1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 using namespace llvm; 38 39 #include "AMDGPUGenCallingConv.inc" 40 41 // Find a larger type to do a load / store of a vector with. 42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 43 unsigned StoreSize = VT.getStoreSizeInBits(); 44 if (StoreSize <= 32) 45 return EVT::getIntegerVT(Ctx, StoreSize); 46 47 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 48 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 KnownBits Known = DAG.computeKnownBits(Op); 54 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 55 } 56 57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 58 EVT VT = Op.getValueType(); 59 60 // In order for this to be a signed 24-bit value, bit 23, must 61 // be a sign bit. 62 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 78 79 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 81 82 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 // There are no 64-bit extloads. These should be done as a 32-bit extload and 107 // an extension to 64-bit. 108 for (MVT VT : MVT::integer_valuetypes()) { 109 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 110 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 111 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 112 } 113 114 for (MVT VT : MVT::integer_valuetypes()) { 115 if (VT == MVT::i64) 116 continue; 117 118 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 119 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 122 123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 127 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 132 } 133 134 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 159 160 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 162 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 164 165 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 169 170 setOperationAction(ISD::STORE, MVT::f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 175 176 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 178 179 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 181 182 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 184 185 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 187 188 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 190 191 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 193 194 setOperationAction(ISD::STORE, MVT::i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 196 197 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 199 200 setOperationAction(ISD::STORE, MVT::f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 205 206 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 207 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 208 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 210 211 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 212 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 215 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 218 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 219 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 220 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 221 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 222 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FLOG, MVT::f32, Custom); 265 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 266 setOperationAction(ISD::FEXP, MVT::f32, Custom); 267 268 269 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 270 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 271 272 setOperationAction(ISD::FREM, MVT::f32, Custom); 273 setOperationAction(ISD::FREM, MVT::f64, Custom); 274 275 // Expand to fneg + fadd. 276 setOperationAction(ISD::FSUB, MVT::f64, Expand); 277 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 326 setOperationAction(ISD::ADDC, VT, Legal); 327 setOperationAction(ISD::SUBC, VT, Legal); 328 setOperationAction(ISD::ADDE, VT, Legal); 329 setOperationAction(ISD::SUBE, VT, Legal); 330 } 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 344 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 345 346 setOperationAction(ISD::SMIN, MVT::i32, Legal); 347 setOperationAction(ISD::UMIN, MVT::i32, Legal); 348 setOperationAction(ISD::SMAX, MVT::i32, Legal); 349 setOperationAction(ISD::UMAX, MVT::i32, Legal); 350 351 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 352 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 353 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 355 356 static const MVT::SimpleValueType VectorIntTypes[] = { 357 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 358 }; 359 360 for (MVT VT : VectorIntTypes) { 361 // Expand the following operations for the current type by default. 362 setOperationAction(ISD::ADD, VT, Expand); 363 setOperationAction(ISD::AND, VT, Expand); 364 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 365 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 366 setOperationAction(ISD::MUL, VT, Expand); 367 setOperationAction(ISD::MULHU, VT, Expand); 368 setOperationAction(ISD::MULHS, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 setOperationAction(ISD::SETCC, VT, Expand); 396 } 397 398 static const MVT::SimpleValueType FloatVectorTypes[] = { 399 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 400 }; 401 402 for (MVT VT : FloatVectorTypes) { 403 setOperationAction(ISD::FABS, VT, Expand); 404 setOperationAction(ISD::FMINNUM, VT, Expand); 405 setOperationAction(ISD::FMAXNUM, VT, Expand); 406 setOperationAction(ISD::FADD, VT, Expand); 407 setOperationAction(ISD::FCEIL, VT, Expand); 408 setOperationAction(ISD::FCOS, VT, Expand); 409 setOperationAction(ISD::FDIV, VT, Expand); 410 setOperationAction(ISD::FEXP2, VT, Expand); 411 setOperationAction(ISD::FEXP, VT, Expand); 412 setOperationAction(ISD::FLOG2, VT, Expand); 413 setOperationAction(ISD::FREM, VT, Expand); 414 setOperationAction(ISD::FLOG, VT, Expand); 415 setOperationAction(ISD::FLOG10, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 setOperationAction(ISD::SETCC, VT, Expand); 432 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 443 444 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 446 447 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 449 450 // There are no libcalls of any kind. 451 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 452 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 453 454 setSchedulingPreference(Sched::RegPressure); 455 setJumpIsExpensive(true); 456 457 // FIXME: This is only partially true. If we have to do vector compares, any 458 // SGPR pair can be a condition register. If we have a uniform condition, we 459 // are better off doing SALU operations, where there is only one SCC. For now, 460 // we don't have a way of knowing during instruction selection if a condition 461 // will be uniform and we always use vector compares. Assume we are using 462 // vector compares until that is fixed. 463 setHasMultipleConditionRegisters(true); 464 465 setMinCmpXchgSizeInBits(32); 466 setSupportsUnalignedAtomics(false); 467 468 PredictableSelectIsExpensive = false; 469 470 // We want to find all load dependencies for long chains of stores to enable 471 // merging into very wide vectors. The problem is with vectors with > 4 472 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 473 // vectors are a legal type, even though we have to split the loads 474 // usually. When we can more precisely specify load legality per address 475 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 476 // smarter so that they can figure out what to do in 2 iterations without all 477 // N > 4 stores on the same chain. 478 GatherAllAliasesMaxDepth = 16; 479 480 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 481 // about these during lowering. 482 MaxStoresPerMemcpy = 0xffffffff; 483 MaxStoresPerMemmove = 0xffffffff; 484 MaxStoresPerMemset = 0xffffffff; 485 486 setTargetDAGCombine(ISD::BITCAST); 487 setTargetDAGCombine(ISD::SHL); 488 setTargetDAGCombine(ISD::SRA); 489 setTargetDAGCombine(ISD::SRL); 490 setTargetDAGCombine(ISD::TRUNCATE); 491 setTargetDAGCombine(ISD::MUL); 492 setTargetDAGCombine(ISD::MULHU); 493 setTargetDAGCombine(ISD::MULHS); 494 setTargetDAGCombine(ISD::SELECT); 495 setTargetDAGCombine(ISD::SELECT_CC); 496 setTargetDAGCombine(ISD::STORE); 497 setTargetDAGCombine(ISD::FADD); 498 setTargetDAGCombine(ISD::FSUB); 499 setTargetDAGCombine(ISD::FNEG); 500 setTargetDAGCombine(ISD::FABS); 501 setTargetDAGCombine(ISD::AssertZext); 502 setTargetDAGCombine(ISD::AssertSext); 503 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Target Information 508 //===----------------------------------------------------------------------===// 509 510 LLVM_READNONE 511 static bool fnegFoldsIntoOp(unsigned Opc) { 512 switch (Opc) { 513 case ISD::FADD: 514 case ISD::FSUB: 515 case ISD::FMUL: 516 case ISD::FMA: 517 case ISD::FMAD: 518 case ISD::FMINNUM: 519 case ISD::FMAXNUM: 520 case ISD::FMINNUM_IEEE: 521 case ISD::FMAXNUM_IEEE: 522 case ISD::FSIN: 523 case ISD::FTRUNC: 524 case ISD::FRINT: 525 case ISD::FNEARBYINT: 526 case ISD::FCANONICALIZE: 527 case AMDGPUISD::RCP: 528 case AMDGPUISD::RCP_LEGACY: 529 case AMDGPUISD::RCP_IFLAG: 530 case AMDGPUISD::SIN_HW: 531 case AMDGPUISD::FMUL_LEGACY: 532 case AMDGPUISD::FMIN_LEGACY: 533 case AMDGPUISD::FMAX_LEGACY: 534 case AMDGPUISD::FMED3: 535 return true; 536 default: 537 return false; 538 } 539 } 540 541 /// \p returns true if the operation will definitely need to use a 64-bit 542 /// encoding, and thus will use a VOP3 encoding regardless of the source 543 /// modifiers. 544 LLVM_READONLY 545 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 546 return N->getNumOperands() > 2 || VT == MVT::f64; 547 } 548 549 // Most FP instructions support source modifiers, but this could be refined 550 // slightly. 551 LLVM_READONLY 552 static bool hasSourceMods(const SDNode *N) { 553 if (isa<MemSDNode>(N)) 554 return false; 555 556 switch (N->getOpcode()) { 557 case ISD::CopyToReg: 558 case ISD::SELECT: 559 case ISD::FDIV: 560 case ISD::FREM: 561 case ISD::INLINEASM: 562 case ISD::INLINEASM_BR: 563 case AMDGPUISD::DIV_SCALE: 564 case ISD::INTRINSIC_W_CHAIN: 565 566 // TODO: Should really be looking at the users of the bitcast. These are 567 // problematic because bitcasts are used to legalize all stores to integer 568 // types. 569 case ISD::BITCAST: 570 return false; 571 case ISD::INTRINSIC_WO_CHAIN: { 572 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 573 case Intrinsic::amdgcn_interp_p1: 574 case Intrinsic::amdgcn_interp_p2: 575 case Intrinsic::amdgcn_interp_mov: 576 case Intrinsic::amdgcn_interp_p1_f16: 577 case Intrinsic::amdgcn_interp_p2_f16: 578 return false; 579 default: 580 return true; 581 } 582 } 583 default: 584 return true; 585 } 586 } 587 588 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 589 unsigned CostThreshold) { 590 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 591 // it is truly free to use a source modifier in all cases. If there are 592 // multiple users but for each one will necessitate using VOP3, there will be 593 // a code size increase. Try to avoid increasing code size unless we know it 594 // will save on the instruction count. 595 unsigned NumMayIncreaseSize = 0; 596 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 597 598 // XXX - Should this limit number of uses to check? 599 for (const SDNode *U : N->uses()) { 600 if (!hasSourceMods(U)) 601 return false; 602 603 if (!opMustUseVOP3Encoding(U, VT)) { 604 if (++NumMayIncreaseSize > CostThreshold) 605 return false; 606 } 607 } 608 609 return true; 610 } 611 612 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 613 return MVT::i32; 614 } 615 616 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 617 return true; 618 } 619 620 // The backend supports 32 and 64 bit floating point immediates. 621 // FIXME: Why are we reporting vectors of FP immediates as legal? 622 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 623 bool ForCodeSize) const { 624 EVT ScalarVT = VT.getScalarType(); 625 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 626 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 627 } 628 629 // We don't want to shrink f64 / f32 constants. 630 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 631 EVT ScalarVT = VT.getScalarType(); 632 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 633 } 634 635 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 636 ISD::LoadExtType ExtTy, 637 EVT NewVT) const { 638 // TODO: This may be worth removing. Check regression tests for diffs. 639 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 640 return false; 641 642 unsigned NewSize = NewVT.getStoreSizeInBits(); 643 644 // If we are reducing to a 32-bit load or a smaller multi-dword load, 645 // this is always better. 646 if (NewSize >= 32) 647 return true; 648 649 EVT OldVT = N->getValueType(0); 650 unsigned OldSize = OldVT.getStoreSizeInBits(); 651 652 MemSDNode *MN = cast<MemSDNode>(N); 653 unsigned AS = MN->getAddressSpace(); 654 // Do not shrink an aligned scalar load to sub-dword. 655 // Scalar engine cannot do sub-dword loads. 656 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 657 (AS == AMDGPUAS::CONSTANT_ADDRESS || 658 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 659 (isa<LoadSDNode>(N) && 660 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 661 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 662 return false; 663 664 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 665 // extloads, so doing one requires using a buffer_load. In cases where we 666 // still couldn't use a scalar load, using the wider load shouldn't really 667 // hurt anything. 668 669 // If the old size already had to be an extload, there's no harm in continuing 670 // to reduce the width. 671 return (OldSize < 32); 672 } 673 674 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 675 const SelectionDAG &DAG, 676 const MachineMemOperand &MMO) const { 677 678 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 679 680 if (LoadTy.getScalarType() == MVT::i32) 681 return false; 682 683 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 684 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 685 686 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 687 return false; 688 689 bool Fast = false; 690 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 691 CastTy, MMO, &Fast) && 692 Fast; 693 } 694 695 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 696 // profitable with the expansion for 64-bit since it's generally good to 697 // speculate things. 698 // FIXME: These should really have the size as a parameter. 699 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 700 return true; 701 } 702 703 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 704 return true; 705 } 706 707 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 708 switch (N->getOpcode()) { 709 default: 710 return false; 711 case ISD::EntryToken: 712 case ISD::TokenFactor: 713 return true; 714 case ISD::INTRINSIC_WO_CHAIN: 715 { 716 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 717 switch (IntrID) { 718 default: 719 return false; 720 case Intrinsic::amdgcn_readfirstlane: 721 case Intrinsic::amdgcn_readlane: 722 return true; 723 } 724 } 725 break; 726 case ISD::LOAD: 727 { 728 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 729 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 730 return true; 731 return false; 732 } 733 break; 734 } 735 } 736 737 //===---------------------------------------------------------------------===// 738 // Target Properties 739 //===---------------------------------------------------------------------===// 740 741 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 742 assert(VT.isFloatingPoint()); 743 744 // Packed operations do not have a fabs modifier. 745 return VT == MVT::f32 || VT == MVT::f64 || 746 (Subtarget->has16BitInsts() && VT == MVT::f16); 747 } 748 749 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 750 assert(VT.isFloatingPoint()); 751 return VT == MVT::f32 || VT == MVT::f64 || 752 (Subtarget->has16BitInsts() && VT == MVT::f16) || 753 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 754 } 755 756 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 757 unsigned NumElem, 758 unsigned AS) const { 759 return true; 760 } 761 762 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 763 // There are few operations which truly have vector input operands. Any vector 764 // operation is going to involve operations on each component, and a 765 // build_vector will be a copy per element, so it always makes sense to use a 766 // build_vector input in place of the extracted element to avoid a copy into a 767 // super register. 768 // 769 // We should probably only do this if all users are extracts only, but this 770 // should be the common case. 771 return true; 772 } 773 774 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 775 // Truncate is just accessing a subregister. 776 777 unsigned SrcSize = Source.getSizeInBits(); 778 unsigned DestSize = Dest.getSizeInBits(); 779 780 return DestSize < SrcSize && DestSize % 32 == 0 ; 781 } 782 783 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 784 // Truncate is just accessing a subregister. 785 786 unsigned SrcSize = Source->getScalarSizeInBits(); 787 unsigned DestSize = Dest->getScalarSizeInBits(); 788 789 if (DestSize== 16 && Subtarget->has16BitInsts()) 790 return SrcSize >= 32; 791 792 return DestSize < SrcSize && DestSize % 32 == 0; 793 } 794 795 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 796 unsigned SrcSize = Src->getScalarSizeInBits(); 797 unsigned DestSize = Dest->getScalarSizeInBits(); 798 799 if (SrcSize == 16 && Subtarget->has16BitInsts()) 800 return DestSize >= 32; 801 802 return SrcSize == 32 && DestSize == 64; 803 } 804 805 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 806 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 807 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 808 // this will enable reducing 64-bit operations the 32-bit, which is always 809 // good. 810 811 if (Src == MVT::i16) 812 return Dest == MVT::i32 ||Dest == MVT::i64 ; 813 814 return Src == MVT::i32 && Dest == MVT::i64; 815 } 816 817 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 818 return isZExtFree(Val.getValueType(), VT2); 819 } 820 821 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 822 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 823 // limited number of native 64-bit operations. Shrinking an operation to fit 824 // in a single 32-bit register should always be helpful. As currently used, 825 // this is much less general than the name suggests, and is only used in 826 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 827 // not profitable, and may actually be harmful. 828 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 829 } 830 831 //===---------------------------------------------------------------------===// 832 // TargetLowering Callbacks 833 //===---------------------------------------------------------------------===// 834 835 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 836 bool IsVarArg) { 837 switch (CC) { 838 case CallingConv::AMDGPU_VS: 839 case CallingConv::AMDGPU_GS: 840 case CallingConv::AMDGPU_PS: 841 case CallingConv::AMDGPU_CS: 842 case CallingConv::AMDGPU_HS: 843 case CallingConv::AMDGPU_ES: 844 case CallingConv::AMDGPU_LS: 845 return CC_AMDGPU; 846 case CallingConv::C: 847 case CallingConv::Fast: 848 case CallingConv::Cold: 849 return CC_AMDGPU_Func; 850 case CallingConv::AMDGPU_KERNEL: 851 case CallingConv::SPIR_KERNEL: 852 default: 853 report_fatal_error("Unsupported calling convention for call"); 854 } 855 } 856 857 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 858 bool IsVarArg) { 859 switch (CC) { 860 case CallingConv::AMDGPU_KERNEL: 861 case CallingConv::SPIR_KERNEL: 862 llvm_unreachable("kernels should not be handled here"); 863 case CallingConv::AMDGPU_VS: 864 case CallingConv::AMDGPU_GS: 865 case CallingConv::AMDGPU_PS: 866 case CallingConv::AMDGPU_CS: 867 case CallingConv::AMDGPU_HS: 868 case CallingConv::AMDGPU_ES: 869 case CallingConv::AMDGPU_LS: 870 return RetCC_SI_Shader; 871 case CallingConv::C: 872 case CallingConv::Fast: 873 case CallingConv::Cold: 874 return RetCC_AMDGPU_Func; 875 default: 876 report_fatal_error("Unsupported calling convention."); 877 } 878 } 879 880 /// The SelectionDAGBuilder will automatically promote function arguments 881 /// with illegal types. However, this does not work for the AMDGPU targets 882 /// since the function arguments are stored in memory as these illegal types. 883 /// In order to handle this properly we need to get the original types sizes 884 /// from the LLVM IR Function and fixup the ISD:InputArg values before 885 /// passing them to AnalyzeFormalArguments() 886 887 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 888 /// input values across multiple registers. Each item in the Ins array 889 /// represents a single value that will be stored in registers. Ins[x].VT is 890 /// the value type of the value that will be stored in the register, so 891 /// whatever SDNode we lower the argument to needs to be this type. 892 /// 893 /// In order to correctly lower the arguments we need to know the size of each 894 /// argument. Since Ins[x].VT gives us the size of the register that will 895 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 896 /// for the orignal function argument so that we can deduce the correct memory 897 /// type to use for Ins[x]. In most cases the correct memory type will be 898 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 899 /// we have a kernel argument of type v8i8, this argument will be split into 900 /// 8 parts and each part will be represented by its own item in the Ins array. 901 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 902 /// the argument before it was split. From this, we deduce that the memory type 903 /// for each individual part is i8. We pass the memory type as LocVT to the 904 /// calling convention analysis function and the register type (Ins[x].VT) as 905 /// the ValVT. 906 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 907 CCState &State, 908 const SmallVectorImpl<ISD::InputArg> &Ins) const { 909 const MachineFunction &MF = State.getMachineFunction(); 910 const Function &Fn = MF.getFunction(); 911 LLVMContext &Ctx = Fn.getParent()->getContext(); 912 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 913 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 914 CallingConv::ID CC = Fn.getCallingConv(); 915 916 unsigned MaxAlign = 1; 917 uint64_t ExplicitArgOffset = 0; 918 const DataLayout &DL = Fn.getParent()->getDataLayout(); 919 920 unsigned InIndex = 0; 921 922 for (const Argument &Arg : Fn.args()) { 923 Type *BaseArgTy = Arg.getType(); 924 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 925 MaxAlign = std::max(Align, MaxAlign); 926 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 927 928 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 929 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 930 931 // We're basically throwing away everything passed into us and starting over 932 // to get accurate in-memory offsets. The "PartOffset" is completely useless 933 // to us as computed in Ins. 934 // 935 // We also need to figure out what type legalization is trying to do to get 936 // the correct memory offsets. 937 938 SmallVector<EVT, 16> ValueVTs; 939 SmallVector<uint64_t, 16> Offsets; 940 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 941 942 for (unsigned Value = 0, NumValues = ValueVTs.size(); 943 Value != NumValues; ++Value) { 944 uint64_t BasePartOffset = Offsets[Value]; 945 946 EVT ArgVT = ValueVTs[Value]; 947 EVT MemVT = ArgVT; 948 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 949 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 950 951 if (NumRegs == 1) { 952 // This argument is not split, so the IR type is the memory type. 953 if (ArgVT.isExtended()) { 954 // We have an extended type, like i24, so we should just use the 955 // register type. 956 MemVT = RegisterVT; 957 } else { 958 MemVT = ArgVT; 959 } 960 } else if (ArgVT.isVector() && RegisterVT.isVector() && 961 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 962 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 963 // We have a vector value which has been split into a vector with 964 // the same scalar type, but fewer elements. This should handle 965 // all the floating-point vector types. 966 MemVT = RegisterVT; 967 } else if (ArgVT.isVector() && 968 ArgVT.getVectorNumElements() == NumRegs) { 969 // This arg has been split so that each element is stored in a separate 970 // register. 971 MemVT = ArgVT.getScalarType(); 972 } else if (ArgVT.isExtended()) { 973 // We have an extended type, like i65. 974 MemVT = RegisterVT; 975 } else { 976 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 977 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 978 if (RegisterVT.isInteger()) { 979 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 980 } else if (RegisterVT.isVector()) { 981 assert(!RegisterVT.getScalarType().isFloatingPoint()); 982 unsigned NumElements = RegisterVT.getVectorNumElements(); 983 assert(MemoryBits % NumElements == 0); 984 // This vector type has been split into another vector type with 985 // a different elements size. 986 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 987 MemoryBits / NumElements); 988 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 989 } else { 990 llvm_unreachable("cannot deduce memory type."); 991 } 992 } 993 994 // Convert one element vectors to scalar. 995 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 996 MemVT = MemVT.getScalarType(); 997 998 // Round up vec3/vec5 argument. 999 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1000 assert(MemVT.getVectorNumElements() == 3 || 1001 MemVT.getVectorNumElements() == 5); 1002 MemVT = MemVT.getPow2VectorType(State.getContext()); 1003 } 1004 1005 unsigned PartOffset = 0; 1006 for (unsigned i = 0; i != NumRegs; ++i) { 1007 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1008 BasePartOffset + PartOffset, 1009 MemVT.getSimpleVT(), 1010 CCValAssign::Full)); 1011 PartOffset += MemVT.getStoreSize(); 1012 } 1013 } 1014 } 1015 } 1016 1017 SDValue AMDGPUTargetLowering::LowerReturn( 1018 SDValue Chain, CallingConv::ID CallConv, 1019 bool isVarArg, 1020 const SmallVectorImpl<ISD::OutputArg> &Outs, 1021 const SmallVectorImpl<SDValue> &OutVals, 1022 const SDLoc &DL, SelectionDAG &DAG) const { 1023 // FIXME: Fails for r600 tests 1024 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1025 // "wave terminate should not have return values"); 1026 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1027 } 1028 1029 //===---------------------------------------------------------------------===// 1030 // Target specific lowering 1031 //===---------------------------------------------------------------------===// 1032 1033 /// Selects the correct CCAssignFn for a given CallingConvention value. 1034 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1035 bool IsVarArg) { 1036 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1037 } 1038 1039 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1040 bool IsVarArg) { 1041 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1042 } 1043 1044 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1045 SelectionDAG &DAG, 1046 MachineFrameInfo &MFI, 1047 int ClobberedFI) const { 1048 SmallVector<SDValue, 8> ArgChains; 1049 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1050 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1051 1052 // Include the original chain at the beginning of the list. When this is 1053 // used by target LowerCall hooks, this helps legalize find the 1054 // CALLSEQ_BEGIN node. 1055 ArgChains.push_back(Chain); 1056 1057 // Add a chain value for each stack argument corresponding 1058 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1059 UE = DAG.getEntryNode().getNode()->use_end(); 1060 U != UE; ++U) { 1061 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1062 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1063 if (FI->getIndex() < 0) { 1064 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1065 int64_t InLastByte = InFirstByte; 1066 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1067 1068 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1069 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1070 ArgChains.push_back(SDValue(L, 1)); 1071 } 1072 } 1073 } 1074 } 1075 1076 // Build a tokenfactor for all the chains. 1077 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1078 } 1079 1080 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1081 SmallVectorImpl<SDValue> &InVals, 1082 StringRef Reason) const { 1083 SDValue Callee = CLI.Callee; 1084 SelectionDAG &DAG = CLI.DAG; 1085 1086 const Function &Fn = DAG.getMachineFunction().getFunction(); 1087 1088 StringRef FuncName("<unknown>"); 1089 1090 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1091 FuncName = G->getSymbol(); 1092 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1093 FuncName = G->getGlobal()->getName(); 1094 1095 DiagnosticInfoUnsupported NoCalls( 1096 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1097 DAG.getContext()->diagnose(NoCalls); 1098 1099 if (!CLI.IsTailCall) { 1100 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1101 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1102 } 1103 1104 return DAG.getEntryNode(); 1105 } 1106 1107 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1108 SmallVectorImpl<SDValue> &InVals) const { 1109 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1110 } 1111 1112 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1113 SelectionDAG &DAG) const { 1114 const Function &Fn = DAG.getMachineFunction().getFunction(); 1115 1116 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1117 SDLoc(Op).getDebugLoc()); 1118 DAG.getContext()->diagnose(NoDynamicAlloca); 1119 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1120 return DAG.getMergeValues(Ops, SDLoc()); 1121 } 1122 1123 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1124 SelectionDAG &DAG) const { 1125 switch (Op.getOpcode()) { 1126 default: 1127 Op->print(errs(), &DAG); 1128 llvm_unreachable("Custom lowering code for this" 1129 "instruction is not implemented yet!"); 1130 break; 1131 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1132 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1133 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1134 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1135 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1136 case ISD::FREM: return LowerFREM(Op, DAG); 1137 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1138 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1139 case ISD::FRINT: return LowerFRINT(Op, DAG); 1140 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1141 case ISD::FROUND: return LowerFROUND(Op, DAG); 1142 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1143 case ISD::FLOG: 1144 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1145 case ISD::FLOG10: 1146 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1147 case ISD::FEXP: 1148 return lowerFEXP(Op, DAG); 1149 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1150 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1151 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1152 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1153 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1154 case ISD::CTTZ: 1155 case ISD::CTTZ_ZERO_UNDEF: 1156 case ISD::CTLZ: 1157 case ISD::CTLZ_ZERO_UNDEF: 1158 return LowerCTLZ_CTTZ(Op, DAG); 1159 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1160 } 1161 return Op; 1162 } 1163 1164 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1165 SmallVectorImpl<SDValue> &Results, 1166 SelectionDAG &DAG) const { 1167 switch (N->getOpcode()) { 1168 case ISD::SIGN_EXTEND_INREG: 1169 // Different parts of legalization seem to interpret which type of 1170 // sign_extend_inreg is the one to check for custom lowering. The extended 1171 // from type is what really matters, but some places check for custom 1172 // lowering of the result type. This results in trying to use 1173 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1174 // nothing here and let the illegal result integer be handled normally. 1175 return; 1176 default: 1177 return; 1178 } 1179 } 1180 1181 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1182 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1183 if (!GVar || !GVar->hasInitializer()) 1184 return false; 1185 1186 return !isa<UndefValue>(GVar->getInitializer()); 1187 } 1188 1189 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1190 SDValue Op, 1191 SelectionDAG &DAG) const { 1192 1193 const DataLayout &DL = DAG.getDataLayout(); 1194 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1195 const GlobalValue *GV = G->getGlobal(); 1196 1197 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1198 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1199 if (!MFI->isEntryFunction()) { 1200 const Function &Fn = DAG.getMachineFunction().getFunction(); 1201 DiagnosticInfoUnsupported BadLDSDecl( 1202 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1203 DAG.getContext()->diagnose(BadLDSDecl); 1204 } 1205 1206 // XXX: What does the value of G->getOffset() mean? 1207 assert(G->getOffset() == 0 && 1208 "Do not know what to do with an non-zero offset"); 1209 1210 // TODO: We could emit code to handle the initialization somewhere. 1211 if (!hasDefinedInitializer(GV)) { 1212 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1213 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1214 } 1215 } 1216 1217 const Function &Fn = DAG.getMachineFunction().getFunction(); 1218 DiagnosticInfoUnsupported BadInit( 1219 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1220 DAG.getContext()->diagnose(BadInit); 1221 return SDValue(); 1222 } 1223 1224 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1225 SelectionDAG &DAG) const { 1226 SmallVector<SDValue, 8> Args; 1227 1228 EVT VT = Op.getValueType(); 1229 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1230 SDLoc SL(Op); 1231 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1232 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1233 1234 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1235 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1236 } 1237 1238 for (const SDUse &U : Op->ops()) 1239 DAG.ExtractVectorElements(U.get(), Args); 1240 1241 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1242 } 1243 1244 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1245 SelectionDAG &DAG) const { 1246 1247 SmallVector<SDValue, 8> Args; 1248 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1249 EVT VT = Op.getValueType(); 1250 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1251 VT.getVectorNumElements()); 1252 1253 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1254 } 1255 1256 /// Generate Min/Max node 1257 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1258 SDValue LHS, SDValue RHS, 1259 SDValue True, SDValue False, 1260 SDValue CC, 1261 DAGCombinerInfo &DCI) const { 1262 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1263 return SDValue(); 1264 1265 SelectionDAG &DAG = DCI.DAG; 1266 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1267 switch (CCOpcode) { 1268 case ISD::SETOEQ: 1269 case ISD::SETONE: 1270 case ISD::SETUNE: 1271 case ISD::SETNE: 1272 case ISD::SETUEQ: 1273 case ISD::SETEQ: 1274 case ISD::SETFALSE: 1275 case ISD::SETFALSE2: 1276 case ISD::SETTRUE: 1277 case ISD::SETTRUE2: 1278 case ISD::SETUO: 1279 case ISD::SETO: 1280 break; 1281 case ISD::SETULE: 1282 case ISD::SETULT: { 1283 if (LHS == True) 1284 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1285 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1286 } 1287 case ISD::SETOLE: 1288 case ISD::SETOLT: 1289 case ISD::SETLE: 1290 case ISD::SETLT: { 1291 // Ordered. Assume ordered for undefined. 1292 1293 // Only do this after legalization to avoid interfering with other combines 1294 // which might occur. 1295 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1296 !DCI.isCalledByLegalizer()) 1297 return SDValue(); 1298 1299 // We need to permute the operands to get the correct NaN behavior. The 1300 // selected operand is the second one based on the failing compare with NaN, 1301 // so permute it based on the compare type the hardware uses. 1302 if (LHS == True) 1303 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1304 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1305 } 1306 case ISD::SETUGE: 1307 case ISD::SETUGT: { 1308 if (LHS == True) 1309 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1310 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1311 } 1312 case ISD::SETGT: 1313 case ISD::SETGE: 1314 case ISD::SETOGE: 1315 case ISD::SETOGT: { 1316 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1317 !DCI.isCalledByLegalizer()) 1318 return SDValue(); 1319 1320 if (LHS == True) 1321 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1322 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1323 } 1324 case ISD::SETCC_INVALID: 1325 llvm_unreachable("Invalid setcc condcode!"); 1326 } 1327 return SDValue(); 1328 } 1329 1330 std::pair<SDValue, SDValue> 1331 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1332 SDLoc SL(Op); 1333 1334 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1335 1336 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1337 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1338 1339 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1340 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1341 1342 return std::make_pair(Lo, Hi); 1343 } 1344 1345 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1346 SDLoc SL(Op); 1347 1348 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1349 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1350 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1351 } 1352 1353 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1354 SDLoc SL(Op); 1355 1356 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1357 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1358 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1359 } 1360 1361 // Split a vector type into two parts. The first part is a power of two vector. 1362 // The second part is whatever is left over, and is a scalar if it would 1363 // otherwise be a 1-vector. 1364 std::pair<EVT, EVT> 1365 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1366 EVT LoVT, HiVT; 1367 EVT EltVT = VT.getVectorElementType(); 1368 unsigned NumElts = VT.getVectorNumElements(); 1369 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1370 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1371 HiVT = NumElts - LoNumElts == 1 1372 ? EltVT 1373 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1374 return std::make_pair(LoVT, HiVT); 1375 } 1376 1377 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1378 // scalar. 1379 std::pair<SDValue, SDValue> 1380 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1381 const EVT &LoVT, const EVT &HiVT, 1382 SelectionDAG &DAG) const { 1383 assert(LoVT.getVectorNumElements() + 1384 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1385 N.getValueType().getVectorNumElements() && 1386 "More vector elements requested than available!"); 1387 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1388 DAG.getVectorIdxConstant(0, DL)); 1389 SDValue Hi = DAG.getNode( 1390 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1391 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1392 return std::make_pair(Lo, Hi); 1393 } 1394 1395 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1396 SelectionDAG &DAG) const { 1397 LoadSDNode *Load = cast<LoadSDNode>(Op); 1398 EVT VT = Op.getValueType(); 1399 SDLoc SL(Op); 1400 1401 1402 // If this is a 2 element vector, we really want to scalarize and not create 1403 // weird 1 element vectors. 1404 if (VT.getVectorNumElements() == 2) { 1405 SDValue Ops[2]; 1406 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1407 return DAG.getMergeValues(Ops, SL); 1408 } 1409 1410 SDValue BasePtr = Load->getBasePtr(); 1411 EVT MemVT = Load->getMemoryVT(); 1412 1413 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1414 1415 EVT LoVT, HiVT; 1416 EVT LoMemVT, HiMemVT; 1417 SDValue Lo, Hi; 1418 1419 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1420 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1421 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1422 1423 unsigned Size = LoMemVT.getStoreSize(); 1424 unsigned BaseAlign = Load->getAlignment(); 1425 unsigned HiAlign = MinAlign(BaseAlign, Size); 1426 1427 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1428 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1429 BaseAlign, Load->getMemOperand()->getFlags()); 1430 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1431 SDValue HiLoad = 1432 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1433 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1434 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1435 1436 SDValue Join; 1437 if (LoVT == HiVT) { 1438 // This is the case that the vector is power of two so was evenly split. 1439 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1440 } else { 1441 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1442 DAG.getVectorIdxConstant(0, SL)); 1443 Join = DAG.getNode( 1444 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1445 VT, Join, HiLoad, 1446 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1447 } 1448 1449 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1450 LoLoad.getValue(1), HiLoad.getValue(1))}; 1451 1452 return DAG.getMergeValues(Ops, SL); 1453 } 1454 1455 // Widen a vector load from vec3 to vec4. 1456 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1457 SelectionDAG &DAG) const { 1458 LoadSDNode *Load = cast<LoadSDNode>(Op); 1459 EVT VT = Op.getValueType(); 1460 assert(VT.getVectorNumElements() == 3); 1461 SDValue BasePtr = Load->getBasePtr(); 1462 EVT MemVT = Load->getMemoryVT(); 1463 SDLoc SL(Op); 1464 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1465 unsigned BaseAlign = Load->getAlignment(); 1466 1467 EVT WideVT = 1468 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1469 EVT WideMemVT = 1470 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1471 SDValue WideLoad = DAG.getExtLoad( 1472 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1473 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1474 return DAG.getMergeValues( 1475 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1476 DAG.getVectorIdxConstant(0, SL)), 1477 WideLoad.getValue(1)}, 1478 SL); 1479 } 1480 1481 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1482 SelectionDAG &DAG) const { 1483 StoreSDNode *Store = cast<StoreSDNode>(Op); 1484 SDValue Val = Store->getValue(); 1485 EVT VT = Val.getValueType(); 1486 1487 // If this is a 2 element vector, we really want to scalarize and not create 1488 // weird 1 element vectors. 1489 if (VT.getVectorNumElements() == 2) 1490 return scalarizeVectorStore(Store, DAG); 1491 1492 EVT MemVT = Store->getMemoryVT(); 1493 SDValue Chain = Store->getChain(); 1494 SDValue BasePtr = Store->getBasePtr(); 1495 SDLoc SL(Op); 1496 1497 EVT LoVT, HiVT; 1498 EVT LoMemVT, HiMemVT; 1499 SDValue Lo, Hi; 1500 1501 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1502 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1503 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1504 1505 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1506 1507 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1508 unsigned BaseAlign = Store->getAlignment(); 1509 unsigned Size = LoMemVT.getStoreSize(); 1510 unsigned HiAlign = MinAlign(BaseAlign, Size); 1511 1512 SDValue LoStore = 1513 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1514 Store->getMemOperand()->getFlags()); 1515 SDValue HiStore = 1516 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1517 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1518 1519 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1520 } 1521 1522 // This is a shortcut for integer division because we have fast i32<->f32 1523 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1524 // float is enough to accurately represent up to a 24-bit signed integer. 1525 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1526 bool Sign) const { 1527 SDLoc DL(Op); 1528 EVT VT = Op.getValueType(); 1529 SDValue LHS = Op.getOperand(0); 1530 SDValue RHS = Op.getOperand(1); 1531 MVT IntVT = MVT::i32; 1532 MVT FltVT = MVT::f32; 1533 1534 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1535 if (LHSSignBits < 9) 1536 return SDValue(); 1537 1538 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1539 if (RHSSignBits < 9) 1540 return SDValue(); 1541 1542 unsigned BitSize = VT.getSizeInBits(); 1543 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1544 unsigned DivBits = BitSize - SignBits; 1545 if (Sign) 1546 ++DivBits; 1547 1548 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1549 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1550 1551 SDValue jq = DAG.getConstant(1, DL, IntVT); 1552 1553 if (Sign) { 1554 // char|short jq = ia ^ ib; 1555 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1556 1557 // jq = jq >> (bitsize - 2) 1558 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1559 DAG.getConstant(BitSize - 2, DL, VT)); 1560 1561 // jq = jq | 0x1 1562 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1563 } 1564 1565 // int ia = (int)LHS; 1566 SDValue ia = LHS; 1567 1568 // int ib, (int)RHS; 1569 SDValue ib = RHS; 1570 1571 // float fa = (float)ia; 1572 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1573 1574 // float fb = (float)ib; 1575 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1576 1577 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1578 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1579 1580 // fq = trunc(fq); 1581 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1582 1583 // float fqneg = -fq; 1584 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1585 1586 MachineFunction &MF = DAG.getMachineFunction(); 1587 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1588 1589 // float fr = mad(fqneg, fb, fa); 1590 unsigned OpCode = MFI->getMode().FP32Denormals ? 1591 (unsigned)AMDGPUISD::FMAD_FTZ : 1592 (unsigned)ISD::FMAD; 1593 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1594 1595 // int iq = (int)fq; 1596 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1597 1598 // fr = fabs(fr); 1599 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1600 1601 // fb = fabs(fb); 1602 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1603 1604 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1605 1606 // int cv = fr >= fb; 1607 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1608 1609 // jq = (cv ? jq : 0); 1610 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1611 1612 // dst = iq + jq; 1613 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1614 1615 // Rem needs compensation, it's easier to recompute it 1616 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1617 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1618 1619 // Truncate to number of bits this divide really is. 1620 if (Sign) { 1621 SDValue InRegSize 1622 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1623 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1624 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1625 } else { 1626 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1627 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1628 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1629 } 1630 1631 return DAG.getMergeValues({ Div, Rem }, DL); 1632 } 1633 1634 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1635 SelectionDAG &DAG, 1636 SmallVectorImpl<SDValue> &Results) const { 1637 SDLoc DL(Op); 1638 EVT VT = Op.getValueType(); 1639 1640 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1641 1642 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1643 1644 SDValue One = DAG.getConstant(1, DL, HalfVT); 1645 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1646 1647 //HiLo split 1648 SDValue LHS = Op.getOperand(0); 1649 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1650 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1651 1652 SDValue RHS = Op.getOperand(1); 1653 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1654 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1655 1656 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1657 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1658 1659 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1660 LHS_Lo, RHS_Lo); 1661 1662 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1663 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1664 1665 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1666 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1667 return; 1668 } 1669 1670 if (isTypeLegal(MVT::i64)) { 1671 MachineFunction &MF = DAG.getMachineFunction(); 1672 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1673 1674 // Compute denominator reciprocal. 1675 unsigned FMAD = MFI->getMode().FP32Denormals ? 1676 (unsigned)AMDGPUISD::FMAD_FTZ : 1677 (unsigned)ISD::FMAD; 1678 1679 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1680 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1681 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1682 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1683 Cvt_Lo); 1684 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1685 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1686 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1687 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1688 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1689 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1690 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1691 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1692 Mul1); 1693 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1694 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1695 SDValue Rcp64 = DAG.getBitcast(VT, 1696 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1697 1698 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1699 SDValue One64 = DAG.getConstant(1, DL, VT); 1700 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1701 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1702 1703 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1704 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1705 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1706 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1707 Zero); 1708 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1709 One); 1710 1711 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1712 Mulhi1_Lo, Zero1); 1713 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1714 Mulhi1_Hi, Add1_Lo.getValue(1)); 1715 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1716 SDValue Add1 = DAG.getBitcast(VT, 1717 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1718 1719 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1720 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1721 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1722 Zero); 1723 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1724 One); 1725 1726 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1727 Mulhi2_Lo, Zero1); 1728 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1729 Mulhi2_Hi, Add1_Lo.getValue(1)); 1730 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1731 Zero, Add2_Lo.getValue(1)); 1732 SDValue Add2 = DAG.getBitcast(VT, 1733 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1734 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1735 1736 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1737 1738 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1739 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1740 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1741 Mul3_Lo, Zero1); 1742 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1743 Mul3_Hi, Sub1_Lo.getValue(1)); 1744 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1745 SDValue Sub1 = DAG.getBitcast(VT, 1746 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1747 1748 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1749 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1750 ISD::SETUGE); 1751 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1752 ISD::SETUGE); 1753 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1754 1755 // TODO: Here and below portions of the code can be enclosed into if/endif. 1756 // Currently control flow is unconditional and we have 4 selects after 1757 // potential endif to substitute PHIs. 1758 1759 // if C3 != 0 ... 1760 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1761 RHS_Lo, Zero1); 1762 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1763 RHS_Hi, Sub1_Lo.getValue(1)); 1764 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1765 Zero, Sub2_Lo.getValue(1)); 1766 SDValue Sub2 = DAG.getBitcast(VT, 1767 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1768 1769 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1770 1771 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1772 ISD::SETUGE); 1773 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1774 ISD::SETUGE); 1775 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1776 1777 // if (C6 != 0) 1778 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1779 1780 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1781 RHS_Lo, Zero1); 1782 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1783 RHS_Hi, Sub2_Lo.getValue(1)); 1784 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1785 Zero, Sub3_Lo.getValue(1)); 1786 SDValue Sub3 = DAG.getBitcast(VT, 1787 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1788 1789 // endif C6 1790 // endif C3 1791 1792 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1793 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1794 1795 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1796 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1797 1798 Results.push_back(Div); 1799 Results.push_back(Rem); 1800 1801 return; 1802 } 1803 1804 // r600 expandion. 1805 // Get Speculative values 1806 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1807 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1808 1809 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1810 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1811 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1812 1813 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1814 SDValue DIV_Lo = Zero; 1815 1816 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1817 1818 for (unsigned i = 0; i < halfBitWidth; ++i) { 1819 const unsigned bitPos = halfBitWidth - i - 1; 1820 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1821 // Get value of high bit 1822 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1823 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1824 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1825 1826 // Shift 1827 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1828 // Add LHS high bit 1829 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1830 1831 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1832 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1833 1834 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1835 1836 // Update REM 1837 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1838 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1839 } 1840 1841 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1842 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1843 Results.push_back(DIV); 1844 Results.push_back(REM); 1845 } 1846 1847 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1848 SelectionDAG &DAG) const { 1849 SDLoc DL(Op); 1850 EVT VT = Op.getValueType(); 1851 1852 if (VT == MVT::i64) { 1853 SmallVector<SDValue, 2> Results; 1854 LowerUDIVREM64(Op, DAG, Results); 1855 return DAG.getMergeValues(Results, DL); 1856 } 1857 1858 if (VT == MVT::i32) { 1859 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1860 return Res; 1861 } 1862 1863 SDValue Num = Op.getOperand(0); 1864 SDValue Den = Op.getOperand(1); 1865 1866 // RCP = URECIP(Den) = 2^32 / Den + e 1867 // e is rounding error. 1868 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1869 1870 // RCP_LO = mul(RCP, Den) */ 1871 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1872 1873 // RCP_HI = mulhu (RCP, Den) */ 1874 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1875 1876 // NEG_RCP_LO = -RCP_LO 1877 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1878 RCP_LO); 1879 1880 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1881 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1882 NEG_RCP_LO, RCP_LO, 1883 ISD::SETEQ); 1884 // Calculate the rounding error from the URECIP instruction 1885 // E = mulhu(ABS_RCP_LO, RCP) 1886 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1887 1888 // RCP_A_E = RCP + E 1889 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1890 1891 // RCP_S_E = RCP - E 1892 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1893 1894 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1895 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1896 RCP_A_E, RCP_S_E, 1897 ISD::SETEQ); 1898 // Quotient = mulhu(Tmp0, Num) 1899 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1900 1901 // Num_S_Remainder = Quotient * Den 1902 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1903 1904 // Remainder = Num - Num_S_Remainder 1905 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1906 1907 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1908 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1909 DAG.getConstant(-1, DL, VT), 1910 DAG.getConstant(0, DL, VT), 1911 ISD::SETUGE); 1912 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1913 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1914 Num_S_Remainder, 1915 DAG.getConstant(-1, DL, VT), 1916 DAG.getConstant(0, DL, VT), 1917 ISD::SETUGE); 1918 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1919 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1920 Remainder_GE_Zero); 1921 1922 // Calculate Division result: 1923 1924 // Quotient_A_One = Quotient + 1 1925 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1926 DAG.getConstant(1, DL, VT)); 1927 1928 // Quotient_S_One = Quotient - 1 1929 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1930 DAG.getConstant(1, DL, VT)); 1931 1932 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1933 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1934 Quotient, Quotient_A_One, ISD::SETEQ); 1935 1936 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1937 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1938 Quotient_S_One, Div, ISD::SETEQ); 1939 1940 // Calculate Rem result: 1941 1942 // Remainder_S_Den = Remainder - Den 1943 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1944 1945 // Remainder_A_Den = Remainder + Den 1946 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1947 1948 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1949 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1950 Remainder, Remainder_S_Den, ISD::SETEQ); 1951 1952 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1953 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1954 Remainder_A_Den, Rem, ISD::SETEQ); 1955 SDValue Ops[2] = { 1956 Div, 1957 Rem 1958 }; 1959 return DAG.getMergeValues(Ops, DL); 1960 } 1961 1962 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1963 SelectionDAG &DAG) const { 1964 SDLoc DL(Op); 1965 EVT VT = Op.getValueType(); 1966 1967 SDValue LHS = Op.getOperand(0); 1968 SDValue RHS = Op.getOperand(1); 1969 1970 SDValue Zero = DAG.getConstant(0, DL, VT); 1971 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1972 1973 if (VT == MVT::i32) { 1974 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1975 return Res; 1976 } 1977 1978 if (VT == MVT::i64 && 1979 DAG.ComputeNumSignBits(LHS) > 32 && 1980 DAG.ComputeNumSignBits(RHS) > 32) { 1981 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1982 1983 //HiLo split 1984 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1985 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1986 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1987 LHS_Lo, RHS_Lo); 1988 SDValue Res[2] = { 1989 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1990 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1991 }; 1992 return DAG.getMergeValues(Res, DL); 1993 } 1994 1995 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1996 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1997 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1998 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1999 2000 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2001 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2002 2003 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2004 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2005 2006 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2007 SDValue Rem = Div.getValue(1); 2008 2009 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2010 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2011 2012 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2013 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2014 2015 SDValue Res[2] = { 2016 Div, 2017 Rem 2018 }; 2019 return DAG.getMergeValues(Res, DL); 2020 } 2021 2022 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2023 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2024 SDLoc SL(Op); 2025 EVT VT = Op.getValueType(); 2026 SDValue X = Op.getOperand(0); 2027 SDValue Y = Op.getOperand(1); 2028 2029 // TODO: Should this propagate fast-math-flags? 2030 2031 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2032 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2033 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2034 2035 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2036 } 2037 2038 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2039 SDLoc SL(Op); 2040 SDValue Src = Op.getOperand(0); 2041 2042 // result = trunc(src) 2043 // if (src > 0.0 && src != result) 2044 // result += 1.0 2045 2046 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2047 2048 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2049 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2050 2051 EVT SetCCVT = 2052 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2053 2054 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2055 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2056 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2057 2058 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2059 // TODO: Should this propagate fast-math-flags? 2060 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2061 } 2062 2063 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2064 SelectionDAG &DAG) { 2065 const unsigned FractBits = 52; 2066 const unsigned ExpBits = 11; 2067 2068 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2069 Hi, 2070 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2071 DAG.getConstant(ExpBits, SL, MVT::i32)); 2072 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2073 DAG.getConstant(1023, SL, MVT::i32)); 2074 2075 return Exp; 2076 } 2077 2078 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2079 SDLoc SL(Op); 2080 SDValue Src = Op.getOperand(0); 2081 2082 assert(Op.getValueType() == MVT::f64); 2083 2084 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2085 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2086 2087 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2088 2089 // Extract the upper half, since this is where we will find the sign and 2090 // exponent. 2091 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2092 2093 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2094 2095 const unsigned FractBits = 52; 2096 2097 // Extract the sign bit. 2098 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2099 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2100 2101 // Extend back to 64-bits. 2102 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2103 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2104 2105 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2106 const SDValue FractMask 2107 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2108 2109 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2110 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2111 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2112 2113 EVT SetCCVT = 2114 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2115 2116 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2117 2118 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2119 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2120 2121 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2122 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2123 2124 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2125 } 2126 2127 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2128 SDLoc SL(Op); 2129 SDValue Src = Op.getOperand(0); 2130 2131 assert(Op.getValueType() == MVT::f64); 2132 2133 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2134 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2135 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2136 2137 // TODO: Should this propagate fast-math-flags? 2138 2139 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2140 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2141 2142 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2143 2144 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2145 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2146 2147 EVT SetCCVT = 2148 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2149 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2150 2151 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2152 } 2153 2154 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2155 // FNEARBYINT and FRINT are the same, except in their handling of FP 2156 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2157 // rint, so just treat them as equivalent. 2158 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2159 } 2160 2161 // XXX - May require not supporting f32 denormals? 2162 2163 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2164 // compare and vselect end up producing worse code than scalarizing the whole 2165 // operation. 2166 SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op, 2167 SelectionDAG &DAG) const { 2168 SDLoc SL(Op); 2169 SDValue X = Op.getOperand(0); 2170 EVT VT = Op.getValueType(); 2171 2172 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2173 2174 // TODO: Should this propagate fast-math-flags? 2175 2176 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2177 2178 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2179 2180 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2181 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2182 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2183 2184 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2185 2186 EVT SetCCVT = 2187 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2188 2189 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2190 2191 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2192 2193 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2194 } 2195 2196 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2197 SDLoc SL(Op); 2198 SDValue X = Op.getOperand(0); 2199 2200 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2201 2202 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2203 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2204 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2205 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2206 EVT SetCCVT = 2207 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2208 2209 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2210 2211 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2212 2213 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2214 2215 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2216 MVT::i64); 2217 2218 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2219 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2220 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2221 MVT::i64), 2222 Exp); 2223 2224 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2225 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2226 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2227 ISD::SETNE); 2228 2229 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2230 D, DAG.getConstant(0, SL, MVT::i64)); 2231 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2232 2233 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2234 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2235 2236 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2237 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2238 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2239 2240 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2241 ExpEqNegOne, 2242 DAG.getConstantFP(1.0, SL, MVT::f64), 2243 DAG.getConstantFP(0.0, SL, MVT::f64)); 2244 2245 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2246 2247 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2248 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2249 2250 return K; 2251 } 2252 2253 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2254 EVT VT = Op.getValueType(); 2255 2256 if (isOperationLegal(ISD::FTRUNC, VT)) 2257 return LowerFROUND_LegalFTRUNC(Op, DAG); 2258 2259 if (VT == MVT::f64) 2260 return LowerFROUND64(Op, DAG); 2261 2262 llvm_unreachable("unhandled type"); 2263 } 2264 2265 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2266 SDLoc SL(Op); 2267 SDValue Src = Op.getOperand(0); 2268 2269 // result = trunc(src); 2270 // if (src < 0.0 && src != result) 2271 // result += -1.0. 2272 2273 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2274 2275 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2276 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2277 2278 EVT SetCCVT = 2279 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2280 2281 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2282 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2283 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2284 2285 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2286 // TODO: Should this propagate fast-math-flags? 2287 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2288 } 2289 2290 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2291 double Log2BaseInverted) const { 2292 EVT VT = Op.getValueType(); 2293 2294 SDLoc SL(Op); 2295 SDValue Operand = Op.getOperand(0); 2296 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2297 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2298 2299 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2300 } 2301 2302 // exp2(M_LOG2E_F * f); 2303 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2304 EVT VT = Op.getValueType(); 2305 SDLoc SL(Op); 2306 SDValue Src = Op.getOperand(0); 2307 2308 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2309 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2310 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2311 } 2312 2313 static bool isCtlzOpc(unsigned Opc) { 2314 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2315 } 2316 2317 static bool isCttzOpc(unsigned Opc) { 2318 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2319 } 2320 2321 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2322 SDLoc SL(Op); 2323 SDValue Src = Op.getOperand(0); 2324 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2325 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2326 2327 unsigned ISDOpc, NewOpc; 2328 if (isCtlzOpc(Op.getOpcode())) { 2329 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2330 NewOpc = AMDGPUISD::FFBH_U32; 2331 } else if (isCttzOpc(Op.getOpcode())) { 2332 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2333 NewOpc = AMDGPUISD::FFBL_B32; 2334 } else 2335 llvm_unreachable("Unexpected OPCode!!!"); 2336 2337 2338 if (ZeroUndef && Src.getValueType() == MVT::i32) 2339 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2340 2341 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2342 2343 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2344 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2345 2346 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2347 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2348 2349 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2350 *DAG.getContext(), MVT::i32); 2351 2352 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2353 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2354 2355 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2356 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2357 2358 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2359 SDValue Add, NewOpr; 2360 if (isCtlzOpc(Op.getOpcode())) { 2361 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2362 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2363 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2364 } else { 2365 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2366 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2367 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2368 } 2369 2370 if (!ZeroUndef) { 2371 // Test if the full 64-bit input is zero. 2372 2373 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2374 // which we probably don't want. 2375 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2376 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2377 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2378 2379 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2380 // with the same cycles, otherwise it is slower. 2381 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2382 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2383 2384 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2385 2386 // The instruction returns -1 for 0 input, but the defined intrinsic 2387 // behavior is to return the number of bits. 2388 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2389 SrcIsZero, Bits32, NewOpr); 2390 } 2391 2392 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2393 } 2394 2395 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2396 bool Signed) const { 2397 // Unsigned 2398 // cul2f(ulong u) 2399 //{ 2400 // uint lz = clz(u); 2401 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2402 // u = (u << lz) & 0x7fffffffffffffffUL; 2403 // ulong t = u & 0xffffffffffUL; 2404 // uint v = (e << 23) | (uint)(u >> 40); 2405 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2406 // return as_float(v + r); 2407 //} 2408 // Signed 2409 // cl2f(long l) 2410 //{ 2411 // long s = l >> 63; 2412 // float r = cul2f((l + s) ^ s); 2413 // return s ? -r : r; 2414 //} 2415 2416 SDLoc SL(Op); 2417 SDValue Src = Op.getOperand(0); 2418 SDValue L = Src; 2419 2420 SDValue S; 2421 if (Signed) { 2422 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2423 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2424 2425 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2426 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2427 } 2428 2429 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2430 *DAG.getContext(), MVT::f32); 2431 2432 2433 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2434 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2435 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2436 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2437 2438 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2439 SDValue E = DAG.getSelect(SL, MVT::i32, 2440 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2441 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2442 ZeroI32); 2443 2444 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2445 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2446 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2447 2448 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2449 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2450 2451 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2452 U, DAG.getConstant(40, SL, MVT::i64)); 2453 2454 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2455 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2456 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2457 2458 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2459 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2460 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2461 2462 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2463 2464 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2465 2466 SDValue R = DAG.getSelect(SL, MVT::i32, 2467 RCmp, 2468 One, 2469 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2470 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2471 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2472 2473 if (!Signed) 2474 return R; 2475 2476 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2477 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2478 } 2479 2480 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2481 bool Signed) const { 2482 SDLoc SL(Op); 2483 SDValue Src = Op.getOperand(0); 2484 2485 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2486 2487 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2488 DAG.getConstant(0, SL, MVT::i32)); 2489 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2490 DAG.getConstant(1, SL, MVT::i32)); 2491 2492 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2493 SL, MVT::f64, Hi); 2494 2495 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2496 2497 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2498 DAG.getConstant(32, SL, MVT::i32)); 2499 // TODO: Should this propagate fast-math-flags? 2500 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2501 } 2502 2503 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2504 SelectionDAG &DAG) const { 2505 // TODO: Factor out code common with LowerSINT_TO_FP. 2506 EVT DestVT = Op.getValueType(); 2507 SDValue Src = Op.getOperand(0); 2508 EVT SrcVT = Src.getValueType(); 2509 2510 if (SrcVT == MVT::i16) { 2511 if (DestVT == MVT::f16) 2512 return Op; 2513 SDLoc DL(Op); 2514 2515 // Promote src to i32 2516 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2517 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2518 } 2519 2520 assert(SrcVT == MVT::i64 && "operation should be legal"); 2521 2522 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2523 SDLoc DL(Op); 2524 2525 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2526 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2527 SDValue FPRound = 2528 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2529 2530 return FPRound; 2531 } 2532 2533 if (DestVT == MVT::f32) 2534 return LowerINT_TO_FP32(Op, DAG, false); 2535 2536 assert(DestVT == MVT::f64); 2537 return LowerINT_TO_FP64(Op, DAG, false); 2538 } 2539 2540 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2541 SelectionDAG &DAG) const { 2542 EVT DestVT = Op.getValueType(); 2543 2544 SDValue Src = Op.getOperand(0); 2545 EVT SrcVT = Src.getValueType(); 2546 2547 if (SrcVT == MVT::i16) { 2548 if (DestVT == MVT::f16) 2549 return Op; 2550 2551 SDLoc DL(Op); 2552 // Promote src to i32 2553 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2554 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2555 } 2556 2557 assert(SrcVT == MVT::i64 && "operation should be legal"); 2558 2559 // TODO: Factor out code common with LowerUINT_TO_FP. 2560 2561 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2562 SDLoc DL(Op); 2563 SDValue Src = Op.getOperand(0); 2564 2565 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2566 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2567 SDValue FPRound = 2568 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2569 2570 return FPRound; 2571 } 2572 2573 if (DestVT == MVT::f32) 2574 return LowerINT_TO_FP32(Op, DAG, true); 2575 2576 assert(DestVT == MVT::f64); 2577 return LowerINT_TO_FP64(Op, DAG, true); 2578 } 2579 2580 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2581 bool Signed) const { 2582 SDLoc SL(Op); 2583 2584 SDValue Src = Op.getOperand(0); 2585 2586 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2587 2588 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2589 MVT::f64); 2590 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2591 MVT::f64); 2592 // TODO: Should this propagate fast-math-flags? 2593 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2594 2595 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2596 2597 2598 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2599 2600 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2601 MVT::i32, FloorMul); 2602 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2603 2604 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2605 2606 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2607 } 2608 2609 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2610 SDLoc DL(Op); 2611 SDValue N0 = Op.getOperand(0); 2612 2613 // Convert to target node to get known bits 2614 if (N0.getValueType() == MVT::f32) 2615 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2616 2617 if (getTargetMachine().Options.UnsafeFPMath) { 2618 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2619 return SDValue(); 2620 } 2621 2622 assert(N0.getSimpleValueType() == MVT::f64); 2623 2624 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2625 const unsigned ExpMask = 0x7ff; 2626 const unsigned ExpBiasf64 = 1023; 2627 const unsigned ExpBiasf16 = 15; 2628 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2629 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2630 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2631 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2632 DAG.getConstant(32, DL, MVT::i64)); 2633 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2634 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2635 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2636 DAG.getConstant(20, DL, MVT::i64)); 2637 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2638 DAG.getConstant(ExpMask, DL, MVT::i32)); 2639 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2640 // add the f16 bias (15) to get the biased exponent for the f16 format. 2641 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2642 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2643 2644 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2645 DAG.getConstant(8, DL, MVT::i32)); 2646 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2647 DAG.getConstant(0xffe, DL, MVT::i32)); 2648 2649 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2650 DAG.getConstant(0x1ff, DL, MVT::i32)); 2651 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2652 2653 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2654 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2655 2656 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2657 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2658 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2659 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2660 2661 // N = M | (E << 12); 2662 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2663 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2664 DAG.getConstant(12, DL, MVT::i32))); 2665 2666 // B = clamp(1-E, 0, 13); 2667 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2668 One, E); 2669 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2670 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2671 DAG.getConstant(13, DL, MVT::i32)); 2672 2673 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2674 DAG.getConstant(0x1000, DL, MVT::i32)); 2675 2676 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2677 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2678 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2679 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2680 2681 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2682 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2683 DAG.getConstant(0x7, DL, MVT::i32)); 2684 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2685 DAG.getConstant(2, DL, MVT::i32)); 2686 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2687 One, Zero, ISD::SETEQ); 2688 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2689 One, Zero, ISD::SETGT); 2690 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2691 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2692 2693 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2694 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2695 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2696 I, V, ISD::SETEQ); 2697 2698 // Extract the sign bit. 2699 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2700 DAG.getConstant(16, DL, MVT::i32)); 2701 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2702 DAG.getConstant(0x8000, DL, MVT::i32)); 2703 2704 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2705 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2706 } 2707 2708 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2709 SelectionDAG &DAG) const { 2710 SDValue Src = Op.getOperand(0); 2711 2712 // TODO: Factor out code common with LowerFP_TO_UINT. 2713 2714 EVT SrcVT = Src.getValueType(); 2715 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2716 SDLoc DL(Op); 2717 2718 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2719 SDValue FpToInt32 = 2720 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2721 2722 return FpToInt32; 2723 } 2724 2725 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2726 return LowerFP64_TO_INT(Op, DAG, true); 2727 2728 return SDValue(); 2729 } 2730 2731 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2732 SelectionDAG &DAG) const { 2733 SDValue Src = Op.getOperand(0); 2734 2735 // TODO: Factor out code common with LowerFP_TO_SINT. 2736 2737 EVT SrcVT = Src.getValueType(); 2738 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2739 SDLoc DL(Op); 2740 2741 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2742 SDValue FpToInt32 = 2743 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2744 2745 return FpToInt32; 2746 } 2747 2748 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2749 return LowerFP64_TO_INT(Op, DAG, false); 2750 2751 return SDValue(); 2752 } 2753 2754 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2755 SelectionDAG &DAG) const { 2756 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2757 MVT VT = Op.getSimpleValueType(); 2758 MVT ScalarVT = VT.getScalarType(); 2759 2760 assert(VT.isVector()); 2761 2762 SDValue Src = Op.getOperand(0); 2763 SDLoc DL(Op); 2764 2765 // TODO: Don't scalarize on Evergreen? 2766 unsigned NElts = VT.getVectorNumElements(); 2767 SmallVector<SDValue, 8> Args; 2768 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2769 2770 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2771 for (unsigned I = 0; I < NElts; ++I) 2772 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2773 2774 return DAG.getBuildVector(VT, DL, Args); 2775 } 2776 2777 //===----------------------------------------------------------------------===// 2778 // Custom DAG optimizations 2779 //===----------------------------------------------------------------------===// 2780 2781 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2782 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2783 } 2784 2785 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2786 EVT VT = Op.getValueType(); 2787 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2788 // as unsigned 24-bit values. 2789 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2790 } 2791 2792 static SDValue simplifyI24(SDNode *Node24, 2793 TargetLowering::DAGCombinerInfo &DCI) { 2794 SelectionDAG &DAG = DCI.DAG; 2795 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2796 2797 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2798 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2799 unsigned NewOpcode = Node24->getOpcode(); 2800 if (IsIntrin) { 2801 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2802 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2803 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2804 } 2805 2806 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2807 2808 // First try to simplify using GetDemandedBits which allows the operands to 2809 // have other uses, but will only perform simplifications that involve 2810 // bypassing some nodes for this user. 2811 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2812 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2813 if (DemandedLHS || DemandedRHS) 2814 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2815 DemandedLHS ? DemandedLHS : LHS, 2816 DemandedRHS ? DemandedRHS : RHS); 2817 2818 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2819 // operands if this node is the only user. 2820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2821 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2822 return SDValue(Node24, 0); 2823 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2824 return SDValue(Node24, 0); 2825 2826 return SDValue(); 2827 } 2828 2829 template <typename IntTy> 2830 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2831 uint32_t Width, const SDLoc &DL) { 2832 if (Width + Offset < 32) { 2833 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2834 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2835 return DAG.getConstant(Result, DL, MVT::i32); 2836 } 2837 2838 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2839 } 2840 2841 static bool hasVolatileUser(SDNode *Val) { 2842 for (SDNode *U : Val->uses()) { 2843 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2844 if (M->isVolatile()) 2845 return true; 2846 } 2847 } 2848 2849 return false; 2850 } 2851 2852 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2853 // i32 vectors are the canonical memory type. 2854 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2855 return false; 2856 2857 if (!VT.isByteSized()) 2858 return false; 2859 2860 unsigned Size = VT.getStoreSize(); 2861 2862 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2863 return false; 2864 2865 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2866 return false; 2867 2868 return true; 2869 } 2870 2871 // Replace load of an illegal type with a store of a bitcast to a friendlier 2872 // type. 2873 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2874 DAGCombinerInfo &DCI) const { 2875 if (!DCI.isBeforeLegalize()) 2876 return SDValue(); 2877 2878 LoadSDNode *LN = cast<LoadSDNode>(N); 2879 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2880 return SDValue(); 2881 2882 SDLoc SL(N); 2883 SelectionDAG &DAG = DCI.DAG; 2884 EVT VT = LN->getMemoryVT(); 2885 2886 unsigned Size = VT.getStoreSize(); 2887 unsigned Align = LN->getAlignment(); 2888 if (Align < Size && isTypeLegal(VT)) { 2889 bool IsFast; 2890 unsigned AS = LN->getAddressSpace(); 2891 2892 // Expand unaligned loads earlier than legalization. Due to visitation order 2893 // problems during legalization, the emitted instructions to pack and unpack 2894 // the bytes again are not eliminated in the case of an unaligned copy. 2895 if (!allowsMisalignedMemoryAccesses( 2896 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2897 SDValue Ops[2]; 2898 2899 if (VT.isVector()) 2900 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2901 else 2902 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2903 2904 return DAG.getMergeValues(Ops, SDLoc(N)); 2905 } 2906 2907 if (!IsFast) 2908 return SDValue(); 2909 } 2910 2911 if (!shouldCombineMemoryType(VT)) 2912 return SDValue(); 2913 2914 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2915 2916 SDValue NewLoad 2917 = DAG.getLoad(NewVT, SL, LN->getChain(), 2918 LN->getBasePtr(), LN->getMemOperand()); 2919 2920 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2921 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2922 return SDValue(N, 0); 2923 } 2924 2925 // Replace store of an illegal type with a store of a bitcast to a friendlier 2926 // type. 2927 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2928 DAGCombinerInfo &DCI) const { 2929 if (!DCI.isBeforeLegalize()) 2930 return SDValue(); 2931 2932 StoreSDNode *SN = cast<StoreSDNode>(N); 2933 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2934 return SDValue(); 2935 2936 EVT VT = SN->getMemoryVT(); 2937 unsigned Size = VT.getStoreSize(); 2938 2939 SDLoc SL(N); 2940 SelectionDAG &DAG = DCI.DAG; 2941 unsigned Align = SN->getAlignment(); 2942 if (Align < Size && isTypeLegal(VT)) { 2943 bool IsFast; 2944 unsigned AS = SN->getAddressSpace(); 2945 2946 // Expand unaligned stores earlier than legalization. Due to visitation 2947 // order problems during legalization, the emitted instructions to pack and 2948 // unpack the bytes again are not eliminated in the case of an unaligned 2949 // copy. 2950 if (!allowsMisalignedMemoryAccesses( 2951 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2952 if (VT.isVector()) 2953 return scalarizeVectorStore(SN, DAG); 2954 2955 return expandUnalignedStore(SN, DAG); 2956 } 2957 2958 if (!IsFast) 2959 return SDValue(); 2960 } 2961 2962 if (!shouldCombineMemoryType(VT)) 2963 return SDValue(); 2964 2965 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2966 SDValue Val = SN->getValue(); 2967 2968 //DCI.AddToWorklist(Val.getNode()); 2969 2970 bool OtherUses = !Val.hasOneUse(); 2971 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2972 if (OtherUses) { 2973 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2974 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2975 } 2976 2977 return DAG.getStore(SN->getChain(), SL, CastVal, 2978 SN->getBasePtr(), SN->getMemOperand()); 2979 } 2980 2981 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2982 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2983 // issues. 2984 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2985 DAGCombinerInfo &DCI) const { 2986 SelectionDAG &DAG = DCI.DAG; 2987 SDValue N0 = N->getOperand(0); 2988 2989 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2990 // (vt2 (truncate (assertzext vt0:x, vt1))) 2991 if (N0.getOpcode() == ISD::TRUNCATE) { 2992 SDValue N1 = N->getOperand(1); 2993 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2994 SDLoc SL(N); 2995 2996 SDValue Src = N0.getOperand(0); 2997 EVT SrcVT = Src.getValueType(); 2998 if (SrcVT.bitsGE(ExtVT)) { 2999 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3000 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3001 } 3002 } 3003 3004 return SDValue(); 3005 } 3006 3007 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3008 SDNode *N, DAGCombinerInfo &DCI) const { 3009 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3010 switch (IID) { 3011 case Intrinsic::amdgcn_mul_i24: 3012 case Intrinsic::amdgcn_mul_u24: 3013 return simplifyI24(N, DCI); 3014 default: 3015 return SDValue(); 3016 } 3017 } 3018 3019 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3020 /// binary operation \p Opc to it with the corresponding constant operands. 3021 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3022 DAGCombinerInfo &DCI, const SDLoc &SL, 3023 unsigned Opc, SDValue LHS, 3024 uint32_t ValLo, uint32_t ValHi) const { 3025 SelectionDAG &DAG = DCI.DAG; 3026 SDValue Lo, Hi; 3027 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3028 3029 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3030 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3031 3032 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3033 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3034 3035 // Re-visit the ands. It's possible we eliminated one of them and it could 3036 // simplify the vector. 3037 DCI.AddToWorklist(Lo.getNode()); 3038 DCI.AddToWorklist(Hi.getNode()); 3039 3040 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3041 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3042 } 3043 3044 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3045 DAGCombinerInfo &DCI) const { 3046 EVT VT = N->getValueType(0); 3047 3048 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3049 if (!RHS) 3050 return SDValue(); 3051 3052 SDValue LHS = N->getOperand(0); 3053 unsigned RHSVal = RHS->getZExtValue(); 3054 if (!RHSVal) 3055 return LHS; 3056 3057 SDLoc SL(N); 3058 SelectionDAG &DAG = DCI.DAG; 3059 3060 switch (LHS->getOpcode()) { 3061 default: 3062 break; 3063 case ISD::ZERO_EXTEND: 3064 case ISD::SIGN_EXTEND: 3065 case ISD::ANY_EXTEND: { 3066 SDValue X = LHS->getOperand(0); 3067 3068 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3069 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3070 // Prefer build_vector as the canonical form if packed types are legal. 3071 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3072 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3073 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3074 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3075 } 3076 3077 // shl (ext x) => zext (shl x), if shift does not overflow int 3078 if (VT != MVT::i64) 3079 break; 3080 KnownBits Known = DAG.computeKnownBits(X); 3081 unsigned LZ = Known.countMinLeadingZeros(); 3082 if (LZ < RHSVal) 3083 break; 3084 EVT XVT = X.getValueType(); 3085 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3086 return DAG.getZExtOrTrunc(Shl, SL, VT); 3087 } 3088 } 3089 3090 if (VT != MVT::i64) 3091 return SDValue(); 3092 3093 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3094 3095 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3096 // common case, splitting this into a move and a 32-bit shift is faster and 3097 // the same code size. 3098 if (RHSVal < 32) 3099 return SDValue(); 3100 3101 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3102 3103 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3104 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3105 3106 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3107 3108 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3109 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3110 } 3111 3112 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3113 DAGCombinerInfo &DCI) const { 3114 if (N->getValueType(0) != MVT::i64) 3115 return SDValue(); 3116 3117 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3118 if (!RHS) 3119 return SDValue(); 3120 3121 SelectionDAG &DAG = DCI.DAG; 3122 SDLoc SL(N); 3123 unsigned RHSVal = RHS->getZExtValue(); 3124 3125 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3126 if (RHSVal == 32) { 3127 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3128 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3129 DAG.getConstant(31, SL, MVT::i32)); 3130 3131 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3132 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3133 } 3134 3135 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3136 if (RHSVal == 63) { 3137 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3138 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3139 DAG.getConstant(31, SL, MVT::i32)); 3140 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3141 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3142 } 3143 3144 return SDValue(); 3145 } 3146 3147 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3148 DAGCombinerInfo &DCI) const { 3149 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3150 if (!RHS) 3151 return SDValue(); 3152 3153 EVT VT = N->getValueType(0); 3154 SDValue LHS = N->getOperand(0); 3155 unsigned ShiftAmt = RHS->getZExtValue(); 3156 SelectionDAG &DAG = DCI.DAG; 3157 SDLoc SL(N); 3158 3159 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3160 // this improves the ability to match BFE patterns in isel. 3161 if (LHS.getOpcode() == ISD::AND) { 3162 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3163 if (Mask->getAPIntValue().isShiftedMask() && 3164 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3165 return DAG.getNode( 3166 ISD::AND, SL, VT, 3167 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3168 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3169 } 3170 } 3171 } 3172 3173 if (VT != MVT::i64) 3174 return SDValue(); 3175 3176 if (ShiftAmt < 32) 3177 return SDValue(); 3178 3179 // srl i64:x, C for C >= 32 3180 // => 3181 // build_pair (srl hi_32(x), C - 32), 0 3182 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3183 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3184 3185 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3186 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3187 3188 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3189 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3190 3191 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3192 3193 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3194 } 3195 3196 SDValue AMDGPUTargetLowering::performTruncateCombine( 3197 SDNode *N, DAGCombinerInfo &DCI) const { 3198 SDLoc SL(N); 3199 SelectionDAG &DAG = DCI.DAG; 3200 EVT VT = N->getValueType(0); 3201 SDValue Src = N->getOperand(0); 3202 3203 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3204 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3205 SDValue Vec = Src.getOperand(0); 3206 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3207 SDValue Elt0 = Vec.getOperand(0); 3208 EVT EltVT = Elt0.getValueType(); 3209 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3210 if (EltVT.isFloatingPoint()) { 3211 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3212 EltVT.changeTypeToInteger(), Elt0); 3213 } 3214 3215 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3216 } 3217 } 3218 } 3219 3220 // Equivalent of above for accessing the high element of a vector as an 3221 // integer operation. 3222 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3223 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3224 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3225 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3226 SDValue BV = stripBitcast(Src.getOperand(0)); 3227 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3228 BV.getValueType().getVectorNumElements() == 2) { 3229 SDValue SrcElt = BV.getOperand(1); 3230 EVT SrcEltVT = SrcElt.getValueType(); 3231 if (SrcEltVT.isFloatingPoint()) { 3232 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3233 SrcEltVT.changeTypeToInteger(), SrcElt); 3234 } 3235 3236 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3237 } 3238 } 3239 } 3240 } 3241 3242 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3243 // 3244 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3245 // i16 (trunc (srl (i32 (trunc x), K))) 3246 if (VT.getScalarSizeInBits() < 32) { 3247 EVT SrcVT = Src.getValueType(); 3248 if (SrcVT.getScalarSizeInBits() > 32 && 3249 (Src.getOpcode() == ISD::SRL || 3250 Src.getOpcode() == ISD::SRA || 3251 Src.getOpcode() == ISD::SHL)) { 3252 SDValue Amt = Src.getOperand(1); 3253 KnownBits Known = DAG.computeKnownBits(Amt); 3254 unsigned Size = VT.getScalarSizeInBits(); 3255 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3256 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3257 EVT MidVT = VT.isVector() ? 3258 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3259 VT.getVectorNumElements()) : MVT::i32; 3260 3261 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3262 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3263 Src.getOperand(0)); 3264 DCI.AddToWorklist(Trunc.getNode()); 3265 3266 if (Amt.getValueType() != NewShiftVT) { 3267 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3268 DCI.AddToWorklist(Amt.getNode()); 3269 } 3270 3271 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3272 Trunc, Amt); 3273 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3274 } 3275 } 3276 } 3277 3278 return SDValue(); 3279 } 3280 3281 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3282 // instructions. If we only match on the legalized i64 mul expansion, 3283 // SimplifyDemandedBits will be unable to remove them because there will be 3284 // multiple uses due to the separate mul + mulh[su]. 3285 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3286 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3287 if (Size <= 32) { 3288 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3289 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3290 } 3291 3292 // Because we want to eliminate extension instructions before the 3293 // operation, we need to create a single user here (i.e. not the separate 3294 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3295 3296 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3297 3298 SDValue Mul = DAG.getNode(MulOpc, SL, 3299 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3300 3301 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3302 Mul.getValue(0), Mul.getValue(1)); 3303 } 3304 3305 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3306 DAGCombinerInfo &DCI) const { 3307 EVT VT = N->getValueType(0); 3308 3309 unsigned Size = VT.getSizeInBits(); 3310 if (VT.isVector() || Size > 64) 3311 return SDValue(); 3312 3313 // There are i16 integer mul/mad. 3314 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3315 return SDValue(); 3316 3317 SelectionDAG &DAG = DCI.DAG; 3318 SDLoc DL(N); 3319 3320 SDValue N0 = N->getOperand(0); 3321 SDValue N1 = N->getOperand(1); 3322 3323 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3324 // in the source into any_extends if the result of the mul is truncated. Since 3325 // we can assume the high bits are whatever we want, use the underlying value 3326 // to avoid the unknown high bits from interfering. 3327 if (N0.getOpcode() == ISD::ANY_EXTEND) 3328 N0 = N0.getOperand(0); 3329 3330 if (N1.getOpcode() == ISD::ANY_EXTEND) 3331 N1 = N1.getOperand(0); 3332 3333 SDValue Mul; 3334 3335 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3336 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3337 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3338 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3339 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3340 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3341 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3342 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3343 } else { 3344 return SDValue(); 3345 } 3346 3347 // We need to use sext even for MUL_U24, because MUL_U24 is used 3348 // for signed multiply of 8 and 16-bit types. 3349 return DAG.getSExtOrTrunc(Mul, DL, VT); 3350 } 3351 3352 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3353 DAGCombinerInfo &DCI) const { 3354 EVT VT = N->getValueType(0); 3355 3356 if (!Subtarget->hasMulI24() || VT.isVector()) 3357 return SDValue(); 3358 3359 SelectionDAG &DAG = DCI.DAG; 3360 SDLoc DL(N); 3361 3362 SDValue N0 = N->getOperand(0); 3363 SDValue N1 = N->getOperand(1); 3364 3365 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3366 return SDValue(); 3367 3368 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3369 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3370 3371 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3372 DCI.AddToWorklist(Mulhi.getNode()); 3373 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3374 } 3375 3376 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3377 DAGCombinerInfo &DCI) const { 3378 EVT VT = N->getValueType(0); 3379 3380 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3381 return SDValue(); 3382 3383 SelectionDAG &DAG = DCI.DAG; 3384 SDLoc DL(N); 3385 3386 SDValue N0 = N->getOperand(0); 3387 SDValue N1 = N->getOperand(1); 3388 3389 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3390 return SDValue(); 3391 3392 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3393 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3394 3395 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3396 DCI.AddToWorklist(Mulhi.getNode()); 3397 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3398 } 3399 3400 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3401 SDNode *N, DAGCombinerInfo &DCI) const { 3402 SelectionDAG &DAG = DCI.DAG; 3403 3404 // Simplify demanded bits before splitting into multiple users. 3405 if (SDValue V = simplifyI24(N, DCI)) 3406 return V; 3407 3408 SDValue N0 = N->getOperand(0); 3409 SDValue N1 = N->getOperand(1); 3410 3411 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3412 3413 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3414 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3415 3416 SDLoc SL(N); 3417 3418 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3419 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3420 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3421 } 3422 3423 static bool isNegativeOne(SDValue Val) { 3424 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3425 return C->isAllOnesValue(); 3426 return false; 3427 } 3428 3429 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3430 SDValue Op, 3431 const SDLoc &DL, 3432 unsigned Opc) const { 3433 EVT VT = Op.getValueType(); 3434 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3435 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3436 LegalVT != MVT::i16)) 3437 return SDValue(); 3438 3439 if (VT != MVT::i32) 3440 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3441 3442 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3443 if (VT != MVT::i32) 3444 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3445 3446 return FFBX; 3447 } 3448 3449 // The native instructions return -1 on 0 input. Optimize out a select that 3450 // produces -1 on 0. 3451 // 3452 // TODO: If zero is not undef, we could also do this if the output is compared 3453 // against the bitwidth. 3454 // 3455 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3456 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3457 SDValue LHS, SDValue RHS, 3458 DAGCombinerInfo &DCI) const { 3459 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3460 if (!CmpRhs || !CmpRhs->isNullValue()) 3461 return SDValue(); 3462 3463 SelectionDAG &DAG = DCI.DAG; 3464 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3465 SDValue CmpLHS = Cond.getOperand(0); 3466 3467 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3468 AMDGPUISD::FFBH_U32; 3469 3470 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3471 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3472 if (CCOpcode == ISD::SETEQ && 3473 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3474 RHS.getOperand(0) == CmpLHS && 3475 isNegativeOne(LHS)) { 3476 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3477 } 3478 3479 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3480 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3481 if (CCOpcode == ISD::SETNE && 3482 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3483 LHS.getOperand(0) == CmpLHS && 3484 isNegativeOne(RHS)) { 3485 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3486 } 3487 3488 return SDValue(); 3489 } 3490 3491 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3492 unsigned Op, 3493 const SDLoc &SL, 3494 SDValue Cond, 3495 SDValue N1, 3496 SDValue N2) { 3497 SelectionDAG &DAG = DCI.DAG; 3498 EVT VT = N1.getValueType(); 3499 3500 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3501 N1.getOperand(0), N2.getOperand(0)); 3502 DCI.AddToWorklist(NewSelect.getNode()); 3503 return DAG.getNode(Op, SL, VT, NewSelect); 3504 } 3505 3506 // Pull a free FP operation out of a select so it may fold into uses. 3507 // 3508 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3509 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3510 // 3511 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3512 // select c, (fabs x), +k -> fabs (select c, x, k) 3513 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3514 SDValue N) { 3515 SelectionDAG &DAG = DCI.DAG; 3516 SDValue Cond = N.getOperand(0); 3517 SDValue LHS = N.getOperand(1); 3518 SDValue RHS = N.getOperand(2); 3519 3520 EVT VT = N.getValueType(); 3521 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3522 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3523 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3524 SDLoc(N), Cond, LHS, RHS); 3525 } 3526 3527 bool Inv = false; 3528 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3529 std::swap(LHS, RHS); 3530 Inv = true; 3531 } 3532 3533 // TODO: Support vector constants. 3534 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3535 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3536 SDLoc SL(N); 3537 // If one side is an fneg/fabs and the other is a constant, we can push the 3538 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3539 SDValue NewLHS = LHS.getOperand(0); 3540 SDValue NewRHS = RHS; 3541 3542 // Careful: if the neg can be folded up, don't try to pull it back down. 3543 bool ShouldFoldNeg = true; 3544 3545 if (NewLHS.hasOneUse()) { 3546 unsigned Opc = NewLHS.getOpcode(); 3547 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3548 ShouldFoldNeg = false; 3549 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3550 ShouldFoldNeg = false; 3551 } 3552 3553 if (ShouldFoldNeg) { 3554 if (LHS.getOpcode() == ISD::FNEG) 3555 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3556 else if (CRHS->isNegative()) 3557 return SDValue(); 3558 3559 if (Inv) 3560 std::swap(NewLHS, NewRHS); 3561 3562 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3563 Cond, NewLHS, NewRHS); 3564 DCI.AddToWorklist(NewSelect.getNode()); 3565 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3566 } 3567 } 3568 3569 return SDValue(); 3570 } 3571 3572 3573 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3574 DAGCombinerInfo &DCI) const { 3575 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3576 return Folded; 3577 3578 SDValue Cond = N->getOperand(0); 3579 if (Cond.getOpcode() != ISD::SETCC) 3580 return SDValue(); 3581 3582 EVT VT = N->getValueType(0); 3583 SDValue LHS = Cond.getOperand(0); 3584 SDValue RHS = Cond.getOperand(1); 3585 SDValue CC = Cond.getOperand(2); 3586 3587 SDValue True = N->getOperand(1); 3588 SDValue False = N->getOperand(2); 3589 3590 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3591 SelectionDAG &DAG = DCI.DAG; 3592 if (DAG.isConstantValueOfAnyType(True) && 3593 !DAG.isConstantValueOfAnyType(False)) { 3594 // Swap cmp + select pair to move constant to false input. 3595 // This will allow using VOPC cndmasks more often. 3596 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3597 3598 SDLoc SL(N); 3599 ISD::CondCode NewCC = 3600 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3601 3602 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3603 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3604 } 3605 3606 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3607 SDValue MinMax 3608 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3609 // Revisit this node so we can catch min3/max3/med3 patterns. 3610 //DCI.AddToWorklist(MinMax.getNode()); 3611 return MinMax; 3612 } 3613 } 3614 3615 // There's no reason to not do this if the condition has other uses. 3616 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3617 } 3618 3619 static bool isInv2Pi(const APFloat &APF) { 3620 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3621 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3622 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3623 3624 return APF.bitwiseIsEqual(KF16) || 3625 APF.bitwiseIsEqual(KF32) || 3626 APF.bitwiseIsEqual(KF64); 3627 } 3628 3629 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3630 // additional cost to negate them. 3631 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3632 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3633 if (C->isZero() && !C->isNegative()) 3634 return true; 3635 3636 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3637 return true; 3638 } 3639 3640 return false; 3641 } 3642 3643 static unsigned inverseMinMax(unsigned Opc) { 3644 switch (Opc) { 3645 case ISD::FMAXNUM: 3646 return ISD::FMINNUM; 3647 case ISD::FMINNUM: 3648 return ISD::FMAXNUM; 3649 case ISD::FMAXNUM_IEEE: 3650 return ISD::FMINNUM_IEEE; 3651 case ISD::FMINNUM_IEEE: 3652 return ISD::FMAXNUM_IEEE; 3653 case AMDGPUISD::FMAX_LEGACY: 3654 return AMDGPUISD::FMIN_LEGACY; 3655 case AMDGPUISD::FMIN_LEGACY: 3656 return AMDGPUISD::FMAX_LEGACY; 3657 default: 3658 llvm_unreachable("invalid min/max opcode"); 3659 } 3660 } 3661 3662 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3663 DAGCombinerInfo &DCI) const { 3664 SelectionDAG &DAG = DCI.DAG; 3665 SDValue N0 = N->getOperand(0); 3666 EVT VT = N->getValueType(0); 3667 3668 unsigned Opc = N0.getOpcode(); 3669 3670 // If the input has multiple uses and we can either fold the negate down, or 3671 // the other uses cannot, give up. This both prevents unprofitable 3672 // transformations and infinite loops: we won't repeatedly try to fold around 3673 // a negate that has no 'good' form. 3674 if (N0.hasOneUse()) { 3675 // This may be able to fold into the source, but at a code size cost. Don't 3676 // fold if the fold into the user is free. 3677 if (allUsesHaveSourceMods(N, 0)) 3678 return SDValue(); 3679 } else { 3680 if (fnegFoldsIntoOp(Opc) && 3681 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3682 return SDValue(); 3683 } 3684 3685 SDLoc SL(N); 3686 switch (Opc) { 3687 case ISD::FADD: { 3688 if (!mayIgnoreSignedZero(N0)) 3689 return SDValue(); 3690 3691 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3692 SDValue LHS = N0.getOperand(0); 3693 SDValue RHS = N0.getOperand(1); 3694 3695 if (LHS.getOpcode() != ISD::FNEG) 3696 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3697 else 3698 LHS = LHS.getOperand(0); 3699 3700 if (RHS.getOpcode() != ISD::FNEG) 3701 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3702 else 3703 RHS = RHS.getOperand(0); 3704 3705 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3706 if (Res.getOpcode() != ISD::FADD) 3707 return SDValue(); // Op got folded away. 3708 if (!N0.hasOneUse()) 3709 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3710 return Res; 3711 } 3712 case ISD::FMUL: 3713 case AMDGPUISD::FMUL_LEGACY: { 3714 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3715 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3716 SDValue LHS = N0.getOperand(0); 3717 SDValue RHS = N0.getOperand(1); 3718 3719 if (LHS.getOpcode() == ISD::FNEG) 3720 LHS = LHS.getOperand(0); 3721 else if (RHS.getOpcode() == ISD::FNEG) 3722 RHS = RHS.getOperand(0); 3723 else 3724 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3725 3726 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3727 if (Res.getOpcode() != Opc) 3728 return SDValue(); // Op got folded away. 3729 if (!N0.hasOneUse()) 3730 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3731 return Res; 3732 } 3733 case ISD::FMA: 3734 case ISD::FMAD: { 3735 if (!mayIgnoreSignedZero(N0)) 3736 return SDValue(); 3737 3738 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3739 SDValue LHS = N0.getOperand(0); 3740 SDValue MHS = N0.getOperand(1); 3741 SDValue RHS = N0.getOperand(2); 3742 3743 if (LHS.getOpcode() == ISD::FNEG) 3744 LHS = LHS.getOperand(0); 3745 else if (MHS.getOpcode() == ISD::FNEG) 3746 MHS = MHS.getOperand(0); 3747 else 3748 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3749 3750 if (RHS.getOpcode() != ISD::FNEG) 3751 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3752 else 3753 RHS = RHS.getOperand(0); 3754 3755 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3756 if (Res.getOpcode() != Opc) 3757 return SDValue(); // Op got folded away. 3758 if (!N0.hasOneUse()) 3759 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3760 return Res; 3761 } 3762 case ISD::FMAXNUM: 3763 case ISD::FMINNUM: 3764 case ISD::FMAXNUM_IEEE: 3765 case ISD::FMINNUM_IEEE: 3766 case AMDGPUISD::FMAX_LEGACY: 3767 case AMDGPUISD::FMIN_LEGACY: { 3768 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3769 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3770 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3771 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3772 3773 SDValue LHS = N0.getOperand(0); 3774 SDValue RHS = N0.getOperand(1); 3775 3776 // 0 doesn't have a negated inline immediate. 3777 // TODO: This constant check should be generalized to other operations. 3778 if (isConstantCostlierToNegate(RHS)) 3779 return SDValue(); 3780 3781 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3782 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3783 unsigned Opposite = inverseMinMax(Opc); 3784 3785 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3786 if (Res.getOpcode() != Opposite) 3787 return SDValue(); // Op got folded away. 3788 if (!N0.hasOneUse()) 3789 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3790 return Res; 3791 } 3792 case AMDGPUISD::FMED3: { 3793 SDValue Ops[3]; 3794 for (unsigned I = 0; I < 3; ++I) 3795 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3796 3797 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3798 if (Res.getOpcode() != AMDGPUISD::FMED3) 3799 return SDValue(); // Op got folded away. 3800 if (!N0.hasOneUse()) 3801 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3802 return Res; 3803 } 3804 case ISD::FP_EXTEND: 3805 case ISD::FTRUNC: 3806 case ISD::FRINT: 3807 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3808 case ISD::FSIN: 3809 case ISD::FCANONICALIZE: 3810 case AMDGPUISD::RCP: 3811 case AMDGPUISD::RCP_LEGACY: 3812 case AMDGPUISD::RCP_IFLAG: 3813 case AMDGPUISD::SIN_HW: { 3814 SDValue CvtSrc = N0.getOperand(0); 3815 if (CvtSrc.getOpcode() == ISD::FNEG) { 3816 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3817 // (fneg (rcp (fneg x))) -> (rcp x) 3818 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3819 } 3820 3821 if (!N0.hasOneUse()) 3822 return SDValue(); 3823 3824 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3825 // (fneg (rcp x)) -> (rcp (fneg x)) 3826 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3827 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3828 } 3829 case ISD::FP_ROUND: { 3830 SDValue CvtSrc = N0.getOperand(0); 3831 3832 if (CvtSrc.getOpcode() == ISD::FNEG) { 3833 // (fneg (fp_round (fneg x))) -> (fp_round x) 3834 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3835 CvtSrc.getOperand(0), N0.getOperand(1)); 3836 } 3837 3838 if (!N0.hasOneUse()) 3839 return SDValue(); 3840 3841 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3842 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3843 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3844 } 3845 case ISD::FP16_TO_FP: { 3846 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3847 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3848 // Put the fneg back as a legal source operation that can be matched later. 3849 SDLoc SL(N); 3850 3851 SDValue Src = N0.getOperand(0); 3852 EVT SrcVT = Src.getValueType(); 3853 3854 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3855 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3856 DAG.getConstant(0x8000, SL, SrcVT)); 3857 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3858 } 3859 default: 3860 return SDValue(); 3861 } 3862 } 3863 3864 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3865 DAGCombinerInfo &DCI) const { 3866 SelectionDAG &DAG = DCI.DAG; 3867 SDValue N0 = N->getOperand(0); 3868 3869 if (!N0.hasOneUse()) 3870 return SDValue(); 3871 3872 switch (N0.getOpcode()) { 3873 case ISD::FP16_TO_FP: { 3874 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3875 SDLoc SL(N); 3876 SDValue Src = N0.getOperand(0); 3877 EVT SrcVT = Src.getValueType(); 3878 3879 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3880 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3881 DAG.getConstant(0x7fff, SL, SrcVT)); 3882 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3883 } 3884 default: 3885 return SDValue(); 3886 } 3887 } 3888 3889 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3890 DAGCombinerInfo &DCI) const { 3891 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3892 if (!CFP) 3893 return SDValue(); 3894 3895 // XXX - Should this flush denormals? 3896 const APFloat &Val = CFP->getValueAPF(); 3897 APFloat One(Val.getSemantics(), "1.0"); 3898 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3899 } 3900 3901 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3902 DAGCombinerInfo &DCI) const { 3903 SelectionDAG &DAG = DCI.DAG; 3904 SDLoc DL(N); 3905 3906 switch(N->getOpcode()) { 3907 default: 3908 break; 3909 case ISD::BITCAST: { 3910 EVT DestVT = N->getValueType(0); 3911 3912 // Push casts through vector builds. This helps avoid emitting a large 3913 // number of copies when materializing floating point vector constants. 3914 // 3915 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3916 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3917 if (DestVT.isVector()) { 3918 SDValue Src = N->getOperand(0); 3919 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3920 EVT SrcVT = Src.getValueType(); 3921 unsigned NElts = DestVT.getVectorNumElements(); 3922 3923 if (SrcVT.getVectorNumElements() == NElts) { 3924 EVT DestEltVT = DestVT.getVectorElementType(); 3925 3926 SmallVector<SDValue, 8> CastedElts; 3927 SDLoc SL(N); 3928 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3929 SDValue Elt = Src.getOperand(I); 3930 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3931 } 3932 3933 return DAG.getBuildVector(DestVT, SL, CastedElts); 3934 } 3935 } 3936 } 3937 3938 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3939 break; 3940 3941 // Fold bitcasts of constants. 3942 // 3943 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3944 // TODO: Generalize and move to DAGCombiner 3945 SDValue Src = N->getOperand(0); 3946 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3947 if (Src.getValueType() == MVT::i64) { 3948 SDLoc SL(N); 3949 uint64_t CVal = C->getZExtValue(); 3950 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3951 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3952 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3953 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3954 } 3955 } 3956 3957 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3958 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3959 SDLoc SL(N); 3960 uint64_t CVal = Val.getZExtValue(); 3961 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3962 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3963 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3964 3965 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3966 } 3967 3968 break; 3969 } 3970 case ISD::SHL: { 3971 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3972 break; 3973 3974 return performShlCombine(N, DCI); 3975 } 3976 case ISD::SRL: { 3977 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3978 break; 3979 3980 return performSrlCombine(N, DCI); 3981 } 3982 case ISD::SRA: { 3983 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3984 break; 3985 3986 return performSraCombine(N, DCI); 3987 } 3988 case ISD::TRUNCATE: 3989 return performTruncateCombine(N, DCI); 3990 case ISD::MUL: 3991 return performMulCombine(N, DCI); 3992 case ISD::MULHS: 3993 return performMulhsCombine(N, DCI); 3994 case ISD::MULHU: 3995 return performMulhuCombine(N, DCI); 3996 case AMDGPUISD::MUL_I24: 3997 case AMDGPUISD::MUL_U24: 3998 case AMDGPUISD::MULHI_I24: 3999 case AMDGPUISD::MULHI_U24: { 4000 if (SDValue V = simplifyI24(N, DCI)) 4001 return V; 4002 return SDValue(); 4003 } 4004 case AMDGPUISD::MUL_LOHI_I24: 4005 case AMDGPUISD::MUL_LOHI_U24: 4006 return performMulLoHi24Combine(N, DCI); 4007 case ISD::SELECT: 4008 return performSelectCombine(N, DCI); 4009 case ISD::FNEG: 4010 return performFNegCombine(N, DCI); 4011 case ISD::FABS: 4012 return performFAbsCombine(N, DCI); 4013 case AMDGPUISD::BFE_I32: 4014 case AMDGPUISD::BFE_U32: { 4015 assert(!N->getValueType(0).isVector() && 4016 "Vector handling of BFE not implemented"); 4017 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4018 if (!Width) 4019 break; 4020 4021 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4022 if (WidthVal == 0) 4023 return DAG.getConstant(0, DL, MVT::i32); 4024 4025 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4026 if (!Offset) 4027 break; 4028 4029 SDValue BitsFrom = N->getOperand(0); 4030 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4031 4032 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4033 4034 if (OffsetVal == 0) { 4035 // This is already sign / zero extended, so try to fold away extra BFEs. 4036 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4037 4038 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4039 if (OpSignBits >= SignBits) 4040 return BitsFrom; 4041 4042 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4043 if (Signed) { 4044 // This is a sign_extend_inreg. Replace it to take advantage of existing 4045 // DAG Combines. If not eliminated, we will match back to BFE during 4046 // selection. 4047 4048 // TODO: The sext_inreg of extended types ends, although we can could 4049 // handle them in a single BFE. 4050 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4051 DAG.getValueType(SmallVT)); 4052 } 4053 4054 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4055 } 4056 4057 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4058 if (Signed) { 4059 return constantFoldBFE<int32_t>(DAG, 4060 CVal->getSExtValue(), 4061 OffsetVal, 4062 WidthVal, 4063 DL); 4064 } 4065 4066 return constantFoldBFE<uint32_t>(DAG, 4067 CVal->getZExtValue(), 4068 OffsetVal, 4069 WidthVal, 4070 DL); 4071 } 4072 4073 if ((OffsetVal + WidthVal) >= 32 && 4074 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4075 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4076 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4077 BitsFrom, ShiftVal); 4078 } 4079 4080 if (BitsFrom.hasOneUse()) { 4081 APInt Demanded = APInt::getBitsSet(32, 4082 OffsetVal, 4083 OffsetVal + WidthVal); 4084 4085 KnownBits Known; 4086 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4087 !DCI.isBeforeLegalizeOps()); 4088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4089 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4090 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4091 DCI.CommitTargetLoweringOpt(TLO); 4092 } 4093 } 4094 4095 break; 4096 } 4097 case ISD::LOAD: 4098 return performLoadCombine(N, DCI); 4099 case ISD::STORE: 4100 return performStoreCombine(N, DCI); 4101 case AMDGPUISD::RCP: 4102 case AMDGPUISD::RCP_IFLAG: 4103 return performRcpCombine(N, DCI); 4104 case ISD::AssertZext: 4105 case ISD::AssertSext: 4106 return performAssertSZExtCombine(N, DCI); 4107 case ISD::INTRINSIC_WO_CHAIN: 4108 return performIntrinsicWOChainCombine(N, DCI); 4109 } 4110 return SDValue(); 4111 } 4112 4113 //===----------------------------------------------------------------------===// 4114 // Helper functions 4115 //===----------------------------------------------------------------------===// 4116 4117 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4118 const TargetRegisterClass *RC, 4119 unsigned Reg, EVT VT, 4120 const SDLoc &SL, 4121 bool RawReg) const { 4122 MachineFunction &MF = DAG.getMachineFunction(); 4123 MachineRegisterInfo &MRI = MF.getRegInfo(); 4124 unsigned VReg; 4125 4126 if (!MRI.isLiveIn(Reg)) { 4127 VReg = MRI.createVirtualRegister(RC); 4128 MRI.addLiveIn(Reg, VReg); 4129 } else { 4130 VReg = MRI.getLiveInVirtReg(Reg); 4131 } 4132 4133 if (RawReg) 4134 return DAG.getRegister(VReg, VT); 4135 4136 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4137 } 4138 4139 // This may be called multiple times, and nothing prevents creating multiple 4140 // objects at the same offset. See if we already defined this object. 4141 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4142 int64_t Offset) { 4143 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4144 if (MFI.getObjectOffset(I) == Offset) { 4145 assert(MFI.getObjectSize(I) == Size); 4146 return I; 4147 } 4148 } 4149 4150 return MFI.CreateFixedObject(Size, Offset, true); 4151 } 4152 4153 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4154 EVT VT, 4155 const SDLoc &SL, 4156 int64_t Offset) const { 4157 MachineFunction &MF = DAG.getMachineFunction(); 4158 MachineFrameInfo &MFI = MF.getFrameInfo(); 4159 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4160 4161 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4162 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4163 4164 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4165 MachineMemOperand::MODereferenceable | 4166 MachineMemOperand::MOInvariant); 4167 } 4168 4169 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4170 const SDLoc &SL, 4171 SDValue Chain, 4172 SDValue ArgVal, 4173 int64_t Offset) const { 4174 MachineFunction &MF = DAG.getMachineFunction(); 4175 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4176 4177 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4178 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4179 MachineMemOperand::MODereferenceable); 4180 return Store; 4181 } 4182 4183 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4184 const TargetRegisterClass *RC, 4185 EVT VT, const SDLoc &SL, 4186 const ArgDescriptor &Arg) const { 4187 assert(Arg && "Attempting to load missing argument"); 4188 4189 SDValue V = Arg.isRegister() ? 4190 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4191 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4192 4193 if (!Arg.isMasked()) 4194 return V; 4195 4196 unsigned Mask = Arg.getMask(); 4197 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4198 V = DAG.getNode(ISD::SRL, SL, VT, V, 4199 DAG.getShiftAmountConstant(Shift, VT, SL)); 4200 return DAG.getNode(ISD::AND, SL, VT, V, 4201 DAG.getConstant(Mask >> Shift, SL, VT)); 4202 } 4203 4204 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4205 const MachineFunction &MF, const ImplicitParameter Param) const { 4206 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4207 const AMDGPUSubtarget &ST = 4208 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4209 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4210 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4211 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4212 ExplicitArgOffset; 4213 switch (Param) { 4214 case GRID_DIM: 4215 return ArgOffset; 4216 case GRID_OFFSET: 4217 return ArgOffset + 4; 4218 } 4219 llvm_unreachable("unexpected implicit parameter type"); 4220 } 4221 4222 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4223 4224 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4225 switch ((AMDGPUISD::NodeType)Opcode) { 4226 case AMDGPUISD::FIRST_NUMBER: break; 4227 // AMDIL DAG nodes 4228 NODE_NAME_CASE(UMUL); 4229 NODE_NAME_CASE(BRANCH_COND); 4230 4231 // AMDGPU DAG nodes 4232 NODE_NAME_CASE(IF) 4233 NODE_NAME_CASE(ELSE) 4234 NODE_NAME_CASE(LOOP) 4235 NODE_NAME_CASE(CALL) 4236 NODE_NAME_CASE(TC_RETURN) 4237 NODE_NAME_CASE(TRAP) 4238 NODE_NAME_CASE(RET_FLAG) 4239 NODE_NAME_CASE(RETURN_TO_EPILOG) 4240 NODE_NAME_CASE(ENDPGM) 4241 NODE_NAME_CASE(DWORDADDR) 4242 NODE_NAME_CASE(FRACT) 4243 NODE_NAME_CASE(SETCC) 4244 NODE_NAME_CASE(SETREG) 4245 NODE_NAME_CASE(DENORM_MODE) 4246 NODE_NAME_CASE(FMA_W_CHAIN) 4247 NODE_NAME_CASE(FMUL_W_CHAIN) 4248 NODE_NAME_CASE(CLAMP) 4249 NODE_NAME_CASE(COS_HW) 4250 NODE_NAME_CASE(SIN_HW) 4251 NODE_NAME_CASE(FMAX_LEGACY) 4252 NODE_NAME_CASE(FMIN_LEGACY) 4253 NODE_NAME_CASE(FMAX3) 4254 NODE_NAME_CASE(SMAX3) 4255 NODE_NAME_CASE(UMAX3) 4256 NODE_NAME_CASE(FMIN3) 4257 NODE_NAME_CASE(SMIN3) 4258 NODE_NAME_CASE(UMIN3) 4259 NODE_NAME_CASE(FMED3) 4260 NODE_NAME_CASE(SMED3) 4261 NODE_NAME_CASE(UMED3) 4262 NODE_NAME_CASE(FDOT2) 4263 NODE_NAME_CASE(URECIP) 4264 NODE_NAME_CASE(DIV_SCALE) 4265 NODE_NAME_CASE(DIV_FMAS) 4266 NODE_NAME_CASE(DIV_FIXUP) 4267 NODE_NAME_CASE(FMAD_FTZ) 4268 NODE_NAME_CASE(TRIG_PREOP) 4269 NODE_NAME_CASE(RCP) 4270 NODE_NAME_CASE(RSQ) 4271 NODE_NAME_CASE(RCP_LEGACY) 4272 NODE_NAME_CASE(RSQ_LEGACY) 4273 NODE_NAME_CASE(RCP_IFLAG) 4274 NODE_NAME_CASE(FMUL_LEGACY) 4275 NODE_NAME_CASE(RSQ_CLAMP) 4276 NODE_NAME_CASE(LDEXP) 4277 NODE_NAME_CASE(FP_CLASS) 4278 NODE_NAME_CASE(DOT4) 4279 NODE_NAME_CASE(CARRY) 4280 NODE_NAME_CASE(BORROW) 4281 NODE_NAME_CASE(BFE_U32) 4282 NODE_NAME_CASE(BFE_I32) 4283 NODE_NAME_CASE(BFI) 4284 NODE_NAME_CASE(BFM) 4285 NODE_NAME_CASE(FFBH_U32) 4286 NODE_NAME_CASE(FFBH_I32) 4287 NODE_NAME_CASE(FFBL_B32) 4288 NODE_NAME_CASE(MUL_U24) 4289 NODE_NAME_CASE(MUL_I24) 4290 NODE_NAME_CASE(MULHI_U24) 4291 NODE_NAME_CASE(MULHI_I24) 4292 NODE_NAME_CASE(MUL_LOHI_U24) 4293 NODE_NAME_CASE(MUL_LOHI_I24) 4294 NODE_NAME_CASE(MAD_U24) 4295 NODE_NAME_CASE(MAD_I24) 4296 NODE_NAME_CASE(MAD_I64_I32) 4297 NODE_NAME_CASE(MAD_U64_U32) 4298 NODE_NAME_CASE(PERM) 4299 NODE_NAME_CASE(TEXTURE_FETCH) 4300 NODE_NAME_CASE(R600_EXPORT) 4301 NODE_NAME_CASE(CONST_ADDRESS) 4302 NODE_NAME_CASE(REGISTER_LOAD) 4303 NODE_NAME_CASE(REGISTER_STORE) 4304 NODE_NAME_CASE(SAMPLE) 4305 NODE_NAME_CASE(SAMPLEB) 4306 NODE_NAME_CASE(SAMPLED) 4307 NODE_NAME_CASE(SAMPLEL) 4308 NODE_NAME_CASE(CVT_F32_UBYTE0) 4309 NODE_NAME_CASE(CVT_F32_UBYTE1) 4310 NODE_NAME_CASE(CVT_F32_UBYTE2) 4311 NODE_NAME_CASE(CVT_F32_UBYTE3) 4312 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4313 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4314 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4315 NODE_NAME_CASE(CVT_PK_I16_I32) 4316 NODE_NAME_CASE(CVT_PK_U16_U32) 4317 NODE_NAME_CASE(FP_TO_FP16) 4318 NODE_NAME_CASE(FP16_ZEXT) 4319 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4320 NODE_NAME_CASE(CONST_DATA_PTR) 4321 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4322 NODE_NAME_CASE(LDS) 4323 NODE_NAME_CASE(KILL) 4324 NODE_NAME_CASE(DUMMY_CHAIN) 4325 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4326 NODE_NAME_CASE(INTERP_P1LL_F16) 4327 NODE_NAME_CASE(INTERP_P1LV_F16) 4328 NODE_NAME_CASE(INTERP_P2_F16) 4329 NODE_NAME_CASE(LOAD_D16_HI) 4330 NODE_NAME_CASE(LOAD_D16_LO) 4331 NODE_NAME_CASE(LOAD_D16_HI_I8) 4332 NODE_NAME_CASE(LOAD_D16_HI_U8) 4333 NODE_NAME_CASE(LOAD_D16_LO_I8) 4334 NODE_NAME_CASE(LOAD_D16_LO_U8) 4335 NODE_NAME_CASE(STORE_MSKOR) 4336 NODE_NAME_CASE(LOAD_CONSTANT) 4337 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4338 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4339 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4340 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4341 NODE_NAME_CASE(DS_ORDERED_COUNT) 4342 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4343 NODE_NAME_CASE(ATOMIC_INC) 4344 NODE_NAME_CASE(ATOMIC_DEC) 4345 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4346 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4347 NODE_NAME_CASE(BUFFER_LOAD) 4348 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4349 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4350 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4351 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4352 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4353 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4354 NODE_NAME_CASE(SBUFFER_LOAD) 4355 NODE_NAME_CASE(BUFFER_STORE) 4356 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4357 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4358 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4359 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4360 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4361 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4362 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4363 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4364 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4365 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4366 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4367 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4368 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4369 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4370 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4371 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4372 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4373 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4374 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4375 NODE_NAME_CASE(ATOMIC_PK_FADD) 4376 4377 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4378 } 4379 return nullptr; 4380 } 4381 4382 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4383 SelectionDAG &DAG, int Enabled, 4384 int &RefinementSteps, 4385 bool &UseOneConstNR, 4386 bool Reciprocal) const { 4387 EVT VT = Operand.getValueType(); 4388 4389 if (VT == MVT::f32) { 4390 RefinementSteps = 0; 4391 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4392 } 4393 4394 // TODO: There is also f64 rsq instruction, but the documentation is less 4395 // clear on its precision. 4396 4397 return SDValue(); 4398 } 4399 4400 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4401 SelectionDAG &DAG, int Enabled, 4402 int &RefinementSteps) const { 4403 EVT VT = Operand.getValueType(); 4404 4405 if (VT == MVT::f32) { 4406 // Reciprocal, < 1 ulp error. 4407 // 4408 // This reciprocal approximation converges to < 0.5 ulp error with one 4409 // newton rhapson performed with two fused multiple adds (FMAs). 4410 4411 RefinementSteps = 0; 4412 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4413 } 4414 4415 // TODO: There is also f64 rcp instruction, but the documentation is less 4416 // clear on its precision. 4417 4418 return SDValue(); 4419 } 4420 4421 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4422 const SDValue Op, KnownBits &Known, 4423 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4424 4425 Known.resetAll(); // Don't know anything. 4426 4427 unsigned Opc = Op.getOpcode(); 4428 4429 switch (Opc) { 4430 default: 4431 break; 4432 case AMDGPUISD::CARRY: 4433 case AMDGPUISD::BORROW: { 4434 Known.Zero = APInt::getHighBitsSet(32, 31); 4435 break; 4436 } 4437 4438 case AMDGPUISD::BFE_I32: 4439 case AMDGPUISD::BFE_U32: { 4440 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4441 if (!CWidth) 4442 return; 4443 4444 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4445 4446 if (Opc == AMDGPUISD::BFE_U32) 4447 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4448 4449 break; 4450 } 4451 case AMDGPUISD::FP_TO_FP16: 4452 case AMDGPUISD::FP16_ZEXT: { 4453 unsigned BitWidth = Known.getBitWidth(); 4454 4455 // High bits are zero. 4456 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4457 break; 4458 } 4459 case AMDGPUISD::MUL_U24: 4460 case AMDGPUISD::MUL_I24: { 4461 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4462 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4463 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4464 RHSKnown.countMinTrailingZeros(); 4465 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4466 // Skip extra check if all bits are known zeros. 4467 if (TrailZ >= 32) 4468 break; 4469 4470 // Truncate to 24 bits. 4471 LHSKnown = LHSKnown.trunc(24); 4472 RHSKnown = RHSKnown.trunc(24); 4473 4474 if (Opc == AMDGPUISD::MUL_I24) { 4475 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4476 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4477 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4478 if (MaxValBits >= 32) 4479 break; 4480 bool LHSNegative = LHSKnown.isNegative(); 4481 bool LHSNonNegative = LHSKnown.isNonNegative(); 4482 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4483 bool RHSNegative = RHSKnown.isNegative(); 4484 bool RHSNonNegative = RHSKnown.isNonNegative(); 4485 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4486 4487 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4488 Known.Zero.setHighBits(32 - MaxValBits); 4489 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4490 Known.One.setHighBits(32 - MaxValBits); 4491 } else { 4492 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4493 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4494 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4495 if (MaxValBits >= 32) 4496 break; 4497 Known.Zero.setHighBits(32 - MaxValBits); 4498 } 4499 break; 4500 } 4501 case AMDGPUISD::PERM: { 4502 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4503 if (!CMask) 4504 return; 4505 4506 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4507 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4508 unsigned Sel = CMask->getZExtValue(); 4509 4510 for (unsigned I = 0; I < 32; I += 8) { 4511 unsigned SelBits = Sel & 0xff; 4512 if (SelBits < 4) { 4513 SelBits *= 8; 4514 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4515 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4516 } else if (SelBits < 7) { 4517 SelBits = (SelBits & 3) * 8; 4518 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4519 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4520 } else if (SelBits == 0x0c) { 4521 Known.Zero |= 0xFFull << I; 4522 } else if (SelBits > 0x0c) { 4523 Known.One |= 0xFFull << I; 4524 } 4525 Sel >>= 8; 4526 } 4527 break; 4528 } 4529 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4530 Known.Zero.setHighBits(24); 4531 break; 4532 } 4533 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4534 Known.Zero.setHighBits(16); 4535 break; 4536 } 4537 case AMDGPUISD::LDS: { 4538 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4539 unsigned Align = GA->getGlobal()->getAlignment(); 4540 4541 Known.Zero.setHighBits(16); 4542 if (Align) 4543 Known.Zero.setLowBits(Log2_32(Align)); 4544 break; 4545 } 4546 case ISD::INTRINSIC_WO_CHAIN: { 4547 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4548 switch (IID) { 4549 case Intrinsic::amdgcn_mbcnt_lo: 4550 case Intrinsic::amdgcn_mbcnt_hi: { 4551 const GCNSubtarget &ST = 4552 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4553 // These return at most the wavefront size - 1. 4554 unsigned Size = Op.getValueType().getSizeInBits(); 4555 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4556 break; 4557 } 4558 default: 4559 break; 4560 } 4561 } 4562 } 4563 } 4564 4565 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4566 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4567 unsigned Depth) const { 4568 switch (Op.getOpcode()) { 4569 case AMDGPUISD::BFE_I32: { 4570 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4571 if (!Width) 4572 return 1; 4573 4574 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4575 if (!isNullConstant(Op.getOperand(1))) 4576 return SignBits; 4577 4578 // TODO: Could probably figure something out with non-0 offsets. 4579 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4580 return std::max(SignBits, Op0SignBits); 4581 } 4582 4583 case AMDGPUISD::BFE_U32: { 4584 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4585 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4586 } 4587 4588 case AMDGPUISD::CARRY: 4589 case AMDGPUISD::BORROW: 4590 return 31; 4591 case AMDGPUISD::BUFFER_LOAD_BYTE: 4592 return 25; 4593 case AMDGPUISD::BUFFER_LOAD_SHORT: 4594 return 17; 4595 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4596 return 24; 4597 case AMDGPUISD::BUFFER_LOAD_USHORT: 4598 return 16; 4599 case AMDGPUISD::FP_TO_FP16: 4600 case AMDGPUISD::FP16_ZEXT: 4601 return 16; 4602 default: 4603 return 1; 4604 } 4605 } 4606 4607 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4608 const SelectionDAG &DAG, 4609 bool SNaN, 4610 unsigned Depth) const { 4611 unsigned Opcode = Op.getOpcode(); 4612 switch (Opcode) { 4613 case AMDGPUISD::FMIN_LEGACY: 4614 case AMDGPUISD::FMAX_LEGACY: { 4615 if (SNaN) 4616 return true; 4617 4618 // TODO: Can check no nans on one of the operands for each one, but which 4619 // one? 4620 return false; 4621 } 4622 case AMDGPUISD::FMUL_LEGACY: 4623 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4624 if (SNaN) 4625 return true; 4626 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4627 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4628 } 4629 case AMDGPUISD::FMED3: 4630 case AMDGPUISD::FMIN3: 4631 case AMDGPUISD::FMAX3: 4632 case AMDGPUISD::FMAD_FTZ: { 4633 if (SNaN) 4634 return true; 4635 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4636 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4637 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4638 } 4639 case AMDGPUISD::CVT_F32_UBYTE0: 4640 case AMDGPUISD::CVT_F32_UBYTE1: 4641 case AMDGPUISD::CVT_F32_UBYTE2: 4642 case AMDGPUISD::CVT_F32_UBYTE3: 4643 return true; 4644 4645 case AMDGPUISD::RCP: 4646 case AMDGPUISD::RSQ: 4647 case AMDGPUISD::RCP_LEGACY: 4648 case AMDGPUISD::RSQ_LEGACY: 4649 case AMDGPUISD::RSQ_CLAMP: { 4650 if (SNaN) 4651 return true; 4652 4653 // TODO: Need is known positive check. 4654 return false; 4655 } 4656 case AMDGPUISD::LDEXP: 4657 case AMDGPUISD::FRACT: { 4658 if (SNaN) 4659 return true; 4660 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4661 } 4662 case AMDGPUISD::DIV_SCALE: 4663 case AMDGPUISD::DIV_FMAS: 4664 case AMDGPUISD::DIV_FIXUP: 4665 case AMDGPUISD::TRIG_PREOP: 4666 // TODO: Refine on operands. 4667 return SNaN; 4668 case AMDGPUISD::SIN_HW: 4669 case AMDGPUISD::COS_HW: { 4670 // TODO: Need check for infinity 4671 return SNaN; 4672 } 4673 case ISD::INTRINSIC_WO_CHAIN: { 4674 unsigned IntrinsicID 4675 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4676 // TODO: Handle more intrinsics 4677 switch (IntrinsicID) { 4678 case Intrinsic::amdgcn_cubeid: 4679 return true; 4680 4681 case Intrinsic::amdgcn_frexp_mant: { 4682 if (SNaN) 4683 return true; 4684 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4685 } 4686 case Intrinsic::amdgcn_cvt_pkrtz: { 4687 if (SNaN) 4688 return true; 4689 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4690 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4691 } 4692 case Intrinsic::amdgcn_fdot2: 4693 // TODO: Refine on operand 4694 return SNaN; 4695 default: 4696 return false; 4697 } 4698 } 4699 default: 4700 return false; 4701 } 4702 } 4703 4704 TargetLowering::AtomicExpansionKind 4705 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4706 switch (RMW->getOperation()) { 4707 case AtomicRMWInst::Nand: 4708 case AtomicRMWInst::FAdd: 4709 case AtomicRMWInst::FSub: 4710 return AtomicExpansionKind::CmpXChg; 4711 default: 4712 return AtomicExpansionKind::None; 4713 } 4714 } 4715