1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUCallLowering.h"
19 #include "AMDGPUFrameLowering.h"
20 #include "AMDGPUIntrinsicInfo.h"
21 #include "AMDGPURegisterInfo.h"
22 #include "AMDGPUSubtarget.h"
23 #include "R600MachineFunctionInfo.h"
24 #include "SIMachineFunctionInfo.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "SIInstrInfo.h"
33 using namespace llvm;
34 
35 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
36                             CCValAssign::LocInfo LocInfo,
37                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
38   MachineFunction &MF = State.getMachineFunction();
39   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
40 
41   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
42                                          ArgFlags.getOrigAlign());
43   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
44   return true;
45 }
46 
47 #include "AMDGPUGenCallingConv.inc"
48 
49 // Find a larger type to do a load / store of a vector with.
50 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
51   unsigned StoreSize = VT.getStoreSizeInBits();
52   if (StoreSize <= 32)
53     return EVT::getIntegerVT(Ctx, StoreSize);
54 
55   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
56   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
57 }
58 
59 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
60                                            const AMDGPUSubtarget &STI)
61     : TargetLowering(TM), Subtarget(&STI) {
62   // Lower floating point store/load to integer store/load to reduce the number
63   // of patterns in tablegen.
64   setOperationAction(ISD::LOAD, MVT::f32, Promote);
65   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
66 
67   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
68   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
69 
70   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
71   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
72 
73   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
74   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
75 
76   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
77   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
78 
79   setOperationAction(ISD::LOAD, MVT::i64, Promote);
80   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
81 
82   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
83   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
84 
85   setOperationAction(ISD::LOAD, MVT::f64, Promote);
86   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
87 
88   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
89   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
90 
91   // There are no 64-bit extloads. These should be done as a 32-bit extload and
92   // an extension to 64-bit.
93   for (MVT VT : MVT::integer_valuetypes()) {
94     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
96     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
97   }
98 
99   for (MVT VT : MVT::integer_valuetypes()) {
100     if (VT == MVT::i64)
101       continue;
102 
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
106     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
107 
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
111     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
112 
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
116     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
117   }
118 
119   for (MVT VT : MVT::integer_vector_valuetypes()) {
120     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
123     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
126     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
129     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
131     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
132   }
133 
134   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
137   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
138 
139   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
142   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
143 
144   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
147   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
148 
149   setOperationAction(ISD::STORE, MVT::f32, Promote);
150   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
151 
152   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
153   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
154 
155   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
156   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
157 
158   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
159   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
160 
161   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
162   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
163 
164   setOperationAction(ISD::STORE, MVT::i64, Promote);
165   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
166 
167   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
168   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
169 
170   setOperationAction(ISD::STORE, MVT::f64, Promote);
171   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
172 
173   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
174   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
175 
176   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
177   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
178   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
179   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
180 
181   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
182   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
183   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
184   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
185 
186   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
187   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
188   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
189   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
190 
191   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
192   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
193 
194   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
195   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
196 
197   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
198   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
199 
200   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
201   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
202 
203 
204   setOperationAction(ISD::Constant, MVT::i32, Legal);
205   setOperationAction(ISD::Constant, MVT::i64, Legal);
206   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
207   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
208 
209   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
210   setOperationAction(ISD::BRIND, MVT::Other, Expand);
211 
212   // This is totally unsupported, just custom lower to produce an error.
213   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
214 
215   // We need to custom lower some of the intrinsics
216   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
217   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
218 
219   // Library functions.  These default to Expand, but we have instructions
220   // for them.
221   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
222   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
223   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
224   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
225   setOperationAction(ISD::FABS,   MVT::f32, Legal);
226   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
227   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
228   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
229   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
230   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
231 
232   setOperationAction(ISD::FROUND, MVT::f32, Custom);
233   setOperationAction(ISD::FROUND, MVT::f64, Custom);
234 
235   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
236   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
237 
238   setOperationAction(ISD::FREM, MVT::f32, Custom);
239   setOperationAction(ISD::FREM, MVT::f64, Custom);
240 
241   // v_mad_f32 does not support denormals according to some sources.
242   if (!Subtarget->hasFP32Denormals())
243     setOperationAction(ISD::FMAD, MVT::f32, Legal);
244 
245   // Expand to fneg + fadd.
246   setOperationAction(ISD::FSUB, MVT::f64, Expand);
247 
248   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
249   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
250   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
251   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
252   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
253   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
254   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
255   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
256   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
257   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
258 
259   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
260     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
261     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
262     setOperationAction(ISD::FRINT, MVT::f64, Custom);
263     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
264   }
265 
266   if (!Subtarget->hasBFI()) {
267     // fcopysign can be done in a single instruction with BFI.
268     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
269     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
270   }
271 
272   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
273   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
274 
275   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
276   for (MVT VT : ScalarIntVTs) {
277     // These should use [SU]DIVREM, so set them to expand
278     setOperationAction(ISD::SDIV, VT, Expand);
279     setOperationAction(ISD::UDIV, VT, Expand);
280     setOperationAction(ISD::SREM, VT, Expand);
281     setOperationAction(ISD::UREM, VT, Expand);
282 
283     // GPU does not have divrem function for signed or unsigned.
284     setOperationAction(ISD::SDIVREM, VT, Custom);
285     setOperationAction(ISD::UDIVREM, VT, Custom);
286 
287     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
288     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
289     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
290 
291     setOperationAction(ISD::BSWAP, VT, Expand);
292     setOperationAction(ISD::CTTZ, VT, Expand);
293     setOperationAction(ISD::CTLZ, VT, Expand);
294   }
295 
296   if (!Subtarget->hasBCNT(32))
297     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
298 
299   if (!Subtarget->hasBCNT(64))
300     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
301 
302   // The hardware supports 32-bit ROTR, but not ROTL.
303   setOperationAction(ISD::ROTL, MVT::i32, Expand);
304   setOperationAction(ISD::ROTL, MVT::i64, Expand);
305   setOperationAction(ISD::ROTR, MVT::i64, Expand);
306 
307   setOperationAction(ISD::MUL, MVT::i64, Expand);
308   setOperationAction(ISD::MULHU, MVT::i64, Expand);
309   setOperationAction(ISD::MULHS, MVT::i64, Expand);
310   setOperationAction(ISD::UDIV, MVT::i32, Expand);
311   setOperationAction(ISD::UREM, MVT::i32, Expand);
312   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
313   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
314   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
315   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
316   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
317 
318   setOperationAction(ISD::SMIN, MVT::i32, Legal);
319   setOperationAction(ISD::UMIN, MVT::i32, Legal);
320   setOperationAction(ISD::SMAX, MVT::i32, Legal);
321   setOperationAction(ISD::UMAX, MVT::i32, Legal);
322 
323   if (Subtarget->hasFFBH())
324     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
325 
326   if (Subtarget->hasFFBL())
327     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
328 
329   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
330   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
331 
332   // We only really have 32-bit BFE instructions (and 16-bit on VI).
333   //
334   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
335   // effort to match them now. We want this to be false for i64 cases when the
336   // extraction isn't restricted to the upper or lower half. Ideally we would
337   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
338   // span the midpoint are probably relatively rare, so don't worry about them
339   // for now.
340   if (Subtarget->hasBFE())
341     setHasExtractBitsInsn(true);
342 
343   static const MVT::SimpleValueType VectorIntTypes[] = {
344     MVT::v2i32, MVT::v4i32
345   };
346 
347   for (MVT VT : VectorIntTypes) {
348     // Expand the following operations for the current type by default.
349     setOperationAction(ISD::ADD,  VT, Expand);
350     setOperationAction(ISD::AND,  VT, Expand);
351     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
352     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
353     setOperationAction(ISD::MUL,  VT, Expand);
354     setOperationAction(ISD::MULHU, VT, Expand);
355     setOperationAction(ISD::MULHS, VT, Expand);
356     setOperationAction(ISD::OR,   VT, Expand);
357     setOperationAction(ISD::SHL,  VT, Expand);
358     setOperationAction(ISD::SRA,  VT, Expand);
359     setOperationAction(ISD::SRL,  VT, Expand);
360     setOperationAction(ISD::ROTL, VT, Expand);
361     setOperationAction(ISD::ROTR, VT, Expand);
362     setOperationAction(ISD::SUB,  VT, Expand);
363     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
364     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
365     setOperationAction(ISD::SDIV, VT, Expand);
366     setOperationAction(ISD::UDIV, VT, Expand);
367     setOperationAction(ISD::SREM, VT, Expand);
368     setOperationAction(ISD::UREM, VT, Expand);
369     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
370     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
371     setOperationAction(ISD::SDIVREM, VT, Custom);
372     setOperationAction(ISD::UDIVREM, VT, Expand);
373     setOperationAction(ISD::ADDC, VT, Expand);
374     setOperationAction(ISD::SUBC, VT, Expand);
375     setOperationAction(ISD::ADDE, VT, Expand);
376     setOperationAction(ISD::SUBE, VT, Expand);
377     setOperationAction(ISD::SELECT, VT, Expand);
378     setOperationAction(ISD::VSELECT, VT, Expand);
379     setOperationAction(ISD::SELECT_CC, VT, Expand);
380     setOperationAction(ISD::XOR,  VT, Expand);
381     setOperationAction(ISD::BSWAP, VT, Expand);
382     setOperationAction(ISD::CTPOP, VT, Expand);
383     setOperationAction(ISD::CTTZ, VT, Expand);
384     setOperationAction(ISD::CTLZ, VT, Expand);
385     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
386   }
387 
388   static const MVT::SimpleValueType FloatVectorTypes[] = {
389     MVT::v2f32, MVT::v4f32
390   };
391 
392   for (MVT VT : FloatVectorTypes) {
393     setOperationAction(ISD::FABS, VT, Expand);
394     setOperationAction(ISD::FMINNUM, VT, Expand);
395     setOperationAction(ISD::FMAXNUM, VT, Expand);
396     setOperationAction(ISD::FADD, VT, Expand);
397     setOperationAction(ISD::FCEIL, VT, Expand);
398     setOperationAction(ISD::FCOS, VT, Expand);
399     setOperationAction(ISD::FDIV, VT, Expand);
400     setOperationAction(ISD::FEXP2, VT, Expand);
401     setOperationAction(ISD::FLOG2, VT, Expand);
402     setOperationAction(ISD::FREM, VT, Expand);
403     setOperationAction(ISD::FPOW, VT, Expand);
404     setOperationAction(ISD::FFLOOR, VT, Expand);
405     setOperationAction(ISD::FTRUNC, VT, Expand);
406     setOperationAction(ISD::FMUL, VT, Expand);
407     setOperationAction(ISD::FMA, VT, Expand);
408     setOperationAction(ISD::FRINT, VT, Expand);
409     setOperationAction(ISD::FNEARBYINT, VT, Expand);
410     setOperationAction(ISD::FSQRT, VT, Expand);
411     setOperationAction(ISD::FSIN, VT, Expand);
412     setOperationAction(ISD::FSUB, VT, Expand);
413     setOperationAction(ISD::FNEG, VT, Expand);
414     setOperationAction(ISD::VSELECT, VT, Expand);
415     setOperationAction(ISD::SELECT_CC, VT, Expand);
416     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
417     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
418   }
419 
420   // This causes using an unrolled select operation rather than expansion with
421   // bit operations. This is in general better, but the alternative using BFI
422   // instructions may be better if the select sources are SGPRs.
423   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
424   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
425 
426   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
427   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
428 
429   // There are no libcalls of any kind.
430   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
431     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
432 
433   setBooleanContents(ZeroOrNegativeOneBooleanContent);
434   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
435 
436   setSchedulingPreference(Sched::RegPressure);
437   setJumpIsExpensive(true);
438 
439   // FIXME: This is only partially true. If we have to do vector compares, any
440   // SGPR pair can be a condition register. If we have a uniform condition, we
441   // are better off doing SALU operations, where there is only one SCC. For now,
442   // we don't have a way of knowing during instruction selection if a condition
443   // will be uniform and we always use vector compares. Assume we are using
444   // vector compares until that is fixed.
445   setHasMultipleConditionRegisters(true);
446 
447   // SI at least has hardware support for floating point exceptions, but no way
448   // of using or handling them is implemented. They are also optional in OpenCL
449   // (Section 7.3)
450   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
451 
452   PredictableSelectIsExpensive = false;
453 
454   // We want to find all load dependencies for long chains of stores to enable
455   // merging into very wide vectors. The problem is with vectors with > 4
456   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
457   // vectors are a legal type, even though we have to split the loads
458   // usually. When we can more precisely specify load legality per address
459   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
460   // smarter so that they can figure out what to do in 2 iterations without all
461   // N > 4 stores on the same chain.
462   GatherAllAliasesMaxDepth = 16;
463 
464   // FIXME: Need to really handle these.
465   MaxStoresPerMemcpy  = 4096;
466   MaxStoresPerMemmove = 4096;
467   MaxStoresPerMemset  = 4096;
468 
469   setTargetDAGCombine(ISD::BITCAST);
470   setTargetDAGCombine(ISD::SHL);
471   setTargetDAGCombine(ISD::SRA);
472   setTargetDAGCombine(ISD::SRL);
473   setTargetDAGCombine(ISD::MUL);
474   setTargetDAGCombine(ISD::MULHU);
475   setTargetDAGCombine(ISD::MULHS);
476   setTargetDAGCombine(ISD::SELECT);
477   setTargetDAGCombine(ISD::SELECT_CC);
478   setTargetDAGCombine(ISD::STORE);
479   setTargetDAGCombine(ISD::FADD);
480   setTargetDAGCombine(ISD::FSUB);
481   setTargetDAGCombine(ISD::FNEG);
482   setTargetDAGCombine(ISD::FABS);
483 }
484 
485 //===----------------------------------------------------------------------===//
486 // Target Information
487 //===----------------------------------------------------------------------===//
488 
489 LLVM_READNONE
490 static bool fnegFoldsIntoOp(unsigned Opc) {
491   switch (Opc) {
492   case ISD::FADD:
493   case ISD::FSUB:
494   case ISD::FMUL:
495   case ISD::FMA:
496   case ISD::FMAD:
497   case ISD::FMINNUM:
498   case ISD::FMAXNUM:
499   case ISD::FSIN:
500   case ISD::FTRUNC:
501   case ISD::FRINT:
502   case ISD::FNEARBYINT:
503   case AMDGPUISD::RCP:
504   case AMDGPUISD::RCP_LEGACY:
505   case AMDGPUISD::SIN_HW:
506   case AMDGPUISD::FMUL_LEGACY:
507   case AMDGPUISD::FMIN_LEGACY:
508   case AMDGPUISD::FMAX_LEGACY:
509     return true;
510   default:
511     return false;
512   }
513 }
514 
515 /// \p returns true if the operation will definitely need to use a 64-bit
516 /// encoding, and thus will use a VOP3 encoding regardless of the source
517 /// modifiers.
518 LLVM_READONLY
519 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
520   return N->getNumOperands() > 2 || VT == MVT::f64;
521 }
522 
523 // Most FP instructions support source modifiers, but this could be refined
524 // slightly.
525 LLVM_READONLY
526 static bool hasSourceMods(const SDNode *N) {
527   if (isa<MemSDNode>(N))
528     return false;
529 
530   switch (N->getOpcode()) {
531   case ISD::CopyToReg:
532   case ISD::SELECT:
533   case ISD::FDIV:
534   case ISD::FREM:
535   case ISD::INLINEASM:
536   case AMDGPUISD::INTERP_P1:
537   case AMDGPUISD::INTERP_P2:
538   case AMDGPUISD::DIV_SCALE:
539     return false;
540   default:
541     return true;
542   }
543 }
544 
545 static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4) {
546   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
547   // it is truly free to use a source modifier in all cases. If there are
548   // multiple users but for each one will necessitate using VOP3, there will be
549   // a code size increase. Try to avoid increasing code size unless we know it
550   // will save on the instruction count.
551   unsigned NumMayIncreaseSize = 0;
552   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
553 
554   // XXX - Should this limit number of uses to check?
555   for (const SDNode *U : N->uses()) {
556     if (!hasSourceMods(U))
557       return false;
558 
559     if (!opMustUseVOP3Encoding(U, VT)) {
560       if (++NumMayIncreaseSize > CostThreshold)
561         return false;
562     }
563   }
564 
565   return true;
566 }
567 
568 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
569   return MVT::i32;
570 }
571 
572 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
573   return true;
574 }
575 
576 // The backend supports 32 and 64 bit floating point immediates.
577 // FIXME: Why are we reporting vectors of FP immediates as legal?
578 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
579   EVT ScalarVT = VT.getScalarType();
580   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
581          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
582 }
583 
584 // We don't want to shrink f64 / f32 constants.
585 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
586   EVT ScalarVT = VT.getScalarType();
587   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
588 }
589 
590 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
591                                                  ISD::LoadExtType,
592                                                  EVT NewVT) const {
593 
594   unsigned NewSize = NewVT.getStoreSizeInBits();
595 
596   // If we are reducing to a 32-bit load, this is always better.
597   if (NewSize == 32)
598     return true;
599 
600   EVT OldVT = N->getValueType(0);
601   unsigned OldSize = OldVT.getStoreSizeInBits();
602 
603   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
604   // extloads, so doing one requires using a buffer_load. In cases where we
605   // still couldn't use a scalar load, using the wider load shouldn't really
606   // hurt anything.
607 
608   // If the old size already had to be an extload, there's no harm in continuing
609   // to reduce the width.
610   return (OldSize < 32);
611 }
612 
613 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
614                                                    EVT CastTy) const {
615 
616   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
617 
618   if (LoadTy.getScalarType() == MVT::i32)
619     return false;
620 
621   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
622   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
623 
624   return (LScalarSize < CastScalarSize) ||
625          (CastScalarSize >= 32);
626 }
627 
628 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
629 // profitable with the expansion for 64-bit since it's generally good to
630 // speculate things.
631 // FIXME: These should really have the size as a parameter.
632 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
633   return true;
634 }
635 
636 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
637   return true;
638 }
639 
640 //===---------------------------------------------------------------------===//
641 // Target Properties
642 //===---------------------------------------------------------------------===//
643 
644 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
645   assert(VT.isFloatingPoint());
646   return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() &&
647                                               VT == MVT::f16);
648 }
649 
650 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
651   return isFAbsFree(VT);
652 }
653 
654 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
655                                                          unsigned NumElem,
656                                                          unsigned AS) const {
657   return true;
658 }
659 
660 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
661   // There are few operations which truly have vector input operands. Any vector
662   // operation is going to involve operations on each component, and a
663   // build_vector will be a copy per element, so it always makes sense to use a
664   // build_vector input in place of the extracted element to avoid a copy into a
665   // super register.
666   //
667   // We should probably only do this if all users are extracts only, but this
668   // should be the common case.
669   return true;
670 }
671 
672 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
673   // Truncate is just accessing a subregister.
674 
675   unsigned SrcSize = Source.getSizeInBits();
676   unsigned DestSize = Dest.getSizeInBits();
677 
678   return DestSize < SrcSize && DestSize % 32 == 0 ;
679 }
680 
681 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
682   // Truncate is just accessing a subregister.
683 
684   unsigned SrcSize = Source->getScalarSizeInBits();
685   unsigned DestSize = Dest->getScalarSizeInBits();
686 
687   if (DestSize== 16 && Subtarget->has16BitInsts())
688     return SrcSize >= 32;
689 
690   return DestSize < SrcSize && DestSize % 32 == 0;
691 }
692 
693 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
694   unsigned SrcSize = Src->getScalarSizeInBits();
695   unsigned DestSize = Dest->getScalarSizeInBits();
696 
697   if (SrcSize == 16 && Subtarget->has16BitInsts())
698     return DestSize >= 32;
699 
700   return SrcSize == 32 && DestSize == 64;
701 }
702 
703 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
704   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
705   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
706   // this will enable reducing 64-bit operations the 32-bit, which is always
707   // good.
708 
709   if (Src == MVT::i16)
710     return Dest == MVT::i32 ||Dest == MVT::i64 ;
711 
712   return Src == MVT::i32 && Dest == MVT::i64;
713 }
714 
715 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
716   return isZExtFree(Val.getValueType(), VT2);
717 }
718 
719 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
720   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
721   // limited number of native 64-bit operations. Shrinking an operation to fit
722   // in a single 32-bit register should always be helpful. As currently used,
723   // this is much less general than the name suggests, and is only used in
724   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
725   // not profitable, and may actually be harmful.
726   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
727 }
728 
729 //===---------------------------------------------------------------------===//
730 // TargetLowering Callbacks
731 //===---------------------------------------------------------------------===//
732 
733 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
734                                                   bool IsVarArg) const {
735   return CC_AMDGPU;
736 }
737 
738 /// The SelectionDAGBuilder will automatically promote function arguments
739 /// with illegal types.  However, this does not work for the AMDGPU targets
740 /// since the function arguments are stored in memory as these illegal types.
741 /// In order to handle this properly we need to get the original types sizes
742 /// from the LLVM IR Function and fixup the ISD:InputArg values before
743 /// passing them to AnalyzeFormalArguments()
744 
745 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
746 /// input values across multiple registers.  Each item in the Ins array
747 /// represents a single value that will be stored in regsters.  Ins[x].VT is
748 /// the value type of the value that will be stored in the register, so
749 /// whatever SDNode we lower the argument to needs to be this type.
750 ///
751 /// In order to correctly lower the arguments we need to know the size of each
752 /// argument.  Since Ins[x].VT gives us the size of the register that will
753 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
754 /// for the orignal function argument so that we can deduce the correct memory
755 /// type to use for Ins[x].  In most cases the correct memory type will be
756 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
757 /// we have a kernel argument of type v8i8, this argument will be split into
758 /// 8 parts and each part will be represented by its own item in the Ins array.
759 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
760 /// the argument before it was split.  From this, we deduce that the memory type
761 /// for each individual part is i8.  We pass the memory type as LocVT to the
762 /// calling convention analysis function and the register type (Ins[x].VT) as
763 /// the ValVT.
764 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
765                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
766   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
767     const ISD::InputArg &In = Ins[i];
768     EVT MemVT;
769 
770     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
771 
772     if (!Subtarget->isAmdHsaOS() &&
773         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
774       // The ABI says the caller will extend these values to 32-bits.
775       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
776     } else if (NumRegs == 1) {
777       // This argument is not split, so the IR type is the memory type.
778       assert(!In.Flags.isSplit());
779       if (In.ArgVT.isExtended()) {
780         // We have an extended type, like i24, so we should just use the register type
781         MemVT = In.VT;
782       } else {
783         MemVT = In.ArgVT;
784       }
785     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
786                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
787       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
788       // We have a vector value which has been split into a vector with
789       // the same scalar type, but fewer elements.  This should handle
790       // all the floating-point vector types.
791       MemVT = In.VT;
792     } else if (In.ArgVT.isVector() &&
793                In.ArgVT.getVectorNumElements() == NumRegs) {
794       // This arg has been split so that each element is stored in a separate
795       // register.
796       MemVT = In.ArgVT.getScalarType();
797     } else if (In.ArgVT.isExtended()) {
798       // We have an extended type, like i65.
799       MemVT = In.VT;
800     } else {
801       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
802       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
803       if (In.VT.isInteger()) {
804         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
805       } else if (In.VT.isVector()) {
806         assert(!In.VT.getScalarType().isFloatingPoint());
807         unsigned NumElements = In.VT.getVectorNumElements();
808         assert(MemoryBits % NumElements == 0);
809         // This vector type has been split into another vector type with
810         // a different elements size.
811         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
812                                          MemoryBits / NumElements);
813         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
814       } else {
815         llvm_unreachable("cannot deduce memory type.");
816       }
817     }
818 
819     // Convert one element vectors to scalar.
820     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
821       MemVT = MemVT.getScalarType();
822 
823     if (MemVT.isExtended()) {
824       // This should really only happen if we have vec3 arguments
825       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
826       MemVT = MemVT.getPow2VectorType(State.getContext());
827     }
828 
829     assert(MemVT.isSimple());
830     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
831                     State);
832   }
833 }
834 
835 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
836                               const SmallVectorImpl<ISD::InputArg> &Ins) const {
837   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
838 }
839 
840 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
841                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
842 
843   State.AnalyzeReturn(Outs, RetCC_SI);
844 }
845 
846 SDValue
847 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
848                                   bool isVarArg,
849                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
850                                   const SmallVectorImpl<SDValue> &OutVals,
851                                   const SDLoc &DL, SelectionDAG &DAG) const {
852   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
853 }
854 
855 //===---------------------------------------------------------------------===//
856 // Target specific lowering
857 //===---------------------------------------------------------------------===//
858 
859 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
860                                         SmallVectorImpl<SDValue> &InVals) const {
861   SDValue Callee = CLI.Callee;
862   SelectionDAG &DAG = CLI.DAG;
863 
864   const Function &Fn = *DAG.getMachineFunction().getFunction();
865 
866   StringRef FuncName("<unknown>");
867 
868   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
869     FuncName = G->getSymbol();
870   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
871     FuncName = G->getGlobal()->getName();
872 
873   DiagnosticInfoUnsupported NoCalls(
874       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
875   DAG.getContext()->diagnose(NoCalls);
876 
877   if (!CLI.IsTailCall) {
878     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
879       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
880   }
881 
882   return DAG.getEntryNode();
883 }
884 
885 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
886                                                       SelectionDAG &DAG) const {
887   const Function &Fn = *DAG.getMachineFunction().getFunction();
888 
889   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
890                                             SDLoc(Op).getDebugLoc());
891   DAG.getContext()->diagnose(NoDynamicAlloca);
892   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
893   return DAG.getMergeValues(Ops, SDLoc());
894 }
895 
896 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
897                                              SelectionDAG &DAG) const {
898   switch (Op.getOpcode()) {
899   default:
900     Op->print(errs(), &DAG);
901     llvm_unreachable("Custom lowering code for this"
902                      "instruction is not implemented yet!");
903     break;
904   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
905   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
906   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
907   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
908   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
909   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
910   case ISD::FREM: return LowerFREM(Op, DAG);
911   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
912   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
913   case ISD::FRINT: return LowerFRINT(Op, DAG);
914   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
915   case ISD::FROUND: return LowerFROUND(Op, DAG);
916   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
917   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
918   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
919   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
920   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
921   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
922   case ISD::CTLZ:
923   case ISD::CTLZ_ZERO_UNDEF:
924     return LowerCTLZ(Op, DAG);
925   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
926   }
927   return Op;
928 }
929 
930 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
931                                               SmallVectorImpl<SDValue> &Results,
932                                               SelectionDAG &DAG) const {
933   switch (N->getOpcode()) {
934   case ISD::SIGN_EXTEND_INREG:
935     // Different parts of legalization seem to interpret which type of
936     // sign_extend_inreg is the one to check for custom lowering. The extended
937     // from type is what really matters, but some places check for custom
938     // lowering of the result type. This results in trying to use
939     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
940     // nothing here and let the illegal result integer be handled normally.
941     return;
942   default:
943     return;
944   }
945 }
946 
947 static bool hasDefinedInitializer(const GlobalValue *GV) {
948   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
949   if (!GVar || !GVar->hasInitializer())
950     return false;
951 
952   return !isa<UndefValue>(GVar->getInitializer());
953 }
954 
955 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
956                                                  SDValue Op,
957                                                  SelectionDAG &DAG) const {
958 
959   const DataLayout &DL = DAG.getDataLayout();
960   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
961   const GlobalValue *GV = G->getGlobal();
962 
963   switch (G->getAddressSpace()) {
964   case AMDGPUAS::LOCAL_ADDRESS: {
965     // XXX: What does the value of G->getOffset() mean?
966     assert(G->getOffset() == 0 &&
967          "Do not know what to do with an non-zero offset");
968 
969     // TODO: We could emit code to handle the initialization somewhere.
970     if (hasDefinedInitializer(GV))
971       break;
972 
973     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
974     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
975   }
976   }
977 
978   const Function &Fn = *DAG.getMachineFunction().getFunction();
979   DiagnosticInfoUnsupported BadInit(
980       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
981   DAG.getContext()->diagnose(BadInit);
982   return SDValue();
983 }
984 
985 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
986                                                   SelectionDAG &DAG) const {
987   SmallVector<SDValue, 8> Args;
988 
989   for (const SDUse &U : Op->ops())
990     DAG.ExtractVectorElements(U.get(), Args);
991 
992   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
993 }
994 
995 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
996                                                      SelectionDAG &DAG) const {
997 
998   SmallVector<SDValue, 8> Args;
999   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1000   EVT VT = Op.getValueType();
1001   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1002                             VT.getVectorNumElements());
1003 
1004   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1005 }
1006 
1007 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1008     SelectionDAG &DAG) const {
1009   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1010   SDLoc DL(Op);
1011   EVT VT = Op.getValueType();
1012 
1013   switch (IntrinsicID) {
1014     default: return Op;
1015     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
1016       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
1017                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
1018 
1019     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
1020       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
1021                          Op.getOperand(1),
1022                          Op.getOperand(2),
1023                          Op.getOperand(3));
1024 
1025     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
1026       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
1027                          Op.getOperand(1),
1028                          Op.getOperand(2),
1029                          Op.getOperand(3));
1030   }
1031 }
1032 
1033 /// \brief Generate Min/Max node
1034 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1035                                                    SDValue LHS, SDValue RHS,
1036                                                    SDValue True, SDValue False,
1037                                                    SDValue CC,
1038                                                    DAGCombinerInfo &DCI) const {
1039   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1040     return SDValue();
1041 
1042   SelectionDAG &DAG = DCI.DAG;
1043   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1044   switch (CCOpcode) {
1045   case ISD::SETOEQ:
1046   case ISD::SETONE:
1047   case ISD::SETUNE:
1048   case ISD::SETNE:
1049   case ISD::SETUEQ:
1050   case ISD::SETEQ:
1051   case ISD::SETFALSE:
1052   case ISD::SETFALSE2:
1053   case ISD::SETTRUE:
1054   case ISD::SETTRUE2:
1055   case ISD::SETUO:
1056   case ISD::SETO:
1057     break;
1058   case ISD::SETULE:
1059   case ISD::SETULT: {
1060     if (LHS == True)
1061       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1062     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1063   }
1064   case ISD::SETOLE:
1065   case ISD::SETOLT:
1066   case ISD::SETLE:
1067   case ISD::SETLT: {
1068     // Ordered. Assume ordered for undefined.
1069 
1070     // Only do this after legalization to avoid interfering with other combines
1071     // which might occur.
1072     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1073         !DCI.isCalledByLegalizer())
1074       return SDValue();
1075 
1076     // We need to permute the operands to get the correct NaN behavior. The
1077     // selected operand is the second one based on the failing compare with NaN,
1078     // so permute it based on the compare type the hardware uses.
1079     if (LHS == True)
1080       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1081     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1082   }
1083   case ISD::SETUGE:
1084   case ISD::SETUGT: {
1085     if (LHS == True)
1086       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1087     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1088   }
1089   case ISD::SETGT:
1090   case ISD::SETGE:
1091   case ISD::SETOGE:
1092   case ISD::SETOGT: {
1093     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1094         !DCI.isCalledByLegalizer())
1095       return SDValue();
1096 
1097     if (LHS == True)
1098       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1099     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1100   }
1101   case ISD::SETCC_INVALID:
1102     llvm_unreachable("Invalid setcc condcode!");
1103   }
1104   return SDValue();
1105 }
1106 
1107 std::pair<SDValue, SDValue>
1108 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1109   SDLoc SL(Op);
1110 
1111   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1112 
1113   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1114   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1115 
1116   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1117   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1118 
1119   return std::make_pair(Lo, Hi);
1120 }
1121 
1122 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1123   SDLoc SL(Op);
1124 
1125   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1126   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1127   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1128 }
1129 
1130 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1131   SDLoc SL(Op);
1132 
1133   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1134   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1135   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1136 }
1137 
1138 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1139                                               SelectionDAG &DAG) const {
1140   LoadSDNode *Load = cast<LoadSDNode>(Op);
1141   EVT VT = Op.getValueType();
1142 
1143 
1144   // If this is a 2 element vector, we really want to scalarize and not create
1145   // weird 1 element vectors.
1146   if (VT.getVectorNumElements() == 2)
1147     return scalarizeVectorLoad(Load, DAG);
1148 
1149   SDValue BasePtr = Load->getBasePtr();
1150   EVT PtrVT = BasePtr.getValueType();
1151   EVT MemVT = Load->getMemoryVT();
1152   SDLoc SL(Op);
1153 
1154   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1155 
1156   EVT LoVT, HiVT;
1157   EVT LoMemVT, HiMemVT;
1158   SDValue Lo, Hi;
1159 
1160   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1161   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1162   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1163 
1164   unsigned Size = LoMemVT.getStoreSize();
1165   unsigned BaseAlign = Load->getAlignment();
1166   unsigned HiAlign = MinAlign(BaseAlign, Size);
1167 
1168   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1169                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1170                                   BaseAlign, Load->getMemOperand()->getFlags());
1171   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1172                               DAG.getConstant(Size, SL, PtrVT));
1173   SDValue HiLoad =
1174       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1175                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1176                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1177 
1178   SDValue Ops[] = {
1179     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1180     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1181                 LoLoad.getValue(1), HiLoad.getValue(1))
1182   };
1183 
1184   return DAG.getMergeValues(Ops, SL);
1185 }
1186 
1187 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1188                                                SelectionDAG &DAG) const {
1189   StoreSDNode *Store = cast<StoreSDNode>(Op);
1190   SDValue Val = Store->getValue();
1191   EVT VT = Val.getValueType();
1192 
1193   // If this is a 2 element vector, we really want to scalarize and not create
1194   // weird 1 element vectors.
1195   if (VT.getVectorNumElements() == 2)
1196     return scalarizeVectorStore(Store, DAG);
1197 
1198   EVT MemVT = Store->getMemoryVT();
1199   SDValue Chain = Store->getChain();
1200   SDValue BasePtr = Store->getBasePtr();
1201   SDLoc SL(Op);
1202 
1203   EVT LoVT, HiVT;
1204   EVT LoMemVT, HiMemVT;
1205   SDValue Lo, Hi;
1206 
1207   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1208   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1209   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1210 
1211   EVT PtrVT = BasePtr.getValueType();
1212   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1213                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1214                                               PtrVT));
1215 
1216   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1217   unsigned BaseAlign = Store->getAlignment();
1218   unsigned Size = LoMemVT.getStoreSize();
1219   unsigned HiAlign = MinAlign(BaseAlign, Size);
1220 
1221   SDValue LoStore =
1222       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1223                         Store->getMemOperand()->getFlags());
1224   SDValue HiStore =
1225       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1226                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1227 
1228   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1229 }
1230 
1231 // This is a shortcut for integer division because we have fast i32<->f32
1232 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1233 // float is enough to accurately represent up to a 24-bit signed integer.
1234 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1235                                             bool Sign) const {
1236   SDLoc DL(Op);
1237   EVT VT = Op.getValueType();
1238   SDValue LHS = Op.getOperand(0);
1239   SDValue RHS = Op.getOperand(1);
1240   MVT IntVT = MVT::i32;
1241   MVT FltVT = MVT::f32;
1242 
1243   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1244   if (LHSSignBits < 9)
1245     return SDValue();
1246 
1247   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1248   if (RHSSignBits < 9)
1249     return SDValue();
1250 
1251   unsigned BitSize = VT.getSizeInBits();
1252   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1253   unsigned DivBits = BitSize - SignBits;
1254   if (Sign)
1255     ++DivBits;
1256 
1257   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1258   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1259 
1260   SDValue jq = DAG.getConstant(1, DL, IntVT);
1261 
1262   if (Sign) {
1263     // char|short jq = ia ^ ib;
1264     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1265 
1266     // jq = jq >> (bitsize - 2)
1267     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1268                      DAG.getConstant(BitSize - 2, DL, VT));
1269 
1270     // jq = jq | 0x1
1271     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1272   }
1273 
1274   // int ia = (int)LHS;
1275   SDValue ia = LHS;
1276 
1277   // int ib, (int)RHS;
1278   SDValue ib = RHS;
1279 
1280   // float fa = (float)ia;
1281   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1282 
1283   // float fb = (float)ib;
1284   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1285 
1286   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1287                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1288 
1289   // fq = trunc(fq);
1290   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1291 
1292   // float fqneg = -fq;
1293   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1294 
1295   // float fr = mad(fqneg, fb, fa);
1296   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1297 
1298   // int iq = (int)fq;
1299   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1300 
1301   // fr = fabs(fr);
1302   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1303 
1304   // fb = fabs(fb);
1305   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1306 
1307   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1308 
1309   // int cv = fr >= fb;
1310   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1311 
1312   // jq = (cv ? jq : 0);
1313   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1314 
1315   // dst = iq + jq;
1316   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1317 
1318   // Rem needs compensation, it's easier to recompute it
1319   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1320   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1321 
1322   // Truncate to number of bits this divide really is.
1323   if (Sign) {
1324     SDValue InRegSize
1325       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1326     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1327     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1328   } else {
1329     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1330     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1331     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1332   }
1333 
1334   return DAG.getMergeValues({ Div, Rem }, DL);
1335 }
1336 
1337 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1338                                       SelectionDAG &DAG,
1339                                       SmallVectorImpl<SDValue> &Results) const {
1340   assert(Op.getValueType() == MVT::i64);
1341 
1342   SDLoc DL(Op);
1343   EVT VT = Op.getValueType();
1344   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1345 
1346   SDValue one = DAG.getConstant(1, DL, HalfVT);
1347   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1348 
1349   //HiLo split
1350   SDValue LHS = Op.getOperand(0);
1351   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1352   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1353 
1354   SDValue RHS = Op.getOperand(1);
1355   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1356   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1357 
1358   if (VT == MVT::i64 &&
1359     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1360     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1361 
1362     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1363                               LHS_Lo, RHS_Lo);
1364 
1365     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1366     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1367 
1368     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1369     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1370     return;
1371   }
1372 
1373   // Get Speculative values
1374   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1375   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1376 
1377   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1378   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1379   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1380 
1381   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1382   SDValue DIV_Lo = zero;
1383 
1384   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1385 
1386   for (unsigned i = 0; i < halfBitWidth; ++i) {
1387     const unsigned bitPos = halfBitWidth - i - 1;
1388     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1389     // Get value of high bit
1390     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1391     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1392     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1393 
1394     // Shift
1395     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1396     // Add LHS high bit
1397     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1398 
1399     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1400     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1401 
1402     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1403 
1404     // Update REM
1405     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1406     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1407   }
1408 
1409   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1410   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1411   Results.push_back(DIV);
1412   Results.push_back(REM);
1413 }
1414 
1415 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1416                                            SelectionDAG &DAG) const {
1417   SDLoc DL(Op);
1418   EVT VT = Op.getValueType();
1419 
1420   if (VT == MVT::i64) {
1421     SmallVector<SDValue, 2> Results;
1422     LowerUDIVREM64(Op, DAG, Results);
1423     return DAG.getMergeValues(Results, DL);
1424   }
1425 
1426   if (VT == MVT::i32) {
1427     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1428       return Res;
1429   }
1430 
1431   SDValue Num = Op.getOperand(0);
1432   SDValue Den = Op.getOperand(1);
1433 
1434   // RCP =  URECIP(Den) = 2^32 / Den + e
1435   // e is rounding error.
1436   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1437 
1438   // RCP_LO = mul(RCP, Den) */
1439   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1440 
1441   // RCP_HI = mulhu (RCP, Den) */
1442   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1443 
1444   // NEG_RCP_LO = -RCP_LO
1445   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1446                                                      RCP_LO);
1447 
1448   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1449   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1450                                            NEG_RCP_LO, RCP_LO,
1451                                            ISD::SETEQ);
1452   // Calculate the rounding error from the URECIP instruction
1453   // E = mulhu(ABS_RCP_LO, RCP)
1454   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1455 
1456   // RCP_A_E = RCP + E
1457   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1458 
1459   // RCP_S_E = RCP - E
1460   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1461 
1462   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1463   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1464                                      RCP_A_E, RCP_S_E,
1465                                      ISD::SETEQ);
1466   // Quotient = mulhu(Tmp0, Num)
1467   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1468 
1469   // Num_S_Remainder = Quotient * Den
1470   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1471 
1472   // Remainder = Num - Num_S_Remainder
1473   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1474 
1475   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1476   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1477                                                  DAG.getConstant(-1, DL, VT),
1478                                                  DAG.getConstant(0, DL, VT),
1479                                                  ISD::SETUGE);
1480   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1481   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1482                                                   Num_S_Remainder,
1483                                                   DAG.getConstant(-1, DL, VT),
1484                                                   DAG.getConstant(0, DL, VT),
1485                                                   ISD::SETUGE);
1486   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1487   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1488                                                Remainder_GE_Zero);
1489 
1490   // Calculate Division result:
1491 
1492   // Quotient_A_One = Quotient + 1
1493   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1494                                        DAG.getConstant(1, DL, VT));
1495 
1496   // Quotient_S_One = Quotient - 1
1497   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1498                                        DAG.getConstant(1, DL, VT));
1499 
1500   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1501   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1502                                      Quotient, Quotient_A_One, ISD::SETEQ);
1503 
1504   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1505   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1506                             Quotient_S_One, Div, ISD::SETEQ);
1507 
1508   // Calculate Rem result:
1509 
1510   // Remainder_S_Den = Remainder - Den
1511   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1512 
1513   // Remainder_A_Den = Remainder + Den
1514   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1515 
1516   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1517   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1518                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1519 
1520   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1521   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1522                             Remainder_A_Den, Rem, ISD::SETEQ);
1523   SDValue Ops[2] = {
1524     Div,
1525     Rem
1526   };
1527   return DAG.getMergeValues(Ops, DL);
1528 }
1529 
1530 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1531                                            SelectionDAG &DAG) const {
1532   SDLoc DL(Op);
1533   EVT VT = Op.getValueType();
1534 
1535   SDValue LHS = Op.getOperand(0);
1536   SDValue RHS = Op.getOperand(1);
1537 
1538   SDValue Zero = DAG.getConstant(0, DL, VT);
1539   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1540 
1541   if (VT == MVT::i32) {
1542     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1543       return Res;
1544   }
1545 
1546   if (VT == MVT::i64 &&
1547       DAG.ComputeNumSignBits(LHS) > 32 &&
1548       DAG.ComputeNumSignBits(RHS) > 32) {
1549     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1550 
1551     //HiLo split
1552     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1553     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1554     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1555                                  LHS_Lo, RHS_Lo);
1556     SDValue Res[2] = {
1557       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1558       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1559     };
1560     return DAG.getMergeValues(Res, DL);
1561   }
1562 
1563   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1564   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1565   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1566   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1567 
1568   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1569   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1570 
1571   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1572   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1573 
1574   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1575   SDValue Rem = Div.getValue(1);
1576 
1577   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1578   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1579 
1580   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1581   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1582 
1583   SDValue Res[2] = {
1584     Div,
1585     Rem
1586   };
1587   return DAG.getMergeValues(Res, DL);
1588 }
1589 
1590 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1591 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1592   SDLoc SL(Op);
1593   EVT VT = Op.getValueType();
1594   SDValue X = Op.getOperand(0);
1595   SDValue Y = Op.getOperand(1);
1596 
1597   // TODO: Should this propagate fast-math-flags?
1598 
1599   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1600   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1601   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1602 
1603   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1604 }
1605 
1606 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1607   SDLoc SL(Op);
1608   SDValue Src = Op.getOperand(0);
1609 
1610   // result = trunc(src)
1611   // if (src > 0.0 && src != result)
1612   //   result += 1.0
1613 
1614   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1615 
1616   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1617   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1618 
1619   EVT SetCCVT =
1620       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1621 
1622   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1623   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1624   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1625 
1626   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1627   // TODO: Should this propagate fast-math-flags?
1628   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1629 }
1630 
1631 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1632                                   SelectionDAG &DAG) {
1633   const unsigned FractBits = 52;
1634   const unsigned ExpBits = 11;
1635 
1636   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1637                                 Hi,
1638                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1639                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1640   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1641                             DAG.getConstant(1023, SL, MVT::i32));
1642 
1643   return Exp;
1644 }
1645 
1646 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1647   SDLoc SL(Op);
1648   SDValue Src = Op.getOperand(0);
1649 
1650   assert(Op.getValueType() == MVT::f64);
1651 
1652   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1653   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1654 
1655   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1656 
1657   // Extract the upper half, since this is where we will find the sign and
1658   // exponent.
1659   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1660 
1661   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1662 
1663   const unsigned FractBits = 52;
1664 
1665   // Extract the sign bit.
1666   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1667   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1668 
1669   // Extend back to to 64-bits.
1670   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1671   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1672 
1673   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1674   const SDValue FractMask
1675     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1676 
1677   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1678   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1679   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1680 
1681   EVT SetCCVT =
1682       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1683 
1684   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1685 
1686   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1687   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1688 
1689   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1690   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1691 
1692   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1693 }
1694 
1695 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1696   SDLoc SL(Op);
1697   SDValue Src = Op.getOperand(0);
1698 
1699   assert(Op.getValueType() == MVT::f64);
1700 
1701   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
1702   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1703   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1704 
1705   // TODO: Should this propagate fast-math-flags?
1706 
1707   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1708   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1709 
1710   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1711 
1712   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
1713   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1714 
1715   EVT SetCCVT =
1716       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1717   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1718 
1719   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1720 }
1721 
1722 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1723   // FNEARBYINT and FRINT are the same, except in their handling of FP
1724   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1725   // rint, so just treat them as equivalent.
1726   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1727 }
1728 
1729 // XXX - May require not supporting f32 denormals?
1730 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1731   SDLoc SL(Op);
1732   SDValue X = Op.getOperand(0);
1733 
1734   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1735 
1736   // TODO: Should this propagate fast-math-flags?
1737 
1738   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1739 
1740   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1741 
1742   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1743   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1744   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1745 
1746   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1747 
1748   EVT SetCCVT =
1749       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1750 
1751   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1752 
1753   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1754 
1755   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1756 }
1757 
1758 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1759   SDLoc SL(Op);
1760   SDValue X = Op.getOperand(0);
1761 
1762   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1763 
1764   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1765   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1766   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1767   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1768   EVT SetCCVT =
1769       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1770 
1771   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1772 
1773   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1774 
1775   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1776 
1777   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1778                                        MVT::i64);
1779 
1780   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1781   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1782                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1783                                           MVT::i64),
1784                           Exp);
1785 
1786   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1787   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1788                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1789                               ISD::SETNE);
1790 
1791   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1792                              D, DAG.getConstant(0, SL, MVT::i64));
1793   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1794 
1795   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1796   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1797 
1798   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1799   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1800   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1801 
1802   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1803                             ExpEqNegOne,
1804                             DAG.getConstantFP(1.0, SL, MVT::f64),
1805                             DAG.getConstantFP(0.0, SL, MVT::f64));
1806 
1807   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1808 
1809   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1810   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1811 
1812   return K;
1813 }
1814 
1815 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1816   EVT VT = Op.getValueType();
1817 
1818   if (VT == MVT::f32)
1819     return LowerFROUND32(Op, DAG);
1820 
1821   if (VT == MVT::f64)
1822     return LowerFROUND64(Op, DAG);
1823 
1824   llvm_unreachable("unhandled type");
1825 }
1826 
1827 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1828   SDLoc SL(Op);
1829   SDValue Src = Op.getOperand(0);
1830 
1831   // result = trunc(src);
1832   // if (src < 0.0 && src != result)
1833   //   result += -1.0.
1834 
1835   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1836 
1837   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1838   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1839 
1840   EVT SetCCVT =
1841       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1842 
1843   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1844   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1845   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1846 
1847   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1848   // TODO: Should this propagate fast-math-flags?
1849   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1850 }
1851 
1852 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1853   SDLoc SL(Op);
1854   SDValue Src = Op.getOperand(0);
1855   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1856 
1857   if (ZeroUndef && Src.getValueType() == MVT::i32)
1858     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1859 
1860   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1861 
1862   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1863   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1864 
1865   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1866   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1867 
1868   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1869                                    *DAG.getContext(), MVT::i32);
1870 
1871   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1872 
1873   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1874   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1875 
1876   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1877   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1878 
1879   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1880   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1881 
1882   if (!ZeroUndef) {
1883     // Test if the full 64-bit input is zero.
1884 
1885     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1886     // which we probably don't want.
1887     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1888     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1889 
1890     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1891     // with the same cycles, otherwise it is slower.
1892     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1893     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1894 
1895     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1896 
1897     // The instruction returns -1 for 0 input, but the defined intrinsic
1898     // behavior is to return the number of bits.
1899     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1900                           SrcIsZero, Bits32, NewCtlz);
1901   }
1902 
1903   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1904 }
1905 
1906 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1907                                                bool Signed) const {
1908   // Unsigned
1909   // cul2f(ulong u)
1910   //{
1911   //  uint lz = clz(u);
1912   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1913   //  u = (u << lz) & 0x7fffffffffffffffUL;
1914   //  ulong t = u & 0xffffffffffUL;
1915   //  uint v = (e << 23) | (uint)(u >> 40);
1916   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1917   //  return as_float(v + r);
1918   //}
1919   // Signed
1920   // cl2f(long l)
1921   //{
1922   //  long s = l >> 63;
1923   //  float r = cul2f((l + s) ^ s);
1924   //  return s ? -r : r;
1925   //}
1926 
1927   SDLoc SL(Op);
1928   SDValue Src = Op.getOperand(0);
1929   SDValue L = Src;
1930 
1931   SDValue S;
1932   if (Signed) {
1933     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1934     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1935 
1936     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1937     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1938   }
1939 
1940   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1941                                    *DAG.getContext(), MVT::f32);
1942 
1943 
1944   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1945   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1946   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1947   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1948 
1949   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1950   SDValue E = DAG.getSelect(SL, MVT::i32,
1951     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1952     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1953     ZeroI32);
1954 
1955   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1956     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1957     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1958 
1959   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1960                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1961 
1962   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1963                              U, DAG.getConstant(40, SL, MVT::i64));
1964 
1965   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1966     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1967     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1968 
1969   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1970   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1971   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1972 
1973   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1974 
1975   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1976 
1977   SDValue R = DAG.getSelect(SL, MVT::i32,
1978     RCmp,
1979     One,
1980     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1981   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1982   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1983 
1984   if (!Signed)
1985     return R;
1986 
1987   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1988   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1989 }
1990 
1991 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1992                                                bool Signed) const {
1993   SDLoc SL(Op);
1994   SDValue Src = Op.getOperand(0);
1995 
1996   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1997 
1998   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1999                            DAG.getConstant(0, SL, MVT::i32));
2000   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2001                            DAG.getConstant(1, SL, MVT::i32));
2002 
2003   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2004                               SL, MVT::f64, Hi);
2005 
2006   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2007 
2008   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2009                               DAG.getConstant(32, SL, MVT::i32));
2010   // TODO: Should this propagate fast-math-flags?
2011   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2012 }
2013 
2014 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2015                                                SelectionDAG &DAG) const {
2016   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2017          "operation should be legal");
2018 
2019   // TODO: Factor out code common with LowerSINT_TO_FP.
2020 
2021   EVT DestVT = Op.getValueType();
2022   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2023     SDLoc DL(Op);
2024     SDValue Src = Op.getOperand(0);
2025 
2026     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2027     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2028     SDValue FPRound =
2029         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2030 
2031     return FPRound;
2032   }
2033 
2034   if (DestVT == MVT::f32)
2035     return LowerINT_TO_FP32(Op, DAG, false);
2036 
2037   assert(DestVT == MVT::f64);
2038   return LowerINT_TO_FP64(Op, DAG, false);
2039 }
2040 
2041 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2042                                               SelectionDAG &DAG) const {
2043   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2044          "operation should be legal");
2045 
2046   // TODO: Factor out code common with LowerUINT_TO_FP.
2047 
2048   EVT DestVT = Op.getValueType();
2049   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2050     SDLoc DL(Op);
2051     SDValue Src = Op.getOperand(0);
2052 
2053     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2054     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2055     SDValue FPRound =
2056         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2057 
2058     return FPRound;
2059   }
2060 
2061   if (DestVT == MVT::f32)
2062     return LowerINT_TO_FP32(Op, DAG, true);
2063 
2064   assert(DestVT == MVT::f64);
2065   return LowerINT_TO_FP64(Op, DAG, true);
2066 }
2067 
2068 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2069                                                bool Signed) const {
2070   SDLoc SL(Op);
2071 
2072   SDValue Src = Op.getOperand(0);
2073 
2074   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2075 
2076   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2077                                  MVT::f64);
2078   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2079                                  MVT::f64);
2080   // TODO: Should this propagate fast-math-flags?
2081   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2082 
2083   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2084 
2085 
2086   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2087 
2088   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2089                            MVT::i32, FloorMul);
2090   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2091 
2092   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2093 
2094   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2095 }
2096 
2097 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2098 
2099   if (getTargetMachine().Options.UnsafeFPMath) {
2100     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2101     return SDValue();
2102   }
2103 
2104   SDLoc DL(Op);
2105   SDValue N0 = Op.getOperand(0);
2106   assert (N0.getSimpleValueType() == MVT::f64);
2107 
2108   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2109   const unsigned ExpMask = 0x7ff;
2110   const unsigned ExpBiasf64 = 1023;
2111   const unsigned ExpBiasf16 = 15;
2112   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2113   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2114   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2115   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2116                            DAG.getConstant(32, DL, MVT::i64));
2117   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2118   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2119   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2120                           DAG.getConstant(20, DL, MVT::i64));
2121   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2122                   DAG.getConstant(ExpMask, DL, MVT::i32));
2123   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2124   // add the f16 bias (15) to get the biased exponent for the f16 format.
2125   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2126                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2127 
2128   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2129                           DAG.getConstant(8, DL, MVT::i32));
2130   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2131                   DAG.getConstant(0xffe, DL, MVT::i32));
2132 
2133   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2134                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2135   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2136 
2137   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2138   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2139 
2140   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2141   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2142       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2143                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2144 
2145   // N = M | (E << 12);
2146   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2147       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2148                   DAG.getConstant(12, DL, MVT::i32)));
2149 
2150   // B = clamp(1-E, 0, 13);
2151   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2152                                   One, E);
2153   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2154   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2155                   DAG.getConstant(13, DL, MVT::i32));
2156 
2157   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2158                                    DAG.getConstant(0x1000, DL, MVT::i32));
2159 
2160   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2161   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2162   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2163   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2164 
2165   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2166   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2167                               DAG.getConstant(0x7, DL, MVT::i32));
2168   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2169                   DAG.getConstant(2, DL, MVT::i32));
2170   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2171                                One, Zero, ISD::SETEQ);
2172   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2173                                One, Zero, ISD::SETGT);
2174   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2175   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2176 
2177   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2178                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2179   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2180                       I, V, ISD::SETEQ);
2181 
2182   // Extract the sign bit.
2183   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2184                             DAG.getConstant(16, DL, MVT::i32));
2185   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2186                      DAG.getConstant(0x8000, DL, MVT::i32));
2187 
2188   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2189   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2190 }
2191 
2192 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2193                                               SelectionDAG &DAG) const {
2194   SDValue Src = Op.getOperand(0);
2195 
2196   // TODO: Factor out code common with LowerFP_TO_UINT.
2197 
2198   EVT SrcVT = Src.getValueType();
2199   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2200     SDLoc DL(Op);
2201 
2202     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2203     SDValue FpToInt32 =
2204         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2205 
2206     return FpToInt32;
2207   }
2208 
2209   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2210     return LowerFP64_TO_INT(Op, DAG, true);
2211 
2212   return SDValue();
2213 }
2214 
2215 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2216                                               SelectionDAG &DAG) const {
2217   SDValue Src = Op.getOperand(0);
2218 
2219   // TODO: Factor out code common with LowerFP_TO_SINT.
2220 
2221   EVT SrcVT = Src.getValueType();
2222   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2223     SDLoc DL(Op);
2224 
2225     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2226     SDValue FpToInt32 =
2227         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2228 
2229     return FpToInt32;
2230   }
2231 
2232   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2233     return LowerFP64_TO_INT(Op, DAG, false);
2234 
2235   return SDValue();
2236 }
2237 
2238 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2239                                                      SelectionDAG &DAG) const {
2240   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2241   MVT VT = Op.getSimpleValueType();
2242   MVT ScalarVT = VT.getScalarType();
2243 
2244   assert(VT.isVector());
2245 
2246   SDValue Src = Op.getOperand(0);
2247   SDLoc DL(Op);
2248 
2249   // TODO: Don't scalarize on Evergreen?
2250   unsigned NElts = VT.getVectorNumElements();
2251   SmallVector<SDValue, 8> Args;
2252   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2253 
2254   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2255   for (unsigned I = 0; I < NElts; ++I)
2256     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2257 
2258   return DAG.getBuildVector(VT, DL, Args);
2259 }
2260 
2261 //===----------------------------------------------------------------------===//
2262 // Custom DAG optimizations
2263 //===----------------------------------------------------------------------===//
2264 
2265 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2266   APInt KnownZero, KnownOne;
2267   EVT VT = Op.getValueType();
2268   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2269 
2270   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2271 }
2272 
2273 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2274   EVT VT = Op.getValueType();
2275 
2276   // In order for this to be a signed 24-bit value, bit 23, must
2277   // be a sign bit.
2278   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2279                                      // as unsigned 24-bit values.
2280          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2281 }
2282 
2283 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2284                         TargetLowering::DAGCombinerInfo &DCI) {
2285 
2286   SelectionDAG &DAG = DCI.DAG;
2287   SDValue Op = Node24->getOperand(OpIdx);
2288   EVT VT = Op.getValueType();
2289 
2290   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2291   APInt KnownZero, KnownOne;
2292   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2293   if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI))
2294     return true;
2295 
2296   return false;
2297 }
2298 
2299 template <typename IntTy>
2300 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2301                                uint32_t Width, const SDLoc &DL) {
2302   if (Width + Offset < 32) {
2303     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2304     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2305     return DAG.getConstant(Result, DL, MVT::i32);
2306   }
2307 
2308   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2309 }
2310 
2311 static bool hasVolatileUser(SDNode *Val) {
2312   for (SDNode *U : Val->uses()) {
2313     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2314       if (M->isVolatile())
2315         return true;
2316     }
2317   }
2318 
2319   return false;
2320 }
2321 
2322 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2323   // i32 vectors are the canonical memory type.
2324   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2325     return false;
2326 
2327   if (!VT.isByteSized())
2328     return false;
2329 
2330   unsigned Size = VT.getStoreSize();
2331 
2332   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2333     return false;
2334 
2335   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2336     return false;
2337 
2338   return true;
2339 }
2340 
2341 // Replace load of an illegal type with a store of a bitcast to a friendlier
2342 // type.
2343 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2344                                                  DAGCombinerInfo &DCI) const {
2345   if (!DCI.isBeforeLegalize())
2346     return SDValue();
2347 
2348   LoadSDNode *LN = cast<LoadSDNode>(N);
2349   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2350     return SDValue();
2351 
2352   SDLoc SL(N);
2353   SelectionDAG &DAG = DCI.DAG;
2354   EVT VT = LN->getMemoryVT();
2355 
2356   unsigned Size = VT.getStoreSize();
2357   unsigned Align = LN->getAlignment();
2358   if (Align < Size && isTypeLegal(VT)) {
2359     bool IsFast;
2360     unsigned AS = LN->getAddressSpace();
2361 
2362     // Expand unaligned loads earlier than legalization. Due to visitation order
2363     // problems during legalization, the emitted instructions to pack and unpack
2364     // the bytes again are not eliminated in the case of an unaligned copy.
2365     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2366       if (VT.isVector())
2367         return scalarizeVectorLoad(LN, DAG);
2368 
2369       SDValue Ops[2];
2370       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2371       return DAG.getMergeValues(Ops, SDLoc(N));
2372     }
2373 
2374     if (!IsFast)
2375       return SDValue();
2376   }
2377 
2378   if (!shouldCombineMemoryType(VT))
2379     return SDValue();
2380 
2381   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2382 
2383   SDValue NewLoad
2384     = DAG.getLoad(NewVT, SL, LN->getChain(),
2385                   LN->getBasePtr(), LN->getMemOperand());
2386 
2387   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2388   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2389   return SDValue(N, 0);
2390 }
2391 
2392 // Replace store of an illegal type with a store of a bitcast to a friendlier
2393 // type.
2394 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2395                                                   DAGCombinerInfo &DCI) const {
2396   if (!DCI.isBeforeLegalize())
2397     return SDValue();
2398 
2399   StoreSDNode *SN = cast<StoreSDNode>(N);
2400   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2401     return SDValue();
2402 
2403   EVT VT = SN->getMemoryVT();
2404   unsigned Size = VT.getStoreSize();
2405 
2406   SDLoc SL(N);
2407   SelectionDAG &DAG = DCI.DAG;
2408   unsigned Align = SN->getAlignment();
2409   if (Align < Size && isTypeLegal(VT)) {
2410     bool IsFast;
2411     unsigned AS = SN->getAddressSpace();
2412 
2413     // Expand unaligned stores earlier than legalization. Due to visitation
2414     // order problems during legalization, the emitted instructions to pack and
2415     // unpack the bytes again are not eliminated in the case of an unaligned
2416     // copy.
2417     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2418       if (VT.isVector())
2419         return scalarizeVectorStore(SN, DAG);
2420 
2421       return expandUnalignedStore(SN, DAG);
2422     }
2423 
2424     if (!IsFast)
2425       return SDValue();
2426   }
2427 
2428   if (!shouldCombineMemoryType(VT))
2429     return SDValue();
2430 
2431   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2432   SDValue Val = SN->getValue();
2433 
2434   //DCI.AddToWorklist(Val.getNode());
2435 
2436   bool OtherUses = !Val.hasOneUse();
2437   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2438   if (OtherUses) {
2439     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2440     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2441   }
2442 
2443   return DAG.getStore(SN->getChain(), SL, CastVal,
2444                       SN->getBasePtr(), SN->getMemOperand());
2445 }
2446 
2447 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2448 /// binary operation \p Opc to it with the corresponding constant operands.
2449 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2450   DAGCombinerInfo &DCI, const SDLoc &SL,
2451   unsigned Opc, SDValue LHS,
2452   uint32_t ValLo, uint32_t ValHi) const {
2453   SelectionDAG &DAG = DCI.DAG;
2454   SDValue Lo, Hi;
2455   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2456 
2457   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2458   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2459 
2460   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2461   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2462 
2463   // Re-visit the ands. It's possible we eliminated one of them and it could
2464   // simplify the vector.
2465   DCI.AddToWorklist(Lo.getNode());
2466   DCI.AddToWorklist(Hi.getNode());
2467 
2468   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2469   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2470 }
2471 
2472 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2473                                                 DAGCombinerInfo &DCI) const {
2474   if (N->getValueType(0) != MVT::i64)
2475     return SDValue();
2476 
2477   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2478 
2479   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2480   // common case, splitting this into a move and a 32-bit shift is faster and
2481   // the same code size.
2482   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2483   if (!RHS)
2484     return SDValue();
2485 
2486   unsigned RHSVal = RHS->getZExtValue();
2487   if (RHSVal < 32)
2488     return SDValue();
2489 
2490   SDValue LHS = N->getOperand(0);
2491 
2492   SDLoc SL(N);
2493   SelectionDAG &DAG = DCI.DAG;
2494 
2495   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2496 
2497   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2498   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2499 
2500   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2501 
2502   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2503   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2504 }
2505 
2506 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2507                                                 DAGCombinerInfo &DCI) const {
2508   if (N->getValueType(0) != MVT::i64)
2509     return SDValue();
2510 
2511   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2512   if (!RHS)
2513     return SDValue();
2514 
2515   SelectionDAG &DAG = DCI.DAG;
2516   SDLoc SL(N);
2517   unsigned RHSVal = RHS->getZExtValue();
2518 
2519   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2520   if (RHSVal == 32) {
2521     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2522     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2523                                    DAG.getConstant(31, SL, MVT::i32));
2524 
2525     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2526     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2527   }
2528 
2529   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2530   if (RHSVal == 63) {
2531     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2532     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2533                                    DAG.getConstant(31, SL, MVT::i32));
2534     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2535     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2536   }
2537 
2538   return SDValue();
2539 }
2540 
2541 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2542                                                 DAGCombinerInfo &DCI) const {
2543   if (N->getValueType(0) != MVT::i64)
2544     return SDValue();
2545 
2546   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2547   if (!RHS)
2548     return SDValue();
2549 
2550   unsigned ShiftAmt = RHS->getZExtValue();
2551   if (ShiftAmt < 32)
2552     return SDValue();
2553 
2554   // srl i64:x, C for C >= 32
2555   // =>
2556   //   build_pair (srl hi_32(x), C - 32), 0
2557 
2558   SelectionDAG &DAG = DCI.DAG;
2559   SDLoc SL(N);
2560 
2561   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2562   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2563 
2564   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2565   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2566                            VecOp, One);
2567 
2568   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2569   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2570 
2571   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2572 
2573   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2574 }
2575 
2576 // We need to specifically handle i64 mul here to avoid unnecessary conversion
2577 // instructions. If we only match on the legalized i64 mul expansion,
2578 // SimplifyDemandedBits will be unable to remove them because there will be
2579 // multiple uses due to the separate mul + mulh[su].
2580 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
2581                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
2582   if (Size <= 32) {
2583     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2584     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
2585   }
2586 
2587   // Because we want to eliminate extension instructions before the
2588   // operation, we need to create a single user here (i.e. not the separate
2589   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
2590 
2591   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
2592 
2593   SDValue Mul = DAG.getNode(MulOpc, SL,
2594                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
2595 
2596   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
2597                      Mul.getValue(0), Mul.getValue(1));
2598 }
2599 
2600 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2601                                                 DAGCombinerInfo &DCI) const {
2602   EVT VT = N->getValueType(0);
2603 
2604   unsigned Size = VT.getSizeInBits();
2605   if (VT.isVector() || Size > 64)
2606     return SDValue();
2607 
2608   // There are i16 integer mul/mad.
2609   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
2610     return SDValue();
2611 
2612   SelectionDAG &DAG = DCI.DAG;
2613   SDLoc DL(N);
2614 
2615   SDValue N0 = N->getOperand(0);
2616   SDValue N1 = N->getOperand(1);
2617   SDValue Mul;
2618 
2619   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2620     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2621     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2622     Mul = getMul24(DAG, DL, N0, N1, Size, false);
2623   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2624     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2625     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2626     Mul = getMul24(DAG, DL, N0, N1, Size, true);
2627   } else {
2628     return SDValue();
2629   }
2630 
2631   // We need to use sext even for MUL_U24, because MUL_U24 is used
2632   // for signed multiply of 8 and 16-bit types.
2633   return DAG.getSExtOrTrunc(Mul, DL, VT);
2634 }
2635 
2636 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
2637                                                   DAGCombinerInfo &DCI) const {
2638   EVT VT = N->getValueType(0);
2639 
2640   if (!Subtarget->hasMulI24() || VT.isVector())
2641     return SDValue();
2642 
2643   SelectionDAG &DAG = DCI.DAG;
2644   SDLoc DL(N);
2645 
2646   SDValue N0 = N->getOperand(0);
2647   SDValue N1 = N->getOperand(1);
2648 
2649   if (!isI24(N0, DAG) || !isI24(N1, DAG))
2650     return SDValue();
2651 
2652   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2653   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2654 
2655   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
2656   DCI.AddToWorklist(Mulhi.getNode());
2657   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
2658 }
2659 
2660 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
2661                                                   DAGCombinerInfo &DCI) const {
2662   EVT VT = N->getValueType(0);
2663 
2664   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
2665     return SDValue();
2666 
2667   SelectionDAG &DAG = DCI.DAG;
2668   SDLoc DL(N);
2669 
2670   SDValue N0 = N->getOperand(0);
2671   SDValue N1 = N->getOperand(1);
2672 
2673   if (!isU24(N0, DAG) || !isU24(N1, DAG))
2674     return SDValue();
2675 
2676   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2677   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2678 
2679   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
2680   DCI.AddToWorklist(Mulhi.getNode());
2681   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
2682 }
2683 
2684 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
2685   SDNode *N, DAGCombinerInfo &DCI) const {
2686   SelectionDAG &DAG = DCI.DAG;
2687 
2688   // Simplify demanded bits before splitting into multiple users.
2689   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
2690     return SDValue();
2691 
2692   SDValue N0 = N->getOperand(0);
2693   SDValue N1 = N->getOperand(1);
2694 
2695   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
2696 
2697   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2698   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
2699 
2700   SDLoc SL(N);
2701 
2702   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
2703   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
2704   return DAG.getMergeValues({ MulLo, MulHi }, SL);
2705 }
2706 
2707 static bool isNegativeOne(SDValue Val) {
2708   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2709     return C->isAllOnesValue();
2710   return false;
2711 }
2712 
2713 static bool isCtlzOpc(unsigned Opc) {
2714   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2715 }
2716 
2717 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG,
2718                                           SDValue Op,
2719                                           const SDLoc &DL) const {
2720   EVT VT = Op.getValueType();
2721   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
2722   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
2723                               LegalVT != MVT::i16))
2724     return SDValue();
2725 
2726   if (VT != MVT::i32)
2727     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
2728 
2729   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op);
2730   if (VT != MVT::i32)
2731     FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH);
2732 
2733   return FFBH;
2734 }
2735 
2736 // The native instructions return -1 on 0 input. Optimize out a select that
2737 // produces -1 on 0.
2738 //
2739 // TODO: If zero is not undef, we could also do this if the output is compared
2740 // against the bitwidth.
2741 //
2742 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2743 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2744                                                  SDValue LHS, SDValue RHS,
2745                                                  DAGCombinerInfo &DCI) const {
2746   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2747   if (!CmpRhs || !CmpRhs->isNullValue())
2748     return SDValue();
2749 
2750   SelectionDAG &DAG = DCI.DAG;
2751   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2752   SDValue CmpLHS = Cond.getOperand(0);
2753 
2754   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2755   if (CCOpcode == ISD::SETEQ &&
2756       isCtlzOpc(RHS.getOpcode()) &&
2757       RHS.getOperand(0) == CmpLHS &&
2758       isNegativeOne(LHS)) {
2759     return getFFBH_U32(DAG, CmpLHS, SL);
2760   }
2761 
2762   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2763   if (CCOpcode == ISD::SETNE &&
2764       isCtlzOpc(LHS.getOpcode()) &&
2765       LHS.getOperand(0) == CmpLHS &&
2766       isNegativeOne(RHS)) {
2767     return getFFBH_U32(DAG, CmpLHS, SL);
2768   }
2769 
2770   return SDValue();
2771 }
2772 
2773 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
2774                                          unsigned Op,
2775                                          const SDLoc &SL,
2776                                          SDValue Cond,
2777                                          SDValue N1,
2778                                          SDValue N2) {
2779   SelectionDAG &DAG = DCI.DAG;
2780   EVT VT = N1.getValueType();
2781 
2782   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
2783                                   N1.getOperand(0), N2.getOperand(0));
2784   DCI.AddToWorklist(NewSelect.getNode());
2785   return DAG.getNode(Op, SL, VT, NewSelect);
2786 }
2787 
2788 // Pull a free FP operation out of a select so it may fold into uses.
2789 //
2790 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
2791 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
2792 //
2793 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
2794 // select c, (fabs x), +k -> fabs (select c, x, k)
2795 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
2796                                     SDValue N) {
2797   SelectionDAG &DAG = DCI.DAG;
2798   SDValue Cond = N.getOperand(0);
2799   SDValue LHS = N.getOperand(1);
2800   SDValue RHS = N.getOperand(2);
2801 
2802   EVT VT = N.getValueType();
2803   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
2804       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
2805     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
2806                                      SDLoc(N), Cond, LHS, RHS);
2807   }
2808 
2809   bool Inv = false;
2810   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
2811     std::swap(LHS, RHS);
2812     Inv = true;
2813   }
2814 
2815   // TODO: Support vector constants.
2816   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
2817   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
2818     SDLoc SL(N);
2819     // If one side is an fneg/fabs and the other is a constant, we can push the
2820     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
2821     SDValue NewLHS = LHS.getOperand(0);
2822     SDValue NewRHS = RHS;
2823 
2824     // Careful: if the neg can be folded up, don't try to pull it back down.
2825     bool ShouldFoldNeg = true;
2826 
2827     if (NewLHS.hasOneUse()) {
2828       unsigned Opc = NewLHS.getOpcode();
2829       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
2830         ShouldFoldNeg = false;
2831       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
2832         ShouldFoldNeg = false;
2833     }
2834 
2835     if (ShouldFoldNeg) {
2836       if (LHS.getOpcode() == ISD::FNEG)
2837         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2838       else if (CRHS->isNegative())
2839         return SDValue();
2840 
2841       if (Inv)
2842         std::swap(NewLHS, NewRHS);
2843 
2844       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
2845                                       Cond, NewLHS, NewRHS);
2846       DCI.AddToWorklist(NewSelect.getNode());
2847       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
2848     }
2849   }
2850 
2851   return SDValue();
2852 }
2853 
2854 
2855 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2856                                                    DAGCombinerInfo &DCI) const {
2857   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
2858     return Folded;
2859 
2860   SDValue Cond = N->getOperand(0);
2861   if (Cond.getOpcode() != ISD::SETCC)
2862     return SDValue();
2863 
2864   EVT VT = N->getValueType(0);
2865   SDValue LHS = Cond.getOperand(0);
2866   SDValue RHS = Cond.getOperand(1);
2867   SDValue CC = Cond.getOperand(2);
2868 
2869   SDValue True = N->getOperand(1);
2870   SDValue False = N->getOperand(2);
2871 
2872   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
2873     SelectionDAG &DAG = DCI.DAG;
2874     if ((DAG.isConstantValueOfAnyType(True) ||
2875          DAG.isConstantValueOfAnyType(True)) &&
2876         (!DAG.isConstantValueOfAnyType(False) &&
2877          !DAG.isConstantValueOfAnyType(False))) {
2878       // Swap cmp + select pair to move constant to false input.
2879       // This will allow using VOPC cndmasks more often.
2880       // select (setcc x, y), k, x -> select (setcc y, x) x, x
2881 
2882       SDLoc SL(N);
2883       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2884                                             LHS.getValueType().isInteger());
2885 
2886       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
2887       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
2888     }
2889 
2890     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
2891       SDValue MinMax
2892         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2893       // Revisit this node so we can catch min3/max3/med3 patterns.
2894       //DCI.AddToWorklist(MinMax.getNode());
2895       return MinMax;
2896     }
2897   }
2898 
2899   // There's no reason to not do this if the condition has other uses.
2900   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2901 }
2902 
2903 static bool isConstantFPZero(SDValue N) {
2904   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
2905     return C->isZero() && !C->isNegative();
2906   return false;
2907 }
2908 
2909 static unsigned inverseMinMax(unsigned Opc) {
2910   switch (Opc) {
2911   case ISD::FMAXNUM:
2912     return ISD::FMINNUM;
2913   case ISD::FMINNUM:
2914     return ISD::FMAXNUM;
2915   case AMDGPUISD::FMAX_LEGACY:
2916     return AMDGPUISD::FMIN_LEGACY;
2917   case AMDGPUISD::FMIN_LEGACY:
2918     return  AMDGPUISD::FMAX_LEGACY;
2919   default:
2920     llvm_unreachable("invalid min/max opcode");
2921   }
2922 }
2923 
2924 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
2925                                                  DAGCombinerInfo &DCI) const {
2926   SelectionDAG &DAG = DCI.DAG;
2927   SDValue N0 = N->getOperand(0);
2928   EVT VT = N->getValueType(0);
2929 
2930   unsigned Opc = N0.getOpcode();
2931 
2932   // If the input has multiple uses and we can either fold the negate down, or
2933   // the other uses cannot, give up. This both prevents unprofitable
2934   // transformations and infinite loops: we won't repeatedly try to fold around
2935   // a negate that has no 'good' form.
2936   if (N0.hasOneUse()) {
2937     // This may be able to fold into the source, but at a code size cost. Don't
2938     // fold if the fold into the user is free.
2939     if (allUsesHaveSourceMods(N, 0))
2940       return SDValue();
2941   } else {
2942     if (fnegFoldsIntoOp(Opc) &&
2943         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
2944       return SDValue();
2945   }
2946 
2947   SDLoc SL(N);
2948   switch (Opc) {
2949   case ISD::FADD: {
2950     if (!mayIgnoreSignedZero(N0))
2951       return SDValue();
2952 
2953     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
2954     SDValue LHS = N0.getOperand(0);
2955     SDValue RHS = N0.getOperand(1);
2956 
2957     if (LHS.getOpcode() != ISD::FNEG)
2958       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
2959     else
2960       LHS = LHS.getOperand(0);
2961 
2962     if (RHS.getOpcode() != ISD::FNEG)
2963       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2964     else
2965       RHS = RHS.getOperand(0);
2966 
2967     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
2968     if (!N0.hasOneUse())
2969       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
2970     return Res;
2971   }
2972   case ISD::FMUL:
2973   case AMDGPUISD::FMUL_LEGACY: {
2974     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
2975     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
2976     SDValue LHS = N0.getOperand(0);
2977     SDValue RHS = N0.getOperand(1);
2978 
2979     if (LHS.getOpcode() == ISD::FNEG)
2980       LHS = LHS.getOperand(0);
2981     else if (RHS.getOpcode() == ISD::FNEG)
2982       RHS = RHS.getOperand(0);
2983     else
2984       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2985 
2986     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
2987     if (!N0.hasOneUse())
2988       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
2989     return Res;
2990   }
2991   case ISD::FMA:
2992   case ISD::FMAD: {
2993     if (!mayIgnoreSignedZero(N0))
2994       return SDValue();
2995 
2996     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
2997     SDValue LHS = N0.getOperand(0);
2998     SDValue MHS = N0.getOperand(1);
2999     SDValue RHS = N0.getOperand(2);
3000 
3001     if (LHS.getOpcode() == ISD::FNEG)
3002       LHS = LHS.getOperand(0);
3003     else if (MHS.getOpcode() == ISD::FNEG)
3004       MHS = MHS.getOperand(0);
3005     else
3006       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3007 
3008     if (RHS.getOpcode() != ISD::FNEG)
3009       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3010     else
3011       RHS = RHS.getOperand(0);
3012 
3013     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3014     if (!N0.hasOneUse())
3015       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3016     return Res;
3017   }
3018   case ISD::FMAXNUM:
3019   case ISD::FMINNUM:
3020   case AMDGPUISD::FMAX_LEGACY:
3021   case AMDGPUISD::FMIN_LEGACY: {
3022     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3023     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3024     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3025     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3026 
3027     SDValue LHS = N0.getOperand(0);
3028     SDValue RHS = N0.getOperand(1);
3029 
3030     // 0 doesn't have a negated inline immediate.
3031     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
3032     // operations.
3033     if (isConstantFPZero(RHS))
3034       return SDValue();
3035 
3036     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3037     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3038     unsigned Opposite = inverseMinMax(Opc);
3039 
3040     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3041     if (!N0.hasOneUse())
3042       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3043     return Res;
3044   }
3045   case ISD::FP_EXTEND:
3046   case ISD::FTRUNC:
3047   case ISD::FRINT:
3048   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3049   case ISD::FSIN:
3050   case AMDGPUISD::RCP:
3051   case AMDGPUISD::RCP_LEGACY:
3052   case AMDGPUISD::SIN_HW: {
3053     SDValue CvtSrc = N0.getOperand(0);
3054     if (CvtSrc.getOpcode() == ISD::FNEG) {
3055       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3056       // (fneg (rcp (fneg x))) -> (rcp x)
3057       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3058     }
3059 
3060     if (!N0.hasOneUse())
3061       return SDValue();
3062 
3063     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3064     // (fneg (rcp x)) -> (rcp (fneg x))
3065     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3066     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3067   }
3068   case ISD::FP_ROUND: {
3069     SDValue CvtSrc = N0.getOperand(0);
3070 
3071     if (CvtSrc.getOpcode() == ISD::FNEG) {
3072       // (fneg (fp_round (fneg x))) -> (fp_round x)
3073       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3074                          CvtSrc.getOperand(0), N0.getOperand(1));
3075     }
3076 
3077     if (!N0.hasOneUse())
3078       return SDValue();
3079 
3080     // (fneg (fp_round x)) -> (fp_round (fneg x))
3081     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3082     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3083   }
3084   case ISD::FP16_TO_FP: {
3085     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3086     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3087     // Put the fneg back as a legal source operation that can be matched later.
3088     SDLoc SL(N);
3089 
3090     SDValue Src = N0.getOperand(0);
3091     EVT SrcVT = Src.getValueType();
3092 
3093     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3094     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3095                                   DAG.getConstant(0x8000, SL, SrcVT));
3096     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3097   }
3098   default:
3099     return SDValue();
3100   }
3101 }
3102 
3103 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3104                                                  DAGCombinerInfo &DCI) const {
3105   SelectionDAG &DAG = DCI.DAG;
3106   SDValue N0 = N->getOperand(0);
3107 
3108   if (!N0.hasOneUse())
3109     return SDValue();
3110 
3111   switch (N0.getOpcode()) {
3112   case ISD::FP16_TO_FP: {
3113     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3114     SDLoc SL(N);
3115     SDValue Src = N0.getOperand(0);
3116     EVT SrcVT = Src.getValueType();
3117 
3118     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3119     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3120                                   DAG.getConstant(0x7fff, SL, SrcVT));
3121     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3122   }
3123   default:
3124     return SDValue();
3125   }
3126 }
3127 
3128 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3129                                                 DAGCombinerInfo &DCI) const {
3130   SelectionDAG &DAG = DCI.DAG;
3131   SDLoc DL(N);
3132 
3133   switch(N->getOpcode()) {
3134   default:
3135     break;
3136   case ISD::BITCAST: {
3137     EVT DestVT = N->getValueType(0);
3138 
3139     // Push casts through vector builds. This helps avoid emitting a large
3140     // number of copies when materializing floating point vector constants.
3141     //
3142     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3143     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3144     if (DestVT.isVector()) {
3145       SDValue Src = N->getOperand(0);
3146       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3147         EVT SrcVT = Src.getValueType();
3148         unsigned NElts = DestVT.getVectorNumElements();
3149 
3150         if (SrcVT.getVectorNumElements() == NElts) {
3151           EVT DestEltVT = DestVT.getVectorElementType();
3152 
3153           SmallVector<SDValue, 8> CastedElts;
3154           SDLoc SL(N);
3155           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3156             SDValue Elt = Src.getOperand(I);
3157             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3158           }
3159 
3160           return DAG.getBuildVector(DestVT, SL, CastedElts);
3161         }
3162       }
3163     }
3164 
3165     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3166       break;
3167 
3168     // Fold bitcasts of constants.
3169     //
3170     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3171     // TODO: Generalize and move to DAGCombiner
3172     SDValue Src = N->getOperand(0);
3173     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3174       assert(Src.getValueType() == MVT::i64);
3175       SDLoc SL(N);
3176       uint64_t CVal = C->getZExtValue();
3177       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3178                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3179                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3180     }
3181 
3182     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3183       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3184       SDLoc SL(N);
3185       uint64_t CVal = Val.getZExtValue();
3186       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3187                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3188                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3189 
3190       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3191     }
3192 
3193     break;
3194   }
3195   case ISD::SHL: {
3196     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3197       break;
3198 
3199     return performShlCombine(N, DCI);
3200   }
3201   case ISD::SRL: {
3202     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3203       break;
3204 
3205     return performSrlCombine(N, DCI);
3206   }
3207   case ISD::SRA: {
3208     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3209       break;
3210 
3211     return performSraCombine(N, DCI);
3212   }
3213   case ISD::MUL:
3214     return performMulCombine(N, DCI);
3215   case ISD::MULHS:
3216     return performMulhsCombine(N, DCI);
3217   case ISD::MULHU:
3218     return performMulhuCombine(N, DCI);
3219   case AMDGPUISD::MUL_I24:
3220   case AMDGPUISD::MUL_U24:
3221   case AMDGPUISD::MULHI_I24:
3222   case AMDGPUISD::MULHI_U24: {
3223     // If the first call to simplify is successfull, then N may end up being
3224     // deleted, so we shouldn't call simplifyI24 again.
3225     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3226     return SDValue();
3227   }
3228   case AMDGPUISD::MUL_LOHI_I24:
3229   case AMDGPUISD::MUL_LOHI_U24:
3230     return performMulLoHi24Combine(N, DCI);
3231   case ISD::SELECT:
3232     return performSelectCombine(N, DCI);
3233   case ISD::FNEG:
3234     return performFNegCombine(N, DCI);
3235   case ISD::FABS:
3236     return performFAbsCombine(N, DCI);
3237   case AMDGPUISD::BFE_I32:
3238   case AMDGPUISD::BFE_U32: {
3239     assert(!N->getValueType(0).isVector() &&
3240            "Vector handling of BFE not implemented");
3241     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3242     if (!Width)
3243       break;
3244 
3245     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3246     if (WidthVal == 0)
3247       return DAG.getConstant(0, DL, MVT::i32);
3248 
3249     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3250     if (!Offset)
3251       break;
3252 
3253     SDValue BitsFrom = N->getOperand(0);
3254     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3255 
3256     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3257 
3258     if (OffsetVal == 0) {
3259       // This is already sign / zero extended, so try to fold away extra BFEs.
3260       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3261 
3262       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3263       if (OpSignBits >= SignBits)
3264         return BitsFrom;
3265 
3266       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3267       if (Signed) {
3268         // This is a sign_extend_inreg. Replace it to take advantage of existing
3269         // DAG Combines. If not eliminated, we will match back to BFE during
3270         // selection.
3271 
3272         // TODO: The sext_inreg of extended types ends, although we can could
3273         // handle them in a single BFE.
3274         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3275                            DAG.getValueType(SmallVT));
3276       }
3277 
3278       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3279     }
3280 
3281     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3282       if (Signed) {
3283         return constantFoldBFE<int32_t>(DAG,
3284                                         CVal->getSExtValue(),
3285                                         OffsetVal,
3286                                         WidthVal,
3287                                         DL);
3288       }
3289 
3290       return constantFoldBFE<uint32_t>(DAG,
3291                                        CVal->getZExtValue(),
3292                                        OffsetVal,
3293                                        WidthVal,
3294                                        DL);
3295     }
3296 
3297     if ((OffsetVal + WidthVal) >= 32) {
3298       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3299       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3300                          BitsFrom, ShiftVal);
3301     }
3302 
3303     if (BitsFrom.hasOneUse()) {
3304       APInt Demanded = APInt::getBitsSet(32,
3305                                          OffsetVal,
3306                                          OffsetVal + WidthVal);
3307 
3308       APInt KnownZero, KnownOne;
3309       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3310                                             !DCI.isBeforeLegalizeOps());
3311       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3312       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
3313           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
3314                                    KnownZero, KnownOne, TLO)) {
3315         DCI.CommitTargetLoweringOpt(TLO);
3316       }
3317     }
3318 
3319     break;
3320   }
3321   case ISD::LOAD:
3322     return performLoadCombine(N, DCI);
3323   case ISD::STORE:
3324     return performStoreCombine(N, DCI);
3325   }
3326   return SDValue();
3327 }
3328 
3329 //===----------------------------------------------------------------------===//
3330 // Helper functions
3331 //===----------------------------------------------------------------------===//
3332 
3333 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3334                                                   const TargetRegisterClass *RC,
3335                                                    unsigned Reg, EVT VT) const {
3336   MachineFunction &MF = DAG.getMachineFunction();
3337   MachineRegisterInfo &MRI = MF.getRegInfo();
3338   unsigned VirtualRegister;
3339   if (!MRI.isLiveIn(Reg)) {
3340     VirtualRegister = MRI.createVirtualRegister(RC);
3341     MRI.addLiveIn(Reg, VirtualRegister);
3342   } else {
3343     VirtualRegister = MRI.getLiveInVirtReg(Reg);
3344   }
3345   return DAG.getRegister(VirtualRegister, VT);
3346 }
3347 
3348 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
3349     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
3350   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
3351   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
3352   switch (Param) {
3353   case GRID_DIM:
3354     return ArgOffset;
3355   case GRID_OFFSET:
3356     return ArgOffset + 4;
3357   }
3358   llvm_unreachable("unexpected implicit parameter type");
3359 }
3360 
3361 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
3362 
3363 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
3364   switch ((AMDGPUISD::NodeType)Opcode) {
3365   case AMDGPUISD::FIRST_NUMBER: break;
3366   // AMDIL DAG nodes
3367   NODE_NAME_CASE(CALL);
3368   NODE_NAME_CASE(UMUL);
3369   NODE_NAME_CASE(BRANCH_COND);
3370 
3371   // AMDGPU DAG nodes
3372   NODE_NAME_CASE(ENDPGM)
3373   NODE_NAME_CASE(RETURN)
3374   NODE_NAME_CASE(DWORDADDR)
3375   NODE_NAME_CASE(FRACT)
3376   NODE_NAME_CASE(SETCC)
3377   NODE_NAME_CASE(SETREG)
3378   NODE_NAME_CASE(FMA_W_CHAIN)
3379   NODE_NAME_CASE(FMUL_W_CHAIN)
3380   NODE_NAME_CASE(CLAMP)
3381   NODE_NAME_CASE(COS_HW)
3382   NODE_NAME_CASE(SIN_HW)
3383   NODE_NAME_CASE(FMAX_LEGACY)
3384   NODE_NAME_CASE(FMIN_LEGACY)
3385   NODE_NAME_CASE(FMAX3)
3386   NODE_NAME_CASE(SMAX3)
3387   NODE_NAME_CASE(UMAX3)
3388   NODE_NAME_CASE(FMIN3)
3389   NODE_NAME_CASE(SMIN3)
3390   NODE_NAME_CASE(UMIN3)
3391   NODE_NAME_CASE(FMED3)
3392   NODE_NAME_CASE(SMED3)
3393   NODE_NAME_CASE(UMED3)
3394   NODE_NAME_CASE(URECIP)
3395   NODE_NAME_CASE(DIV_SCALE)
3396   NODE_NAME_CASE(DIV_FMAS)
3397   NODE_NAME_CASE(DIV_FIXUP)
3398   NODE_NAME_CASE(TRIG_PREOP)
3399   NODE_NAME_CASE(RCP)
3400   NODE_NAME_CASE(RSQ)
3401   NODE_NAME_CASE(RCP_LEGACY)
3402   NODE_NAME_CASE(RSQ_LEGACY)
3403   NODE_NAME_CASE(FMUL_LEGACY)
3404   NODE_NAME_CASE(RSQ_CLAMP)
3405   NODE_NAME_CASE(LDEXP)
3406   NODE_NAME_CASE(FP_CLASS)
3407   NODE_NAME_CASE(DOT4)
3408   NODE_NAME_CASE(CARRY)
3409   NODE_NAME_CASE(BORROW)
3410   NODE_NAME_CASE(BFE_U32)
3411   NODE_NAME_CASE(BFE_I32)
3412   NODE_NAME_CASE(BFI)
3413   NODE_NAME_CASE(BFM)
3414   NODE_NAME_CASE(FFBH_U32)
3415   NODE_NAME_CASE(FFBH_I32)
3416   NODE_NAME_CASE(MUL_U24)
3417   NODE_NAME_CASE(MUL_I24)
3418   NODE_NAME_CASE(MULHI_U24)
3419   NODE_NAME_CASE(MULHI_I24)
3420   NODE_NAME_CASE(MUL_LOHI_U24)
3421   NODE_NAME_CASE(MUL_LOHI_I24)
3422   NODE_NAME_CASE(MAD_U24)
3423   NODE_NAME_CASE(MAD_I24)
3424   NODE_NAME_CASE(TEXTURE_FETCH)
3425   NODE_NAME_CASE(EXPORT)
3426   NODE_NAME_CASE(EXPORT_DONE)
3427   NODE_NAME_CASE(R600_EXPORT)
3428   NODE_NAME_CASE(CONST_ADDRESS)
3429   NODE_NAME_CASE(REGISTER_LOAD)
3430   NODE_NAME_CASE(REGISTER_STORE)
3431   NODE_NAME_CASE(LOAD_INPUT)
3432   NODE_NAME_CASE(SAMPLE)
3433   NODE_NAME_CASE(SAMPLEB)
3434   NODE_NAME_CASE(SAMPLED)
3435   NODE_NAME_CASE(SAMPLEL)
3436   NODE_NAME_CASE(CVT_F32_UBYTE0)
3437   NODE_NAME_CASE(CVT_F32_UBYTE1)
3438   NODE_NAME_CASE(CVT_F32_UBYTE2)
3439   NODE_NAME_CASE(CVT_F32_UBYTE3)
3440   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
3441   NODE_NAME_CASE(CONST_DATA_PTR)
3442   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
3443   NODE_NAME_CASE(KILL)
3444   NODE_NAME_CASE(DUMMY_CHAIN)
3445   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
3446   NODE_NAME_CASE(SENDMSG)
3447   NODE_NAME_CASE(SENDMSGHALT)
3448   NODE_NAME_CASE(INTERP_MOV)
3449   NODE_NAME_CASE(INTERP_P1)
3450   NODE_NAME_CASE(INTERP_P2)
3451   NODE_NAME_CASE(STORE_MSKOR)
3452   NODE_NAME_CASE(LOAD_CONSTANT)
3453   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
3454   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
3455   NODE_NAME_CASE(ATOMIC_INC)
3456   NODE_NAME_CASE(ATOMIC_DEC)
3457   NODE_NAME_CASE(BUFFER_LOAD)
3458   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
3459   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
3460   }
3461   return nullptr;
3462 }
3463 
3464 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
3465                                               SelectionDAG &DAG, int Enabled,
3466                                               int &RefinementSteps,
3467                                               bool &UseOneConstNR,
3468                                               bool Reciprocal) const {
3469   EVT VT = Operand.getValueType();
3470 
3471   if (VT == MVT::f32) {
3472     RefinementSteps = 0;
3473     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
3474   }
3475 
3476   // TODO: There is also f64 rsq instruction, but the documentation is less
3477   // clear on its precision.
3478 
3479   return SDValue();
3480 }
3481 
3482 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
3483                                                SelectionDAG &DAG, int Enabled,
3484                                                int &RefinementSteps) const {
3485   EVT VT = Operand.getValueType();
3486 
3487   if (VT == MVT::f32) {
3488     // Reciprocal, < 1 ulp error.
3489     //
3490     // This reciprocal approximation converges to < 0.5 ulp error with one
3491     // newton rhapson performed with two fused multiple adds (FMAs).
3492 
3493     RefinementSteps = 0;
3494     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
3495   }
3496 
3497   // TODO: There is also f64 rcp instruction, but the documentation is less
3498   // clear on its precision.
3499 
3500   return SDValue();
3501 }
3502 
3503 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
3504   const SDValue Op,
3505   APInt &KnownZero,
3506   APInt &KnownOne,
3507   const SelectionDAG &DAG,
3508   unsigned Depth) const {
3509 
3510   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
3511 
3512   APInt KnownZero2;
3513   APInt KnownOne2;
3514   unsigned Opc = Op.getOpcode();
3515 
3516   switch (Opc) {
3517   default:
3518     break;
3519   case AMDGPUISD::CARRY:
3520   case AMDGPUISD::BORROW: {
3521     KnownZero = APInt::getHighBitsSet(32, 31);
3522     break;
3523   }
3524 
3525   case AMDGPUISD::BFE_I32:
3526   case AMDGPUISD::BFE_U32: {
3527     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3528     if (!CWidth)
3529       return;
3530 
3531     unsigned BitWidth = 32;
3532     uint32_t Width = CWidth->getZExtValue() & 0x1f;
3533 
3534     if (Opc == AMDGPUISD::BFE_U32)
3535       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
3536 
3537     break;
3538   }
3539   }
3540 }
3541 
3542 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
3543   SDValue Op,
3544   const SelectionDAG &DAG,
3545   unsigned Depth) const {
3546   switch (Op.getOpcode()) {
3547   case AMDGPUISD::BFE_I32: {
3548     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3549     if (!Width)
3550       return 1;
3551 
3552     unsigned SignBits = 32 - Width->getZExtValue() + 1;
3553     if (!isNullConstant(Op.getOperand(1)))
3554       return SignBits;
3555 
3556     // TODO: Could probably figure something out with non-0 offsets.
3557     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3558     return std::max(SignBits, Op0SignBits);
3559   }
3560 
3561   case AMDGPUISD::BFE_U32: {
3562     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3563     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
3564   }
3565 
3566   case AMDGPUISD::CARRY:
3567   case AMDGPUISD::BORROW:
3568     return 31;
3569 
3570   default:
3571     return 1;
3572   }
3573 }
3574