1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 17 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 18 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 19 20 #include "AMDGPUISelLowering.h" 21 #include "AMDGPU.h" 22 #include "AMDGPUCallLowering.h" 23 #include "AMDGPUFrameLowering.h" 24 #include "AMDGPUIntrinsicInfo.h" 25 #include "AMDGPURegisterInfo.h" 26 #include "AMDGPUSubtarget.h" 27 #include "AMDGPUTargetMachine.h" 28 #include "Utils/AMDGPUBaseInfo.h" 29 #include "R600MachineFunctionInfo.h" 30 #include "SIInstrInfo.h" 31 #include "SIMachineFunctionInfo.h" 32 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CallingConvLower.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/Support/KnownBits.h" 42 using namespace llvm; 43 44 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 45 CCValAssign::LocInfo LocInfo, 46 ISD::ArgFlagsTy ArgFlags, CCState &State, 47 const TargetRegisterClass *RC, 48 unsigned NumRegs) { 49 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 50 unsigned RegResult = State.AllocateReg(RegList); 51 if (RegResult == AMDGPU::NoRegister) 52 return false; 53 54 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 55 return true; 56 } 57 58 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 59 CCValAssign::LocInfo LocInfo, 60 ISD::ArgFlagsTy ArgFlags, CCState &State) { 61 switch (LocVT.SimpleTy) { 62 case MVT::i64: 63 case MVT::f64: 64 case MVT::v2i32: 65 case MVT::v2f32: 66 case MVT::v4i16: 67 case MVT::v4f16: { 68 // Up to SGPR0-SGPR39 69 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 70 &AMDGPU::SGPR_64RegClass, 20); 71 } 72 default: 73 return false; 74 } 75 } 76 77 // Allocate up to VGPR31. 78 // 79 // TODO: Since there are no VGPR alignent requirements would it be better to 80 // split into individual scalar registers? 81 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 82 CCValAssign::LocInfo LocInfo, 83 ISD::ArgFlagsTy ArgFlags, CCState &State) { 84 switch (LocVT.SimpleTy) { 85 case MVT::i64: 86 case MVT::f64: 87 case MVT::v2i32: 88 case MVT::v2f32: 89 case MVT::v4i16: 90 case MVT::v4f16: { 91 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 92 &AMDGPU::VReg_64RegClass, 31); 93 } 94 case MVT::v4i32: 95 case MVT::v4f32: 96 case MVT::v2i64: 97 case MVT::v2f64: { 98 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 99 &AMDGPU::VReg_128RegClass, 29); 100 } 101 case MVT::v8i32: 102 case MVT::v8f32: { 103 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 104 &AMDGPU::VReg_256RegClass, 25); 105 106 } 107 case MVT::v16i32: 108 case MVT::v16f32: { 109 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 110 &AMDGPU::VReg_512RegClass, 17); 111 112 } 113 default: 114 return false; 115 } 116 } 117 118 #include "AMDGPUGenCallingConv.inc" 119 120 // Find a larger type to do a load / store of a vector with. 121 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 122 unsigned StoreSize = VT.getStoreSizeInBits(); 123 if (StoreSize <= 32) 124 return EVT::getIntegerVT(Ctx, StoreSize); 125 126 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 127 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 128 } 129 130 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 131 KnownBits Known; 132 EVT VT = Op.getValueType(); 133 DAG.computeKnownBits(Op, Known); 134 135 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 136 } 137 138 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 139 EVT VT = Op.getValueType(); 140 141 // In order for this to be a signed 24-bit value, bit 23, must 142 // be a sign bit. 143 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 144 } 145 146 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 147 const AMDGPUSubtarget &STI) 148 : TargetLowering(TM), Subtarget(&STI) { 149 // Lower floating point store/load to integer store/load to reduce the number 150 // of patterns in tablegen. 151 setOperationAction(ISD::LOAD, MVT::f32, Promote); 152 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 153 154 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 155 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 156 157 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 158 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 159 160 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 161 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 162 163 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 164 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 165 166 setOperationAction(ISD::LOAD, MVT::i64, Promote); 167 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 168 169 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 170 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 171 172 setOperationAction(ISD::LOAD, MVT::f64, Promote); 173 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 174 175 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 176 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 177 178 // There are no 64-bit extloads. These should be done as a 32-bit extload and 179 // an extension to 64-bit. 180 for (MVT VT : MVT::integer_valuetypes()) { 181 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 182 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 183 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 184 } 185 186 for (MVT VT : MVT::integer_valuetypes()) { 187 if (VT == MVT::i64) 188 continue; 189 190 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 191 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 193 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 194 195 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 197 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 198 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 199 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 201 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 202 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 204 } 205 206 for (MVT VT : MVT::integer_vector_valuetypes()) { 207 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 208 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 209 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 210 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 211 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 212 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 213 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 214 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 215 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 216 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 217 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 218 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 219 } 220 221 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 222 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 225 226 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 227 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 230 231 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 232 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 233 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 235 236 setOperationAction(ISD::STORE, MVT::f32, Promote); 237 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 238 239 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 241 242 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 244 245 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 247 248 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 250 251 setOperationAction(ISD::STORE, MVT::i64, Promote); 252 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 253 254 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 256 257 setOperationAction(ISD::STORE, MVT::f64, Promote); 258 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 259 260 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 262 263 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 264 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 265 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 266 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 267 268 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 269 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 270 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 271 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 272 273 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 274 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 275 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 276 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 277 278 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 279 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 280 281 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 282 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 283 284 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 285 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 286 287 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 288 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 289 290 291 setOperationAction(ISD::Constant, MVT::i32, Legal); 292 setOperationAction(ISD::Constant, MVT::i64, Legal); 293 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 294 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 295 296 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 297 setOperationAction(ISD::BRIND, MVT::Other, Expand); 298 299 // This is totally unsupported, just custom lower to produce an error. 300 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 301 302 // Library functions. These default to Expand, but we have instructions 303 // for them. 304 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 305 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 306 setOperationAction(ISD::FPOW, MVT::f32, Legal); 307 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 308 setOperationAction(ISD::FABS, MVT::f32, Legal); 309 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 310 setOperationAction(ISD::FRINT, MVT::f32, Legal); 311 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 312 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 313 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 314 315 setOperationAction(ISD::FROUND, MVT::f32, Custom); 316 setOperationAction(ISD::FROUND, MVT::f64, Custom); 317 318 setOperationAction(ISD::FLOG, MVT::f32, Custom); 319 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 320 setOperationAction(ISD::FEXP, MVT::f32, Custom); 321 322 323 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 324 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 325 326 setOperationAction(ISD::FREM, MVT::f32, Custom); 327 setOperationAction(ISD::FREM, MVT::f64, Custom); 328 329 // Expand to fneg + fadd. 330 setOperationAction(ISD::FSUB, MVT::f64, Expand); 331 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 336 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 342 343 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 344 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 345 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 346 347 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 348 for (MVT VT : ScalarIntVTs) { 349 // These should use [SU]DIVREM, so set them to expand 350 setOperationAction(ISD::SDIV, VT, Expand); 351 setOperationAction(ISD::UDIV, VT, Expand); 352 setOperationAction(ISD::SREM, VT, Expand); 353 setOperationAction(ISD::UREM, VT, Expand); 354 355 // GPU does not have divrem function for signed or unsigned. 356 setOperationAction(ISD::SDIVREM, VT, Custom); 357 setOperationAction(ISD::UDIVREM, VT, Custom); 358 359 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 360 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 361 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 362 363 setOperationAction(ISD::BSWAP, VT, Expand); 364 setOperationAction(ISD::CTTZ, VT, Expand); 365 setOperationAction(ISD::CTLZ, VT, Expand); 366 367 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 368 setOperationAction(ISD::ADDC, VT, Legal); 369 setOperationAction(ISD::SUBC, VT, Legal); 370 setOperationAction(ISD::ADDE, VT, Legal); 371 setOperationAction(ISD::SUBE, VT, Legal); 372 } 373 374 // The hardware supports 32-bit ROTR, but not ROTL. 375 setOperationAction(ISD::ROTL, MVT::i32, Expand); 376 setOperationAction(ISD::ROTL, MVT::i64, Expand); 377 setOperationAction(ISD::ROTR, MVT::i64, Expand); 378 379 setOperationAction(ISD::MUL, MVT::i64, Expand); 380 setOperationAction(ISD::MULHU, MVT::i64, Expand); 381 setOperationAction(ISD::MULHS, MVT::i64, Expand); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 383 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 384 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 385 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 386 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 387 388 setOperationAction(ISD::SMIN, MVT::i32, Legal); 389 setOperationAction(ISD::UMIN, MVT::i32, Legal); 390 setOperationAction(ISD::SMAX, MVT::i32, Legal); 391 setOperationAction(ISD::UMAX, MVT::i32, Legal); 392 393 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 394 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 395 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 396 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 397 398 static const MVT::SimpleValueType VectorIntTypes[] = { 399 MVT::v2i32, MVT::v4i32 400 }; 401 402 for (MVT VT : VectorIntTypes) { 403 // Expand the following operations for the current type by default. 404 setOperationAction(ISD::ADD, VT, Expand); 405 setOperationAction(ISD::AND, VT, Expand); 406 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 407 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 408 setOperationAction(ISD::MUL, VT, Expand); 409 setOperationAction(ISD::MULHU, VT, Expand); 410 setOperationAction(ISD::MULHS, VT, Expand); 411 setOperationAction(ISD::OR, VT, Expand); 412 setOperationAction(ISD::SHL, VT, Expand); 413 setOperationAction(ISD::SRA, VT, Expand); 414 setOperationAction(ISD::SRL, VT, Expand); 415 setOperationAction(ISD::ROTL, VT, Expand); 416 setOperationAction(ISD::ROTR, VT, Expand); 417 setOperationAction(ISD::SUB, VT, Expand); 418 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 419 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 420 setOperationAction(ISD::SDIV, VT, Expand); 421 setOperationAction(ISD::UDIV, VT, Expand); 422 setOperationAction(ISD::SREM, VT, Expand); 423 setOperationAction(ISD::UREM, VT, Expand); 424 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 425 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 426 setOperationAction(ISD::SDIVREM, VT, Custom); 427 setOperationAction(ISD::UDIVREM, VT, Expand); 428 setOperationAction(ISD::SELECT, VT, Expand); 429 setOperationAction(ISD::VSELECT, VT, Expand); 430 setOperationAction(ISD::SELECT_CC, VT, Expand); 431 setOperationAction(ISD::XOR, VT, Expand); 432 setOperationAction(ISD::BSWAP, VT, Expand); 433 setOperationAction(ISD::CTPOP, VT, Expand); 434 setOperationAction(ISD::CTTZ, VT, Expand); 435 setOperationAction(ISD::CTLZ, VT, Expand); 436 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 437 setOperationAction(ISD::SETCC, VT, Expand); 438 } 439 440 static const MVT::SimpleValueType FloatVectorTypes[] = { 441 MVT::v2f32, MVT::v4f32 442 }; 443 444 for (MVT VT : FloatVectorTypes) { 445 setOperationAction(ISD::FABS, VT, Expand); 446 setOperationAction(ISD::FMINNUM, VT, Expand); 447 setOperationAction(ISD::FMAXNUM, VT, Expand); 448 setOperationAction(ISD::FADD, VT, Expand); 449 setOperationAction(ISD::FCEIL, VT, Expand); 450 setOperationAction(ISD::FCOS, VT, Expand); 451 setOperationAction(ISD::FDIV, VT, Expand); 452 setOperationAction(ISD::FEXP2, VT, Expand); 453 setOperationAction(ISD::FEXP, VT, Expand); 454 setOperationAction(ISD::FLOG2, VT, Expand); 455 setOperationAction(ISD::FREM, VT, Expand); 456 setOperationAction(ISD::FLOG, VT, Expand); 457 setOperationAction(ISD::FLOG10, VT, Expand); 458 setOperationAction(ISD::FPOW, VT, Expand); 459 setOperationAction(ISD::FFLOOR, VT, Expand); 460 setOperationAction(ISD::FTRUNC, VT, Expand); 461 setOperationAction(ISD::FMUL, VT, Expand); 462 setOperationAction(ISD::FMA, VT, Expand); 463 setOperationAction(ISD::FRINT, VT, Expand); 464 setOperationAction(ISD::FNEARBYINT, VT, Expand); 465 setOperationAction(ISD::FSQRT, VT, Expand); 466 setOperationAction(ISD::FSIN, VT, Expand); 467 setOperationAction(ISD::FSUB, VT, Expand); 468 setOperationAction(ISD::FNEG, VT, Expand); 469 setOperationAction(ISD::VSELECT, VT, Expand); 470 setOperationAction(ISD::SELECT_CC, VT, Expand); 471 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 472 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 473 setOperationAction(ISD::SETCC, VT, Expand); 474 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 475 } 476 477 // This causes using an unrolled select operation rather than expansion with 478 // bit operations. This is in general better, but the alternative using BFI 479 // instructions may be better if the select sources are SGPRs. 480 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 481 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 482 483 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 484 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 485 486 // There are no libcalls of any kind. 487 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 488 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 489 490 setBooleanContents(ZeroOrNegativeOneBooleanContent); 491 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 492 493 setSchedulingPreference(Sched::RegPressure); 494 setJumpIsExpensive(true); 495 496 // FIXME: This is only partially true. If we have to do vector compares, any 497 // SGPR pair can be a condition register. If we have a uniform condition, we 498 // are better off doing SALU operations, where there is only one SCC. For now, 499 // we don't have a way of knowing during instruction selection if a condition 500 // will be uniform and we always use vector compares. Assume we are using 501 // vector compares until that is fixed. 502 setHasMultipleConditionRegisters(true); 503 504 PredictableSelectIsExpensive = false; 505 506 // We want to find all load dependencies for long chains of stores to enable 507 // merging into very wide vectors. The problem is with vectors with > 4 508 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 509 // vectors are a legal type, even though we have to split the loads 510 // usually. When we can more precisely specify load legality per address 511 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 512 // smarter so that they can figure out what to do in 2 iterations without all 513 // N > 4 stores on the same chain. 514 GatherAllAliasesMaxDepth = 16; 515 516 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 517 // about these during lowering. 518 MaxStoresPerMemcpy = 0xffffffff; 519 MaxStoresPerMemmove = 0xffffffff; 520 MaxStoresPerMemset = 0xffffffff; 521 522 setTargetDAGCombine(ISD::BITCAST); 523 setTargetDAGCombine(ISD::SHL); 524 setTargetDAGCombine(ISD::SRA); 525 setTargetDAGCombine(ISD::SRL); 526 setTargetDAGCombine(ISD::TRUNCATE); 527 setTargetDAGCombine(ISD::MUL); 528 setTargetDAGCombine(ISD::MULHU); 529 setTargetDAGCombine(ISD::MULHS); 530 setTargetDAGCombine(ISD::SELECT); 531 setTargetDAGCombine(ISD::SELECT_CC); 532 setTargetDAGCombine(ISD::STORE); 533 setTargetDAGCombine(ISD::FADD); 534 setTargetDAGCombine(ISD::FSUB); 535 setTargetDAGCombine(ISD::FNEG); 536 setTargetDAGCombine(ISD::FABS); 537 setTargetDAGCombine(ISD::AssertZext); 538 setTargetDAGCombine(ISD::AssertSext); 539 } 540 541 //===----------------------------------------------------------------------===// 542 // Target Information 543 //===----------------------------------------------------------------------===// 544 545 LLVM_READNONE 546 static bool fnegFoldsIntoOp(unsigned Opc) { 547 switch (Opc) { 548 case ISD::FADD: 549 case ISD::FSUB: 550 case ISD::FMUL: 551 case ISD::FMA: 552 case ISD::FMAD: 553 case ISD::FMINNUM: 554 case ISD::FMAXNUM: 555 case ISD::FSIN: 556 case ISD::FTRUNC: 557 case ISD::FRINT: 558 case ISD::FNEARBYINT: 559 case ISD::FCANONICALIZE: 560 case AMDGPUISD::RCP: 561 case AMDGPUISD::RCP_LEGACY: 562 case AMDGPUISD::RCP_IFLAG: 563 case AMDGPUISD::SIN_HW: 564 case AMDGPUISD::FMUL_LEGACY: 565 case AMDGPUISD::FMIN_LEGACY: 566 case AMDGPUISD::FMAX_LEGACY: 567 case AMDGPUISD::FMED3: 568 return true; 569 default: 570 return false; 571 } 572 } 573 574 /// \p returns true if the operation will definitely need to use a 64-bit 575 /// encoding, and thus will use a VOP3 encoding regardless of the source 576 /// modifiers. 577 LLVM_READONLY 578 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 579 return N->getNumOperands() > 2 || VT == MVT::f64; 580 } 581 582 // Most FP instructions support source modifiers, but this could be refined 583 // slightly. 584 LLVM_READONLY 585 static bool hasSourceMods(const SDNode *N) { 586 if (isa<MemSDNode>(N)) 587 return false; 588 589 switch (N->getOpcode()) { 590 case ISD::CopyToReg: 591 case ISD::SELECT: 592 case ISD::FDIV: 593 case ISD::FREM: 594 case ISD::INLINEASM: 595 case AMDGPUISD::INTERP_P1: 596 case AMDGPUISD::INTERP_P2: 597 case AMDGPUISD::DIV_SCALE: 598 599 // TODO: Should really be looking at the users of the bitcast. These are 600 // problematic because bitcasts are used to legalize all stores to integer 601 // types. 602 case ISD::BITCAST: 603 return false; 604 default: 605 return true; 606 } 607 } 608 609 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 610 unsigned CostThreshold) { 611 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 612 // it is truly free to use a source modifier in all cases. If there are 613 // multiple users but for each one will necessitate using VOP3, there will be 614 // a code size increase. Try to avoid increasing code size unless we know it 615 // will save on the instruction count. 616 unsigned NumMayIncreaseSize = 0; 617 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 618 619 // XXX - Should this limit number of uses to check? 620 for (const SDNode *U : N->uses()) { 621 if (!hasSourceMods(U)) 622 return false; 623 624 if (!opMustUseVOP3Encoding(U, VT)) { 625 if (++NumMayIncreaseSize > CostThreshold) 626 return false; 627 } 628 } 629 630 return true; 631 } 632 633 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 634 return MVT::i32; 635 } 636 637 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 638 return true; 639 } 640 641 // The backend supports 32 and 64 bit floating point immediates. 642 // FIXME: Why are we reporting vectors of FP immediates as legal? 643 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 644 EVT ScalarVT = VT.getScalarType(); 645 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 646 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 647 } 648 649 // We don't want to shrink f64 / f32 constants. 650 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 651 EVT ScalarVT = VT.getScalarType(); 652 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 653 } 654 655 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 656 ISD::LoadExtType, 657 EVT NewVT) const { 658 659 unsigned NewSize = NewVT.getStoreSizeInBits(); 660 661 // If we are reducing to a 32-bit load, this is always better. 662 if (NewSize == 32) 663 return true; 664 665 EVT OldVT = N->getValueType(0); 666 unsigned OldSize = OldVT.getStoreSizeInBits(); 667 668 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 669 // extloads, so doing one requires using a buffer_load. In cases where we 670 // still couldn't use a scalar load, using the wider load shouldn't really 671 // hurt anything. 672 673 // If the old size already had to be an extload, there's no harm in continuing 674 // to reduce the width. 675 return (OldSize < 32); 676 } 677 678 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 679 EVT CastTy) const { 680 681 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 682 683 if (LoadTy.getScalarType() == MVT::i32) 684 return false; 685 686 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 687 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 688 689 return (LScalarSize < CastScalarSize) || 690 (CastScalarSize >= 32); 691 } 692 693 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 694 // profitable with the expansion for 64-bit since it's generally good to 695 // speculate things. 696 // FIXME: These should really have the size as a parameter. 697 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 698 return true; 699 } 700 701 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 702 return true; 703 } 704 705 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 706 switch (N->getOpcode()) { 707 default: 708 return false; 709 case ISD::EntryToken: 710 case ISD::TokenFactor: 711 return true; 712 case ISD::INTRINSIC_WO_CHAIN: 713 { 714 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 715 switch (IntrID) { 716 default: 717 return false; 718 case Intrinsic::amdgcn_readfirstlane: 719 case Intrinsic::amdgcn_readlane: 720 return true; 721 } 722 } 723 break; 724 case ISD::LOAD: 725 { 726 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 727 if (L->getMemOperand()->getAddrSpace() 728 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 729 return true; 730 return false; 731 } 732 break; 733 } 734 } 735 736 //===---------------------------------------------------------------------===// 737 // Target Properties 738 //===---------------------------------------------------------------------===// 739 740 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 741 assert(VT.isFloatingPoint()); 742 743 // Packed operations do not have a fabs modifier. 744 return VT == MVT::f32 || VT == MVT::f64 || 745 (Subtarget->has16BitInsts() && VT == MVT::f16); 746 } 747 748 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 749 assert(VT.isFloatingPoint()); 750 return VT == MVT::f32 || VT == MVT::f64 || 751 (Subtarget->has16BitInsts() && VT == MVT::f16) || 752 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 753 } 754 755 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 756 unsigned NumElem, 757 unsigned AS) const { 758 return true; 759 } 760 761 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 762 // There are few operations which truly have vector input operands. Any vector 763 // operation is going to involve operations on each component, and a 764 // build_vector will be a copy per element, so it always makes sense to use a 765 // build_vector input in place of the extracted element to avoid a copy into a 766 // super register. 767 // 768 // We should probably only do this if all users are extracts only, but this 769 // should be the common case. 770 return true; 771 } 772 773 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 774 // Truncate is just accessing a subregister. 775 776 unsigned SrcSize = Source.getSizeInBits(); 777 unsigned DestSize = Dest.getSizeInBits(); 778 779 return DestSize < SrcSize && DestSize % 32 == 0 ; 780 } 781 782 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 783 // Truncate is just accessing a subregister. 784 785 unsigned SrcSize = Source->getScalarSizeInBits(); 786 unsigned DestSize = Dest->getScalarSizeInBits(); 787 788 if (DestSize== 16 && Subtarget->has16BitInsts()) 789 return SrcSize >= 32; 790 791 return DestSize < SrcSize && DestSize % 32 == 0; 792 } 793 794 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 795 unsigned SrcSize = Src->getScalarSizeInBits(); 796 unsigned DestSize = Dest->getScalarSizeInBits(); 797 798 if (SrcSize == 16 && Subtarget->has16BitInsts()) 799 return DestSize >= 32; 800 801 return SrcSize == 32 && DestSize == 64; 802 } 803 804 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 805 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 806 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 807 // this will enable reducing 64-bit operations the 32-bit, which is always 808 // good. 809 810 if (Src == MVT::i16) 811 return Dest == MVT::i32 ||Dest == MVT::i64 ; 812 813 return Src == MVT::i32 && Dest == MVT::i64; 814 } 815 816 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 817 return isZExtFree(Val.getValueType(), VT2); 818 } 819 820 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 821 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 822 // limited number of native 64-bit operations. Shrinking an operation to fit 823 // in a single 32-bit register should always be helpful. As currently used, 824 // this is much less general than the name suggests, and is only used in 825 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 826 // not profitable, and may actually be harmful. 827 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 828 } 829 830 //===---------------------------------------------------------------------===// 831 // TargetLowering Callbacks 832 //===---------------------------------------------------------------------===// 833 834 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 835 bool IsVarArg) { 836 switch (CC) { 837 case CallingConv::AMDGPU_KERNEL: 838 case CallingConv::SPIR_KERNEL: 839 llvm_unreachable("kernels should not be handled here"); 840 case CallingConv::AMDGPU_VS: 841 case CallingConv::AMDGPU_GS: 842 case CallingConv::AMDGPU_PS: 843 case CallingConv::AMDGPU_CS: 844 case CallingConv::AMDGPU_HS: 845 case CallingConv::AMDGPU_ES: 846 case CallingConv::AMDGPU_LS: 847 return CC_AMDGPU; 848 case CallingConv::C: 849 case CallingConv::Fast: 850 case CallingConv::Cold: 851 return CC_AMDGPU_Func; 852 default: 853 report_fatal_error("Unsupported calling convention."); 854 } 855 } 856 857 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 858 bool IsVarArg) { 859 switch (CC) { 860 case CallingConv::AMDGPU_KERNEL: 861 case CallingConv::SPIR_KERNEL: 862 llvm_unreachable("kernels should not be handled here"); 863 case CallingConv::AMDGPU_VS: 864 case CallingConv::AMDGPU_GS: 865 case CallingConv::AMDGPU_PS: 866 case CallingConv::AMDGPU_CS: 867 case CallingConv::AMDGPU_HS: 868 case CallingConv::AMDGPU_ES: 869 case CallingConv::AMDGPU_LS: 870 return RetCC_SI_Shader; 871 case CallingConv::C: 872 case CallingConv::Fast: 873 case CallingConv::Cold: 874 return RetCC_AMDGPU_Func; 875 default: 876 report_fatal_error("Unsupported calling convention."); 877 } 878 } 879 880 /// The SelectionDAGBuilder will automatically promote function arguments 881 /// with illegal types. However, this does not work for the AMDGPU targets 882 /// since the function arguments are stored in memory as these illegal types. 883 /// In order to handle this properly we need to get the original types sizes 884 /// from the LLVM IR Function and fixup the ISD:InputArg values before 885 /// passing them to AnalyzeFormalArguments() 886 887 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 888 /// input values across multiple registers. Each item in the Ins array 889 /// represents a single value that will be stored in registers. Ins[x].VT is 890 /// the value type of the value that will be stored in the register, so 891 /// whatever SDNode we lower the argument to needs to be this type. 892 /// 893 /// In order to correctly lower the arguments we need to know the size of each 894 /// argument. Since Ins[x].VT gives us the size of the register that will 895 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 896 /// for the orignal function argument so that we can deduce the correct memory 897 /// type to use for Ins[x]. In most cases the correct memory type will be 898 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 899 /// we have a kernel argument of type v8i8, this argument will be split into 900 /// 8 parts and each part will be represented by its own item in the Ins array. 901 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 902 /// the argument before it was split. From this, we deduce that the memory type 903 /// for each individual part is i8. We pass the memory type as LocVT to the 904 /// calling convention analysis function and the register type (Ins[x].VT) as 905 /// the ValVT. 906 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 907 CCState &State, 908 const SmallVectorImpl<ISD::InputArg> &Ins) const { 909 const MachineFunction &MF = State.getMachineFunction(); 910 const Function &Fn = MF.getFunction(); 911 LLVMContext &Ctx = Fn.getParent()->getContext(); 912 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 913 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 914 CallingConv::ID CC = Fn.getCallingConv(); 915 916 unsigned MaxAlign = 1; 917 uint64_t ExplicitArgOffset = 0; 918 const DataLayout &DL = Fn.getParent()->getDataLayout(); 919 920 unsigned InIndex = 0; 921 922 for (const Argument &Arg : Fn.args()) { 923 Type *BaseArgTy = Arg.getType(); 924 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 925 MaxAlign = std::max(Align, MaxAlign); 926 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 927 928 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 929 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 930 931 // We're basically throwing away everything passed into us and starting over 932 // to get accurate in-memory offsets. The "PartOffset" is completely useless 933 // to us as computed in Ins. 934 // 935 // We also need to figure out what type legalization is trying to do to get 936 // the correct memory offsets. 937 938 SmallVector<EVT, 16> ValueVTs; 939 SmallVector<uint64_t, 16> Offsets; 940 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 941 942 for (unsigned Value = 0, NumValues = ValueVTs.size(); 943 Value != NumValues; ++Value) { 944 uint64_t BasePartOffset = Offsets[Value]; 945 946 EVT ArgVT = ValueVTs[Value]; 947 EVT MemVT = ArgVT; 948 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 949 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 950 951 if (NumRegs == 1) { 952 // This argument is not split, so the IR type is the memory type. 953 if (ArgVT.isExtended()) { 954 // We have an extended type, like i24, so we should just use the 955 // register type. 956 MemVT = RegisterVT; 957 } else { 958 MemVT = ArgVT; 959 } 960 } else if (ArgVT.isVector() && RegisterVT.isVector() && 961 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 962 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 963 // We have a vector value which has been split into a vector with 964 // the same scalar type, but fewer elements. This should handle 965 // all the floating-point vector types. 966 MemVT = RegisterVT; 967 } else if (ArgVT.isVector() && 968 ArgVT.getVectorNumElements() == NumRegs) { 969 // This arg has been split so that each element is stored in a separate 970 // register. 971 MemVT = ArgVT.getScalarType(); 972 } else if (ArgVT.isExtended()) { 973 // We have an extended type, like i65. 974 MemVT = RegisterVT; 975 } else { 976 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 977 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 978 if (RegisterVT.isInteger()) { 979 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 980 } else if (RegisterVT.isVector()) { 981 assert(!RegisterVT.getScalarType().isFloatingPoint()); 982 unsigned NumElements = RegisterVT.getVectorNumElements(); 983 assert(MemoryBits % NumElements == 0); 984 // This vector type has been split into another vector type with 985 // a different elements size. 986 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 987 MemoryBits / NumElements); 988 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 989 } else { 990 llvm_unreachable("cannot deduce memory type."); 991 } 992 } 993 994 // Convert one element vectors to scalar. 995 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 996 MemVT = MemVT.getScalarType(); 997 998 if (MemVT.isExtended()) { 999 // This should really only happen if we have vec3 arguments 1000 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 1001 MemVT = MemVT.getPow2VectorType(State.getContext()); 1002 } 1003 1004 unsigned PartOffset = 0; 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1007 BasePartOffset + PartOffset, 1008 MemVT.getSimpleVT(), 1009 CCValAssign::Full)); 1010 PartOffset += MemVT.getStoreSize(); 1011 } 1012 } 1013 } 1014 } 1015 1016 SDValue AMDGPUTargetLowering::LowerReturn( 1017 SDValue Chain, CallingConv::ID CallConv, 1018 bool isVarArg, 1019 const SmallVectorImpl<ISD::OutputArg> &Outs, 1020 const SmallVectorImpl<SDValue> &OutVals, 1021 const SDLoc &DL, SelectionDAG &DAG) const { 1022 // FIXME: Fails for r600 tests 1023 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1024 // "wave terminate should not have return values"); 1025 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1026 } 1027 1028 //===---------------------------------------------------------------------===// 1029 // Target specific lowering 1030 //===---------------------------------------------------------------------===// 1031 1032 /// Selects the correct CCAssignFn for a given CallingConvention value. 1033 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1034 bool IsVarArg) { 1035 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1036 } 1037 1038 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1039 bool IsVarArg) { 1040 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1041 } 1042 1043 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1044 SelectionDAG &DAG, 1045 MachineFrameInfo &MFI, 1046 int ClobberedFI) const { 1047 SmallVector<SDValue, 8> ArgChains; 1048 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1049 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1050 1051 // Include the original chain at the beginning of the list. When this is 1052 // used by target LowerCall hooks, this helps legalize find the 1053 // CALLSEQ_BEGIN node. 1054 ArgChains.push_back(Chain); 1055 1056 // Add a chain value for each stack argument corresponding 1057 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1058 UE = DAG.getEntryNode().getNode()->use_end(); 1059 U != UE; ++U) { 1060 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1061 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1062 if (FI->getIndex() < 0) { 1063 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1064 int64_t InLastByte = InFirstByte; 1065 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1066 1067 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1068 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1069 ArgChains.push_back(SDValue(L, 1)); 1070 } 1071 } 1072 } 1073 } 1074 1075 // Build a tokenfactor for all the chains. 1076 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1077 } 1078 1079 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1080 SmallVectorImpl<SDValue> &InVals, 1081 StringRef Reason) const { 1082 SDValue Callee = CLI.Callee; 1083 SelectionDAG &DAG = CLI.DAG; 1084 1085 const Function &Fn = DAG.getMachineFunction().getFunction(); 1086 1087 StringRef FuncName("<unknown>"); 1088 1089 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1090 FuncName = G->getSymbol(); 1091 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1092 FuncName = G->getGlobal()->getName(); 1093 1094 DiagnosticInfoUnsupported NoCalls( 1095 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1096 DAG.getContext()->diagnose(NoCalls); 1097 1098 if (!CLI.IsTailCall) { 1099 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1100 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1101 } 1102 1103 return DAG.getEntryNode(); 1104 } 1105 1106 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1107 SmallVectorImpl<SDValue> &InVals) const { 1108 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1109 } 1110 1111 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1112 SelectionDAG &DAG) const { 1113 const Function &Fn = DAG.getMachineFunction().getFunction(); 1114 1115 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1116 SDLoc(Op).getDebugLoc()); 1117 DAG.getContext()->diagnose(NoDynamicAlloca); 1118 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1119 return DAG.getMergeValues(Ops, SDLoc()); 1120 } 1121 1122 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1123 SelectionDAG &DAG) const { 1124 switch (Op.getOpcode()) { 1125 default: 1126 Op->print(errs(), &DAG); 1127 llvm_unreachable("Custom lowering code for this" 1128 "instruction is not implemented yet!"); 1129 break; 1130 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1131 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1132 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1133 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1134 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1135 case ISD::FREM: return LowerFREM(Op, DAG); 1136 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1137 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1138 case ISD::FRINT: return LowerFRINT(Op, DAG); 1139 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1140 case ISD::FROUND: return LowerFROUND(Op, DAG); 1141 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1142 case ISD::FLOG: 1143 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1144 case ISD::FLOG10: 1145 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1146 case ISD::FEXP: 1147 return lowerFEXP(Op, DAG); 1148 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1149 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1150 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1151 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1152 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1153 case ISD::CTTZ: 1154 case ISD::CTTZ_ZERO_UNDEF: 1155 case ISD::CTLZ: 1156 case ISD::CTLZ_ZERO_UNDEF: 1157 return LowerCTLZ_CTTZ(Op, DAG); 1158 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1159 } 1160 return Op; 1161 } 1162 1163 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1164 SmallVectorImpl<SDValue> &Results, 1165 SelectionDAG &DAG) const { 1166 switch (N->getOpcode()) { 1167 case ISD::SIGN_EXTEND_INREG: 1168 // Different parts of legalization seem to interpret which type of 1169 // sign_extend_inreg is the one to check for custom lowering. The extended 1170 // from type is what really matters, but some places check for custom 1171 // lowering of the result type. This results in trying to use 1172 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1173 // nothing here and let the illegal result integer be handled normally. 1174 return; 1175 default: 1176 return; 1177 } 1178 } 1179 1180 static bool hasDefinedInitializer(const GlobalValue *GV) { 1181 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1182 if (!GVar || !GVar->hasInitializer()) 1183 return false; 1184 1185 return !isa<UndefValue>(GVar->getInitializer()); 1186 } 1187 1188 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1189 SDValue Op, 1190 SelectionDAG &DAG) const { 1191 1192 const DataLayout &DL = DAG.getDataLayout(); 1193 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1194 const GlobalValue *GV = G->getGlobal(); 1195 1196 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1197 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1198 if (!MFI->isEntryFunction()) { 1199 const Function &Fn = DAG.getMachineFunction().getFunction(); 1200 DiagnosticInfoUnsupported BadLDSDecl( 1201 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1202 DAG.getContext()->diagnose(BadLDSDecl); 1203 } 1204 1205 // XXX: What does the value of G->getOffset() mean? 1206 assert(G->getOffset() == 0 && 1207 "Do not know what to do with an non-zero offset"); 1208 1209 // TODO: We could emit code to handle the initialization somewhere. 1210 if (!hasDefinedInitializer(GV)) { 1211 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1212 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1213 } 1214 } 1215 1216 const Function &Fn = DAG.getMachineFunction().getFunction(); 1217 DiagnosticInfoUnsupported BadInit( 1218 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1219 DAG.getContext()->diagnose(BadInit); 1220 return SDValue(); 1221 } 1222 1223 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1224 SelectionDAG &DAG) const { 1225 SmallVector<SDValue, 8> Args; 1226 1227 EVT VT = Op.getValueType(); 1228 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1229 SDLoc SL(Op); 1230 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1231 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1232 1233 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1234 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1235 } 1236 1237 for (const SDUse &U : Op->ops()) 1238 DAG.ExtractVectorElements(U.get(), Args); 1239 1240 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1241 } 1242 1243 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1244 SelectionDAG &DAG) const { 1245 1246 SmallVector<SDValue, 8> Args; 1247 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1248 EVT VT = Op.getValueType(); 1249 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1250 VT.getVectorNumElements()); 1251 1252 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1253 } 1254 1255 /// Generate Min/Max node 1256 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1257 SDValue LHS, SDValue RHS, 1258 SDValue True, SDValue False, 1259 SDValue CC, 1260 DAGCombinerInfo &DCI) const { 1261 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1262 return SDValue(); 1263 1264 SelectionDAG &DAG = DCI.DAG; 1265 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1266 switch (CCOpcode) { 1267 case ISD::SETOEQ: 1268 case ISD::SETONE: 1269 case ISD::SETUNE: 1270 case ISD::SETNE: 1271 case ISD::SETUEQ: 1272 case ISD::SETEQ: 1273 case ISD::SETFALSE: 1274 case ISD::SETFALSE2: 1275 case ISD::SETTRUE: 1276 case ISD::SETTRUE2: 1277 case ISD::SETUO: 1278 case ISD::SETO: 1279 break; 1280 case ISD::SETULE: 1281 case ISD::SETULT: { 1282 if (LHS == True) 1283 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1284 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1285 } 1286 case ISD::SETOLE: 1287 case ISD::SETOLT: 1288 case ISD::SETLE: 1289 case ISD::SETLT: { 1290 // Ordered. Assume ordered for undefined. 1291 1292 // Only do this after legalization to avoid interfering with other combines 1293 // which might occur. 1294 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1295 !DCI.isCalledByLegalizer()) 1296 return SDValue(); 1297 1298 // We need to permute the operands to get the correct NaN behavior. The 1299 // selected operand is the second one based on the failing compare with NaN, 1300 // so permute it based on the compare type the hardware uses. 1301 if (LHS == True) 1302 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1303 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1304 } 1305 case ISD::SETUGE: 1306 case ISD::SETUGT: { 1307 if (LHS == True) 1308 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1309 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1310 } 1311 case ISD::SETGT: 1312 case ISD::SETGE: 1313 case ISD::SETOGE: 1314 case ISD::SETOGT: { 1315 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1316 !DCI.isCalledByLegalizer()) 1317 return SDValue(); 1318 1319 if (LHS == True) 1320 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1321 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1322 } 1323 case ISD::SETCC_INVALID: 1324 llvm_unreachable("Invalid setcc condcode!"); 1325 } 1326 return SDValue(); 1327 } 1328 1329 std::pair<SDValue, SDValue> 1330 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1331 SDLoc SL(Op); 1332 1333 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1334 1335 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1336 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1337 1338 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1339 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1340 1341 return std::make_pair(Lo, Hi); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1345 SDLoc SL(Op); 1346 1347 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1348 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1349 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1350 } 1351 1352 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1353 SDLoc SL(Op); 1354 1355 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1356 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1357 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1358 } 1359 1360 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1361 SelectionDAG &DAG) const { 1362 LoadSDNode *Load = cast<LoadSDNode>(Op); 1363 EVT VT = Op.getValueType(); 1364 1365 1366 // If this is a 2 element vector, we really want to scalarize and not create 1367 // weird 1 element vectors. 1368 if (VT.getVectorNumElements() == 2) 1369 return scalarizeVectorLoad(Load, DAG); 1370 1371 SDValue BasePtr = Load->getBasePtr(); 1372 EVT MemVT = Load->getMemoryVT(); 1373 SDLoc SL(Op); 1374 1375 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1376 1377 EVT LoVT, HiVT; 1378 EVT LoMemVT, HiMemVT; 1379 SDValue Lo, Hi; 1380 1381 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1382 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1383 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1384 1385 unsigned Size = LoMemVT.getStoreSize(); 1386 unsigned BaseAlign = Load->getAlignment(); 1387 unsigned HiAlign = MinAlign(BaseAlign, Size); 1388 1389 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1390 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1391 BaseAlign, Load->getMemOperand()->getFlags()); 1392 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1393 SDValue HiLoad = 1394 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1395 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1396 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1397 1398 SDValue Ops[] = { 1399 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1400 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1401 LoLoad.getValue(1), HiLoad.getValue(1)) 1402 }; 1403 1404 return DAG.getMergeValues(Ops, SL); 1405 } 1406 1407 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1408 SelectionDAG &DAG) const { 1409 StoreSDNode *Store = cast<StoreSDNode>(Op); 1410 SDValue Val = Store->getValue(); 1411 EVT VT = Val.getValueType(); 1412 1413 // If this is a 2 element vector, we really want to scalarize and not create 1414 // weird 1 element vectors. 1415 if (VT.getVectorNumElements() == 2) 1416 return scalarizeVectorStore(Store, DAG); 1417 1418 EVT MemVT = Store->getMemoryVT(); 1419 SDValue Chain = Store->getChain(); 1420 SDValue BasePtr = Store->getBasePtr(); 1421 SDLoc SL(Op); 1422 1423 EVT LoVT, HiVT; 1424 EVT LoMemVT, HiMemVT; 1425 SDValue Lo, Hi; 1426 1427 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1428 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1429 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1430 1431 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1432 1433 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1434 unsigned BaseAlign = Store->getAlignment(); 1435 unsigned Size = LoMemVT.getStoreSize(); 1436 unsigned HiAlign = MinAlign(BaseAlign, Size); 1437 1438 SDValue LoStore = 1439 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1440 Store->getMemOperand()->getFlags()); 1441 SDValue HiStore = 1442 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1443 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1444 1445 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1446 } 1447 1448 // This is a shortcut for integer division because we have fast i32<->f32 1449 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1450 // float is enough to accurately represent up to a 24-bit signed integer. 1451 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1452 bool Sign) const { 1453 SDLoc DL(Op); 1454 EVT VT = Op.getValueType(); 1455 SDValue LHS = Op.getOperand(0); 1456 SDValue RHS = Op.getOperand(1); 1457 MVT IntVT = MVT::i32; 1458 MVT FltVT = MVT::f32; 1459 1460 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1461 if (LHSSignBits < 9) 1462 return SDValue(); 1463 1464 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1465 if (RHSSignBits < 9) 1466 return SDValue(); 1467 1468 unsigned BitSize = VT.getSizeInBits(); 1469 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1470 unsigned DivBits = BitSize - SignBits; 1471 if (Sign) 1472 ++DivBits; 1473 1474 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1475 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1476 1477 SDValue jq = DAG.getConstant(1, DL, IntVT); 1478 1479 if (Sign) { 1480 // char|short jq = ia ^ ib; 1481 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1482 1483 // jq = jq >> (bitsize - 2) 1484 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1485 DAG.getConstant(BitSize - 2, DL, VT)); 1486 1487 // jq = jq | 0x1 1488 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1489 } 1490 1491 // int ia = (int)LHS; 1492 SDValue ia = LHS; 1493 1494 // int ib, (int)RHS; 1495 SDValue ib = RHS; 1496 1497 // float fa = (float)ia; 1498 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1499 1500 // float fb = (float)ib; 1501 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1502 1503 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1504 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1505 1506 // fq = trunc(fq); 1507 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1508 1509 // float fqneg = -fq; 1510 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1511 1512 // float fr = mad(fqneg, fb, fa); 1513 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1514 (unsigned)AMDGPUISD::FMAD_FTZ : 1515 (unsigned)ISD::FMAD; 1516 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1517 1518 // int iq = (int)fq; 1519 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1520 1521 // fr = fabs(fr); 1522 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1523 1524 // fb = fabs(fb); 1525 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1526 1527 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1528 1529 // int cv = fr >= fb; 1530 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1531 1532 // jq = (cv ? jq : 0); 1533 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1534 1535 // dst = iq + jq; 1536 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1537 1538 // Rem needs compensation, it's easier to recompute it 1539 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1540 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1541 1542 // Truncate to number of bits this divide really is. 1543 if (Sign) { 1544 SDValue InRegSize 1545 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1546 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1547 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1548 } else { 1549 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1550 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1551 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1552 } 1553 1554 return DAG.getMergeValues({ Div, Rem }, DL); 1555 } 1556 1557 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1558 SelectionDAG &DAG, 1559 SmallVectorImpl<SDValue> &Results) const { 1560 SDLoc DL(Op); 1561 EVT VT = Op.getValueType(); 1562 1563 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1564 1565 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1566 1567 SDValue One = DAG.getConstant(1, DL, HalfVT); 1568 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1569 1570 //HiLo split 1571 SDValue LHS = Op.getOperand(0); 1572 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1573 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1574 1575 SDValue RHS = Op.getOperand(1); 1576 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1577 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1578 1579 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1580 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1581 1582 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1583 LHS_Lo, RHS_Lo); 1584 1585 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1586 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1587 1588 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1589 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1590 return; 1591 } 1592 1593 if (isTypeLegal(MVT::i64)) { 1594 // Compute denominator reciprocal. 1595 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1596 (unsigned)AMDGPUISD::FMAD_FTZ : 1597 (unsigned)ISD::FMAD; 1598 1599 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1600 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1601 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1602 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1603 Cvt_Lo); 1604 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1605 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1606 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1607 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1608 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1609 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1610 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1611 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1612 Mul1); 1613 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1614 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1615 SDValue Rcp64 = DAG.getBitcast(VT, 1616 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1617 1618 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1619 SDValue One64 = DAG.getConstant(1, DL, VT); 1620 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1621 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1622 1623 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1624 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1625 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1626 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1627 Zero); 1628 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1629 One); 1630 1631 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1632 Mulhi1_Lo, Zero1); 1633 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1634 Mulhi1_Hi, Add1_Lo.getValue(1)); 1635 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1636 SDValue Add1 = DAG.getBitcast(VT, 1637 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1638 1639 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1640 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1641 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1642 Zero); 1643 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1644 One); 1645 1646 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1647 Mulhi2_Lo, Zero1); 1648 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1649 Mulhi2_Hi, Add1_Lo.getValue(1)); 1650 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1651 Zero, Add2_Lo.getValue(1)); 1652 SDValue Add2 = DAG.getBitcast(VT, 1653 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1654 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1655 1656 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1657 1658 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1659 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1660 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1661 Mul3_Lo, Zero1); 1662 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1663 Mul3_Hi, Sub1_Lo.getValue(1)); 1664 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1665 SDValue Sub1 = DAG.getBitcast(VT, 1666 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1667 1668 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1669 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1670 ISD::SETUGE); 1671 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1672 ISD::SETUGE); 1673 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1674 1675 // TODO: Here and below portions of the code can be enclosed into if/endif. 1676 // Currently control flow is unconditional and we have 4 selects after 1677 // potential endif to substitute PHIs. 1678 1679 // if C3 != 0 ... 1680 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1681 RHS_Lo, Zero1); 1682 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1683 RHS_Hi, Sub1_Lo.getValue(1)); 1684 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1685 Zero, Sub2_Lo.getValue(1)); 1686 SDValue Sub2 = DAG.getBitcast(VT, 1687 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1688 1689 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1690 1691 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1692 ISD::SETUGE); 1693 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1694 ISD::SETUGE); 1695 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1696 1697 // if (C6 != 0) 1698 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1699 1700 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1701 RHS_Lo, Zero1); 1702 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1703 RHS_Hi, Sub2_Lo.getValue(1)); 1704 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1705 Zero, Sub3_Lo.getValue(1)); 1706 SDValue Sub3 = DAG.getBitcast(VT, 1707 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1708 1709 // endif C6 1710 // endif C3 1711 1712 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1713 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1714 1715 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1716 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1717 1718 Results.push_back(Div); 1719 Results.push_back(Rem); 1720 1721 return; 1722 } 1723 1724 // r600 expandion. 1725 // Get Speculative values 1726 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1727 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1728 1729 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1730 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1731 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1732 1733 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1734 SDValue DIV_Lo = Zero; 1735 1736 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1737 1738 for (unsigned i = 0; i < halfBitWidth; ++i) { 1739 const unsigned bitPos = halfBitWidth - i - 1; 1740 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1741 // Get value of high bit 1742 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1743 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1744 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1745 1746 // Shift 1747 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1748 // Add LHS high bit 1749 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1750 1751 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1752 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1753 1754 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1755 1756 // Update REM 1757 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1758 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1759 } 1760 1761 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1762 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1763 Results.push_back(DIV); 1764 Results.push_back(REM); 1765 } 1766 1767 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1768 SelectionDAG &DAG) const { 1769 SDLoc DL(Op); 1770 EVT VT = Op.getValueType(); 1771 1772 if (VT == MVT::i64) { 1773 SmallVector<SDValue, 2> Results; 1774 LowerUDIVREM64(Op, DAG, Results); 1775 return DAG.getMergeValues(Results, DL); 1776 } 1777 1778 if (VT == MVT::i32) { 1779 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1780 return Res; 1781 } 1782 1783 SDValue Num = Op.getOperand(0); 1784 SDValue Den = Op.getOperand(1); 1785 1786 // RCP = URECIP(Den) = 2^32 / Den + e 1787 // e is rounding error. 1788 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1789 1790 // RCP_LO = mul(RCP, Den) */ 1791 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1792 1793 // RCP_HI = mulhu (RCP, Den) */ 1794 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1795 1796 // NEG_RCP_LO = -RCP_LO 1797 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1798 RCP_LO); 1799 1800 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1801 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1802 NEG_RCP_LO, RCP_LO, 1803 ISD::SETEQ); 1804 // Calculate the rounding error from the URECIP instruction 1805 // E = mulhu(ABS_RCP_LO, RCP) 1806 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1807 1808 // RCP_A_E = RCP + E 1809 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1810 1811 // RCP_S_E = RCP - E 1812 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1813 1814 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1815 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1816 RCP_A_E, RCP_S_E, 1817 ISD::SETEQ); 1818 // Quotient = mulhu(Tmp0, Num) 1819 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1820 1821 // Num_S_Remainder = Quotient * Den 1822 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1823 1824 // Remainder = Num - Num_S_Remainder 1825 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1826 1827 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1828 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1829 DAG.getConstant(-1, DL, VT), 1830 DAG.getConstant(0, DL, VT), 1831 ISD::SETUGE); 1832 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1833 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1834 Num_S_Remainder, 1835 DAG.getConstant(-1, DL, VT), 1836 DAG.getConstant(0, DL, VT), 1837 ISD::SETUGE); 1838 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1839 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1840 Remainder_GE_Zero); 1841 1842 // Calculate Division result: 1843 1844 // Quotient_A_One = Quotient + 1 1845 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1846 DAG.getConstant(1, DL, VT)); 1847 1848 // Quotient_S_One = Quotient - 1 1849 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1850 DAG.getConstant(1, DL, VT)); 1851 1852 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1853 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1854 Quotient, Quotient_A_One, ISD::SETEQ); 1855 1856 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1857 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1858 Quotient_S_One, Div, ISD::SETEQ); 1859 1860 // Calculate Rem result: 1861 1862 // Remainder_S_Den = Remainder - Den 1863 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1864 1865 // Remainder_A_Den = Remainder + Den 1866 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1867 1868 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1869 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1870 Remainder, Remainder_S_Den, ISD::SETEQ); 1871 1872 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1873 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1874 Remainder_A_Den, Rem, ISD::SETEQ); 1875 SDValue Ops[2] = { 1876 Div, 1877 Rem 1878 }; 1879 return DAG.getMergeValues(Ops, DL); 1880 } 1881 1882 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1883 SelectionDAG &DAG) const { 1884 SDLoc DL(Op); 1885 EVT VT = Op.getValueType(); 1886 1887 SDValue LHS = Op.getOperand(0); 1888 SDValue RHS = Op.getOperand(1); 1889 1890 SDValue Zero = DAG.getConstant(0, DL, VT); 1891 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1892 1893 if (VT == MVT::i32) { 1894 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1895 return Res; 1896 } 1897 1898 if (VT == MVT::i64 && 1899 DAG.ComputeNumSignBits(LHS) > 32 && 1900 DAG.ComputeNumSignBits(RHS) > 32) { 1901 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1902 1903 //HiLo split 1904 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1905 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1906 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1907 LHS_Lo, RHS_Lo); 1908 SDValue Res[2] = { 1909 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1910 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1911 }; 1912 return DAG.getMergeValues(Res, DL); 1913 } 1914 1915 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1916 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1917 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1918 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1919 1920 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1921 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1922 1923 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1924 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1925 1926 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1927 SDValue Rem = Div.getValue(1); 1928 1929 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1930 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1931 1932 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1933 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1934 1935 SDValue Res[2] = { 1936 Div, 1937 Rem 1938 }; 1939 return DAG.getMergeValues(Res, DL); 1940 } 1941 1942 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1943 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1944 SDLoc SL(Op); 1945 EVT VT = Op.getValueType(); 1946 SDValue X = Op.getOperand(0); 1947 SDValue Y = Op.getOperand(1); 1948 1949 // TODO: Should this propagate fast-math-flags? 1950 1951 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1952 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1953 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1954 1955 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1956 } 1957 1958 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1959 SDLoc SL(Op); 1960 SDValue Src = Op.getOperand(0); 1961 1962 // result = trunc(src) 1963 // if (src > 0.0 && src != result) 1964 // result += 1.0 1965 1966 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1967 1968 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1969 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1970 1971 EVT SetCCVT = 1972 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1973 1974 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1975 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1976 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1977 1978 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1979 // TODO: Should this propagate fast-math-flags? 1980 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1981 } 1982 1983 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1984 SelectionDAG &DAG) { 1985 const unsigned FractBits = 52; 1986 const unsigned ExpBits = 11; 1987 1988 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1989 Hi, 1990 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1991 DAG.getConstant(ExpBits, SL, MVT::i32)); 1992 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1993 DAG.getConstant(1023, SL, MVT::i32)); 1994 1995 return Exp; 1996 } 1997 1998 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1999 SDLoc SL(Op); 2000 SDValue Src = Op.getOperand(0); 2001 2002 assert(Op.getValueType() == MVT::f64); 2003 2004 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2005 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2006 2007 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2008 2009 // Extract the upper half, since this is where we will find the sign and 2010 // exponent. 2011 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2012 2013 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2014 2015 const unsigned FractBits = 52; 2016 2017 // Extract the sign bit. 2018 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2019 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2020 2021 // Extend back to 64-bits. 2022 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2023 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2024 2025 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2026 const SDValue FractMask 2027 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2028 2029 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2030 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2031 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2032 2033 EVT SetCCVT = 2034 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2035 2036 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2037 2038 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2039 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2040 2041 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2042 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2043 2044 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2045 } 2046 2047 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2048 SDLoc SL(Op); 2049 SDValue Src = Op.getOperand(0); 2050 2051 assert(Op.getValueType() == MVT::f64); 2052 2053 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2054 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2055 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2056 2057 // TODO: Should this propagate fast-math-flags? 2058 2059 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2060 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2061 2062 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2063 2064 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2065 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2066 2067 EVT SetCCVT = 2068 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2069 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2070 2071 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2072 } 2073 2074 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2075 // FNEARBYINT and FRINT are the same, except in their handling of FP 2076 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2077 // rint, so just treat them as equivalent. 2078 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2079 } 2080 2081 // XXX - May require not supporting f32 denormals? 2082 2083 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2084 // compare and vselect end up producing worse code than scalarizing the whole 2085 // operation. 2086 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2087 SDLoc SL(Op); 2088 SDValue X = Op.getOperand(0); 2089 EVT VT = Op.getValueType(); 2090 2091 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2092 2093 // TODO: Should this propagate fast-math-flags? 2094 2095 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2096 2097 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2098 2099 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2100 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2101 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2102 2103 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2104 2105 EVT SetCCVT = 2106 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2107 2108 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2109 2110 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2111 2112 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2113 } 2114 2115 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2116 SDLoc SL(Op); 2117 SDValue X = Op.getOperand(0); 2118 2119 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2120 2121 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2122 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2123 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2124 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2125 EVT SetCCVT = 2126 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2127 2128 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2129 2130 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2131 2132 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2133 2134 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2135 MVT::i64); 2136 2137 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2138 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2139 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2140 MVT::i64), 2141 Exp); 2142 2143 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2144 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2145 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2146 ISD::SETNE); 2147 2148 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2149 D, DAG.getConstant(0, SL, MVT::i64)); 2150 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2151 2152 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2153 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2154 2155 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2156 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2157 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2158 2159 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2160 ExpEqNegOne, 2161 DAG.getConstantFP(1.0, SL, MVT::f64), 2162 DAG.getConstantFP(0.0, SL, MVT::f64)); 2163 2164 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2165 2166 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2167 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2168 2169 return K; 2170 } 2171 2172 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2173 EVT VT = Op.getValueType(); 2174 2175 if (VT == MVT::f32 || VT == MVT::f16) 2176 return LowerFROUND32_16(Op, DAG); 2177 2178 if (VT == MVT::f64) 2179 return LowerFROUND64(Op, DAG); 2180 2181 llvm_unreachable("unhandled type"); 2182 } 2183 2184 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2185 SDLoc SL(Op); 2186 SDValue Src = Op.getOperand(0); 2187 2188 // result = trunc(src); 2189 // if (src < 0.0 && src != result) 2190 // result += -1.0. 2191 2192 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2193 2194 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2195 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2196 2197 EVT SetCCVT = 2198 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2199 2200 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2201 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2202 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2203 2204 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2205 // TODO: Should this propagate fast-math-flags? 2206 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2207 } 2208 2209 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2210 double Log2BaseInverted) const { 2211 EVT VT = Op.getValueType(); 2212 2213 SDLoc SL(Op); 2214 SDValue Operand = Op.getOperand(0); 2215 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2216 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2217 2218 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2219 } 2220 2221 // Return M_LOG2E of appropriate type 2222 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2223 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2224 case MVT::f32: 2225 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2226 case MVT::f16: 2227 return DAG.getConstantFP( 2228 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2229 SL, VT); 2230 case MVT::f64: 2231 return DAG.getConstantFP( 2232 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2233 default: 2234 llvm_unreachable("unsupported fp type"); 2235 } 2236 } 2237 2238 // exp2(M_LOG2E_F * f); 2239 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2240 EVT VT = Op.getValueType(); 2241 SDLoc SL(Op); 2242 SDValue Src = Op.getOperand(0); 2243 2244 const SDValue K = getLog2EVal(DAG, SL, VT); 2245 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2246 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2247 } 2248 2249 static bool isCtlzOpc(unsigned Opc) { 2250 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2251 } 2252 2253 static bool isCttzOpc(unsigned Opc) { 2254 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2255 } 2256 2257 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2258 SDLoc SL(Op); 2259 SDValue Src = Op.getOperand(0); 2260 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2261 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2262 2263 unsigned ISDOpc, NewOpc; 2264 if (isCtlzOpc(Op.getOpcode())) { 2265 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2266 NewOpc = AMDGPUISD::FFBH_U32; 2267 } else if (isCttzOpc(Op.getOpcode())) { 2268 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2269 NewOpc = AMDGPUISD::FFBL_B32; 2270 } else 2271 llvm_unreachable("Unexpected OPCode!!!"); 2272 2273 2274 if (ZeroUndef && Src.getValueType() == MVT::i32) 2275 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2276 2277 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2278 2279 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2280 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2281 2282 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2283 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2284 2285 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2286 *DAG.getContext(), MVT::i32); 2287 2288 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2289 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2290 2291 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2292 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2293 2294 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2295 SDValue Add, NewOpr; 2296 if (isCtlzOpc(Op.getOpcode())) { 2297 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2298 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2299 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2300 } else { 2301 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2302 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2303 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2304 } 2305 2306 if (!ZeroUndef) { 2307 // Test if the full 64-bit input is zero. 2308 2309 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2310 // which we probably don't want. 2311 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2312 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2313 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2314 2315 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2316 // with the same cycles, otherwise it is slower. 2317 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2318 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2319 2320 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2321 2322 // The instruction returns -1 for 0 input, but the defined intrinsic 2323 // behavior is to return the number of bits. 2324 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2325 SrcIsZero, Bits32, NewOpr); 2326 } 2327 2328 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2329 } 2330 2331 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2332 bool Signed) const { 2333 // Unsigned 2334 // cul2f(ulong u) 2335 //{ 2336 // uint lz = clz(u); 2337 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2338 // u = (u << lz) & 0x7fffffffffffffffUL; 2339 // ulong t = u & 0xffffffffffUL; 2340 // uint v = (e << 23) | (uint)(u >> 40); 2341 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2342 // return as_float(v + r); 2343 //} 2344 // Signed 2345 // cl2f(long l) 2346 //{ 2347 // long s = l >> 63; 2348 // float r = cul2f((l + s) ^ s); 2349 // return s ? -r : r; 2350 //} 2351 2352 SDLoc SL(Op); 2353 SDValue Src = Op.getOperand(0); 2354 SDValue L = Src; 2355 2356 SDValue S; 2357 if (Signed) { 2358 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2359 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2360 2361 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2362 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2363 } 2364 2365 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2366 *DAG.getContext(), MVT::f32); 2367 2368 2369 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2370 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2371 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2372 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2373 2374 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2375 SDValue E = DAG.getSelect(SL, MVT::i32, 2376 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2377 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2378 ZeroI32); 2379 2380 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2381 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2382 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2383 2384 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2385 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2386 2387 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2388 U, DAG.getConstant(40, SL, MVT::i64)); 2389 2390 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2391 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2392 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2393 2394 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2395 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2396 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2397 2398 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2399 2400 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2401 2402 SDValue R = DAG.getSelect(SL, MVT::i32, 2403 RCmp, 2404 One, 2405 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2406 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2407 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2408 2409 if (!Signed) 2410 return R; 2411 2412 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2413 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2414 } 2415 2416 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2417 bool Signed) const { 2418 SDLoc SL(Op); 2419 SDValue Src = Op.getOperand(0); 2420 2421 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2422 2423 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2424 DAG.getConstant(0, SL, MVT::i32)); 2425 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2426 DAG.getConstant(1, SL, MVT::i32)); 2427 2428 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2429 SL, MVT::f64, Hi); 2430 2431 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2432 2433 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2434 DAG.getConstant(32, SL, MVT::i32)); 2435 // TODO: Should this propagate fast-math-flags? 2436 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2437 } 2438 2439 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2440 SelectionDAG &DAG) const { 2441 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2442 "operation should be legal"); 2443 2444 // TODO: Factor out code common with LowerSINT_TO_FP. 2445 2446 EVT DestVT = Op.getValueType(); 2447 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2448 SDLoc DL(Op); 2449 SDValue Src = Op.getOperand(0); 2450 2451 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2452 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2453 SDValue FPRound = 2454 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2455 2456 return FPRound; 2457 } 2458 2459 if (DestVT == MVT::f32) 2460 return LowerINT_TO_FP32(Op, DAG, false); 2461 2462 assert(DestVT == MVT::f64); 2463 return LowerINT_TO_FP64(Op, DAG, false); 2464 } 2465 2466 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2467 SelectionDAG &DAG) const { 2468 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2469 "operation should be legal"); 2470 2471 // TODO: Factor out code common with LowerUINT_TO_FP. 2472 2473 EVT DestVT = Op.getValueType(); 2474 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2475 SDLoc DL(Op); 2476 SDValue Src = Op.getOperand(0); 2477 2478 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2479 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2480 SDValue FPRound = 2481 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2482 2483 return FPRound; 2484 } 2485 2486 if (DestVT == MVT::f32) 2487 return LowerINT_TO_FP32(Op, DAG, true); 2488 2489 assert(DestVT == MVT::f64); 2490 return LowerINT_TO_FP64(Op, DAG, true); 2491 } 2492 2493 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2494 bool Signed) const { 2495 SDLoc SL(Op); 2496 2497 SDValue Src = Op.getOperand(0); 2498 2499 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2500 2501 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2502 MVT::f64); 2503 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2504 MVT::f64); 2505 // TODO: Should this propagate fast-math-flags? 2506 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2507 2508 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2509 2510 2511 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2512 2513 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2514 MVT::i32, FloorMul); 2515 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2516 2517 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2518 2519 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2520 } 2521 2522 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2523 SDLoc DL(Op); 2524 SDValue N0 = Op.getOperand(0); 2525 2526 // Convert to target node to get known bits 2527 if (N0.getValueType() == MVT::f32) 2528 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2529 2530 if (getTargetMachine().Options.UnsafeFPMath) { 2531 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2532 return SDValue(); 2533 } 2534 2535 assert(N0.getSimpleValueType() == MVT::f64); 2536 2537 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2538 const unsigned ExpMask = 0x7ff; 2539 const unsigned ExpBiasf64 = 1023; 2540 const unsigned ExpBiasf16 = 15; 2541 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2542 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2543 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2544 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2545 DAG.getConstant(32, DL, MVT::i64)); 2546 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2547 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2548 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2549 DAG.getConstant(20, DL, MVT::i64)); 2550 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2551 DAG.getConstant(ExpMask, DL, MVT::i32)); 2552 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2553 // add the f16 bias (15) to get the biased exponent for the f16 format. 2554 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2555 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2556 2557 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2558 DAG.getConstant(8, DL, MVT::i32)); 2559 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2560 DAG.getConstant(0xffe, DL, MVT::i32)); 2561 2562 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2563 DAG.getConstant(0x1ff, DL, MVT::i32)); 2564 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2565 2566 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2567 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2568 2569 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2570 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2571 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2572 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2573 2574 // N = M | (E << 12); 2575 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2576 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2577 DAG.getConstant(12, DL, MVT::i32))); 2578 2579 // B = clamp(1-E, 0, 13); 2580 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2581 One, E); 2582 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2583 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2584 DAG.getConstant(13, DL, MVT::i32)); 2585 2586 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2587 DAG.getConstant(0x1000, DL, MVT::i32)); 2588 2589 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2590 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2591 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2592 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2593 2594 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2595 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2596 DAG.getConstant(0x7, DL, MVT::i32)); 2597 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2598 DAG.getConstant(2, DL, MVT::i32)); 2599 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2600 One, Zero, ISD::SETEQ); 2601 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2602 One, Zero, ISD::SETGT); 2603 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2604 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2605 2606 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2607 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2608 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2609 I, V, ISD::SETEQ); 2610 2611 // Extract the sign bit. 2612 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2613 DAG.getConstant(16, DL, MVT::i32)); 2614 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2615 DAG.getConstant(0x8000, DL, MVT::i32)); 2616 2617 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2618 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2619 } 2620 2621 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2622 SelectionDAG &DAG) const { 2623 SDValue Src = Op.getOperand(0); 2624 2625 // TODO: Factor out code common with LowerFP_TO_UINT. 2626 2627 EVT SrcVT = Src.getValueType(); 2628 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2629 SDLoc DL(Op); 2630 2631 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2632 SDValue FpToInt32 = 2633 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2634 2635 return FpToInt32; 2636 } 2637 2638 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2639 return LowerFP64_TO_INT(Op, DAG, true); 2640 2641 return SDValue(); 2642 } 2643 2644 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2645 SelectionDAG &DAG) const { 2646 SDValue Src = Op.getOperand(0); 2647 2648 // TODO: Factor out code common with LowerFP_TO_SINT. 2649 2650 EVT SrcVT = Src.getValueType(); 2651 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2652 SDLoc DL(Op); 2653 2654 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2655 SDValue FpToInt32 = 2656 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2657 2658 return FpToInt32; 2659 } 2660 2661 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2662 return LowerFP64_TO_INT(Op, DAG, false); 2663 2664 return SDValue(); 2665 } 2666 2667 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2668 SelectionDAG &DAG) const { 2669 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2670 MVT VT = Op.getSimpleValueType(); 2671 MVT ScalarVT = VT.getScalarType(); 2672 2673 assert(VT.isVector()); 2674 2675 SDValue Src = Op.getOperand(0); 2676 SDLoc DL(Op); 2677 2678 // TODO: Don't scalarize on Evergreen? 2679 unsigned NElts = VT.getVectorNumElements(); 2680 SmallVector<SDValue, 8> Args; 2681 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2682 2683 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2684 for (unsigned I = 0; I < NElts; ++I) 2685 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2686 2687 return DAG.getBuildVector(VT, DL, Args); 2688 } 2689 2690 //===----------------------------------------------------------------------===// 2691 // Custom DAG optimizations 2692 //===----------------------------------------------------------------------===// 2693 2694 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2695 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2696 } 2697 2698 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2699 EVT VT = Op.getValueType(); 2700 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2701 // as unsigned 24-bit values. 2702 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2703 } 2704 2705 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2706 TargetLowering::DAGCombinerInfo &DCI) { 2707 2708 SelectionDAG &DAG = DCI.DAG; 2709 SDValue Op = Node24->getOperand(OpIdx); 2710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2711 EVT VT = Op.getValueType(); 2712 2713 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2714 APInt KnownZero, KnownOne; 2715 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2716 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2717 return true; 2718 2719 return false; 2720 } 2721 2722 template <typename IntTy> 2723 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2724 uint32_t Width, const SDLoc &DL) { 2725 if (Width + Offset < 32) { 2726 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2727 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2728 return DAG.getConstant(Result, DL, MVT::i32); 2729 } 2730 2731 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2732 } 2733 2734 static bool hasVolatileUser(SDNode *Val) { 2735 for (SDNode *U : Val->uses()) { 2736 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2737 if (M->isVolatile()) 2738 return true; 2739 } 2740 } 2741 2742 return false; 2743 } 2744 2745 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2746 // i32 vectors are the canonical memory type. 2747 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2748 return false; 2749 2750 if (!VT.isByteSized()) 2751 return false; 2752 2753 unsigned Size = VT.getStoreSize(); 2754 2755 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2756 return false; 2757 2758 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2759 return false; 2760 2761 return true; 2762 } 2763 2764 // Replace load of an illegal type with a store of a bitcast to a friendlier 2765 // type. 2766 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2767 DAGCombinerInfo &DCI) const { 2768 if (!DCI.isBeforeLegalize()) 2769 return SDValue(); 2770 2771 LoadSDNode *LN = cast<LoadSDNode>(N); 2772 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2773 return SDValue(); 2774 2775 SDLoc SL(N); 2776 SelectionDAG &DAG = DCI.DAG; 2777 EVT VT = LN->getMemoryVT(); 2778 2779 unsigned Size = VT.getStoreSize(); 2780 unsigned Align = LN->getAlignment(); 2781 if (Align < Size && isTypeLegal(VT)) { 2782 bool IsFast; 2783 unsigned AS = LN->getAddressSpace(); 2784 2785 // Expand unaligned loads earlier than legalization. Due to visitation order 2786 // problems during legalization, the emitted instructions to pack and unpack 2787 // the bytes again are not eliminated in the case of an unaligned copy. 2788 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2789 if (VT.isVector()) 2790 return scalarizeVectorLoad(LN, DAG); 2791 2792 SDValue Ops[2]; 2793 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2794 return DAG.getMergeValues(Ops, SDLoc(N)); 2795 } 2796 2797 if (!IsFast) 2798 return SDValue(); 2799 } 2800 2801 if (!shouldCombineMemoryType(VT)) 2802 return SDValue(); 2803 2804 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2805 2806 SDValue NewLoad 2807 = DAG.getLoad(NewVT, SL, LN->getChain(), 2808 LN->getBasePtr(), LN->getMemOperand()); 2809 2810 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2811 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2812 return SDValue(N, 0); 2813 } 2814 2815 // Replace store of an illegal type with a store of a bitcast to a friendlier 2816 // type. 2817 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2818 DAGCombinerInfo &DCI) const { 2819 if (!DCI.isBeforeLegalize()) 2820 return SDValue(); 2821 2822 StoreSDNode *SN = cast<StoreSDNode>(N); 2823 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2824 return SDValue(); 2825 2826 EVT VT = SN->getMemoryVT(); 2827 unsigned Size = VT.getStoreSize(); 2828 2829 SDLoc SL(N); 2830 SelectionDAG &DAG = DCI.DAG; 2831 unsigned Align = SN->getAlignment(); 2832 if (Align < Size && isTypeLegal(VT)) { 2833 bool IsFast; 2834 unsigned AS = SN->getAddressSpace(); 2835 2836 // Expand unaligned stores earlier than legalization. Due to visitation 2837 // order problems during legalization, the emitted instructions to pack and 2838 // unpack the bytes again are not eliminated in the case of an unaligned 2839 // copy. 2840 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2841 if (VT.isVector()) 2842 return scalarizeVectorStore(SN, DAG); 2843 2844 return expandUnalignedStore(SN, DAG); 2845 } 2846 2847 if (!IsFast) 2848 return SDValue(); 2849 } 2850 2851 if (!shouldCombineMemoryType(VT)) 2852 return SDValue(); 2853 2854 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2855 SDValue Val = SN->getValue(); 2856 2857 //DCI.AddToWorklist(Val.getNode()); 2858 2859 bool OtherUses = !Val.hasOneUse(); 2860 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2861 if (OtherUses) { 2862 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2863 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2864 } 2865 2866 return DAG.getStore(SN->getChain(), SL, CastVal, 2867 SN->getBasePtr(), SN->getMemOperand()); 2868 } 2869 2870 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2871 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2872 // issues. 2873 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2874 DAGCombinerInfo &DCI) const { 2875 SelectionDAG &DAG = DCI.DAG; 2876 SDValue N0 = N->getOperand(0); 2877 2878 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2879 // (vt2 (truncate (assertzext vt0:x, vt1))) 2880 if (N0.getOpcode() == ISD::TRUNCATE) { 2881 SDValue N1 = N->getOperand(1); 2882 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2883 SDLoc SL(N); 2884 2885 SDValue Src = N0.getOperand(0); 2886 EVT SrcVT = Src.getValueType(); 2887 if (SrcVT.bitsGE(ExtVT)) { 2888 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2889 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2890 } 2891 } 2892 2893 return SDValue(); 2894 } 2895 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2896 /// binary operation \p Opc to it with the corresponding constant operands. 2897 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2898 DAGCombinerInfo &DCI, const SDLoc &SL, 2899 unsigned Opc, SDValue LHS, 2900 uint32_t ValLo, uint32_t ValHi) const { 2901 SelectionDAG &DAG = DCI.DAG; 2902 SDValue Lo, Hi; 2903 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2904 2905 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2906 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2907 2908 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2909 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2910 2911 // Re-visit the ands. It's possible we eliminated one of them and it could 2912 // simplify the vector. 2913 DCI.AddToWorklist(Lo.getNode()); 2914 DCI.AddToWorklist(Hi.getNode()); 2915 2916 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2917 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2918 } 2919 2920 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2921 DAGCombinerInfo &DCI) const { 2922 EVT VT = N->getValueType(0); 2923 2924 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2925 if (!RHS) 2926 return SDValue(); 2927 2928 SDValue LHS = N->getOperand(0); 2929 unsigned RHSVal = RHS->getZExtValue(); 2930 if (!RHSVal) 2931 return LHS; 2932 2933 SDLoc SL(N); 2934 SelectionDAG &DAG = DCI.DAG; 2935 2936 switch (LHS->getOpcode()) { 2937 default: 2938 break; 2939 case ISD::ZERO_EXTEND: 2940 case ISD::SIGN_EXTEND: 2941 case ISD::ANY_EXTEND: { 2942 SDValue X = LHS->getOperand(0); 2943 2944 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2945 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 2946 // Prefer build_vector as the canonical form if packed types are legal. 2947 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2948 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2949 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2950 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2951 } 2952 2953 // shl (ext x) => zext (shl x), if shift does not overflow int 2954 if (VT != MVT::i64) 2955 break; 2956 KnownBits Known; 2957 DAG.computeKnownBits(X, Known); 2958 unsigned LZ = Known.countMinLeadingZeros(); 2959 if (LZ < RHSVal) 2960 break; 2961 EVT XVT = X.getValueType(); 2962 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2963 return DAG.getZExtOrTrunc(Shl, SL, VT); 2964 } 2965 } 2966 2967 if (VT != MVT::i64) 2968 return SDValue(); 2969 2970 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2971 2972 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2973 // common case, splitting this into a move and a 32-bit shift is faster and 2974 // the same code size. 2975 if (RHSVal < 32) 2976 return SDValue(); 2977 2978 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2979 2980 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2981 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2982 2983 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2984 2985 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2986 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2987 } 2988 2989 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2990 DAGCombinerInfo &DCI) const { 2991 if (N->getValueType(0) != MVT::i64) 2992 return SDValue(); 2993 2994 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2995 if (!RHS) 2996 return SDValue(); 2997 2998 SelectionDAG &DAG = DCI.DAG; 2999 SDLoc SL(N); 3000 unsigned RHSVal = RHS->getZExtValue(); 3001 3002 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3003 if (RHSVal == 32) { 3004 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3005 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3006 DAG.getConstant(31, SL, MVT::i32)); 3007 3008 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3009 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3010 } 3011 3012 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3013 if (RHSVal == 63) { 3014 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3015 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3016 DAG.getConstant(31, SL, MVT::i32)); 3017 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3018 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3019 } 3020 3021 return SDValue(); 3022 } 3023 3024 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3025 DAGCombinerInfo &DCI) const { 3026 if (N->getValueType(0) != MVT::i64) 3027 return SDValue(); 3028 3029 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3030 if (!RHS) 3031 return SDValue(); 3032 3033 unsigned ShiftAmt = RHS->getZExtValue(); 3034 if (ShiftAmt < 32) 3035 return SDValue(); 3036 3037 // srl i64:x, C for C >= 32 3038 // => 3039 // build_pair (srl hi_32(x), C - 32), 0 3040 3041 SelectionDAG &DAG = DCI.DAG; 3042 SDLoc SL(N); 3043 3044 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3045 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3046 3047 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 3048 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 3049 VecOp, One); 3050 3051 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3052 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3053 3054 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3055 3056 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3057 } 3058 3059 SDValue AMDGPUTargetLowering::performTruncateCombine( 3060 SDNode *N, DAGCombinerInfo &DCI) const { 3061 SDLoc SL(N); 3062 SelectionDAG &DAG = DCI.DAG; 3063 EVT VT = N->getValueType(0); 3064 SDValue Src = N->getOperand(0); 3065 3066 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3067 if (Src.getOpcode() == ISD::BITCAST) { 3068 SDValue Vec = Src.getOperand(0); 3069 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3070 SDValue Elt0 = Vec.getOperand(0); 3071 EVT EltVT = Elt0.getValueType(); 3072 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3073 if (EltVT.isFloatingPoint()) { 3074 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3075 EltVT.changeTypeToInteger(), Elt0); 3076 } 3077 3078 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3079 } 3080 } 3081 } 3082 3083 // Equivalent of above for accessing the high element of a vector as an 3084 // integer operation. 3085 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3086 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3087 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3088 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3089 SDValue BV = stripBitcast(Src.getOperand(0)); 3090 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3091 BV.getValueType().getVectorNumElements() == 2) { 3092 SDValue SrcElt = BV.getOperand(1); 3093 EVT SrcEltVT = SrcElt.getValueType(); 3094 if (SrcEltVT.isFloatingPoint()) { 3095 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3096 SrcEltVT.changeTypeToInteger(), SrcElt); 3097 } 3098 3099 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3100 } 3101 } 3102 } 3103 } 3104 3105 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3106 // 3107 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3108 // i16 (trunc (srl (i32 (trunc x), K))) 3109 if (VT.getScalarSizeInBits() < 32) { 3110 EVT SrcVT = Src.getValueType(); 3111 if (SrcVT.getScalarSizeInBits() > 32 && 3112 (Src.getOpcode() == ISD::SRL || 3113 Src.getOpcode() == ISD::SRA || 3114 Src.getOpcode() == ISD::SHL)) { 3115 SDValue Amt = Src.getOperand(1); 3116 KnownBits Known; 3117 DAG.computeKnownBits(Amt, Known); 3118 unsigned Size = VT.getScalarSizeInBits(); 3119 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3120 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3121 EVT MidVT = VT.isVector() ? 3122 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3123 VT.getVectorNumElements()) : MVT::i32; 3124 3125 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3126 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3127 Src.getOperand(0)); 3128 DCI.AddToWorklist(Trunc.getNode()); 3129 3130 if (Amt.getValueType() != NewShiftVT) { 3131 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3132 DCI.AddToWorklist(Amt.getNode()); 3133 } 3134 3135 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3136 Trunc, Amt); 3137 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3138 } 3139 } 3140 } 3141 3142 return SDValue(); 3143 } 3144 3145 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3146 // instructions. If we only match on the legalized i64 mul expansion, 3147 // SimplifyDemandedBits will be unable to remove them because there will be 3148 // multiple uses due to the separate mul + mulh[su]. 3149 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3150 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3151 if (Size <= 32) { 3152 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3153 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3154 } 3155 3156 // Because we want to eliminate extension instructions before the 3157 // operation, we need to create a single user here (i.e. not the separate 3158 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3159 3160 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3161 3162 SDValue Mul = DAG.getNode(MulOpc, SL, 3163 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3164 3165 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3166 Mul.getValue(0), Mul.getValue(1)); 3167 } 3168 3169 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3170 DAGCombinerInfo &DCI) const { 3171 EVT VT = N->getValueType(0); 3172 3173 unsigned Size = VT.getSizeInBits(); 3174 if (VT.isVector() || Size > 64) 3175 return SDValue(); 3176 3177 // There are i16 integer mul/mad. 3178 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3179 return SDValue(); 3180 3181 SelectionDAG &DAG = DCI.DAG; 3182 SDLoc DL(N); 3183 3184 SDValue N0 = N->getOperand(0); 3185 SDValue N1 = N->getOperand(1); 3186 3187 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3188 // in the source into any_extends if the result of the mul is truncated. Since 3189 // we can assume the high bits are whatever we want, use the underlying value 3190 // to avoid the unknown high bits from interfering. 3191 if (N0.getOpcode() == ISD::ANY_EXTEND) 3192 N0 = N0.getOperand(0); 3193 3194 if (N1.getOpcode() == ISD::ANY_EXTEND) 3195 N1 = N1.getOperand(0); 3196 3197 SDValue Mul; 3198 3199 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3200 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3201 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3202 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3203 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3204 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3205 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3206 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3207 } else { 3208 return SDValue(); 3209 } 3210 3211 // We need to use sext even for MUL_U24, because MUL_U24 is used 3212 // for signed multiply of 8 and 16-bit types. 3213 return DAG.getSExtOrTrunc(Mul, DL, VT); 3214 } 3215 3216 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3217 DAGCombinerInfo &DCI) const { 3218 EVT VT = N->getValueType(0); 3219 3220 if (!Subtarget->hasMulI24() || VT.isVector()) 3221 return SDValue(); 3222 3223 SelectionDAG &DAG = DCI.DAG; 3224 SDLoc DL(N); 3225 3226 SDValue N0 = N->getOperand(0); 3227 SDValue N1 = N->getOperand(1); 3228 3229 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3230 return SDValue(); 3231 3232 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3233 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3234 3235 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3236 DCI.AddToWorklist(Mulhi.getNode()); 3237 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3238 } 3239 3240 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3241 DAGCombinerInfo &DCI) const { 3242 EVT VT = N->getValueType(0); 3243 3244 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3245 return SDValue(); 3246 3247 SelectionDAG &DAG = DCI.DAG; 3248 SDLoc DL(N); 3249 3250 SDValue N0 = N->getOperand(0); 3251 SDValue N1 = N->getOperand(1); 3252 3253 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3254 return SDValue(); 3255 3256 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3257 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3258 3259 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3260 DCI.AddToWorklist(Mulhi.getNode()); 3261 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3262 } 3263 3264 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3265 SDNode *N, DAGCombinerInfo &DCI) const { 3266 SelectionDAG &DAG = DCI.DAG; 3267 3268 // Simplify demanded bits before splitting into multiple users. 3269 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 3270 return SDValue(); 3271 3272 SDValue N0 = N->getOperand(0); 3273 SDValue N1 = N->getOperand(1); 3274 3275 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3276 3277 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3278 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3279 3280 SDLoc SL(N); 3281 3282 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3283 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3284 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3285 } 3286 3287 static bool isNegativeOne(SDValue Val) { 3288 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3289 return C->isAllOnesValue(); 3290 return false; 3291 } 3292 3293 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3294 SDValue Op, 3295 const SDLoc &DL, 3296 unsigned Opc) const { 3297 EVT VT = Op.getValueType(); 3298 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3299 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3300 LegalVT != MVT::i16)) 3301 return SDValue(); 3302 3303 if (VT != MVT::i32) 3304 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3305 3306 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3307 if (VT != MVT::i32) 3308 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3309 3310 return FFBX; 3311 } 3312 3313 // The native instructions return -1 on 0 input. Optimize out a select that 3314 // produces -1 on 0. 3315 // 3316 // TODO: If zero is not undef, we could also do this if the output is compared 3317 // against the bitwidth. 3318 // 3319 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3320 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3321 SDValue LHS, SDValue RHS, 3322 DAGCombinerInfo &DCI) const { 3323 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3324 if (!CmpRhs || !CmpRhs->isNullValue()) 3325 return SDValue(); 3326 3327 SelectionDAG &DAG = DCI.DAG; 3328 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3329 SDValue CmpLHS = Cond.getOperand(0); 3330 3331 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3332 AMDGPUISD::FFBH_U32; 3333 3334 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3335 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3336 if (CCOpcode == ISD::SETEQ && 3337 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3338 RHS.getOperand(0) == CmpLHS && 3339 isNegativeOne(LHS)) { 3340 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3341 } 3342 3343 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3344 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3345 if (CCOpcode == ISD::SETNE && 3346 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3347 LHS.getOperand(0) == CmpLHS && 3348 isNegativeOne(RHS)) { 3349 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3350 } 3351 3352 return SDValue(); 3353 } 3354 3355 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3356 unsigned Op, 3357 const SDLoc &SL, 3358 SDValue Cond, 3359 SDValue N1, 3360 SDValue N2) { 3361 SelectionDAG &DAG = DCI.DAG; 3362 EVT VT = N1.getValueType(); 3363 3364 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3365 N1.getOperand(0), N2.getOperand(0)); 3366 DCI.AddToWorklist(NewSelect.getNode()); 3367 return DAG.getNode(Op, SL, VT, NewSelect); 3368 } 3369 3370 // Pull a free FP operation out of a select so it may fold into uses. 3371 // 3372 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3373 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3374 // 3375 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3376 // select c, (fabs x), +k -> fabs (select c, x, k) 3377 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3378 SDValue N) { 3379 SelectionDAG &DAG = DCI.DAG; 3380 SDValue Cond = N.getOperand(0); 3381 SDValue LHS = N.getOperand(1); 3382 SDValue RHS = N.getOperand(2); 3383 3384 EVT VT = N.getValueType(); 3385 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3386 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3387 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3388 SDLoc(N), Cond, LHS, RHS); 3389 } 3390 3391 bool Inv = false; 3392 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3393 std::swap(LHS, RHS); 3394 Inv = true; 3395 } 3396 3397 // TODO: Support vector constants. 3398 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3399 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3400 SDLoc SL(N); 3401 // If one side is an fneg/fabs and the other is a constant, we can push the 3402 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3403 SDValue NewLHS = LHS.getOperand(0); 3404 SDValue NewRHS = RHS; 3405 3406 // Careful: if the neg can be folded up, don't try to pull it back down. 3407 bool ShouldFoldNeg = true; 3408 3409 if (NewLHS.hasOneUse()) { 3410 unsigned Opc = NewLHS.getOpcode(); 3411 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3412 ShouldFoldNeg = false; 3413 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3414 ShouldFoldNeg = false; 3415 } 3416 3417 if (ShouldFoldNeg) { 3418 if (LHS.getOpcode() == ISD::FNEG) 3419 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3420 else if (CRHS->isNegative()) 3421 return SDValue(); 3422 3423 if (Inv) 3424 std::swap(NewLHS, NewRHS); 3425 3426 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3427 Cond, NewLHS, NewRHS); 3428 DCI.AddToWorklist(NewSelect.getNode()); 3429 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3430 } 3431 } 3432 3433 return SDValue(); 3434 } 3435 3436 3437 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3438 DAGCombinerInfo &DCI) const { 3439 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3440 return Folded; 3441 3442 SDValue Cond = N->getOperand(0); 3443 if (Cond.getOpcode() != ISD::SETCC) 3444 return SDValue(); 3445 3446 EVT VT = N->getValueType(0); 3447 SDValue LHS = Cond.getOperand(0); 3448 SDValue RHS = Cond.getOperand(1); 3449 SDValue CC = Cond.getOperand(2); 3450 3451 SDValue True = N->getOperand(1); 3452 SDValue False = N->getOperand(2); 3453 3454 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3455 SelectionDAG &DAG = DCI.DAG; 3456 if ((DAG.isConstantValueOfAnyType(True) || 3457 DAG.isConstantValueOfAnyType(True)) && 3458 (!DAG.isConstantValueOfAnyType(False) && 3459 !DAG.isConstantValueOfAnyType(False))) { 3460 // Swap cmp + select pair to move constant to false input. 3461 // This will allow using VOPC cndmasks more often. 3462 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3463 3464 SDLoc SL(N); 3465 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3466 LHS.getValueType().isInteger()); 3467 3468 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3469 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3470 } 3471 3472 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3473 SDValue MinMax 3474 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3475 // Revisit this node so we can catch min3/max3/med3 patterns. 3476 //DCI.AddToWorklist(MinMax.getNode()); 3477 return MinMax; 3478 } 3479 } 3480 3481 // There's no reason to not do this if the condition has other uses. 3482 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3483 } 3484 3485 static bool isInv2Pi(const APFloat &APF) { 3486 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3487 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3488 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3489 3490 return APF.bitwiseIsEqual(KF16) || 3491 APF.bitwiseIsEqual(KF32) || 3492 APF.bitwiseIsEqual(KF64); 3493 } 3494 3495 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3496 // additional cost to negate them. 3497 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3498 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3499 if (C->isZero() && !C->isNegative()) 3500 return true; 3501 3502 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3503 return true; 3504 } 3505 3506 return false; 3507 } 3508 3509 static unsigned inverseMinMax(unsigned Opc) { 3510 switch (Opc) { 3511 case ISD::FMAXNUM: 3512 return ISD::FMINNUM; 3513 case ISD::FMINNUM: 3514 return ISD::FMAXNUM; 3515 case AMDGPUISD::FMAX_LEGACY: 3516 return AMDGPUISD::FMIN_LEGACY; 3517 case AMDGPUISD::FMIN_LEGACY: 3518 return AMDGPUISD::FMAX_LEGACY; 3519 default: 3520 llvm_unreachable("invalid min/max opcode"); 3521 } 3522 } 3523 3524 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3525 DAGCombinerInfo &DCI) const { 3526 SelectionDAG &DAG = DCI.DAG; 3527 SDValue N0 = N->getOperand(0); 3528 EVT VT = N->getValueType(0); 3529 3530 unsigned Opc = N0.getOpcode(); 3531 3532 // If the input has multiple uses and we can either fold the negate down, or 3533 // the other uses cannot, give up. This both prevents unprofitable 3534 // transformations and infinite loops: we won't repeatedly try to fold around 3535 // a negate that has no 'good' form. 3536 if (N0.hasOneUse()) { 3537 // This may be able to fold into the source, but at a code size cost. Don't 3538 // fold if the fold into the user is free. 3539 if (allUsesHaveSourceMods(N, 0)) 3540 return SDValue(); 3541 } else { 3542 if (fnegFoldsIntoOp(Opc) && 3543 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3544 return SDValue(); 3545 } 3546 3547 SDLoc SL(N); 3548 switch (Opc) { 3549 case ISD::FADD: { 3550 if (!mayIgnoreSignedZero(N0)) 3551 return SDValue(); 3552 3553 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3554 SDValue LHS = N0.getOperand(0); 3555 SDValue RHS = N0.getOperand(1); 3556 3557 if (LHS.getOpcode() != ISD::FNEG) 3558 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3559 else 3560 LHS = LHS.getOperand(0); 3561 3562 if (RHS.getOpcode() != ISD::FNEG) 3563 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3564 else 3565 RHS = RHS.getOperand(0); 3566 3567 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3568 if (!N0.hasOneUse()) 3569 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3570 return Res; 3571 } 3572 case ISD::FMUL: 3573 case AMDGPUISD::FMUL_LEGACY: { 3574 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3575 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3576 SDValue LHS = N0.getOperand(0); 3577 SDValue RHS = N0.getOperand(1); 3578 3579 if (LHS.getOpcode() == ISD::FNEG) 3580 LHS = LHS.getOperand(0); 3581 else if (RHS.getOpcode() == ISD::FNEG) 3582 RHS = RHS.getOperand(0); 3583 else 3584 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3585 3586 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3587 if (!N0.hasOneUse()) 3588 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3589 return Res; 3590 } 3591 case ISD::FMA: 3592 case ISD::FMAD: { 3593 if (!mayIgnoreSignedZero(N0)) 3594 return SDValue(); 3595 3596 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3597 SDValue LHS = N0.getOperand(0); 3598 SDValue MHS = N0.getOperand(1); 3599 SDValue RHS = N0.getOperand(2); 3600 3601 if (LHS.getOpcode() == ISD::FNEG) 3602 LHS = LHS.getOperand(0); 3603 else if (MHS.getOpcode() == ISD::FNEG) 3604 MHS = MHS.getOperand(0); 3605 else 3606 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3607 3608 if (RHS.getOpcode() != ISD::FNEG) 3609 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3610 else 3611 RHS = RHS.getOperand(0); 3612 3613 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3614 if (!N0.hasOneUse()) 3615 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3616 return Res; 3617 } 3618 case ISD::FMAXNUM: 3619 case ISD::FMINNUM: 3620 case AMDGPUISD::FMAX_LEGACY: 3621 case AMDGPUISD::FMIN_LEGACY: { 3622 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3623 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3624 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3625 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3626 3627 SDValue LHS = N0.getOperand(0); 3628 SDValue RHS = N0.getOperand(1); 3629 3630 // 0 doesn't have a negated inline immediate. 3631 // TODO: This constant check should be generalized to other operations. 3632 if (isConstantCostlierToNegate(RHS)) 3633 return SDValue(); 3634 3635 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3636 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3637 unsigned Opposite = inverseMinMax(Opc); 3638 3639 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3640 if (!N0.hasOneUse()) 3641 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3642 return Res; 3643 } 3644 case AMDGPUISD::FMED3: { 3645 SDValue Ops[3]; 3646 for (unsigned I = 0; I < 3; ++I) 3647 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3648 3649 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3650 if (!N0.hasOneUse()) 3651 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3652 return Res; 3653 } 3654 case ISD::FP_EXTEND: 3655 case ISD::FTRUNC: 3656 case ISD::FRINT: 3657 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3658 case ISD::FSIN: 3659 case ISD::FCANONICALIZE: 3660 case AMDGPUISD::RCP: 3661 case AMDGPUISD::RCP_LEGACY: 3662 case AMDGPUISD::RCP_IFLAG: 3663 case AMDGPUISD::SIN_HW: { 3664 SDValue CvtSrc = N0.getOperand(0); 3665 if (CvtSrc.getOpcode() == ISD::FNEG) { 3666 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3667 // (fneg (rcp (fneg x))) -> (rcp x) 3668 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3669 } 3670 3671 if (!N0.hasOneUse()) 3672 return SDValue(); 3673 3674 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3675 // (fneg (rcp x)) -> (rcp (fneg x)) 3676 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3677 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3678 } 3679 case ISD::FP_ROUND: { 3680 SDValue CvtSrc = N0.getOperand(0); 3681 3682 if (CvtSrc.getOpcode() == ISD::FNEG) { 3683 // (fneg (fp_round (fneg x))) -> (fp_round x) 3684 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3685 CvtSrc.getOperand(0), N0.getOperand(1)); 3686 } 3687 3688 if (!N0.hasOneUse()) 3689 return SDValue(); 3690 3691 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3692 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3693 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3694 } 3695 case ISD::FP16_TO_FP: { 3696 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3697 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3698 // Put the fneg back as a legal source operation that can be matched later. 3699 SDLoc SL(N); 3700 3701 SDValue Src = N0.getOperand(0); 3702 EVT SrcVT = Src.getValueType(); 3703 3704 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3705 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3706 DAG.getConstant(0x8000, SL, SrcVT)); 3707 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3708 } 3709 default: 3710 return SDValue(); 3711 } 3712 } 3713 3714 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3715 DAGCombinerInfo &DCI) const { 3716 SelectionDAG &DAG = DCI.DAG; 3717 SDValue N0 = N->getOperand(0); 3718 3719 if (!N0.hasOneUse()) 3720 return SDValue(); 3721 3722 switch (N0.getOpcode()) { 3723 case ISD::FP16_TO_FP: { 3724 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3725 SDLoc SL(N); 3726 SDValue Src = N0.getOperand(0); 3727 EVT SrcVT = Src.getValueType(); 3728 3729 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3730 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3731 DAG.getConstant(0x7fff, SL, SrcVT)); 3732 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3733 } 3734 default: 3735 return SDValue(); 3736 } 3737 } 3738 3739 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3740 DAGCombinerInfo &DCI) const { 3741 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3742 if (!CFP) 3743 return SDValue(); 3744 3745 // XXX - Should this flush denormals? 3746 const APFloat &Val = CFP->getValueAPF(); 3747 APFloat One(Val.getSemantics(), "1.0"); 3748 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3749 } 3750 3751 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3752 DAGCombinerInfo &DCI) const { 3753 SelectionDAG &DAG = DCI.DAG; 3754 SDLoc DL(N); 3755 3756 switch(N->getOpcode()) { 3757 default: 3758 break; 3759 case ISD::BITCAST: { 3760 EVT DestVT = N->getValueType(0); 3761 3762 // Push casts through vector builds. This helps avoid emitting a large 3763 // number of copies when materializing floating point vector constants. 3764 // 3765 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3766 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3767 if (DestVT.isVector()) { 3768 SDValue Src = N->getOperand(0); 3769 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3770 EVT SrcVT = Src.getValueType(); 3771 unsigned NElts = DestVT.getVectorNumElements(); 3772 3773 if (SrcVT.getVectorNumElements() == NElts) { 3774 EVT DestEltVT = DestVT.getVectorElementType(); 3775 3776 SmallVector<SDValue, 8> CastedElts; 3777 SDLoc SL(N); 3778 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3779 SDValue Elt = Src.getOperand(I); 3780 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3781 } 3782 3783 return DAG.getBuildVector(DestVT, SL, CastedElts); 3784 } 3785 } 3786 } 3787 3788 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3789 break; 3790 3791 // Fold bitcasts of constants. 3792 // 3793 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3794 // TODO: Generalize and move to DAGCombiner 3795 SDValue Src = N->getOperand(0); 3796 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3797 if (Src.getValueType() == MVT::i64) { 3798 SDLoc SL(N); 3799 uint64_t CVal = C->getZExtValue(); 3800 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3801 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3802 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3803 } 3804 } 3805 3806 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3807 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3808 SDLoc SL(N); 3809 uint64_t CVal = Val.getZExtValue(); 3810 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3811 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3812 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3813 3814 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3815 } 3816 3817 break; 3818 } 3819 case ISD::SHL: { 3820 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3821 break; 3822 3823 return performShlCombine(N, DCI); 3824 } 3825 case ISD::SRL: { 3826 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3827 break; 3828 3829 return performSrlCombine(N, DCI); 3830 } 3831 case ISD::SRA: { 3832 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3833 break; 3834 3835 return performSraCombine(N, DCI); 3836 } 3837 case ISD::TRUNCATE: 3838 return performTruncateCombine(N, DCI); 3839 case ISD::MUL: 3840 return performMulCombine(N, DCI); 3841 case ISD::MULHS: 3842 return performMulhsCombine(N, DCI); 3843 case ISD::MULHU: 3844 return performMulhuCombine(N, DCI); 3845 case AMDGPUISD::MUL_I24: 3846 case AMDGPUISD::MUL_U24: 3847 case AMDGPUISD::MULHI_I24: 3848 case AMDGPUISD::MULHI_U24: { 3849 // If the first call to simplify is successfull, then N may end up being 3850 // deleted, so we shouldn't call simplifyI24 again. 3851 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3852 return SDValue(); 3853 } 3854 case AMDGPUISD::MUL_LOHI_I24: 3855 case AMDGPUISD::MUL_LOHI_U24: 3856 return performMulLoHi24Combine(N, DCI); 3857 case ISD::SELECT: 3858 return performSelectCombine(N, DCI); 3859 case ISD::FNEG: 3860 return performFNegCombine(N, DCI); 3861 case ISD::FABS: 3862 return performFAbsCombine(N, DCI); 3863 case AMDGPUISD::BFE_I32: 3864 case AMDGPUISD::BFE_U32: { 3865 assert(!N->getValueType(0).isVector() && 3866 "Vector handling of BFE not implemented"); 3867 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3868 if (!Width) 3869 break; 3870 3871 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3872 if (WidthVal == 0) 3873 return DAG.getConstant(0, DL, MVT::i32); 3874 3875 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3876 if (!Offset) 3877 break; 3878 3879 SDValue BitsFrom = N->getOperand(0); 3880 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3881 3882 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3883 3884 if (OffsetVal == 0) { 3885 // This is already sign / zero extended, so try to fold away extra BFEs. 3886 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3887 3888 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3889 if (OpSignBits >= SignBits) 3890 return BitsFrom; 3891 3892 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3893 if (Signed) { 3894 // This is a sign_extend_inreg. Replace it to take advantage of existing 3895 // DAG Combines. If not eliminated, we will match back to BFE during 3896 // selection. 3897 3898 // TODO: The sext_inreg of extended types ends, although we can could 3899 // handle them in a single BFE. 3900 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3901 DAG.getValueType(SmallVT)); 3902 } 3903 3904 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3905 } 3906 3907 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3908 if (Signed) { 3909 return constantFoldBFE<int32_t>(DAG, 3910 CVal->getSExtValue(), 3911 OffsetVal, 3912 WidthVal, 3913 DL); 3914 } 3915 3916 return constantFoldBFE<uint32_t>(DAG, 3917 CVal->getZExtValue(), 3918 OffsetVal, 3919 WidthVal, 3920 DL); 3921 } 3922 3923 if ((OffsetVal + WidthVal) >= 32 && 3924 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3925 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3926 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3927 BitsFrom, ShiftVal); 3928 } 3929 3930 if (BitsFrom.hasOneUse()) { 3931 APInt Demanded = APInt::getBitsSet(32, 3932 OffsetVal, 3933 OffsetVal + WidthVal); 3934 3935 KnownBits Known; 3936 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3937 !DCI.isBeforeLegalizeOps()); 3938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3939 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3940 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3941 DCI.CommitTargetLoweringOpt(TLO); 3942 } 3943 } 3944 3945 break; 3946 } 3947 case ISD::LOAD: 3948 return performLoadCombine(N, DCI); 3949 case ISD::STORE: 3950 return performStoreCombine(N, DCI); 3951 case AMDGPUISD::RCP: 3952 case AMDGPUISD::RCP_IFLAG: 3953 return performRcpCombine(N, DCI); 3954 case ISD::AssertZext: 3955 case ISD::AssertSext: 3956 return performAssertSZExtCombine(N, DCI); 3957 } 3958 return SDValue(); 3959 } 3960 3961 //===----------------------------------------------------------------------===// 3962 // Helper functions 3963 //===----------------------------------------------------------------------===// 3964 3965 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3966 const TargetRegisterClass *RC, 3967 unsigned Reg, EVT VT, 3968 const SDLoc &SL, 3969 bool RawReg) const { 3970 MachineFunction &MF = DAG.getMachineFunction(); 3971 MachineRegisterInfo &MRI = MF.getRegInfo(); 3972 unsigned VReg; 3973 3974 if (!MRI.isLiveIn(Reg)) { 3975 VReg = MRI.createVirtualRegister(RC); 3976 MRI.addLiveIn(Reg, VReg); 3977 } else { 3978 VReg = MRI.getLiveInVirtReg(Reg); 3979 } 3980 3981 if (RawReg) 3982 return DAG.getRegister(VReg, VT); 3983 3984 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3985 } 3986 3987 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3988 EVT VT, 3989 const SDLoc &SL, 3990 int64_t Offset) const { 3991 MachineFunction &MF = DAG.getMachineFunction(); 3992 MachineFrameInfo &MFI = MF.getFrameInfo(); 3993 3994 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 3995 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 3996 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 3997 3998 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 3999 MachineMemOperand::MODereferenceable | 4000 MachineMemOperand::MOInvariant); 4001 } 4002 4003 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4004 const SDLoc &SL, 4005 SDValue Chain, 4006 SDValue ArgVal, 4007 int64_t Offset) const { 4008 MachineFunction &MF = DAG.getMachineFunction(); 4009 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4010 4011 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4012 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4013 MachineMemOperand::MODereferenceable); 4014 return Store; 4015 } 4016 4017 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4018 const TargetRegisterClass *RC, 4019 EVT VT, const SDLoc &SL, 4020 const ArgDescriptor &Arg) const { 4021 assert(Arg && "Attempting to load missing argument"); 4022 4023 if (Arg.isRegister()) 4024 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4025 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4026 } 4027 4028 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4029 const MachineFunction &MF, const ImplicitParameter Param) const { 4030 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4031 const AMDGPUSubtarget &ST = 4032 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4033 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4034 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4035 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4036 ExplicitArgOffset; 4037 switch (Param) { 4038 case GRID_DIM: 4039 return ArgOffset; 4040 case GRID_OFFSET: 4041 return ArgOffset + 4; 4042 } 4043 llvm_unreachable("unexpected implicit parameter type"); 4044 } 4045 4046 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4047 4048 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4049 switch ((AMDGPUISD::NodeType)Opcode) { 4050 case AMDGPUISD::FIRST_NUMBER: break; 4051 // AMDIL DAG nodes 4052 NODE_NAME_CASE(UMUL); 4053 NODE_NAME_CASE(BRANCH_COND); 4054 4055 // AMDGPU DAG nodes 4056 NODE_NAME_CASE(IF) 4057 NODE_NAME_CASE(ELSE) 4058 NODE_NAME_CASE(LOOP) 4059 NODE_NAME_CASE(CALL) 4060 NODE_NAME_CASE(TC_RETURN) 4061 NODE_NAME_CASE(TRAP) 4062 NODE_NAME_CASE(RET_FLAG) 4063 NODE_NAME_CASE(RETURN_TO_EPILOG) 4064 NODE_NAME_CASE(ENDPGM) 4065 NODE_NAME_CASE(DWORDADDR) 4066 NODE_NAME_CASE(FRACT) 4067 NODE_NAME_CASE(SETCC) 4068 NODE_NAME_CASE(SETREG) 4069 NODE_NAME_CASE(FMA_W_CHAIN) 4070 NODE_NAME_CASE(FMUL_W_CHAIN) 4071 NODE_NAME_CASE(CLAMP) 4072 NODE_NAME_CASE(COS_HW) 4073 NODE_NAME_CASE(SIN_HW) 4074 NODE_NAME_CASE(FMAX_LEGACY) 4075 NODE_NAME_CASE(FMIN_LEGACY) 4076 NODE_NAME_CASE(FMAX3) 4077 NODE_NAME_CASE(SMAX3) 4078 NODE_NAME_CASE(UMAX3) 4079 NODE_NAME_CASE(FMIN3) 4080 NODE_NAME_CASE(SMIN3) 4081 NODE_NAME_CASE(UMIN3) 4082 NODE_NAME_CASE(FMED3) 4083 NODE_NAME_CASE(SMED3) 4084 NODE_NAME_CASE(UMED3) 4085 NODE_NAME_CASE(FDOT2) 4086 NODE_NAME_CASE(URECIP) 4087 NODE_NAME_CASE(DIV_SCALE) 4088 NODE_NAME_CASE(DIV_FMAS) 4089 NODE_NAME_CASE(DIV_FIXUP) 4090 NODE_NAME_CASE(FMAD_FTZ) 4091 NODE_NAME_CASE(TRIG_PREOP) 4092 NODE_NAME_CASE(RCP) 4093 NODE_NAME_CASE(RSQ) 4094 NODE_NAME_CASE(RCP_LEGACY) 4095 NODE_NAME_CASE(RSQ_LEGACY) 4096 NODE_NAME_CASE(RCP_IFLAG) 4097 NODE_NAME_CASE(FMUL_LEGACY) 4098 NODE_NAME_CASE(RSQ_CLAMP) 4099 NODE_NAME_CASE(LDEXP) 4100 NODE_NAME_CASE(FP_CLASS) 4101 NODE_NAME_CASE(DOT4) 4102 NODE_NAME_CASE(CARRY) 4103 NODE_NAME_CASE(BORROW) 4104 NODE_NAME_CASE(BFE_U32) 4105 NODE_NAME_CASE(BFE_I32) 4106 NODE_NAME_CASE(BFI) 4107 NODE_NAME_CASE(BFM) 4108 NODE_NAME_CASE(FFBH_U32) 4109 NODE_NAME_CASE(FFBH_I32) 4110 NODE_NAME_CASE(FFBL_B32) 4111 NODE_NAME_CASE(MUL_U24) 4112 NODE_NAME_CASE(MUL_I24) 4113 NODE_NAME_CASE(MULHI_U24) 4114 NODE_NAME_CASE(MULHI_I24) 4115 NODE_NAME_CASE(MUL_LOHI_U24) 4116 NODE_NAME_CASE(MUL_LOHI_I24) 4117 NODE_NAME_CASE(MAD_U24) 4118 NODE_NAME_CASE(MAD_I24) 4119 NODE_NAME_CASE(MAD_I64_I32) 4120 NODE_NAME_CASE(MAD_U64_U32) 4121 NODE_NAME_CASE(PERM) 4122 NODE_NAME_CASE(TEXTURE_FETCH) 4123 NODE_NAME_CASE(EXPORT) 4124 NODE_NAME_CASE(EXPORT_DONE) 4125 NODE_NAME_CASE(R600_EXPORT) 4126 NODE_NAME_CASE(CONST_ADDRESS) 4127 NODE_NAME_CASE(REGISTER_LOAD) 4128 NODE_NAME_CASE(REGISTER_STORE) 4129 NODE_NAME_CASE(SAMPLE) 4130 NODE_NAME_CASE(SAMPLEB) 4131 NODE_NAME_CASE(SAMPLED) 4132 NODE_NAME_CASE(SAMPLEL) 4133 NODE_NAME_CASE(CVT_F32_UBYTE0) 4134 NODE_NAME_CASE(CVT_F32_UBYTE1) 4135 NODE_NAME_CASE(CVT_F32_UBYTE2) 4136 NODE_NAME_CASE(CVT_F32_UBYTE3) 4137 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4138 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4139 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4140 NODE_NAME_CASE(CVT_PK_I16_I32) 4141 NODE_NAME_CASE(CVT_PK_U16_U32) 4142 NODE_NAME_CASE(FP_TO_FP16) 4143 NODE_NAME_CASE(FP16_ZEXT) 4144 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4145 NODE_NAME_CASE(CONST_DATA_PTR) 4146 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4147 NODE_NAME_CASE(KILL) 4148 NODE_NAME_CASE(DUMMY_CHAIN) 4149 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4150 NODE_NAME_CASE(INIT_EXEC) 4151 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4152 NODE_NAME_CASE(SENDMSG) 4153 NODE_NAME_CASE(SENDMSGHALT) 4154 NODE_NAME_CASE(INTERP_MOV) 4155 NODE_NAME_CASE(INTERP_P1) 4156 NODE_NAME_CASE(INTERP_P2) 4157 NODE_NAME_CASE(STORE_MSKOR) 4158 NODE_NAME_CASE(LOAD_CONSTANT) 4159 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4160 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 4161 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4162 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4163 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4164 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4165 NODE_NAME_CASE(ATOMIC_INC) 4166 NODE_NAME_CASE(ATOMIC_DEC) 4167 NODE_NAME_CASE(ATOMIC_LOAD_FADD) 4168 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4169 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4170 NODE_NAME_CASE(BUFFER_LOAD) 4171 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4172 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4173 NODE_NAME_CASE(SBUFFER_LOAD) 4174 NODE_NAME_CASE(BUFFER_STORE) 4175 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4176 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4177 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4178 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4179 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4180 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4181 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4182 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4183 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4184 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4185 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4186 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4187 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4188 4189 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4190 } 4191 return nullptr; 4192 } 4193 4194 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4195 SelectionDAG &DAG, int Enabled, 4196 int &RefinementSteps, 4197 bool &UseOneConstNR, 4198 bool Reciprocal) const { 4199 EVT VT = Operand.getValueType(); 4200 4201 if (VT == MVT::f32) { 4202 RefinementSteps = 0; 4203 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4204 } 4205 4206 // TODO: There is also f64 rsq instruction, but the documentation is less 4207 // clear on its precision. 4208 4209 return SDValue(); 4210 } 4211 4212 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4213 SelectionDAG &DAG, int Enabled, 4214 int &RefinementSteps) const { 4215 EVT VT = Operand.getValueType(); 4216 4217 if (VT == MVT::f32) { 4218 // Reciprocal, < 1 ulp error. 4219 // 4220 // This reciprocal approximation converges to < 0.5 ulp error with one 4221 // newton rhapson performed with two fused multiple adds (FMAs). 4222 4223 RefinementSteps = 0; 4224 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4225 } 4226 4227 // TODO: There is also f64 rcp instruction, but the documentation is less 4228 // clear on its precision. 4229 4230 return SDValue(); 4231 } 4232 4233 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4234 const SDValue Op, KnownBits &Known, 4235 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4236 4237 Known.resetAll(); // Don't know anything. 4238 4239 unsigned Opc = Op.getOpcode(); 4240 4241 switch (Opc) { 4242 default: 4243 break; 4244 case AMDGPUISD::CARRY: 4245 case AMDGPUISD::BORROW: { 4246 Known.Zero = APInt::getHighBitsSet(32, 31); 4247 break; 4248 } 4249 4250 case AMDGPUISD::BFE_I32: 4251 case AMDGPUISD::BFE_U32: { 4252 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4253 if (!CWidth) 4254 return; 4255 4256 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4257 4258 if (Opc == AMDGPUISD::BFE_U32) 4259 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4260 4261 break; 4262 } 4263 case AMDGPUISD::FP_TO_FP16: 4264 case AMDGPUISD::FP16_ZEXT: { 4265 unsigned BitWidth = Known.getBitWidth(); 4266 4267 // High bits are zero. 4268 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4269 break; 4270 } 4271 case AMDGPUISD::MUL_U24: 4272 case AMDGPUISD::MUL_I24: { 4273 KnownBits LHSKnown, RHSKnown; 4274 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 4275 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 4276 4277 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4278 RHSKnown.countMinTrailingZeros(); 4279 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4280 4281 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 4282 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 4283 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4284 if (MaxValBits >= 32) 4285 break; 4286 bool Negative = false; 4287 if (Opc == AMDGPUISD::MUL_I24) { 4288 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 4289 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 4290 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 4291 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 4292 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4293 break; 4294 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4295 } 4296 if (Negative) 4297 Known.One.setHighBits(32 - MaxValBits); 4298 else 4299 Known.Zero.setHighBits(32 - MaxValBits); 4300 break; 4301 } 4302 case AMDGPUISD::PERM: { 4303 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4304 if (!CMask) 4305 return; 4306 4307 KnownBits LHSKnown, RHSKnown; 4308 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 4309 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 4310 unsigned Sel = CMask->getZExtValue(); 4311 4312 for (unsigned I = 0; I < 32; I += 8) { 4313 unsigned SelBits = Sel & 0xff; 4314 if (SelBits < 4) { 4315 SelBits *= 8; 4316 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4317 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4318 } else if (SelBits < 7) { 4319 SelBits = (SelBits & 3) * 8; 4320 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4321 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4322 } else if (SelBits == 0x0c) { 4323 Known.Zero |= 0xff << I; 4324 } else if (SelBits > 0x0c) { 4325 Known.One |= 0xff << I; 4326 } 4327 Sel >>= 8; 4328 } 4329 break; 4330 } 4331 case ISD::INTRINSIC_WO_CHAIN: { 4332 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4333 switch (IID) { 4334 case Intrinsic::amdgcn_mbcnt_lo: 4335 case Intrinsic::amdgcn_mbcnt_hi: { 4336 const GCNSubtarget &ST = 4337 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4338 // These return at most the wavefront size - 1. 4339 unsigned Size = Op.getValueType().getSizeInBits(); 4340 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4341 break; 4342 } 4343 default: 4344 break; 4345 } 4346 } 4347 } 4348 } 4349 4350 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4351 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4352 unsigned Depth) const { 4353 switch (Op.getOpcode()) { 4354 case AMDGPUISD::BFE_I32: { 4355 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4356 if (!Width) 4357 return 1; 4358 4359 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4360 if (!isNullConstant(Op.getOperand(1))) 4361 return SignBits; 4362 4363 // TODO: Could probably figure something out with non-0 offsets. 4364 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4365 return std::max(SignBits, Op0SignBits); 4366 } 4367 4368 case AMDGPUISD::BFE_U32: { 4369 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4370 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4371 } 4372 4373 case AMDGPUISD::CARRY: 4374 case AMDGPUISD::BORROW: 4375 return 31; 4376 case AMDGPUISD::FP_TO_FP16: 4377 case AMDGPUISD::FP16_ZEXT: 4378 return 16; 4379 default: 4380 return 1; 4381 } 4382 } 4383 4384 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4385 const SelectionDAG &DAG, 4386 bool SNaN, 4387 unsigned Depth) const { 4388 unsigned Opcode = Op.getOpcode(); 4389 switch (Opcode) { 4390 case AMDGPUISD::FMIN_LEGACY: 4391 case AMDGPUISD::FMAX_LEGACY: { 4392 if (SNaN) 4393 return true; 4394 4395 // TODO: Can check no nans on one of the operands for each one, but which 4396 // one? 4397 return false; 4398 } 4399 case AMDGPUISD::FMUL_LEGACY: 4400 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4401 if (SNaN) 4402 return true; 4403 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4404 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4405 } 4406 case AMDGPUISD::FMED3: 4407 case AMDGPUISD::FMIN3: 4408 case AMDGPUISD::FMAX3: 4409 case AMDGPUISD::FMAD_FTZ: { 4410 if (SNaN) 4411 return true; 4412 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4413 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4414 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4415 } 4416 case AMDGPUISD::CVT_F32_UBYTE0: 4417 case AMDGPUISD::CVT_F32_UBYTE1: 4418 case AMDGPUISD::CVT_F32_UBYTE2: 4419 case AMDGPUISD::CVT_F32_UBYTE3: 4420 return true; 4421 4422 case AMDGPUISD::RCP: 4423 case AMDGPUISD::RSQ: 4424 case AMDGPUISD::RCP_LEGACY: 4425 case AMDGPUISD::RSQ_LEGACY: 4426 case AMDGPUISD::RSQ_CLAMP: { 4427 if (SNaN) 4428 return true; 4429 4430 // TODO: Need is known positive check. 4431 return false; 4432 } 4433 case AMDGPUISD::LDEXP: 4434 case AMDGPUISD::FRACT: { 4435 if (SNaN) 4436 return true; 4437 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4438 } 4439 case AMDGPUISD::DIV_SCALE: 4440 case AMDGPUISD::DIV_FMAS: 4441 case AMDGPUISD::DIV_FIXUP: 4442 case AMDGPUISD::TRIG_PREOP: 4443 // TODO: Refine on operands. 4444 return SNaN; 4445 case AMDGPUISD::SIN_HW: 4446 case AMDGPUISD::COS_HW: { 4447 // TODO: Need check for infinity 4448 return SNaN; 4449 } 4450 case ISD::INTRINSIC_WO_CHAIN: { 4451 unsigned IntrinsicID 4452 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4453 // TODO: Handle more intrinsics 4454 switch (IntrinsicID) { 4455 case Intrinsic::amdgcn_cubeid: 4456 return true; 4457 4458 case Intrinsic::amdgcn_frexp_mant: { 4459 if (SNaN) 4460 return true; 4461 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4462 } 4463 case Intrinsic::amdgcn_cvt_pkrtz: { 4464 if (SNaN) 4465 return true; 4466 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4467 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4468 } 4469 case Intrinsic::amdgcn_fdot2: 4470 // TODO: Refine on operand 4471 return SNaN; 4472 default: 4473 return false; 4474 } 4475 } 4476 default: 4477 return false; 4478 } 4479 } 4480