2055 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2056 2057 // One round of UNR. 2058 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2059 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2060 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2061 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2062 2063 // Quotient/remainder estimate. 2064 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2065 SDValue R = 2066 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2067 2068 // First quotient/remainder refinement. 2069 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2070 SDValue One = DAG.getConstant(1, DL, VT); 2071 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2072 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2073 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2074 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2075 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2076 2077 // Second quotient/remainder refinement. 2078 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2079 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2080 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2081 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2082 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2083 2084 return DAG.getMergeValues({Q, R}, DL); 2085 } 2086 2087 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2088 SelectionDAG &DAG) const { 2089 SDLoc DL(Op); 2090 EVT VT = Op.getValueType(); 2091 2092 SDValue LHS = Op.getOperand(0); 2093 SDValue RHS = Op.getOperand(1); 2094 2095 SDValue Zero = DAG.getConstant(0, DL, VT); 2096 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2097 2098 if (VT == MVT::i32) { 2099 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2100 return Res; 2101 } 2102 2103 if (VT == MVT::i64 && 2104 DAG.ComputeNumSignBits(LHS) > 32 && 2105 DAG.ComputeNumSignBits(RHS) > 32) { 2106 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2107 2108 //HiLo split 2109 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2110 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2111 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2112 LHS_Lo, RHS_Lo); 2113 SDValue Res[2] = { 2114 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2115 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2116 }; 2117 return DAG.getMergeValues(Res, DL); 2118 } 2119 2120 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2121 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2122 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2123 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2124 2125 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2126 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2127 2128 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2129 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2130 2131 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2132 SDValue Rem = Div.getValue(1); 2133 2134 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2135 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2136 2137 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2138 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2139 2140 SDValue Res[2] = { 2141 Div, 2142 Rem 2143 }; 2144 return DAG.getMergeValues(Res, DL); 2145 } 2146 2147 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2148 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2149 SDLoc SL(Op); 2150 EVT VT = Op.getValueType(); 2151 auto Flags = Op->getFlags(); 2152 SDValue X = Op.getOperand(0); 2153 SDValue Y = Op.getOperand(1); 2154 2155 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2156 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2157 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2158 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2159 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2160 } 2161 2162 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2163 SDLoc SL(Op); 2164 SDValue Src = Op.getOperand(0); 2165 2166 // result = trunc(src) 2167 // if (src > 0.0 && src != result) 2168 // result += 1.0 2169 2170 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2171 2172 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2173 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2174 2175 EVT SetCCVT = 2176 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2177 2178 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2179 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2180 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2181 2182 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2183 // TODO: Should this propagate fast-math-flags? 2184 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2185 } 2186 2187 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2188 SelectionDAG &DAG) { 2189 const unsigned FractBits = 52; 2190 const unsigned ExpBits = 11; 2191 2192 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2193 Hi, 2194 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2195 DAG.getConstant(ExpBits, SL, MVT::i32)); 2196 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2197 DAG.getConstant(1023, SL, MVT::i32)); 2198 2199 return Exp; 2200 } 2201 2202 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2203 SDLoc SL(Op); 2204 SDValue Src = Op.getOperand(0); 2205 2206 assert(Op.getValueType() == MVT::f64); 2207 2208 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2209 2210 // Extract the upper half, since this is where we will find the sign and 2211 // exponent. 2212 SDValue Hi = getHiHalf64(Src, DAG); 2213 2214 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2215 2216 const unsigned FractBits = 52; 2217 2218 // Extract the sign bit. 2219 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2220 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2221 2222 // Extend back to 64-bits. 2223 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2224 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2225 2226 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2227 const SDValue FractMask 2228 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2229 2230 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2231 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2232 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2233 2234 EVT SetCCVT = 2235 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2236 2237 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2238 2239 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2240 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2241 2242 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2243 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2244 2245 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2246 } 2247 2248 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2249 SDLoc SL(Op); 2250 SDValue Src = Op.getOperand(0); 2251 2252 assert(Op.getValueType() == MVT::f64); 2253 2254 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2255 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2256 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2257 2258 // TODO: Should this propagate fast-math-flags? 2259 2260 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2261 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2262 2263 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2264 2265 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2266 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2267 2268 EVT SetCCVT = 2269 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2270 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2271 2272 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2273 } 2274 2275 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2276 // FNEARBYINT and FRINT are the same, except in their handling of FP 2277 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2278 // rint, so just treat them as equivalent. 2279 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2280 } 2281 2282 // XXX - May require not supporting f32 denormals? 2283 2284 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2285 // compare and vselect end up producing worse code than scalarizing the whole 2286 // operation. 2287 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2288 SDLoc SL(Op); 2289 SDValue X = Op.getOperand(0); 2290 EVT VT = Op.getValueType(); 2291 2292 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2293 2294 // TODO: Should this propagate fast-math-flags? 2295 2296 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2297 2298 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2299 2300 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2301 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2302 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2303 2304 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2305 2306 EVT SetCCVT = 2307 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2308 2309 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2310 2311 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2312 2313 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2314 } 2315 2316 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2317 SDLoc SL(Op); 2318 SDValue Src = Op.getOperand(0); 2319 2320 // result = trunc(src); 2321 // if (src < 0.0 && src != result) 2322 // result += -1.0. 2323 2324 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2325 2326 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2327 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2328 2329 EVT SetCCVT = 2330 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2331 2332 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2333 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2334 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2335 2336 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2337 // TODO: Should this propagate fast-math-flags? 2338 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2339 } 2340 2341 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2342 double Log2BaseInverted) const { 2343 EVT VT = Op.getValueType(); 2344 2345 SDLoc SL(Op); 2346 SDValue Operand = Op.getOperand(0); 2347 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2348 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2349 2350 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2351 } 2352 2353 // exp2(M_LOG2E_F * f); 2354 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2355 EVT VT = Op.getValueType(); 2356 SDLoc SL(Op); 2357 SDValue Src = Op.getOperand(0); 2358 2359 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2360 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2361 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2362 } 2363 2364 static bool isCtlzOpc(unsigned Opc) { 2365 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2366 } 2367 2368 static bool isCttzOpc(unsigned Opc) { 2369 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2370 } 2371 2372 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2373 SDLoc SL(Op); 2374 SDValue Src = Op.getOperand(0); 2375 2376 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2377 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2378 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2379 2380 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2381 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2382 2383 if (Src.getValueType() == MVT::i32) { 2384 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2385 // (cttz hi:lo) -> (umin (ffbl src), 32) 2386 // (ctlz_zero_undef src) -> (ffbh src) 2387 // (cttz_zero_undef src) -> (ffbl src) 2388 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2389 if (!ZeroUndef) { 2390 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2391 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2392 } 2393 return NewOpr; 2394 } 2395 2396 SDValue Lo, Hi; 2397 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2398 2399 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2400 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2401 2402 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2403 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2404 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2405 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2406 2407 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2408 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2409 if (Ctlz) 2410 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2411 else 2412 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2413 2414 SDValue NewOpr; 2415 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2416 if (!ZeroUndef) { 2417 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2418 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2419 } 2420 2421 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2422 } 2423 2424 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2425 bool Signed) const { 2426 // The regular method converting a 64-bit integer to float roughly consists of 2427 // 2 steps: normalization and rounding. In fact, after normalization, the 2428 // conversion from a 64-bit integer to a float is essentially the same as the 2429 // one from a 32-bit integer. The only difference is that it has more 2430 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2431 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2432 // converted into the correct float number. The basic steps for the unsigned 2433 // conversion are illustrated in the following pseudo code: 2434 // 2435 // f32 uitofp(i64 u) { 2436 // i32 hi, lo = split(u); 2437 // // Only count the leading zeros in hi as we have native support of the 2438 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2439 // // reduced to a 32-bit one automatically. 2440 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2441 // u <<= shamt; 2442 // hi, lo = split(u); 2443 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2444 // // convert it as a 32-bit integer and scale the result back. 2445 // return uitofp(hi) * 2^(32 - shamt); 2446 // } 2447 // 2448 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2449 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2450 // converted instead followed by negation based its sign bit. 2451 2452 SDLoc SL(Op); 2453 SDValue Src = Op.getOperand(0); 2454 2455 SDValue Lo, Hi; 2456 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2457 SDValue Sign; 2458 SDValue ShAmt; 2459 if (Signed && Subtarget->isGCN()) { 2460 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2461 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2462 // account. That is, the maximal shift is 2463 // - 32 if Lo and Hi have opposite signs; 2464 // - 33 if Lo and Hi have the same sign. 2465 // 2466 // Or, MaxShAmt = 33 + OppositeSign, where 2467 // 2468 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2469 // - -1 if Lo and Hi have opposite signs; and 2470 // - 0 otherwise. 2471 // 2472 // All in all, ShAmt is calculated as 2473 // 2474 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2475 // 2476 // or 2477 // 2478 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2479 // 2480 // to reduce the critical path. 2481 SDValue OppositeSign = DAG.getNode( 2482 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2483 DAG.getConstant(31, SL, MVT::i32)); 2484 SDValue MaxShAmt = 2485 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2486 OppositeSign); 2487 // Count the leading sign bits. 2488 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2489 // Different from unsigned conversion, the shift should be one bit less to 2490 // preserve the sign bit. 2491 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2492 DAG.getConstant(1, SL, MVT::i32)); 2493 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2494 } else { 2495 if (Signed) { 2496 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2497 // absolute value first. 2498 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2499 DAG.getConstant(63, SL, MVT::i64)); 2500 SDValue Abs = 2501 DAG.getNode(ISD::XOR, SL, MVT::i64, 2502 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2503 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2504 } 2505 // Count the leading zeros. 2506 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2507 // The shift amount for signed integers is [0, 32]. 2508 } 2509 // Normalize the given 64-bit integer. 2510 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2511 // Split it again. 2512 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2513 // Calculate the adjust bit for rounding. 2514 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2515 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2516 DAG.getConstant(1, SL, MVT::i32), Lo); 2517 // Get the 32-bit normalized integer. 2518 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2519 // Convert the normalized 32-bit integer into f32. 2520 unsigned Opc = 2521 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2522 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2523 2524 // Finally, need to scale back the converted floating number as the original 2525 // 64-bit integer is converted as a 32-bit one. 2526 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2527 ShAmt); 2528 // On GCN, use LDEXP directly. 2529 if (Subtarget->isGCN()) 2530 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2531 2532 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2533 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2534 // exponent is enough to avoid overflowing into the sign bit. 2535 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2536 DAG.getConstant(23, SL, MVT::i32)); 2537 SDValue IVal = 2538 DAG.getNode(ISD::ADD, SL, MVT::i32, 2539 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2540 if (Signed) { 2541 // Set the sign bit. 2542 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2543 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2544 DAG.getConstant(31, SL, MVT::i32)); 2545 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2546 } 2547 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2548 } 2549 2550 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2551 bool Signed) const { 2552 SDLoc SL(Op); 2553 SDValue Src = Op.getOperand(0); 2554 2555 SDValue Lo, Hi; 2556 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2557 2558 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2559 SL, MVT::f64, Hi); 2560 2561 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2562 2563 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2564 DAG.getConstant(32, SL, MVT::i32)); 2565 // TODO: Should this propagate fast-math-flags? 2566 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2567 } 2568 2569 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2570 SelectionDAG &DAG) const { 2571 // TODO: Factor out code common with LowerSINT_TO_FP. 2572 EVT DestVT = Op.getValueType(); 2573 SDValue Src = Op.getOperand(0); 2574 EVT SrcVT = Src.getValueType(); 2575 2576 if (SrcVT == MVT::i16) { 2577 if (DestVT == MVT::f16) 2578 return Op; 2579 SDLoc DL(Op); 2580 2581 // Promote src to i32 2582 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2583 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2584 } 2585 2586 assert(SrcVT == MVT::i64 && "operation should be legal"); 2587 2588 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2589 SDLoc DL(Op); 2590 2591 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2592 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2593 SDValue FPRound = 2594 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2595 2596 return FPRound; 2597 } 2598 2599 if (DestVT == MVT::f32) 2600 return LowerINT_TO_FP32(Op, DAG, false); 2601 2602 assert(DestVT == MVT::f64); 2603 return LowerINT_TO_FP64(Op, DAG, false); 2604 } 2605 2606 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2607 SelectionDAG &DAG) const { 2608 EVT DestVT = Op.getValueType(); 2609 2610 SDValue Src = Op.getOperand(0); 2611 EVT SrcVT = Src.getValueType(); 2612 2613 if (SrcVT == MVT::i16) { 2614 if (DestVT == MVT::f16) 2615 return Op; 2616 2617 SDLoc DL(Op); 2618 // Promote src to i32 2619 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2620 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2621 } 2622 2623 assert(SrcVT == MVT::i64 && "operation should be legal"); 2624 2625 // TODO: Factor out code common with LowerUINT_TO_FP. 2626 2627 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2628 SDLoc DL(Op); 2629 SDValue Src = Op.getOperand(0); 2630 2631 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2632 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2633 SDValue FPRound = 2634 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2635 2636 return FPRound; 2637 } 2638 2639 if (DestVT == MVT::f32) 2640 return LowerINT_TO_FP32(Op, DAG, true); 2641 2642 assert(DestVT == MVT::f64); 2643 return LowerINT_TO_FP64(Op, DAG, true); 2644 } 2645 2646 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2647 bool Signed) const { 2648 SDLoc SL(Op); 2649 2650 SDValue Src = Op.getOperand(0); 2651 EVT SrcVT = Src.getValueType(); 2652 2653 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2654 2655 // The basic idea of converting a floating point number into a pair of 32-bit 2656 // integers is illustrated as follows: 2657 // 2658 // tf := trunc(val); 2659 // hif := floor(tf * 2^-32); 2660 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2661 // hi := fptoi(hif); 2662 // lo := fptoi(lof); 2663 // 2664 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2665 SDValue Sign; 2666 if (Signed && SrcVT == MVT::f32) { 2667 // However, a 32-bit floating point number has only 23 bits mantissa and 2668 // it's not enough to hold all the significant bits of `lof` if val is 2669 // negative. To avoid the loss of precision, We need to take the absolute 2670 // value after truncating and flip the result back based on the original 2671 // signedness. 2672 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2673 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2674 DAG.getConstant(31, SL, MVT::i32)); 2675 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2676 } 2677 2678 SDValue K0, K1; 2679 if (SrcVT == MVT::f64) { 2680 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2681 SL, SrcVT); 2682 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2683 SL, SrcVT); 2684 } else { 2685 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2686 SrcVT); 2687 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2688 SrcVT); 2689 } 2690 // TODO: Should this propagate fast-math-flags? 2691 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2692 2693 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2694 2695 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2696 2697 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2698 : ISD::FP_TO_UINT, 2699 SL, MVT::i32, FloorMul); 2700 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2701 2702 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2703 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2704 2705 if (Signed && SrcVT == MVT::f32) { 2706 assert(Sign); 2707 // Flip the result based on the signedness, which is either all 0s or 1s. 2708 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2709 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2710 // r := xor(r, sign) - sign; 2711 Result = 2712 DAG.getNode(ISD::SUB, SL, MVT::i64, 2713 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2714 } 2715 2716 return Result; 2717 } 2718 2719 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2720 SDLoc DL(Op); 2721 SDValue N0 = Op.getOperand(0); 2722 2723 // Convert to target node to get known bits 2724 if (N0.getValueType() == MVT::f32) 2725 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2726 2727 if (getTargetMachine().Options.UnsafeFPMath) { 2728 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2729 return SDValue(); 2730 } 2731 2732 assert(N0.getSimpleValueType() == MVT::f64); 2733 2734 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2735 const unsigned ExpMask = 0x7ff; 2736 const unsigned ExpBiasf64 = 1023; 2737 const unsigned ExpBiasf16 = 15; 2738 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2739 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2740 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2741 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2742 DAG.getConstant(32, DL, MVT::i64)); 2743 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2744 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2745 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2746 DAG.getConstant(20, DL, MVT::i64)); 2747 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2748 DAG.getConstant(ExpMask, DL, MVT::i32)); 2749 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2750 // add the f16 bias (15) to get the biased exponent for the f16 format. 2751 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2752 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2753 2754 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2755 DAG.getConstant(8, DL, MVT::i32)); 2756 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2757 DAG.getConstant(0xffe, DL, MVT::i32)); 2758 2759 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2760 DAG.getConstant(0x1ff, DL, MVT::i32)); 2761 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2762 2763 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2764 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2765 2766 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2767 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2768 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2769 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2770 2771 // N = M | (E << 12); 2772 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2773 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2774 DAG.getConstant(12, DL, MVT::i32))); 2775 2776 // B = clamp(1-E, 0, 13); 2777 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2778 One, E); 2779 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2780 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2781 DAG.getConstant(13, DL, MVT::i32)); 2782 2783 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2784 DAG.getConstant(0x1000, DL, MVT::i32)); 2785 2786 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2787 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2788 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2789 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2790 2791 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2792 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2793 DAG.getConstant(0x7, DL, MVT::i32)); 2794 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2795 DAG.getConstant(2, DL, MVT::i32)); 2796 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2797 One, Zero, ISD::SETEQ); 2798 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2799 One, Zero, ISD::SETGT); 2800 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2801 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2802 2803 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2804 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2805 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2806 I, V, ISD::SETEQ); 2807 2808 // Extract the sign bit. 2809 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2810 DAG.getConstant(16, DL, MVT::i32)); 2811 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2812 DAG.getConstant(0x8000, DL, MVT::i32)); 2813 2814 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2815 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2816 } 2817 2818 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2819 SelectionDAG &DAG) const { 2820 SDValue Src = Op.getOperand(0); 2821 unsigned OpOpcode = Op.getOpcode(); 2822 EVT SrcVT = Src.getValueType(); 2823 EVT DestVT = Op.getValueType(); 2824 2825 // Will be selected natively 2826 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2827 return Op; 2828 2829 // Promote i16 to i32 2830 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2831 SDLoc DL(Op); 2832 2833 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2834 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2835 } 2836 2837 if (SrcVT == MVT::f16 || 2838 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2839 SDLoc DL(Op); 2840 2841 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2842 unsigned Ext = 2843 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2844 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2845 } 2846 2847 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2848 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2849 2850 return SDValue(); 2851 } 2852 2853 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2854 SelectionDAG &DAG) const { 2855 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2856 MVT VT = Op.getSimpleValueType(); 2857 MVT ScalarVT = VT.getScalarType(); 2858 2859 assert(VT.isVector()); 2860 2861 SDValue Src = Op.getOperand(0); 2862 SDLoc DL(Op); 2863 2864 // TODO: Don't scalarize on Evergreen? 2865 unsigned NElts = VT.getVectorNumElements(); 2866 SmallVector<SDValue, 8> Args; 2867 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2868 2869 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2870 for (unsigned I = 0; I < NElts; ++I) 2871 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2872 2873 return DAG.getBuildVector(VT, DL, Args); 2874 } 2875 2876 //===----------------------------------------------------------------------===// 2877 // Custom DAG optimizations 2878 //===----------------------------------------------------------------------===// 2879 2880 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2881 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2882 } 2883 2884 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2885 EVT VT = Op.getValueType(); 2886 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2887 // as unsigned 24-bit values. 2888 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2889 } 2890 2891 static SDValue simplifyMul24(SDNode *Node24, 2892 TargetLowering::DAGCombinerInfo &DCI) { 2893 SelectionDAG &DAG = DCI.DAG; 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2896 2897 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2898 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2899 unsigned NewOpcode = Node24->getOpcode(); 2900 if (IsIntrin) { 2901 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2902 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2903 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2904 } 2905 2906 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2907 2908 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2909 // the operands to have other uses, but will only perform simplifications that 2910 // involve bypassing some nodes for this user. 2911 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2912 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2913 if (DemandedLHS || DemandedRHS) 2914 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2915 DemandedLHS ? DemandedLHS : LHS, 2916 DemandedRHS ? DemandedRHS : RHS); 2917 2918 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2919 // operands if this node is the only user. 2920 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2921 return SDValue(Node24, 0); 2922 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2923 return SDValue(Node24, 0); 2924 2925 return SDValue(); 2926 } 2927 2928 template <typename IntTy> 2929 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2930 uint32_t Width, const SDLoc &DL) { 2931 if (Width + Offset < 32) { 2932 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2933 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2934 return DAG.getConstant(Result, DL, MVT::i32); 2935 } 2936 2937 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2938 } 2939 2940 static bool hasVolatileUser(SDNode *Val) { 2941 for (SDNode *U : Val->uses()) { 2942 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2943 if (M->isVolatile()) 2944 return true; 2945 } 2946 } 2947 2948 return false; 2949 } 2950 2951 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2952 // i32 vectors are the canonical memory type. 2953 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2954 return false; 2955 2956 if (!VT.isByteSized()) 2957 return false; 2958 2959 unsigned Size = VT.getStoreSize(); 2960 2961 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2962 return false; 2963 2964 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2965 return false; 2966 2967 return true; 2968 } 2969 2970 // Replace load of an illegal type with a store of a bitcast to a friendlier 2971 // type. 2972 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2973 DAGCombinerInfo &DCI) const { 2974 if (!DCI.isBeforeLegalize()) 2975 return SDValue(); 2976 2977 LoadSDNode *LN = cast<LoadSDNode>(N); 2978 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2979 return SDValue(); 2980 2981 SDLoc SL(N); 2982 SelectionDAG &DAG = DCI.DAG; 2983 EVT VT = LN->getMemoryVT(); 2984 2985 unsigned Size = VT.getStoreSize(); 2986 Align Alignment = LN->getAlign(); 2987 if (Alignment < Size && isTypeLegal(VT)) { 2988 bool IsFast; 2989 unsigned AS = LN->getAddressSpace(); 2990 2991 // Expand unaligned loads earlier than legalization. Due to visitation order 2992 // problems during legalization, the emitted instructions to pack and unpack 2993 // the bytes again are not eliminated in the case of an unaligned copy. 2994 if (!allowsMisalignedMemoryAccesses( 2995 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 2996 SDValue Ops[2]; 2997 2998 if (VT.isVector()) 2999 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 3000 else 3001 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3002 3003 return DAG.getMergeValues(Ops, SDLoc(N)); 3004 } 3005 3006 if (!IsFast) 3007 return SDValue(); 3008 } 3009 3010 if (!shouldCombineMemoryType(VT)) 3011 return SDValue(); 3012 3013 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3014 3015 SDValue NewLoad 3016 = DAG.getLoad(NewVT, SL, LN->getChain(), 3017 LN->getBasePtr(), LN->getMemOperand()); 3018 3019 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3020 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3021 return SDValue(N, 0); 3022 } 3023 3024 // Replace store of an illegal type with a store of a bitcast to a friendlier 3025 // type. 3026 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3027 DAGCombinerInfo &DCI) const { 3028 if (!DCI.isBeforeLegalize()) 3029 return SDValue(); 3030 3031 StoreSDNode *SN = cast<StoreSDNode>(N); 3032 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3033 return SDValue(); 3034 3035 EVT VT = SN->getMemoryVT(); 3036 unsigned Size = VT.getStoreSize(); 3037 3038 SDLoc SL(N); 3039 SelectionDAG &DAG = DCI.DAG; 3040 Align Alignment = SN->getAlign(); 3041 if (Alignment < Size && isTypeLegal(VT)) { 3042 bool IsFast; 3043 unsigned AS = SN->getAddressSpace(); 3044 3045 // Expand unaligned stores earlier than legalization. Due to visitation 3046 // order problems during legalization, the emitted instructions to pack and 3047 // unpack the bytes again are not eliminated in the case of an unaligned 3048 // copy. 3049 if (!allowsMisalignedMemoryAccesses( 3050 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3051 if (VT.isVector()) 3052 return scalarizeVectorStore(SN, DAG); 3053 3054 return expandUnalignedStore(SN, DAG); 3055 } 3056 3057 if (!IsFast) 3058 return SDValue(); 3059 } 3060 3061 if (!shouldCombineMemoryType(VT)) 3062 return SDValue(); 3063 3064 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3065 SDValue Val = SN->getValue(); 3066 3067 //DCI.AddToWorklist(Val.getNode()); 3068 3069 bool OtherUses = !Val.hasOneUse(); 3070 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3071 if (OtherUses) { 3072 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3073 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3074 } 3075 3076 return DAG.getStore(SN->getChain(), SL, CastVal, 3077 SN->getBasePtr(), SN->getMemOperand()); 3078 } 3079 3080 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3081 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3082 // issues. 3083 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3084 DAGCombinerInfo &DCI) const { 3085 SelectionDAG &DAG = DCI.DAG; 3086 SDValue N0 = N->getOperand(0); 3087 3088 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3089 // (vt2 (truncate (assertzext vt0:x, vt1))) 3090 if (N0.getOpcode() == ISD::TRUNCATE) { 3091 SDValue N1 = N->getOperand(1); 3092 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3093 SDLoc SL(N); 3094 3095 SDValue Src = N0.getOperand(0); 3096 EVT SrcVT = Src.getValueType(); 3097 if (SrcVT.bitsGE(ExtVT)) { 3098 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3099 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3100 } 3101 } 3102 3103 return SDValue(); 3104 } 3105 3106 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3107 SDNode *N, DAGCombinerInfo &DCI) const { 3108 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3109 switch (IID) { 3110 case Intrinsic::amdgcn_mul_i24: 3111 case Intrinsic::amdgcn_mul_u24: 3112 return simplifyMul24(N, DCI); 3113 case Intrinsic::amdgcn_fract: 3114 case Intrinsic::amdgcn_rsq: 3115 case Intrinsic::amdgcn_rcp_legacy: 3116 case Intrinsic::amdgcn_rsq_legacy: 3117 case Intrinsic::amdgcn_rsq_clamp: 3118 case Intrinsic::amdgcn_ldexp: { 3119 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3120 SDValue Src = N->getOperand(1); 3121 return Src.isUndef() ? Src : SDValue(); 3122 } 3123 default: 3124 return SDValue(); 3125 } 3126 } 3127 3128 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3129 /// binary operation \p Opc to it with the corresponding constant operands. 3130 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3131 DAGCombinerInfo &DCI, const SDLoc &SL, 3132 unsigned Opc, SDValue LHS, 3133 uint32_t ValLo, uint32_t ValHi) const { 3134 SelectionDAG &DAG = DCI.DAG; 3135 SDValue Lo, Hi; 3136 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3137 3138 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3139 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3140 3141 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3142 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3143 3144 // Re-visit the ands. It's possible we eliminated one of them and it could 3145 // simplify the vector. 3146 DCI.AddToWorklist(Lo.getNode()); 3147 DCI.AddToWorklist(Hi.getNode()); 3148 3149 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3150 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3151 } 3152 3153 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3154 DAGCombinerInfo &DCI) const { 3155 EVT VT = N->getValueType(0); 3156 3157 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3158 if (!RHS) 3159 return SDValue(); 3160 3161 SDValue LHS = N->getOperand(0); 3162 unsigned RHSVal = RHS->getZExtValue(); 3163 if (!RHSVal) 3164 return LHS; 3165 3166 SDLoc SL(N); 3167 SelectionDAG &DAG = DCI.DAG; 3168 3169 switch (LHS->getOpcode()) { 3170 default: 3171 break; 3172 case ISD::ZERO_EXTEND: 3173 case ISD::SIGN_EXTEND: 3174 case ISD::ANY_EXTEND: { 3175 SDValue X = LHS->getOperand(0); 3176 3177 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3178 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3179 // Prefer build_vector as the canonical form if packed types are legal. 3180 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3181 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3182 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3183 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3184 } 3185 3186 // shl (ext x) => zext (shl x), if shift does not overflow int 3187 if (VT != MVT::i64) 3188 break; 3189 KnownBits Known = DAG.computeKnownBits(X); 3190 unsigned LZ = Known.countMinLeadingZeros(); 3191 if (LZ < RHSVal) 3192 break; 3193 EVT XVT = X.getValueType(); 3194 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3195 return DAG.getZExtOrTrunc(Shl, SL, VT); 3196 } 3197 } 3198 3199 if (VT != MVT::i64) 3200 return SDValue(); 3201 3202 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3203 3204 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3205 // common case, splitting this into a move and a 32-bit shift is faster and 3206 // the same code size. 3207 if (RHSVal < 32) 3208 return SDValue(); 3209 3210 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3211 3212 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3213 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3214 3215 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3216 3217 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3218 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3219 } 3220 3221 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3222 DAGCombinerInfo &DCI) const { 3223 if (N->getValueType(0) != MVT::i64) 3224 return SDValue(); 3225 3226 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3227 if (!RHS) 3228 return SDValue(); 3229 3230 SelectionDAG &DAG = DCI.DAG; 3231 SDLoc SL(N); 3232 unsigned RHSVal = RHS->getZExtValue(); 3233 3234 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3235 if (RHSVal == 32) { 3236 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3237 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3238 DAG.getConstant(31, SL, MVT::i32)); 3239 3240 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3241 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3242 } 3243 3244 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3245 if (RHSVal == 63) { 3246 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3247 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3248 DAG.getConstant(31, SL, MVT::i32)); 3249 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3250 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3251 } 3252 3253 return SDValue(); 3254 } 3255 3256 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3257 DAGCombinerInfo &DCI) const { 3258 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3259 if (!RHS) 3260 return SDValue(); 3261 3262 EVT VT = N->getValueType(0); 3263 SDValue LHS = N->getOperand(0); 3264 unsigned ShiftAmt = RHS->getZExtValue(); 3265 SelectionDAG &DAG = DCI.DAG; 3266 SDLoc SL(N); 3267 3268 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3269 // this improves the ability to match BFE patterns in isel. 3270 if (LHS.getOpcode() == ISD::AND) { 3271 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3272 if (Mask->getAPIntValue().isShiftedMask() && 3273 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3274 return DAG.getNode( 3275 ISD::AND, SL, VT, 3276 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3277 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3278 } 3279 } 3280 } 3281 3282 if (VT != MVT::i64) 3283 return SDValue(); 3284 3285 if (ShiftAmt < 32) 3286 return SDValue(); 3287 3288 // srl i64:x, C for C >= 32 3289 // => 3290 // build_pair (srl hi_32(x), C - 32), 0 3291 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3292 3293 SDValue Hi = getHiHalf64(LHS, DAG); 3294 3295 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3296 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3297 3298 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3299 3300 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3301 } 3302 3303 SDValue AMDGPUTargetLowering::performTruncateCombine( 3304 SDNode *N, DAGCombinerInfo &DCI) const { 3305 SDLoc SL(N); 3306 SelectionDAG &DAG = DCI.DAG; 3307 EVT VT = N->getValueType(0); 3308 SDValue Src = N->getOperand(0); 3309 3310 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3311 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3312 SDValue Vec = Src.getOperand(0); 3313 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3314 SDValue Elt0 = Vec.getOperand(0); 3315 EVT EltVT = Elt0.getValueType(); 3316 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3317 if (EltVT.isFloatingPoint()) { 3318 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3319 EltVT.changeTypeToInteger(), Elt0); 3320 } 3321 3322 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3323 } 3324 } 3325 } 3326 3327 // Equivalent of above for accessing the high element of a vector as an 3328 // integer operation. 3329 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3330 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3331 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3332 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3333 SDValue BV = stripBitcast(Src.getOperand(0)); 3334 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3335 BV.getValueType().getVectorNumElements() == 2) { 3336 SDValue SrcElt = BV.getOperand(1); 3337 EVT SrcEltVT = SrcElt.getValueType(); 3338 if (SrcEltVT.isFloatingPoint()) { 3339 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3340 SrcEltVT.changeTypeToInteger(), SrcElt); 3341 } 3342 3343 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3344 } 3345 } 3346 } 3347 } 3348 3349 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3350 // 3351 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3352 // i16 (trunc (srl (i32 (trunc x), K))) 3353 if (VT.getScalarSizeInBits() < 32) { 3354 EVT SrcVT = Src.getValueType(); 3355 if (SrcVT.getScalarSizeInBits() > 32 && 3356 (Src.getOpcode() == ISD::SRL || 3357 Src.getOpcode() == ISD::SRA || 3358 Src.getOpcode() == ISD::SHL)) { 3359 SDValue Amt = Src.getOperand(1); 3360 KnownBits Known = DAG.computeKnownBits(Amt); 3361 unsigned Size = VT.getScalarSizeInBits(); 3362 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3363 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3364 EVT MidVT = VT.isVector() ? 3365 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3366 VT.getVectorNumElements()) : MVT::i32; 3367 3368 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3369 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3370 Src.getOperand(0)); 3371 DCI.AddToWorklist(Trunc.getNode()); 3372 3373 if (Amt.getValueType() != NewShiftVT) { 3374 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3375 DCI.AddToWorklist(Amt.getNode()); 3376 } 3377 3378 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3379 Trunc, Amt); 3380 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3381 } 3382 } 3383 } 3384 3385 return SDValue(); 3386 } 3387 3388 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3389 // instructions. If we only match on the legalized i64 mul expansion, 3390 // SimplifyDemandedBits will be unable to remove them because there will be 3391 // multiple uses due to the separate mul + mulh[su]. 3392 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3393 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3394 if (Size <= 32) { 3395 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3396 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3397 } 3398 3399 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3400 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3401 3402 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3403 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3404 3405 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3406 } 3407 3408 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3409 DAGCombinerInfo &DCI) const { 3410 EVT VT = N->getValueType(0); 3411 3412 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3413 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3414 // unnecessarily). isDivergent() is used as an approximation of whether the 3415 // value is in an SGPR. 3416 if (!N->isDivergent()) 3417 return SDValue(); 3418 3419 unsigned Size = VT.getSizeInBits(); 3420 if (VT.isVector() || Size > 64) 3421 return SDValue(); 3422 3423 // There are i16 integer mul/mad. 3424 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3425 return SDValue(); 3426 3427 SelectionDAG &DAG = DCI.DAG; 3428 SDLoc DL(N); 3429 3430 SDValue N0 = N->getOperand(0); 3431 SDValue N1 = N->getOperand(1); 3432 3433 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3434 // in the source into any_extends if the result of the mul is truncated. Since 3435 // we can assume the high bits are whatever we want, use the underlying value 3436 // to avoid the unknown high bits from interfering. 3437 if (N0.getOpcode() == ISD::ANY_EXTEND) 3438 N0 = N0.getOperand(0); 3439 3440 if (N1.getOpcode() == ISD::ANY_EXTEND) 3441 N1 = N1.getOperand(0); 3442 3443 SDValue Mul; 3444 3445 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3446 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3447 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3448 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3449 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3450 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3451 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3452 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3453 } else { 3454 return SDValue(); 3455 } 3456 3457 // We need to use sext even for MUL_U24, because MUL_U24 is used 3458 // for signed multiply of 8 and 16-bit types. 3459 return DAG.getSExtOrTrunc(Mul, DL, VT); 3460 } 3461 3462 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3463 DAGCombinerInfo &DCI) const { 3464 EVT VT = N->getValueType(0); 3465 3466 if (!Subtarget->hasMulI24() || VT.isVector()) 3467 return SDValue(); 3468 3469 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3470 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3471 // unnecessarily). isDivergent() is used as an approximation of whether the 3472 // value is in an SGPR. 3473 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3474 // valu op anyway) 3475 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3476 return SDValue(); 3477 3478 SelectionDAG &DAG = DCI.DAG; 3479 SDLoc DL(N); 3480 3481 SDValue N0 = N->getOperand(0); 3482 SDValue N1 = N->getOperand(1); 3483 3484 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3485 return SDValue(); 3486 3487 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3488 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3489 3490 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3491 DCI.AddToWorklist(Mulhi.getNode()); 3492 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3493 } 3494 3495 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3496 DAGCombinerInfo &DCI) const { 3497 EVT VT = N->getValueType(0); 3498 3499 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3500 return SDValue(); 3501 3502 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3503 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3504 // unnecessarily). isDivergent() is used as an approximation of whether the 3505 // value is in an SGPR. 3506 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3507 // valu op anyway) 3508 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3509 return SDValue(); 3510 3511 SelectionDAG &DAG = DCI.DAG; 3512 SDLoc DL(N); 3513 3514 SDValue N0 = N->getOperand(0); 3515 SDValue N1 = N->getOperand(1); 3516 3517 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3518 return SDValue(); 3519 3520 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3521 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3522 3523 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3524 DCI.AddToWorklist(Mulhi.getNode()); 3525 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3526 } 3527 3528 static bool isNegativeOne(SDValue Val) { 3529 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3530 return C->isAllOnes(); 3531 return false; 3532 } 3533 3534 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3535 SDValue Op, 3536 const SDLoc &DL, 3537 unsigned Opc) const { 3538 EVT VT = Op.getValueType(); 3539 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3540 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3541 LegalVT != MVT::i16)) 3542 return SDValue(); 3543 3544 if (VT != MVT::i32) 3545 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3546 3547 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3548 if (VT != MVT::i32) 3549 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3550 3551 return FFBX; 3552 } 3553 3554 // The native instructions return -1 on 0 input. Optimize out a select that 3555 // produces -1 on 0. 3556 // 3557 // TODO: If zero is not undef, we could also do this if the output is compared 3558 // against the bitwidth. 3559 // 3560 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3561 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3562 SDValue LHS, SDValue RHS, 3563 DAGCombinerInfo &DCI) const { 3564 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3565 if (!CmpRhs || !CmpRhs->isZero()) 3566 return SDValue(); 3567 3568 SelectionDAG &DAG = DCI.DAG; 3569 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3570 SDValue CmpLHS = Cond.getOperand(0); 3571 3572 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3573 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3574 if (CCOpcode == ISD::SETEQ && 3575 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3576 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3577 unsigned Opc = 3578 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3579 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3580 } 3581 3582 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3583 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3584 if (CCOpcode == ISD::SETNE && 3585 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3586 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3587 unsigned Opc = 3588 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3589 3590 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3591 } 3592 3593 return SDValue(); 3594 } 3595 3596 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3597 unsigned Op, 3598 const SDLoc &SL, 3599 SDValue Cond, 3600 SDValue N1, 3601 SDValue N2) { 3602 SelectionDAG &DAG = DCI.DAG; 3603 EVT VT = N1.getValueType(); 3604 3605 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3606 N1.getOperand(0), N2.getOperand(0)); 3607 DCI.AddToWorklist(NewSelect.getNode()); 3608 return DAG.getNode(Op, SL, VT, NewSelect); 3609 } 3610 3611 // Pull a free FP operation out of a select so it may fold into uses. 3612 // 3613 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3614 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3615 // 3616 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3617 // select c, (fabs x), +k -> fabs (select c, x, k) 3618 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3619 SDValue N) { 3620 SelectionDAG &DAG = DCI.DAG; 3621 SDValue Cond = N.getOperand(0); 3622 SDValue LHS = N.getOperand(1); 3623 SDValue RHS = N.getOperand(2); 3624 3625 EVT VT = N.getValueType(); 3626 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3627 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3628 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3629 SDLoc(N), Cond, LHS, RHS); 3630 } 3631 3632 bool Inv = false; 3633 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3634 std::swap(LHS, RHS); 3635 Inv = true; 3636 } 3637 3638 // TODO: Support vector constants. 3639 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3640 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3641 SDLoc SL(N); 3642 // If one side is an fneg/fabs and the other is a constant, we can push the 3643 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3644 SDValue NewLHS = LHS.getOperand(0); 3645 SDValue NewRHS = RHS; 3646 3647 // Careful: if the neg can be folded up, don't try to pull it back down. 3648 bool ShouldFoldNeg = true; 3649 3650 if (NewLHS.hasOneUse()) { 3651 unsigned Opc = NewLHS.getOpcode(); 3652 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3653 ShouldFoldNeg = false; 3654 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3655 ShouldFoldNeg = false; 3656 } 3657 3658 if (ShouldFoldNeg) { 3659 if (LHS.getOpcode() == ISD::FNEG) 3660 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3661 else if (CRHS->isNegative()) 3662 return SDValue(); 3663 3664 if (Inv) 3665 std::swap(NewLHS, NewRHS); 3666 3667 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3668 Cond, NewLHS, NewRHS); 3669 DCI.AddToWorklist(NewSelect.getNode()); 3670 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3671 } 3672 } 3673 3674 return SDValue(); 3675 } 3676 3677 3678 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3679 DAGCombinerInfo &DCI) const { 3680 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3681 return Folded; 3682 3683 SDValue Cond = N->getOperand(0); 3684 if (Cond.getOpcode() != ISD::SETCC) 3685 return SDValue(); 3686 3687 EVT VT = N->getValueType(0); 3688 SDValue LHS = Cond.getOperand(0); 3689 SDValue RHS = Cond.getOperand(1); 3690 SDValue CC = Cond.getOperand(2); 3691 3692 SDValue True = N->getOperand(1); 3693 SDValue False = N->getOperand(2); 3694 3695 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3696 SelectionDAG &DAG = DCI.DAG; 3697 if (DAG.isConstantValueOfAnyType(True) && 3698 !DAG.isConstantValueOfAnyType(False)) { 3699 // Swap cmp + select pair to move constant to false input. 3700 // This will allow using VOPC cndmasks more often. 3701 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3702 3703 SDLoc SL(N); 3704 ISD::CondCode NewCC = 3705 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3706 3707 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3708 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3709 } 3710 3711 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3712 SDValue MinMax 3713 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3714 // Revisit this node so we can catch min3/max3/med3 patterns. 3715 //DCI.AddToWorklist(MinMax.getNode()); 3716 return MinMax; 3717 } 3718 } 3719 3720 // There's no reason to not do this if the condition has other uses. 3721 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3722 } 3723 3724 static bool isInv2Pi(const APFloat &APF) { 3725 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3726 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3727 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3728 3729 return APF.bitwiseIsEqual(KF16) || 3730 APF.bitwiseIsEqual(KF32) || 3731 APF.bitwiseIsEqual(KF64); 3732 } 3733 3734 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3735 // additional cost to negate them. 3736 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3737 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3738 if (C->isZero() && !C->isNegative()) 3739 return true; 3740 3741 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3742 return true; 3743 } 3744 3745 return false; 3746 } 3747 3748 static unsigned inverseMinMax(unsigned Opc) { 3749 switch (Opc) { 3750 case ISD::FMAXNUM: 3751 return ISD::FMINNUM; 3752 case ISD::FMINNUM: 3753 return ISD::FMAXNUM; 3754 case ISD::FMAXNUM_IEEE: 3755 return ISD::FMINNUM_IEEE; 3756 case ISD::FMINNUM_IEEE: 3757 return ISD::FMAXNUM_IEEE; 3758 case AMDGPUISD::FMAX_LEGACY: 3759 return AMDGPUISD::FMIN_LEGACY; 3760 case AMDGPUISD::FMIN_LEGACY: 3761 return AMDGPUISD::FMAX_LEGACY; 3762 default: 3763 llvm_unreachable("invalid min/max opcode"); 3764 } 3765 } 3766 3767 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3768 DAGCombinerInfo &DCI) const { 3769 SelectionDAG &DAG = DCI.DAG; 3770 SDValue N0 = N->getOperand(0); 3771 EVT VT = N->getValueType(0); 3772 3773 unsigned Opc = N0.getOpcode(); 3774 3775 // If the input has multiple uses and we can either fold the negate down, or 3776 // the other uses cannot, give up. This both prevents unprofitable 3777 // transformations and infinite loops: we won't repeatedly try to fold around 3778 // a negate that has no 'good' form. 3779 if (N0.hasOneUse()) { 3780 // This may be able to fold into the source, but at a code size cost. Don't 3781 // fold if the fold into the user is free. 3782 if (allUsesHaveSourceMods(N, 0)) 3783 return SDValue(); 3784 } else { 3785 if (fnegFoldsIntoOp(Opc) && 3786 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3787 return SDValue(); 3788 } 3789 3790 SDLoc SL(N); 3791 switch (Opc) { 3792 case ISD::FADD: { 3793 if (!mayIgnoreSignedZero(N0)) 3794 return SDValue(); 3795 3796 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3797 SDValue LHS = N0.getOperand(0); 3798 SDValue RHS = N0.getOperand(1); 3799 3800 if (LHS.getOpcode() != ISD::FNEG) 3801 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3802 else 3803 LHS = LHS.getOperand(0); 3804 3805 if (RHS.getOpcode() != ISD::FNEG) 3806 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3807 else 3808 RHS = RHS.getOperand(0); 3809 3810 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3811 if (Res.getOpcode() != ISD::FADD) 3812 return SDValue(); // Op got folded away. 3813 if (!N0.hasOneUse()) 3814 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3815 return Res; 3816 } 3817 case ISD::FMUL: 3818 case AMDGPUISD::FMUL_LEGACY: { 3819 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3820 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3821 SDValue LHS = N0.getOperand(0); 3822 SDValue RHS = N0.getOperand(1); 3823 3824 if (LHS.getOpcode() == ISD::FNEG) 3825 LHS = LHS.getOperand(0); 3826 else if (RHS.getOpcode() == ISD::FNEG) 3827 RHS = RHS.getOperand(0); 3828 else 3829 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3830 3831 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3832 if (Res.getOpcode() != Opc) 3833 return SDValue(); // Op got folded away. 3834 if (!N0.hasOneUse()) 3835 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3836 return Res; 3837 } 3838 case ISD::FMA: 3839 case ISD::FMAD: { 3840 // TODO: handle llvm.amdgcn.fma.legacy 3841 if (!mayIgnoreSignedZero(N0)) 3842 return SDValue(); 3843 3844 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3845 SDValue LHS = N0.getOperand(0); 3846 SDValue MHS = N0.getOperand(1); 3847 SDValue RHS = N0.getOperand(2); 3848 3849 if (LHS.getOpcode() == ISD::FNEG) 3850 LHS = LHS.getOperand(0); 3851 else if (MHS.getOpcode() == ISD::FNEG) 3852 MHS = MHS.getOperand(0); 3853 else 3854 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3855 3856 if (RHS.getOpcode() != ISD::FNEG) 3857 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3858 else 3859 RHS = RHS.getOperand(0); 3860 3861 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3862 if (Res.getOpcode() != Opc) 3863 return SDValue(); // Op got folded away. 3864 if (!N0.hasOneUse()) 3865 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3866 return Res; 3867 } 3868 case ISD::FMAXNUM: 3869 case ISD::FMINNUM: 3870 case ISD::FMAXNUM_IEEE: 3871 case ISD::FMINNUM_IEEE: 3872 case AMDGPUISD::FMAX_LEGACY: 3873 case AMDGPUISD::FMIN_LEGACY: { 3874 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3875 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3876 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3877 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3878 3879 SDValue LHS = N0.getOperand(0); 3880 SDValue RHS = N0.getOperand(1); 3881 3882 // 0 doesn't have a negated inline immediate. 3883 // TODO: This constant check should be generalized to other operations. 3884 if (isConstantCostlierToNegate(RHS)) 3885 return SDValue(); 3886 3887 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3888 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3889 unsigned Opposite = inverseMinMax(Opc); 3890 3891 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3892 if (Res.getOpcode() != Opposite) 3893 return SDValue(); // Op got folded away. 3894 if (!N0.hasOneUse()) 3895 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3896 return Res; 3897 } 3898 case AMDGPUISD::FMED3: { 3899 SDValue Ops[3]; 3900 for (unsigned I = 0; I < 3; ++I) 3901 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3902 3903 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3904 if (Res.getOpcode() != AMDGPUISD::FMED3) 3905 return SDValue(); // Op got folded away. 3906 3907 if (!N0.hasOneUse()) { 3908 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3909 DAG.ReplaceAllUsesWith(N0, Neg); 3910 3911 for (SDNode *U : Neg->uses()) 3912 DCI.AddToWorklist(U); 3913 } 3914 3915 return Res; 3916 } 3917 case ISD::FP_EXTEND: 3918 case ISD::FTRUNC: 3919 case ISD::FRINT: 3920 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3921 case ISD::FSIN: 3922 case ISD::FCANONICALIZE: 3923 case AMDGPUISD::RCP: 3924 case AMDGPUISD::RCP_LEGACY: 3925 case AMDGPUISD::RCP_IFLAG: 3926 case AMDGPUISD::SIN_HW: { 3927 SDValue CvtSrc = N0.getOperand(0); 3928 if (CvtSrc.getOpcode() == ISD::FNEG) { 3929 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3930 // (fneg (rcp (fneg x))) -> (rcp x) 3931 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3932 } 3933 3934 if (!N0.hasOneUse()) 3935 return SDValue(); 3936 3937 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3938 // (fneg (rcp x)) -> (rcp (fneg x)) 3939 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3940 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3941 } 3942 case ISD::FP_ROUND: { 3943 SDValue CvtSrc = N0.getOperand(0); 3944 3945 if (CvtSrc.getOpcode() == ISD::FNEG) { 3946 // (fneg (fp_round (fneg x))) -> (fp_round x) 3947 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3948 CvtSrc.getOperand(0), N0.getOperand(1)); 3949 } 3950 3951 if (!N0.hasOneUse()) 3952 return SDValue(); 3953 3954 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3955 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3956 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3957 } 3958 case ISD::FP16_TO_FP: { 3959 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3960 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3961 // Put the fneg back as a legal source operation that can be matched later. 3962 SDLoc SL(N); 3963 3964 SDValue Src = N0.getOperand(0); 3965 EVT SrcVT = Src.getValueType(); 3966 3967 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3968 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3969 DAG.getConstant(0x8000, SL, SrcVT)); 3970 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3971 } 3972 default: 3973 return SDValue(); 3974 } 3975 } 3976 3977 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3978 DAGCombinerInfo &DCI) const { 3979 SelectionDAG &DAG = DCI.DAG; 3980 SDValue N0 = N->getOperand(0); 3981 3982 if (!N0.hasOneUse()) 3983 return SDValue(); 3984 3985 switch (N0.getOpcode()) { 3986 case ISD::FP16_TO_FP: { 3987 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3988 SDLoc SL(N); 3989 SDValue Src = N0.getOperand(0); 3990 EVT SrcVT = Src.getValueType(); 3991 3992 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3993 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3994 DAG.getConstant(0x7fff, SL, SrcVT)); 3995 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3996 } 3997 default: 3998 return SDValue(); 3999 } 4000 } 4001 4002 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4003 DAGCombinerInfo &DCI) const { 4004 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4005 if (!CFP) 4006 return SDValue(); 4007 4008 // XXX - Should this flush denormals? 4009 const APFloat &Val = CFP->getValueAPF(); 4010 APFloat One(Val.getSemantics(), "1.0"); 4011 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4012 } 4013 4014 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4015 DAGCombinerInfo &DCI) const { 4016 SelectionDAG &DAG = DCI.DAG; 4017 SDLoc DL(N); 4018 4019 switch(N->getOpcode()) { 4020 default: 4021 break; 4022 case ISD::BITCAST: { 4023 EVT DestVT = N->getValueType(0); 4024 4025 // Push casts through vector builds. This helps avoid emitting a large 4026 // number of copies when materializing floating point vector constants. 4027 // 4028 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4029 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4030 if (DestVT.isVector()) { 4031 SDValue Src = N->getOperand(0); 4032 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4033 EVT SrcVT = Src.getValueType(); 4034 unsigned NElts = DestVT.getVectorNumElements(); 4035 4036 if (SrcVT.getVectorNumElements() == NElts) { 4037 EVT DestEltVT = DestVT.getVectorElementType(); 4038 4039 SmallVector<SDValue, 8> CastedElts; 4040 SDLoc SL(N); 4041 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4042 SDValue Elt = Src.getOperand(I); 4043 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4044 } 4045 4046 return DAG.getBuildVector(DestVT, SL, CastedElts); 4047 } 4048 } 4049 } 4050 4051 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4052 break; 4053 4054 // Fold bitcasts of constants. 4055 // 4056 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4057 // TODO: Generalize and move to DAGCombiner 4058 SDValue Src = N->getOperand(0); 4059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4060 SDLoc SL(N); 4061 uint64_t CVal = C->getZExtValue(); 4062 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4063 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4064 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4065 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4066 } 4067 4068 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4069 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4070 SDLoc SL(N); 4071 uint64_t CVal = Val.getZExtValue(); 4072 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4073 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4074 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4075 4076 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4077 } 4078 4079 break; 4080 } 4081 case ISD::SHL: { 4082 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4083 break; 4084 4085 return performShlCombine(N, DCI); 4086 } 4087 case ISD::SRL: { 4088 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4089 break; 4090 4091 return performSrlCombine(N, DCI); 4092 } 4093 case ISD::SRA: { 4094 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4095 break; 4096 4097 return performSraCombine(N, DCI); 4098 } 4099 case ISD::TRUNCATE: 4100 return performTruncateCombine(N, DCI); 4101 case ISD::MUL: 4102 return performMulCombine(N, DCI); 4103 case ISD::MULHS: 4104 return performMulhsCombine(N, DCI); 4105 case ISD::MULHU: 4106 return performMulhuCombine(N, DCI); 4107 case AMDGPUISD::MUL_I24: 4108 case AMDGPUISD::MUL_U24: 4109 case AMDGPUISD::MULHI_I24: 4110 case AMDGPUISD::MULHI_U24: 4111 return simplifyMul24(N, DCI); 4112 case ISD::SELECT: 4113 return performSelectCombine(N, DCI); 4114 case ISD::FNEG: 4115 return performFNegCombine(N, DCI); 4116 case ISD::FABS: 4117 return performFAbsCombine(N, DCI); 4118 case AMDGPUISD::BFE_I32: 4119 case AMDGPUISD::BFE_U32: { 4120 assert(!N->getValueType(0).isVector() && 4121 "Vector handling of BFE not implemented"); 4122 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4123 if (!Width) 4124 break; 4125 4126 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4127 if (WidthVal == 0) 4128 return DAG.getConstant(0, DL, MVT::i32); 4129 4130 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4131 if (!Offset) 4132 break; 4133 4134 SDValue BitsFrom = N->getOperand(0); 4135 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4136 4137 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4138 4139 if (OffsetVal == 0) { 4140 // This is already sign / zero extended, so try to fold away extra BFEs. 4141 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4142 4143 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4144 if (OpSignBits >= SignBits) 4145 return BitsFrom; 4146 4147 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4148 if (Signed) { 4149 // This is a sign_extend_inreg. Replace it to take advantage of existing 4150 // DAG Combines. If not eliminated, we will match back to BFE during 4151 // selection. 4152 4153 // TODO: The sext_inreg of extended types ends, although we can could 4154 // handle them in a single BFE. 4155 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4156 DAG.getValueType(SmallVT)); 4157 } 4158 4159 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4160 } 4161 4162 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4163 if (Signed) { 4164 return constantFoldBFE<int32_t>(DAG, 4165 CVal->getSExtValue(), 4166 OffsetVal, 4167 WidthVal, 4168 DL); 4169 } 4170 4171 return constantFoldBFE<uint32_t>(DAG, 4172 CVal->getZExtValue(), 4173 OffsetVal, 4174 WidthVal, 4175 DL); 4176 } 4177 4178 if ((OffsetVal + WidthVal) >= 32 && 4179 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4180 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4181 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4182 BitsFrom, ShiftVal); 4183 } 4184 4185 if (BitsFrom.hasOneUse()) { 4186 APInt Demanded = APInt::getBitsSet(32, 4187 OffsetVal, 4188 OffsetVal + WidthVal); 4189 4190 KnownBits Known; 4191 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4192 !DCI.isBeforeLegalizeOps()); 4193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4194 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4195 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4196 DCI.CommitTargetLoweringOpt(TLO); 4197 } 4198 } 4199 4200 break; 4201 } 4202 case ISD::LOAD: 4203 return performLoadCombine(N, DCI); 4204 case ISD::STORE: 4205 return performStoreCombine(N, DCI); 4206 case AMDGPUISD::RCP: 4207 case AMDGPUISD::RCP_IFLAG: 4208 return performRcpCombine(N, DCI); 4209 case ISD::AssertZext: 4210 case ISD::AssertSext: 4211 return performAssertSZExtCombine(N, DCI); 4212 case ISD::INTRINSIC_WO_CHAIN: 4213 return performIntrinsicWOChainCombine(N, DCI); 4214 } 4215 return SDValue(); 4216 } 4217 4218 //===----------------------------------------------------------------------===// 4219 // Helper functions 4220 //===----------------------------------------------------------------------===// 4221 4222 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4223 const TargetRegisterClass *RC, 4224 Register Reg, EVT VT, 4225 const SDLoc &SL, 4226 bool RawReg) const { 4227 MachineFunction &MF = DAG.getMachineFunction(); 4228 MachineRegisterInfo &MRI = MF.getRegInfo(); 4229 Register VReg; 4230 4231 if (!MRI.isLiveIn(Reg)) { 4232 VReg = MRI.createVirtualRegister(RC); 4233 MRI.addLiveIn(Reg, VReg); 4234 } else { 4235 VReg = MRI.getLiveInVirtReg(Reg); 4236 } 4237 4238 if (RawReg) 4239 return DAG.getRegister(VReg, VT); 4240 4241 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4242 } 4243 4244 // This may be called multiple times, and nothing prevents creating multiple 4245 // objects at the same offset. See if we already defined this object. 4246 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4247 int64_t Offset) { 4248 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4249 if (MFI.getObjectOffset(I) == Offset) { 4250 assert(MFI.getObjectSize(I) == Size); 4251 return I; 4252 } 4253 } 4254 4255 return MFI.CreateFixedObject(Size, Offset, true); 4256 } 4257 4258 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4259 EVT VT, 4260 const SDLoc &SL, 4261 int64_t Offset) const { 4262 MachineFunction &MF = DAG.getMachineFunction(); 4263 MachineFrameInfo &MFI = MF.getFrameInfo(); 4264 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4265 4266 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4267 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4268 4269 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4270 MachineMemOperand::MODereferenceable | 4271 MachineMemOperand::MOInvariant); 4272 } 4273 4274 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4275 const SDLoc &SL, 4276 SDValue Chain, 4277 SDValue ArgVal, 4278 int64_t Offset) const { 4279 MachineFunction &MF = DAG.getMachineFunction(); 4280 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4281 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4282 4283 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4284 // Stores to the argument stack area are relative to the stack pointer. 4285 SDValue SP = 4286 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4287 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4288 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4289 MachineMemOperand::MODereferenceable); 4290 return Store; 4291 } 4292 4293 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4294 const TargetRegisterClass *RC, 4295 EVT VT, const SDLoc &SL, 4296 const ArgDescriptor &Arg) const { 4297 assert(Arg && "Attempting to load missing argument"); 4298 4299 SDValue V = Arg.isRegister() ? 4300 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4301 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4302 4303 if (!Arg.isMasked()) 4304 return V; 4305 4306 unsigned Mask = Arg.getMask(); 4307 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4308 V = DAG.getNode(ISD::SRL, SL, VT, V, 4309 DAG.getShiftAmountConstant(Shift, VT, SL)); 4310 return DAG.getNode(ISD::AND, SL, VT, V, 4311 DAG.getConstant(Mask >> Shift, SL, VT)); 4312 } 4313 4314 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4315 const MachineFunction &MF, const ImplicitParameter Param) const { 4316 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4317 const AMDGPUSubtarget &ST = 4318 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4319 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4320 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4321 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4322 ExplicitArgOffset; 4323 switch (Param) { 4324 case GRID_DIM: 4325 return ArgOffset; 4326 case GRID_OFFSET: 4327 return ArgOffset + 4; 4328 } 4329 llvm_unreachable("unexpected implicit parameter type"); 4330 } 4331 4332 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4333 4334 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4335 switch ((AMDGPUISD::NodeType)Opcode) { 4336 case AMDGPUISD::FIRST_NUMBER: break; 4337 // AMDIL DAG nodes 4338 NODE_NAME_CASE(UMUL); 4339 NODE_NAME_CASE(BRANCH_COND); 4340 4341 // AMDGPU DAG nodes 4342 NODE_NAME_CASE(IF) 4343 NODE_NAME_CASE(ELSE) 4344 NODE_NAME_CASE(LOOP) 4345 NODE_NAME_CASE(CALL) 4346 NODE_NAME_CASE(TC_RETURN) 4347 NODE_NAME_CASE(TRAP) 4348 NODE_NAME_CASE(RET_FLAG) 4349 NODE_NAME_CASE(RETURN_TO_EPILOG) 4350 NODE_NAME_CASE(ENDPGM) 4351 NODE_NAME_CASE(DWORDADDR) 4352 NODE_NAME_CASE(FRACT) 4353 NODE_NAME_CASE(SETCC) 4354 NODE_NAME_CASE(SETREG) 4355 NODE_NAME_CASE(DENORM_MODE) 4356 NODE_NAME_CASE(FMA_W_CHAIN) 4357 NODE_NAME_CASE(FMUL_W_CHAIN) 4358 NODE_NAME_CASE(CLAMP) 4359 NODE_NAME_CASE(COS_HW) 4360 NODE_NAME_CASE(SIN_HW) 4361 NODE_NAME_CASE(FMAX_LEGACY) 4362 NODE_NAME_CASE(FMIN_LEGACY) 4363 NODE_NAME_CASE(FMAX3) 4364 NODE_NAME_CASE(SMAX3) 4365 NODE_NAME_CASE(UMAX3) 4366 NODE_NAME_CASE(FMIN3) 4367 NODE_NAME_CASE(SMIN3) 4368 NODE_NAME_CASE(UMIN3) 4369 NODE_NAME_CASE(FMED3) 4370 NODE_NAME_CASE(SMED3) 4371 NODE_NAME_CASE(UMED3) 4372 NODE_NAME_CASE(FDOT2) 4373 NODE_NAME_CASE(URECIP) 4374 NODE_NAME_CASE(DIV_SCALE) 4375 NODE_NAME_CASE(DIV_FMAS) 4376 NODE_NAME_CASE(DIV_FIXUP) 4377 NODE_NAME_CASE(FMAD_FTZ) 4378 NODE_NAME_CASE(RCP) 4379 NODE_NAME_CASE(RSQ) 4380 NODE_NAME_CASE(RCP_LEGACY) 4381 NODE_NAME_CASE(RCP_IFLAG) 4382 NODE_NAME_CASE(FMUL_LEGACY) 4383 NODE_NAME_CASE(RSQ_CLAMP) 4384 NODE_NAME_CASE(LDEXP) 4385 NODE_NAME_CASE(FP_CLASS) 4386 NODE_NAME_CASE(DOT4) 4387 NODE_NAME_CASE(CARRY) 4388 NODE_NAME_CASE(BORROW) 4389 NODE_NAME_CASE(BFE_U32) 4390 NODE_NAME_CASE(BFE_I32) 4391 NODE_NAME_CASE(BFI) 4392 NODE_NAME_CASE(BFM) 4393 NODE_NAME_CASE(FFBH_U32) 4394 NODE_NAME_CASE(FFBH_I32) 4395 NODE_NAME_CASE(FFBL_B32) 4396 NODE_NAME_CASE(MUL_U24) 4397 NODE_NAME_CASE(MUL_I24) 4398 NODE_NAME_CASE(MULHI_U24) 4399 NODE_NAME_CASE(MULHI_I24) 4400 NODE_NAME_CASE(MAD_U24) 4401 NODE_NAME_CASE(MAD_I24) 4402 NODE_NAME_CASE(MAD_I64_I32) 4403 NODE_NAME_CASE(MAD_U64_U32) 4404 NODE_NAME_CASE(PERM) 4405 NODE_NAME_CASE(TEXTURE_FETCH) 4406 NODE_NAME_CASE(R600_EXPORT) 4407 NODE_NAME_CASE(CONST_ADDRESS) 4408 NODE_NAME_CASE(REGISTER_LOAD) 4409 NODE_NAME_CASE(REGISTER_STORE) 4410 NODE_NAME_CASE(SAMPLE) 4411 NODE_NAME_CASE(SAMPLEB) 4412 NODE_NAME_CASE(SAMPLED) 4413 NODE_NAME_CASE(SAMPLEL) 4414 NODE_NAME_CASE(CVT_F32_UBYTE0) 4415 NODE_NAME_CASE(CVT_F32_UBYTE1) 4416 NODE_NAME_CASE(CVT_F32_UBYTE2) 4417 NODE_NAME_CASE(CVT_F32_UBYTE3) 4418 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4419 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4420 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4421 NODE_NAME_CASE(CVT_PK_I16_I32) 4422 NODE_NAME_CASE(CVT_PK_U16_U32) 4423 NODE_NAME_CASE(FP_TO_FP16) 4424 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4425 NODE_NAME_CASE(CONST_DATA_PTR) 4426 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4427 NODE_NAME_CASE(LDS) 4428 NODE_NAME_CASE(DUMMY_CHAIN) 4429 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4430 NODE_NAME_CASE(LOAD_D16_HI) 4431 NODE_NAME_CASE(LOAD_D16_LO) 4432 NODE_NAME_CASE(LOAD_D16_HI_I8) 4433 NODE_NAME_CASE(LOAD_D16_HI_U8) 4434 NODE_NAME_CASE(LOAD_D16_LO_I8) 4435 NODE_NAME_CASE(LOAD_D16_LO_U8) 4436 NODE_NAME_CASE(STORE_MSKOR) 4437 NODE_NAME_CASE(LOAD_CONSTANT) 4438 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4439 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4440 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4441 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4442 NODE_NAME_CASE(DS_ORDERED_COUNT) 4443 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4444 NODE_NAME_CASE(ATOMIC_INC) 4445 NODE_NAME_CASE(ATOMIC_DEC) 4446 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4447 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4448 NODE_NAME_CASE(BUFFER_LOAD) 4449 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4450 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4451 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4452 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4453 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4454 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4455 NODE_NAME_CASE(SBUFFER_LOAD) 4456 NODE_NAME_CASE(BUFFER_STORE) 4457 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4458 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4459 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4460 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4461 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4462 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4463 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4464 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4465 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4466 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4467 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4468 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4469 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4470 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4471 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4472 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4473 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4474 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4475 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4476 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4477 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4478 4479 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4480 } 4481 return nullptr; 4482 } 4483 4484 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4485 SelectionDAG &DAG, int Enabled, 4486 int &RefinementSteps, 4487 bool &UseOneConstNR, 4488 bool Reciprocal) const { 4489 EVT VT = Operand.getValueType(); 4490 4491 if (VT == MVT::f32) { 4492 RefinementSteps = 0; 4493 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4494 } 4495 4496 // TODO: There is also f64 rsq instruction, but the documentation is less 4497 // clear on its precision. 4498 4499 return SDValue(); 4500 } 4501 4502 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4503 SelectionDAG &DAG, int Enabled, 4504 int &RefinementSteps) const { 4505 EVT VT = Operand.getValueType(); 4506 4507 if (VT == MVT::f32) { 4508 // Reciprocal, < 1 ulp error. 4509 // 4510 // This reciprocal approximation converges to < 0.5 ulp error with one 4511 // newton rhapson performed with two fused multiple adds (FMAs). 4512 4513 RefinementSteps = 0; 4514 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4515 } 4516 4517 // TODO: There is also f64 rcp instruction, but the documentation is less 4518 // clear on its precision. 4519 4520 return SDValue(); 4521 } 4522 4523 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4524 const SDValue Op, KnownBits &Known, 4525 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4526 4527 Known.resetAll(); // Don't know anything. 4528 4529 unsigned Opc = Op.getOpcode(); 4530 4531 switch (Opc) { 4532 default: 4533 break; 4534 case AMDGPUISD::CARRY: 4535 case AMDGPUISD::BORROW: { 4536 Known.Zero = APInt::getHighBitsSet(32, 31); 4537 break; 4538 } 4539 4540 case AMDGPUISD::BFE_I32: 4541 case AMDGPUISD::BFE_U32: { 4542 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4543 if (!CWidth) 4544 return; 4545 4546 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4547 4548 if (Opc == AMDGPUISD::BFE_U32) 4549 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4550 4551 break; 4552 } 4553 case AMDGPUISD::FP_TO_FP16: { 4554 unsigned BitWidth = Known.getBitWidth(); 4555 4556 // High bits are zero. 4557 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4558 break; 4559 } 4560 case AMDGPUISD::MUL_U24: 4561 case AMDGPUISD::MUL_I24: { 4562 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4563 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4564 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4565 RHSKnown.countMinTrailingZeros(); 4566 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4567 // Skip extra check if all bits are known zeros. 4568 if (TrailZ >= 32) 4569 break; 4570 4571 // Truncate to 24 bits. 4572 LHSKnown = LHSKnown.trunc(24); 4573 RHSKnown = RHSKnown.trunc(24); 4574 4575 if (Opc == AMDGPUISD::MUL_I24) { 4576 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4577 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4578 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4579 if (MaxValBits >= 32) 4580 break; 4581 bool LHSNegative = LHSKnown.isNegative(); 4582 bool LHSNonNegative = LHSKnown.isNonNegative(); 4583 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4584 bool RHSNegative = RHSKnown.isNegative(); 4585 bool RHSNonNegative = RHSKnown.isNonNegative(); 4586 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4587 4588 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4589 Known.Zero.setHighBits(32 - MaxValBits); 4590 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4591 Known.One.setHighBits(32 - MaxValBits); 4592 } else { 4593 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4594 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4595 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4596 if (MaxValBits >= 32) 4597 break; 4598 Known.Zero.setHighBits(32 - MaxValBits); 4599 } 4600 break; 4601 } 4602 case AMDGPUISD::PERM: { 4603 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4604 if (!CMask) 4605 return; 4606 4607 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4608 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4609 unsigned Sel = CMask->getZExtValue(); 4610 4611 for (unsigned I = 0; I < 32; I += 8) { 4612 unsigned SelBits = Sel & 0xff; 4613 if (SelBits < 4) { 4614 SelBits *= 8; 4615 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4616 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4617 } else if (SelBits < 7) { 4618 SelBits = (SelBits & 3) * 8; 4619 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4620 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4621 } else if (SelBits == 0x0c) { 4622 Known.Zero |= 0xFFull << I; 4623 } else if (SelBits > 0x0c) { 4624 Known.One |= 0xFFull << I; 4625 } 4626 Sel >>= 8; 4627 } 4628 break; 4629 } 4630 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4631 Known.Zero.setHighBits(24); 4632 break; 4633 } 4634 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4635 Known.Zero.setHighBits(16); 4636 break; 4637 } 4638 case AMDGPUISD::LDS: { 4639 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4640 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4641 4642 Known.Zero.setHighBits(16); 4643 Known.Zero.setLowBits(Log2(Alignment)); 4644 break; 4645 } 4646 case ISD::INTRINSIC_WO_CHAIN: { 4647 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4648 switch (IID) { 4649 case Intrinsic::amdgcn_mbcnt_lo: 4650 case Intrinsic::amdgcn_mbcnt_hi: { 4651 const GCNSubtarget &ST = 4652 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4653 // These return at most the wavefront size - 1. 4654 unsigned Size = Op.getValueType().getSizeInBits(); 4655 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4656 break; 4657 } 4658 default: 4659 break; 4660 } 4661 } 4662 } 4663 } 4664 4665 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4666 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4667 unsigned Depth) const { 4668 switch (Op.getOpcode()) { 4669 case AMDGPUISD::BFE_I32: { 4670 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4671 if (!Width) 4672 return 1; 4673 4674 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4675 if (!isNullConstant(Op.getOperand(1))) 4676 return SignBits; 4677 4678 // TODO: Could probably figure something out with non-0 offsets. 4679 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4680 return std::max(SignBits, Op0SignBits); 4681 } 4682 4683 case AMDGPUISD::BFE_U32: { 4684 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4685 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4686 } 4687 4688 case AMDGPUISD::CARRY: 4689 case AMDGPUISD::BORROW: 4690 return 31; 4691 case AMDGPUISD::BUFFER_LOAD_BYTE: 4692 return 25; 4693 case AMDGPUISD::BUFFER_LOAD_SHORT: 4694 return 17; 4695 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4696 return 24; 4697 case AMDGPUISD::BUFFER_LOAD_USHORT: 4698 return 16; 4699 case AMDGPUISD::FP_TO_FP16: 4700 return 16; 4701 default: 4702 return 1; 4703 } 4704 } 4705 4706 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4707 GISelKnownBits &Analysis, Register R, 4708 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4709 unsigned Depth) const { 4710 const MachineInstr *MI = MRI.getVRegDef(R); 4711 if (!MI) 4712 return 1; 4713 4714 // TODO: Check range metadata on MMO. 4715 switch (MI->getOpcode()) { 4716 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4717 return 25; 4718 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4719 return 17; 4720 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4721 return 24; 4722 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4723 return 16; 4724 default: 4725 return 1; 4726 } 4727 } 4728 4729 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4730 const SelectionDAG &DAG, 4731 bool SNaN, 4732 unsigned Depth) const { 4733 unsigned Opcode = Op.getOpcode(); 4734 switch (Opcode) { 4735 case AMDGPUISD::FMIN_LEGACY: 4736 case AMDGPUISD::FMAX_LEGACY: { 4737 if (SNaN) 4738 return true; 4739 4740 // TODO: Can check no nans on one of the operands for each one, but which 4741 // one? 4742 return false; 4743 } 4744 case AMDGPUISD::FMUL_LEGACY: 4745 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4746 if (SNaN) 4747 return true; 4748 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4749 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4750 } 4751 case AMDGPUISD::FMED3: 4752 case AMDGPUISD::FMIN3: 4753 case AMDGPUISD::FMAX3: 4754 case AMDGPUISD::FMAD_FTZ: { 4755 if (SNaN) 4756 return true; 4757 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4758 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4759 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4760 } 4761 case AMDGPUISD::CVT_F32_UBYTE0: 4762 case AMDGPUISD::CVT_F32_UBYTE1: 4763 case AMDGPUISD::CVT_F32_UBYTE2: 4764 case AMDGPUISD::CVT_F32_UBYTE3: 4765 return true; 4766 4767 case AMDGPUISD::RCP: 4768 case AMDGPUISD::RSQ: 4769 case AMDGPUISD::RCP_LEGACY: 4770 case AMDGPUISD::RSQ_CLAMP: { 4771 if (SNaN) 4772 return true; 4773 4774 // TODO: Need is known positive check. 4775 return false; 4776 } 4777 case AMDGPUISD::LDEXP: 4778 case AMDGPUISD::FRACT: { 4779 if (SNaN) 4780 return true; 4781 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4782 } 4783 case AMDGPUISD::DIV_SCALE: 4784 case AMDGPUISD::DIV_FMAS: 4785 case AMDGPUISD::DIV_FIXUP: 4786 // TODO: Refine on operands. 4787 return SNaN; 4788 case AMDGPUISD::SIN_HW: 4789 case AMDGPUISD::COS_HW: { 4790 // TODO: Need check for infinity 4791 return SNaN; 4792 } 4793 case ISD::INTRINSIC_WO_CHAIN: { 4794 unsigned IntrinsicID 4795 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4796 // TODO: Handle more intrinsics 4797 switch (IntrinsicID) { 4798 case Intrinsic::amdgcn_cubeid: 4799 return true; 4800 4801 case Intrinsic::amdgcn_frexp_mant: { 4802 if (SNaN) 4803 return true; 4804 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4805 } 4806 case Intrinsic::amdgcn_cvt_pkrtz: { 4807 if (SNaN) 4808 return true; 4809 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4810 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4811 } 4812 case Intrinsic::amdgcn_rcp: 4813 case Intrinsic::amdgcn_rsq: 4814 case Intrinsic::amdgcn_rcp_legacy: 4815 case Intrinsic::amdgcn_rsq_legacy: 4816 case Intrinsic::amdgcn_rsq_clamp: { 4817 if (SNaN) 4818 return true; 4819 4820 // TODO: Need is known positive check. 4821 return false; 4822 } 4823 case Intrinsic::amdgcn_trig_preop: 4824 case Intrinsic::amdgcn_fdot2: 4825 // TODO: Refine on operand 4826 return SNaN; 4827 case Intrinsic::amdgcn_fma_legacy: 4828 if (SNaN) 4829 return true; 4830 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4831 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4832 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4833 default: 4834 return false; 4835 } 4836 } 4837 default: 4838 return false; 4839 } 4840 } 4841 4842 TargetLowering::AtomicExpansionKind 4843 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4844 switch (RMW->getOperation()) { 4845 case AtomicRMWInst::Nand: 4846 case AtomicRMWInst::FAdd: 4847 case AtomicRMWInst::FSub: 4848 return AtomicExpansionKind::CmpXChg; 4849 default: 4850 return AtomicExpansionKind::None; 4851 } 4852 } 4853 4854 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal( 4855 unsigned Opc, LLT Ty1, LLT Ty2) const { 4856 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)); 4857 } 4858