1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 #include "AMDGPUGenCallingConv.inc" 31 32 static cl::opt<bool> AMDGPUBypassSlowDiv( 33 "amdgpu-bypass-slow-div", 34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 35 cl::init(true)); 36 37 // Find a larger type to do a load / store of a vector with. 38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 39 unsigned StoreSize = VT.getStoreSizeInBits(); 40 if (StoreSize <= 32) 41 return EVT::getIntegerVT(Ctx, StoreSize); 42 43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 45 } 46 47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 48 EVT VT = Op.getValueType(); 49 KnownBits Known = DAG.computeKnownBits(Op); 50 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 51 } 52 53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 54 EVT VT = Op.getValueType(); 55 56 // In order for this to be a signed 24-bit value, bit 23, must 57 // be a sign bit. 58 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 59 } 60 61 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 62 const AMDGPUSubtarget &STI) 63 : TargetLowering(TM), Subtarget(&STI) { 64 // Lower floating point store/load to integer store/load to reduce the number 65 // of patterns in tablegen. 66 setOperationAction(ISD::LOAD, MVT::f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 68 69 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 71 72 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 74 75 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 77 78 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 80 81 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 83 84 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 86 87 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 89 90 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 92 93 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 95 96 setOperationAction(ISD::LOAD, MVT::i64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 98 99 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 101 102 setOperationAction(ISD::LOAD, MVT::f64, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 104 105 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 107 108 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 110 111 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 113 114 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 116 117 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 119 120 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 122 123 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 124 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 125 126 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 127 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 128 129 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 130 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 131 132 // There are no 64-bit extloads. These should be done as a 32-bit extload and 133 // an extension to 64-bit. 134 for (MVT VT : MVT::integer_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 138 } 139 140 for (MVT VT : MVT::integer_valuetypes()) { 141 if (VT == MVT::i64) 142 continue; 143 144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 146 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 147 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 148 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 150 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 151 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 152 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 153 154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 158 } 159 160 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 173 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 174 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 175 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 176 } 177 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 182 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 185 186 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 188 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 192 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 197 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 198 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 199 200 setOperationAction(ISD::STORE, MVT::f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 205 206 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 208 209 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 211 212 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 214 215 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 217 218 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 219 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 220 221 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 223 224 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 225 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 226 227 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 229 230 setOperationAction(ISD::STORE, MVT::i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 232 233 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 235 236 setOperationAction(ISD::STORE, MVT::f64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 238 239 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 241 242 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 244 245 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 247 248 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 250 251 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 253 254 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 256 257 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 259 260 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 262 263 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 264 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 265 266 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 267 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 268 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 269 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 270 271 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 272 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 273 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 274 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 275 276 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 277 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 278 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 279 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 280 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 281 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 283 284 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 285 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 286 287 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 288 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 289 290 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 291 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 292 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 293 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 294 295 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 296 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 297 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 298 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 299 300 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 301 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 302 303 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 304 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 306 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 307 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 308 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 309 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 310 311 setOperationAction(ISD::Constant, MVT::i32, Legal); 312 setOperationAction(ISD::Constant, MVT::i64, Legal); 313 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 314 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 315 316 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 317 setOperationAction(ISD::BRIND, MVT::Other, Expand); 318 319 // This is totally unsupported, just custom lower to produce an error. 320 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 321 322 // Library functions. These default to Expand, but we have instructions 323 // for them. 324 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 325 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 326 setOperationAction(ISD::FPOW, MVT::f32, Legal); 327 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 328 setOperationAction(ISD::FABS, MVT::f32, Legal); 329 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 330 setOperationAction(ISD::FRINT, MVT::f32, Legal); 331 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 332 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 333 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 334 335 setOperationAction(ISD::FROUND, MVT::f32, Custom); 336 setOperationAction(ISD::FROUND, MVT::f64, Custom); 337 338 setOperationAction(ISD::FLOG, MVT::f32, Custom); 339 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 340 setOperationAction(ISD::FEXP, MVT::f32, Custom); 341 342 343 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 344 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 345 346 setOperationAction(ISD::FREM, MVT::f16, Custom); 347 setOperationAction(ISD::FREM, MVT::f32, Custom); 348 setOperationAction(ISD::FREM, MVT::f64, Custom); 349 350 // Expand to fneg + fadd. 351 setOperationAction(ISD::FSUB, MVT::f64, Expand); 352 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 362 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 363 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 364 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 394 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 395 396 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 397 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 398 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 399 400 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 401 for (MVT VT : ScalarIntVTs) { 402 // These should use [SU]DIVREM, so set them to expand 403 setOperationAction(ISD::SDIV, VT, Expand); 404 setOperationAction(ISD::UDIV, VT, Expand); 405 setOperationAction(ISD::SREM, VT, Expand); 406 setOperationAction(ISD::UREM, VT, Expand); 407 408 // GPU does not have divrem function for signed or unsigned. 409 setOperationAction(ISD::SDIVREM, VT, Custom); 410 setOperationAction(ISD::UDIVREM, VT, Custom); 411 412 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 413 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 414 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 415 416 setOperationAction(ISD::BSWAP, VT, Expand); 417 setOperationAction(ISD::CTTZ, VT, Expand); 418 setOperationAction(ISD::CTLZ, VT, Expand); 419 420 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 421 setOperationAction(ISD::ADDC, VT, Legal); 422 setOperationAction(ISD::SUBC, VT, Legal); 423 setOperationAction(ISD::ADDE, VT, Legal); 424 setOperationAction(ISD::SUBE, VT, Legal); 425 } 426 427 // The hardware supports 32-bit FSHR, but not FSHL. 428 setOperationAction(ISD::FSHR, MVT::i32, Legal); 429 430 // The hardware supports 32-bit ROTR, but not ROTL. 431 setOperationAction(ISD::ROTL, MVT::i32, Expand); 432 setOperationAction(ISD::ROTL, MVT::i64, Expand); 433 setOperationAction(ISD::ROTR, MVT::i64, Expand); 434 435 setOperationAction(ISD::MULHU, MVT::i16, Expand); 436 setOperationAction(ISD::MULHS, MVT::i16, Expand); 437 438 setOperationAction(ISD::MUL, MVT::i64, Expand); 439 setOperationAction(ISD::MULHU, MVT::i64, Expand); 440 setOperationAction(ISD::MULHS, MVT::i64, Expand); 441 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 442 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 443 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 444 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 445 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 446 447 setOperationAction(ISD::SMIN, MVT::i32, Legal); 448 setOperationAction(ISD::UMIN, MVT::i32, Legal); 449 setOperationAction(ISD::SMAX, MVT::i32, Legal); 450 setOperationAction(ISD::UMAX, MVT::i32, Legal); 451 452 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 453 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 454 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 455 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 456 457 static const MVT::SimpleValueType VectorIntTypes[] = { 458 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 459 460 for (MVT VT : VectorIntTypes) { 461 // Expand the following operations for the current type by default. 462 setOperationAction(ISD::ADD, VT, Expand); 463 setOperationAction(ISD::AND, VT, Expand); 464 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 465 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 466 setOperationAction(ISD::MUL, VT, Expand); 467 setOperationAction(ISD::MULHU, VT, Expand); 468 setOperationAction(ISD::MULHS, VT, Expand); 469 setOperationAction(ISD::OR, VT, Expand); 470 setOperationAction(ISD::SHL, VT, Expand); 471 setOperationAction(ISD::SRA, VT, Expand); 472 setOperationAction(ISD::SRL, VT, Expand); 473 setOperationAction(ISD::ROTL, VT, Expand); 474 setOperationAction(ISD::ROTR, VT, Expand); 475 setOperationAction(ISD::SUB, VT, Expand); 476 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 477 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 478 setOperationAction(ISD::SDIV, VT, Expand); 479 setOperationAction(ISD::UDIV, VT, Expand); 480 setOperationAction(ISD::SREM, VT, Expand); 481 setOperationAction(ISD::UREM, VT, Expand); 482 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 483 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 484 setOperationAction(ISD::SDIVREM, VT, Expand); 485 setOperationAction(ISD::UDIVREM, VT, Expand); 486 setOperationAction(ISD::SELECT, VT, Expand); 487 setOperationAction(ISD::VSELECT, VT, Expand); 488 setOperationAction(ISD::SELECT_CC, VT, Expand); 489 setOperationAction(ISD::XOR, VT, Expand); 490 setOperationAction(ISD::BSWAP, VT, Expand); 491 setOperationAction(ISD::CTPOP, VT, Expand); 492 setOperationAction(ISD::CTTZ, VT, Expand); 493 setOperationAction(ISD::CTLZ, VT, Expand); 494 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 495 setOperationAction(ISD::SETCC, VT, Expand); 496 } 497 498 static const MVT::SimpleValueType FloatVectorTypes[] = { 499 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 500 501 for (MVT VT : FloatVectorTypes) { 502 setOperationAction(ISD::FABS, VT, Expand); 503 setOperationAction(ISD::FMINNUM, VT, Expand); 504 setOperationAction(ISD::FMAXNUM, VT, Expand); 505 setOperationAction(ISD::FADD, VT, Expand); 506 setOperationAction(ISD::FCEIL, VT, Expand); 507 setOperationAction(ISD::FCOS, VT, Expand); 508 setOperationAction(ISD::FDIV, VT, Expand); 509 setOperationAction(ISD::FEXP2, VT, Expand); 510 setOperationAction(ISD::FEXP, VT, Expand); 511 setOperationAction(ISD::FLOG2, VT, Expand); 512 setOperationAction(ISD::FREM, VT, Expand); 513 setOperationAction(ISD::FLOG, VT, Expand); 514 setOperationAction(ISD::FLOG10, VT, Expand); 515 setOperationAction(ISD::FPOW, VT, Expand); 516 setOperationAction(ISD::FFLOOR, VT, Expand); 517 setOperationAction(ISD::FTRUNC, VT, Expand); 518 setOperationAction(ISD::FMUL, VT, Expand); 519 setOperationAction(ISD::FMA, VT, Expand); 520 setOperationAction(ISD::FRINT, VT, Expand); 521 setOperationAction(ISD::FNEARBYINT, VT, Expand); 522 setOperationAction(ISD::FSQRT, VT, Expand); 523 setOperationAction(ISD::FSIN, VT, Expand); 524 setOperationAction(ISD::FSUB, VT, Expand); 525 setOperationAction(ISD::FNEG, VT, Expand); 526 setOperationAction(ISD::VSELECT, VT, Expand); 527 setOperationAction(ISD::SELECT_CC, VT, Expand); 528 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 529 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 530 setOperationAction(ISD::SETCC, VT, Expand); 531 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 532 } 533 534 // This causes using an unrolled select operation rather than expansion with 535 // bit operations. This is in general better, but the alternative using BFI 536 // instructions may be better if the select sources are SGPRs. 537 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 538 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 539 540 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 541 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 542 543 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 544 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 545 546 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 547 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 548 549 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 550 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 551 552 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 553 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 554 555 // There are no libcalls of any kind. 556 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 557 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 558 559 setSchedulingPreference(Sched::RegPressure); 560 setJumpIsExpensive(true); 561 562 // FIXME: This is only partially true. If we have to do vector compares, any 563 // SGPR pair can be a condition register. If we have a uniform condition, we 564 // are better off doing SALU operations, where there is only one SCC. For now, 565 // we don't have a way of knowing during instruction selection if a condition 566 // will be uniform and we always use vector compares. Assume we are using 567 // vector compares until that is fixed. 568 setHasMultipleConditionRegisters(true); 569 570 setMinCmpXchgSizeInBits(32); 571 setSupportsUnalignedAtomics(false); 572 573 PredictableSelectIsExpensive = false; 574 575 // We want to find all load dependencies for long chains of stores to enable 576 // merging into very wide vectors. The problem is with vectors with > 4 577 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 578 // vectors are a legal type, even though we have to split the loads 579 // usually. When we can more precisely specify load legality per address 580 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 581 // smarter so that they can figure out what to do in 2 iterations without all 582 // N > 4 stores on the same chain. 583 GatherAllAliasesMaxDepth = 16; 584 585 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 586 // about these during lowering. 587 MaxStoresPerMemcpy = 0xffffffff; 588 MaxStoresPerMemmove = 0xffffffff; 589 MaxStoresPerMemset = 0xffffffff; 590 591 // The expansion for 64-bit division is enormous. 592 if (AMDGPUBypassSlowDiv) 593 addBypassSlowDiv(64, 32); 594 595 setTargetDAGCombine(ISD::BITCAST); 596 setTargetDAGCombine(ISD::SHL); 597 setTargetDAGCombine(ISD::SRA); 598 setTargetDAGCombine(ISD::SRL); 599 setTargetDAGCombine(ISD::TRUNCATE); 600 setTargetDAGCombine(ISD::MUL); 601 setTargetDAGCombine(ISD::MULHU); 602 setTargetDAGCombine(ISD::MULHS); 603 setTargetDAGCombine(ISD::SELECT); 604 setTargetDAGCombine(ISD::SELECT_CC); 605 setTargetDAGCombine(ISD::STORE); 606 setTargetDAGCombine(ISD::FADD); 607 setTargetDAGCombine(ISD::FSUB); 608 setTargetDAGCombine(ISD::FNEG); 609 setTargetDAGCombine(ISD::FABS); 610 setTargetDAGCombine(ISD::AssertZext); 611 setTargetDAGCombine(ISD::AssertSext); 612 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 613 } 614 615 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 616 if (getTargetMachine().Options.NoSignedZerosFPMath) 617 return true; 618 619 const auto Flags = Op.getNode()->getFlags(); 620 if (Flags.hasNoSignedZeros()) 621 return true; 622 623 return false; 624 } 625 626 //===----------------------------------------------------------------------===// 627 // Target Information 628 //===----------------------------------------------------------------------===// 629 630 LLVM_READNONE 631 static bool fnegFoldsIntoOp(unsigned Opc) { 632 switch (Opc) { 633 case ISD::FADD: 634 case ISD::FSUB: 635 case ISD::FMUL: 636 case ISD::FMA: 637 case ISD::FMAD: 638 case ISD::FMINNUM: 639 case ISD::FMAXNUM: 640 case ISD::FMINNUM_IEEE: 641 case ISD::FMAXNUM_IEEE: 642 case ISD::FSIN: 643 case ISD::FTRUNC: 644 case ISD::FRINT: 645 case ISD::FNEARBYINT: 646 case ISD::FCANONICALIZE: 647 case AMDGPUISD::RCP: 648 case AMDGPUISD::RCP_LEGACY: 649 case AMDGPUISD::RCP_IFLAG: 650 case AMDGPUISD::SIN_HW: 651 case AMDGPUISD::FMUL_LEGACY: 652 case AMDGPUISD::FMIN_LEGACY: 653 case AMDGPUISD::FMAX_LEGACY: 654 case AMDGPUISD::FMED3: 655 // TODO: handle llvm.amdgcn.fma.legacy 656 return true; 657 default: 658 return false; 659 } 660 } 661 662 /// \p returns true if the operation will definitely need to use a 64-bit 663 /// encoding, and thus will use a VOP3 encoding regardless of the source 664 /// modifiers. 665 LLVM_READONLY 666 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 667 return N->getNumOperands() > 2 || VT == MVT::f64; 668 } 669 670 // Most FP instructions support source modifiers, but this could be refined 671 // slightly. 672 LLVM_READONLY 673 static bool hasSourceMods(const SDNode *N) { 674 if (isa<MemSDNode>(N)) 675 return false; 676 677 switch (N->getOpcode()) { 678 case ISD::CopyToReg: 679 case ISD::SELECT: 680 case ISD::FDIV: 681 case ISD::FREM: 682 case ISD::INLINEASM: 683 case ISD::INLINEASM_BR: 684 case AMDGPUISD::DIV_SCALE: 685 case ISD::INTRINSIC_W_CHAIN: 686 687 // TODO: Should really be looking at the users of the bitcast. These are 688 // problematic because bitcasts are used to legalize all stores to integer 689 // types. 690 case ISD::BITCAST: 691 return false; 692 case ISD::INTRINSIC_WO_CHAIN: { 693 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 694 case Intrinsic::amdgcn_interp_p1: 695 case Intrinsic::amdgcn_interp_p2: 696 case Intrinsic::amdgcn_interp_mov: 697 case Intrinsic::amdgcn_interp_p1_f16: 698 case Intrinsic::amdgcn_interp_p2_f16: 699 return false; 700 default: 701 return true; 702 } 703 } 704 default: 705 return true; 706 } 707 } 708 709 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 710 unsigned CostThreshold) { 711 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 712 // it is truly free to use a source modifier in all cases. If there are 713 // multiple users but for each one will necessitate using VOP3, there will be 714 // a code size increase. Try to avoid increasing code size unless we know it 715 // will save on the instruction count. 716 unsigned NumMayIncreaseSize = 0; 717 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 718 719 // XXX - Should this limit number of uses to check? 720 for (const SDNode *U : N->uses()) { 721 if (!hasSourceMods(U)) 722 return false; 723 724 if (!opMustUseVOP3Encoding(U, VT)) { 725 if (++NumMayIncreaseSize > CostThreshold) 726 return false; 727 } 728 } 729 730 return true; 731 } 732 733 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 734 ISD::NodeType ExtendKind) const { 735 assert(!VT.isVector() && "only scalar expected"); 736 737 // Round to the next multiple of 32-bits. 738 unsigned Size = VT.getSizeInBits(); 739 if (Size <= 32) 740 return MVT::i32; 741 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 742 } 743 744 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 745 return MVT::i32; 746 } 747 748 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 749 return true; 750 } 751 752 // The backend supports 32 and 64 bit floating point immediates. 753 // FIXME: Why are we reporting vectors of FP immediates as legal? 754 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 755 bool ForCodeSize) const { 756 EVT ScalarVT = VT.getScalarType(); 757 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 758 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 759 } 760 761 // We don't want to shrink f64 / f32 constants. 762 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 763 EVT ScalarVT = VT.getScalarType(); 764 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 765 } 766 767 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 768 ISD::LoadExtType ExtTy, 769 EVT NewVT) const { 770 // TODO: This may be worth removing. Check regression tests for diffs. 771 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 772 return false; 773 774 unsigned NewSize = NewVT.getStoreSizeInBits(); 775 776 // If we are reducing to a 32-bit load or a smaller multi-dword load, 777 // this is always better. 778 if (NewSize >= 32) 779 return true; 780 781 EVT OldVT = N->getValueType(0); 782 unsigned OldSize = OldVT.getStoreSizeInBits(); 783 784 MemSDNode *MN = cast<MemSDNode>(N); 785 unsigned AS = MN->getAddressSpace(); 786 // Do not shrink an aligned scalar load to sub-dword. 787 // Scalar engine cannot do sub-dword loads. 788 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 789 (AS == AMDGPUAS::CONSTANT_ADDRESS || 790 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 791 (isa<LoadSDNode>(N) && 792 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 793 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 794 return false; 795 796 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 797 // extloads, so doing one requires using a buffer_load. In cases where we 798 // still couldn't use a scalar load, using the wider load shouldn't really 799 // hurt anything. 800 801 // If the old size already had to be an extload, there's no harm in continuing 802 // to reduce the width. 803 return (OldSize < 32); 804 } 805 806 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 807 const SelectionDAG &DAG, 808 const MachineMemOperand &MMO) const { 809 810 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 811 812 if (LoadTy.getScalarType() == MVT::i32) 813 return false; 814 815 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 816 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 817 818 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 819 return false; 820 821 bool Fast = false; 822 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 823 CastTy, MMO, &Fast) && 824 Fast; 825 } 826 827 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 828 // profitable with the expansion for 64-bit since it's generally good to 829 // speculate things. 830 // FIXME: These should really have the size as a parameter. 831 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 832 return true; 833 } 834 835 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 836 return true; 837 } 838 839 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 840 switch (N->getOpcode()) { 841 case ISD::EntryToken: 842 case ISD::TokenFactor: 843 return true; 844 case ISD::INTRINSIC_WO_CHAIN: { 845 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 846 switch (IntrID) { 847 case Intrinsic::amdgcn_readfirstlane: 848 case Intrinsic::amdgcn_readlane: 849 return true; 850 } 851 return false; 852 } 853 case ISD::LOAD: 854 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 855 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 856 return true; 857 return false; 858 } 859 return false; 860 } 861 862 SDValue AMDGPUTargetLowering::getNegatedExpression( 863 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 864 NegatibleCost &Cost, unsigned Depth) const { 865 866 switch (Op.getOpcode()) { 867 case ISD::FMA: 868 case ISD::FMAD: { 869 // Negating a fma is not free if it has users without source mods. 870 if (!allUsesHaveSourceMods(Op.getNode())) 871 return SDValue(); 872 break; 873 } 874 default: 875 break; 876 } 877 878 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 879 ForCodeSize, Cost, Depth); 880 } 881 882 //===---------------------------------------------------------------------===// 883 // Target Properties 884 //===---------------------------------------------------------------------===// 885 886 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 887 assert(VT.isFloatingPoint()); 888 889 // Packed operations do not have a fabs modifier. 890 return VT == MVT::f32 || VT == MVT::f64 || 891 (Subtarget->has16BitInsts() && VT == MVT::f16); 892 } 893 894 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 895 assert(VT.isFloatingPoint()); 896 // Report this based on the end legalized type. 897 VT = VT.getScalarType(); 898 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 899 } 900 901 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 902 unsigned NumElem, 903 unsigned AS) const { 904 return true; 905 } 906 907 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 908 // There are few operations which truly have vector input operands. Any vector 909 // operation is going to involve operations on each component, and a 910 // build_vector will be a copy per element, so it always makes sense to use a 911 // build_vector input in place of the extracted element to avoid a copy into a 912 // super register. 913 // 914 // We should probably only do this if all users are extracts only, but this 915 // should be the common case. 916 return true; 917 } 918 919 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 920 // Truncate is just accessing a subregister. 921 922 unsigned SrcSize = Source.getSizeInBits(); 923 unsigned DestSize = Dest.getSizeInBits(); 924 925 return DestSize < SrcSize && DestSize % 32 == 0 ; 926 } 927 928 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 929 // Truncate is just accessing a subregister. 930 931 unsigned SrcSize = Source->getScalarSizeInBits(); 932 unsigned DestSize = Dest->getScalarSizeInBits(); 933 934 if (DestSize== 16 && Subtarget->has16BitInsts()) 935 return SrcSize >= 32; 936 937 return DestSize < SrcSize && DestSize % 32 == 0; 938 } 939 940 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 941 unsigned SrcSize = Src->getScalarSizeInBits(); 942 unsigned DestSize = Dest->getScalarSizeInBits(); 943 944 if (SrcSize == 16 && Subtarget->has16BitInsts()) 945 return DestSize >= 32; 946 947 return SrcSize == 32 && DestSize == 64; 948 } 949 950 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 951 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 952 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 953 // this will enable reducing 64-bit operations the 32-bit, which is always 954 // good. 955 956 if (Src == MVT::i16) 957 return Dest == MVT::i32 ||Dest == MVT::i64 ; 958 959 return Src == MVT::i32 && Dest == MVT::i64; 960 } 961 962 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 963 return isZExtFree(Val.getValueType(), VT2); 964 } 965 966 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 967 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 968 // limited number of native 64-bit operations. Shrinking an operation to fit 969 // in a single 32-bit register should always be helpful. As currently used, 970 // this is much less general than the name suggests, and is only used in 971 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 972 // not profitable, and may actually be harmful. 973 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 974 } 975 976 //===---------------------------------------------------------------------===// 977 // TargetLowering Callbacks 978 //===---------------------------------------------------------------------===// 979 980 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 981 bool IsVarArg) { 982 switch (CC) { 983 case CallingConv::AMDGPU_VS: 984 case CallingConv::AMDGPU_GS: 985 case CallingConv::AMDGPU_PS: 986 case CallingConv::AMDGPU_CS: 987 case CallingConv::AMDGPU_HS: 988 case CallingConv::AMDGPU_ES: 989 case CallingConv::AMDGPU_LS: 990 return CC_AMDGPU; 991 case CallingConv::C: 992 case CallingConv::Fast: 993 case CallingConv::Cold: 994 return CC_AMDGPU_Func; 995 case CallingConv::AMDGPU_Gfx: 996 return CC_SI_Gfx; 997 case CallingConv::AMDGPU_KERNEL: 998 case CallingConv::SPIR_KERNEL: 999 default: 1000 report_fatal_error("Unsupported calling convention for call"); 1001 } 1002 } 1003 1004 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 1005 bool IsVarArg) { 1006 switch (CC) { 1007 case CallingConv::AMDGPU_KERNEL: 1008 case CallingConv::SPIR_KERNEL: 1009 llvm_unreachable("kernels should not be handled here"); 1010 case CallingConv::AMDGPU_VS: 1011 case CallingConv::AMDGPU_GS: 1012 case CallingConv::AMDGPU_PS: 1013 case CallingConv::AMDGPU_CS: 1014 case CallingConv::AMDGPU_HS: 1015 case CallingConv::AMDGPU_ES: 1016 case CallingConv::AMDGPU_LS: 1017 return RetCC_SI_Shader; 1018 case CallingConv::AMDGPU_Gfx: 1019 return RetCC_SI_Gfx; 1020 case CallingConv::C: 1021 case CallingConv::Fast: 1022 case CallingConv::Cold: 1023 return RetCC_AMDGPU_Func; 1024 default: 1025 report_fatal_error("Unsupported calling convention."); 1026 } 1027 } 1028 1029 /// The SelectionDAGBuilder will automatically promote function arguments 1030 /// with illegal types. However, this does not work for the AMDGPU targets 1031 /// since the function arguments are stored in memory as these illegal types. 1032 /// In order to handle this properly we need to get the original types sizes 1033 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1034 /// passing them to AnalyzeFormalArguments() 1035 1036 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1037 /// input values across multiple registers. Each item in the Ins array 1038 /// represents a single value that will be stored in registers. Ins[x].VT is 1039 /// the value type of the value that will be stored in the register, so 1040 /// whatever SDNode we lower the argument to needs to be this type. 1041 /// 1042 /// In order to correctly lower the arguments we need to know the size of each 1043 /// argument. Since Ins[x].VT gives us the size of the register that will 1044 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1045 /// for the orignal function argument so that we can deduce the correct memory 1046 /// type to use for Ins[x]. In most cases the correct memory type will be 1047 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1048 /// we have a kernel argument of type v8i8, this argument will be split into 1049 /// 8 parts and each part will be represented by its own item in the Ins array. 1050 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1051 /// the argument before it was split. From this, we deduce that the memory type 1052 /// for each individual part is i8. We pass the memory type as LocVT to the 1053 /// calling convention analysis function and the register type (Ins[x].VT) as 1054 /// the ValVT. 1055 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1056 CCState &State, 1057 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1058 const MachineFunction &MF = State.getMachineFunction(); 1059 const Function &Fn = MF.getFunction(); 1060 LLVMContext &Ctx = Fn.getParent()->getContext(); 1061 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1062 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1063 CallingConv::ID CC = Fn.getCallingConv(); 1064 1065 Align MaxAlign = Align(1); 1066 uint64_t ExplicitArgOffset = 0; 1067 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1068 1069 unsigned InIndex = 0; 1070 1071 for (const Argument &Arg : Fn.args()) { 1072 const bool IsByRef = Arg.hasByRefAttr(); 1073 Type *BaseArgTy = Arg.getType(); 1074 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1075 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1076 if (!Alignment) 1077 Alignment = DL.getABITypeAlign(MemArgTy); 1078 MaxAlign = max(Alignment, MaxAlign); 1079 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1080 1081 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1082 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1083 1084 // We're basically throwing away everything passed into us and starting over 1085 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1086 // to us as computed in Ins. 1087 // 1088 // We also need to figure out what type legalization is trying to do to get 1089 // the correct memory offsets. 1090 1091 SmallVector<EVT, 16> ValueVTs; 1092 SmallVector<uint64_t, 16> Offsets; 1093 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1094 1095 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1096 Value != NumValues; ++Value) { 1097 uint64_t BasePartOffset = Offsets[Value]; 1098 1099 EVT ArgVT = ValueVTs[Value]; 1100 EVT MemVT = ArgVT; 1101 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1102 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1103 1104 if (NumRegs == 1) { 1105 // This argument is not split, so the IR type is the memory type. 1106 if (ArgVT.isExtended()) { 1107 // We have an extended type, like i24, so we should just use the 1108 // register type. 1109 MemVT = RegisterVT; 1110 } else { 1111 MemVT = ArgVT; 1112 } 1113 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1114 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1115 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1116 // We have a vector value which has been split into a vector with 1117 // the same scalar type, but fewer elements. This should handle 1118 // all the floating-point vector types. 1119 MemVT = RegisterVT; 1120 } else if (ArgVT.isVector() && 1121 ArgVT.getVectorNumElements() == NumRegs) { 1122 // This arg has been split so that each element is stored in a separate 1123 // register. 1124 MemVT = ArgVT.getScalarType(); 1125 } else if (ArgVT.isExtended()) { 1126 // We have an extended type, like i65. 1127 MemVT = RegisterVT; 1128 } else { 1129 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1130 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1131 if (RegisterVT.isInteger()) { 1132 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1133 } else if (RegisterVT.isVector()) { 1134 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1135 unsigned NumElements = RegisterVT.getVectorNumElements(); 1136 assert(MemoryBits % NumElements == 0); 1137 // This vector type has been split into another vector type with 1138 // a different elements size. 1139 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1140 MemoryBits / NumElements); 1141 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1142 } else { 1143 llvm_unreachable("cannot deduce memory type."); 1144 } 1145 } 1146 1147 // Convert one element vectors to scalar. 1148 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1149 MemVT = MemVT.getScalarType(); 1150 1151 // Round up vec3/vec5 argument. 1152 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1153 assert(MemVT.getVectorNumElements() == 3 || 1154 MemVT.getVectorNumElements() == 5); 1155 MemVT = MemVT.getPow2VectorType(State.getContext()); 1156 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1157 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1158 } 1159 1160 unsigned PartOffset = 0; 1161 for (unsigned i = 0; i != NumRegs; ++i) { 1162 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1163 BasePartOffset + PartOffset, 1164 MemVT.getSimpleVT(), 1165 CCValAssign::Full)); 1166 PartOffset += MemVT.getStoreSize(); 1167 } 1168 } 1169 } 1170 } 1171 1172 SDValue AMDGPUTargetLowering::LowerReturn( 1173 SDValue Chain, CallingConv::ID CallConv, 1174 bool isVarArg, 1175 const SmallVectorImpl<ISD::OutputArg> &Outs, 1176 const SmallVectorImpl<SDValue> &OutVals, 1177 const SDLoc &DL, SelectionDAG &DAG) const { 1178 // FIXME: Fails for r600 tests 1179 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1180 // "wave terminate should not have return values"); 1181 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1182 } 1183 1184 //===---------------------------------------------------------------------===// 1185 // Target specific lowering 1186 //===---------------------------------------------------------------------===// 1187 1188 /// Selects the correct CCAssignFn for a given CallingConvention value. 1189 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1190 bool IsVarArg) { 1191 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1192 } 1193 1194 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1195 bool IsVarArg) { 1196 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1197 } 1198 1199 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1200 SelectionDAG &DAG, 1201 MachineFrameInfo &MFI, 1202 int ClobberedFI) const { 1203 SmallVector<SDValue, 8> ArgChains; 1204 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1205 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1206 1207 // Include the original chain at the beginning of the list. When this is 1208 // used by target LowerCall hooks, this helps legalize find the 1209 // CALLSEQ_BEGIN node. 1210 ArgChains.push_back(Chain); 1211 1212 // Add a chain value for each stack argument corresponding 1213 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1214 UE = DAG.getEntryNode().getNode()->use_end(); 1215 U != UE; ++U) { 1216 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1217 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1218 if (FI->getIndex() < 0) { 1219 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1220 int64_t InLastByte = InFirstByte; 1221 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1222 1223 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1224 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1225 ArgChains.push_back(SDValue(L, 1)); 1226 } 1227 } 1228 } 1229 } 1230 1231 // Build a tokenfactor for all the chains. 1232 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1233 } 1234 1235 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1236 SmallVectorImpl<SDValue> &InVals, 1237 StringRef Reason) const { 1238 SDValue Callee = CLI.Callee; 1239 SelectionDAG &DAG = CLI.DAG; 1240 1241 const Function &Fn = DAG.getMachineFunction().getFunction(); 1242 1243 StringRef FuncName("<unknown>"); 1244 1245 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1246 FuncName = G->getSymbol(); 1247 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1248 FuncName = G->getGlobal()->getName(); 1249 1250 DiagnosticInfoUnsupported NoCalls( 1251 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1252 DAG.getContext()->diagnose(NoCalls); 1253 1254 if (!CLI.IsTailCall) { 1255 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1256 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1257 } 1258 1259 return DAG.getEntryNode(); 1260 } 1261 1262 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1263 SmallVectorImpl<SDValue> &InVals) const { 1264 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1265 } 1266 1267 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1268 SelectionDAG &DAG) const { 1269 const Function &Fn = DAG.getMachineFunction().getFunction(); 1270 1271 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1272 SDLoc(Op).getDebugLoc()); 1273 DAG.getContext()->diagnose(NoDynamicAlloca); 1274 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1275 return DAG.getMergeValues(Ops, SDLoc()); 1276 } 1277 1278 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1279 SelectionDAG &DAG) const { 1280 switch (Op.getOpcode()) { 1281 default: 1282 Op->print(errs(), &DAG); 1283 llvm_unreachable("Custom lowering code for this " 1284 "instruction is not implemented yet!"); 1285 break; 1286 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1287 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1288 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1289 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1290 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1291 case ISD::FREM: return LowerFREM(Op, DAG); 1292 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1293 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1294 case ISD::FRINT: return LowerFRINT(Op, DAG); 1295 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1296 case ISD::FROUND: return LowerFROUND(Op, DAG); 1297 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1298 case ISD::FLOG: 1299 return LowerFLOG(Op, DAG, numbers::ln2f); 1300 case ISD::FLOG10: 1301 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1302 case ISD::FEXP: 1303 return lowerFEXP(Op, DAG); 1304 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1305 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1306 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1307 case ISD::FP_TO_SINT: 1308 case ISD::FP_TO_UINT: 1309 return LowerFP_TO_INT(Op, DAG); 1310 case ISD::CTTZ: 1311 case ISD::CTTZ_ZERO_UNDEF: 1312 case ISD::CTLZ: 1313 case ISD::CTLZ_ZERO_UNDEF: 1314 return LowerCTLZ_CTTZ(Op, DAG); 1315 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1316 } 1317 return Op; 1318 } 1319 1320 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1321 SmallVectorImpl<SDValue> &Results, 1322 SelectionDAG &DAG) const { 1323 switch (N->getOpcode()) { 1324 case ISD::SIGN_EXTEND_INREG: 1325 // Different parts of legalization seem to interpret which type of 1326 // sign_extend_inreg is the one to check for custom lowering. The extended 1327 // from type is what really matters, but some places check for custom 1328 // lowering of the result type. This results in trying to use 1329 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1330 // nothing here and let the illegal result integer be handled normally. 1331 return; 1332 default: 1333 return; 1334 } 1335 } 1336 1337 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1338 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1339 if (!GVar || !GVar->hasInitializer()) 1340 return false; 1341 1342 return !isa<UndefValue>(GVar->getInitializer()); 1343 } 1344 1345 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1346 SDValue Op, 1347 SelectionDAG &DAG) const { 1348 1349 const DataLayout &DL = DAG.getDataLayout(); 1350 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1351 const GlobalValue *GV = G->getGlobal(); 1352 1353 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1354 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1355 if (!MFI->isModuleEntryFunction() && 1356 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1357 SDLoc DL(Op); 1358 const Function &Fn = DAG.getMachineFunction().getFunction(); 1359 DiagnosticInfoUnsupported BadLDSDecl( 1360 Fn, "local memory global used by non-kernel function", 1361 DL.getDebugLoc(), DS_Warning); 1362 DAG.getContext()->diagnose(BadLDSDecl); 1363 1364 // We currently don't have a way to correctly allocate LDS objects that 1365 // aren't directly associated with a kernel. We do force inlining of 1366 // functions that use local objects. However, if these dead functions are 1367 // not eliminated, we don't want a compile time error. Just emit a warning 1368 // and a trap, since there should be no callable path here. 1369 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1370 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1371 Trap, DAG.getRoot()); 1372 DAG.setRoot(OutputChain); 1373 return DAG.getUNDEF(Op.getValueType()); 1374 } 1375 1376 // XXX: What does the value of G->getOffset() mean? 1377 assert(G->getOffset() == 0 && 1378 "Do not know what to do with an non-zero offset"); 1379 1380 // TODO: We could emit code to handle the initialization somewhere. 1381 if (!hasDefinedInitializer(GV)) { 1382 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1383 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1384 } 1385 } 1386 1387 const Function &Fn = DAG.getMachineFunction().getFunction(); 1388 DiagnosticInfoUnsupported BadInit( 1389 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1390 DAG.getContext()->diagnose(BadInit); 1391 return SDValue(); 1392 } 1393 1394 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1395 SelectionDAG &DAG) const { 1396 SmallVector<SDValue, 8> Args; 1397 1398 EVT VT = Op.getValueType(); 1399 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1400 SDLoc SL(Op); 1401 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1402 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1403 1404 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1405 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1406 } 1407 1408 for (const SDUse &U : Op->ops()) 1409 DAG.ExtractVectorElements(U.get(), Args); 1410 1411 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1412 } 1413 1414 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1415 SelectionDAG &DAG) const { 1416 1417 SmallVector<SDValue, 8> Args; 1418 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1419 EVT VT = Op.getValueType(); 1420 EVT SrcVT = Op.getOperand(0).getValueType(); 1421 1422 // For these types, we have some TableGen patterns except if the index is 1 1423 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1424 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1425 Start != 1) 1426 return Op; 1427 1428 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1429 VT.getVectorNumElements()); 1430 1431 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1432 } 1433 1434 /// Generate Min/Max node 1435 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1436 SDValue LHS, SDValue RHS, 1437 SDValue True, SDValue False, 1438 SDValue CC, 1439 DAGCombinerInfo &DCI) const { 1440 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1441 return SDValue(); 1442 1443 SelectionDAG &DAG = DCI.DAG; 1444 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1445 switch (CCOpcode) { 1446 case ISD::SETOEQ: 1447 case ISD::SETONE: 1448 case ISD::SETUNE: 1449 case ISD::SETNE: 1450 case ISD::SETUEQ: 1451 case ISD::SETEQ: 1452 case ISD::SETFALSE: 1453 case ISD::SETFALSE2: 1454 case ISD::SETTRUE: 1455 case ISD::SETTRUE2: 1456 case ISD::SETUO: 1457 case ISD::SETO: 1458 break; 1459 case ISD::SETULE: 1460 case ISD::SETULT: { 1461 if (LHS == True) 1462 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1463 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1464 } 1465 case ISD::SETOLE: 1466 case ISD::SETOLT: 1467 case ISD::SETLE: 1468 case ISD::SETLT: { 1469 // Ordered. Assume ordered for undefined. 1470 1471 // Only do this after legalization to avoid interfering with other combines 1472 // which might occur. 1473 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1474 !DCI.isCalledByLegalizer()) 1475 return SDValue(); 1476 1477 // We need to permute the operands to get the correct NaN behavior. The 1478 // selected operand is the second one based on the failing compare with NaN, 1479 // so permute it based on the compare type the hardware uses. 1480 if (LHS == True) 1481 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1482 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1483 } 1484 case ISD::SETUGE: 1485 case ISD::SETUGT: { 1486 if (LHS == True) 1487 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1488 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1489 } 1490 case ISD::SETGT: 1491 case ISD::SETGE: 1492 case ISD::SETOGE: 1493 case ISD::SETOGT: { 1494 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1495 !DCI.isCalledByLegalizer()) 1496 return SDValue(); 1497 1498 if (LHS == True) 1499 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1500 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1501 } 1502 case ISD::SETCC_INVALID: 1503 llvm_unreachable("Invalid setcc condcode!"); 1504 } 1505 return SDValue(); 1506 } 1507 1508 std::pair<SDValue, SDValue> 1509 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1510 SDLoc SL(Op); 1511 1512 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1513 1514 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1515 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1516 1517 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1518 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1519 1520 return std::make_pair(Lo, Hi); 1521 } 1522 1523 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1524 SDLoc SL(Op); 1525 1526 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1527 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1528 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1529 } 1530 1531 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1532 SDLoc SL(Op); 1533 1534 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1535 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1536 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1537 } 1538 1539 // Split a vector type into two parts. The first part is a power of two vector. 1540 // The second part is whatever is left over, and is a scalar if it would 1541 // otherwise be a 1-vector. 1542 std::pair<EVT, EVT> 1543 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1544 EVT LoVT, HiVT; 1545 EVT EltVT = VT.getVectorElementType(); 1546 unsigned NumElts = VT.getVectorNumElements(); 1547 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1548 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1549 HiVT = NumElts - LoNumElts == 1 1550 ? EltVT 1551 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1552 return std::make_pair(LoVT, HiVT); 1553 } 1554 1555 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1556 // scalar. 1557 std::pair<SDValue, SDValue> 1558 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1559 const EVT &LoVT, const EVT &HiVT, 1560 SelectionDAG &DAG) const { 1561 assert(LoVT.getVectorNumElements() + 1562 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1563 N.getValueType().getVectorNumElements() && 1564 "More vector elements requested than available!"); 1565 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1566 DAG.getVectorIdxConstant(0, DL)); 1567 SDValue Hi = DAG.getNode( 1568 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1569 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1570 return std::make_pair(Lo, Hi); 1571 } 1572 1573 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1574 SelectionDAG &DAG) const { 1575 LoadSDNode *Load = cast<LoadSDNode>(Op); 1576 EVT VT = Op.getValueType(); 1577 SDLoc SL(Op); 1578 1579 1580 // If this is a 2 element vector, we really want to scalarize and not create 1581 // weird 1 element vectors. 1582 if (VT.getVectorNumElements() == 2) { 1583 SDValue Ops[2]; 1584 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1585 return DAG.getMergeValues(Ops, SL); 1586 } 1587 1588 SDValue BasePtr = Load->getBasePtr(); 1589 EVT MemVT = Load->getMemoryVT(); 1590 1591 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1592 1593 EVT LoVT, HiVT; 1594 EVT LoMemVT, HiMemVT; 1595 SDValue Lo, Hi; 1596 1597 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1598 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1599 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1600 1601 unsigned Size = LoMemVT.getStoreSize(); 1602 unsigned BaseAlign = Load->getAlignment(); 1603 unsigned HiAlign = MinAlign(BaseAlign, Size); 1604 1605 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1606 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1607 BaseAlign, Load->getMemOperand()->getFlags()); 1608 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1609 SDValue HiLoad = 1610 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1611 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1612 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1613 1614 SDValue Join; 1615 if (LoVT == HiVT) { 1616 // This is the case that the vector is power of two so was evenly split. 1617 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1618 } else { 1619 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1620 DAG.getVectorIdxConstant(0, SL)); 1621 Join = DAG.getNode( 1622 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1623 VT, Join, HiLoad, 1624 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1625 } 1626 1627 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1628 LoLoad.getValue(1), HiLoad.getValue(1))}; 1629 1630 return DAG.getMergeValues(Ops, SL); 1631 } 1632 1633 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1634 SelectionDAG &DAG) const { 1635 LoadSDNode *Load = cast<LoadSDNode>(Op); 1636 EVT VT = Op.getValueType(); 1637 SDValue BasePtr = Load->getBasePtr(); 1638 EVT MemVT = Load->getMemoryVT(); 1639 SDLoc SL(Op); 1640 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1641 unsigned BaseAlign = Load->getAlignment(); 1642 unsigned NumElements = MemVT.getVectorNumElements(); 1643 1644 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1645 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1646 if (NumElements != 3 || 1647 (BaseAlign < 8 && 1648 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1649 return SplitVectorLoad(Op, DAG); 1650 1651 assert(NumElements == 3); 1652 1653 EVT WideVT = 1654 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1655 EVT WideMemVT = 1656 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1657 SDValue WideLoad = DAG.getExtLoad( 1658 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1659 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1660 return DAG.getMergeValues( 1661 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1662 DAG.getVectorIdxConstant(0, SL)), 1663 WideLoad.getValue(1)}, 1664 SL); 1665 } 1666 1667 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1668 SelectionDAG &DAG) const { 1669 StoreSDNode *Store = cast<StoreSDNode>(Op); 1670 SDValue Val = Store->getValue(); 1671 EVT VT = Val.getValueType(); 1672 1673 // If this is a 2 element vector, we really want to scalarize and not create 1674 // weird 1 element vectors. 1675 if (VT.getVectorNumElements() == 2) 1676 return scalarizeVectorStore(Store, DAG); 1677 1678 EVT MemVT = Store->getMemoryVT(); 1679 SDValue Chain = Store->getChain(); 1680 SDValue BasePtr = Store->getBasePtr(); 1681 SDLoc SL(Op); 1682 1683 EVT LoVT, HiVT; 1684 EVT LoMemVT, HiMemVT; 1685 SDValue Lo, Hi; 1686 1687 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1688 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1689 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1690 1691 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1692 1693 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1694 unsigned BaseAlign = Store->getAlignment(); 1695 unsigned Size = LoMemVT.getStoreSize(); 1696 unsigned HiAlign = MinAlign(BaseAlign, Size); 1697 1698 SDValue LoStore = 1699 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1700 Store->getMemOperand()->getFlags()); 1701 SDValue HiStore = 1702 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1703 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1704 1705 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1706 } 1707 1708 // This is a shortcut for integer division because we have fast i32<->f32 1709 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1710 // float is enough to accurately represent up to a 24-bit signed integer. 1711 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1712 bool Sign) const { 1713 SDLoc DL(Op); 1714 EVT VT = Op.getValueType(); 1715 SDValue LHS = Op.getOperand(0); 1716 SDValue RHS = Op.getOperand(1); 1717 MVT IntVT = MVT::i32; 1718 MVT FltVT = MVT::f32; 1719 1720 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1721 if (LHSSignBits < 9) 1722 return SDValue(); 1723 1724 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1725 if (RHSSignBits < 9) 1726 return SDValue(); 1727 1728 unsigned BitSize = VT.getSizeInBits(); 1729 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1730 unsigned DivBits = BitSize - SignBits; 1731 if (Sign) 1732 ++DivBits; 1733 1734 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1735 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1736 1737 SDValue jq = DAG.getConstant(1, DL, IntVT); 1738 1739 if (Sign) { 1740 // char|short jq = ia ^ ib; 1741 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1742 1743 // jq = jq >> (bitsize - 2) 1744 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1745 DAG.getConstant(BitSize - 2, DL, VT)); 1746 1747 // jq = jq | 0x1 1748 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1749 } 1750 1751 // int ia = (int)LHS; 1752 SDValue ia = LHS; 1753 1754 // int ib, (int)RHS; 1755 SDValue ib = RHS; 1756 1757 // float fa = (float)ia; 1758 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1759 1760 // float fb = (float)ib; 1761 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1762 1763 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1764 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1765 1766 // fq = trunc(fq); 1767 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1768 1769 // float fqneg = -fq; 1770 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1771 1772 MachineFunction &MF = DAG.getMachineFunction(); 1773 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1774 1775 // float fr = mad(fqneg, fb, fa); 1776 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1777 (unsigned)ISD::FMA : 1778 !MFI->getMode().allFP32Denormals() ? 1779 (unsigned)ISD::FMAD : 1780 (unsigned)AMDGPUISD::FMAD_FTZ; 1781 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1782 1783 // int iq = (int)fq; 1784 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1785 1786 // fr = fabs(fr); 1787 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1788 1789 // fb = fabs(fb); 1790 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1791 1792 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1793 1794 // int cv = fr >= fb; 1795 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1796 1797 // jq = (cv ? jq : 0); 1798 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1799 1800 // dst = iq + jq; 1801 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1802 1803 // Rem needs compensation, it's easier to recompute it 1804 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1805 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1806 1807 // Truncate to number of bits this divide really is. 1808 if (Sign) { 1809 SDValue InRegSize 1810 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1811 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1812 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1813 } else { 1814 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1815 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1816 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1817 } 1818 1819 return DAG.getMergeValues({ Div, Rem }, DL); 1820 } 1821 1822 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1823 SelectionDAG &DAG, 1824 SmallVectorImpl<SDValue> &Results) const { 1825 SDLoc DL(Op); 1826 EVT VT = Op.getValueType(); 1827 1828 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1829 1830 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1831 1832 SDValue One = DAG.getConstant(1, DL, HalfVT); 1833 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1834 1835 //HiLo split 1836 SDValue LHS = Op.getOperand(0); 1837 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1838 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1839 1840 SDValue RHS = Op.getOperand(1); 1841 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1842 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1843 1844 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1845 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1846 1847 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1848 LHS_Lo, RHS_Lo); 1849 1850 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1851 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1852 1853 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1854 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1855 return; 1856 } 1857 1858 if (isTypeLegal(MVT::i64)) { 1859 MachineFunction &MF = DAG.getMachineFunction(); 1860 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1861 1862 // Compute denominator reciprocal. 1863 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1864 (unsigned)ISD::FMA : 1865 !MFI->getMode().allFP32Denormals() ? 1866 (unsigned)ISD::FMAD : 1867 (unsigned)AMDGPUISD::FMAD_FTZ; 1868 1869 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1870 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1871 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1872 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1873 Cvt_Lo); 1874 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1875 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1876 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1877 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1878 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1879 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1880 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1881 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1882 Mul1); 1883 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1884 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1885 SDValue Rcp64 = DAG.getBitcast(VT, 1886 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1887 1888 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1889 SDValue One64 = DAG.getConstant(1, DL, VT); 1890 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1891 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1892 1893 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1894 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1895 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1896 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1897 Zero); 1898 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1899 One); 1900 1901 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1902 Mulhi1_Lo, Zero1); 1903 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1904 Mulhi1_Hi, Add1_Lo.getValue(1)); 1905 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1906 SDValue Add1 = DAG.getBitcast(VT, 1907 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1908 1909 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1910 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1911 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1912 Zero); 1913 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1914 One); 1915 1916 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1917 Mulhi2_Lo, Zero1); 1918 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1919 Mulhi2_Hi, Add1_Lo.getValue(1)); 1920 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1921 Zero, Add2_Lo.getValue(1)); 1922 SDValue Add2 = DAG.getBitcast(VT, 1923 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1924 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1925 1926 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1927 1928 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1929 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1930 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1931 Mul3_Lo, Zero1); 1932 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1933 Mul3_Hi, Sub1_Lo.getValue(1)); 1934 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1935 SDValue Sub1 = DAG.getBitcast(VT, 1936 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1937 1938 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1939 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1940 ISD::SETUGE); 1941 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1942 ISD::SETUGE); 1943 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1944 1945 // TODO: Here and below portions of the code can be enclosed into if/endif. 1946 // Currently control flow is unconditional and we have 4 selects after 1947 // potential endif to substitute PHIs. 1948 1949 // if C3 != 0 ... 1950 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1951 RHS_Lo, Zero1); 1952 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1953 RHS_Hi, Sub1_Lo.getValue(1)); 1954 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1955 Zero, Sub2_Lo.getValue(1)); 1956 SDValue Sub2 = DAG.getBitcast(VT, 1957 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1958 1959 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1960 1961 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1962 ISD::SETUGE); 1963 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1964 ISD::SETUGE); 1965 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1966 1967 // if (C6 != 0) 1968 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1969 1970 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1971 RHS_Lo, Zero1); 1972 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1973 RHS_Hi, Sub2_Lo.getValue(1)); 1974 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1975 Zero, Sub3_Lo.getValue(1)); 1976 SDValue Sub3 = DAG.getBitcast(VT, 1977 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1978 1979 // endif C6 1980 // endif C3 1981 1982 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1983 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1984 1985 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1986 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1987 1988 Results.push_back(Div); 1989 Results.push_back(Rem); 1990 1991 return; 1992 } 1993 1994 // r600 expandion. 1995 // Get Speculative values 1996 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1997 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1998 1999 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 2000 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 2001 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 2002 2003 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 2004 SDValue DIV_Lo = Zero; 2005 2006 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 2007 2008 for (unsigned i = 0; i < halfBitWidth; ++i) { 2009 const unsigned bitPos = halfBitWidth - i - 1; 2010 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 2011 // Get value of high bit 2012 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 2013 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 2014 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 2015 2016 // Shift 2017 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2018 // Add LHS high bit 2019 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2020 2021 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2022 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2023 2024 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2025 2026 // Update REM 2027 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2028 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2029 } 2030 2031 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2032 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2033 Results.push_back(DIV); 2034 Results.push_back(REM); 2035 } 2036 2037 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2038 SelectionDAG &DAG) const { 2039 SDLoc DL(Op); 2040 EVT VT = Op.getValueType(); 2041 2042 if (VT == MVT::i64) { 2043 SmallVector<SDValue, 2> Results; 2044 LowerUDIVREM64(Op, DAG, Results); 2045 return DAG.getMergeValues(Results, DL); 2046 } 2047 2048 if (VT == MVT::i32) { 2049 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2050 return Res; 2051 } 2052 2053 SDValue X = Op.getOperand(0); 2054 SDValue Y = Op.getOperand(1); 2055 2056 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2057 // algorithm used here. 2058 2059 // Initial estimate of inv(y). 2060 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2061 2062 // One round of UNR. 2063 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2064 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2065 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2066 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2067 2068 // Quotient/remainder estimate. 2069 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2070 SDValue R = 2071 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2072 2073 // First quotient/remainder refinement. 2074 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2075 SDValue One = DAG.getConstant(1, DL, VT); 2076 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2077 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2078 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2079 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2080 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2081 2082 // Second quotient/remainder refinement. 2083 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2084 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2085 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2086 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2087 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2088 2089 return DAG.getMergeValues({Q, R}, DL); 2090 } 2091 2092 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2093 SelectionDAG &DAG) const { 2094 SDLoc DL(Op); 2095 EVT VT = Op.getValueType(); 2096 2097 SDValue LHS = Op.getOperand(0); 2098 SDValue RHS = Op.getOperand(1); 2099 2100 SDValue Zero = DAG.getConstant(0, DL, VT); 2101 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2102 2103 if (VT == MVT::i32) { 2104 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2105 return Res; 2106 } 2107 2108 if (VT == MVT::i64 && 2109 DAG.ComputeNumSignBits(LHS) > 32 && 2110 DAG.ComputeNumSignBits(RHS) > 32) { 2111 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2112 2113 //HiLo split 2114 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2115 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2116 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2117 LHS_Lo, RHS_Lo); 2118 SDValue Res[2] = { 2119 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2120 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2121 }; 2122 return DAG.getMergeValues(Res, DL); 2123 } 2124 2125 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2126 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2127 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2128 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2129 2130 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2131 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2132 2133 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2134 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2135 2136 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2137 SDValue Rem = Div.getValue(1); 2138 2139 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2140 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2141 2142 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2143 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2144 2145 SDValue Res[2] = { 2146 Div, 2147 Rem 2148 }; 2149 return DAG.getMergeValues(Res, DL); 2150 } 2151 2152 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2153 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2154 SDLoc SL(Op); 2155 EVT VT = Op.getValueType(); 2156 auto Flags = Op->getFlags(); 2157 SDValue X = Op.getOperand(0); 2158 SDValue Y = Op.getOperand(1); 2159 2160 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2161 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2162 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2163 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2164 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2165 } 2166 2167 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2168 SDLoc SL(Op); 2169 SDValue Src = Op.getOperand(0); 2170 2171 // result = trunc(src) 2172 // if (src > 0.0 && src != result) 2173 // result += 1.0 2174 2175 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2176 2177 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2178 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2179 2180 EVT SetCCVT = 2181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2182 2183 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2184 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2185 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2186 2187 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2188 // TODO: Should this propagate fast-math-flags? 2189 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2190 } 2191 2192 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2193 SelectionDAG &DAG) { 2194 const unsigned FractBits = 52; 2195 const unsigned ExpBits = 11; 2196 2197 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2198 Hi, 2199 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2200 DAG.getConstant(ExpBits, SL, MVT::i32)); 2201 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2202 DAG.getConstant(1023, SL, MVT::i32)); 2203 2204 return Exp; 2205 } 2206 2207 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2208 SDLoc SL(Op); 2209 SDValue Src = Op.getOperand(0); 2210 2211 assert(Op.getValueType() == MVT::f64); 2212 2213 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2214 2215 // Extract the upper half, since this is where we will find the sign and 2216 // exponent. 2217 SDValue Hi = getHiHalf64(Src, DAG); 2218 2219 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2220 2221 const unsigned FractBits = 52; 2222 2223 // Extract the sign bit. 2224 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2225 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2226 2227 // Extend back to 64-bits. 2228 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2229 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2230 2231 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2232 const SDValue FractMask 2233 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2234 2235 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2236 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2237 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2238 2239 EVT SetCCVT = 2240 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2241 2242 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2243 2244 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2245 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2246 2247 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2248 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2249 2250 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2251 } 2252 2253 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2254 SDLoc SL(Op); 2255 SDValue Src = Op.getOperand(0); 2256 2257 assert(Op.getValueType() == MVT::f64); 2258 2259 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2260 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2261 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2262 2263 // TODO: Should this propagate fast-math-flags? 2264 2265 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2266 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2267 2268 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2269 2270 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2271 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2272 2273 EVT SetCCVT = 2274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2275 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2276 2277 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2278 } 2279 2280 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2281 // FNEARBYINT and FRINT are the same, except in their handling of FP 2282 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2283 // rint, so just treat them as equivalent. 2284 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2285 } 2286 2287 // XXX - May require not supporting f32 denormals? 2288 2289 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2290 // compare and vselect end up producing worse code than scalarizing the whole 2291 // operation. 2292 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2293 SDLoc SL(Op); 2294 SDValue X = Op.getOperand(0); 2295 EVT VT = Op.getValueType(); 2296 2297 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2298 2299 // TODO: Should this propagate fast-math-flags? 2300 2301 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2302 2303 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2304 2305 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2306 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2307 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2308 2309 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2310 2311 EVT SetCCVT = 2312 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2313 2314 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2315 2316 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2317 2318 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2319 } 2320 2321 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2322 SDLoc SL(Op); 2323 SDValue Src = Op.getOperand(0); 2324 2325 // result = trunc(src); 2326 // if (src < 0.0 && src != result) 2327 // result += -1.0. 2328 2329 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2330 2331 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2332 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2333 2334 EVT SetCCVT = 2335 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2336 2337 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2338 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2339 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2340 2341 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2342 // TODO: Should this propagate fast-math-flags? 2343 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2344 } 2345 2346 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2347 double Log2BaseInverted) const { 2348 EVT VT = Op.getValueType(); 2349 2350 SDLoc SL(Op); 2351 SDValue Operand = Op.getOperand(0); 2352 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2353 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2354 2355 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2356 } 2357 2358 // exp2(M_LOG2E_F * f); 2359 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2360 EVT VT = Op.getValueType(); 2361 SDLoc SL(Op); 2362 SDValue Src = Op.getOperand(0); 2363 2364 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2365 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2366 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2367 } 2368 2369 static bool isCtlzOpc(unsigned Opc) { 2370 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2371 } 2372 2373 static bool isCttzOpc(unsigned Opc) { 2374 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2375 } 2376 2377 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2378 SDLoc SL(Op); 2379 SDValue Src = Op.getOperand(0); 2380 2381 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2382 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2383 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2384 2385 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2386 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2387 2388 if (Src.getValueType() == MVT::i32) { 2389 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2390 // (cttz hi:lo) -> (umin (ffbl src), 32) 2391 // (ctlz_zero_undef src) -> (ffbh src) 2392 // (cttz_zero_undef src) -> (ffbl src) 2393 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2394 if (!ZeroUndef) { 2395 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2396 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2397 } 2398 return NewOpr; 2399 } 2400 2401 SDValue Lo, Hi; 2402 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2403 2404 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2405 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2406 2407 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2408 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2409 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2410 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2411 2412 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2413 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2414 if (Ctlz) 2415 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2416 else 2417 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2418 2419 SDValue NewOpr; 2420 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2421 if (!ZeroUndef) { 2422 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2423 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2424 } 2425 2426 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2427 } 2428 2429 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2430 bool Signed) const { 2431 // The regular method coverting a 64-bit integer to float roughly consists of 2432 // 2 steps: normalization and rounding. In fact, after normalization, the 2433 // conversion from a 64-bit integer to a float is essentially the same as the 2434 // one from a 32-bit integer. The only difference is that it has more 2435 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2436 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2437 // converted into the correct float number. The basic steps for the unsigned 2438 // conversion are illustrated in the following pseudo code: 2439 // 2440 // f32 uitofp(i64 u) { 2441 // i32 hi, lo = split(u); 2442 // // Only count the leading zeros in hi as we have native support of the 2443 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2444 // // reduced to a 32-bit one automatically. 2445 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2446 // u <<= shamt; 2447 // hi, lo = split(u); 2448 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2449 // // convert it as a 32-bit integer and scale the result back. 2450 // return uitofp(hi) * 2^(32 - shamt); 2451 // } 2452 // 2453 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2454 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2455 // converted instead followed by negation based its sign bit. 2456 2457 SDLoc SL(Op); 2458 SDValue Src = Op.getOperand(0); 2459 2460 SDValue Lo, Hi; 2461 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2462 SDValue Sign; 2463 SDValue ShAmt; 2464 if (Signed && Subtarget->isGCN()) { 2465 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2466 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2467 // account. That is, the maximal shift is 2468 // - 32 if Lo and Hi have opposite signs; 2469 // - 33 if Lo and Hi have the same sign. 2470 // 2471 // Or, MaxShAmt = 33 + OppositeSign, where 2472 // 2473 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2474 // - -1 if Lo and Hi have opposite signs; and 2475 // - 0 otherwise. 2476 // 2477 // All in all, ShAmt is calculated as 2478 // 2479 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2480 // 2481 // or 2482 // 2483 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2484 // 2485 // to reduce the critical path. 2486 SDValue OppositeSign = DAG.getNode( 2487 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2488 DAG.getConstant(31, SL, MVT::i32)); 2489 SDValue MaxShAmt = 2490 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2491 OppositeSign); 2492 // Count the leading sign bits. 2493 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2494 // Different from unsigned conversion, the shift should be one bit less to 2495 // preserve the sign bit. 2496 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2497 DAG.getConstant(1, SL, MVT::i32)); 2498 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2499 } else { 2500 if (Signed) { 2501 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2502 // absolute value first. 2503 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2504 DAG.getConstant(63, SL, MVT::i64)); 2505 SDValue Abs = 2506 DAG.getNode(ISD::XOR, SL, MVT::i64, 2507 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2508 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2509 } 2510 // Count the leading zeros. 2511 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2512 // The shift amount for signed integers is [0, 32]. 2513 } 2514 // Normalize the given 64-bit integer. 2515 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2516 // Split it again. 2517 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2518 // Calculate the adjust bit for rounding. 2519 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2520 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2521 DAG.getConstant(1, SL, MVT::i32), Lo); 2522 // Get the 32-bit normalized integer. 2523 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2524 // Convert the normalized 32-bit integer into f32. 2525 unsigned Opc = 2526 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2527 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2528 2529 // Finally, need to scale back the converted floating number as the original 2530 // 64-bit integer is converted as a 32-bit one. 2531 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2532 ShAmt); 2533 // On GCN, use LDEXP directly. 2534 if (Subtarget->isGCN()) 2535 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2536 2537 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2538 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2539 // exponent is enough to avoid overflowing into the sign bit. 2540 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2541 DAG.getConstant(23, SL, MVT::i32)); 2542 SDValue IVal = 2543 DAG.getNode(ISD::ADD, SL, MVT::i32, 2544 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2545 if (Signed) { 2546 // Set the sign bit. 2547 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2548 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2549 DAG.getConstant(31, SL, MVT::i32)); 2550 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2551 } 2552 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2553 } 2554 2555 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2556 bool Signed) const { 2557 SDLoc SL(Op); 2558 SDValue Src = Op.getOperand(0); 2559 2560 SDValue Lo, Hi; 2561 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2562 2563 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2564 SL, MVT::f64, Hi); 2565 2566 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2567 2568 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2569 DAG.getConstant(32, SL, MVT::i32)); 2570 // TODO: Should this propagate fast-math-flags? 2571 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2572 } 2573 2574 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2575 SelectionDAG &DAG) const { 2576 // TODO: Factor out code common with LowerSINT_TO_FP. 2577 EVT DestVT = Op.getValueType(); 2578 SDValue Src = Op.getOperand(0); 2579 EVT SrcVT = Src.getValueType(); 2580 2581 if (SrcVT == MVT::i16) { 2582 if (DestVT == MVT::f16) 2583 return Op; 2584 SDLoc DL(Op); 2585 2586 // Promote src to i32 2587 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2588 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2589 } 2590 2591 assert(SrcVT == MVT::i64 && "operation should be legal"); 2592 2593 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2594 SDLoc DL(Op); 2595 2596 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2597 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2598 SDValue FPRound = 2599 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2600 2601 return FPRound; 2602 } 2603 2604 if (DestVT == MVT::f32) 2605 return LowerINT_TO_FP32(Op, DAG, false); 2606 2607 assert(DestVT == MVT::f64); 2608 return LowerINT_TO_FP64(Op, DAG, false); 2609 } 2610 2611 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2612 SelectionDAG &DAG) const { 2613 EVT DestVT = Op.getValueType(); 2614 2615 SDValue Src = Op.getOperand(0); 2616 EVT SrcVT = Src.getValueType(); 2617 2618 if (SrcVT == MVT::i16) { 2619 if (DestVT == MVT::f16) 2620 return Op; 2621 2622 SDLoc DL(Op); 2623 // Promote src to i32 2624 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2625 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2626 } 2627 2628 assert(SrcVT == MVT::i64 && "operation should be legal"); 2629 2630 // TODO: Factor out code common with LowerUINT_TO_FP. 2631 2632 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2633 SDLoc DL(Op); 2634 SDValue Src = Op.getOperand(0); 2635 2636 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2637 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2638 SDValue FPRound = 2639 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2640 2641 return FPRound; 2642 } 2643 2644 if (DestVT == MVT::f32) 2645 return LowerINT_TO_FP32(Op, DAG, true); 2646 2647 assert(DestVT == MVT::f64); 2648 return LowerINT_TO_FP64(Op, DAG, true); 2649 } 2650 2651 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2652 bool Signed) const { 2653 SDLoc SL(Op); 2654 2655 SDValue Src = Op.getOperand(0); 2656 EVT SrcVT = Src.getValueType(); 2657 2658 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2659 2660 // The basic idea of converting a floating point number into a pair of 32-bit 2661 // integers is illustrated as follows: 2662 // 2663 // tf := trunc(val); 2664 // hif := floor(tf * 2^-32); 2665 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2666 // hi := fptoi(hif); 2667 // lo := fptoi(lof); 2668 // 2669 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2670 SDValue Sign; 2671 if (Signed && SrcVT == MVT::f32) { 2672 // However, a 32-bit floating point number has only 23 bits mantissa and 2673 // it's not enough to hold all the significant bits of `lof` if val is 2674 // negative. To avoid the loss of precision, We need to take the absolute 2675 // value after truncating and flip the result back based on the original 2676 // signedness. 2677 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2678 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2679 DAG.getConstant(31, SL, MVT::i32)); 2680 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2681 } 2682 2683 SDValue K0, K1; 2684 if (SrcVT == MVT::f64) { 2685 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2686 SL, SrcVT); 2687 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2688 SL, SrcVT); 2689 } else { 2690 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2691 SrcVT); 2692 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2693 SrcVT); 2694 } 2695 // TODO: Should this propagate fast-math-flags? 2696 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2697 2698 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2699 2700 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2701 2702 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2703 : ISD::FP_TO_UINT, 2704 SL, MVT::i32, FloorMul); 2705 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2706 2707 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2708 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2709 2710 if (Signed && SrcVT == MVT::f32) { 2711 assert(Sign); 2712 // Flip the result based on the signedness, which is either all 0s or 1s. 2713 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2714 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2715 // r := xor(r, sign) - sign; 2716 Result = 2717 DAG.getNode(ISD::SUB, SL, MVT::i64, 2718 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2719 } 2720 2721 return Result; 2722 } 2723 2724 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2725 SDLoc DL(Op); 2726 SDValue N0 = Op.getOperand(0); 2727 2728 // Convert to target node to get known bits 2729 if (N0.getValueType() == MVT::f32) 2730 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2731 2732 if (getTargetMachine().Options.UnsafeFPMath) { 2733 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2734 return SDValue(); 2735 } 2736 2737 assert(N0.getSimpleValueType() == MVT::f64); 2738 2739 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2740 const unsigned ExpMask = 0x7ff; 2741 const unsigned ExpBiasf64 = 1023; 2742 const unsigned ExpBiasf16 = 15; 2743 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2744 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2745 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2746 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2747 DAG.getConstant(32, DL, MVT::i64)); 2748 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2749 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2750 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2751 DAG.getConstant(20, DL, MVT::i64)); 2752 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2753 DAG.getConstant(ExpMask, DL, MVT::i32)); 2754 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2755 // add the f16 bias (15) to get the biased exponent for the f16 format. 2756 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2757 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2758 2759 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2760 DAG.getConstant(8, DL, MVT::i32)); 2761 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2762 DAG.getConstant(0xffe, DL, MVT::i32)); 2763 2764 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2765 DAG.getConstant(0x1ff, DL, MVT::i32)); 2766 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2767 2768 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2769 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2770 2771 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2772 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2773 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2774 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2775 2776 // N = M | (E << 12); 2777 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2778 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2779 DAG.getConstant(12, DL, MVT::i32))); 2780 2781 // B = clamp(1-E, 0, 13); 2782 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2783 One, E); 2784 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2785 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2786 DAG.getConstant(13, DL, MVT::i32)); 2787 2788 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2789 DAG.getConstant(0x1000, DL, MVT::i32)); 2790 2791 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2792 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2793 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2794 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2795 2796 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2797 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2798 DAG.getConstant(0x7, DL, MVT::i32)); 2799 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2800 DAG.getConstant(2, DL, MVT::i32)); 2801 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2802 One, Zero, ISD::SETEQ); 2803 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2804 One, Zero, ISD::SETGT); 2805 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2806 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2807 2808 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2809 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2810 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2811 I, V, ISD::SETEQ); 2812 2813 // Extract the sign bit. 2814 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2815 DAG.getConstant(16, DL, MVT::i32)); 2816 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2817 DAG.getConstant(0x8000, DL, MVT::i32)); 2818 2819 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2820 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2821 } 2822 2823 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2824 SelectionDAG &DAG) const { 2825 SDValue Src = Op.getOperand(0); 2826 unsigned OpOpcode = Op.getOpcode(); 2827 EVT SrcVT = Src.getValueType(); 2828 EVT DestVT = Op.getValueType(); 2829 2830 // Will be selected natively 2831 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2832 return Op; 2833 2834 // Promote i16 to i32 2835 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2836 SDLoc DL(Op); 2837 2838 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2839 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2840 } 2841 2842 if (SrcVT == MVT::f16 || 2843 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2844 SDLoc DL(Op); 2845 2846 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2847 unsigned Ext = 2848 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2849 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2850 } 2851 2852 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2853 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2854 2855 return SDValue(); 2856 } 2857 2858 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2859 SelectionDAG &DAG) const { 2860 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2861 MVT VT = Op.getSimpleValueType(); 2862 MVT ScalarVT = VT.getScalarType(); 2863 2864 assert(VT.isVector()); 2865 2866 SDValue Src = Op.getOperand(0); 2867 SDLoc DL(Op); 2868 2869 // TODO: Don't scalarize on Evergreen? 2870 unsigned NElts = VT.getVectorNumElements(); 2871 SmallVector<SDValue, 8> Args; 2872 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2873 2874 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2875 for (unsigned I = 0; I < NElts; ++I) 2876 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2877 2878 return DAG.getBuildVector(VT, DL, Args); 2879 } 2880 2881 //===----------------------------------------------------------------------===// 2882 // Custom DAG optimizations 2883 //===----------------------------------------------------------------------===// 2884 2885 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2886 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2887 } 2888 2889 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2890 EVT VT = Op.getValueType(); 2891 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2892 // as unsigned 24-bit values. 2893 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2894 } 2895 2896 static SDValue simplifyMul24(SDNode *Node24, 2897 TargetLowering::DAGCombinerInfo &DCI) { 2898 SelectionDAG &DAG = DCI.DAG; 2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2900 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2901 2902 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2903 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2904 unsigned NewOpcode = Node24->getOpcode(); 2905 if (IsIntrin) { 2906 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2907 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2908 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2909 } 2910 2911 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2912 2913 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2914 // the operands to have other uses, but will only perform simplifications that 2915 // involve bypassing some nodes for this user. 2916 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2917 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2918 if (DemandedLHS || DemandedRHS) 2919 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2920 DemandedLHS ? DemandedLHS : LHS, 2921 DemandedRHS ? DemandedRHS : RHS); 2922 2923 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2924 // operands if this node is the only user. 2925 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2926 return SDValue(Node24, 0); 2927 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2928 return SDValue(Node24, 0); 2929 2930 return SDValue(); 2931 } 2932 2933 template <typename IntTy> 2934 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2935 uint32_t Width, const SDLoc &DL) { 2936 if (Width + Offset < 32) { 2937 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2938 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2939 return DAG.getConstant(Result, DL, MVT::i32); 2940 } 2941 2942 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2943 } 2944 2945 static bool hasVolatileUser(SDNode *Val) { 2946 for (SDNode *U : Val->uses()) { 2947 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2948 if (M->isVolatile()) 2949 return true; 2950 } 2951 } 2952 2953 return false; 2954 } 2955 2956 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2957 // i32 vectors are the canonical memory type. 2958 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2959 return false; 2960 2961 if (!VT.isByteSized()) 2962 return false; 2963 2964 unsigned Size = VT.getStoreSize(); 2965 2966 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2967 return false; 2968 2969 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2970 return false; 2971 2972 return true; 2973 } 2974 2975 // Replace load of an illegal type with a store of a bitcast to a friendlier 2976 // type. 2977 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2978 DAGCombinerInfo &DCI) const { 2979 if (!DCI.isBeforeLegalize()) 2980 return SDValue(); 2981 2982 LoadSDNode *LN = cast<LoadSDNode>(N); 2983 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2984 return SDValue(); 2985 2986 SDLoc SL(N); 2987 SelectionDAG &DAG = DCI.DAG; 2988 EVT VT = LN->getMemoryVT(); 2989 2990 unsigned Size = VT.getStoreSize(); 2991 Align Alignment = LN->getAlign(); 2992 if (Alignment < Size && isTypeLegal(VT)) { 2993 bool IsFast; 2994 unsigned AS = LN->getAddressSpace(); 2995 2996 // Expand unaligned loads earlier than legalization. Due to visitation order 2997 // problems during legalization, the emitted instructions to pack and unpack 2998 // the bytes again are not eliminated in the case of an unaligned copy. 2999 if (!allowsMisalignedMemoryAccesses( 3000 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 3001 SDValue Ops[2]; 3002 3003 if (VT.isVector()) 3004 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 3005 else 3006 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3007 3008 return DAG.getMergeValues(Ops, SDLoc(N)); 3009 } 3010 3011 if (!IsFast) 3012 return SDValue(); 3013 } 3014 3015 if (!shouldCombineMemoryType(VT)) 3016 return SDValue(); 3017 3018 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3019 3020 SDValue NewLoad 3021 = DAG.getLoad(NewVT, SL, LN->getChain(), 3022 LN->getBasePtr(), LN->getMemOperand()); 3023 3024 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3025 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3026 return SDValue(N, 0); 3027 } 3028 3029 // Replace store of an illegal type with a store of a bitcast to a friendlier 3030 // type. 3031 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3032 DAGCombinerInfo &DCI) const { 3033 if (!DCI.isBeforeLegalize()) 3034 return SDValue(); 3035 3036 StoreSDNode *SN = cast<StoreSDNode>(N); 3037 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3038 return SDValue(); 3039 3040 EVT VT = SN->getMemoryVT(); 3041 unsigned Size = VT.getStoreSize(); 3042 3043 SDLoc SL(N); 3044 SelectionDAG &DAG = DCI.DAG; 3045 Align Alignment = SN->getAlign(); 3046 if (Alignment < Size && isTypeLegal(VT)) { 3047 bool IsFast; 3048 unsigned AS = SN->getAddressSpace(); 3049 3050 // Expand unaligned stores earlier than legalization. Due to visitation 3051 // order problems during legalization, the emitted instructions to pack and 3052 // unpack the bytes again are not eliminated in the case of an unaligned 3053 // copy. 3054 if (!allowsMisalignedMemoryAccesses( 3055 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3056 if (VT.isVector()) 3057 return scalarizeVectorStore(SN, DAG); 3058 3059 return expandUnalignedStore(SN, DAG); 3060 } 3061 3062 if (!IsFast) 3063 return SDValue(); 3064 } 3065 3066 if (!shouldCombineMemoryType(VT)) 3067 return SDValue(); 3068 3069 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3070 SDValue Val = SN->getValue(); 3071 3072 //DCI.AddToWorklist(Val.getNode()); 3073 3074 bool OtherUses = !Val.hasOneUse(); 3075 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3076 if (OtherUses) { 3077 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3078 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3079 } 3080 3081 return DAG.getStore(SN->getChain(), SL, CastVal, 3082 SN->getBasePtr(), SN->getMemOperand()); 3083 } 3084 3085 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3086 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3087 // issues. 3088 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3089 DAGCombinerInfo &DCI) const { 3090 SelectionDAG &DAG = DCI.DAG; 3091 SDValue N0 = N->getOperand(0); 3092 3093 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3094 // (vt2 (truncate (assertzext vt0:x, vt1))) 3095 if (N0.getOpcode() == ISD::TRUNCATE) { 3096 SDValue N1 = N->getOperand(1); 3097 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3098 SDLoc SL(N); 3099 3100 SDValue Src = N0.getOperand(0); 3101 EVT SrcVT = Src.getValueType(); 3102 if (SrcVT.bitsGE(ExtVT)) { 3103 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3104 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3105 } 3106 } 3107 3108 return SDValue(); 3109 } 3110 3111 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3112 SDNode *N, DAGCombinerInfo &DCI) const { 3113 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3114 switch (IID) { 3115 case Intrinsic::amdgcn_mul_i24: 3116 case Intrinsic::amdgcn_mul_u24: 3117 return simplifyMul24(N, DCI); 3118 case Intrinsic::amdgcn_fract: 3119 case Intrinsic::amdgcn_rsq: 3120 case Intrinsic::amdgcn_rcp_legacy: 3121 case Intrinsic::amdgcn_rsq_legacy: 3122 case Intrinsic::amdgcn_rsq_clamp: 3123 case Intrinsic::amdgcn_ldexp: { 3124 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3125 SDValue Src = N->getOperand(1); 3126 return Src.isUndef() ? Src : SDValue(); 3127 } 3128 default: 3129 return SDValue(); 3130 } 3131 } 3132 3133 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3134 /// binary operation \p Opc to it with the corresponding constant operands. 3135 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3136 DAGCombinerInfo &DCI, const SDLoc &SL, 3137 unsigned Opc, SDValue LHS, 3138 uint32_t ValLo, uint32_t ValHi) const { 3139 SelectionDAG &DAG = DCI.DAG; 3140 SDValue Lo, Hi; 3141 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3142 3143 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3144 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3145 3146 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3147 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3148 3149 // Re-visit the ands. It's possible we eliminated one of them and it could 3150 // simplify the vector. 3151 DCI.AddToWorklist(Lo.getNode()); 3152 DCI.AddToWorklist(Hi.getNode()); 3153 3154 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3155 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3156 } 3157 3158 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3159 DAGCombinerInfo &DCI) const { 3160 EVT VT = N->getValueType(0); 3161 3162 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3163 if (!RHS) 3164 return SDValue(); 3165 3166 SDValue LHS = N->getOperand(0); 3167 unsigned RHSVal = RHS->getZExtValue(); 3168 if (!RHSVal) 3169 return LHS; 3170 3171 SDLoc SL(N); 3172 SelectionDAG &DAG = DCI.DAG; 3173 3174 switch (LHS->getOpcode()) { 3175 default: 3176 break; 3177 case ISD::ZERO_EXTEND: 3178 case ISD::SIGN_EXTEND: 3179 case ISD::ANY_EXTEND: { 3180 SDValue X = LHS->getOperand(0); 3181 3182 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3183 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3184 // Prefer build_vector as the canonical form if packed types are legal. 3185 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3186 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3187 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3188 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3189 } 3190 3191 // shl (ext x) => zext (shl x), if shift does not overflow int 3192 if (VT != MVT::i64) 3193 break; 3194 KnownBits Known = DAG.computeKnownBits(X); 3195 unsigned LZ = Known.countMinLeadingZeros(); 3196 if (LZ < RHSVal) 3197 break; 3198 EVT XVT = X.getValueType(); 3199 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3200 return DAG.getZExtOrTrunc(Shl, SL, VT); 3201 } 3202 } 3203 3204 if (VT != MVT::i64) 3205 return SDValue(); 3206 3207 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3208 3209 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3210 // common case, splitting this into a move and a 32-bit shift is faster and 3211 // the same code size. 3212 if (RHSVal < 32) 3213 return SDValue(); 3214 3215 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3216 3217 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3218 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3219 3220 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3221 3222 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3223 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3224 } 3225 3226 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3227 DAGCombinerInfo &DCI) const { 3228 if (N->getValueType(0) != MVT::i64) 3229 return SDValue(); 3230 3231 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3232 if (!RHS) 3233 return SDValue(); 3234 3235 SelectionDAG &DAG = DCI.DAG; 3236 SDLoc SL(N); 3237 unsigned RHSVal = RHS->getZExtValue(); 3238 3239 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3240 if (RHSVal == 32) { 3241 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3242 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3243 DAG.getConstant(31, SL, MVT::i32)); 3244 3245 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3246 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3247 } 3248 3249 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3250 if (RHSVal == 63) { 3251 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3252 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3253 DAG.getConstant(31, SL, MVT::i32)); 3254 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3255 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3256 } 3257 3258 return SDValue(); 3259 } 3260 3261 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3262 DAGCombinerInfo &DCI) const { 3263 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3264 if (!RHS) 3265 return SDValue(); 3266 3267 EVT VT = N->getValueType(0); 3268 SDValue LHS = N->getOperand(0); 3269 unsigned ShiftAmt = RHS->getZExtValue(); 3270 SelectionDAG &DAG = DCI.DAG; 3271 SDLoc SL(N); 3272 3273 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3274 // this improves the ability to match BFE patterns in isel. 3275 if (LHS.getOpcode() == ISD::AND) { 3276 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3277 if (Mask->getAPIntValue().isShiftedMask() && 3278 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3279 return DAG.getNode( 3280 ISD::AND, SL, VT, 3281 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3282 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3283 } 3284 } 3285 } 3286 3287 if (VT != MVT::i64) 3288 return SDValue(); 3289 3290 if (ShiftAmt < 32) 3291 return SDValue(); 3292 3293 // srl i64:x, C for C >= 32 3294 // => 3295 // build_pair (srl hi_32(x), C - 32), 0 3296 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3297 3298 SDValue Hi = getHiHalf64(LHS, DAG); 3299 3300 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3301 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3302 3303 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3304 3305 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3306 } 3307 3308 SDValue AMDGPUTargetLowering::performTruncateCombine( 3309 SDNode *N, DAGCombinerInfo &DCI) const { 3310 SDLoc SL(N); 3311 SelectionDAG &DAG = DCI.DAG; 3312 EVT VT = N->getValueType(0); 3313 SDValue Src = N->getOperand(0); 3314 3315 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3316 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3317 SDValue Vec = Src.getOperand(0); 3318 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3319 SDValue Elt0 = Vec.getOperand(0); 3320 EVT EltVT = Elt0.getValueType(); 3321 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3322 if (EltVT.isFloatingPoint()) { 3323 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3324 EltVT.changeTypeToInteger(), Elt0); 3325 } 3326 3327 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3328 } 3329 } 3330 } 3331 3332 // Equivalent of above for accessing the high element of a vector as an 3333 // integer operation. 3334 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3335 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3336 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3337 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3338 SDValue BV = stripBitcast(Src.getOperand(0)); 3339 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3340 BV.getValueType().getVectorNumElements() == 2) { 3341 SDValue SrcElt = BV.getOperand(1); 3342 EVT SrcEltVT = SrcElt.getValueType(); 3343 if (SrcEltVT.isFloatingPoint()) { 3344 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3345 SrcEltVT.changeTypeToInteger(), SrcElt); 3346 } 3347 3348 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3349 } 3350 } 3351 } 3352 } 3353 3354 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3355 // 3356 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3357 // i16 (trunc (srl (i32 (trunc x), K))) 3358 if (VT.getScalarSizeInBits() < 32) { 3359 EVT SrcVT = Src.getValueType(); 3360 if (SrcVT.getScalarSizeInBits() > 32 && 3361 (Src.getOpcode() == ISD::SRL || 3362 Src.getOpcode() == ISD::SRA || 3363 Src.getOpcode() == ISD::SHL)) { 3364 SDValue Amt = Src.getOperand(1); 3365 KnownBits Known = DAG.computeKnownBits(Amt); 3366 unsigned Size = VT.getScalarSizeInBits(); 3367 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3368 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3369 EVT MidVT = VT.isVector() ? 3370 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3371 VT.getVectorNumElements()) : MVT::i32; 3372 3373 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3374 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3375 Src.getOperand(0)); 3376 DCI.AddToWorklist(Trunc.getNode()); 3377 3378 if (Amt.getValueType() != NewShiftVT) { 3379 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3380 DCI.AddToWorklist(Amt.getNode()); 3381 } 3382 3383 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3384 Trunc, Amt); 3385 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3386 } 3387 } 3388 } 3389 3390 return SDValue(); 3391 } 3392 3393 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3394 // instructions. If we only match on the legalized i64 mul expansion, 3395 // SimplifyDemandedBits will be unable to remove them because there will be 3396 // multiple uses due to the separate mul + mulh[su]. 3397 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3398 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3399 if (Size <= 32) { 3400 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3401 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3402 } 3403 3404 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3405 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3406 3407 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3408 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3409 3410 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3411 } 3412 3413 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3414 DAGCombinerInfo &DCI) const { 3415 EVT VT = N->getValueType(0); 3416 3417 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3418 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3419 // unnecessarily). isDivergent() is used as an approximation of whether the 3420 // value is in an SGPR. 3421 if (!N->isDivergent()) 3422 return SDValue(); 3423 3424 unsigned Size = VT.getSizeInBits(); 3425 if (VT.isVector() || Size > 64) 3426 return SDValue(); 3427 3428 // There are i16 integer mul/mad. 3429 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3430 return SDValue(); 3431 3432 SelectionDAG &DAG = DCI.DAG; 3433 SDLoc DL(N); 3434 3435 SDValue N0 = N->getOperand(0); 3436 SDValue N1 = N->getOperand(1); 3437 3438 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3439 // in the source into any_extends if the result of the mul is truncated. Since 3440 // we can assume the high bits are whatever we want, use the underlying value 3441 // to avoid the unknown high bits from interfering. 3442 if (N0.getOpcode() == ISD::ANY_EXTEND) 3443 N0 = N0.getOperand(0); 3444 3445 if (N1.getOpcode() == ISD::ANY_EXTEND) 3446 N1 = N1.getOperand(0); 3447 3448 SDValue Mul; 3449 3450 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3451 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3452 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3453 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3454 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3455 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3456 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3457 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3458 } else { 3459 return SDValue(); 3460 } 3461 3462 // We need to use sext even for MUL_U24, because MUL_U24 is used 3463 // for signed multiply of 8 and 16-bit types. 3464 return DAG.getSExtOrTrunc(Mul, DL, VT); 3465 } 3466 3467 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3468 DAGCombinerInfo &DCI) const { 3469 EVT VT = N->getValueType(0); 3470 3471 if (!Subtarget->hasMulI24() || VT.isVector()) 3472 return SDValue(); 3473 3474 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3475 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3476 // unnecessarily). isDivergent() is used as an approximation of whether the 3477 // value is in an SGPR. 3478 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3479 // valu op anyway) 3480 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3481 return SDValue(); 3482 3483 SelectionDAG &DAG = DCI.DAG; 3484 SDLoc DL(N); 3485 3486 SDValue N0 = N->getOperand(0); 3487 SDValue N1 = N->getOperand(1); 3488 3489 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3490 return SDValue(); 3491 3492 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3493 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3494 3495 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3496 DCI.AddToWorklist(Mulhi.getNode()); 3497 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3498 } 3499 3500 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3501 DAGCombinerInfo &DCI) const { 3502 EVT VT = N->getValueType(0); 3503 3504 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3505 return SDValue(); 3506 3507 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3508 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3509 // unnecessarily). isDivergent() is used as an approximation of whether the 3510 // value is in an SGPR. 3511 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3512 // valu op anyway) 3513 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3514 return SDValue(); 3515 3516 SelectionDAG &DAG = DCI.DAG; 3517 SDLoc DL(N); 3518 3519 SDValue N0 = N->getOperand(0); 3520 SDValue N1 = N->getOperand(1); 3521 3522 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3523 return SDValue(); 3524 3525 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3526 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3527 3528 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3529 DCI.AddToWorklist(Mulhi.getNode()); 3530 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3531 } 3532 3533 static bool isNegativeOne(SDValue Val) { 3534 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3535 return C->isAllOnesValue(); 3536 return false; 3537 } 3538 3539 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3540 SDValue Op, 3541 const SDLoc &DL, 3542 unsigned Opc) const { 3543 EVT VT = Op.getValueType(); 3544 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3545 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3546 LegalVT != MVT::i16)) 3547 return SDValue(); 3548 3549 if (VT != MVT::i32) 3550 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3551 3552 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3553 if (VT != MVT::i32) 3554 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3555 3556 return FFBX; 3557 } 3558 3559 // The native instructions return -1 on 0 input. Optimize out a select that 3560 // produces -1 on 0. 3561 // 3562 // TODO: If zero is not undef, we could also do this if the output is compared 3563 // against the bitwidth. 3564 // 3565 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3566 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3567 SDValue LHS, SDValue RHS, 3568 DAGCombinerInfo &DCI) const { 3569 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3570 if (!CmpRhs || !CmpRhs->isNullValue()) 3571 return SDValue(); 3572 3573 SelectionDAG &DAG = DCI.DAG; 3574 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3575 SDValue CmpLHS = Cond.getOperand(0); 3576 3577 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3578 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3579 if (CCOpcode == ISD::SETEQ && 3580 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3581 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3582 unsigned Opc = 3583 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3584 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3585 } 3586 3587 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3588 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3589 if (CCOpcode == ISD::SETNE && 3590 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3591 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3592 unsigned Opc = 3593 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3594 3595 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3596 } 3597 3598 return SDValue(); 3599 } 3600 3601 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3602 unsigned Op, 3603 const SDLoc &SL, 3604 SDValue Cond, 3605 SDValue N1, 3606 SDValue N2) { 3607 SelectionDAG &DAG = DCI.DAG; 3608 EVT VT = N1.getValueType(); 3609 3610 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3611 N1.getOperand(0), N2.getOperand(0)); 3612 DCI.AddToWorklist(NewSelect.getNode()); 3613 return DAG.getNode(Op, SL, VT, NewSelect); 3614 } 3615 3616 // Pull a free FP operation out of a select so it may fold into uses. 3617 // 3618 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3619 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3620 // 3621 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3622 // select c, (fabs x), +k -> fabs (select c, x, k) 3623 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3624 SDValue N) { 3625 SelectionDAG &DAG = DCI.DAG; 3626 SDValue Cond = N.getOperand(0); 3627 SDValue LHS = N.getOperand(1); 3628 SDValue RHS = N.getOperand(2); 3629 3630 EVT VT = N.getValueType(); 3631 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3632 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3633 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3634 SDLoc(N), Cond, LHS, RHS); 3635 } 3636 3637 bool Inv = false; 3638 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3639 std::swap(LHS, RHS); 3640 Inv = true; 3641 } 3642 3643 // TODO: Support vector constants. 3644 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3645 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3646 SDLoc SL(N); 3647 // If one side is an fneg/fabs and the other is a constant, we can push the 3648 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3649 SDValue NewLHS = LHS.getOperand(0); 3650 SDValue NewRHS = RHS; 3651 3652 // Careful: if the neg can be folded up, don't try to pull it back down. 3653 bool ShouldFoldNeg = true; 3654 3655 if (NewLHS.hasOneUse()) { 3656 unsigned Opc = NewLHS.getOpcode(); 3657 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3658 ShouldFoldNeg = false; 3659 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3660 ShouldFoldNeg = false; 3661 } 3662 3663 if (ShouldFoldNeg) { 3664 if (LHS.getOpcode() == ISD::FNEG) 3665 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3666 else if (CRHS->isNegative()) 3667 return SDValue(); 3668 3669 if (Inv) 3670 std::swap(NewLHS, NewRHS); 3671 3672 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3673 Cond, NewLHS, NewRHS); 3674 DCI.AddToWorklist(NewSelect.getNode()); 3675 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3676 } 3677 } 3678 3679 return SDValue(); 3680 } 3681 3682 3683 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3684 DAGCombinerInfo &DCI) const { 3685 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3686 return Folded; 3687 3688 SDValue Cond = N->getOperand(0); 3689 if (Cond.getOpcode() != ISD::SETCC) 3690 return SDValue(); 3691 3692 EVT VT = N->getValueType(0); 3693 SDValue LHS = Cond.getOperand(0); 3694 SDValue RHS = Cond.getOperand(1); 3695 SDValue CC = Cond.getOperand(2); 3696 3697 SDValue True = N->getOperand(1); 3698 SDValue False = N->getOperand(2); 3699 3700 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3701 SelectionDAG &DAG = DCI.DAG; 3702 if (DAG.isConstantValueOfAnyType(True) && 3703 !DAG.isConstantValueOfAnyType(False)) { 3704 // Swap cmp + select pair to move constant to false input. 3705 // This will allow using VOPC cndmasks more often. 3706 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3707 3708 SDLoc SL(N); 3709 ISD::CondCode NewCC = 3710 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3711 3712 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3713 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3714 } 3715 3716 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3717 SDValue MinMax 3718 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3719 // Revisit this node so we can catch min3/max3/med3 patterns. 3720 //DCI.AddToWorklist(MinMax.getNode()); 3721 return MinMax; 3722 } 3723 } 3724 3725 // There's no reason to not do this if the condition has other uses. 3726 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3727 } 3728 3729 static bool isInv2Pi(const APFloat &APF) { 3730 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3731 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3732 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3733 3734 return APF.bitwiseIsEqual(KF16) || 3735 APF.bitwiseIsEqual(KF32) || 3736 APF.bitwiseIsEqual(KF64); 3737 } 3738 3739 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3740 // additional cost to negate them. 3741 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3742 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3743 if (C->isZero() && !C->isNegative()) 3744 return true; 3745 3746 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3747 return true; 3748 } 3749 3750 return false; 3751 } 3752 3753 static unsigned inverseMinMax(unsigned Opc) { 3754 switch (Opc) { 3755 case ISD::FMAXNUM: 3756 return ISD::FMINNUM; 3757 case ISD::FMINNUM: 3758 return ISD::FMAXNUM; 3759 case ISD::FMAXNUM_IEEE: 3760 return ISD::FMINNUM_IEEE; 3761 case ISD::FMINNUM_IEEE: 3762 return ISD::FMAXNUM_IEEE; 3763 case AMDGPUISD::FMAX_LEGACY: 3764 return AMDGPUISD::FMIN_LEGACY; 3765 case AMDGPUISD::FMIN_LEGACY: 3766 return AMDGPUISD::FMAX_LEGACY; 3767 default: 3768 llvm_unreachable("invalid min/max opcode"); 3769 } 3770 } 3771 3772 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3773 DAGCombinerInfo &DCI) const { 3774 SelectionDAG &DAG = DCI.DAG; 3775 SDValue N0 = N->getOperand(0); 3776 EVT VT = N->getValueType(0); 3777 3778 unsigned Opc = N0.getOpcode(); 3779 3780 // If the input has multiple uses and we can either fold the negate down, or 3781 // the other uses cannot, give up. This both prevents unprofitable 3782 // transformations and infinite loops: we won't repeatedly try to fold around 3783 // a negate that has no 'good' form. 3784 if (N0.hasOneUse()) { 3785 // This may be able to fold into the source, but at a code size cost. Don't 3786 // fold if the fold into the user is free. 3787 if (allUsesHaveSourceMods(N, 0)) 3788 return SDValue(); 3789 } else { 3790 if (fnegFoldsIntoOp(Opc) && 3791 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3792 return SDValue(); 3793 } 3794 3795 SDLoc SL(N); 3796 switch (Opc) { 3797 case ISD::FADD: { 3798 if (!mayIgnoreSignedZero(N0)) 3799 return SDValue(); 3800 3801 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3802 SDValue LHS = N0.getOperand(0); 3803 SDValue RHS = N0.getOperand(1); 3804 3805 if (LHS.getOpcode() != ISD::FNEG) 3806 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3807 else 3808 LHS = LHS.getOperand(0); 3809 3810 if (RHS.getOpcode() != ISD::FNEG) 3811 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3812 else 3813 RHS = RHS.getOperand(0); 3814 3815 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3816 if (Res.getOpcode() != ISD::FADD) 3817 return SDValue(); // Op got folded away. 3818 if (!N0.hasOneUse()) 3819 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3820 return Res; 3821 } 3822 case ISD::FMUL: 3823 case AMDGPUISD::FMUL_LEGACY: { 3824 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3825 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3826 SDValue LHS = N0.getOperand(0); 3827 SDValue RHS = N0.getOperand(1); 3828 3829 if (LHS.getOpcode() == ISD::FNEG) 3830 LHS = LHS.getOperand(0); 3831 else if (RHS.getOpcode() == ISD::FNEG) 3832 RHS = RHS.getOperand(0); 3833 else 3834 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3835 3836 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3837 if (Res.getOpcode() != Opc) 3838 return SDValue(); // Op got folded away. 3839 if (!N0.hasOneUse()) 3840 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3841 return Res; 3842 } 3843 case ISD::FMA: 3844 case ISD::FMAD: { 3845 // TODO: handle llvm.amdgcn.fma.legacy 3846 if (!mayIgnoreSignedZero(N0)) 3847 return SDValue(); 3848 3849 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3850 SDValue LHS = N0.getOperand(0); 3851 SDValue MHS = N0.getOperand(1); 3852 SDValue RHS = N0.getOperand(2); 3853 3854 if (LHS.getOpcode() == ISD::FNEG) 3855 LHS = LHS.getOperand(0); 3856 else if (MHS.getOpcode() == ISD::FNEG) 3857 MHS = MHS.getOperand(0); 3858 else 3859 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3860 3861 if (RHS.getOpcode() != ISD::FNEG) 3862 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3863 else 3864 RHS = RHS.getOperand(0); 3865 3866 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3867 if (Res.getOpcode() != Opc) 3868 return SDValue(); // Op got folded away. 3869 if (!N0.hasOneUse()) 3870 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3871 return Res; 3872 } 3873 case ISD::FMAXNUM: 3874 case ISD::FMINNUM: 3875 case ISD::FMAXNUM_IEEE: 3876 case ISD::FMINNUM_IEEE: 3877 case AMDGPUISD::FMAX_LEGACY: 3878 case AMDGPUISD::FMIN_LEGACY: { 3879 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3880 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3881 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3882 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3883 3884 SDValue LHS = N0.getOperand(0); 3885 SDValue RHS = N0.getOperand(1); 3886 3887 // 0 doesn't have a negated inline immediate. 3888 // TODO: This constant check should be generalized to other operations. 3889 if (isConstantCostlierToNegate(RHS)) 3890 return SDValue(); 3891 3892 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3893 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3894 unsigned Opposite = inverseMinMax(Opc); 3895 3896 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3897 if (Res.getOpcode() != Opposite) 3898 return SDValue(); // Op got folded away. 3899 if (!N0.hasOneUse()) 3900 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3901 return Res; 3902 } 3903 case AMDGPUISD::FMED3: { 3904 SDValue Ops[3]; 3905 for (unsigned I = 0; I < 3; ++I) 3906 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3907 3908 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3909 if (Res.getOpcode() != AMDGPUISD::FMED3) 3910 return SDValue(); // Op got folded away. 3911 3912 if (!N0.hasOneUse()) { 3913 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3914 DAG.ReplaceAllUsesWith(N0, Neg); 3915 3916 for (SDNode *U : Neg->uses()) 3917 DCI.AddToWorklist(U); 3918 } 3919 3920 return Res; 3921 } 3922 case ISD::FP_EXTEND: 3923 case ISD::FTRUNC: 3924 case ISD::FRINT: 3925 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3926 case ISD::FSIN: 3927 case ISD::FCANONICALIZE: 3928 case AMDGPUISD::RCP: 3929 case AMDGPUISD::RCP_LEGACY: 3930 case AMDGPUISD::RCP_IFLAG: 3931 case AMDGPUISD::SIN_HW: { 3932 SDValue CvtSrc = N0.getOperand(0); 3933 if (CvtSrc.getOpcode() == ISD::FNEG) { 3934 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3935 // (fneg (rcp (fneg x))) -> (rcp x) 3936 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3937 } 3938 3939 if (!N0.hasOneUse()) 3940 return SDValue(); 3941 3942 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3943 // (fneg (rcp x)) -> (rcp (fneg x)) 3944 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3945 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3946 } 3947 case ISD::FP_ROUND: { 3948 SDValue CvtSrc = N0.getOperand(0); 3949 3950 if (CvtSrc.getOpcode() == ISD::FNEG) { 3951 // (fneg (fp_round (fneg x))) -> (fp_round x) 3952 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3953 CvtSrc.getOperand(0), N0.getOperand(1)); 3954 } 3955 3956 if (!N0.hasOneUse()) 3957 return SDValue(); 3958 3959 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3960 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3961 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3962 } 3963 case ISD::FP16_TO_FP: { 3964 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3965 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3966 // Put the fneg back as a legal source operation that can be matched later. 3967 SDLoc SL(N); 3968 3969 SDValue Src = N0.getOperand(0); 3970 EVT SrcVT = Src.getValueType(); 3971 3972 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3973 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3974 DAG.getConstant(0x8000, SL, SrcVT)); 3975 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3976 } 3977 default: 3978 return SDValue(); 3979 } 3980 } 3981 3982 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3983 DAGCombinerInfo &DCI) const { 3984 SelectionDAG &DAG = DCI.DAG; 3985 SDValue N0 = N->getOperand(0); 3986 3987 if (!N0.hasOneUse()) 3988 return SDValue(); 3989 3990 switch (N0.getOpcode()) { 3991 case ISD::FP16_TO_FP: { 3992 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3993 SDLoc SL(N); 3994 SDValue Src = N0.getOperand(0); 3995 EVT SrcVT = Src.getValueType(); 3996 3997 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3998 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3999 DAG.getConstant(0x7fff, SL, SrcVT)); 4000 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 4001 } 4002 default: 4003 return SDValue(); 4004 } 4005 } 4006 4007 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4008 DAGCombinerInfo &DCI) const { 4009 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4010 if (!CFP) 4011 return SDValue(); 4012 4013 // XXX - Should this flush denormals? 4014 const APFloat &Val = CFP->getValueAPF(); 4015 APFloat One(Val.getSemantics(), "1.0"); 4016 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4017 } 4018 4019 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4020 DAGCombinerInfo &DCI) const { 4021 SelectionDAG &DAG = DCI.DAG; 4022 SDLoc DL(N); 4023 4024 switch(N->getOpcode()) { 4025 default: 4026 break; 4027 case ISD::BITCAST: { 4028 EVT DestVT = N->getValueType(0); 4029 4030 // Push casts through vector builds. This helps avoid emitting a large 4031 // number of copies when materializing floating point vector constants. 4032 // 4033 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4034 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4035 if (DestVT.isVector()) { 4036 SDValue Src = N->getOperand(0); 4037 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4038 EVT SrcVT = Src.getValueType(); 4039 unsigned NElts = DestVT.getVectorNumElements(); 4040 4041 if (SrcVT.getVectorNumElements() == NElts) { 4042 EVT DestEltVT = DestVT.getVectorElementType(); 4043 4044 SmallVector<SDValue, 8> CastedElts; 4045 SDLoc SL(N); 4046 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4047 SDValue Elt = Src.getOperand(I); 4048 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4049 } 4050 4051 return DAG.getBuildVector(DestVT, SL, CastedElts); 4052 } 4053 } 4054 } 4055 4056 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4057 break; 4058 4059 // Fold bitcasts of constants. 4060 // 4061 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4062 // TODO: Generalize and move to DAGCombiner 4063 SDValue Src = N->getOperand(0); 4064 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4065 SDLoc SL(N); 4066 uint64_t CVal = C->getZExtValue(); 4067 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4068 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4069 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4070 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4071 } 4072 4073 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4074 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4075 SDLoc SL(N); 4076 uint64_t CVal = Val.getZExtValue(); 4077 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4078 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4079 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4080 4081 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4082 } 4083 4084 break; 4085 } 4086 case ISD::SHL: { 4087 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4088 break; 4089 4090 return performShlCombine(N, DCI); 4091 } 4092 case ISD::SRL: { 4093 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4094 break; 4095 4096 return performSrlCombine(N, DCI); 4097 } 4098 case ISD::SRA: { 4099 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4100 break; 4101 4102 return performSraCombine(N, DCI); 4103 } 4104 case ISD::TRUNCATE: 4105 return performTruncateCombine(N, DCI); 4106 case ISD::MUL: 4107 return performMulCombine(N, DCI); 4108 case ISD::MULHS: 4109 return performMulhsCombine(N, DCI); 4110 case ISD::MULHU: 4111 return performMulhuCombine(N, DCI); 4112 case AMDGPUISD::MUL_I24: 4113 case AMDGPUISD::MUL_U24: 4114 case AMDGPUISD::MULHI_I24: 4115 case AMDGPUISD::MULHI_U24: 4116 return simplifyMul24(N, DCI); 4117 case ISD::SELECT: 4118 return performSelectCombine(N, DCI); 4119 case ISD::FNEG: 4120 return performFNegCombine(N, DCI); 4121 case ISD::FABS: 4122 return performFAbsCombine(N, DCI); 4123 case AMDGPUISD::BFE_I32: 4124 case AMDGPUISD::BFE_U32: { 4125 assert(!N->getValueType(0).isVector() && 4126 "Vector handling of BFE not implemented"); 4127 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4128 if (!Width) 4129 break; 4130 4131 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4132 if (WidthVal == 0) 4133 return DAG.getConstant(0, DL, MVT::i32); 4134 4135 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4136 if (!Offset) 4137 break; 4138 4139 SDValue BitsFrom = N->getOperand(0); 4140 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4141 4142 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4143 4144 if (OffsetVal == 0) { 4145 // This is already sign / zero extended, so try to fold away extra BFEs. 4146 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4147 4148 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4149 if (OpSignBits >= SignBits) 4150 return BitsFrom; 4151 4152 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4153 if (Signed) { 4154 // This is a sign_extend_inreg. Replace it to take advantage of existing 4155 // DAG Combines. If not eliminated, we will match back to BFE during 4156 // selection. 4157 4158 // TODO: The sext_inreg of extended types ends, although we can could 4159 // handle them in a single BFE. 4160 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4161 DAG.getValueType(SmallVT)); 4162 } 4163 4164 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4165 } 4166 4167 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4168 if (Signed) { 4169 return constantFoldBFE<int32_t>(DAG, 4170 CVal->getSExtValue(), 4171 OffsetVal, 4172 WidthVal, 4173 DL); 4174 } 4175 4176 return constantFoldBFE<uint32_t>(DAG, 4177 CVal->getZExtValue(), 4178 OffsetVal, 4179 WidthVal, 4180 DL); 4181 } 4182 4183 if ((OffsetVal + WidthVal) >= 32 && 4184 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4185 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4186 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4187 BitsFrom, ShiftVal); 4188 } 4189 4190 if (BitsFrom.hasOneUse()) { 4191 APInt Demanded = APInt::getBitsSet(32, 4192 OffsetVal, 4193 OffsetVal + WidthVal); 4194 4195 KnownBits Known; 4196 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4197 !DCI.isBeforeLegalizeOps()); 4198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4199 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4200 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4201 DCI.CommitTargetLoweringOpt(TLO); 4202 } 4203 } 4204 4205 break; 4206 } 4207 case ISD::LOAD: 4208 return performLoadCombine(N, DCI); 4209 case ISD::STORE: 4210 return performStoreCombine(N, DCI); 4211 case AMDGPUISD::RCP: 4212 case AMDGPUISD::RCP_IFLAG: 4213 return performRcpCombine(N, DCI); 4214 case ISD::AssertZext: 4215 case ISD::AssertSext: 4216 return performAssertSZExtCombine(N, DCI); 4217 case ISD::INTRINSIC_WO_CHAIN: 4218 return performIntrinsicWOChainCombine(N, DCI); 4219 } 4220 return SDValue(); 4221 } 4222 4223 //===----------------------------------------------------------------------===// 4224 // Helper functions 4225 //===----------------------------------------------------------------------===// 4226 4227 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4228 const TargetRegisterClass *RC, 4229 Register Reg, EVT VT, 4230 const SDLoc &SL, 4231 bool RawReg) const { 4232 MachineFunction &MF = DAG.getMachineFunction(); 4233 MachineRegisterInfo &MRI = MF.getRegInfo(); 4234 Register VReg; 4235 4236 if (!MRI.isLiveIn(Reg)) { 4237 VReg = MRI.createVirtualRegister(RC); 4238 MRI.addLiveIn(Reg, VReg); 4239 } else { 4240 VReg = MRI.getLiveInVirtReg(Reg); 4241 } 4242 4243 if (RawReg) 4244 return DAG.getRegister(VReg, VT); 4245 4246 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4247 } 4248 4249 // This may be called multiple times, and nothing prevents creating multiple 4250 // objects at the same offset. See if we already defined this object. 4251 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4252 int64_t Offset) { 4253 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4254 if (MFI.getObjectOffset(I) == Offset) { 4255 assert(MFI.getObjectSize(I) == Size); 4256 return I; 4257 } 4258 } 4259 4260 return MFI.CreateFixedObject(Size, Offset, true); 4261 } 4262 4263 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4264 EVT VT, 4265 const SDLoc &SL, 4266 int64_t Offset) const { 4267 MachineFunction &MF = DAG.getMachineFunction(); 4268 MachineFrameInfo &MFI = MF.getFrameInfo(); 4269 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4270 4271 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4272 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4273 4274 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4275 MachineMemOperand::MODereferenceable | 4276 MachineMemOperand::MOInvariant); 4277 } 4278 4279 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4280 const SDLoc &SL, 4281 SDValue Chain, 4282 SDValue ArgVal, 4283 int64_t Offset) const { 4284 MachineFunction &MF = DAG.getMachineFunction(); 4285 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4286 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4287 4288 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4289 // Stores to the argument stack area are relative to the stack pointer. 4290 SDValue SP = 4291 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4292 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4293 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4294 MachineMemOperand::MODereferenceable); 4295 return Store; 4296 } 4297 4298 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4299 const TargetRegisterClass *RC, 4300 EVT VT, const SDLoc &SL, 4301 const ArgDescriptor &Arg) const { 4302 assert(Arg && "Attempting to load missing argument"); 4303 4304 SDValue V = Arg.isRegister() ? 4305 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4306 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4307 4308 if (!Arg.isMasked()) 4309 return V; 4310 4311 unsigned Mask = Arg.getMask(); 4312 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4313 V = DAG.getNode(ISD::SRL, SL, VT, V, 4314 DAG.getShiftAmountConstant(Shift, VT, SL)); 4315 return DAG.getNode(ISD::AND, SL, VT, V, 4316 DAG.getConstant(Mask >> Shift, SL, VT)); 4317 } 4318 4319 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4320 const MachineFunction &MF, const ImplicitParameter Param) const { 4321 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4322 const AMDGPUSubtarget &ST = 4323 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4324 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4325 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4326 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4327 ExplicitArgOffset; 4328 switch (Param) { 4329 case GRID_DIM: 4330 return ArgOffset; 4331 case GRID_OFFSET: 4332 return ArgOffset + 4; 4333 } 4334 llvm_unreachable("unexpected implicit parameter type"); 4335 } 4336 4337 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4338 4339 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4340 switch ((AMDGPUISD::NodeType)Opcode) { 4341 case AMDGPUISD::FIRST_NUMBER: break; 4342 // AMDIL DAG nodes 4343 NODE_NAME_CASE(UMUL); 4344 NODE_NAME_CASE(BRANCH_COND); 4345 4346 // AMDGPU DAG nodes 4347 NODE_NAME_CASE(IF) 4348 NODE_NAME_CASE(ELSE) 4349 NODE_NAME_CASE(LOOP) 4350 NODE_NAME_CASE(CALL) 4351 NODE_NAME_CASE(TC_RETURN) 4352 NODE_NAME_CASE(TRAP) 4353 NODE_NAME_CASE(RET_FLAG) 4354 NODE_NAME_CASE(RETURN_TO_EPILOG) 4355 NODE_NAME_CASE(ENDPGM) 4356 NODE_NAME_CASE(DWORDADDR) 4357 NODE_NAME_CASE(FRACT) 4358 NODE_NAME_CASE(SETCC) 4359 NODE_NAME_CASE(SETREG) 4360 NODE_NAME_CASE(DENORM_MODE) 4361 NODE_NAME_CASE(FMA_W_CHAIN) 4362 NODE_NAME_CASE(FMUL_W_CHAIN) 4363 NODE_NAME_CASE(CLAMP) 4364 NODE_NAME_CASE(COS_HW) 4365 NODE_NAME_CASE(SIN_HW) 4366 NODE_NAME_CASE(FMAX_LEGACY) 4367 NODE_NAME_CASE(FMIN_LEGACY) 4368 NODE_NAME_CASE(FMAX3) 4369 NODE_NAME_CASE(SMAX3) 4370 NODE_NAME_CASE(UMAX3) 4371 NODE_NAME_CASE(FMIN3) 4372 NODE_NAME_CASE(SMIN3) 4373 NODE_NAME_CASE(UMIN3) 4374 NODE_NAME_CASE(FMED3) 4375 NODE_NAME_CASE(SMED3) 4376 NODE_NAME_CASE(UMED3) 4377 NODE_NAME_CASE(FDOT2) 4378 NODE_NAME_CASE(URECIP) 4379 NODE_NAME_CASE(DIV_SCALE) 4380 NODE_NAME_CASE(DIV_FMAS) 4381 NODE_NAME_CASE(DIV_FIXUP) 4382 NODE_NAME_CASE(FMAD_FTZ) 4383 NODE_NAME_CASE(RCP) 4384 NODE_NAME_CASE(RSQ) 4385 NODE_NAME_CASE(RCP_LEGACY) 4386 NODE_NAME_CASE(RCP_IFLAG) 4387 NODE_NAME_CASE(FMUL_LEGACY) 4388 NODE_NAME_CASE(RSQ_CLAMP) 4389 NODE_NAME_CASE(LDEXP) 4390 NODE_NAME_CASE(FP_CLASS) 4391 NODE_NAME_CASE(DOT4) 4392 NODE_NAME_CASE(CARRY) 4393 NODE_NAME_CASE(BORROW) 4394 NODE_NAME_CASE(BFE_U32) 4395 NODE_NAME_CASE(BFE_I32) 4396 NODE_NAME_CASE(BFI) 4397 NODE_NAME_CASE(BFM) 4398 NODE_NAME_CASE(FFBH_U32) 4399 NODE_NAME_CASE(FFBH_I32) 4400 NODE_NAME_CASE(FFBL_B32) 4401 NODE_NAME_CASE(MUL_U24) 4402 NODE_NAME_CASE(MUL_I24) 4403 NODE_NAME_CASE(MULHI_U24) 4404 NODE_NAME_CASE(MULHI_I24) 4405 NODE_NAME_CASE(MAD_U24) 4406 NODE_NAME_CASE(MAD_I24) 4407 NODE_NAME_CASE(MAD_I64_I32) 4408 NODE_NAME_CASE(MAD_U64_U32) 4409 NODE_NAME_CASE(PERM) 4410 NODE_NAME_CASE(TEXTURE_FETCH) 4411 NODE_NAME_CASE(R600_EXPORT) 4412 NODE_NAME_CASE(CONST_ADDRESS) 4413 NODE_NAME_CASE(REGISTER_LOAD) 4414 NODE_NAME_CASE(REGISTER_STORE) 4415 NODE_NAME_CASE(SAMPLE) 4416 NODE_NAME_CASE(SAMPLEB) 4417 NODE_NAME_CASE(SAMPLED) 4418 NODE_NAME_CASE(SAMPLEL) 4419 NODE_NAME_CASE(CVT_F32_UBYTE0) 4420 NODE_NAME_CASE(CVT_F32_UBYTE1) 4421 NODE_NAME_CASE(CVT_F32_UBYTE2) 4422 NODE_NAME_CASE(CVT_F32_UBYTE3) 4423 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4424 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4425 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4426 NODE_NAME_CASE(CVT_PK_I16_I32) 4427 NODE_NAME_CASE(CVT_PK_U16_U32) 4428 NODE_NAME_CASE(FP_TO_FP16) 4429 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4430 NODE_NAME_CASE(CONST_DATA_PTR) 4431 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4432 NODE_NAME_CASE(LDS) 4433 NODE_NAME_CASE(DUMMY_CHAIN) 4434 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4435 NODE_NAME_CASE(LOAD_D16_HI) 4436 NODE_NAME_CASE(LOAD_D16_LO) 4437 NODE_NAME_CASE(LOAD_D16_HI_I8) 4438 NODE_NAME_CASE(LOAD_D16_HI_U8) 4439 NODE_NAME_CASE(LOAD_D16_LO_I8) 4440 NODE_NAME_CASE(LOAD_D16_LO_U8) 4441 NODE_NAME_CASE(STORE_MSKOR) 4442 NODE_NAME_CASE(LOAD_CONSTANT) 4443 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4444 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4445 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4446 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4447 NODE_NAME_CASE(DS_ORDERED_COUNT) 4448 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4449 NODE_NAME_CASE(ATOMIC_INC) 4450 NODE_NAME_CASE(ATOMIC_DEC) 4451 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4452 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4453 NODE_NAME_CASE(BUFFER_LOAD) 4454 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4455 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4456 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4457 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4458 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4459 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4460 NODE_NAME_CASE(SBUFFER_LOAD) 4461 NODE_NAME_CASE(BUFFER_STORE) 4462 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4463 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4464 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4465 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4466 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4467 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4468 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4469 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4470 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4471 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4472 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4473 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4474 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4475 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4476 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4477 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4478 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4479 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4480 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4481 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4482 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4483 4484 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4485 } 4486 return nullptr; 4487 } 4488 4489 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4490 SelectionDAG &DAG, int Enabled, 4491 int &RefinementSteps, 4492 bool &UseOneConstNR, 4493 bool Reciprocal) const { 4494 EVT VT = Operand.getValueType(); 4495 4496 if (VT == MVT::f32) { 4497 RefinementSteps = 0; 4498 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4499 } 4500 4501 // TODO: There is also f64 rsq instruction, but the documentation is less 4502 // clear on its precision. 4503 4504 return SDValue(); 4505 } 4506 4507 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4508 SelectionDAG &DAG, int Enabled, 4509 int &RefinementSteps) const { 4510 EVT VT = Operand.getValueType(); 4511 4512 if (VT == MVT::f32) { 4513 // Reciprocal, < 1 ulp error. 4514 // 4515 // This reciprocal approximation converges to < 0.5 ulp error with one 4516 // newton rhapson performed with two fused multiple adds (FMAs). 4517 4518 RefinementSteps = 0; 4519 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4520 } 4521 4522 // TODO: There is also f64 rcp instruction, but the documentation is less 4523 // clear on its precision. 4524 4525 return SDValue(); 4526 } 4527 4528 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4529 const SDValue Op, KnownBits &Known, 4530 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4531 4532 Known.resetAll(); // Don't know anything. 4533 4534 unsigned Opc = Op.getOpcode(); 4535 4536 switch (Opc) { 4537 default: 4538 break; 4539 case AMDGPUISD::CARRY: 4540 case AMDGPUISD::BORROW: { 4541 Known.Zero = APInt::getHighBitsSet(32, 31); 4542 break; 4543 } 4544 4545 case AMDGPUISD::BFE_I32: 4546 case AMDGPUISD::BFE_U32: { 4547 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4548 if (!CWidth) 4549 return; 4550 4551 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4552 4553 if (Opc == AMDGPUISD::BFE_U32) 4554 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4555 4556 break; 4557 } 4558 case AMDGPUISD::FP_TO_FP16: { 4559 unsigned BitWidth = Known.getBitWidth(); 4560 4561 // High bits are zero. 4562 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4563 break; 4564 } 4565 case AMDGPUISD::MUL_U24: 4566 case AMDGPUISD::MUL_I24: { 4567 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4568 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4569 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4570 RHSKnown.countMinTrailingZeros(); 4571 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4572 // Skip extra check if all bits are known zeros. 4573 if (TrailZ >= 32) 4574 break; 4575 4576 // Truncate to 24 bits. 4577 LHSKnown = LHSKnown.trunc(24); 4578 RHSKnown = RHSKnown.trunc(24); 4579 4580 if (Opc == AMDGPUISD::MUL_I24) { 4581 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4582 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4583 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4584 if (MaxValBits >= 32) 4585 break; 4586 bool LHSNegative = LHSKnown.isNegative(); 4587 bool LHSNonNegative = LHSKnown.isNonNegative(); 4588 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4589 bool RHSNegative = RHSKnown.isNegative(); 4590 bool RHSNonNegative = RHSKnown.isNonNegative(); 4591 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4592 4593 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4594 Known.Zero.setHighBits(32 - MaxValBits); 4595 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4596 Known.One.setHighBits(32 - MaxValBits); 4597 } else { 4598 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4599 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4600 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4601 if (MaxValBits >= 32) 4602 break; 4603 Known.Zero.setHighBits(32 - MaxValBits); 4604 } 4605 break; 4606 } 4607 case AMDGPUISD::PERM: { 4608 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4609 if (!CMask) 4610 return; 4611 4612 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4613 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4614 unsigned Sel = CMask->getZExtValue(); 4615 4616 for (unsigned I = 0; I < 32; I += 8) { 4617 unsigned SelBits = Sel & 0xff; 4618 if (SelBits < 4) { 4619 SelBits *= 8; 4620 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4621 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4622 } else if (SelBits < 7) { 4623 SelBits = (SelBits & 3) * 8; 4624 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4625 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4626 } else if (SelBits == 0x0c) { 4627 Known.Zero |= 0xFFull << I; 4628 } else if (SelBits > 0x0c) { 4629 Known.One |= 0xFFull << I; 4630 } 4631 Sel >>= 8; 4632 } 4633 break; 4634 } 4635 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4636 Known.Zero.setHighBits(24); 4637 break; 4638 } 4639 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4640 Known.Zero.setHighBits(16); 4641 break; 4642 } 4643 case AMDGPUISD::LDS: { 4644 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4645 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4646 4647 Known.Zero.setHighBits(16); 4648 Known.Zero.setLowBits(Log2(Alignment)); 4649 break; 4650 } 4651 case ISD::INTRINSIC_WO_CHAIN: { 4652 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4653 switch (IID) { 4654 case Intrinsic::amdgcn_mbcnt_lo: 4655 case Intrinsic::amdgcn_mbcnt_hi: { 4656 const GCNSubtarget &ST = 4657 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4658 // These return at most the wavefront size - 1. 4659 unsigned Size = Op.getValueType().getSizeInBits(); 4660 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4661 break; 4662 } 4663 default: 4664 break; 4665 } 4666 } 4667 } 4668 } 4669 4670 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4671 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4672 unsigned Depth) const { 4673 switch (Op.getOpcode()) { 4674 case AMDGPUISD::BFE_I32: { 4675 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4676 if (!Width) 4677 return 1; 4678 4679 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4680 if (!isNullConstant(Op.getOperand(1))) 4681 return SignBits; 4682 4683 // TODO: Could probably figure something out with non-0 offsets. 4684 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4685 return std::max(SignBits, Op0SignBits); 4686 } 4687 4688 case AMDGPUISD::BFE_U32: { 4689 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4690 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4691 } 4692 4693 case AMDGPUISD::CARRY: 4694 case AMDGPUISD::BORROW: 4695 return 31; 4696 case AMDGPUISD::BUFFER_LOAD_BYTE: 4697 return 25; 4698 case AMDGPUISD::BUFFER_LOAD_SHORT: 4699 return 17; 4700 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4701 return 24; 4702 case AMDGPUISD::BUFFER_LOAD_USHORT: 4703 return 16; 4704 case AMDGPUISD::FP_TO_FP16: 4705 return 16; 4706 default: 4707 return 1; 4708 } 4709 } 4710 4711 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4712 GISelKnownBits &Analysis, Register R, 4713 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4714 unsigned Depth) const { 4715 const MachineInstr *MI = MRI.getVRegDef(R); 4716 if (!MI) 4717 return 1; 4718 4719 // TODO: Check range metadata on MMO. 4720 switch (MI->getOpcode()) { 4721 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4722 return 25; 4723 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4724 return 17; 4725 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4726 return 24; 4727 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4728 return 16; 4729 default: 4730 return 1; 4731 } 4732 } 4733 4734 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4735 const SelectionDAG &DAG, 4736 bool SNaN, 4737 unsigned Depth) const { 4738 unsigned Opcode = Op.getOpcode(); 4739 switch (Opcode) { 4740 case AMDGPUISD::FMIN_LEGACY: 4741 case AMDGPUISD::FMAX_LEGACY: { 4742 if (SNaN) 4743 return true; 4744 4745 // TODO: Can check no nans on one of the operands for each one, but which 4746 // one? 4747 return false; 4748 } 4749 case AMDGPUISD::FMUL_LEGACY: 4750 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4751 if (SNaN) 4752 return true; 4753 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4754 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4755 } 4756 case AMDGPUISD::FMED3: 4757 case AMDGPUISD::FMIN3: 4758 case AMDGPUISD::FMAX3: 4759 case AMDGPUISD::FMAD_FTZ: { 4760 if (SNaN) 4761 return true; 4762 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4763 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4764 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4765 } 4766 case AMDGPUISD::CVT_F32_UBYTE0: 4767 case AMDGPUISD::CVT_F32_UBYTE1: 4768 case AMDGPUISD::CVT_F32_UBYTE2: 4769 case AMDGPUISD::CVT_F32_UBYTE3: 4770 return true; 4771 4772 case AMDGPUISD::RCP: 4773 case AMDGPUISD::RSQ: 4774 case AMDGPUISD::RCP_LEGACY: 4775 case AMDGPUISD::RSQ_CLAMP: { 4776 if (SNaN) 4777 return true; 4778 4779 // TODO: Need is known positive check. 4780 return false; 4781 } 4782 case AMDGPUISD::LDEXP: 4783 case AMDGPUISD::FRACT: { 4784 if (SNaN) 4785 return true; 4786 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4787 } 4788 case AMDGPUISD::DIV_SCALE: 4789 case AMDGPUISD::DIV_FMAS: 4790 case AMDGPUISD::DIV_FIXUP: 4791 // TODO: Refine on operands. 4792 return SNaN; 4793 case AMDGPUISD::SIN_HW: 4794 case AMDGPUISD::COS_HW: { 4795 // TODO: Need check for infinity 4796 return SNaN; 4797 } 4798 case ISD::INTRINSIC_WO_CHAIN: { 4799 unsigned IntrinsicID 4800 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4801 // TODO: Handle more intrinsics 4802 switch (IntrinsicID) { 4803 case Intrinsic::amdgcn_cubeid: 4804 return true; 4805 4806 case Intrinsic::amdgcn_frexp_mant: { 4807 if (SNaN) 4808 return true; 4809 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4810 } 4811 case Intrinsic::amdgcn_cvt_pkrtz: { 4812 if (SNaN) 4813 return true; 4814 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4815 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4816 } 4817 case Intrinsic::amdgcn_rcp: 4818 case Intrinsic::amdgcn_rsq: 4819 case Intrinsic::amdgcn_rcp_legacy: 4820 case Intrinsic::amdgcn_rsq_legacy: 4821 case Intrinsic::amdgcn_rsq_clamp: { 4822 if (SNaN) 4823 return true; 4824 4825 // TODO: Need is known positive check. 4826 return false; 4827 } 4828 case Intrinsic::amdgcn_trig_preop: 4829 case Intrinsic::amdgcn_fdot2: 4830 // TODO: Refine on operand 4831 return SNaN; 4832 case Intrinsic::amdgcn_fma_legacy: 4833 if (SNaN) 4834 return true; 4835 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4836 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4837 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4838 default: 4839 return false; 4840 } 4841 } 4842 default: 4843 return false; 4844 } 4845 } 4846 4847 TargetLowering::AtomicExpansionKind 4848 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4849 switch (RMW->getOperation()) { 4850 case AtomicRMWInst::Nand: 4851 case AtomicRMWInst::FAdd: 4852 case AtomicRMWInst::FSub: 4853 return AtomicExpansionKind::CmpXChg; 4854 default: 4855 return AtomicExpansionKind::None; 4856 } 4857 } 4858 4859 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal( 4860 unsigned Opc, LLT Ty1, LLT Ty2) const { 4861 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)); 4862 } 4863