1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 MachineFunction &MF = State.getMachineFunction(); 38 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 39 40 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 41 ArgFlags.getOrigAlign()); 42 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 43 return true; 44 } 45 46 #include "AMDGPUGenCallingConv.inc" 47 48 // Find a larger type to do a load / store of a vector with. 49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 50 unsigned StoreSize = VT.getStoreSizeInBits(); 51 if (StoreSize <= 32) 52 return EVT::getIntegerVT(Ctx, StoreSize); 53 54 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 55 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 56 } 57 58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 59 const AMDGPUSubtarget &STI) 60 : TargetLowering(TM), Subtarget(&STI) { 61 // Lower floating point store/load to integer store/load to reduce the number 62 // of patterns in tablegen. 63 setOperationAction(ISD::LOAD, MVT::f32, Promote); 64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 65 66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 68 69 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 71 72 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 74 75 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 77 78 setOperationAction(ISD::LOAD, MVT::i64, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 80 81 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 83 84 setOperationAction(ISD::LOAD, MVT::f64, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 86 87 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 89 90 // There are no 64-bit extloads. These should be done as a 32-bit extload and 91 // an extension to 64-bit. 92 for (MVT VT : MVT::integer_valuetypes()) { 93 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 94 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 95 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 96 } 97 98 for (MVT VT : MVT::integer_valuetypes()) { 99 if (VT == MVT::i64) 100 continue; 101 102 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 104 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 106 107 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 108 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 109 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 110 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 111 112 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 113 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 114 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 115 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 116 } 117 118 for (MVT VT : MVT::integer_vector_valuetypes()) { 119 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 121 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 123 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 125 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 130 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 131 } 132 133 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 134 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 137 138 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 139 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 140 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 142 143 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 147 148 setOperationAction(ISD::STORE, MVT::f32, Promote); 149 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 150 151 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 152 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 153 154 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 155 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 156 157 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 158 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 159 160 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 161 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 162 163 setOperationAction(ISD::STORE, MVT::i64, Promote); 164 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 165 166 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 167 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 168 169 setOperationAction(ISD::STORE, MVT::f64, Promote); 170 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 171 172 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 173 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 174 175 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 177 178 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 179 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 180 181 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 182 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 183 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 184 185 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 186 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 187 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 188 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 189 190 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 191 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 192 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 193 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 194 195 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 196 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 197 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 198 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 199 200 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 201 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 202 203 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 204 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 205 206 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 207 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 208 209 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 210 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 211 212 213 setOperationAction(ISD::Constant, MVT::i32, Legal); 214 setOperationAction(ISD::Constant, MVT::i64, Legal); 215 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 216 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 217 218 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 219 setOperationAction(ISD::BRIND, MVT::Other, Expand); 220 221 // This is totally unsupported, just custom lower to produce an error. 222 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 223 224 // We need to custom lower some of the intrinsics 225 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 226 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 227 228 // Library functions. These default to Expand, but we have instructions 229 // for them. 230 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 231 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 232 setOperationAction(ISD::FPOW, MVT::f32, Legal); 233 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 234 setOperationAction(ISD::FABS, MVT::f32, Legal); 235 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 236 setOperationAction(ISD::FRINT, MVT::f32, Legal); 237 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 238 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 239 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 240 241 setOperationAction(ISD::FROUND, MVT::f32, Custom); 242 setOperationAction(ISD::FROUND, MVT::f64, Custom); 243 244 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 245 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 246 247 setOperationAction(ISD::FREM, MVT::f32, Custom); 248 setOperationAction(ISD::FREM, MVT::f64, Custom); 249 250 // v_mad_f32 does not support denormals according to some sources. 251 if (!Subtarget->hasFP32Denormals()) 252 setOperationAction(ISD::FMAD, MVT::f32, Legal); 253 254 // Expand to fneg + fadd. 255 setOperationAction(ISD::FSUB, MVT::f64, Expand); 256 257 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 258 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 259 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 260 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 261 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 262 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 263 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 264 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 265 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 266 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 267 268 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 269 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 270 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 271 setOperationAction(ISD::FRINT, MVT::f64, Custom); 272 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 273 } 274 275 if (!Subtarget->hasBFI()) { 276 // fcopysign can be done in a single instruction with BFI. 277 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 278 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 279 } 280 281 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 282 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 283 284 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 285 for (MVT VT : ScalarIntVTs) { 286 // These should use [SU]DIVREM, so set them to expand 287 setOperationAction(ISD::SDIV, VT, Expand); 288 setOperationAction(ISD::UDIV, VT, Expand); 289 setOperationAction(ISD::SREM, VT, Expand); 290 setOperationAction(ISD::UREM, VT, Expand); 291 292 // GPU does not have divrem function for signed or unsigned. 293 setOperationAction(ISD::SDIVREM, VT, Custom); 294 setOperationAction(ISD::UDIVREM, VT, Custom); 295 296 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 297 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 298 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 299 300 setOperationAction(ISD::BSWAP, VT, Expand); 301 setOperationAction(ISD::CTTZ, VT, Expand); 302 setOperationAction(ISD::CTLZ, VT, Expand); 303 } 304 305 if (!Subtarget->hasBCNT(32)) 306 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 307 308 if (!Subtarget->hasBCNT(64)) 309 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 310 311 // The hardware supports 32-bit ROTR, but not ROTL. 312 setOperationAction(ISD::ROTL, MVT::i32, Expand); 313 setOperationAction(ISD::ROTL, MVT::i64, Expand); 314 setOperationAction(ISD::ROTR, MVT::i64, Expand); 315 316 setOperationAction(ISD::MUL, MVT::i64, Expand); 317 setOperationAction(ISD::MULHU, MVT::i64, Expand); 318 setOperationAction(ISD::MULHS, MVT::i64, Expand); 319 setOperationAction(ISD::UDIV, MVT::i32, Expand); 320 setOperationAction(ISD::UREM, MVT::i32, Expand); 321 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 322 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 323 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 324 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 325 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 326 327 setOperationAction(ISD::SMIN, MVT::i32, Legal); 328 setOperationAction(ISD::UMIN, MVT::i32, Legal); 329 setOperationAction(ISD::SMAX, MVT::i32, Legal); 330 setOperationAction(ISD::UMAX, MVT::i32, Legal); 331 332 if (Subtarget->hasFFBH()) 333 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 334 335 if (Subtarget->hasFFBL()) 336 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 337 338 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 339 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 340 341 // We only really have 32-bit BFE instructions (and 16-bit on VI). 342 // 343 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 344 // effort to match them now. We want this to be false for i64 cases when the 345 // extraction isn't restricted to the upper or lower half. Ideally we would 346 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 347 // span the midpoint are probably relatively rare, so don't worry about them 348 // for now. 349 if (Subtarget->hasBFE()) 350 setHasExtractBitsInsn(true); 351 352 static const MVT::SimpleValueType VectorIntTypes[] = { 353 MVT::v2i32, MVT::v4i32 354 }; 355 356 for (MVT VT : VectorIntTypes) { 357 // Expand the following operations for the current type by default. 358 setOperationAction(ISD::ADD, VT, Expand); 359 setOperationAction(ISD::AND, VT, Expand); 360 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 361 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 362 setOperationAction(ISD::MUL, VT, Expand); 363 setOperationAction(ISD::MULHU, VT, Expand); 364 setOperationAction(ISD::MULHS, VT, Expand); 365 setOperationAction(ISD::OR, VT, Expand); 366 setOperationAction(ISD::SHL, VT, Expand); 367 setOperationAction(ISD::SRA, VT, Expand); 368 setOperationAction(ISD::SRL, VT, Expand); 369 setOperationAction(ISD::ROTL, VT, Expand); 370 setOperationAction(ISD::ROTR, VT, Expand); 371 setOperationAction(ISD::SUB, VT, Expand); 372 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 373 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 374 setOperationAction(ISD::SDIV, VT, Expand); 375 setOperationAction(ISD::UDIV, VT, Expand); 376 setOperationAction(ISD::SREM, VT, Expand); 377 setOperationAction(ISD::UREM, VT, Expand); 378 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 379 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 380 setOperationAction(ISD::SDIVREM, VT, Custom); 381 setOperationAction(ISD::UDIVREM, VT, Expand); 382 setOperationAction(ISD::ADDC, VT, Expand); 383 setOperationAction(ISD::SUBC, VT, Expand); 384 setOperationAction(ISD::ADDE, VT, Expand); 385 setOperationAction(ISD::SUBE, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 } 396 397 static const MVT::SimpleValueType FloatVectorTypes[] = { 398 MVT::v2f32, MVT::v4f32 399 }; 400 401 for (MVT VT : FloatVectorTypes) { 402 setOperationAction(ISD::FABS, VT, Expand); 403 setOperationAction(ISD::FMINNUM, VT, Expand); 404 setOperationAction(ISD::FMAXNUM, VT, Expand); 405 setOperationAction(ISD::FADD, VT, Expand); 406 setOperationAction(ISD::FCEIL, VT, Expand); 407 setOperationAction(ISD::FCOS, VT, Expand); 408 setOperationAction(ISD::FDIV, VT, Expand); 409 setOperationAction(ISD::FEXP2, VT, Expand); 410 setOperationAction(ISD::FLOG2, VT, Expand); 411 setOperationAction(ISD::FREM, VT, Expand); 412 setOperationAction(ISD::FPOW, VT, Expand); 413 setOperationAction(ISD::FFLOOR, VT, Expand); 414 setOperationAction(ISD::FTRUNC, VT, Expand); 415 setOperationAction(ISD::FMUL, VT, Expand); 416 setOperationAction(ISD::FMA, VT, Expand); 417 setOperationAction(ISD::FRINT, VT, Expand); 418 setOperationAction(ISD::FNEARBYINT, VT, Expand); 419 setOperationAction(ISD::FSQRT, VT, Expand); 420 setOperationAction(ISD::FSIN, VT, Expand); 421 setOperationAction(ISD::FSUB, VT, Expand); 422 setOperationAction(ISD::FNEG, VT, Expand); 423 setOperationAction(ISD::VSELECT, VT, Expand); 424 setOperationAction(ISD::SELECT_CC, VT, Expand); 425 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 426 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 427 } 428 429 // This causes using an unrolled select operation rather than expansion with 430 // bit operations. This is in general better, but the alternative using BFI 431 // instructions may be better if the select sources are SGPRs. 432 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 433 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 434 435 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 436 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 437 438 setBooleanContents(ZeroOrNegativeOneBooleanContent); 439 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 440 441 setSchedulingPreference(Sched::RegPressure); 442 setJumpIsExpensive(true); 443 444 // SI at least has hardware support for floating point exceptions, but no way 445 // of using or handling them is implemented. They are also optional in OpenCL 446 // (Section 7.3) 447 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 448 449 PredictableSelectIsExpensive = false; 450 451 // We want to find all load dependencies for long chains of stores to enable 452 // merging into very wide vectors. The problem is with vectors with > 4 453 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 454 // vectors are a legal type, even though we have to split the loads 455 // usually. When we can more precisely specify load legality per address 456 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 457 // smarter so that they can figure out what to do in 2 iterations without all 458 // N > 4 stores on the same chain. 459 GatherAllAliasesMaxDepth = 16; 460 461 // FIXME: Need to really handle these. 462 MaxStoresPerMemcpy = 4096; 463 MaxStoresPerMemmove = 4096; 464 MaxStoresPerMemset = 4096; 465 466 setTargetDAGCombine(ISD::BITCAST); 467 setTargetDAGCombine(ISD::SHL); 468 setTargetDAGCombine(ISD::SRA); 469 setTargetDAGCombine(ISD::SRL); 470 setTargetDAGCombine(ISD::MUL); 471 setTargetDAGCombine(ISD::MULHU); 472 setTargetDAGCombine(ISD::MULHS); 473 setTargetDAGCombine(ISD::SELECT); 474 setTargetDAGCombine(ISD::SELECT_CC); 475 setTargetDAGCombine(ISD::STORE); 476 setTargetDAGCombine(ISD::FADD); 477 setTargetDAGCombine(ISD::FSUB); 478 } 479 480 //===----------------------------------------------------------------------===// 481 // Target Information 482 //===----------------------------------------------------------------------===// 483 484 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 485 return MVT::i32; 486 } 487 488 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 489 return true; 490 } 491 492 // The backend supports 32 and 64 bit floating point immediates. 493 // FIXME: Why are we reporting vectors of FP immediates as legal? 494 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 495 EVT ScalarVT = VT.getScalarType(); 496 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 497 } 498 499 // We don't want to shrink f64 / f32 constants. 500 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 501 EVT ScalarVT = VT.getScalarType(); 502 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 503 } 504 505 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 506 ISD::LoadExtType, 507 EVT NewVT) const { 508 509 unsigned NewSize = NewVT.getStoreSizeInBits(); 510 511 // If we are reducing to a 32-bit load, this is always better. 512 if (NewSize == 32) 513 return true; 514 515 EVT OldVT = N->getValueType(0); 516 unsigned OldSize = OldVT.getStoreSizeInBits(); 517 518 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 519 // extloads, so doing one requires using a buffer_load. In cases where we 520 // still couldn't use a scalar load, using the wider load shouldn't really 521 // hurt anything. 522 523 // If the old size already had to be an extload, there's no harm in continuing 524 // to reduce the width. 525 return (OldSize < 32); 526 } 527 528 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 529 EVT CastTy) const { 530 531 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 532 533 if (LoadTy.getScalarType() == MVT::i32) 534 return false; 535 536 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 537 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 538 539 return (LScalarSize < CastScalarSize) || 540 (CastScalarSize >= 32); 541 } 542 543 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 544 // profitable with the expansion for 64-bit since it's generally good to 545 // speculate things. 546 // FIXME: These should really have the size as a parameter. 547 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 548 return true; 549 } 550 551 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 552 return true; 553 } 554 555 //===---------------------------------------------------------------------===// 556 // Target Properties 557 //===---------------------------------------------------------------------===// 558 559 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 560 assert(VT.isFloatingPoint()); 561 return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() && 562 VT == MVT::f16); 563 } 564 565 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 566 return isFAbsFree(VT); 567 } 568 569 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 570 unsigned NumElem, 571 unsigned AS) const { 572 return true; 573 } 574 575 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 576 // There are few operations which truly have vector input operands. Any vector 577 // operation is going to involve operations on each component, and a 578 // build_vector will be a copy per element, so it always makes sense to use a 579 // build_vector input in place of the extracted element to avoid a copy into a 580 // super register. 581 // 582 // We should probably only do this if all users are extracts only, but this 583 // should be the common case. 584 return true; 585 } 586 587 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 588 // Truncate is just accessing a subregister. 589 590 unsigned SrcSize = Source.getSizeInBits(); 591 unsigned DestSize = Dest.getSizeInBits(); 592 593 return DestSize < SrcSize && DestSize % 32 == 0 ; 594 } 595 596 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 597 // Truncate is just accessing a subregister. 598 599 unsigned SrcSize = Source->getScalarSizeInBits(); 600 unsigned DestSize = Dest->getScalarSizeInBits(); 601 602 if (DestSize== 16 && Subtarget->has16BitInsts()) 603 return SrcSize >= 32; 604 605 return DestSize < SrcSize && DestSize % 32 == 0; 606 } 607 608 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 609 unsigned SrcSize = Src->getScalarSizeInBits(); 610 unsigned DestSize = Dest->getScalarSizeInBits(); 611 612 if (SrcSize == 16 && Subtarget->has16BitInsts()) 613 return DestSize >= 32; 614 615 return SrcSize == 32 && DestSize == 64; 616 } 617 618 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 619 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 620 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 621 // this will enable reducing 64-bit operations the 32-bit, which is always 622 // good. 623 624 if (Src == MVT::i16) 625 return Dest == MVT::i32 ||Dest == MVT::i64 ; 626 627 return Src == MVT::i32 && Dest == MVT::i64; 628 } 629 630 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 631 return isZExtFree(Val.getValueType(), VT2); 632 } 633 634 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 635 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 636 // limited number of native 64-bit operations. Shrinking an operation to fit 637 // in a single 32-bit register should always be helpful. As currently used, 638 // this is much less general than the name suggests, and is only used in 639 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 640 // not profitable, and may actually be harmful. 641 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 642 } 643 644 //===---------------------------------------------------------------------===// 645 // TargetLowering Callbacks 646 //===---------------------------------------------------------------------===// 647 648 /// The SelectionDAGBuilder will automatically promote function arguments 649 /// with illegal types. However, this does not work for the AMDGPU targets 650 /// since the function arguments are stored in memory as these illegal types. 651 /// In order to handle this properly we need to get the original types sizes 652 /// from the LLVM IR Function and fixup the ISD:InputArg values before 653 /// passing them to AnalyzeFormalArguments() 654 655 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 656 /// input values across multiple registers. Each item in the Ins array 657 /// represents a single value that will be stored in regsters. Ins[x].VT is 658 /// the value type of the value that will be stored in the register, so 659 /// whatever SDNode we lower the argument to needs to be this type. 660 /// 661 /// In order to correctly lower the arguments we need to know the size of each 662 /// argument. Since Ins[x].VT gives us the size of the register that will 663 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 664 /// for the orignal function argument so that we can deduce the correct memory 665 /// type to use for Ins[x]. In most cases the correct memory type will be 666 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 667 /// we have a kernel argument of type v8i8, this argument will be split into 668 /// 8 parts and each part will be represented by its own item in the Ins array. 669 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 670 /// the argument before it was split. From this, we deduce that the memory type 671 /// for each individual part is i8. We pass the memory type as LocVT to the 672 /// calling convention analysis function and the register type (Ins[x].VT) as 673 /// the ValVT. 674 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 675 const SmallVectorImpl<ISD::InputArg> &Ins) const { 676 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 677 const ISD::InputArg &In = Ins[i]; 678 EVT MemVT; 679 680 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 681 682 if (!Subtarget->isAmdHsaOS() && 683 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 684 // The ABI says the caller will extend these values to 32-bits. 685 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 686 } else if (NumRegs == 1) { 687 // This argument is not split, so the IR type is the memory type. 688 assert(!In.Flags.isSplit()); 689 if (In.ArgVT.isExtended()) { 690 // We have an extended type, like i24, so we should just use the register type 691 MemVT = In.VT; 692 } else { 693 MemVT = In.ArgVT; 694 } 695 } else if (In.ArgVT.isVector() && In.VT.isVector() && 696 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 697 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 698 // We have a vector value which has been split into a vector with 699 // the same scalar type, but fewer elements. This should handle 700 // all the floating-point vector types. 701 MemVT = In.VT; 702 } else if (In.ArgVT.isVector() && 703 In.ArgVT.getVectorNumElements() == NumRegs) { 704 // This arg has been split so that each element is stored in a separate 705 // register. 706 MemVT = In.ArgVT.getScalarType(); 707 } else if (In.ArgVT.isExtended()) { 708 // We have an extended type, like i65. 709 MemVT = In.VT; 710 } else { 711 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 712 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 713 if (In.VT.isInteger()) { 714 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 715 } else if (In.VT.isVector()) { 716 assert(!In.VT.getScalarType().isFloatingPoint()); 717 unsigned NumElements = In.VT.getVectorNumElements(); 718 assert(MemoryBits % NumElements == 0); 719 // This vector type has been split into another vector type with 720 // a different elements size. 721 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 722 MemoryBits / NumElements); 723 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 724 } else { 725 llvm_unreachable("cannot deduce memory type."); 726 } 727 } 728 729 // Convert one element vectors to scalar. 730 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 731 MemVT = MemVT.getScalarType(); 732 733 if (MemVT.isExtended()) { 734 // This should really only happen if we have vec3 arguments 735 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 736 MemVT = MemVT.getPow2VectorType(State.getContext()); 737 } 738 739 assert(MemVT.isSimple()); 740 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 741 State); 742 } 743 } 744 745 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 746 const SmallVectorImpl<ISD::InputArg> &Ins) const { 747 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 748 } 749 750 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 751 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 752 753 State.AnalyzeReturn(Outs, RetCC_SI); 754 } 755 756 SDValue 757 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 758 bool isVarArg, 759 const SmallVectorImpl<ISD::OutputArg> &Outs, 760 const SmallVectorImpl<SDValue> &OutVals, 761 const SDLoc &DL, SelectionDAG &DAG) const { 762 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 763 } 764 765 //===---------------------------------------------------------------------===// 766 // Target specific lowering 767 //===---------------------------------------------------------------------===// 768 769 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 770 SmallVectorImpl<SDValue> &InVals) const { 771 SDValue Callee = CLI.Callee; 772 SelectionDAG &DAG = CLI.DAG; 773 774 const Function &Fn = *DAG.getMachineFunction().getFunction(); 775 776 StringRef FuncName("<unknown>"); 777 778 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 779 FuncName = G->getSymbol(); 780 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 781 FuncName = G->getGlobal()->getName(); 782 783 DiagnosticInfoUnsupported NoCalls( 784 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 785 DAG.getContext()->diagnose(NoCalls); 786 787 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 788 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 789 790 return DAG.getEntryNode(); 791 } 792 793 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 794 SelectionDAG &DAG) const { 795 const Function &Fn = *DAG.getMachineFunction().getFunction(); 796 797 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 798 SDLoc(Op).getDebugLoc()); 799 DAG.getContext()->diagnose(NoDynamicAlloca); 800 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 801 return DAG.getMergeValues(Ops, SDLoc()); 802 } 803 804 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 805 SelectionDAG &DAG) const { 806 switch (Op.getOpcode()) { 807 default: 808 Op->dump(&DAG); 809 llvm_unreachable("Custom lowering code for this" 810 "instruction is not implemented yet!"); 811 break; 812 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 813 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 814 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 815 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 816 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 817 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 818 case ISD::FREM: return LowerFREM(Op, DAG); 819 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 820 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 821 case ISD::FRINT: return LowerFRINT(Op, DAG); 822 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 823 case ISD::FROUND: return LowerFROUND(Op, DAG); 824 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 825 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 826 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 827 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 828 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 829 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 830 case ISD::CTLZ: 831 case ISD::CTLZ_ZERO_UNDEF: 832 return LowerCTLZ(Op, DAG); 833 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 834 } 835 return Op; 836 } 837 838 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 839 SmallVectorImpl<SDValue> &Results, 840 SelectionDAG &DAG) const { 841 switch (N->getOpcode()) { 842 case ISD::SIGN_EXTEND_INREG: 843 // Different parts of legalization seem to interpret which type of 844 // sign_extend_inreg is the one to check for custom lowering. The extended 845 // from type is what really matters, but some places check for custom 846 // lowering of the result type. This results in trying to use 847 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 848 // nothing here and let the illegal result integer be handled normally. 849 return; 850 default: 851 return; 852 } 853 } 854 855 static bool hasDefinedInitializer(const GlobalValue *GV) { 856 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 857 if (!GVar || !GVar->hasInitializer()) 858 return false; 859 860 return !isa<UndefValue>(GVar->getInitializer()); 861 } 862 863 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 864 SDValue Op, 865 SelectionDAG &DAG) const { 866 867 const DataLayout &DL = DAG.getDataLayout(); 868 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 869 const GlobalValue *GV = G->getGlobal(); 870 871 switch (G->getAddressSpace()) { 872 case AMDGPUAS::LOCAL_ADDRESS: { 873 // XXX: What does the value of G->getOffset() mean? 874 assert(G->getOffset() == 0 && 875 "Do not know what to do with an non-zero offset"); 876 877 // TODO: We could emit code to handle the initialization somewhere. 878 if (hasDefinedInitializer(GV)) 879 break; 880 881 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 882 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 883 } 884 } 885 886 const Function &Fn = *DAG.getMachineFunction().getFunction(); 887 DiagnosticInfoUnsupported BadInit( 888 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 889 DAG.getContext()->diagnose(BadInit); 890 return SDValue(); 891 } 892 893 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 894 SelectionDAG &DAG) const { 895 SmallVector<SDValue, 8> Args; 896 897 for (const SDUse &U : Op->ops()) 898 DAG.ExtractVectorElements(U.get(), Args); 899 900 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 901 } 902 903 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 904 SelectionDAG &DAG) const { 905 906 SmallVector<SDValue, 8> Args; 907 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 908 EVT VT = Op.getValueType(); 909 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 910 VT.getVectorNumElements()); 911 912 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 913 } 914 915 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 916 SelectionDAG &DAG) const { 917 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 918 SDLoc DL(Op); 919 EVT VT = Op.getValueType(); 920 921 switch (IntrinsicID) { 922 default: return Op; 923 case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. 924 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 925 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 926 927 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 928 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 929 Op.getOperand(1), 930 Op.getOperand(2), 931 Op.getOperand(3)); 932 933 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 934 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 935 Op.getOperand(1), 936 Op.getOperand(2), 937 Op.getOperand(3)); 938 } 939 } 940 941 /// \brief Generate Min/Max node 942 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, 943 SDValue LHS, SDValue RHS, 944 SDValue True, SDValue False, 945 SDValue CC, 946 DAGCombinerInfo &DCI) const { 947 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 948 return SDValue(); 949 950 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 951 return SDValue(); 952 953 SelectionDAG &DAG = DCI.DAG; 954 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 955 switch (CCOpcode) { 956 case ISD::SETOEQ: 957 case ISD::SETONE: 958 case ISD::SETUNE: 959 case ISD::SETNE: 960 case ISD::SETUEQ: 961 case ISD::SETEQ: 962 case ISD::SETFALSE: 963 case ISD::SETFALSE2: 964 case ISD::SETTRUE: 965 case ISD::SETTRUE2: 966 case ISD::SETUO: 967 case ISD::SETO: 968 break; 969 case ISD::SETULE: 970 case ISD::SETULT: { 971 if (LHS == True) 972 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 973 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 974 } 975 case ISD::SETOLE: 976 case ISD::SETOLT: 977 case ISD::SETLE: 978 case ISD::SETLT: { 979 // Ordered. Assume ordered for undefined. 980 981 // Only do this after legalization to avoid interfering with other combines 982 // which might occur. 983 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 984 !DCI.isCalledByLegalizer()) 985 return SDValue(); 986 987 // We need to permute the operands to get the correct NaN behavior. The 988 // selected operand is the second one based on the failing compare with NaN, 989 // so permute it based on the compare type the hardware uses. 990 if (LHS == True) 991 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 992 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 993 } 994 case ISD::SETUGE: 995 case ISD::SETUGT: { 996 if (LHS == True) 997 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 998 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 999 } 1000 case ISD::SETGT: 1001 case ISD::SETGE: 1002 case ISD::SETOGE: 1003 case ISD::SETOGT: { 1004 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1005 !DCI.isCalledByLegalizer()) 1006 return SDValue(); 1007 1008 if (LHS == True) 1009 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1010 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1011 } 1012 case ISD::SETCC_INVALID: 1013 llvm_unreachable("Invalid setcc condcode!"); 1014 } 1015 return SDValue(); 1016 } 1017 1018 std::pair<SDValue, SDValue> 1019 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1020 SDLoc SL(Op); 1021 1022 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1023 1024 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1025 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1026 1027 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1028 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1029 1030 return std::make_pair(Lo, Hi); 1031 } 1032 1033 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1034 SDLoc SL(Op); 1035 1036 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1037 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1038 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1039 } 1040 1041 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1042 SDLoc SL(Op); 1043 1044 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1045 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1046 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1047 } 1048 1049 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1050 SelectionDAG &DAG) const { 1051 LoadSDNode *Load = cast<LoadSDNode>(Op); 1052 EVT VT = Op.getValueType(); 1053 1054 1055 // If this is a 2 element vector, we really want to scalarize and not create 1056 // weird 1 element vectors. 1057 if (VT.getVectorNumElements() == 2) 1058 return scalarizeVectorLoad(Load, DAG); 1059 1060 SDValue BasePtr = Load->getBasePtr(); 1061 EVT PtrVT = BasePtr.getValueType(); 1062 EVT MemVT = Load->getMemoryVT(); 1063 SDLoc SL(Op); 1064 1065 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1066 1067 EVT LoVT, HiVT; 1068 EVT LoMemVT, HiMemVT; 1069 SDValue Lo, Hi; 1070 1071 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1072 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1073 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1074 1075 unsigned Size = LoMemVT.getStoreSize(); 1076 unsigned BaseAlign = Load->getAlignment(); 1077 unsigned HiAlign = MinAlign(BaseAlign, Size); 1078 1079 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1080 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1081 BaseAlign, Load->getMemOperand()->getFlags()); 1082 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1083 DAG.getConstant(Size, SL, PtrVT)); 1084 SDValue HiLoad = 1085 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1086 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1087 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1088 1089 SDValue Ops[] = { 1090 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1091 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1092 LoLoad.getValue(1), HiLoad.getValue(1)) 1093 }; 1094 1095 return DAG.getMergeValues(Ops, SL); 1096 } 1097 1098 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1099 SelectionDAG &DAG) const { 1100 StoreSDNode *Store = cast<StoreSDNode>(Op); 1101 SDValue Val = Store->getValue(); 1102 EVT VT = Val.getValueType(); 1103 1104 // If this is a 2 element vector, we really want to scalarize and not create 1105 // weird 1 element vectors. 1106 if (VT.getVectorNumElements() == 2) 1107 return scalarizeVectorStore(Store, DAG); 1108 1109 EVT MemVT = Store->getMemoryVT(); 1110 SDValue Chain = Store->getChain(); 1111 SDValue BasePtr = Store->getBasePtr(); 1112 SDLoc SL(Op); 1113 1114 EVT LoVT, HiVT; 1115 EVT LoMemVT, HiMemVT; 1116 SDValue Lo, Hi; 1117 1118 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1119 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1120 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1121 1122 EVT PtrVT = BasePtr.getValueType(); 1123 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1124 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1125 PtrVT)); 1126 1127 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1128 unsigned BaseAlign = Store->getAlignment(); 1129 unsigned Size = LoMemVT.getStoreSize(); 1130 unsigned HiAlign = MinAlign(BaseAlign, Size); 1131 1132 SDValue LoStore = 1133 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1134 Store->getMemOperand()->getFlags()); 1135 SDValue HiStore = 1136 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1137 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1138 1139 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1140 } 1141 1142 // This is a shortcut for integer division because we have fast i32<->f32 1143 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1144 // float is enough to accurately represent up to a 24-bit signed integer. 1145 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1146 bool Sign) const { 1147 SDLoc DL(Op); 1148 EVT VT = Op.getValueType(); 1149 SDValue LHS = Op.getOperand(0); 1150 SDValue RHS = Op.getOperand(1); 1151 MVT IntVT = MVT::i32; 1152 MVT FltVT = MVT::f32; 1153 1154 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1155 if (LHSSignBits < 9) 1156 return SDValue(); 1157 1158 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1159 if (RHSSignBits < 9) 1160 return SDValue(); 1161 1162 unsigned BitSize = VT.getSizeInBits(); 1163 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1164 unsigned DivBits = BitSize - SignBits; 1165 if (Sign) 1166 ++DivBits; 1167 1168 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1169 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1170 1171 SDValue jq = DAG.getConstant(1, DL, IntVT); 1172 1173 if (Sign) { 1174 // char|short jq = ia ^ ib; 1175 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1176 1177 // jq = jq >> (bitsize - 2) 1178 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1179 DAG.getConstant(BitSize - 2, DL, VT)); 1180 1181 // jq = jq | 0x1 1182 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1183 } 1184 1185 // int ia = (int)LHS; 1186 SDValue ia = LHS; 1187 1188 // int ib, (int)RHS; 1189 SDValue ib = RHS; 1190 1191 // float fa = (float)ia; 1192 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1193 1194 // float fb = (float)ib; 1195 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1196 1197 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1198 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1199 1200 // fq = trunc(fq); 1201 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1202 1203 // float fqneg = -fq; 1204 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1205 1206 // float fr = mad(fqneg, fb, fa); 1207 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1208 1209 // int iq = (int)fq; 1210 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1211 1212 // fr = fabs(fr); 1213 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1214 1215 // fb = fabs(fb); 1216 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1217 1218 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1219 1220 // int cv = fr >= fb; 1221 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1222 1223 // jq = (cv ? jq : 0); 1224 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1225 1226 // dst = iq + jq; 1227 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1228 1229 // Rem needs compensation, it's easier to recompute it 1230 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1231 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1232 1233 // Truncate to number of bits this divide really is. 1234 if (Sign) { 1235 SDValue InRegSize 1236 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1237 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1238 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1239 } else { 1240 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1241 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1242 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1243 } 1244 1245 return DAG.getMergeValues({ Div, Rem }, DL); 1246 } 1247 1248 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1249 SelectionDAG &DAG, 1250 SmallVectorImpl<SDValue> &Results) const { 1251 assert(Op.getValueType() == MVT::i64); 1252 1253 SDLoc DL(Op); 1254 EVT VT = Op.getValueType(); 1255 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1256 1257 SDValue one = DAG.getConstant(1, DL, HalfVT); 1258 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1259 1260 //HiLo split 1261 SDValue LHS = Op.getOperand(0); 1262 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1263 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1264 1265 SDValue RHS = Op.getOperand(1); 1266 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1267 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1268 1269 if (VT == MVT::i64 && 1270 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1271 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1272 1273 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1274 LHS_Lo, RHS_Lo); 1275 1276 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1277 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1278 1279 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1280 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1281 return; 1282 } 1283 1284 // Get Speculative values 1285 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1286 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1287 1288 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1289 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1290 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1291 1292 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1293 SDValue DIV_Lo = zero; 1294 1295 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1296 1297 for (unsigned i = 0; i < halfBitWidth; ++i) { 1298 const unsigned bitPos = halfBitWidth - i - 1; 1299 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1300 // Get value of high bit 1301 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1302 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1303 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1304 1305 // Shift 1306 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1307 // Add LHS high bit 1308 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1309 1310 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1311 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1312 1313 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1314 1315 // Update REM 1316 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1317 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1318 } 1319 1320 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1321 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1322 Results.push_back(DIV); 1323 Results.push_back(REM); 1324 } 1325 1326 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1327 SelectionDAG &DAG) const { 1328 SDLoc DL(Op); 1329 EVT VT = Op.getValueType(); 1330 1331 if (VT == MVT::i64) { 1332 SmallVector<SDValue, 2> Results; 1333 LowerUDIVREM64(Op, DAG, Results); 1334 return DAG.getMergeValues(Results, DL); 1335 } 1336 1337 if (VT == MVT::i32) { 1338 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1339 return Res; 1340 } 1341 1342 SDValue Num = Op.getOperand(0); 1343 SDValue Den = Op.getOperand(1); 1344 1345 // RCP = URECIP(Den) = 2^32 / Den + e 1346 // e is rounding error. 1347 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1348 1349 // RCP_LO = mul(RCP, Den) */ 1350 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1351 1352 // RCP_HI = mulhu (RCP, Den) */ 1353 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1354 1355 // NEG_RCP_LO = -RCP_LO 1356 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1357 RCP_LO); 1358 1359 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1360 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1361 NEG_RCP_LO, RCP_LO, 1362 ISD::SETEQ); 1363 // Calculate the rounding error from the URECIP instruction 1364 // E = mulhu(ABS_RCP_LO, RCP) 1365 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1366 1367 // RCP_A_E = RCP + E 1368 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1369 1370 // RCP_S_E = RCP - E 1371 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1372 1373 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1374 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1375 RCP_A_E, RCP_S_E, 1376 ISD::SETEQ); 1377 // Quotient = mulhu(Tmp0, Num) 1378 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1379 1380 // Num_S_Remainder = Quotient * Den 1381 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1382 1383 // Remainder = Num - Num_S_Remainder 1384 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1385 1386 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1387 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1388 DAG.getConstant(-1, DL, VT), 1389 DAG.getConstant(0, DL, VT), 1390 ISD::SETUGE); 1391 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1392 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1393 Num_S_Remainder, 1394 DAG.getConstant(-1, DL, VT), 1395 DAG.getConstant(0, DL, VT), 1396 ISD::SETUGE); 1397 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1398 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1399 Remainder_GE_Zero); 1400 1401 // Calculate Division result: 1402 1403 // Quotient_A_One = Quotient + 1 1404 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1405 DAG.getConstant(1, DL, VT)); 1406 1407 // Quotient_S_One = Quotient - 1 1408 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1409 DAG.getConstant(1, DL, VT)); 1410 1411 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1412 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1413 Quotient, Quotient_A_One, ISD::SETEQ); 1414 1415 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1416 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1417 Quotient_S_One, Div, ISD::SETEQ); 1418 1419 // Calculate Rem result: 1420 1421 // Remainder_S_Den = Remainder - Den 1422 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1423 1424 // Remainder_A_Den = Remainder + Den 1425 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1426 1427 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1428 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1429 Remainder, Remainder_S_Den, ISD::SETEQ); 1430 1431 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1432 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1433 Remainder_A_Den, Rem, ISD::SETEQ); 1434 SDValue Ops[2] = { 1435 Div, 1436 Rem 1437 }; 1438 return DAG.getMergeValues(Ops, DL); 1439 } 1440 1441 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1442 SelectionDAG &DAG) const { 1443 SDLoc DL(Op); 1444 EVT VT = Op.getValueType(); 1445 1446 SDValue LHS = Op.getOperand(0); 1447 SDValue RHS = Op.getOperand(1); 1448 1449 SDValue Zero = DAG.getConstant(0, DL, VT); 1450 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1451 1452 if (VT == MVT::i32) { 1453 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1454 return Res; 1455 } 1456 1457 if (VT == MVT::i64 && 1458 DAG.ComputeNumSignBits(LHS) > 32 && 1459 DAG.ComputeNumSignBits(RHS) > 32) { 1460 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1461 1462 //HiLo split 1463 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1464 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1465 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1466 LHS_Lo, RHS_Lo); 1467 SDValue Res[2] = { 1468 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1469 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1470 }; 1471 return DAG.getMergeValues(Res, DL); 1472 } 1473 1474 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1475 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1476 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1477 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1478 1479 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1480 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1481 1482 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1483 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1484 1485 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1486 SDValue Rem = Div.getValue(1); 1487 1488 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1489 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1490 1491 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1492 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1493 1494 SDValue Res[2] = { 1495 Div, 1496 Rem 1497 }; 1498 return DAG.getMergeValues(Res, DL); 1499 } 1500 1501 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1502 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1503 SDLoc SL(Op); 1504 EVT VT = Op.getValueType(); 1505 SDValue X = Op.getOperand(0); 1506 SDValue Y = Op.getOperand(1); 1507 1508 // TODO: Should this propagate fast-math-flags? 1509 1510 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1511 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1512 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1513 1514 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1515 } 1516 1517 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1518 SDLoc SL(Op); 1519 SDValue Src = Op.getOperand(0); 1520 1521 // result = trunc(src) 1522 // if (src > 0.0 && src != result) 1523 // result += 1.0 1524 1525 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1526 1527 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1528 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1529 1530 EVT SetCCVT = 1531 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1532 1533 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1534 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1535 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1536 1537 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1538 // TODO: Should this propagate fast-math-flags? 1539 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1540 } 1541 1542 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1543 SelectionDAG &DAG) { 1544 const unsigned FractBits = 52; 1545 const unsigned ExpBits = 11; 1546 1547 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1548 Hi, 1549 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1550 DAG.getConstant(ExpBits, SL, MVT::i32)); 1551 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1552 DAG.getConstant(1023, SL, MVT::i32)); 1553 1554 return Exp; 1555 } 1556 1557 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1558 SDLoc SL(Op); 1559 SDValue Src = Op.getOperand(0); 1560 1561 assert(Op.getValueType() == MVT::f64); 1562 1563 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1564 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1565 1566 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1567 1568 // Extract the upper half, since this is where we will find the sign and 1569 // exponent. 1570 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1571 1572 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1573 1574 const unsigned FractBits = 52; 1575 1576 // Extract the sign bit. 1577 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1578 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1579 1580 // Extend back to to 64-bits. 1581 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1582 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1583 1584 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1585 const SDValue FractMask 1586 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1587 1588 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1589 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1590 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1591 1592 EVT SetCCVT = 1593 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1594 1595 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1596 1597 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1598 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1599 1600 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1601 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1602 1603 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1604 } 1605 1606 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1607 SDLoc SL(Op); 1608 SDValue Src = Op.getOperand(0); 1609 1610 assert(Op.getValueType() == MVT::f64); 1611 1612 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1613 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1614 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1615 1616 // TODO: Should this propagate fast-math-flags? 1617 1618 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1619 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1620 1621 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1622 1623 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1624 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1625 1626 EVT SetCCVT = 1627 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1628 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1629 1630 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1631 } 1632 1633 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1634 // FNEARBYINT and FRINT are the same, except in their handling of FP 1635 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1636 // rint, so just treat them as equivalent. 1637 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1638 } 1639 1640 // XXX - May require not supporting f32 denormals? 1641 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1642 SDLoc SL(Op); 1643 SDValue X = Op.getOperand(0); 1644 1645 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1646 1647 // TODO: Should this propagate fast-math-flags? 1648 1649 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1650 1651 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1652 1653 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1654 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1655 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1656 1657 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1658 1659 EVT SetCCVT = 1660 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1661 1662 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1663 1664 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1665 1666 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1667 } 1668 1669 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1670 SDLoc SL(Op); 1671 SDValue X = Op.getOperand(0); 1672 1673 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1674 1675 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1676 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1677 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1678 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1679 EVT SetCCVT = 1680 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1681 1682 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1683 1684 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1685 1686 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1687 1688 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1689 MVT::i64); 1690 1691 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1692 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1693 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1694 MVT::i64), 1695 Exp); 1696 1697 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1698 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1699 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1700 ISD::SETNE); 1701 1702 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1703 D, DAG.getConstant(0, SL, MVT::i64)); 1704 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1705 1706 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1707 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1708 1709 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1710 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1711 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1712 1713 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1714 ExpEqNegOne, 1715 DAG.getConstantFP(1.0, SL, MVT::f64), 1716 DAG.getConstantFP(0.0, SL, MVT::f64)); 1717 1718 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1719 1720 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1721 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1722 1723 return K; 1724 } 1725 1726 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1727 EVT VT = Op.getValueType(); 1728 1729 if (VT == MVT::f32) 1730 return LowerFROUND32(Op, DAG); 1731 1732 if (VT == MVT::f64) 1733 return LowerFROUND64(Op, DAG); 1734 1735 llvm_unreachable("unhandled type"); 1736 } 1737 1738 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1739 SDLoc SL(Op); 1740 SDValue Src = Op.getOperand(0); 1741 1742 // result = trunc(src); 1743 // if (src < 0.0 && src != result) 1744 // result += -1.0. 1745 1746 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1747 1748 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1749 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1750 1751 EVT SetCCVT = 1752 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1753 1754 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1755 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1756 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1757 1758 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1759 // TODO: Should this propagate fast-math-flags? 1760 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1761 } 1762 1763 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1764 SDLoc SL(Op); 1765 SDValue Src = Op.getOperand(0); 1766 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1767 1768 if (ZeroUndef && Src.getValueType() == MVT::i32) 1769 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1770 1771 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1772 1773 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1774 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1775 1776 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1777 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1778 1779 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1780 *DAG.getContext(), MVT::i32); 1781 1782 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1783 1784 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1785 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1786 1787 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1788 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1789 1790 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1791 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1792 1793 if (!ZeroUndef) { 1794 // Test if the full 64-bit input is zero. 1795 1796 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1797 // which we probably don't want. 1798 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1799 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1800 1801 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1802 // with the same cycles, otherwise it is slower. 1803 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1804 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1805 1806 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1807 1808 // The instruction returns -1 for 0 input, but the defined intrinsic 1809 // behavior is to return the number of bits. 1810 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1811 SrcIsZero, Bits32, NewCtlz); 1812 } 1813 1814 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1815 } 1816 1817 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1818 bool Signed) const { 1819 // Unsigned 1820 // cul2f(ulong u) 1821 //{ 1822 // uint lz = clz(u); 1823 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1824 // u = (u << lz) & 0x7fffffffffffffffUL; 1825 // ulong t = u & 0xffffffffffUL; 1826 // uint v = (e << 23) | (uint)(u >> 40); 1827 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1828 // return as_float(v + r); 1829 //} 1830 // Signed 1831 // cl2f(long l) 1832 //{ 1833 // long s = l >> 63; 1834 // float r = cul2f((l + s) ^ s); 1835 // return s ? -r : r; 1836 //} 1837 1838 SDLoc SL(Op); 1839 SDValue Src = Op.getOperand(0); 1840 SDValue L = Src; 1841 1842 SDValue S; 1843 if (Signed) { 1844 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1845 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1846 1847 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1848 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1849 } 1850 1851 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1852 *DAG.getContext(), MVT::f32); 1853 1854 1855 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1856 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1857 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1858 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1859 1860 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1861 SDValue E = DAG.getSelect(SL, MVT::i32, 1862 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1863 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1864 ZeroI32); 1865 1866 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1867 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1868 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1869 1870 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1871 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1872 1873 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1874 U, DAG.getConstant(40, SL, MVT::i64)); 1875 1876 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1877 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1878 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1879 1880 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1881 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1882 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1883 1884 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1885 1886 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1887 1888 SDValue R = DAG.getSelect(SL, MVT::i32, 1889 RCmp, 1890 One, 1891 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1892 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1893 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1894 1895 if (!Signed) 1896 return R; 1897 1898 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1899 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1900 } 1901 1902 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1903 bool Signed) const { 1904 SDLoc SL(Op); 1905 SDValue Src = Op.getOperand(0); 1906 1907 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1908 1909 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1910 DAG.getConstant(0, SL, MVT::i32)); 1911 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1912 DAG.getConstant(1, SL, MVT::i32)); 1913 1914 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 1915 SL, MVT::f64, Hi); 1916 1917 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 1918 1919 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 1920 DAG.getConstant(32, SL, MVT::i32)); 1921 // TODO: Should this propagate fast-math-flags? 1922 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 1923 } 1924 1925 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 1926 SelectionDAG &DAG) const { 1927 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1928 "operation should be legal"); 1929 1930 // TODO: Factor out code common with LowerSINT_TO_FP. 1931 1932 EVT DestVT = Op.getValueType(); 1933 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 1934 SDLoc DL(Op); 1935 SDValue Src = Op.getOperand(0); 1936 1937 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 1938 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 1939 SDValue FPRound = 1940 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 1941 1942 return FPRound; 1943 } 1944 1945 if (DestVT == MVT::f32) 1946 return LowerINT_TO_FP32(Op, DAG, false); 1947 1948 assert(DestVT == MVT::f64); 1949 return LowerINT_TO_FP64(Op, DAG, false); 1950 } 1951 1952 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 1953 SelectionDAG &DAG) const { 1954 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1955 "operation should be legal"); 1956 1957 // TODO: Factor out code common with LowerUINT_TO_FP. 1958 1959 EVT DestVT = Op.getValueType(); 1960 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 1961 SDLoc DL(Op); 1962 SDValue Src = Op.getOperand(0); 1963 1964 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 1965 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 1966 SDValue FPRound = 1967 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 1968 1969 return FPRound; 1970 } 1971 1972 if (DestVT == MVT::f32) 1973 return LowerINT_TO_FP32(Op, DAG, true); 1974 1975 assert(DestVT == MVT::f64); 1976 return LowerINT_TO_FP64(Op, DAG, true); 1977 } 1978 1979 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 1980 bool Signed) const { 1981 SDLoc SL(Op); 1982 1983 SDValue Src = Op.getOperand(0); 1984 1985 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1986 1987 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 1988 MVT::f64); 1989 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 1990 MVT::f64); 1991 // TODO: Should this propagate fast-math-flags? 1992 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 1993 1994 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 1995 1996 1997 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 1998 1999 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2000 MVT::i32, FloorMul); 2001 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2002 2003 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2004 2005 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2006 } 2007 2008 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2009 2010 if (getTargetMachine().Options.UnsafeFPMath) { 2011 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2012 return SDValue(); 2013 } 2014 2015 SDLoc DL(Op); 2016 SDValue N0 = Op.getOperand(0); 2017 assert (N0.getSimpleValueType() == MVT::f64); 2018 2019 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2020 const unsigned ExpMask = 0x7ff; 2021 const unsigned ExpBiasf64 = 1023; 2022 const unsigned ExpBiasf16 = 15; 2023 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2024 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2025 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2026 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2027 DAG.getConstant(32, DL, MVT::i64)); 2028 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2029 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2030 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2031 DAG.getConstant(20, DL, MVT::i64)); 2032 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2033 DAG.getConstant(ExpMask, DL, MVT::i32)); 2034 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2035 // add the f16 bias (15) to get the biased exponent for the f16 format. 2036 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2037 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2038 2039 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2040 DAG.getConstant(8, DL, MVT::i32)); 2041 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2042 DAG.getConstant(0xffe, DL, MVT::i32)); 2043 2044 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2045 DAG.getConstant(0x1ff, DL, MVT::i32)); 2046 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2047 2048 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2049 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2050 2051 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2052 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2053 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2054 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2055 2056 // N = M | (E << 12); 2057 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2058 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2059 DAG.getConstant(12, DL, MVT::i32))); 2060 2061 // B = clamp(1-E, 0, 13); 2062 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2063 One, E); 2064 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2065 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2066 DAG.getConstant(13, DL, MVT::i32)); 2067 2068 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2069 DAG.getConstant(0x1000, DL, MVT::i32)); 2070 2071 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2072 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2073 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2074 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2075 2076 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2077 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2078 DAG.getConstant(0x7, DL, MVT::i32)); 2079 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2080 DAG.getConstant(2, DL, MVT::i32)); 2081 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2082 One, Zero, ISD::SETEQ); 2083 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2084 One, Zero, ISD::SETGT); 2085 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2086 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2087 2088 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2089 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2090 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2091 I, V, ISD::SETEQ); 2092 2093 // Extract the sign bit. 2094 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2095 DAG.getConstant(16, DL, MVT::i32)); 2096 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2097 DAG.getConstant(0x8000, DL, MVT::i32)); 2098 2099 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2100 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2101 } 2102 2103 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2104 SelectionDAG &DAG) const { 2105 SDValue Src = Op.getOperand(0); 2106 2107 // TODO: Factor out code common with LowerFP_TO_UINT. 2108 2109 EVT SrcVT = Src.getValueType(); 2110 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2111 SDLoc DL(Op); 2112 2113 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2114 SDValue FpToInt32 = 2115 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2116 2117 return FpToInt32; 2118 } 2119 2120 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2121 return LowerFP64_TO_INT(Op, DAG, true); 2122 2123 return SDValue(); 2124 } 2125 2126 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2127 SelectionDAG &DAG) const { 2128 SDValue Src = Op.getOperand(0); 2129 2130 // TODO: Factor out code common with LowerFP_TO_SINT. 2131 2132 EVT SrcVT = Src.getValueType(); 2133 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2134 SDLoc DL(Op); 2135 2136 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2137 SDValue FpToInt32 = 2138 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2139 2140 return FpToInt32; 2141 } 2142 2143 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2144 return LowerFP64_TO_INT(Op, DAG, false); 2145 2146 return SDValue(); 2147 } 2148 2149 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2150 SelectionDAG &DAG) const { 2151 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2152 MVT VT = Op.getSimpleValueType(); 2153 MVT ScalarVT = VT.getScalarType(); 2154 2155 assert(VT.isVector()); 2156 2157 SDValue Src = Op.getOperand(0); 2158 SDLoc DL(Op); 2159 2160 // TODO: Don't scalarize on Evergreen? 2161 unsigned NElts = VT.getVectorNumElements(); 2162 SmallVector<SDValue, 8> Args; 2163 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2164 2165 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2166 for (unsigned I = 0; I < NElts; ++I) 2167 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2168 2169 return DAG.getBuildVector(VT, DL, Args); 2170 } 2171 2172 //===----------------------------------------------------------------------===// 2173 // Custom DAG optimizations 2174 //===----------------------------------------------------------------------===// 2175 2176 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2177 APInt KnownZero, KnownOne; 2178 EVT VT = Op.getValueType(); 2179 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2180 2181 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2182 } 2183 2184 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2185 EVT VT = Op.getValueType(); 2186 2187 // In order for this to be a signed 24-bit value, bit 23, must 2188 // be a sign bit. 2189 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2190 // as unsigned 24-bit values. 2191 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2192 } 2193 2194 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2195 TargetLowering::DAGCombinerInfo &DCI) { 2196 2197 SelectionDAG &DAG = DCI.DAG; 2198 SDValue Op = Node24->getOperand(OpIdx); 2199 EVT VT = Op.getValueType(); 2200 2201 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2202 APInt KnownZero, KnownOne; 2203 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2204 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2205 return true; 2206 2207 return false; 2208 } 2209 2210 template <typename IntTy> 2211 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2212 uint32_t Width, const SDLoc &DL) { 2213 if (Width + Offset < 32) { 2214 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2215 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2216 return DAG.getConstant(Result, DL, MVT::i32); 2217 } 2218 2219 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2220 } 2221 2222 static bool hasVolatileUser(SDNode *Val) { 2223 for (SDNode *U : Val->uses()) { 2224 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2225 if (M->isVolatile()) 2226 return true; 2227 } 2228 } 2229 2230 return false; 2231 } 2232 2233 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2234 // i32 vectors are the canonical memory type. 2235 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2236 return false; 2237 2238 if (!VT.isByteSized()) 2239 return false; 2240 2241 unsigned Size = VT.getStoreSize(); 2242 2243 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2244 return false; 2245 2246 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2247 return false; 2248 2249 return true; 2250 } 2251 2252 // Replace load of an illegal type with a store of a bitcast to a friendlier 2253 // type. 2254 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2255 DAGCombinerInfo &DCI) const { 2256 if (!DCI.isBeforeLegalize()) 2257 return SDValue(); 2258 2259 LoadSDNode *LN = cast<LoadSDNode>(N); 2260 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2261 return SDValue(); 2262 2263 SDLoc SL(N); 2264 SelectionDAG &DAG = DCI.DAG; 2265 EVT VT = LN->getMemoryVT(); 2266 2267 unsigned Size = VT.getStoreSize(); 2268 unsigned Align = LN->getAlignment(); 2269 if (Align < Size && isTypeLegal(VT)) { 2270 bool IsFast; 2271 unsigned AS = LN->getAddressSpace(); 2272 2273 // Expand unaligned loads earlier than legalization. Due to visitation order 2274 // problems during legalization, the emitted instructions to pack and unpack 2275 // the bytes again are not eliminated in the case of an unaligned copy. 2276 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2277 if (VT.isVector()) 2278 return scalarizeVectorLoad(LN, DAG); 2279 2280 SDValue Ops[2]; 2281 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2282 return DAG.getMergeValues(Ops, SDLoc(N)); 2283 } 2284 2285 if (!IsFast) 2286 return SDValue(); 2287 } 2288 2289 if (!shouldCombineMemoryType(VT)) 2290 return SDValue(); 2291 2292 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2293 2294 SDValue NewLoad 2295 = DAG.getLoad(NewVT, SL, LN->getChain(), 2296 LN->getBasePtr(), LN->getMemOperand()); 2297 2298 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2299 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2300 return SDValue(N, 0); 2301 } 2302 2303 // Replace store of an illegal type with a store of a bitcast to a friendlier 2304 // type. 2305 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2306 DAGCombinerInfo &DCI) const { 2307 if (!DCI.isBeforeLegalize()) 2308 return SDValue(); 2309 2310 StoreSDNode *SN = cast<StoreSDNode>(N); 2311 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2312 return SDValue(); 2313 2314 EVT VT = SN->getMemoryVT(); 2315 unsigned Size = VT.getStoreSize(); 2316 2317 SDLoc SL(N); 2318 SelectionDAG &DAG = DCI.DAG; 2319 unsigned Align = SN->getAlignment(); 2320 if (Align < Size && isTypeLegal(VT)) { 2321 bool IsFast; 2322 unsigned AS = SN->getAddressSpace(); 2323 2324 // Expand unaligned stores earlier than legalization. Due to visitation 2325 // order problems during legalization, the emitted instructions to pack and 2326 // unpack the bytes again are not eliminated in the case of an unaligned 2327 // copy. 2328 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2329 if (VT.isVector()) 2330 return scalarizeVectorStore(SN, DAG); 2331 2332 return expandUnalignedStore(SN, DAG); 2333 } 2334 2335 if (!IsFast) 2336 return SDValue(); 2337 } 2338 2339 if (!shouldCombineMemoryType(VT)) 2340 return SDValue(); 2341 2342 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2343 SDValue Val = SN->getValue(); 2344 2345 //DCI.AddToWorklist(Val.getNode()); 2346 2347 bool OtherUses = !Val.hasOneUse(); 2348 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2349 if (OtherUses) { 2350 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2351 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2352 } 2353 2354 return DAG.getStore(SN->getChain(), SL, CastVal, 2355 SN->getBasePtr(), SN->getMemOperand()); 2356 } 2357 2358 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2359 /// binary operation \p Opc to it with the corresponding constant operands. 2360 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2361 DAGCombinerInfo &DCI, const SDLoc &SL, 2362 unsigned Opc, SDValue LHS, 2363 uint32_t ValLo, uint32_t ValHi) const { 2364 SelectionDAG &DAG = DCI.DAG; 2365 SDValue Lo, Hi; 2366 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2367 2368 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2369 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2370 2371 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2372 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2373 2374 // Re-visit the ands. It's possible we eliminated one of them and it could 2375 // simplify the vector. 2376 DCI.AddToWorklist(Lo.getNode()); 2377 DCI.AddToWorklist(Hi.getNode()); 2378 2379 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2380 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2381 } 2382 2383 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2384 DAGCombinerInfo &DCI) const { 2385 if (N->getValueType(0) != MVT::i64) 2386 return SDValue(); 2387 2388 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2389 2390 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2391 // common case, splitting this into a move and a 32-bit shift is faster and 2392 // the same code size. 2393 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2394 if (!RHS) 2395 return SDValue(); 2396 2397 unsigned RHSVal = RHS->getZExtValue(); 2398 if (RHSVal < 32) 2399 return SDValue(); 2400 2401 SDValue LHS = N->getOperand(0); 2402 2403 SDLoc SL(N); 2404 SelectionDAG &DAG = DCI.DAG; 2405 2406 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2407 2408 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2409 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2410 2411 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2412 2413 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2414 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2415 } 2416 2417 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2418 DAGCombinerInfo &DCI) const { 2419 if (N->getValueType(0) != MVT::i64) 2420 return SDValue(); 2421 2422 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2423 if (!RHS) 2424 return SDValue(); 2425 2426 SelectionDAG &DAG = DCI.DAG; 2427 SDLoc SL(N); 2428 unsigned RHSVal = RHS->getZExtValue(); 2429 2430 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2431 if (RHSVal == 32) { 2432 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2433 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2434 DAG.getConstant(31, SL, MVT::i32)); 2435 2436 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2437 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2438 } 2439 2440 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2441 if (RHSVal == 63) { 2442 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2443 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2444 DAG.getConstant(31, SL, MVT::i32)); 2445 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2446 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2447 } 2448 2449 return SDValue(); 2450 } 2451 2452 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2453 DAGCombinerInfo &DCI) const { 2454 if (N->getValueType(0) != MVT::i64) 2455 return SDValue(); 2456 2457 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2458 if (!RHS) 2459 return SDValue(); 2460 2461 unsigned ShiftAmt = RHS->getZExtValue(); 2462 if (ShiftAmt < 32) 2463 return SDValue(); 2464 2465 // srl i64:x, C for C >= 32 2466 // => 2467 // build_pair (srl hi_32(x), C - 32), 0 2468 2469 SelectionDAG &DAG = DCI.DAG; 2470 SDLoc SL(N); 2471 2472 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2473 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2474 2475 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2476 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2477 VecOp, One); 2478 2479 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2480 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2481 2482 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2483 2484 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2485 } 2486 2487 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2488 // instructions. If we only match on the legalized i64 mul expansion, 2489 // SimplifyDemandedBits will be unable to remove them because there will be 2490 // multiple uses due to the separate mul + mulh[su]. 2491 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2492 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2493 if (Size <= 32) { 2494 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2495 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2496 } 2497 2498 // Because we want to eliminate extension instructions before the 2499 // operation, we need to create a single user here (i.e. not the separate 2500 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2501 2502 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2503 2504 SDValue Mul = DAG.getNode(MulOpc, SL, 2505 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2506 2507 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2508 Mul.getValue(0), Mul.getValue(1)); 2509 } 2510 2511 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2512 DAGCombinerInfo &DCI) const { 2513 EVT VT = N->getValueType(0); 2514 2515 unsigned Size = VT.getSizeInBits(); 2516 if (VT.isVector() || Size > 64) 2517 return SDValue(); 2518 2519 // There are i16 integer mul/mad. 2520 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2521 return SDValue(); 2522 2523 SelectionDAG &DAG = DCI.DAG; 2524 SDLoc DL(N); 2525 2526 SDValue N0 = N->getOperand(0); 2527 SDValue N1 = N->getOperand(1); 2528 SDValue Mul; 2529 2530 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2531 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2532 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2533 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2534 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2535 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2536 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2537 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2538 } else { 2539 return SDValue(); 2540 } 2541 2542 // We need to use sext even for MUL_U24, because MUL_U24 is used 2543 // for signed multiply of 8 and 16-bit types. 2544 return DAG.getSExtOrTrunc(Mul, DL, VT); 2545 } 2546 2547 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2548 DAGCombinerInfo &DCI) const { 2549 EVT VT = N->getValueType(0); 2550 2551 if (!Subtarget->hasMulI24() || VT.isVector()) 2552 return SDValue(); 2553 2554 SelectionDAG &DAG = DCI.DAG; 2555 SDLoc DL(N); 2556 2557 SDValue N0 = N->getOperand(0); 2558 SDValue N1 = N->getOperand(1); 2559 2560 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2561 return SDValue(); 2562 2563 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2564 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2565 2566 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2567 DCI.AddToWorklist(Mulhi.getNode()); 2568 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2569 } 2570 2571 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2572 DAGCombinerInfo &DCI) const { 2573 EVT VT = N->getValueType(0); 2574 2575 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2576 return SDValue(); 2577 2578 SelectionDAG &DAG = DCI.DAG; 2579 SDLoc DL(N); 2580 2581 SDValue N0 = N->getOperand(0); 2582 SDValue N1 = N->getOperand(1); 2583 2584 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2585 return SDValue(); 2586 2587 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2588 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2589 2590 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2591 DCI.AddToWorklist(Mulhi.getNode()); 2592 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2593 } 2594 2595 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2596 SDNode *N, DAGCombinerInfo &DCI) const { 2597 SelectionDAG &DAG = DCI.DAG; 2598 2599 // Simplify demanded bits before splitting into multiple users. 2600 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2601 return SDValue(); 2602 2603 SDValue N0 = N->getOperand(0); 2604 SDValue N1 = N->getOperand(1); 2605 2606 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2607 2608 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2609 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2610 2611 SDLoc SL(N); 2612 2613 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2614 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2615 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2616 } 2617 2618 static bool isNegativeOne(SDValue Val) { 2619 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2620 return C->isAllOnesValue(); 2621 return false; 2622 } 2623 2624 static bool isCtlzOpc(unsigned Opc) { 2625 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2626 } 2627 2628 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2629 SDValue Op, 2630 const SDLoc &DL) const { 2631 EVT VT = Op.getValueType(); 2632 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2633 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2634 LegalVT != MVT::i16)) 2635 return SDValue(); 2636 2637 if (VT != MVT::i32) 2638 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2639 2640 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2641 if (VT != MVT::i32) 2642 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2643 2644 return FFBH; 2645 } 2646 2647 // The native instructions return -1 on 0 input. Optimize out a select that 2648 // produces -1 on 0. 2649 // 2650 // TODO: If zero is not undef, we could also do this if the output is compared 2651 // against the bitwidth. 2652 // 2653 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2654 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2655 SDValue LHS, SDValue RHS, 2656 DAGCombinerInfo &DCI) const { 2657 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2658 if (!CmpRhs || !CmpRhs->isNullValue()) 2659 return SDValue(); 2660 2661 SelectionDAG &DAG = DCI.DAG; 2662 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2663 SDValue CmpLHS = Cond.getOperand(0); 2664 2665 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2666 if (CCOpcode == ISD::SETEQ && 2667 isCtlzOpc(RHS.getOpcode()) && 2668 RHS.getOperand(0) == CmpLHS && 2669 isNegativeOne(LHS)) { 2670 return getFFBH_U32(DAG, CmpLHS, SL); 2671 } 2672 2673 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2674 if (CCOpcode == ISD::SETNE && 2675 isCtlzOpc(LHS.getOpcode()) && 2676 LHS.getOperand(0) == CmpLHS && 2677 isNegativeOne(RHS)) { 2678 return getFFBH_U32(DAG, CmpLHS, SL); 2679 } 2680 2681 return SDValue(); 2682 } 2683 2684 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2685 DAGCombinerInfo &DCI) const { 2686 SDValue Cond = N->getOperand(0); 2687 if (Cond.getOpcode() != ISD::SETCC) 2688 return SDValue(); 2689 2690 EVT VT = N->getValueType(0); 2691 SDValue LHS = Cond.getOperand(0); 2692 SDValue RHS = Cond.getOperand(1); 2693 SDValue CC = Cond.getOperand(2); 2694 2695 SDValue True = N->getOperand(1); 2696 SDValue False = N->getOperand(2); 2697 2698 if (VT == MVT::f32 && Cond.hasOneUse()) { 2699 SDValue MinMax 2700 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2701 // Revisit this node so we can catch min3/max3/med3 patterns. 2702 //DCI.AddToWorklist(MinMax.getNode()); 2703 return MinMax; 2704 } 2705 2706 // There's no reason to not do this if the condition has other uses. 2707 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2708 } 2709 2710 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2711 DAGCombinerInfo &DCI) const { 2712 SelectionDAG &DAG = DCI.DAG; 2713 SDLoc DL(N); 2714 2715 switch(N->getOpcode()) { 2716 default: 2717 break; 2718 case ISD::BITCAST: { 2719 EVT DestVT = N->getValueType(0); 2720 2721 // Push casts through vector builds. This helps avoid emitting a large 2722 // number of copies when materializing floating point vector constants. 2723 // 2724 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 2725 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 2726 if (DestVT.isVector()) { 2727 SDValue Src = N->getOperand(0); 2728 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2729 EVT SrcVT = Src.getValueType(); 2730 unsigned NElts = DestVT.getVectorNumElements(); 2731 2732 if (SrcVT.getVectorNumElements() == NElts) { 2733 EVT DestEltVT = DestVT.getVectorElementType(); 2734 2735 SmallVector<SDValue, 8> CastedElts; 2736 SDLoc SL(N); 2737 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 2738 SDValue Elt = Src.getOperand(I); 2739 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 2740 } 2741 2742 return DAG.getBuildVector(DestVT, SL, CastedElts); 2743 } 2744 } 2745 } 2746 2747 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2748 break; 2749 2750 // Fold bitcasts of constants. 2751 // 2752 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2753 // TODO: Generalize and move to DAGCombiner 2754 SDValue Src = N->getOperand(0); 2755 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2756 assert(Src.getValueType() == MVT::i64); 2757 SDLoc SL(N); 2758 uint64_t CVal = C->getZExtValue(); 2759 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2760 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2761 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2762 } 2763 2764 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2765 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2766 SDLoc SL(N); 2767 uint64_t CVal = Val.getZExtValue(); 2768 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2769 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2770 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2771 2772 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2773 } 2774 2775 break; 2776 } 2777 case ISD::SHL: { 2778 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2779 break; 2780 2781 return performShlCombine(N, DCI); 2782 } 2783 case ISD::SRL: { 2784 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2785 break; 2786 2787 return performSrlCombine(N, DCI); 2788 } 2789 case ISD::SRA: { 2790 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2791 break; 2792 2793 return performSraCombine(N, DCI); 2794 } 2795 case ISD::MUL: 2796 return performMulCombine(N, DCI); 2797 case ISD::MULHS: 2798 return performMulhsCombine(N, DCI); 2799 case ISD::MULHU: 2800 return performMulhuCombine(N, DCI); 2801 case AMDGPUISD::MUL_I24: 2802 case AMDGPUISD::MUL_U24: 2803 case AMDGPUISD::MULHI_I24: 2804 case AMDGPUISD::MULHI_U24: { 2805 // If the first call to simplify is successfull, then N may end up being 2806 // deleted, so we shouldn't call simplifyI24 again. 2807 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 2808 return SDValue(); 2809 } 2810 case AMDGPUISD::MUL_LOHI_I24: 2811 case AMDGPUISD::MUL_LOHI_U24: 2812 return performMulLoHi24Combine(N, DCI); 2813 case ISD::SELECT: 2814 return performSelectCombine(N, DCI); 2815 case AMDGPUISD::BFE_I32: 2816 case AMDGPUISD::BFE_U32: { 2817 assert(!N->getValueType(0).isVector() && 2818 "Vector handling of BFE not implemented"); 2819 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2820 if (!Width) 2821 break; 2822 2823 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2824 if (WidthVal == 0) 2825 return DAG.getConstant(0, DL, MVT::i32); 2826 2827 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2828 if (!Offset) 2829 break; 2830 2831 SDValue BitsFrom = N->getOperand(0); 2832 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2833 2834 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2835 2836 if (OffsetVal == 0) { 2837 // This is already sign / zero extended, so try to fold away extra BFEs. 2838 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2839 2840 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2841 if (OpSignBits >= SignBits) 2842 return BitsFrom; 2843 2844 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2845 if (Signed) { 2846 // This is a sign_extend_inreg. Replace it to take advantage of existing 2847 // DAG Combines. If not eliminated, we will match back to BFE during 2848 // selection. 2849 2850 // TODO: The sext_inreg of extended types ends, although we can could 2851 // handle them in a single BFE. 2852 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2853 DAG.getValueType(SmallVT)); 2854 } 2855 2856 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2857 } 2858 2859 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2860 if (Signed) { 2861 return constantFoldBFE<int32_t>(DAG, 2862 CVal->getSExtValue(), 2863 OffsetVal, 2864 WidthVal, 2865 DL); 2866 } 2867 2868 return constantFoldBFE<uint32_t>(DAG, 2869 CVal->getZExtValue(), 2870 OffsetVal, 2871 WidthVal, 2872 DL); 2873 } 2874 2875 if ((OffsetVal + WidthVal) >= 32) { 2876 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2877 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2878 BitsFrom, ShiftVal); 2879 } 2880 2881 if (BitsFrom.hasOneUse()) { 2882 APInt Demanded = APInt::getBitsSet(32, 2883 OffsetVal, 2884 OffsetVal + WidthVal); 2885 2886 APInt KnownZero, KnownOne; 2887 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2888 !DCI.isBeforeLegalizeOps()); 2889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2890 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2891 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2892 KnownZero, KnownOne, TLO)) { 2893 DCI.CommitTargetLoweringOpt(TLO); 2894 } 2895 } 2896 2897 break; 2898 } 2899 case ISD::LOAD: 2900 return performLoadCombine(N, DCI); 2901 case ISD::STORE: 2902 return performStoreCombine(N, DCI); 2903 } 2904 return SDValue(); 2905 } 2906 2907 //===----------------------------------------------------------------------===// 2908 // Helper functions 2909 //===----------------------------------------------------------------------===// 2910 2911 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2912 const TargetRegisterClass *RC, 2913 unsigned Reg, EVT VT) const { 2914 MachineFunction &MF = DAG.getMachineFunction(); 2915 MachineRegisterInfo &MRI = MF.getRegInfo(); 2916 unsigned VirtualRegister; 2917 if (!MRI.isLiveIn(Reg)) { 2918 VirtualRegister = MRI.createVirtualRegister(RC); 2919 MRI.addLiveIn(Reg, VirtualRegister); 2920 } else { 2921 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2922 } 2923 return DAG.getRegister(VirtualRegister, VT); 2924 } 2925 2926 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2927 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2928 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 2929 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 2930 switch (Param) { 2931 case GRID_DIM: 2932 return ArgOffset; 2933 case GRID_OFFSET: 2934 return ArgOffset + 4; 2935 } 2936 llvm_unreachable("unexpected implicit parameter type"); 2937 } 2938 2939 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2940 2941 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2942 switch ((AMDGPUISD::NodeType)Opcode) { 2943 case AMDGPUISD::FIRST_NUMBER: break; 2944 // AMDIL DAG nodes 2945 NODE_NAME_CASE(CALL); 2946 NODE_NAME_CASE(UMUL); 2947 NODE_NAME_CASE(BRANCH_COND); 2948 2949 // AMDGPU DAG nodes 2950 NODE_NAME_CASE(ENDPGM) 2951 NODE_NAME_CASE(RETURN) 2952 NODE_NAME_CASE(DWORDADDR) 2953 NODE_NAME_CASE(FRACT) 2954 NODE_NAME_CASE(SETCC) 2955 NODE_NAME_CASE(CLAMP) 2956 NODE_NAME_CASE(COS_HW) 2957 NODE_NAME_CASE(SIN_HW) 2958 NODE_NAME_CASE(FMAX_LEGACY) 2959 NODE_NAME_CASE(FMIN_LEGACY) 2960 NODE_NAME_CASE(FMAX3) 2961 NODE_NAME_CASE(SMAX3) 2962 NODE_NAME_CASE(UMAX3) 2963 NODE_NAME_CASE(FMIN3) 2964 NODE_NAME_CASE(SMIN3) 2965 NODE_NAME_CASE(UMIN3) 2966 NODE_NAME_CASE(FMED3) 2967 NODE_NAME_CASE(SMED3) 2968 NODE_NAME_CASE(UMED3) 2969 NODE_NAME_CASE(URECIP) 2970 NODE_NAME_CASE(DIV_SCALE) 2971 NODE_NAME_CASE(DIV_FMAS) 2972 NODE_NAME_CASE(DIV_FIXUP) 2973 NODE_NAME_CASE(TRIG_PREOP) 2974 NODE_NAME_CASE(RCP) 2975 NODE_NAME_CASE(RSQ) 2976 NODE_NAME_CASE(RCP_LEGACY) 2977 NODE_NAME_CASE(RSQ_LEGACY) 2978 NODE_NAME_CASE(FMUL_LEGACY) 2979 NODE_NAME_CASE(RSQ_CLAMP) 2980 NODE_NAME_CASE(LDEXP) 2981 NODE_NAME_CASE(FP_CLASS) 2982 NODE_NAME_CASE(DOT4) 2983 NODE_NAME_CASE(CARRY) 2984 NODE_NAME_CASE(BORROW) 2985 NODE_NAME_CASE(BFE_U32) 2986 NODE_NAME_CASE(BFE_I32) 2987 NODE_NAME_CASE(BFI) 2988 NODE_NAME_CASE(BFM) 2989 NODE_NAME_CASE(FFBH_U32) 2990 NODE_NAME_CASE(FFBH_I32) 2991 NODE_NAME_CASE(MUL_U24) 2992 NODE_NAME_CASE(MUL_I24) 2993 NODE_NAME_CASE(MULHI_U24) 2994 NODE_NAME_CASE(MULHI_I24) 2995 NODE_NAME_CASE(MUL_LOHI_U24) 2996 NODE_NAME_CASE(MUL_LOHI_I24) 2997 NODE_NAME_CASE(MAD_U24) 2998 NODE_NAME_CASE(MAD_I24) 2999 NODE_NAME_CASE(TEXTURE_FETCH) 3000 NODE_NAME_CASE(EXPORT) 3001 NODE_NAME_CASE(CONST_ADDRESS) 3002 NODE_NAME_CASE(REGISTER_LOAD) 3003 NODE_NAME_CASE(REGISTER_STORE) 3004 NODE_NAME_CASE(LOAD_INPUT) 3005 NODE_NAME_CASE(SAMPLE) 3006 NODE_NAME_CASE(SAMPLEB) 3007 NODE_NAME_CASE(SAMPLED) 3008 NODE_NAME_CASE(SAMPLEL) 3009 NODE_NAME_CASE(CVT_F32_UBYTE0) 3010 NODE_NAME_CASE(CVT_F32_UBYTE1) 3011 NODE_NAME_CASE(CVT_F32_UBYTE2) 3012 NODE_NAME_CASE(CVT_F32_UBYTE3) 3013 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3014 NODE_NAME_CASE(CONST_DATA_PTR) 3015 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3016 NODE_NAME_CASE(KILL) 3017 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3018 NODE_NAME_CASE(SENDMSG) 3019 NODE_NAME_CASE(INTERP_MOV) 3020 NODE_NAME_CASE(INTERP_P1) 3021 NODE_NAME_CASE(INTERP_P2) 3022 NODE_NAME_CASE(STORE_MSKOR) 3023 NODE_NAME_CASE(LOAD_CONSTANT) 3024 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3025 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3026 NODE_NAME_CASE(ATOMIC_INC) 3027 NODE_NAME_CASE(ATOMIC_DEC) 3028 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3029 } 3030 return nullptr; 3031 } 3032 3033 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3034 SelectionDAG &DAG, int Enabled, 3035 int &RefinementSteps, 3036 bool &UseOneConstNR, 3037 bool Reciprocal) const { 3038 EVT VT = Operand.getValueType(); 3039 3040 if (VT == MVT::f32) { 3041 RefinementSteps = 0; 3042 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3043 } 3044 3045 // TODO: There is also f64 rsq instruction, but the documentation is less 3046 // clear on its precision. 3047 3048 return SDValue(); 3049 } 3050 3051 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3052 SelectionDAG &DAG, int Enabled, 3053 int &RefinementSteps) const { 3054 EVT VT = Operand.getValueType(); 3055 3056 if (VT == MVT::f32) { 3057 // Reciprocal, < 1 ulp error. 3058 // 3059 // This reciprocal approximation converges to < 0.5 ulp error with one 3060 // newton rhapson performed with two fused multiple adds (FMAs). 3061 3062 RefinementSteps = 0; 3063 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3064 } 3065 3066 // TODO: There is also f64 rcp instruction, but the documentation is less 3067 // clear on its precision. 3068 3069 return SDValue(); 3070 } 3071 3072 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3073 const SDValue Op, 3074 APInt &KnownZero, 3075 APInt &KnownOne, 3076 const SelectionDAG &DAG, 3077 unsigned Depth) const { 3078 3079 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3080 3081 APInt KnownZero2; 3082 APInt KnownOne2; 3083 unsigned Opc = Op.getOpcode(); 3084 3085 switch (Opc) { 3086 default: 3087 break; 3088 case AMDGPUISD::CARRY: 3089 case AMDGPUISD::BORROW: { 3090 KnownZero = APInt::getHighBitsSet(32, 31); 3091 break; 3092 } 3093 3094 case AMDGPUISD::BFE_I32: 3095 case AMDGPUISD::BFE_U32: { 3096 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3097 if (!CWidth) 3098 return; 3099 3100 unsigned BitWidth = 32; 3101 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3102 3103 if (Opc == AMDGPUISD::BFE_U32) 3104 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3105 3106 break; 3107 } 3108 } 3109 } 3110 3111 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3112 SDValue Op, 3113 const SelectionDAG &DAG, 3114 unsigned Depth) const { 3115 switch (Op.getOpcode()) { 3116 case AMDGPUISD::BFE_I32: { 3117 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3118 if (!Width) 3119 return 1; 3120 3121 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3122 if (!isNullConstant(Op.getOperand(1))) 3123 return SignBits; 3124 3125 // TODO: Could probably figure something out with non-0 offsets. 3126 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3127 return std::max(SignBits, Op0SignBits); 3128 } 3129 3130 case AMDGPUISD::BFE_U32: { 3131 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3132 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3133 } 3134 3135 case AMDGPUISD::CARRY: 3136 case AMDGPUISD::BORROW: 3137 return 31; 3138 3139 default: 3140 return 1; 3141 } 3142 } 3143