1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUMachineFunction.h"
19 #include "GCNSubtarget.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/IR/DiagnosticInfo.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 using namespace llvm;
29 
30 #include "AMDGPUGenCallingConv.inc"
31 
32 static cl::opt<bool> AMDGPUBypassSlowDiv(
33   "amdgpu-bypass-slow-div",
34   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
35   cl::init(true));
36 
37 // Find a larger type to do a load / store of a vector with.
38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
39   unsigned StoreSize = VT.getStoreSizeInBits();
40   if (StoreSize <= 32)
41     return EVT::getIntegerVT(Ctx, StoreSize);
42 
43   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
44   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
45 }
46 
47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
48   EVT VT = Op.getValueType();
49   KnownBits Known = DAG.computeKnownBits(Op);
50   return VT.getSizeInBits() - Known.countMinLeadingZeros();
51 }
52 
53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
54   EVT VT = Op.getValueType();
55 
56   // In order for this to be a signed 24-bit value, bit 23, must
57   // be a sign bit.
58   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
59 }
60 
61 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
62                                            const AMDGPUSubtarget &STI)
63     : TargetLowering(TM), Subtarget(&STI) {
64   // Lower floating point store/load to integer store/load to reduce the number
65   // of patterns in tablegen.
66   setOperationAction(ISD::LOAD, MVT::f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
77 
78   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v6f32, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32);
83 
84   setOperationAction(ISD::LOAD, MVT::v7f32, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
89 
90   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
91   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
92 
93   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
94   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
95 
96   setOperationAction(ISD::LOAD, MVT::i64, Promote);
97   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
98 
99   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
100   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
101 
102   setOperationAction(ISD::LOAD, MVT::f64, Promote);
103   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
104 
105   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
106   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
107 
108   setOperationAction(ISD::LOAD, MVT::v3i64, Promote);
109   AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32);
110 
111   setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
112   AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
113 
114   setOperationAction(ISD::LOAD, MVT::v3f64, Promote);
115   AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32);
116 
117   setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
118   AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
119 
120   setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
121   AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
122 
123   setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
124   AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
125 
126   setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
127   AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
128 
129   setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
130   AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
131 
132   // There are no 64-bit extloads. These should be done as a 32-bit extload and
133   // an extension to 64-bit.
134   for (MVT VT : MVT::integer_valuetypes()) {
135     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
136     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
137     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
138   }
139 
140   for (MVT VT : MVT::integer_valuetypes()) {
141     if (VT == MVT::i64)
142       continue;
143 
144     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
146     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
147     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
148 
149     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
150     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
151     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
152     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
153 
154     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
155     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
156     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
157     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
158   }
159 
160   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
161     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
162     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
163     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
164     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
166     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
167     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
168     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
169     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
170     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
172     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
173     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
174     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
175     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
176   }
177 
178   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
179   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
180   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
181   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
182   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
183   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
184   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
185 
186   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
187   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
188   setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand);
189   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
190   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
191   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
192 
193   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
195   setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand);
196   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
197   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
198   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
199 
200   setOperationAction(ISD::STORE, MVT::f32, Promote);
201   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
202 
203   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
204   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
205 
206   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
207   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
208 
209   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
210   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
211 
212   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
213   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
214 
215   setOperationAction(ISD::STORE, MVT::v6f32, Promote);
216   AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32);
217 
218   setOperationAction(ISD::STORE, MVT::v7f32, Promote);
219   AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32);
220 
221   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
222   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
223 
224   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
225   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
226 
227   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
228   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
229 
230   setOperationAction(ISD::STORE, MVT::i64, Promote);
231   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
232 
233   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
234   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
235 
236   setOperationAction(ISD::STORE, MVT::f64, Promote);
237   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
238 
239   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
240   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
241 
242   setOperationAction(ISD::STORE, MVT::v3i64, Promote);
243   AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32);
244 
245   setOperationAction(ISD::STORE, MVT::v3f64, Promote);
246   AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32);
247 
248   setOperationAction(ISD::STORE, MVT::v4i64, Promote);
249   AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
250 
251   setOperationAction(ISD::STORE, MVT::v4f64, Promote);
252   AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
253 
254   setOperationAction(ISD::STORE, MVT::v8i64, Promote);
255   AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
256 
257   setOperationAction(ISD::STORE, MVT::v8f64, Promote);
258   AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
259 
260   setOperationAction(ISD::STORE, MVT::v16i64, Promote);
261   AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
262 
263   setOperationAction(ISD::STORE, MVT::v16f64, Promote);
264   AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
265 
266   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
267   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
268   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
269   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
270 
271   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
272   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
273   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
274   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
275 
276   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
277   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
278   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
279   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
280   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
281   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
282   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
283 
284   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
285   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
286 
287   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
288   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
289 
290   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
291   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
292   setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand);
293   setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand);
294 
295   setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
296   setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
297   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
298   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
299 
300   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
301   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
302 
303   setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
304   setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
305   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
306   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
307   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
308   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
309   setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
310 
311   setOperationAction(ISD::Constant, MVT::i32, Legal);
312   setOperationAction(ISD::Constant, MVT::i64, Legal);
313   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
314   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
315 
316   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
317   setOperationAction(ISD::BRIND, MVT::Other, Expand);
318 
319   // This is totally unsupported, just custom lower to produce an error.
320   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
321 
322   // Library functions.  These default to Expand, but we have instructions
323   // for them.
324   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
325   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
326   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
327   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
328   setOperationAction(ISD::FABS,   MVT::f32, Legal);
329   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
330   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
331   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
332   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
333   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
334 
335   setOperationAction(ISD::FROUND, MVT::f32, Custom);
336   setOperationAction(ISD::FROUND, MVT::f64, Custom);
337 
338   setOperationAction(ISD::FLOG, MVT::f32, Custom);
339   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
340   setOperationAction(ISD::FEXP, MVT::f32, Custom);
341 
342 
343   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
344   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
345 
346   setOperationAction(ISD::FREM, MVT::f16, Custom);
347   setOperationAction(ISD::FREM, MVT::f32, Custom);
348   setOperationAction(ISD::FREM, MVT::f64, Custom);
349 
350   // Expand to fneg + fadd.
351   setOperationAction(ISD::FSUB, MVT::f64, Expand);
352 
353   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
354   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
355   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
356   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
357   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
358   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
359   setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom);
360   setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom);
361   setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom);
362   setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom);
363   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
364   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
365   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom);
366   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom);
367   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
368   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
369   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
370   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
371   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
372   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
373   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
374   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
375   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom);
376   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom);
377   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom);
378   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom);
379   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
380   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
381   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
382   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
383   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
384   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
385   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
386   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
387   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom);
388   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom);
389   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
390   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
391   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
392   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
393   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
394   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
395 
396   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
397   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
398   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
399 
400   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
401   for (MVT VT : ScalarIntVTs) {
402     // These should use [SU]DIVREM, so set them to expand
403     setOperationAction(ISD::SDIV, VT, Expand);
404     setOperationAction(ISD::UDIV, VT, Expand);
405     setOperationAction(ISD::SREM, VT, Expand);
406     setOperationAction(ISD::UREM, VT, Expand);
407 
408     // GPU does not have divrem function for signed or unsigned.
409     setOperationAction(ISD::SDIVREM, VT, Custom);
410     setOperationAction(ISD::UDIVREM, VT, Custom);
411 
412     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
413     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
414     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
415 
416     setOperationAction(ISD::BSWAP, VT, Expand);
417     setOperationAction(ISD::CTTZ, VT, Expand);
418     setOperationAction(ISD::CTLZ, VT, Expand);
419 
420     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
421     setOperationAction(ISD::ADDC, VT, Legal);
422     setOperationAction(ISD::SUBC, VT, Legal);
423     setOperationAction(ISD::ADDE, VT, Legal);
424     setOperationAction(ISD::SUBE, VT, Legal);
425   }
426 
427   // The hardware supports 32-bit FSHR, but not FSHL.
428   setOperationAction(ISD::FSHR, MVT::i32, Legal);
429 
430   // The hardware supports 32-bit ROTR, but not ROTL.
431   setOperationAction(ISD::ROTL, MVT::i32, Expand);
432   setOperationAction(ISD::ROTL, MVT::i64, Expand);
433   setOperationAction(ISD::ROTR, MVT::i64, Expand);
434 
435   setOperationAction(ISD::MULHU, MVT::i16, Expand);
436   setOperationAction(ISD::MULHS, MVT::i16, Expand);
437 
438   setOperationAction(ISD::MUL, MVT::i64, Expand);
439   setOperationAction(ISD::MULHU, MVT::i64, Expand);
440   setOperationAction(ISD::MULHS, MVT::i64, Expand);
441   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
442   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
443   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
444   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
445   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
446 
447   setOperationAction(ISD::SMIN, MVT::i32, Legal);
448   setOperationAction(ISD::UMIN, MVT::i32, Legal);
449   setOperationAction(ISD::SMAX, MVT::i32, Legal);
450   setOperationAction(ISD::UMAX, MVT::i32, Legal);
451 
452   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
453   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
454   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
455   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
456 
457   static const MVT::SimpleValueType VectorIntTypes[] = {
458       MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32};
459 
460   for (MVT VT : VectorIntTypes) {
461     // Expand the following operations for the current type by default.
462     setOperationAction(ISD::ADD,  VT, Expand);
463     setOperationAction(ISD::AND,  VT, Expand);
464     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
465     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
466     setOperationAction(ISD::MUL,  VT, Expand);
467     setOperationAction(ISD::MULHU, VT, Expand);
468     setOperationAction(ISD::MULHS, VT, Expand);
469     setOperationAction(ISD::OR,   VT, Expand);
470     setOperationAction(ISD::SHL,  VT, Expand);
471     setOperationAction(ISD::SRA,  VT, Expand);
472     setOperationAction(ISD::SRL,  VT, Expand);
473     setOperationAction(ISD::ROTL, VT, Expand);
474     setOperationAction(ISD::ROTR, VT, Expand);
475     setOperationAction(ISD::SUB,  VT, Expand);
476     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
477     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
478     setOperationAction(ISD::SDIV, VT, Expand);
479     setOperationAction(ISD::UDIV, VT, Expand);
480     setOperationAction(ISD::SREM, VT, Expand);
481     setOperationAction(ISD::UREM, VT, Expand);
482     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
483     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
484     setOperationAction(ISD::SDIVREM, VT, Expand);
485     setOperationAction(ISD::UDIVREM, VT, Expand);
486     setOperationAction(ISD::SELECT, VT, Expand);
487     setOperationAction(ISD::VSELECT, VT, Expand);
488     setOperationAction(ISD::SELECT_CC, VT, Expand);
489     setOperationAction(ISD::XOR,  VT, Expand);
490     setOperationAction(ISD::BSWAP, VT, Expand);
491     setOperationAction(ISD::CTPOP, VT, Expand);
492     setOperationAction(ISD::CTTZ, VT, Expand);
493     setOperationAction(ISD::CTLZ, VT, Expand);
494     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
495     setOperationAction(ISD::SETCC, VT, Expand);
496   }
497 
498   static const MVT::SimpleValueType FloatVectorTypes[] = {
499       MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32};
500 
501   for (MVT VT : FloatVectorTypes) {
502     setOperationAction(ISD::FABS, VT, Expand);
503     setOperationAction(ISD::FMINNUM, VT, Expand);
504     setOperationAction(ISD::FMAXNUM, VT, Expand);
505     setOperationAction(ISD::FADD, VT, Expand);
506     setOperationAction(ISD::FCEIL, VT, Expand);
507     setOperationAction(ISD::FCOS, VT, Expand);
508     setOperationAction(ISD::FDIV, VT, Expand);
509     setOperationAction(ISD::FEXP2, VT, Expand);
510     setOperationAction(ISD::FEXP, VT, Expand);
511     setOperationAction(ISD::FLOG2, VT, Expand);
512     setOperationAction(ISD::FREM, VT, Expand);
513     setOperationAction(ISD::FLOG, VT, Expand);
514     setOperationAction(ISD::FLOG10, VT, Expand);
515     setOperationAction(ISD::FPOW, VT, Expand);
516     setOperationAction(ISD::FFLOOR, VT, Expand);
517     setOperationAction(ISD::FTRUNC, VT, Expand);
518     setOperationAction(ISD::FMUL, VT, Expand);
519     setOperationAction(ISD::FMA, VT, Expand);
520     setOperationAction(ISD::FRINT, VT, Expand);
521     setOperationAction(ISD::FNEARBYINT, VT, Expand);
522     setOperationAction(ISD::FSQRT, VT, Expand);
523     setOperationAction(ISD::FSIN, VT, Expand);
524     setOperationAction(ISD::FSUB, VT, Expand);
525     setOperationAction(ISD::FNEG, VT, Expand);
526     setOperationAction(ISD::VSELECT, VT, Expand);
527     setOperationAction(ISD::SELECT_CC, VT, Expand);
528     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
529     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
530     setOperationAction(ISD::SETCC, VT, Expand);
531     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
532   }
533 
534   // This causes using an unrolled select operation rather than expansion with
535   // bit operations. This is in general better, but the alternative using BFI
536   // instructions may be better if the select sources are SGPRs.
537   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
538   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
539 
540   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
541   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
542 
543   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
544   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
545 
546   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
547   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
548 
549   setOperationAction(ISD::SELECT, MVT::v6f32, Promote);
550   AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32);
551 
552   setOperationAction(ISD::SELECT, MVT::v7f32, Promote);
553   AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32);
554 
555   // There are no libcalls of any kind.
556   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
557     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
558 
559   setSchedulingPreference(Sched::RegPressure);
560   setJumpIsExpensive(true);
561 
562   // FIXME: This is only partially true. If we have to do vector compares, any
563   // SGPR pair can be a condition register. If we have a uniform condition, we
564   // are better off doing SALU operations, where there is only one SCC. For now,
565   // we don't have a way of knowing during instruction selection if a condition
566   // will be uniform and we always use vector compares. Assume we are using
567   // vector compares until that is fixed.
568   setHasMultipleConditionRegisters(true);
569 
570   setMinCmpXchgSizeInBits(32);
571   setSupportsUnalignedAtomics(false);
572 
573   PredictableSelectIsExpensive = false;
574 
575   // We want to find all load dependencies for long chains of stores to enable
576   // merging into very wide vectors. The problem is with vectors with > 4
577   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
578   // vectors are a legal type, even though we have to split the loads
579   // usually. When we can more precisely specify load legality per address
580   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
581   // smarter so that they can figure out what to do in 2 iterations without all
582   // N > 4 stores on the same chain.
583   GatherAllAliasesMaxDepth = 16;
584 
585   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
586   // about these during lowering.
587   MaxStoresPerMemcpy  = 0xffffffff;
588   MaxStoresPerMemmove = 0xffffffff;
589   MaxStoresPerMemset  = 0xffffffff;
590 
591   // The expansion for 64-bit division is enormous.
592   if (AMDGPUBypassSlowDiv)
593     addBypassSlowDiv(64, 32);
594 
595   setTargetDAGCombine(ISD::BITCAST);
596   setTargetDAGCombine(ISD::SHL);
597   setTargetDAGCombine(ISD::SRA);
598   setTargetDAGCombine(ISD::SRL);
599   setTargetDAGCombine(ISD::TRUNCATE);
600   setTargetDAGCombine(ISD::MUL);
601   setTargetDAGCombine(ISD::MULHU);
602   setTargetDAGCombine(ISD::MULHS);
603   setTargetDAGCombine(ISD::SELECT);
604   setTargetDAGCombine(ISD::SELECT_CC);
605   setTargetDAGCombine(ISD::STORE);
606   setTargetDAGCombine(ISD::FADD);
607   setTargetDAGCombine(ISD::FSUB);
608   setTargetDAGCombine(ISD::FNEG);
609   setTargetDAGCombine(ISD::FABS);
610   setTargetDAGCombine(ISD::AssertZext);
611   setTargetDAGCombine(ISD::AssertSext);
612   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
613 }
614 
615 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const {
616   if (getTargetMachine().Options.NoSignedZerosFPMath)
617     return true;
618 
619   const auto Flags = Op.getNode()->getFlags();
620   if (Flags.hasNoSignedZeros())
621     return true;
622 
623   return false;
624 }
625 
626 //===----------------------------------------------------------------------===//
627 // Target Information
628 //===----------------------------------------------------------------------===//
629 
630 LLVM_READNONE
631 static bool fnegFoldsIntoOp(unsigned Opc) {
632   switch (Opc) {
633   case ISD::FADD:
634   case ISD::FSUB:
635   case ISD::FMUL:
636   case ISD::FMA:
637   case ISD::FMAD:
638   case ISD::FMINNUM:
639   case ISD::FMAXNUM:
640   case ISD::FMINNUM_IEEE:
641   case ISD::FMAXNUM_IEEE:
642   case ISD::FSIN:
643   case ISD::FTRUNC:
644   case ISD::FRINT:
645   case ISD::FNEARBYINT:
646   case ISD::FCANONICALIZE:
647   case AMDGPUISD::RCP:
648   case AMDGPUISD::RCP_LEGACY:
649   case AMDGPUISD::RCP_IFLAG:
650   case AMDGPUISD::SIN_HW:
651   case AMDGPUISD::FMUL_LEGACY:
652   case AMDGPUISD::FMIN_LEGACY:
653   case AMDGPUISD::FMAX_LEGACY:
654   case AMDGPUISD::FMED3:
655     // TODO: handle llvm.amdgcn.fma.legacy
656     return true;
657   default:
658     return false;
659   }
660 }
661 
662 /// \p returns true if the operation will definitely need to use a 64-bit
663 /// encoding, and thus will use a VOP3 encoding regardless of the source
664 /// modifiers.
665 LLVM_READONLY
666 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
667   return N->getNumOperands() > 2 || VT == MVT::f64;
668 }
669 
670 // Most FP instructions support source modifiers, but this could be refined
671 // slightly.
672 LLVM_READONLY
673 static bool hasSourceMods(const SDNode *N) {
674   if (isa<MemSDNode>(N))
675     return false;
676 
677   switch (N->getOpcode()) {
678   case ISD::CopyToReg:
679   case ISD::SELECT:
680   case ISD::FDIV:
681   case ISD::FREM:
682   case ISD::INLINEASM:
683   case ISD::INLINEASM_BR:
684   case AMDGPUISD::DIV_SCALE:
685   case ISD::INTRINSIC_W_CHAIN:
686 
687   // TODO: Should really be looking at the users of the bitcast. These are
688   // problematic because bitcasts are used to legalize all stores to integer
689   // types.
690   case ISD::BITCAST:
691     return false;
692   case ISD::INTRINSIC_WO_CHAIN: {
693     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
694     case Intrinsic::amdgcn_interp_p1:
695     case Intrinsic::amdgcn_interp_p2:
696     case Intrinsic::amdgcn_interp_mov:
697     case Intrinsic::amdgcn_interp_p1_f16:
698     case Intrinsic::amdgcn_interp_p2_f16:
699       return false;
700     default:
701       return true;
702     }
703   }
704   default:
705     return true;
706   }
707 }
708 
709 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
710                                                  unsigned CostThreshold) {
711   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
712   // it is truly free to use a source modifier in all cases. If there are
713   // multiple users but for each one will necessitate using VOP3, there will be
714   // a code size increase. Try to avoid increasing code size unless we know it
715   // will save on the instruction count.
716   unsigned NumMayIncreaseSize = 0;
717   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
718 
719   // XXX - Should this limit number of uses to check?
720   for (const SDNode *U : N->uses()) {
721     if (!hasSourceMods(U))
722       return false;
723 
724     if (!opMustUseVOP3Encoding(U, VT)) {
725       if (++NumMayIncreaseSize > CostThreshold)
726         return false;
727     }
728   }
729 
730   return true;
731 }
732 
733 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
734                                               ISD::NodeType ExtendKind) const {
735   assert(!VT.isVector() && "only scalar expected");
736 
737   // Round to the next multiple of 32-bits.
738   unsigned Size = VT.getSizeInBits();
739   if (Size <= 32)
740     return MVT::i32;
741   return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
742 }
743 
744 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
745   return MVT::i32;
746 }
747 
748 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
749   return true;
750 }
751 
752 // The backend supports 32 and 64 bit floating point immediates.
753 // FIXME: Why are we reporting vectors of FP immediates as legal?
754 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
755                                         bool ForCodeSize) const {
756   EVT ScalarVT = VT.getScalarType();
757   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
758          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
759 }
760 
761 // We don't want to shrink f64 / f32 constants.
762 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
763   EVT ScalarVT = VT.getScalarType();
764   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
765 }
766 
767 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
768                                                  ISD::LoadExtType ExtTy,
769                                                  EVT NewVT) const {
770   // TODO: This may be worth removing. Check regression tests for diffs.
771   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
772     return false;
773 
774   unsigned NewSize = NewVT.getStoreSizeInBits();
775 
776   // If we are reducing to a 32-bit load or a smaller multi-dword load,
777   // this is always better.
778   if (NewSize >= 32)
779     return true;
780 
781   EVT OldVT = N->getValueType(0);
782   unsigned OldSize = OldVT.getStoreSizeInBits();
783 
784   MemSDNode *MN = cast<MemSDNode>(N);
785   unsigned AS = MN->getAddressSpace();
786   // Do not shrink an aligned scalar load to sub-dword.
787   // Scalar engine cannot do sub-dword loads.
788   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
789       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
790        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
791        (isa<LoadSDNode>(N) &&
792         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
793       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
794     return false;
795 
796   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
797   // extloads, so doing one requires using a buffer_load. In cases where we
798   // still couldn't use a scalar load, using the wider load shouldn't really
799   // hurt anything.
800 
801   // If the old size already had to be an extload, there's no harm in continuing
802   // to reduce the width.
803   return (OldSize < 32);
804 }
805 
806 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
807                                                    const SelectionDAG &DAG,
808                                                    const MachineMemOperand &MMO) const {
809 
810   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
811 
812   if (LoadTy.getScalarType() == MVT::i32)
813     return false;
814 
815   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
816   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
817 
818   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
819     return false;
820 
821   bool Fast = false;
822   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
823                                         CastTy, MMO, &Fast) &&
824          Fast;
825 }
826 
827 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
828 // profitable with the expansion for 64-bit since it's generally good to
829 // speculate things.
830 // FIXME: These should really have the size as a parameter.
831 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
832   return true;
833 }
834 
835 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
836   return true;
837 }
838 
839 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const {
840   switch (N->getOpcode()) {
841   case ISD::EntryToken:
842   case ISD::TokenFactor:
843     return true;
844   case ISD::INTRINSIC_WO_CHAIN: {
845     unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
846     switch (IntrID) {
847     case Intrinsic::amdgcn_readfirstlane:
848     case Intrinsic::amdgcn_readlane:
849       return true;
850     }
851     return false;
852   }
853   case ISD::LOAD:
854     if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
855         AMDGPUAS::CONSTANT_ADDRESS_32BIT)
856       return true;
857     return false;
858   }
859   return false;
860 }
861 
862 SDValue AMDGPUTargetLowering::getNegatedExpression(
863     SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
864     NegatibleCost &Cost, unsigned Depth) const {
865 
866   switch (Op.getOpcode()) {
867   case ISD::FMA:
868   case ISD::FMAD: {
869     // Negating a fma is not free if it has users without source mods.
870     if (!allUsesHaveSourceMods(Op.getNode()))
871       return SDValue();
872     break;
873   }
874   default:
875     break;
876   }
877 
878   return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
879                                               ForCodeSize, Cost, Depth);
880 }
881 
882 //===---------------------------------------------------------------------===//
883 // Target Properties
884 //===---------------------------------------------------------------------===//
885 
886 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
887   assert(VT.isFloatingPoint());
888 
889   // Packed operations do not have a fabs modifier.
890   return VT == MVT::f32 || VT == MVT::f64 ||
891          (Subtarget->has16BitInsts() && VT == MVT::f16);
892 }
893 
894 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
895   assert(VT.isFloatingPoint());
896   // Report this based on the end legalized type.
897   VT = VT.getScalarType();
898   return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16;
899 }
900 
901 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
902                                                          unsigned NumElem,
903                                                          unsigned AS) const {
904   return true;
905 }
906 
907 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
908   // There are few operations which truly have vector input operands. Any vector
909   // operation is going to involve operations on each component, and a
910   // build_vector will be a copy per element, so it always makes sense to use a
911   // build_vector input in place of the extracted element to avoid a copy into a
912   // super register.
913   //
914   // We should probably only do this if all users are extracts only, but this
915   // should be the common case.
916   return true;
917 }
918 
919 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
920   // Truncate is just accessing a subregister.
921 
922   unsigned SrcSize = Source.getSizeInBits();
923   unsigned DestSize = Dest.getSizeInBits();
924 
925   return DestSize < SrcSize && DestSize % 32 == 0 ;
926 }
927 
928 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
929   // Truncate is just accessing a subregister.
930 
931   unsigned SrcSize = Source->getScalarSizeInBits();
932   unsigned DestSize = Dest->getScalarSizeInBits();
933 
934   if (DestSize== 16 && Subtarget->has16BitInsts())
935     return SrcSize >= 32;
936 
937   return DestSize < SrcSize && DestSize % 32 == 0;
938 }
939 
940 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
941   unsigned SrcSize = Src->getScalarSizeInBits();
942   unsigned DestSize = Dest->getScalarSizeInBits();
943 
944   if (SrcSize == 16 && Subtarget->has16BitInsts())
945     return DestSize >= 32;
946 
947   return SrcSize == 32 && DestSize == 64;
948 }
949 
950 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
951   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
952   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
953   // this will enable reducing 64-bit operations the 32-bit, which is always
954   // good.
955 
956   if (Src == MVT::i16)
957     return Dest == MVT::i32 ||Dest == MVT::i64 ;
958 
959   return Src == MVT::i32 && Dest == MVT::i64;
960 }
961 
962 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
963   return isZExtFree(Val.getValueType(), VT2);
964 }
965 
966 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
967   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
968   // limited number of native 64-bit operations. Shrinking an operation to fit
969   // in a single 32-bit register should always be helpful. As currently used,
970   // this is much less general than the name suggests, and is only used in
971   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
972   // not profitable, and may actually be harmful.
973   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
974 }
975 
976 //===---------------------------------------------------------------------===//
977 // TargetLowering Callbacks
978 //===---------------------------------------------------------------------===//
979 
980 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
981                                                   bool IsVarArg) {
982   switch (CC) {
983   case CallingConv::AMDGPU_VS:
984   case CallingConv::AMDGPU_GS:
985   case CallingConv::AMDGPU_PS:
986   case CallingConv::AMDGPU_CS:
987   case CallingConv::AMDGPU_HS:
988   case CallingConv::AMDGPU_ES:
989   case CallingConv::AMDGPU_LS:
990     return CC_AMDGPU;
991   case CallingConv::C:
992   case CallingConv::Fast:
993   case CallingConv::Cold:
994     return CC_AMDGPU_Func;
995   case CallingConv::AMDGPU_Gfx:
996     return CC_SI_Gfx;
997   case CallingConv::AMDGPU_KERNEL:
998   case CallingConv::SPIR_KERNEL:
999   default:
1000     report_fatal_error("Unsupported calling convention for call");
1001   }
1002 }
1003 
1004 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
1005                                                     bool IsVarArg) {
1006   switch (CC) {
1007   case CallingConv::AMDGPU_KERNEL:
1008   case CallingConv::SPIR_KERNEL:
1009     llvm_unreachable("kernels should not be handled here");
1010   case CallingConv::AMDGPU_VS:
1011   case CallingConv::AMDGPU_GS:
1012   case CallingConv::AMDGPU_PS:
1013   case CallingConv::AMDGPU_CS:
1014   case CallingConv::AMDGPU_HS:
1015   case CallingConv::AMDGPU_ES:
1016   case CallingConv::AMDGPU_LS:
1017     return RetCC_SI_Shader;
1018   case CallingConv::AMDGPU_Gfx:
1019     return RetCC_SI_Gfx;
1020   case CallingConv::C:
1021   case CallingConv::Fast:
1022   case CallingConv::Cold:
1023     return RetCC_AMDGPU_Func;
1024   default:
1025     report_fatal_error("Unsupported calling convention.");
1026   }
1027 }
1028 
1029 /// The SelectionDAGBuilder will automatically promote function arguments
1030 /// with illegal types.  However, this does not work for the AMDGPU targets
1031 /// since the function arguments are stored in memory as these illegal types.
1032 /// In order to handle this properly we need to get the original types sizes
1033 /// from the LLVM IR Function and fixup the ISD:InputArg values before
1034 /// passing them to AnalyzeFormalArguments()
1035 
1036 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1037 /// input values across multiple registers.  Each item in the Ins array
1038 /// represents a single value that will be stored in registers.  Ins[x].VT is
1039 /// the value type of the value that will be stored in the register, so
1040 /// whatever SDNode we lower the argument to needs to be this type.
1041 ///
1042 /// In order to correctly lower the arguments we need to know the size of each
1043 /// argument.  Since Ins[x].VT gives us the size of the register that will
1044 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1045 /// for the orignal function argument so that we can deduce the correct memory
1046 /// type to use for Ins[x].  In most cases the correct memory type will be
1047 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
1048 /// we have a kernel argument of type v8i8, this argument will be split into
1049 /// 8 parts and each part will be represented by its own item in the Ins array.
1050 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1051 /// the argument before it was split.  From this, we deduce that the memory type
1052 /// for each individual part is i8.  We pass the memory type as LocVT to the
1053 /// calling convention analysis function and the register type (Ins[x].VT) as
1054 /// the ValVT.
1055 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1056   CCState &State,
1057   const SmallVectorImpl<ISD::InputArg> &Ins) const {
1058   const MachineFunction &MF = State.getMachineFunction();
1059   const Function &Fn = MF.getFunction();
1060   LLVMContext &Ctx = Fn.getParent()->getContext();
1061   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1062   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1063   CallingConv::ID CC = Fn.getCallingConv();
1064 
1065   Align MaxAlign = Align(1);
1066   uint64_t ExplicitArgOffset = 0;
1067   const DataLayout &DL = Fn.getParent()->getDataLayout();
1068 
1069   unsigned InIndex = 0;
1070 
1071   for (const Argument &Arg : Fn.args()) {
1072     const bool IsByRef = Arg.hasByRefAttr();
1073     Type *BaseArgTy = Arg.getType();
1074     Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1075     MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
1076     if (!Alignment)
1077       Alignment = DL.getABITypeAlign(MemArgTy);
1078     MaxAlign = max(Alignment, MaxAlign);
1079     uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1080 
1081     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1082     ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1083 
1084     // We're basically throwing away everything passed into us and starting over
1085     // to get accurate in-memory offsets. The "PartOffset" is completely useless
1086     // to us as computed in Ins.
1087     //
1088     // We also need to figure out what type legalization is trying to do to get
1089     // the correct memory offsets.
1090 
1091     SmallVector<EVT, 16> ValueVTs;
1092     SmallVector<uint64_t, 16> Offsets;
1093     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1094 
1095     for (unsigned Value = 0, NumValues = ValueVTs.size();
1096          Value != NumValues; ++Value) {
1097       uint64_t BasePartOffset = Offsets[Value];
1098 
1099       EVT ArgVT = ValueVTs[Value];
1100       EVT MemVT = ArgVT;
1101       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1102       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1103 
1104       if (NumRegs == 1) {
1105         // This argument is not split, so the IR type is the memory type.
1106         if (ArgVT.isExtended()) {
1107           // We have an extended type, like i24, so we should just use the
1108           // register type.
1109           MemVT = RegisterVT;
1110         } else {
1111           MemVT = ArgVT;
1112         }
1113       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1114                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1115         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1116         // We have a vector value which has been split into a vector with
1117         // the same scalar type, but fewer elements.  This should handle
1118         // all the floating-point vector types.
1119         MemVT = RegisterVT;
1120       } else if (ArgVT.isVector() &&
1121                  ArgVT.getVectorNumElements() == NumRegs) {
1122         // This arg has been split so that each element is stored in a separate
1123         // register.
1124         MemVT = ArgVT.getScalarType();
1125       } else if (ArgVT.isExtended()) {
1126         // We have an extended type, like i65.
1127         MemVT = RegisterVT;
1128       } else {
1129         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1130         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1131         if (RegisterVT.isInteger()) {
1132           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1133         } else if (RegisterVT.isVector()) {
1134           assert(!RegisterVT.getScalarType().isFloatingPoint());
1135           unsigned NumElements = RegisterVT.getVectorNumElements();
1136           assert(MemoryBits % NumElements == 0);
1137           // This vector type has been split into another vector type with
1138           // a different elements size.
1139           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1140                                            MemoryBits / NumElements);
1141           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1142         } else {
1143           llvm_unreachable("cannot deduce memory type.");
1144         }
1145       }
1146 
1147       // Convert one element vectors to scalar.
1148       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1149         MemVT = MemVT.getScalarType();
1150 
1151       // Round up vec3/vec5 argument.
1152       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1153         assert(MemVT.getVectorNumElements() == 3 ||
1154                MemVT.getVectorNumElements() == 5);
1155         MemVT = MemVT.getPow2VectorType(State.getContext());
1156       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1157         MemVT = MemVT.getRoundIntegerType(State.getContext());
1158       }
1159 
1160       unsigned PartOffset = 0;
1161       for (unsigned i = 0; i != NumRegs; ++i) {
1162         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1163                                                BasePartOffset + PartOffset,
1164                                                MemVT.getSimpleVT(),
1165                                                CCValAssign::Full));
1166         PartOffset += MemVT.getStoreSize();
1167       }
1168     }
1169   }
1170 }
1171 
1172 SDValue AMDGPUTargetLowering::LowerReturn(
1173   SDValue Chain, CallingConv::ID CallConv,
1174   bool isVarArg,
1175   const SmallVectorImpl<ISD::OutputArg> &Outs,
1176   const SmallVectorImpl<SDValue> &OutVals,
1177   const SDLoc &DL, SelectionDAG &DAG) const {
1178   // FIXME: Fails for r600 tests
1179   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1180   // "wave terminate should not have return values");
1181   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1182 }
1183 
1184 //===---------------------------------------------------------------------===//
1185 // Target specific lowering
1186 //===---------------------------------------------------------------------===//
1187 
1188 /// Selects the correct CCAssignFn for a given CallingConvention value.
1189 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1190                                                     bool IsVarArg) {
1191   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1192 }
1193 
1194 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1195                                                       bool IsVarArg) {
1196   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1197 }
1198 
1199 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1200                                                   SelectionDAG &DAG,
1201                                                   MachineFrameInfo &MFI,
1202                                                   int ClobberedFI) const {
1203   SmallVector<SDValue, 8> ArgChains;
1204   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1205   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1206 
1207   // Include the original chain at the beginning of the list. When this is
1208   // used by target LowerCall hooks, this helps legalize find the
1209   // CALLSEQ_BEGIN node.
1210   ArgChains.push_back(Chain);
1211 
1212   // Add a chain value for each stack argument corresponding
1213   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1214                             UE = DAG.getEntryNode().getNode()->use_end();
1215        U != UE; ++U) {
1216     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1217       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1218         if (FI->getIndex() < 0) {
1219           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1220           int64_t InLastByte = InFirstByte;
1221           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1222 
1223           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1224               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1225             ArgChains.push_back(SDValue(L, 1));
1226         }
1227       }
1228     }
1229   }
1230 
1231   // Build a tokenfactor for all the chains.
1232   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1233 }
1234 
1235 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1236                                                  SmallVectorImpl<SDValue> &InVals,
1237                                                  StringRef Reason) const {
1238   SDValue Callee = CLI.Callee;
1239   SelectionDAG &DAG = CLI.DAG;
1240 
1241   const Function &Fn = DAG.getMachineFunction().getFunction();
1242 
1243   StringRef FuncName("<unknown>");
1244 
1245   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1246     FuncName = G->getSymbol();
1247   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1248     FuncName = G->getGlobal()->getName();
1249 
1250   DiagnosticInfoUnsupported NoCalls(
1251     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1252   DAG.getContext()->diagnose(NoCalls);
1253 
1254   if (!CLI.IsTailCall) {
1255     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1256       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1257   }
1258 
1259   return DAG.getEntryNode();
1260 }
1261 
1262 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1263                                         SmallVectorImpl<SDValue> &InVals) const {
1264   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1265 }
1266 
1267 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1268                                                       SelectionDAG &DAG) const {
1269   const Function &Fn = DAG.getMachineFunction().getFunction();
1270 
1271   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1272                                             SDLoc(Op).getDebugLoc());
1273   DAG.getContext()->diagnose(NoDynamicAlloca);
1274   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1275   return DAG.getMergeValues(Ops, SDLoc());
1276 }
1277 
1278 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1279                                              SelectionDAG &DAG) const {
1280   switch (Op.getOpcode()) {
1281   default:
1282     Op->print(errs(), &DAG);
1283     llvm_unreachable("Custom lowering code for this "
1284                      "instruction is not implemented yet!");
1285     break;
1286   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1287   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1288   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1289   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1290   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1291   case ISD::FREM: return LowerFREM(Op, DAG);
1292   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1293   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1294   case ISD::FRINT: return LowerFRINT(Op, DAG);
1295   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1296   case ISD::FROUND: return LowerFROUND(Op, DAG);
1297   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1298   case ISD::FLOG:
1299     return LowerFLOG(Op, DAG, numbers::ln2f);
1300   case ISD::FLOG10:
1301     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1302   case ISD::FEXP:
1303     return lowerFEXP(Op, DAG);
1304   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1305   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1306   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1307   case ISD::FP_TO_SINT:
1308   case ISD::FP_TO_UINT:
1309     return LowerFP_TO_INT(Op, DAG);
1310   case ISD::CTTZ:
1311   case ISD::CTTZ_ZERO_UNDEF:
1312   case ISD::CTLZ:
1313   case ISD::CTLZ_ZERO_UNDEF:
1314     return LowerCTLZ_CTTZ(Op, DAG);
1315   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1316   }
1317   return Op;
1318 }
1319 
1320 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1321                                               SmallVectorImpl<SDValue> &Results,
1322                                               SelectionDAG &DAG) const {
1323   switch (N->getOpcode()) {
1324   case ISD::SIGN_EXTEND_INREG:
1325     // Different parts of legalization seem to interpret which type of
1326     // sign_extend_inreg is the one to check for custom lowering. The extended
1327     // from type is what really matters, but some places check for custom
1328     // lowering of the result type. This results in trying to use
1329     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1330     // nothing here and let the illegal result integer be handled normally.
1331     return;
1332   default:
1333     return;
1334   }
1335 }
1336 
1337 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1338   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1339   if (!GVar || !GVar->hasInitializer())
1340     return false;
1341 
1342   return !isa<UndefValue>(GVar->getInitializer());
1343 }
1344 
1345 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1346                                                  SDValue Op,
1347                                                  SelectionDAG &DAG) const {
1348 
1349   const DataLayout &DL = DAG.getDataLayout();
1350   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1351   const GlobalValue *GV = G->getGlobal();
1352 
1353   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1354       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1355     if (!MFI->isModuleEntryFunction() &&
1356         !GV->getName().equals("llvm.amdgcn.module.lds")) {
1357       SDLoc DL(Op);
1358       const Function &Fn = DAG.getMachineFunction().getFunction();
1359       DiagnosticInfoUnsupported BadLDSDecl(
1360         Fn, "local memory global used by non-kernel function",
1361         DL.getDebugLoc(), DS_Warning);
1362       DAG.getContext()->diagnose(BadLDSDecl);
1363 
1364       // We currently don't have a way to correctly allocate LDS objects that
1365       // aren't directly associated with a kernel. We do force inlining of
1366       // functions that use local objects. However, if these dead functions are
1367       // not eliminated, we don't want a compile time error. Just emit a warning
1368       // and a trap, since there should be no callable path here.
1369       SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1370       SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1371                                         Trap, DAG.getRoot());
1372       DAG.setRoot(OutputChain);
1373       return DAG.getUNDEF(Op.getValueType());
1374     }
1375 
1376     // XXX: What does the value of G->getOffset() mean?
1377     assert(G->getOffset() == 0 &&
1378          "Do not know what to do with an non-zero offset");
1379 
1380     // TODO: We could emit code to handle the initialization somewhere.
1381     if (!hasDefinedInitializer(GV)) {
1382       unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1383       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1384     }
1385   }
1386 
1387   const Function &Fn = DAG.getMachineFunction().getFunction();
1388   DiagnosticInfoUnsupported BadInit(
1389       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1390   DAG.getContext()->diagnose(BadInit);
1391   return SDValue();
1392 }
1393 
1394 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1395                                                   SelectionDAG &DAG) const {
1396   SmallVector<SDValue, 8> Args;
1397 
1398   EVT VT = Op.getValueType();
1399   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1400     SDLoc SL(Op);
1401     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1402     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1403 
1404     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1405     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1406   }
1407 
1408   for (const SDUse &U : Op->ops())
1409     DAG.ExtractVectorElements(U.get(), Args);
1410 
1411   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1412 }
1413 
1414 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1415                                                      SelectionDAG &DAG) const {
1416 
1417   SmallVector<SDValue, 8> Args;
1418   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1419   EVT VT = Op.getValueType();
1420   EVT SrcVT = Op.getOperand(0).getValueType();
1421 
1422   // For these types, we have some TableGen patterns except if the index is 1
1423   if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) ||
1424        (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) &&
1425       Start != 1)
1426     return Op;
1427 
1428   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1429                             VT.getVectorNumElements());
1430 
1431   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1432 }
1433 
1434 /// Generate Min/Max node
1435 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1436                                                    SDValue LHS, SDValue RHS,
1437                                                    SDValue True, SDValue False,
1438                                                    SDValue CC,
1439                                                    DAGCombinerInfo &DCI) const {
1440   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1441     return SDValue();
1442 
1443   SelectionDAG &DAG = DCI.DAG;
1444   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1445   switch (CCOpcode) {
1446   case ISD::SETOEQ:
1447   case ISD::SETONE:
1448   case ISD::SETUNE:
1449   case ISD::SETNE:
1450   case ISD::SETUEQ:
1451   case ISD::SETEQ:
1452   case ISD::SETFALSE:
1453   case ISD::SETFALSE2:
1454   case ISD::SETTRUE:
1455   case ISD::SETTRUE2:
1456   case ISD::SETUO:
1457   case ISD::SETO:
1458     break;
1459   case ISD::SETULE:
1460   case ISD::SETULT: {
1461     if (LHS == True)
1462       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1463     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1464   }
1465   case ISD::SETOLE:
1466   case ISD::SETOLT:
1467   case ISD::SETLE:
1468   case ISD::SETLT: {
1469     // Ordered. Assume ordered for undefined.
1470 
1471     // Only do this after legalization to avoid interfering with other combines
1472     // which might occur.
1473     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1474         !DCI.isCalledByLegalizer())
1475       return SDValue();
1476 
1477     // We need to permute the operands to get the correct NaN behavior. The
1478     // selected operand is the second one based on the failing compare with NaN,
1479     // so permute it based on the compare type the hardware uses.
1480     if (LHS == True)
1481       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1482     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1483   }
1484   case ISD::SETUGE:
1485   case ISD::SETUGT: {
1486     if (LHS == True)
1487       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1488     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1489   }
1490   case ISD::SETGT:
1491   case ISD::SETGE:
1492   case ISD::SETOGE:
1493   case ISD::SETOGT: {
1494     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1495         !DCI.isCalledByLegalizer())
1496       return SDValue();
1497 
1498     if (LHS == True)
1499       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1500     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1501   }
1502   case ISD::SETCC_INVALID:
1503     llvm_unreachable("Invalid setcc condcode!");
1504   }
1505   return SDValue();
1506 }
1507 
1508 std::pair<SDValue, SDValue>
1509 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1510   SDLoc SL(Op);
1511 
1512   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1513 
1514   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1515   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1516 
1517   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1518   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1519 
1520   return std::make_pair(Lo, Hi);
1521 }
1522 
1523 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1524   SDLoc SL(Op);
1525 
1526   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1527   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1528   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1529 }
1530 
1531 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1532   SDLoc SL(Op);
1533 
1534   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1535   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1536   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1537 }
1538 
1539 // Split a vector type into two parts. The first part is a power of two vector.
1540 // The second part is whatever is left over, and is a scalar if it would
1541 // otherwise be a 1-vector.
1542 std::pair<EVT, EVT>
1543 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1544   EVT LoVT, HiVT;
1545   EVT EltVT = VT.getVectorElementType();
1546   unsigned NumElts = VT.getVectorNumElements();
1547   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1548   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1549   HiVT = NumElts - LoNumElts == 1
1550              ? EltVT
1551              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1552   return std::make_pair(LoVT, HiVT);
1553 }
1554 
1555 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1556 // scalar.
1557 std::pair<SDValue, SDValue>
1558 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1559                                   const EVT &LoVT, const EVT &HiVT,
1560                                   SelectionDAG &DAG) const {
1561   assert(LoVT.getVectorNumElements() +
1562                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1563              N.getValueType().getVectorNumElements() &&
1564          "More vector elements requested than available!");
1565   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1566                            DAG.getVectorIdxConstant(0, DL));
1567   SDValue Hi = DAG.getNode(
1568       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1569       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1570   return std::make_pair(Lo, Hi);
1571 }
1572 
1573 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1574                                               SelectionDAG &DAG) const {
1575   LoadSDNode *Load = cast<LoadSDNode>(Op);
1576   EVT VT = Op.getValueType();
1577   SDLoc SL(Op);
1578 
1579 
1580   // If this is a 2 element vector, we really want to scalarize and not create
1581   // weird 1 element vectors.
1582   if (VT.getVectorNumElements() == 2) {
1583     SDValue Ops[2];
1584     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1585     return DAG.getMergeValues(Ops, SL);
1586   }
1587 
1588   SDValue BasePtr = Load->getBasePtr();
1589   EVT MemVT = Load->getMemoryVT();
1590 
1591   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1592 
1593   EVT LoVT, HiVT;
1594   EVT LoMemVT, HiMemVT;
1595   SDValue Lo, Hi;
1596 
1597   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1598   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1599   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1600 
1601   unsigned Size = LoMemVT.getStoreSize();
1602   unsigned BaseAlign = Load->getAlignment();
1603   unsigned HiAlign = MinAlign(BaseAlign, Size);
1604 
1605   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1606                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1607                                   BaseAlign, Load->getMemOperand()->getFlags());
1608   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1609   SDValue HiLoad =
1610       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1611                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1612                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1613 
1614   SDValue Join;
1615   if (LoVT == HiVT) {
1616     // This is the case that the vector is power of two so was evenly split.
1617     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1618   } else {
1619     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1620                        DAG.getVectorIdxConstant(0, SL));
1621     Join = DAG.getNode(
1622         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1623         VT, Join, HiLoad,
1624         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1625   }
1626 
1627   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1628                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1629 
1630   return DAG.getMergeValues(Ops, SL);
1631 }
1632 
1633 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op,
1634                                                      SelectionDAG &DAG) const {
1635   LoadSDNode *Load = cast<LoadSDNode>(Op);
1636   EVT VT = Op.getValueType();
1637   SDValue BasePtr = Load->getBasePtr();
1638   EVT MemVT = Load->getMemoryVT();
1639   SDLoc SL(Op);
1640   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1641   unsigned BaseAlign = Load->getAlignment();
1642   unsigned NumElements = MemVT.getVectorNumElements();
1643 
1644   // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1645   // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1646   if (NumElements != 3 ||
1647       (BaseAlign < 8 &&
1648        !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout())))
1649     return SplitVectorLoad(Op, DAG);
1650 
1651   assert(NumElements == 3);
1652 
1653   EVT WideVT =
1654       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1655   EVT WideMemVT =
1656       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1657   SDValue WideLoad = DAG.getExtLoad(
1658       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1659       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1660   return DAG.getMergeValues(
1661       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1662                    DAG.getVectorIdxConstant(0, SL)),
1663        WideLoad.getValue(1)},
1664       SL);
1665 }
1666 
1667 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1668                                                SelectionDAG &DAG) const {
1669   StoreSDNode *Store = cast<StoreSDNode>(Op);
1670   SDValue Val = Store->getValue();
1671   EVT VT = Val.getValueType();
1672 
1673   // If this is a 2 element vector, we really want to scalarize and not create
1674   // weird 1 element vectors.
1675   if (VT.getVectorNumElements() == 2)
1676     return scalarizeVectorStore(Store, DAG);
1677 
1678   EVT MemVT = Store->getMemoryVT();
1679   SDValue Chain = Store->getChain();
1680   SDValue BasePtr = Store->getBasePtr();
1681   SDLoc SL(Op);
1682 
1683   EVT LoVT, HiVT;
1684   EVT LoMemVT, HiMemVT;
1685   SDValue Lo, Hi;
1686 
1687   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1688   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1689   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1690 
1691   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1692 
1693   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1694   unsigned BaseAlign = Store->getAlignment();
1695   unsigned Size = LoMemVT.getStoreSize();
1696   unsigned HiAlign = MinAlign(BaseAlign, Size);
1697 
1698   SDValue LoStore =
1699       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1700                         Store->getMemOperand()->getFlags());
1701   SDValue HiStore =
1702       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1703                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1704 
1705   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1706 }
1707 
1708 // This is a shortcut for integer division because we have fast i32<->f32
1709 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1710 // float is enough to accurately represent up to a 24-bit signed integer.
1711 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1712                                             bool Sign) const {
1713   SDLoc DL(Op);
1714   EVT VT = Op.getValueType();
1715   SDValue LHS = Op.getOperand(0);
1716   SDValue RHS = Op.getOperand(1);
1717   MVT IntVT = MVT::i32;
1718   MVT FltVT = MVT::f32;
1719 
1720   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1721   if (LHSSignBits < 9)
1722     return SDValue();
1723 
1724   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1725   if (RHSSignBits < 9)
1726     return SDValue();
1727 
1728   unsigned BitSize = VT.getSizeInBits();
1729   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1730   unsigned DivBits = BitSize - SignBits;
1731   if (Sign)
1732     ++DivBits;
1733 
1734   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1735   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1736 
1737   SDValue jq = DAG.getConstant(1, DL, IntVT);
1738 
1739   if (Sign) {
1740     // char|short jq = ia ^ ib;
1741     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1742 
1743     // jq = jq >> (bitsize - 2)
1744     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1745                      DAG.getConstant(BitSize - 2, DL, VT));
1746 
1747     // jq = jq | 0x1
1748     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1749   }
1750 
1751   // int ia = (int)LHS;
1752   SDValue ia = LHS;
1753 
1754   // int ib, (int)RHS;
1755   SDValue ib = RHS;
1756 
1757   // float fa = (float)ia;
1758   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1759 
1760   // float fb = (float)ib;
1761   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1762 
1763   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1764                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1765 
1766   // fq = trunc(fq);
1767   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1768 
1769   // float fqneg = -fq;
1770   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1771 
1772   MachineFunction &MF = DAG.getMachineFunction();
1773   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1774 
1775   // float fr = mad(fqneg, fb, fa);
1776   unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1777                     (unsigned)ISD::FMA :
1778                     !MFI->getMode().allFP32Denormals() ?
1779                     (unsigned)ISD::FMAD :
1780                     (unsigned)AMDGPUISD::FMAD_FTZ;
1781   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1782 
1783   // int iq = (int)fq;
1784   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1785 
1786   // fr = fabs(fr);
1787   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1788 
1789   // fb = fabs(fb);
1790   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1791 
1792   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1793 
1794   // int cv = fr >= fb;
1795   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1796 
1797   // jq = (cv ? jq : 0);
1798   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1799 
1800   // dst = iq + jq;
1801   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1802 
1803   // Rem needs compensation, it's easier to recompute it
1804   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1805   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1806 
1807   // Truncate to number of bits this divide really is.
1808   if (Sign) {
1809     SDValue InRegSize
1810       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1811     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1812     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1813   } else {
1814     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1815     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1816     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1817   }
1818 
1819   return DAG.getMergeValues({ Div, Rem }, DL);
1820 }
1821 
1822 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1823                                       SelectionDAG &DAG,
1824                                       SmallVectorImpl<SDValue> &Results) const {
1825   SDLoc DL(Op);
1826   EVT VT = Op.getValueType();
1827 
1828   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1829 
1830   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1831 
1832   SDValue One = DAG.getConstant(1, DL, HalfVT);
1833   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1834 
1835   //HiLo split
1836   SDValue LHS = Op.getOperand(0);
1837   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1838   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1839 
1840   SDValue RHS = Op.getOperand(1);
1841   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1842   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1843 
1844   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1845       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1846 
1847     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1848                               LHS_Lo, RHS_Lo);
1849 
1850     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1851     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1852 
1853     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1854     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1855     return;
1856   }
1857 
1858   if (isTypeLegal(MVT::i64)) {
1859     MachineFunction &MF = DAG.getMachineFunction();
1860     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1861 
1862     // Compute denominator reciprocal.
1863     unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1864                     (unsigned)ISD::FMA :
1865                     !MFI->getMode().allFP32Denormals() ?
1866                     (unsigned)ISD::FMAD :
1867                     (unsigned)AMDGPUISD::FMAD_FTZ;
1868 
1869     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1870     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1871     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1872       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1873       Cvt_Lo);
1874     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1875     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1876       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1877     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1878       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1879     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1880     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1881       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1882       Mul1);
1883     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1884     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1885     SDValue Rcp64 = DAG.getBitcast(VT,
1886                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1887 
1888     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1889     SDValue One64  = DAG.getConstant(1, DL, VT);
1890     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1891     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1892 
1893     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1894     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1895     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1896     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1897                                     Zero);
1898     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1899                                     One);
1900 
1901     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1902                                   Mulhi1_Lo, Zero1);
1903     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1904                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1905     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1906     SDValue Add1 = DAG.getBitcast(VT,
1907                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1908 
1909     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1910     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1911     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1912                                     Zero);
1913     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1914                                     One);
1915 
1916     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1917                                   Mulhi2_Lo, Zero1);
1918     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1919                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1920     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1921                                   Zero, Add2_Lo.getValue(1));
1922     SDValue Add2 = DAG.getBitcast(VT,
1923                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1924     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1925 
1926     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1927 
1928     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1929     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1930     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1931                                   Mul3_Lo, Zero1);
1932     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1933                                   Mul3_Hi, Sub1_Lo.getValue(1));
1934     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1935     SDValue Sub1 = DAG.getBitcast(VT,
1936                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1937 
1938     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1939     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1940                                  ISD::SETUGE);
1941     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1942                                  ISD::SETUGE);
1943     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1944 
1945     // TODO: Here and below portions of the code can be enclosed into if/endif.
1946     // Currently control flow is unconditional and we have 4 selects after
1947     // potential endif to substitute PHIs.
1948 
1949     // if C3 != 0 ...
1950     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1951                                   RHS_Lo, Zero1);
1952     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1953                                   RHS_Hi, Sub1_Lo.getValue(1));
1954     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1955                                   Zero, Sub2_Lo.getValue(1));
1956     SDValue Sub2 = DAG.getBitcast(VT,
1957                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1958 
1959     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1960 
1961     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1962                                  ISD::SETUGE);
1963     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1964                                  ISD::SETUGE);
1965     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1966 
1967     // if (C6 != 0)
1968     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1969 
1970     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1971                                   RHS_Lo, Zero1);
1972     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1973                                   RHS_Hi, Sub2_Lo.getValue(1));
1974     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1975                                   Zero, Sub3_Lo.getValue(1));
1976     SDValue Sub3 = DAG.getBitcast(VT,
1977                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1978 
1979     // endif C6
1980     // endif C3
1981 
1982     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1983     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1984 
1985     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1986     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1987 
1988     Results.push_back(Div);
1989     Results.push_back(Rem);
1990 
1991     return;
1992   }
1993 
1994   // r600 expandion.
1995   // Get Speculative values
1996   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1997   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1998 
1999   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
2000   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
2001   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
2002 
2003   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
2004   SDValue DIV_Lo = Zero;
2005 
2006   const unsigned halfBitWidth = HalfVT.getSizeInBits();
2007 
2008   for (unsigned i = 0; i < halfBitWidth; ++i) {
2009     const unsigned bitPos = halfBitWidth - i - 1;
2010     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
2011     // Get value of high bit
2012     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
2013     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
2014     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
2015 
2016     // Shift
2017     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
2018     // Add LHS high bit
2019     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
2020 
2021     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
2022     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
2023 
2024     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
2025 
2026     // Update REM
2027     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
2028     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
2029   }
2030 
2031   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
2032   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
2033   Results.push_back(DIV);
2034   Results.push_back(REM);
2035 }
2036 
2037 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
2038                                            SelectionDAG &DAG) const {
2039   SDLoc DL(Op);
2040   EVT VT = Op.getValueType();
2041 
2042   if (VT == MVT::i64) {
2043     SmallVector<SDValue, 2> Results;
2044     LowerUDIVREM64(Op, DAG, Results);
2045     return DAG.getMergeValues(Results, DL);
2046   }
2047 
2048   if (VT == MVT::i32) {
2049     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
2050       return Res;
2051   }
2052 
2053   SDValue X = Op.getOperand(0);
2054   SDValue Y = Op.getOperand(1);
2055 
2056   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2057   // algorithm used here.
2058 
2059   // Initial estimate of inv(y).
2060   SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
2061 
2062   // One round of UNR.
2063   SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
2064   SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
2065   Z = DAG.getNode(ISD::ADD, DL, VT, Z,
2066                   DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
2067 
2068   // Quotient/remainder estimate.
2069   SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2070   SDValue R =
2071       DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2072 
2073   // First quotient/remainder refinement.
2074   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2075   SDValue One = DAG.getConstant(1, DL, VT);
2076   SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2077   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2078                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2079   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2080                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2081 
2082   // Second quotient/remainder refinement.
2083   Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2084   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2085                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2086   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2087                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2088 
2089   return DAG.getMergeValues({Q, R}, DL);
2090 }
2091 
2092 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2093                                            SelectionDAG &DAG) const {
2094   SDLoc DL(Op);
2095   EVT VT = Op.getValueType();
2096 
2097   SDValue LHS = Op.getOperand(0);
2098   SDValue RHS = Op.getOperand(1);
2099 
2100   SDValue Zero = DAG.getConstant(0, DL, VT);
2101   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2102 
2103   if (VT == MVT::i32) {
2104     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2105       return Res;
2106   }
2107 
2108   if (VT == MVT::i64 &&
2109       DAG.ComputeNumSignBits(LHS) > 32 &&
2110       DAG.ComputeNumSignBits(RHS) > 32) {
2111     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2112 
2113     //HiLo split
2114     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2115     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2116     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2117                                  LHS_Lo, RHS_Lo);
2118     SDValue Res[2] = {
2119       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2120       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2121     };
2122     return DAG.getMergeValues(Res, DL);
2123   }
2124 
2125   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2126   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2127   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2128   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2129 
2130   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2131   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2132 
2133   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2134   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2135 
2136   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2137   SDValue Rem = Div.getValue(1);
2138 
2139   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2140   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2141 
2142   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2143   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2144 
2145   SDValue Res[2] = {
2146     Div,
2147     Rem
2148   };
2149   return DAG.getMergeValues(Res, DL);
2150 }
2151 
2152 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2153 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2154   SDLoc SL(Op);
2155   EVT VT = Op.getValueType();
2156   auto Flags = Op->getFlags();
2157   SDValue X = Op.getOperand(0);
2158   SDValue Y = Op.getOperand(1);
2159 
2160   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2161   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2162   SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2163   // TODO: For f32 use FMAD instead if !hasFastFMA32?
2164   return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2165 }
2166 
2167 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2168   SDLoc SL(Op);
2169   SDValue Src = Op.getOperand(0);
2170 
2171   // result = trunc(src)
2172   // if (src > 0.0 && src != result)
2173   //   result += 1.0
2174 
2175   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2176 
2177   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2178   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2179 
2180   EVT SetCCVT =
2181       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2182 
2183   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2184   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2185   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2186 
2187   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2188   // TODO: Should this propagate fast-math-flags?
2189   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2190 }
2191 
2192 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2193                                   SelectionDAG &DAG) {
2194   const unsigned FractBits = 52;
2195   const unsigned ExpBits = 11;
2196 
2197   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2198                                 Hi,
2199                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2200                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2201   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2202                             DAG.getConstant(1023, SL, MVT::i32));
2203 
2204   return Exp;
2205 }
2206 
2207 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2208   SDLoc SL(Op);
2209   SDValue Src = Op.getOperand(0);
2210 
2211   assert(Op.getValueType() == MVT::f64);
2212 
2213   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2214 
2215   // Extract the upper half, since this is where we will find the sign and
2216   // exponent.
2217   SDValue Hi = getHiHalf64(Src, DAG);
2218 
2219   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2220 
2221   const unsigned FractBits = 52;
2222 
2223   // Extract the sign bit.
2224   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2225   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2226 
2227   // Extend back to 64-bits.
2228   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2229   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2230 
2231   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2232   const SDValue FractMask
2233     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2234 
2235   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2236   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2237   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2238 
2239   EVT SetCCVT =
2240       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2241 
2242   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2243 
2244   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2245   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2246 
2247   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2248   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2249 
2250   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2251 }
2252 
2253 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2254   SDLoc SL(Op);
2255   SDValue Src = Op.getOperand(0);
2256 
2257   assert(Op.getValueType() == MVT::f64);
2258 
2259   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2260   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2261   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2262 
2263   // TODO: Should this propagate fast-math-flags?
2264 
2265   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2266   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2267 
2268   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2269 
2270   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2271   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2272 
2273   EVT SetCCVT =
2274       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2275   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2276 
2277   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2278 }
2279 
2280 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2281   // FNEARBYINT and FRINT are the same, except in their handling of FP
2282   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2283   // rint, so just treat them as equivalent.
2284   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2285 }
2286 
2287 // XXX - May require not supporting f32 denormals?
2288 
2289 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2290 // compare and vselect end up producing worse code than scalarizing the whole
2291 // operation.
2292 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2293   SDLoc SL(Op);
2294   SDValue X = Op.getOperand(0);
2295   EVT VT = Op.getValueType();
2296 
2297   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2298 
2299   // TODO: Should this propagate fast-math-flags?
2300 
2301   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2302 
2303   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2304 
2305   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2306   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2307   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2308 
2309   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2310 
2311   EVT SetCCVT =
2312       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2313 
2314   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2315 
2316   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2317 
2318   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2319 }
2320 
2321 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2322   SDLoc SL(Op);
2323   SDValue Src = Op.getOperand(0);
2324 
2325   // result = trunc(src);
2326   // if (src < 0.0 && src != result)
2327   //   result += -1.0.
2328 
2329   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2330 
2331   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2332   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2333 
2334   EVT SetCCVT =
2335       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2336 
2337   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2338   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2339   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2340 
2341   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2342   // TODO: Should this propagate fast-math-flags?
2343   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2344 }
2345 
2346 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2347                                         double Log2BaseInverted) const {
2348   EVT VT = Op.getValueType();
2349 
2350   SDLoc SL(Op);
2351   SDValue Operand = Op.getOperand(0);
2352   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2353   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2354 
2355   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2356 }
2357 
2358 // exp2(M_LOG2E_F * f);
2359 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2360   EVT VT = Op.getValueType();
2361   SDLoc SL(Op);
2362   SDValue Src = Op.getOperand(0);
2363 
2364   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2365   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2366   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2367 }
2368 
2369 static bool isCtlzOpc(unsigned Opc) {
2370   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2371 }
2372 
2373 static bool isCttzOpc(unsigned Opc) {
2374   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2375 }
2376 
2377 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2378   SDLoc SL(Op);
2379   SDValue Src = Op.getOperand(0);
2380 
2381   assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode()));
2382   bool Ctlz = isCtlzOpc(Op.getOpcode());
2383   unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32;
2384 
2385   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ||
2386                    Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF;
2387 
2388   if (Src.getValueType() == MVT::i32) {
2389     // (ctlz hi:lo) -> (umin (ffbh src), 32)
2390     // (cttz hi:lo) -> (umin (ffbl src), 32)
2391     // (ctlz_zero_undef src) -> (ffbh src)
2392     // (cttz_zero_undef src) -> (ffbl src)
2393     SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src);
2394     if (!ZeroUndef) {
2395       const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2396       NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32);
2397     }
2398     return NewOpr;
2399   }
2400 
2401   SDValue Lo, Hi;
2402   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2403 
2404   SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo);
2405   SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi);
2406 
2407   // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64)
2408   // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64)
2409   // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32))
2410   // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo))
2411 
2412   unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT;
2413   const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2414   if (Ctlz)
2415     OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32);
2416   else
2417     OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32);
2418 
2419   SDValue NewOpr;
2420   NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi);
2421   if (!ZeroUndef) {
2422     const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32);
2423     NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64);
2424   }
2425 
2426   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2427 }
2428 
2429 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2430                                                bool Signed) const {
2431   // The regular method coverting a 64-bit integer to float roughly consists of
2432   // 2 steps: normalization and rounding. In fact, after normalization, the
2433   // conversion from a 64-bit integer to a float is essentially the same as the
2434   // one from a 32-bit integer. The only difference is that it has more
2435   // trailing bits to be rounded. To leverage the native 32-bit conversion, a
2436   // 64-bit integer could be preprocessed and fit into a 32-bit integer then
2437   // converted into the correct float number. The basic steps for the unsigned
2438   // conversion are illustrated in the following pseudo code:
2439   //
2440   // f32 uitofp(i64 u) {
2441   //   i32 hi, lo = split(u);
2442   //   // Only count the leading zeros in hi as we have native support of the
2443   //   // conversion from i32 to f32. If hi is all 0s, the conversion is
2444   //   // reduced to a 32-bit one automatically.
2445   //   i32 shamt = clz(hi); // Return 32 if hi is all 0s.
2446   //   u <<= shamt;
2447   //   hi, lo = split(u);
2448   //   hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo.
2449   //   // convert it as a 32-bit integer and scale the result back.
2450   //   return uitofp(hi) * 2^(32 - shamt);
2451   // }
2452   //
2453   // The signed one follows the same principle but uses 'ffbh_i32' to count its
2454   // sign bits instead. If 'ffbh_i32' is not available, its absolute value is
2455   // converted instead followed by negation based its sign bit.
2456 
2457   SDLoc SL(Op);
2458   SDValue Src = Op.getOperand(0);
2459 
2460   SDValue Lo, Hi;
2461   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2462   SDValue Sign;
2463   SDValue ShAmt;
2464   if (Signed && Subtarget->isGCN()) {
2465     // We also need to consider the sign bit in Lo if Hi has just sign bits,
2466     // i.e. Hi is 0 or -1. However, that only needs to take the MSB into
2467     // account. That is, the maximal shift is
2468     // - 32 if Lo and Hi have opposite signs;
2469     // - 33 if Lo and Hi have the same sign.
2470     //
2471     // Or, MaxShAmt = 33 + OppositeSign, where
2472     //
2473     // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is
2474     // - -1 if Lo and Hi have opposite signs; and
2475     // -  0 otherwise.
2476     //
2477     // All in all, ShAmt is calculated as
2478     //
2479     //  umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1.
2480     //
2481     // or
2482     //
2483     //  umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31).
2484     //
2485     // to reduce the critical path.
2486     SDValue OppositeSign = DAG.getNode(
2487         ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi),
2488         DAG.getConstant(31, SL, MVT::i32));
2489     SDValue MaxShAmt =
2490         DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2491                     OppositeSign);
2492     // Count the leading sign bits.
2493     ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi);
2494     // Different from unsigned conversion, the shift should be one bit less to
2495     // preserve the sign bit.
2496     ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt,
2497                         DAG.getConstant(1, SL, MVT::i32));
2498     ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt);
2499   } else {
2500     if (Signed) {
2501       // Without 'ffbh_i32', only leading zeros could be counted. Take the
2502       // absolute value first.
2503       Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src,
2504                          DAG.getConstant(63, SL, MVT::i64));
2505       SDValue Abs =
2506           DAG.getNode(ISD::XOR, SL, MVT::i64,
2507                       DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign);
2508       std::tie(Lo, Hi) = split64BitValue(Abs, DAG);
2509     }
2510     // Count the leading zeros.
2511     ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi);
2512     // The shift amount for signed integers is [0, 32].
2513   }
2514   // Normalize the given 64-bit integer.
2515   SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt);
2516   // Split it again.
2517   std::tie(Lo, Hi) = split64BitValue(Norm, DAG);
2518   // Calculate the adjust bit for rounding.
2519   // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo)
2520   SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32,
2521                                DAG.getConstant(1, SL, MVT::i32), Lo);
2522   // Get the 32-bit normalized integer.
2523   Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust);
2524   // Convert the normalized 32-bit integer into f32.
2525   unsigned Opc =
2526       (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
2527   SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm);
2528 
2529   // Finally, need to scale back the converted floating number as the original
2530   // 64-bit integer is converted as a 32-bit one.
2531   ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2532                       ShAmt);
2533   // On GCN, use LDEXP directly.
2534   if (Subtarget->isGCN())
2535     return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt);
2536 
2537   // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent
2538   // part directly to emulate the multiplication of 2^ShAmt. That 8-bit
2539   // exponent is enough to avoid overflowing into the sign bit.
2540   SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt,
2541                             DAG.getConstant(23, SL, MVT::i32));
2542   SDValue IVal =
2543       DAG.getNode(ISD::ADD, SL, MVT::i32,
2544                   DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp);
2545   if (Signed) {
2546     // Set the sign bit.
2547     Sign = DAG.getNode(ISD::SHL, SL, MVT::i32,
2548                        DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign),
2549                        DAG.getConstant(31, SL, MVT::i32));
2550     IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign);
2551   }
2552   return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal);
2553 }
2554 
2555 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2556                                                bool Signed) const {
2557   SDLoc SL(Op);
2558   SDValue Src = Op.getOperand(0);
2559 
2560   SDValue Lo, Hi;
2561   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2562 
2563   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2564                               SL, MVT::f64, Hi);
2565 
2566   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2567 
2568   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2569                               DAG.getConstant(32, SL, MVT::i32));
2570   // TODO: Should this propagate fast-math-flags?
2571   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2572 }
2573 
2574 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2575                                                SelectionDAG &DAG) const {
2576   // TODO: Factor out code common with LowerSINT_TO_FP.
2577   EVT DestVT = Op.getValueType();
2578   SDValue Src = Op.getOperand(0);
2579   EVT SrcVT = Src.getValueType();
2580 
2581   if (SrcVT == MVT::i16) {
2582     if (DestVT == MVT::f16)
2583       return Op;
2584     SDLoc DL(Op);
2585 
2586     // Promote src to i32
2587     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2588     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2589   }
2590 
2591   assert(SrcVT == MVT::i64 && "operation should be legal");
2592 
2593   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2594     SDLoc DL(Op);
2595 
2596     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2597     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2598     SDValue FPRound =
2599         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2600 
2601     return FPRound;
2602   }
2603 
2604   if (DestVT == MVT::f32)
2605     return LowerINT_TO_FP32(Op, DAG, false);
2606 
2607   assert(DestVT == MVT::f64);
2608   return LowerINT_TO_FP64(Op, DAG, false);
2609 }
2610 
2611 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2612                                               SelectionDAG &DAG) const {
2613   EVT DestVT = Op.getValueType();
2614 
2615   SDValue Src = Op.getOperand(0);
2616   EVT SrcVT = Src.getValueType();
2617 
2618   if (SrcVT == MVT::i16) {
2619     if (DestVT == MVT::f16)
2620       return Op;
2621 
2622     SDLoc DL(Op);
2623     // Promote src to i32
2624     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2625     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2626   }
2627 
2628   assert(SrcVT == MVT::i64 && "operation should be legal");
2629 
2630   // TODO: Factor out code common with LowerUINT_TO_FP.
2631 
2632   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2633     SDLoc DL(Op);
2634     SDValue Src = Op.getOperand(0);
2635 
2636     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2637     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2638     SDValue FPRound =
2639         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2640 
2641     return FPRound;
2642   }
2643 
2644   if (DestVT == MVT::f32)
2645     return LowerINT_TO_FP32(Op, DAG, true);
2646 
2647   assert(DestVT == MVT::f64);
2648   return LowerINT_TO_FP64(Op, DAG, true);
2649 }
2650 
2651 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG,
2652                                                bool Signed) const {
2653   SDLoc SL(Op);
2654 
2655   SDValue Src = Op.getOperand(0);
2656   EVT SrcVT = Src.getValueType();
2657 
2658   assert(SrcVT == MVT::f32 || SrcVT == MVT::f64);
2659 
2660   // The basic idea of converting a floating point number into a pair of 32-bit
2661   // integers is illustrated as follows:
2662   //
2663   //     tf := trunc(val);
2664   //    hif := floor(tf * 2^-32);
2665   //    lof := tf - hif * 2^32; // lof is always positive due to floor.
2666   //     hi := fptoi(hif);
2667   //     lo := fptoi(lof);
2668   //
2669   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src);
2670   SDValue Sign;
2671   if (Signed && SrcVT == MVT::f32) {
2672     // However, a 32-bit floating point number has only 23 bits mantissa and
2673     // it's not enough to hold all the significant bits of `lof` if val is
2674     // negative. To avoid the loss of precision, We need to take the absolute
2675     // value after truncating and flip the result back based on the original
2676     // signedness.
2677     Sign = DAG.getNode(ISD::SRA, SL, MVT::i32,
2678                        DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc),
2679                        DAG.getConstant(31, SL, MVT::i32));
2680     Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc);
2681   }
2682 
2683   SDValue K0, K1;
2684   if (SrcVT == MVT::f64) {
2685     K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)),
2686                            SL, SrcVT);
2687     K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)),
2688                            SL, SrcVT);
2689   } else {
2690     K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL,
2691                            SrcVT);
2692     K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL,
2693                            SrcVT);
2694   }
2695   // TODO: Should this propagate fast-math-flags?
2696   SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0);
2697 
2698   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul);
2699 
2700   SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc);
2701 
2702   SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT
2703                                                          : ISD::FP_TO_UINT,
2704                            SL, MVT::i32, FloorMul);
2705   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2706 
2707   SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2708                                DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}));
2709 
2710   if (Signed && SrcVT == MVT::f32) {
2711     assert(Sign);
2712     // Flip the result based on the signedness, which is either all 0s or 1s.
2713     Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2714                        DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign}));
2715     // r := xor(r, sign) - sign;
2716     Result =
2717         DAG.getNode(ISD::SUB, SL, MVT::i64,
2718                     DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign);
2719   }
2720 
2721   return Result;
2722 }
2723 
2724 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2725   SDLoc DL(Op);
2726   SDValue N0 = Op.getOperand(0);
2727 
2728   // Convert to target node to get known bits
2729   if (N0.getValueType() == MVT::f32)
2730     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2731 
2732   if (getTargetMachine().Options.UnsafeFPMath) {
2733     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2734     return SDValue();
2735   }
2736 
2737   assert(N0.getSimpleValueType() == MVT::f64);
2738 
2739   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2740   const unsigned ExpMask = 0x7ff;
2741   const unsigned ExpBiasf64 = 1023;
2742   const unsigned ExpBiasf16 = 15;
2743   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2744   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2745   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2746   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2747                            DAG.getConstant(32, DL, MVT::i64));
2748   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2749   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2750   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2751                           DAG.getConstant(20, DL, MVT::i64));
2752   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2753                   DAG.getConstant(ExpMask, DL, MVT::i32));
2754   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2755   // add the f16 bias (15) to get the biased exponent for the f16 format.
2756   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2757                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2758 
2759   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2760                           DAG.getConstant(8, DL, MVT::i32));
2761   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2762                   DAG.getConstant(0xffe, DL, MVT::i32));
2763 
2764   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2765                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2766   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2767 
2768   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2769   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2770 
2771   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2772   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2773       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2774                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2775 
2776   // N = M | (E << 12);
2777   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2778       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2779                   DAG.getConstant(12, DL, MVT::i32)));
2780 
2781   // B = clamp(1-E, 0, 13);
2782   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2783                                   One, E);
2784   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2785   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2786                   DAG.getConstant(13, DL, MVT::i32));
2787 
2788   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2789                                    DAG.getConstant(0x1000, DL, MVT::i32));
2790 
2791   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2792   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2793   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2794   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2795 
2796   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2797   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2798                               DAG.getConstant(0x7, DL, MVT::i32));
2799   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2800                   DAG.getConstant(2, DL, MVT::i32));
2801   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2802                                One, Zero, ISD::SETEQ);
2803   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2804                                One, Zero, ISD::SETGT);
2805   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2806   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2807 
2808   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2809                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2810   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2811                       I, V, ISD::SETEQ);
2812 
2813   // Extract the sign bit.
2814   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2815                             DAG.getConstant(16, DL, MVT::i32));
2816   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2817                      DAG.getConstant(0x8000, DL, MVT::i32));
2818 
2819   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2820   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2821 }
2822 
2823 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op,
2824                                              SelectionDAG &DAG) const {
2825   SDValue Src = Op.getOperand(0);
2826   unsigned OpOpcode = Op.getOpcode();
2827   EVT SrcVT = Src.getValueType();
2828   EVT DestVT = Op.getValueType();
2829 
2830   // Will be selected natively
2831   if (SrcVT == MVT::f16 && DestVT == MVT::i16)
2832     return Op;
2833 
2834   // Promote i16 to i32
2835   if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
2836     SDLoc DL(Op);
2837 
2838     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2839     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32);
2840   }
2841 
2842   if (SrcVT == MVT::f16 ||
2843       (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2844     SDLoc DL(Op);
2845 
2846     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2847     unsigned Ext =
2848         OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2849     return DAG.getNode(Ext, DL, MVT::i64, FpToInt32);
2850   }
2851 
2852   if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64))
2853     return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT);
2854 
2855   return SDValue();
2856 }
2857 
2858 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2859                                                      SelectionDAG &DAG) const {
2860   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2861   MVT VT = Op.getSimpleValueType();
2862   MVT ScalarVT = VT.getScalarType();
2863 
2864   assert(VT.isVector());
2865 
2866   SDValue Src = Op.getOperand(0);
2867   SDLoc DL(Op);
2868 
2869   // TODO: Don't scalarize on Evergreen?
2870   unsigned NElts = VT.getVectorNumElements();
2871   SmallVector<SDValue, 8> Args;
2872   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2873 
2874   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2875   for (unsigned I = 0; I < NElts; ++I)
2876     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2877 
2878   return DAG.getBuildVector(VT, DL, Args);
2879 }
2880 
2881 //===----------------------------------------------------------------------===//
2882 // Custom DAG optimizations
2883 //===----------------------------------------------------------------------===//
2884 
2885 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2886   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2887 }
2888 
2889 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2890   EVT VT = Op.getValueType();
2891   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2892                                      // as unsigned 24-bit values.
2893     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2894 }
2895 
2896 static SDValue simplifyMul24(SDNode *Node24,
2897                              TargetLowering::DAGCombinerInfo &DCI) {
2898   SelectionDAG &DAG = DCI.DAG;
2899   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2900   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2901 
2902   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2903   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2904   unsigned NewOpcode = Node24->getOpcode();
2905   if (IsIntrin) {
2906     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2907     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2908       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2909   }
2910 
2911   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2912 
2913   // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2914   // the operands to have other uses, but will only perform simplifications that
2915   // involve bypassing some nodes for this user.
2916   SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2917   SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2918   if (DemandedLHS || DemandedRHS)
2919     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2920                        DemandedLHS ? DemandedLHS : LHS,
2921                        DemandedRHS ? DemandedRHS : RHS);
2922 
2923   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2924   // operands if this node is the only user.
2925   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2926     return SDValue(Node24, 0);
2927   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2928     return SDValue(Node24, 0);
2929 
2930   return SDValue();
2931 }
2932 
2933 template <typename IntTy>
2934 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2935                                uint32_t Width, const SDLoc &DL) {
2936   if (Width + Offset < 32) {
2937     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2938     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2939     return DAG.getConstant(Result, DL, MVT::i32);
2940   }
2941 
2942   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2943 }
2944 
2945 static bool hasVolatileUser(SDNode *Val) {
2946   for (SDNode *U : Val->uses()) {
2947     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2948       if (M->isVolatile())
2949         return true;
2950     }
2951   }
2952 
2953   return false;
2954 }
2955 
2956 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2957   // i32 vectors are the canonical memory type.
2958   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2959     return false;
2960 
2961   if (!VT.isByteSized())
2962     return false;
2963 
2964   unsigned Size = VT.getStoreSize();
2965 
2966   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2967     return false;
2968 
2969   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2970     return false;
2971 
2972   return true;
2973 }
2974 
2975 // Replace load of an illegal type with a store of a bitcast to a friendlier
2976 // type.
2977 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2978                                                  DAGCombinerInfo &DCI) const {
2979   if (!DCI.isBeforeLegalize())
2980     return SDValue();
2981 
2982   LoadSDNode *LN = cast<LoadSDNode>(N);
2983   if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2984     return SDValue();
2985 
2986   SDLoc SL(N);
2987   SelectionDAG &DAG = DCI.DAG;
2988   EVT VT = LN->getMemoryVT();
2989 
2990   unsigned Size = VT.getStoreSize();
2991   Align Alignment = LN->getAlign();
2992   if (Alignment < Size && isTypeLegal(VT)) {
2993     bool IsFast;
2994     unsigned AS = LN->getAddressSpace();
2995 
2996     // Expand unaligned loads earlier than legalization. Due to visitation order
2997     // problems during legalization, the emitted instructions to pack and unpack
2998     // the bytes again are not eliminated in the case of an unaligned copy.
2999     if (!allowsMisalignedMemoryAccesses(
3000             VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) {
3001       SDValue Ops[2];
3002 
3003       if (VT.isVector())
3004         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
3005       else
3006         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
3007 
3008       return DAG.getMergeValues(Ops, SDLoc(N));
3009     }
3010 
3011     if (!IsFast)
3012       return SDValue();
3013   }
3014 
3015   if (!shouldCombineMemoryType(VT))
3016     return SDValue();
3017 
3018   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3019 
3020   SDValue NewLoad
3021     = DAG.getLoad(NewVT, SL, LN->getChain(),
3022                   LN->getBasePtr(), LN->getMemOperand());
3023 
3024   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
3025   DCI.CombineTo(N, BC, NewLoad.getValue(1));
3026   return SDValue(N, 0);
3027 }
3028 
3029 // Replace store of an illegal type with a store of a bitcast to a friendlier
3030 // type.
3031 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3032                                                   DAGCombinerInfo &DCI) const {
3033   if (!DCI.isBeforeLegalize())
3034     return SDValue();
3035 
3036   StoreSDNode *SN = cast<StoreSDNode>(N);
3037   if (!SN->isSimple() || !ISD::isNormalStore(SN))
3038     return SDValue();
3039 
3040   EVT VT = SN->getMemoryVT();
3041   unsigned Size = VT.getStoreSize();
3042 
3043   SDLoc SL(N);
3044   SelectionDAG &DAG = DCI.DAG;
3045   Align Alignment = SN->getAlign();
3046   if (Alignment < Size && isTypeLegal(VT)) {
3047     bool IsFast;
3048     unsigned AS = SN->getAddressSpace();
3049 
3050     // Expand unaligned stores earlier than legalization. Due to visitation
3051     // order problems during legalization, the emitted instructions to pack and
3052     // unpack the bytes again are not eliminated in the case of an unaligned
3053     // copy.
3054     if (!allowsMisalignedMemoryAccesses(
3055             VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) {
3056       if (VT.isVector())
3057         return scalarizeVectorStore(SN, DAG);
3058 
3059       return expandUnalignedStore(SN, DAG);
3060     }
3061 
3062     if (!IsFast)
3063       return SDValue();
3064   }
3065 
3066   if (!shouldCombineMemoryType(VT))
3067     return SDValue();
3068 
3069   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3070   SDValue Val = SN->getValue();
3071 
3072   //DCI.AddToWorklist(Val.getNode());
3073 
3074   bool OtherUses = !Val.hasOneUse();
3075   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3076   if (OtherUses) {
3077     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3078     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3079   }
3080 
3081   return DAG.getStore(SN->getChain(), SL, CastVal,
3082                       SN->getBasePtr(), SN->getMemOperand());
3083 }
3084 
3085 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3086 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3087 // issues.
3088 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3089                                                         DAGCombinerInfo &DCI) const {
3090   SelectionDAG &DAG = DCI.DAG;
3091   SDValue N0 = N->getOperand(0);
3092 
3093   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3094   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3095   if (N0.getOpcode() == ISD::TRUNCATE) {
3096     SDValue N1 = N->getOperand(1);
3097     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3098     SDLoc SL(N);
3099 
3100     SDValue Src = N0.getOperand(0);
3101     EVT SrcVT = Src.getValueType();
3102     if (SrcVT.bitsGE(ExtVT)) {
3103       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3104       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3105     }
3106   }
3107 
3108   return SDValue();
3109 }
3110 
3111 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3112   SDNode *N, DAGCombinerInfo &DCI) const {
3113   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3114   switch (IID) {
3115   case Intrinsic::amdgcn_mul_i24:
3116   case Intrinsic::amdgcn_mul_u24:
3117     return simplifyMul24(N, DCI);
3118   case Intrinsic::amdgcn_fract:
3119   case Intrinsic::amdgcn_rsq:
3120   case Intrinsic::amdgcn_rcp_legacy:
3121   case Intrinsic::amdgcn_rsq_legacy:
3122   case Intrinsic::amdgcn_rsq_clamp:
3123   case Intrinsic::amdgcn_ldexp: {
3124     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3125     SDValue Src = N->getOperand(1);
3126     return Src.isUndef() ? Src : SDValue();
3127   }
3128   default:
3129     return SDValue();
3130   }
3131 }
3132 
3133 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3134 /// binary operation \p Opc to it with the corresponding constant operands.
3135 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3136   DAGCombinerInfo &DCI, const SDLoc &SL,
3137   unsigned Opc, SDValue LHS,
3138   uint32_t ValLo, uint32_t ValHi) const {
3139   SelectionDAG &DAG = DCI.DAG;
3140   SDValue Lo, Hi;
3141   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3142 
3143   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3144   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3145 
3146   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3147   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3148 
3149   // Re-visit the ands. It's possible we eliminated one of them and it could
3150   // simplify the vector.
3151   DCI.AddToWorklist(Lo.getNode());
3152   DCI.AddToWorklist(Hi.getNode());
3153 
3154   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3155   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3156 }
3157 
3158 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3159                                                 DAGCombinerInfo &DCI) const {
3160   EVT VT = N->getValueType(0);
3161 
3162   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3163   if (!RHS)
3164     return SDValue();
3165 
3166   SDValue LHS = N->getOperand(0);
3167   unsigned RHSVal = RHS->getZExtValue();
3168   if (!RHSVal)
3169     return LHS;
3170 
3171   SDLoc SL(N);
3172   SelectionDAG &DAG = DCI.DAG;
3173 
3174   switch (LHS->getOpcode()) {
3175   default:
3176     break;
3177   case ISD::ZERO_EXTEND:
3178   case ISD::SIGN_EXTEND:
3179   case ISD::ANY_EXTEND: {
3180     SDValue X = LHS->getOperand(0);
3181 
3182     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3183         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3184       // Prefer build_vector as the canonical form if packed types are legal.
3185       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3186       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3187        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3188       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3189     }
3190 
3191     // shl (ext x) => zext (shl x), if shift does not overflow int
3192     if (VT != MVT::i64)
3193       break;
3194     KnownBits Known = DAG.computeKnownBits(X);
3195     unsigned LZ = Known.countMinLeadingZeros();
3196     if (LZ < RHSVal)
3197       break;
3198     EVT XVT = X.getValueType();
3199     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3200     return DAG.getZExtOrTrunc(Shl, SL, VT);
3201   }
3202   }
3203 
3204   if (VT != MVT::i64)
3205     return SDValue();
3206 
3207   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3208 
3209   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3210   // common case, splitting this into a move and a 32-bit shift is faster and
3211   // the same code size.
3212   if (RHSVal < 32)
3213     return SDValue();
3214 
3215   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3216 
3217   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3218   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3219 
3220   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3221 
3222   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3223   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3224 }
3225 
3226 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3227                                                 DAGCombinerInfo &DCI) const {
3228   if (N->getValueType(0) != MVT::i64)
3229     return SDValue();
3230 
3231   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3232   if (!RHS)
3233     return SDValue();
3234 
3235   SelectionDAG &DAG = DCI.DAG;
3236   SDLoc SL(N);
3237   unsigned RHSVal = RHS->getZExtValue();
3238 
3239   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3240   if (RHSVal == 32) {
3241     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3242     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3243                                    DAG.getConstant(31, SL, MVT::i32));
3244 
3245     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3246     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3247   }
3248 
3249   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3250   if (RHSVal == 63) {
3251     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3252     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3253                                    DAG.getConstant(31, SL, MVT::i32));
3254     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3255     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3256   }
3257 
3258   return SDValue();
3259 }
3260 
3261 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3262                                                 DAGCombinerInfo &DCI) const {
3263   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3264   if (!RHS)
3265     return SDValue();
3266 
3267   EVT VT = N->getValueType(0);
3268   SDValue LHS = N->getOperand(0);
3269   unsigned ShiftAmt = RHS->getZExtValue();
3270   SelectionDAG &DAG = DCI.DAG;
3271   SDLoc SL(N);
3272 
3273   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3274   // this improves the ability to match BFE patterns in isel.
3275   if (LHS.getOpcode() == ISD::AND) {
3276     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3277       if (Mask->getAPIntValue().isShiftedMask() &&
3278           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3279         return DAG.getNode(
3280             ISD::AND, SL, VT,
3281             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3282             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3283       }
3284     }
3285   }
3286 
3287   if (VT != MVT::i64)
3288     return SDValue();
3289 
3290   if (ShiftAmt < 32)
3291     return SDValue();
3292 
3293   // srl i64:x, C for C >= 32
3294   // =>
3295   //   build_pair (srl hi_32(x), C - 32), 0
3296   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3297 
3298   SDValue Hi = getHiHalf64(LHS, DAG);
3299 
3300   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3301   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3302 
3303   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3304 
3305   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3306 }
3307 
3308 SDValue AMDGPUTargetLowering::performTruncateCombine(
3309   SDNode *N, DAGCombinerInfo &DCI) const {
3310   SDLoc SL(N);
3311   SelectionDAG &DAG = DCI.DAG;
3312   EVT VT = N->getValueType(0);
3313   SDValue Src = N->getOperand(0);
3314 
3315   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3316   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3317     SDValue Vec = Src.getOperand(0);
3318     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3319       SDValue Elt0 = Vec.getOperand(0);
3320       EVT EltVT = Elt0.getValueType();
3321       if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) {
3322         if (EltVT.isFloatingPoint()) {
3323           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3324                              EltVT.changeTypeToInteger(), Elt0);
3325         }
3326 
3327         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3328       }
3329     }
3330   }
3331 
3332   // Equivalent of above for accessing the high element of a vector as an
3333   // integer operation.
3334   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3335   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3336     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3337       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3338         SDValue BV = stripBitcast(Src.getOperand(0));
3339         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3340             BV.getValueType().getVectorNumElements() == 2) {
3341           SDValue SrcElt = BV.getOperand(1);
3342           EVT SrcEltVT = SrcElt.getValueType();
3343           if (SrcEltVT.isFloatingPoint()) {
3344             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3345                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3346           }
3347 
3348           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3349         }
3350       }
3351     }
3352   }
3353 
3354   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3355   //
3356   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3357   //     i16 (trunc (srl (i32 (trunc x), K)))
3358   if (VT.getScalarSizeInBits() < 32) {
3359     EVT SrcVT = Src.getValueType();
3360     if (SrcVT.getScalarSizeInBits() > 32 &&
3361         (Src.getOpcode() == ISD::SRL ||
3362          Src.getOpcode() == ISD::SRA ||
3363          Src.getOpcode() == ISD::SHL)) {
3364       SDValue Amt = Src.getOperand(1);
3365       KnownBits Known = DAG.computeKnownBits(Amt);
3366       unsigned Size = VT.getScalarSizeInBits();
3367       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3368           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3369         EVT MidVT = VT.isVector() ?
3370           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3371                            VT.getVectorNumElements()) : MVT::i32;
3372 
3373         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3374         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3375                                     Src.getOperand(0));
3376         DCI.AddToWorklist(Trunc.getNode());
3377 
3378         if (Amt.getValueType() != NewShiftVT) {
3379           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3380           DCI.AddToWorklist(Amt.getNode());
3381         }
3382 
3383         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3384                                           Trunc, Amt);
3385         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3386       }
3387     }
3388   }
3389 
3390   return SDValue();
3391 }
3392 
3393 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3394 // instructions. If we only match on the legalized i64 mul expansion,
3395 // SimplifyDemandedBits will be unable to remove them because there will be
3396 // multiple uses due to the separate mul + mulh[su].
3397 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3398                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3399   if (Size <= 32) {
3400     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3401     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3402   }
3403 
3404   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3405   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3406 
3407   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3408   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3409 
3410   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi);
3411 }
3412 
3413 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3414                                                 DAGCombinerInfo &DCI) const {
3415   EVT VT = N->getValueType(0);
3416 
3417   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3418   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3419   // unnecessarily). isDivergent() is used as an approximation of whether the
3420   // value is in an SGPR.
3421   if (!N->isDivergent())
3422     return SDValue();
3423 
3424   unsigned Size = VT.getSizeInBits();
3425   if (VT.isVector() || Size > 64)
3426     return SDValue();
3427 
3428   // There are i16 integer mul/mad.
3429   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3430     return SDValue();
3431 
3432   SelectionDAG &DAG = DCI.DAG;
3433   SDLoc DL(N);
3434 
3435   SDValue N0 = N->getOperand(0);
3436   SDValue N1 = N->getOperand(1);
3437 
3438   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3439   // in the source into any_extends if the result of the mul is truncated. Since
3440   // we can assume the high bits are whatever we want, use the underlying value
3441   // to avoid the unknown high bits from interfering.
3442   if (N0.getOpcode() == ISD::ANY_EXTEND)
3443     N0 = N0.getOperand(0);
3444 
3445   if (N1.getOpcode() == ISD::ANY_EXTEND)
3446     N1 = N1.getOperand(0);
3447 
3448   SDValue Mul;
3449 
3450   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3451     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3452     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3453     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3454   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3455     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3456     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3457     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3458   } else {
3459     return SDValue();
3460   }
3461 
3462   // We need to use sext even for MUL_U24, because MUL_U24 is used
3463   // for signed multiply of 8 and 16-bit types.
3464   return DAG.getSExtOrTrunc(Mul, DL, VT);
3465 }
3466 
3467 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3468                                                   DAGCombinerInfo &DCI) const {
3469   EVT VT = N->getValueType(0);
3470 
3471   if (!Subtarget->hasMulI24() || VT.isVector())
3472     return SDValue();
3473 
3474   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3475   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3476   // unnecessarily). isDivergent() is used as an approximation of whether the
3477   // value is in an SGPR.
3478   // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3479   // valu op anyway)
3480   if (Subtarget->hasSMulHi() && !N->isDivergent())
3481     return SDValue();
3482 
3483   SelectionDAG &DAG = DCI.DAG;
3484   SDLoc DL(N);
3485 
3486   SDValue N0 = N->getOperand(0);
3487   SDValue N1 = N->getOperand(1);
3488 
3489   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3490     return SDValue();
3491 
3492   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3493   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3494 
3495   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3496   DCI.AddToWorklist(Mulhi.getNode());
3497   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3498 }
3499 
3500 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3501                                                   DAGCombinerInfo &DCI) const {
3502   EVT VT = N->getValueType(0);
3503 
3504   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3505     return SDValue();
3506 
3507   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3508   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3509   // unnecessarily). isDivergent() is used as an approximation of whether the
3510   // value is in an SGPR.
3511   // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3512   // valu op anyway)
3513   if (Subtarget->hasSMulHi() && !N->isDivergent())
3514     return SDValue();
3515 
3516   SelectionDAG &DAG = DCI.DAG;
3517   SDLoc DL(N);
3518 
3519   SDValue N0 = N->getOperand(0);
3520   SDValue N1 = N->getOperand(1);
3521 
3522   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3523     return SDValue();
3524 
3525   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3526   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3527 
3528   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3529   DCI.AddToWorklist(Mulhi.getNode());
3530   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3531 }
3532 
3533 static bool isNegativeOne(SDValue Val) {
3534   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3535     return C->isAllOnesValue();
3536   return false;
3537 }
3538 
3539 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3540                                           SDValue Op,
3541                                           const SDLoc &DL,
3542                                           unsigned Opc) const {
3543   EVT VT = Op.getValueType();
3544   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3545   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3546                               LegalVT != MVT::i16))
3547     return SDValue();
3548 
3549   if (VT != MVT::i32)
3550     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3551 
3552   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3553   if (VT != MVT::i32)
3554     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3555 
3556   return FFBX;
3557 }
3558 
3559 // The native instructions return -1 on 0 input. Optimize out a select that
3560 // produces -1 on 0.
3561 //
3562 // TODO: If zero is not undef, we could also do this if the output is compared
3563 // against the bitwidth.
3564 //
3565 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3566 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3567                                                  SDValue LHS, SDValue RHS,
3568                                                  DAGCombinerInfo &DCI) const {
3569   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3570   if (!CmpRhs || !CmpRhs->isNullValue())
3571     return SDValue();
3572 
3573   SelectionDAG &DAG = DCI.DAG;
3574   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3575   SDValue CmpLHS = Cond.getOperand(0);
3576 
3577   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3578   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3579   if (CCOpcode == ISD::SETEQ &&
3580       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3581       RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3582     unsigned Opc =
3583         isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3584     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3585   }
3586 
3587   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3588   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3589   if (CCOpcode == ISD::SETNE &&
3590       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3591       LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3592     unsigned Opc =
3593         isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3594 
3595     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3596   }
3597 
3598   return SDValue();
3599 }
3600 
3601 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3602                                          unsigned Op,
3603                                          const SDLoc &SL,
3604                                          SDValue Cond,
3605                                          SDValue N1,
3606                                          SDValue N2) {
3607   SelectionDAG &DAG = DCI.DAG;
3608   EVT VT = N1.getValueType();
3609 
3610   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3611                                   N1.getOperand(0), N2.getOperand(0));
3612   DCI.AddToWorklist(NewSelect.getNode());
3613   return DAG.getNode(Op, SL, VT, NewSelect);
3614 }
3615 
3616 // Pull a free FP operation out of a select so it may fold into uses.
3617 //
3618 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3619 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3620 //
3621 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3622 // select c, (fabs x), +k -> fabs (select c, x, k)
3623 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3624                                     SDValue N) {
3625   SelectionDAG &DAG = DCI.DAG;
3626   SDValue Cond = N.getOperand(0);
3627   SDValue LHS = N.getOperand(1);
3628   SDValue RHS = N.getOperand(2);
3629 
3630   EVT VT = N.getValueType();
3631   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3632       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3633     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3634                                      SDLoc(N), Cond, LHS, RHS);
3635   }
3636 
3637   bool Inv = false;
3638   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3639     std::swap(LHS, RHS);
3640     Inv = true;
3641   }
3642 
3643   // TODO: Support vector constants.
3644   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3645   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3646     SDLoc SL(N);
3647     // If one side is an fneg/fabs and the other is a constant, we can push the
3648     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3649     SDValue NewLHS = LHS.getOperand(0);
3650     SDValue NewRHS = RHS;
3651 
3652     // Careful: if the neg can be folded up, don't try to pull it back down.
3653     bool ShouldFoldNeg = true;
3654 
3655     if (NewLHS.hasOneUse()) {
3656       unsigned Opc = NewLHS.getOpcode();
3657       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3658         ShouldFoldNeg = false;
3659       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3660         ShouldFoldNeg = false;
3661     }
3662 
3663     if (ShouldFoldNeg) {
3664       if (LHS.getOpcode() == ISD::FNEG)
3665         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3666       else if (CRHS->isNegative())
3667         return SDValue();
3668 
3669       if (Inv)
3670         std::swap(NewLHS, NewRHS);
3671 
3672       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3673                                       Cond, NewLHS, NewRHS);
3674       DCI.AddToWorklist(NewSelect.getNode());
3675       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3676     }
3677   }
3678 
3679   return SDValue();
3680 }
3681 
3682 
3683 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3684                                                    DAGCombinerInfo &DCI) const {
3685   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3686     return Folded;
3687 
3688   SDValue Cond = N->getOperand(0);
3689   if (Cond.getOpcode() != ISD::SETCC)
3690     return SDValue();
3691 
3692   EVT VT = N->getValueType(0);
3693   SDValue LHS = Cond.getOperand(0);
3694   SDValue RHS = Cond.getOperand(1);
3695   SDValue CC = Cond.getOperand(2);
3696 
3697   SDValue True = N->getOperand(1);
3698   SDValue False = N->getOperand(2);
3699 
3700   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3701     SelectionDAG &DAG = DCI.DAG;
3702     if (DAG.isConstantValueOfAnyType(True) &&
3703         !DAG.isConstantValueOfAnyType(False)) {
3704       // Swap cmp + select pair to move constant to false input.
3705       // This will allow using VOPC cndmasks more often.
3706       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3707 
3708       SDLoc SL(N);
3709       ISD::CondCode NewCC =
3710           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3711 
3712       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3713       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3714     }
3715 
3716     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3717       SDValue MinMax
3718         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3719       // Revisit this node so we can catch min3/max3/med3 patterns.
3720       //DCI.AddToWorklist(MinMax.getNode());
3721       return MinMax;
3722     }
3723   }
3724 
3725   // There's no reason to not do this if the condition has other uses.
3726   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3727 }
3728 
3729 static bool isInv2Pi(const APFloat &APF) {
3730   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3731   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3732   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3733 
3734   return APF.bitwiseIsEqual(KF16) ||
3735          APF.bitwiseIsEqual(KF32) ||
3736          APF.bitwiseIsEqual(KF64);
3737 }
3738 
3739 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3740 // additional cost to negate them.
3741 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3742   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3743     if (C->isZero() && !C->isNegative())
3744       return true;
3745 
3746     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3747       return true;
3748   }
3749 
3750   return false;
3751 }
3752 
3753 static unsigned inverseMinMax(unsigned Opc) {
3754   switch (Opc) {
3755   case ISD::FMAXNUM:
3756     return ISD::FMINNUM;
3757   case ISD::FMINNUM:
3758     return ISD::FMAXNUM;
3759   case ISD::FMAXNUM_IEEE:
3760     return ISD::FMINNUM_IEEE;
3761   case ISD::FMINNUM_IEEE:
3762     return ISD::FMAXNUM_IEEE;
3763   case AMDGPUISD::FMAX_LEGACY:
3764     return AMDGPUISD::FMIN_LEGACY;
3765   case AMDGPUISD::FMIN_LEGACY:
3766     return  AMDGPUISD::FMAX_LEGACY;
3767   default:
3768     llvm_unreachable("invalid min/max opcode");
3769   }
3770 }
3771 
3772 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3773                                                  DAGCombinerInfo &DCI) const {
3774   SelectionDAG &DAG = DCI.DAG;
3775   SDValue N0 = N->getOperand(0);
3776   EVT VT = N->getValueType(0);
3777 
3778   unsigned Opc = N0.getOpcode();
3779 
3780   // If the input has multiple uses and we can either fold the negate down, or
3781   // the other uses cannot, give up. This both prevents unprofitable
3782   // transformations and infinite loops: we won't repeatedly try to fold around
3783   // a negate that has no 'good' form.
3784   if (N0.hasOneUse()) {
3785     // This may be able to fold into the source, but at a code size cost. Don't
3786     // fold if the fold into the user is free.
3787     if (allUsesHaveSourceMods(N, 0))
3788       return SDValue();
3789   } else {
3790     if (fnegFoldsIntoOp(Opc) &&
3791         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3792       return SDValue();
3793   }
3794 
3795   SDLoc SL(N);
3796   switch (Opc) {
3797   case ISD::FADD: {
3798     if (!mayIgnoreSignedZero(N0))
3799       return SDValue();
3800 
3801     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3802     SDValue LHS = N0.getOperand(0);
3803     SDValue RHS = N0.getOperand(1);
3804 
3805     if (LHS.getOpcode() != ISD::FNEG)
3806       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3807     else
3808       LHS = LHS.getOperand(0);
3809 
3810     if (RHS.getOpcode() != ISD::FNEG)
3811       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3812     else
3813       RHS = RHS.getOperand(0);
3814 
3815     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3816     if (Res.getOpcode() != ISD::FADD)
3817       return SDValue(); // Op got folded away.
3818     if (!N0.hasOneUse())
3819       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3820     return Res;
3821   }
3822   case ISD::FMUL:
3823   case AMDGPUISD::FMUL_LEGACY: {
3824     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3825     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3826     SDValue LHS = N0.getOperand(0);
3827     SDValue RHS = N0.getOperand(1);
3828 
3829     if (LHS.getOpcode() == ISD::FNEG)
3830       LHS = LHS.getOperand(0);
3831     else if (RHS.getOpcode() == ISD::FNEG)
3832       RHS = RHS.getOperand(0);
3833     else
3834       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3835 
3836     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3837     if (Res.getOpcode() != Opc)
3838       return SDValue(); // Op got folded away.
3839     if (!N0.hasOneUse())
3840       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3841     return Res;
3842   }
3843   case ISD::FMA:
3844   case ISD::FMAD: {
3845     // TODO: handle llvm.amdgcn.fma.legacy
3846     if (!mayIgnoreSignedZero(N0))
3847       return SDValue();
3848 
3849     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3850     SDValue LHS = N0.getOperand(0);
3851     SDValue MHS = N0.getOperand(1);
3852     SDValue RHS = N0.getOperand(2);
3853 
3854     if (LHS.getOpcode() == ISD::FNEG)
3855       LHS = LHS.getOperand(0);
3856     else if (MHS.getOpcode() == ISD::FNEG)
3857       MHS = MHS.getOperand(0);
3858     else
3859       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3860 
3861     if (RHS.getOpcode() != ISD::FNEG)
3862       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3863     else
3864       RHS = RHS.getOperand(0);
3865 
3866     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3867     if (Res.getOpcode() != Opc)
3868       return SDValue(); // Op got folded away.
3869     if (!N0.hasOneUse())
3870       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3871     return Res;
3872   }
3873   case ISD::FMAXNUM:
3874   case ISD::FMINNUM:
3875   case ISD::FMAXNUM_IEEE:
3876   case ISD::FMINNUM_IEEE:
3877   case AMDGPUISD::FMAX_LEGACY:
3878   case AMDGPUISD::FMIN_LEGACY: {
3879     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3880     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3881     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3882     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3883 
3884     SDValue LHS = N0.getOperand(0);
3885     SDValue RHS = N0.getOperand(1);
3886 
3887     // 0 doesn't have a negated inline immediate.
3888     // TODO: This constant check should be generalized to other operations.
3889     if (isConstantCostlierToNegate(RHS))
3890       return SDValue();
3891 
3892     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3893     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3894     unsigned Opposite = inverseMinMax(Opc);
3895 
3896     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3897     if (Res.getOpcode() != Opposite)
3898       return SDValue(); // Op got folded away.
3899     if (!N0.hasOneUse())
3900       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3901     return Res;
3902   }
3903   case AMDGPUISD::FMED3: {
3904     SDValue Ops[3];
3905     for (unsigned I = 0; I < 3; ++I)
3906       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3907 
3908     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3909     if (Res.getOpcode() != AMDGPUISD::FMED3)
3910       return SDValue(); // Op got folded away.
3911 
3912     if (!N0.hasOneUse()) {
3913       SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3914       DAG.ReplaceAllUsesWith(N0, Neg);
3915 
3916       for (SDNode *U : Neg->uses())
3917         DCI.AddToWorklist(U);
3918     }
3919 
3920     return Res;
3921   }
3922   case ISD::FP_EXTEND:
3923   case ISD::FTRUNC:
3924   case ISD::FRINT:
3925   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3926   case ISD::FSIN:
3927   case ISD::FCANONICALIZE:
3928   case AMDGPUISD::RCP:
3929   case AMDGPUISD::RCP_LEGACY:
3930   case AMDGPUISD::RCP_IFLAG:
3931   case AMDGPUISD::SIN_HW: {
3932     SDValue CvtSrc = N0.getOperand(0);
3933     if (CvtSrc.getOpcode() == ISD::FNEG) {
3934       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3935       // (fneg (rcp (fneg x))) -> (rcp x)
3936       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3937     }
3938 
3939     if (!N0.hasOneUse())
3940       return SDValue();
3941 
3942     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3943     // (fneg (rcp x)) -> (rcp (fneg x))
3944     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3945     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3946   }
3947   case ISD::FP_ROUND: {
3948     SDValue CvtSrc = N0.getOperand(0);
3949 
3950     if (CvtSrc.getOpcode() == ISD::FNEG) {
3951       // (fneg (fp_round (fneg x))) -> (fp_round x)
3952       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3953                          CvtSrc.getOperand(0), N0.getOperand(1));
3954     }
3955 
3956     if (!N0.hasOneUse())
3957       return SDValue();
3958 
3959     // (fneg (fp_round x)) -> (fp_round (fneg x))
3960     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3961     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3962   }
3963   case ISD::FP16_TO_FP: {
3964     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3965     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3966     // Put the fneg back as a legal source operation that can be matched later.
3967     SDLoc SL(N);
3968 
3969     SDValue Src = N0.getOperand(0);
3970     EVT SrcVT = Src.getValueType();
3971 
3972     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3973     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3974                                   DAG.getConstant(0x8000, SL, SrcVT));
3975     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3976   }
3977   default:
3978     return SDValue();
3979   }
3980 }
3981 
3982 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3983                                                  DAGCombinerInfo &DCI) const {
3984   SelectionDAG &DAG = DCI.DAG;
3985   SDValue N0 = N->getOperand(0);
3986 
3987   if (!N0.hasOneUse())
3988     return SDValue();
3989 
3990   switch (N0.getOpcode()) {
3991   case ISD::FP16_TO_FP: {
3992     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3993     SDLoc SL(N);
3994     SDValue Src = N0.getOperand(0);
3995     EVT SrcVT = Src.getValueType();
3996 
3997     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3998     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3999                                   DAG.getConstant(0x7fff, SL, SrcVT));
4000     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
4001   }
4002   default:
4003     return SDValue();
4004   }
4005 }
4006 
4007 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
4008                                                 DAGCombinerInfo &DCI) const {
4009   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
4010   if (!CFP)
4011     return SDValue();
4012 
4013   // XXX - Should this flush denormals?
4014   const APFloat &Val = CFP->getValueAPF();
4015   APFloat One(Val.getSemantics(), "1.0");
4016   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
4017 }
4018 
4019 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
4020                                                 DAGCombinerInfo &DCI) const {
4021   SelectionDAG &DAG = DCI.DAG;
4022   SDLoc DL(N);
4023 
4024   switch(N->getOpcode()) {
4025   default:
4026     break;
4027   case ISD::BITCAST: {
4028     EVT DestVT = N->getValueType(0);
4029 
4030     // Push casts through vector builds. This helps avoid emitting a large
4031     // number of copies when materializing floating point vector constants.
4032     //
4033     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
4034     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
4035     if (DestVT.isVector()) {
4036       SDValue Src = N->getOperand(0);
4037       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
4038         EVT SrcVT = Src.getValueType();
4039         unsigned NElts = DestVT.getVectorNumElements();
4040 
4041         if (SrcVT.getVectorNumElements() == NElts) {
4042           EVT DestEltVT = DestVT.getVectorElementType();
4043 
4044           SmallVector<SDValue, 8> CastedElts;
4045           SDLoc SL(N);
4046           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
4047             SDValue Elt = Src.getOperand(I);
4048             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
4049           }
4050 
4051           return DAG.getBuildVector(DestVT, SL, CastedElts);
4052         }
4053       }
4054     }
4055 
4056     if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
4057       break;
4058 
4059     // Fold bitcasts of constants.
4060     //
4061     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4062     // TODO: Generalize and move to DAGCombiner
4063     SDValue Src = N->getOperand(0);
4064     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4065       SDLoc SL(N);
4066       uint64_t CVal = C->getZExtValue();
4067       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4068                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4069                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4070       return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4071     }
4072 
4073     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4074       const APInt &Val = C->getValueAPF().bitcastToAPInt();
4075       SDLoc SL(N);
4076       uint64_t CVal = Val.getZExtValue();
4077       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4078                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4079                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4080 
4081       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4082     }
4083 
4084     break;
4085   }
4086   case ISD::SHL: {
4087     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4088       break;
4089 
4090     return performShlCombine(N, DCI);
4091   }
4092   case ISD::SRL: {
4093     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4094       break;
4095 
4096     return performSrlCombine(N, DCI);
4097   }
4098   case ISD::SRA: {
4099     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4100       break;
4101 
4102     return performSraCombine(N, DCI);
4103   }
4104   case ISD::TRUNCATE:
4105     return performTruncateCombine(N, DCI);
4106   case ISD::MUL:
4107     return performMulCombine(N, DCI);
4108   case ISD::MULHS:
4109     return performMulhsCombine(N, DCI);
4110   case ISD::MULHU:
4111     return performMulhuCombine(N, DCI);
4112   case AMDGPUISD::MUL_I24:
4113   case AMDGPUISD::MUL_U24:
4114   case AMDGPUISD::MULHI_I24:
4115   case AMDGPUISD::MULHI_U24:
4116     return simplifyMul24(N, DCI);
4117   case ISD::SELECT:
4118     return performSelectCombine(N, DCI);
4119   case ISD::FNEG:
4120     return performFNegCombine(N, DCI);
4121   case ISD::FABS:
4122     return performFAbsCombine(N, DCI);
4123   case AMDGPUISD::BFE_I32:
4124   case AMDGPUISD::BFE_U32: {
4125     assert(!N->getValueType(0).isVector() &&
4126            "Vector handling of BFE not implemented");
4127     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4128     if (!Width)
4129       break;
4130 
4131     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4132     if (WidthVal == 0)
4133       return DAG.getConstant(0, DL, MVT::i32);
4134 
4135     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4136     if (!Offset)
4137       break;
4138 
4139     SDValue BitsFrom = N->getOperand(0);
4140     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4141 
4142     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4143 
4144     if (OffsetVal == 0) {
4145       // This is already sign / zero extended, so try to fold away extra BFEs.
4146       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4147 
4148       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4149       if (OpSignBits >= SignBits)
4150         return BitsFrom;
4151 
4152       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4153       if (Signed) {
4154         // This is a sign_extend_inreg. Replace it to take advantage of existing
4155         // DAG Combines. If not eliminated, we will match back to BFE during
4156         // selection.
4157 
4158         // TODO: The sext_inreg of extended types ends, although we can could
4159         // handle them in a single BFE.
4160         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4161                            DAG.getValueType(SmallVT));
4162       }
4163 
4164       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4165     }
4166 
4167     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4168       if (Signed) {
4169         return constantFoldBFE<int32_t>(DAG,
4170                                         CVal->getSExtValue(),
4171                                         OffsetVal,
4172                                         WidthVal,
4173                                         DL);
4174       }
4175 
4176       return constantFoldBFE<uint32_t>(DAG,
4177                                        CVal->getZExtValue(),
4178                                        OffsetVal,
4179                                        WidthVal,
4180                                        DL);
4181     }
4182 
4183     if ((OffsetVal + WidthVal) >= 32 &&
4184         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4185       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4186       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4187                          BitsFrom, ShiftVal);
4188     }
4189 
4190     if (BitsFrom.hasOneUse()) {
4191       APInt Demanded = APInt::getBitsSet(32,
4192                                          OffsetVal,
4193                                          OffsetVal + WidthVal);
4194 
4195       KnownBits Known;
4196       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4197                                             !DCI.isBeforeLegalizeOps());
4198       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4199       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4200           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4201         DCI.CommitTargetLoweringOpt(TLO);
4202       }
4203     }
4204 
4205     break;
4206   }
4207   case ISD::LOAD:
4208     return performLoadCombine(N, DCI);
4209   case ISD::STORE:
4210     return performStoreCombine(N, DCI);
4211   case AMDGPUISD::RCP:
4212   case AMDGPUISD::RCP_IFLAG:
4213     return performRcpCombine(N, DCI);
4214   case ISD::AssertZext:
4215   case ISD::AssertSext:
4216     return performAssertSZExtCombine(N, DCI);
4217   case ISD::INTRINSIC_WO_CHAIN:
4218     return performIntrinsicWOChainCombine(N, DCI);
4219   }
4220   return SDValue();
4221 }
4222 
4223 //===----------------------------------------------------------------------===//
4224 // Helper functions
4225 //===----------------------------------------------------------------------===//
4226 
4227 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4228                                                    const TargetRegisterClass *RC,
4229                                                    Register Reg, EVT VT,
4230                                                    const SDLoc &SL,
4231                                                    bool RawReg) const {
4232   MachineFunction &MF = DAG.getMachineFunction();
4233   MachineRegisterInfo &MRI = MF.getRegInfo();
4234   Register VReg;
4235 
4236   if (!MRI.isLiveIn(Reg)) {
4237     VReg = MRI.createVirtualRegister(RC);
4238     MRI.addLiveIn(Reg, VReg);
4239   } else {
4240     VReg = MRI.getLiveInVirtReg(Reg);
4241   }
4242 
4243   if (RawReg)
4244     return DAG.getRegister(VReg, VT);
4245 
4246   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4247 }
4248 
4249 // This may be called multiple times, and nothing prevents creating multiple
4250 // objects at the same offset. See if we already defined this object.
4251 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4252                                        int64_t Offset) {
4253   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4254     if (MFI.getObjectOffset(I) == Offset) {
4255       assert(MFI.getObjectSize(I) == Size);
4256       return I;
4257     }
4258   }
4259 
4260   return MFI.CreateFixedObject(Size, Offset, true);
4261 }
4262 
4263 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4264                                                   EVT VT,
4265                                                   const SDLoc &SL,
4266                                                   int64_t Offset) const {
4267   MachineFunction &MF = DAG.getMachineFunction();
4268   MachineFrameInfo &MFI = MF.getFrameInfo();
4269   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4270 
4271   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4272   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4273 
4274   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4275                      MachineMemOperand::MODereferenceable |
4276                          MachineMemOperand::MOInvariant);
4277 }
4278 
4279 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4280                                                    const SDLoc &SL,
4281                                                    SDValue Chain,
4282                                                    SDValue ArgVal,
4283                                                    int64_t Offset) const {
4284   MachineFunction &MF = DAG.getMachineFunction();
4285   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4286   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4287 
4288   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4289   // Stores to the argument stack area are relative to the stack pointer.
4290   SDValue SP =
4291       DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32);
4292   Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr);
4293   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4294                                MachineMemOperand::MODereferenceable);
4295   return Store;
4296 }
4297 
4298 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4299                                              const TargetRegisterClass *RC,
4300                                              EVT VT, const SDLoc &SL,
4301                                              const ArgDescriptor &Arg) const {
4302   assert(Arg && "Attempting to load missing argument");
4303 
4304   SDValue V = Arg.isRegister() ?
4305     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4306     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4307 
4308   if (!Arg.isMasked())
4309     return V;
4310 
4311   unsigned Mask = Arg.getMask();
4312   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4313   V = DAG.getNode(ISD::SRL, SL, VT, V,
4314                   DAG.getShiftAmountConstant(Shift, VT, SL));
4315   return DAG.getNode(ISD::AND, SL, VT, V,
4316                      DAG.getConstant(Mask >> Shift, SL, VT));
4317 }
4318 
4319 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4320     const MachineFunction &MF, const ImplicitParameter Param) const {
4321   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4322   const AMDGPUSubtarget &ST =
4323       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4324   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4325   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4326   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4327                        ExplicitArgOffset;
4328   switch (Param) {
4329   case GRID_DIM:
4330     return ArgOffset;
4331   case GRID_OFFSET:
4332     return ArgOffset + 4;
4333   }
4334   llvm_unreachable("unexpected implicit parameter type");
4335 }
4336 
4337 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4338 
4339 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4340   switch ((AMDGPUISD::NodeType)Opcode) {
4341   case AMDGPUISD::FIRST_NUMBER: break;
4342   // AMDIL DAG nodes
4343   NODE_NAME_CASE(UMUL);
4344   NODE_NAME_CASE(BRANCH_COND);
4345 
4346   // AMDGPU DAG nodes
4347   NODE_NAME_CASE(IF)
4348   NODE_NAME_CASE(ELSE)
4349   NODE_NAME_CASE(LOOP)
4350   NODE_NAME_CASE(CALL)
4351   NODE_NAME_CASE(TC_RETURN)
4352   NODE_NAME_CASE(TRAP)
4353   NODE_NAME_CASE(RET_FLAG)
4354   NODE_NAME_CASE(RETURN_TO_EPILOG)
4355   NODE_NAME_CASE(ENDPGM)
4356   NODE_NAME_CASE(DWORDADDR)
4357   NODE_NAME_CASE(FRACT)
4358   NODE_NAME_CASE(SETCC)
4359   NODE_NAME_CASE(SETREG)
4360   NODE_NAME_CASE(DENORM_MODE)
4361   NODE_NAME_CASE(FMA_W_CHAIN)
4362   NODE_NAME_CASE(FMUL_W_CHAIN)
4363   NODE_NAME_CASE(CLAMP)
4364   NODE_NAME_CASE(COS_HW)
4365   NODE_NAME_CASE(SIN_HW)
4366   NODE_NAME_CASE(FMAX_LEGACY)
4367   NODE_NAME_CASE(FMIN_LEGACY)
4368   NODE_NAME_CASE(FMAX3)
4369   NODE_NAME_CASE(SMAX3)
4370   NODE_NAME_CASE(UMAX3)
4371   NODE_NAME_CASE(FMIN3)
4372   NODE_NAME_CASE(SMIN3)
4373   NODE_NAME_CASE(UMIN3)
4374   NODE_NAME_CASE(FMED3)
4375   NODE_NAME_CASE(SMED3)
4376   NODE_NAME_CASE(UMED3)
4377   NODE_NAME_CASE(FDOT2)
4378   NODE_NAME_CASE(URECIP)
4379   NODE_NAME_CASE(DIV_SCALE)
4380   NODE_NAME_CASE(DIV_FMAS)
4381   NODE_NAME_CASE(DIV_FIXUP)
4382   NODE_NAME_CASE(FMAD_FTZ)
4383   NODE_NAME_CASE(RCP)
4384   NODE_NAME_CASE(RSQ)
4385   NODE_NAME_CASE(RCP_LEGACY)
4386   NODE_NAME_CASE(RCP_IFLAG)
4387   NODE_NAME_CASE(FMUL_LEGACY)
4388   NODE_NAME_CASE(RSQ_CLAMP)
4389   NODE_NAME_CASE(LDEXP)
4390   NODE_NAME_CASE(FP_CLASS)
4391   NODE_NAME_CASE(DOT4)
4392   NODE_NAME_CASE(CARRY)
4393   NODE_NAME_CASE(BORROW)
4394   NODE_NAME_CASE(BFE_U32)
4395   NODE_NAME_CASE(BFE_I32)
4396   NODE_NAME_CASE(BFI)
4397   NODE_NAME_CASE(BFM)
4398   NODE_NAME_CASE(FFBH_U32)
4399   NODE_NAME_CASE(FFBH_I32)
4400   NODE_NAME_CASE(FFBL_B32)
4401   NODE_NAME_CASE(MUL_U24)
4402   NODE_NAME_CASE(MUL_I24)
4403   NODE_NAME_CASE(MULHI_U24)
4404   NODE_NAME_CASE(MULHI_I24)
4405   NODE_NAME_CASE(MAD_U24)
4406   NODE_NAME_CASE(MAD_I24)
4407   NODE_NAME_CASE(MAD_I64_I32)
4408   NODE_NAME_CASE(MAD_U64_U32)
4409   NODE_NAME_CASE(PERM)
4410   NODE_NAME_CASE(TEXTURE_FETCH)
4411   NODE_NAME_CASE(R600_EXPORT)
4412   NODE_NAME_CASE(CONST_ADDRESS)
4413   NODE_NAME_CASE(REGISTER_LOAD)
4414   NODE_NAME_CASE(REGISTER_STORE)
4415   NODE_NAME_CASE(SAMPLE)
4416   NODE_NAME_CASE(SAMPLEB)
4417   NODE_NAME_CASE(SAMPLED)
4418   NODE_NAME_CASE(SAMPLEL)
4419   NODE_NAME_CASE(CVT_F32_UBYTE0)
4420   NODE_NAME_CASE(CVT_F32_UBYTE1)
4421   NODE_NAME_CASE(CVT_F32_UBYTE2)
4422   NODE_NAME_CASE(CVT_F32_UBYTE3)
4423   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4424   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4425   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4426   NODE_NAME_CASE(CVT_PK_I16_I32)
4427   NODE_NAME_CASE(CVT_PK_U16_U32)
4428   NODE_NAME_CASE(FP_TO_FP16)
4429   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4430   NODE_NAME_CASE(CONST_DATA_PTR)
4431   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4432   NODE_NAME_CASE(LDS)
4433   NODE_NAME_CASE(DUMMY_CHAIN)
4434   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4435   NODE_NAME_CASE(LOAD_D16_HI)
4436   NODE_NAME_CASE(LOAD_D16_LO)
4437   NODE_NAME_CASE(LOAD_D16_HI_I8)
4438   NODE_NAME_CASE(LOAD_D16_HI_U8)
4439   NODE_NAME_CASE(LOAD_D16_LO_I8)
4440   NODE_NAME_CASE(LOAD_D16_LO_U8)
4441   NODE_NAME_CASE(STORE_MSKOR)
4442   NODE_NAME_CASE(LOAD_CONSTANT)
4443   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4444   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4445   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4446   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4447   NODE_NAME_CASE(DS_ORDERED_COUNT)
4448   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4449   NODE_NAME_CASE(ATOMIC_INC)
4450   NODE_NAME_CASE(ATOMIC_DEC)
4451   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4452   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4453   NODE_NAME_CASE(BUFFER_LOAD)
4454   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4455   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4456   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4457   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4458   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4459   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4460   NODE_NAME_CASE(SBUFFER_LOAD)
4461   NODE_NAME_CASE(BUFFER_STORE)
4462   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4463   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4464   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4465   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4466   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4467   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4468   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4469   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4470   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4471   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4472   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4473   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4474   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4475   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4476   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4477   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4478   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4479   NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4480   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4481   NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)
4482   NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)
4483 
4484   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4485   }
4486   return nullptr;
4487 }
4488 
4489 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4490                                               SelectionDAG &DAG, int Enabled,
4491                                               int &RefinementSteps,
4492                                               bool &UseOneConstNR,
4493                                               bool Reciprocal) const {
4494   EVT VT = Operand.getValueType();
4495 
4496   if (VT == MVT::f32) {
4497     RefinementSteps = 0;
4498     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4499   }
4500 
4501   // TODO: There is also f64 rsq instruction, but the documentation is less
4502   // clear on its precision.
4503 
4504   return SDValue();
4505 }
4506 
4507 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4508                                                SelectionDAG &DAG, int Enabled,
4509                                                int &RefinementSteps) const {
4510   EVT VT = Operand.getValueType();
4511 
4512   if (VT == MVT::f32) {
4513     // Reciprocal, < 1 ulp error.
4514     //
4515     // This reciprocal approximation converges to < 0.5 ulp error with one
4516     // newton rhapson performed with two fused multiple adds (FMAs).
4517 
4518     RefinementSteps = 0;
4519     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4520   }
4521 
4522   // TODO: There is also f64 rcp instruction, but the documentation is less
4523   // clear on its precision.
4524 
4525   return SDValue();
4526 }
4527 
4528 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4529     const SDValue Op, KnownBits &Known,
4530     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4531 
4532   Known.resetAll(); // Don't know anything.
4533 
4534   unsigned Opc = Op.getOpcode();
4535 
4536   switch (Opc) {
4537   default:
4538     break;
4539   case AMDGPUISD::CARRY:
4540   case AMDGPUISD::BORROW: {
4541     Known.Zero = APInt::getHighBitsSet(32, 31);
4542     break;
4543   }
4544 
4545   case AMDGPUISD::BFE_I32:
4546   case AMDGPUISD::BFE_U32: {
4547     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4548     if (!CWidth)
4549       return;
4550 
4551     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4552 
4553     if (Opc == AMDGPUISD::BFE_U32)
4554       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4555 
4556     break;
4557   }
4558   case AMDGPUISD::FP_TO_FP16: {
4559     unsigned BitWidth = Known.getBitWidth();
4560 
4561     // High bits are zero.
4562     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4563     break;
4564   }
4565   case AMDGPUISD::MUL_U24:
4566   case AMDGPUISD::MUL_I24: {
4567     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4568     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4569     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4570                       RHSKnown.countMinTrailingZeros();
4571     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4572     // Skip extra check if all bits are known zeros.
4573     if (TrailZ >= 32)
4574       break;
4575 
4576     // Truncate to 24 bits.
4577     LHSKnown = LHSKnown.trunc(24);
4578     RHSKnown = RHSKnown.trunc(24);
4579 
4580     if (Opc == AMDGPUISD::MUL_I24) {
4581       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4582       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4583       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4584       if (MaxValBits >= 32)
4585         break;
4586       bool LHSNegative = LHSKnown.isNegative();
4587       bool LHSNonNegative = LHSKnown.isNonNegative();
4588       bool LHSPositive = LHSKnown.isStrictlyPositive();
4589       bool RHSNegative = RHSKnown.isNegative();
4590       bool RHSNonNegative = RHSKnown.isNonNegative();
4591       bool RHSPositive = RHSKnown.isStrictlyPositive();
4592 
4593       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4594         Known.Zero.setHighBits(32 - MaxValBits);
4595       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4596         Known.One.setHighBits(32 - MaxValBits);
4597     } else {
4598       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4599       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4600       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4601       if (MaxValBits >= 32)
4602         break;
4603       Known.Zero.setHighBits(32 - MaxValBits);
4604     }
4605     break;
4606   }
4607   case AMDGPUISD::PERM: {
4608     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4609     if (!CMask)
4610       return;
4611 
4612     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4613     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4614     unsigned Sel = CMask->getZExtValue();
4615 
4616     for (unsigned I = 0; I < 32; I += 8) {
4617       unsigned SelBits = Sel & 0xff;
4618       if (SelBits < 4) {
4619         SelBits *= 8;
4620         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4621         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4622       } else if (SelBits < 7) {
4623         SelBits = (SelBits & 3) * 8;
4624         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4625         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4626       } else if (SelBits == 0x0c) {
4627         Known.Zero |= 0xFFull << I;
4628       } else if (SelBits > 0x0c) {
4629         Known.One |= 0xFFull << I;
4630       }
4631       Sel >>= 8;
4632     }
4633     break;
4634   }
4635   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4636     Known.Zero.setHighBits(24);
4637     break;
4638   }
4639   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4640     Known.Zero.setHighBits(16);
4641     break;
4642   }
4643   case AMDGPUISD::LDS: {
4644     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4645     Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4646 
4647     Known.Zero.setHighBits(16);
4648     Known.Zero.setLowBits(Log2(Alignment));
4649     break;
4650   }
4651   case ISD::INTRINSIC_WO_CHAIN: {
4652     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4653     switch (IID) {
4654     case Intrinsic::amdgcn_mbcnt_lo:
4655     case Intrinsic::amdgcn_mbcnt_hi: {
4656       const GCNSubtarget &ST =
4657           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4658       // These return at most the wavefront size - 1.
4659       unsigned Size = Op.getValueType().getSizeInBits();
4660       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4661       break;
4662     }
4663     default:
4664       break;
4665     }
4666   }
4667   }
4668 }
4669 
4670 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4671     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4672     unsigned Depth) const {
4673   switch (Op.getOpcode()) {
4674   case AMDGPUISD::BFE_I32: {
4675     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4676     if (!Width)
4677       return 1;
4678 
4679     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4680     if (!isNullConstant(Op.getOperand(1)))
4681       return SignBits;
4682 
4683     // TODO: Could probably figure something out with non-0 offsets.
4684     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4685     return std::max(SignBits, Op0SignBits);
4686   }
4687 
4688   case AMDGPUISD::BFE_U32: {
4689     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4690     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4691   }
4692 
4693   case AMDGPUISD::CARRY:
4694   case AMDGPUISD::BORROW:
4695     return 31;
4696   case AMDGPUISD::BUFFER_LOAD_BYTE:
4697     return 25;
4698   case AMDGPUISD::BUFFER_LOAD_SHORT:
4699     return 17;
4700   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4701     return 24;
4702   case AMDGPUISD::BUFFER_LOAD_USHORT:
4703     return 16;
4704   case AMDGPUISD::FP_TO_FP16:
4705     return 16;
4706   default:
4707     return 1;
4708   }
4709 }
4710 
4711 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4712   GISelKnownBits &Analysis, Register R,
4713   const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4714   unsigned Depth) const {
4715   const MachineInstr *MI = MRI.getVRegDef(R);
4716   if (!MI)
4717     return 1;
4718 
4719   // TODO: Check range metadata on MMO.
4720   switch (MI->getOpcode()) {
4721   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4722     return 25;
4723   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4724     return 17;
4725   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4726     return 24;
4727   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4728     return 16;
4729   default:
4730     return 1;
4731   }
4732 }
4733 
4734 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4735                                                         const SelectionDAG &DAG,
4736                                                         bool SNaN,
4737                                                         unsigned Depth) const {
4738   unsigned Opcode = Op.getOpcode();
4739   switch (Opcode) {
4740   case AMDGPUISD::FMIN_LEGACY:
4741   case AMDGPUISD::FMAX_LEGACY: {
4742     if (SNaN)
4743       return true;
4744 
4745     // TODO: Can check no nans on one of the operands for each one, but which
4746     // one?
4747     return false;
4748   }
4749   case AMDGPUISD::FMUL_LEGACY:
4750   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4751     if (SNaN)
4752       return true;
4753     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4754            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4755   }
4756   case AMDGPUISD::FMED3:
4757   case AMDGPUISD::FMIN3:
4758   case AMDGPUISD::FMAX3:
4759   case AMDGPUISD::FMAD_FTZ: {
4760     if (SNaN)
4761       return true;
4762     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4763            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4764            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4765   }
4766   case AMDGPUISD::CVT_F32_UBYTE0:
4767   case AMDGPUISD::CVT_F32_UBYTE1:
4768   case AMDGPUISD::CVT_F32_UBYTE2:
4769   case AMDGPUISD::CVT_F32_UBYTE3:
4770     return true;
4771 
4772   case AMDGPUISD::RCP:
4773   case AMDGPUISD::RSQ:
4774   case AMDGPUISD::RCP_LEGACY:
4775   case AMDGPUISD::RSQ_CLAMP: {
4776     if (SNaN)
4777       return true;
4778 
4779     // TODO: Need is known positive check.
4780     return false;
4781   }
4782   case AMDGPUISD::LDEXP:
4783   case AMDGPUISD::FRACT: {
4784     if (SNaN)
4785       return true;
4786     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4787   }
4788   case AMDGPUISD::DIV_SCALE:
4789   case AMDGPUISD::DIV_FMAS:
4790   case AMDGPUISD::DIV_FIXUP:
4791     // TODO: Refine on operands.
4792     return SNaN;
4793   case AMDGPUISD::SIN_HW:
4794   case AMDGPUISD::COS_HW: {
4795     // TODO: Need check for infinity
4796     return SNaN;
4797   }
4798   case ISD::INTRINSIC_WO_CHAIN: {
4799     unsigned IntrinsicID
4800       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4801     // TODO: Handle more intrinsics
4802     switch (IntrinsicID) {
4803     case Intrinsic::amdgcn_cubeid:
4804       return true;
4805 
4806     case Intrinsic::amdgcn_frexp_mant: {
4807       if (SNaN)
4808         return true;
4809       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4810     }
4811     case Intrinsic::amdgcn_cvt_pkrtz: {
4812       if (SNaN)
4813         return true;
4814       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4815              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4816     }
4817     case Intrinsic::amdgcn_rcp:
4818     case Intrinsic::amdgcn_rsq:
4819     case Intrinsic::amdgcn_rcp_legacy:
4820     case Intrinsic::amdgcn_rsq_legacy:
4821     case Intrinsic::amdgcn_rsq_clamp: {
4822       if (SNaN)
4823         return true;
4824 
4825       // TODO: Need is known positive check.
4826       return false;
4827     }
4828     case Intrinsic::amdgcn_trig_preop:
4829     case Intrinsic::amdgcn_fdot2:
4830       // TODO: Refine on operand
4831       return SNaN;
4832     case Intrinsic::amdgcn_fma_legacy:
4833       if (SNaN)
4834         return true;
4835       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4836              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) &&
4837              DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1);
4838     default:
4839       return false;
4840     }
4841   }
4842   default:
4843     return false;
4844   }
4845 }
4846 
4847 TargetLowering::AtomicExpansionKind
4848 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4849   switch (RMW->getOperation()) {
4850   case AtomicRMWInst::Nand:
4851   case AtomicRMWInst::FAdd:
4852   case AtomicRMWInst::FSub:
4853     return AtomicExpansionKind::CmpXChg;
4854   default:
4855     return AtomicExpansionKind::None;
4856   }
4857 }
4858 
4859 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal(
4860     unsigned Opc, LLT Ty1, LLT Ty2) const {
4861   return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64));
4862 }
4863