1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59                                            const AMDGPUSubtarget &STI)
60     : TargetLowering(TM), Subtarget(&STI) {
61   // Lower floating point store/load to integer store/load to reduce the number
62   // of patterns in tablegen.
63   setOperationAction(ISD::LOAD, MVT::f32, Promote);
64   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65 
66   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
77 
78   setOperationAction(ISD::LOAD, MVT::i64, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
83 
84   setOperationAction(ISD::LOAD, MVT::f64, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
89 
90   // There are no 64-bit extloads. These should be done as a 32-bit extload and
91   // an extension to 64-bit.
92   for (MVT VT : MVT::integer_valuetypes()) {
93     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
94     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
96   }
97 
98   for (MVT VT : MVT::integer_valuetypes()) {
99     if (VT == MVT::i64)
100       continue;
101 
102     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
106 
107     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
111 
112     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_vector_valuetypes()) {
119     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
131   }
132 
133   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
134   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
137 
138   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
139   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
142 
143   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
147 
148   setOperationAction(ISD::STORE, MVT::f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 
151   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 
154   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
155   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 
157   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 
160   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
161   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 
163   setOperationAction(ISD::STORE, MVT::i64, Promote);
164   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
165 
166   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
167   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
168 
169   setOperationAction(ISD::STORE, MVT::f64, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
177 
178   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
179   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
184 
185   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
186   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
187   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
188   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
189 
190   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
191   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
192   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
193   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
194 
195   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
197   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
198   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
199 
200   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
201   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
202 
203   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
204   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
205 
206   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
207   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
208 
209   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
210   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
211 
212 
213   setOperationAction(ISD::Constant, MVT::i32, Legal);
214   setOperationAction(ISD::Constant, MVT::i64, Legal);
215   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
216   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
217 
218   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
219   setOperationAction(ISD::BRIND, MVT::Other, Expand);
220 
221   // This is totally unsupported, just custom lower to produce an error.
222   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
223 
224   // We need to custom lower some of the intrinsics
225   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
226   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
227 
228   // Library functions.  These default to Expand, but we have instructions
229   // for them.
230   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
231   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
232   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
233   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
234   setOperationAction(ISD::FABS,   MVT::f32, Legal);
235   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
236   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
237   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
238   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
239   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
240 
241   setOperationAction(ISD::FROUND, MVT::f32, Custom);
242   setOperationAction(ISD::FROUND, MVT::f64, Custom);
243 
244   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
245   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
246 
247   setOperationAction(ISD::FREM, MVT::f32, Custom);
248   setOperationAction(ISD::FREM, MVT::f64, Custom);
249 
250   // v_mad_f32 does not support denormals according to some sources.
251   if (!Subtarget->hasFP32Denormals())
252     setOperationAction(ISD::FMAD, MVT::f32, Legal);
253 
254   // Expand to fneg + fadd.
255   setOperationAction(ISD::FSUB, MVT::f64, Expand);
256 
257   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
258   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
259   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
260   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
261   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
262   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
263   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
264   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
265   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
266   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
267 
268   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
269     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
270     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
271     setOperationAction(ISD::FRINT, MVT::f64, Custom);
272     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
273   }
274 
275   if (!Subtarget->hasBFI()) {
276     // fcopysign can be done in a single instruction with BFI.
277     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
279   }
280 
281   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
282   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
283 
284   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
285   for (MVT VT : ScalarIntVTs) {
286     // These should use [SU]DIVREM, so set them to expand
287     setOperationAction(ISD::SDIV, VT, Expand);
288     setOperationAction(ISD::UDIV, VT, Expand);
289     setOperationAction(ISD::SREM, VT, Expand);
290     setOperationAction(ISD::UREM, VT, Expand);
291 
292     // GPU does not have divrem function for signed or unsigned.
293     setOperationAction(ISD::SDIVREM, VT, Custom);
294     setOperationAction(ISD::UDIVREM, VT, Custom);
295 
296     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
297     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
298     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
299 
300     setOperationAction(ISD::BSWAP, VT, Expand);
301     setOperationAction(ISD::CTTZ, VT, Expand);
302     setOperationAction(ISD::CTLZ, VT, Expand);
303   }
304 
305   if (!Subtarget->hasBCNT(32))
306     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
307 
308   if (!Subtarget->hasBCNT(64))
309     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
310 
311   // The hardware supports 32-bit ROTR, but not ROTL.
312   setOperationAction(ISD::ROTL, MVT::i32, Expand);
313   setOperationAction(ISD::ROTL, MVT::i64, Expand);
314   setOperationAction(ISD::ROTR, MVT::i64, Expand);
315 
316   setOperationAction(ISD::MUL, MVT::i64, Expand);
317   setOperationAction(ISD::MULHU, MVT::i64, Expand);
318   setOperationAction(ISD::MULHS, MVT::i64, Expand);
319   setOperationAction(ISD::UDIV, MVT::i32, Expand);
320   setOperationAction(ISD::UREM, MVT::i32, Expand);
321   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
322   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
323   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
324   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
325   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
326 
327   setOperationAction(ISD::SMIN, MVT::i32, Legal);
328   setOperationAction(ISD::UMIN, MVT::i32, Legal);
329   setOperationAction(ISD::SMAX, MVT::i32, Legal);
330   setOperationAction(ISD::UMAX, MVT::i32, Legal);
331 
332   if (Subtarget->hasFFBH())
333     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
334 
335   if (Subtarget->hasFFBL())
336     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
337 
338   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
339   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
340 
341   // We only really have 32-bit BFE instructions (and 16-bit on VI).
342   //
343   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
344   // effort to match them now. We want this to be false for i64 cases when the
345   // extraction isn't restricted to the upper or lower half. Ideally we would
346   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
347   // span the midpoint are probably relatively rare, so don't worry about them
348   // for now.
349   if (Subtarget->hasBFE())
350     setHasExtractBitsInsn(true);
351 
352   static const MVT::SimpleValueType VectorIntTypes[] = {
353     MVT::v2i32, MVT::v4i32
354   };
355 
356   for (MVT VT : VectorIntTypes) {
357     // Expand the following operations for the current type by default.
358     setOperationAction(ISD::ADD,  VT, Expand);
359     setOperationAction(ISD::AND,  VT, Expand);
360     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
361     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
362     setOperationAction(ISD::MUL,  VT, Expand);
363     setOperationAction(ISD::MULHU, VT, Expand);
364     setOperationAction(ISD::MULHS, VT, Expand);
365     setOperationAction(ISD::OR,   VT, Expand);
366     setOperationAction(ISD::SHL,  VT, Expand);
367     setOperationAction(ISD::SRA,  VT, Expand);
368     setOperationAction(ISD::SRL,  VT, Expand);
369     setOperationAction(ISD::ROTL, VT, Expand);
370     setOperationAction(ISD::ROTR, VT, Expand);
371     setOperationAction(ISD::SUB,  VT, Expand);
372     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
373     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
374     setOperationAction(ISD::SDIV, VT, Expand);
375     setOperationAction(ISD::UDIV, VT, Expand);
376     setOperationAction(ISD::SREM, VT, Expand);
377     setOperationAction(ISD::UREM, VT, Expand);
378     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
379     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
380     setOperationAction(ISD::SDIVREM, VT, Custom);
381     setOperationAction(ISD::UDIVREM, VT, Expand);
382     setOperationAction(ISD::ADDC, VT, Expand);
383     setOperationAction(ISD::SUBC, VT, Expand);
384     setOperationAction(ISD::ADDE, VT, Expand);
385     setOperationAction(ISD::SUBE, VT, Expand);
386     setOperationAction(ISD::SELECT, VT, Expand);
387     setOperationAction(ISD::VSELECT, VT, Expand);
388     setOperationAction(ISD::SELECT_CC, VT, Expand);
389     setOperationAction(ISD::XOR,  VT, Expand);
390     setOperationAction(ISD::BSWAP, VT, Expand);
391     setOperationAction(ISD::CTPOP, VT, Expand);
392     setOperationAction(ISD::CTTZ, VT, Expand);
393     setOperationAction(ISD::CTLZ, VT, Expand);
394     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
395   }
396 
397   static const MVT::SimpleValueType FloatVectorTypes[] = {
398     MVT::v2f32, MVT::v4f32
399   };
400 
401   for (MVT VT : FloatVectorTypes) {
402     setOperationAction(ISD::FABS, VT, Expand);
403     setOperationAction(ISD::FMINNUM, VT, Expand);
404     setOperationAction(ISD::FMAXNUM, VT, Expand);
405     setOperationAction(ISD::FADD, VT, Expand);
406     setOperationAction(ISD::FCEIL, VT, Expand);
407     setOperationAction(ISD::FCOS, VT, Expand);
408     setOperationAction(ISD::FDIV, VT, Expand);
409     setOperationAction(ISD::FEXP2, VT, Expand);
410     setOperationAction(ISD::FLOG2, VT, Expand);
411     setOperationAction(ISD::FREM, VT, Expand);
412     setOperationAction(ISD::FPOW, VT, Expand);
413     setOperationAction(ISD::FFLOOR, VT, Expand);
414     setOperationAction(ISD::FTRUNC, VT, Expand);
415     setOperationAction(ISD::FMUL, VT, Expand);
416     setOperationAction(ISD::FMA, VT, Expand);
417     setOperationAction(ISD::FRINT, VT, Expand);
418     setOperationAction(ISD::FNEARBYINT, VT, Expand);
419     setOperationAction(ISD::FSQRT, VT, Expand);
420     setOperationAction(ISD::FSIN, VT, Expand);
421     setOperationAction(ISD::FSUB, VT, Expand);
422     setOperationAction(ISD::FNEG, VT, Expand);
423     setOperationAction(ISD::VSELECT, VT, Expand);
424     setOperationAction(ISD::SELECT_CC, VT, Expand);
425     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
426     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
427   }
428 
429   // This causes using an unrolled select operation rather than expansion with
430   // bit operations. This is in general better, but the alternative using BFI
431   // instructions may be better if the select sources are SGPRs.
432   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
433   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
434 
435   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
436   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
437 
438   setBooleanContents(ZeroOrNegativeOneBooleanContent);
439   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
440 
441   setSchedulingPreference(Sched::RegPressure);
442   setJumpIsExpensive(true);
443   setHasMultipleConditionRegisters(true);
444 
445   // SI at least has hardware support for floating point exceptions, but no way
446   // of using or handling them is implemented. They are also optional in OpenCL
447   // (Section 7.3)
448   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
449 
450   PredictableSelectIsExpensive = false;
451 
452   // We want to find all load dependencies for long chains of stores to enable
453   // merging into very wide vectors. The problem is with vectors with > 4
454   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
455   // vectors are a legal type, even though we have to split the loads
456   // usually. When we can more precisely specify load legality per address
457   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
458   // smarter so that they can figure out what to do in 2 iterations without all
459   // N > 4 stores on the same chain.
460   GatherAllAliasesMaxDepth = 16;
461 
462   // FIXME: Need to really handle these.
463   MaxStoresPerMemcpy  = 4096;
464   MaxStoresPerMemmove = 4096;
465   MaxStoresPerMemset  = 4096;
466 
467   setTargetDAGCombine(ISD::BITCAST);
468   setTargetDAGCombine(ISD::SHL);
469   setTargetDAGCombine(ISD::SRA);
470   setTargetDAGCombine(ISD::SRL);
471   setTargetDAGCombine(ISD::MUL);
472   setTargetDAGCombine(ISD::MULHU);
473   setTargetDAGCombine(ISD::MULHS);
474   setTargetDAGCombine(ISD::SELECT);
475   setTargetDAGCombine(ISD::SELECT_CC);
476   setTargetDAGCombine(ISD::STORE);
477   setTargetDAGCombine(ISD::FADD);
478   setTargetDAGCombine(ISD::FSUB);
479 }
480 
481 //===----------------------------------------------------------------------===//
482 // Target Information
483 //===----------------------------------------------------------------------===//
484 
485 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
486   return MVT::i32;
487 }
488 
489 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
490   return true;
491 }
492 
493 // The backend supports 32 and 64 bit floating point immediates.
494 // FIXME: Why are we reporting vectors of FP immediates as legal?
495 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
496   EVT ScalarVT = VT.getScalarType();
497   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
498 }
499 
500 // We don't want to shrink f64 / f32 constants.
501 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
502   EVT ScalarVT = VT.getScalarType();
503   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
504 }
505 
506 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
507                                                  ISD::LoadExtType,
508                                                  EVT NewVT) const {
509 
510   unsigned NewSize = NewVT.getStoreSizeInBits();
511 
512   // If we are reducing to a 32-bit load, this is always better.
513   if (NewSize == 32)
514     return true;
515 
516   EVT OldVT = N->getValueType(0);
517   unsigned OldSize = OldVT.getStoreSizeInBits();
518 
519   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
520   // extloads, so doing one requires using a buffer_load. In cases where we
521   // still couldn't use a scalar load, using the wider load shouldn't really
522   // hurt anything.
523 
524   // If the old size already had to be an extload, there's no harm in continuing
525   // to reduce the width.
526   return (OldSize < 32);
527 }
528 
529 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
530                                                    EVT CastTy) const {
531 
532   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
533 
534   if (LoadTy.getScalarType() == MVT::i32)
535     return false;
536 
537   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
538   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
539 
540   return (LScalarSize < CastScalarSize) ||
541          (CastScalarSize >= 32);
542 }
543 
544 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
545 // profitable with the expansion for 64-bit since it's generally good to
546 // speculate things.
547 // FIXME: These should really have the size as a parameter.
548 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
549   return true;
550 }
551 
552 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
553   return true;
554 }
555 
556 //===---------------------------------------------------------------------===//
557 // Target Properties
558 //===---------------------------------------------------------------------===//
559 
560 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
561   assert(VT.isFloatingPoint());
562   return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() &&
563                                               VT == MVT::f16);
564 }
565 
566 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
567   return isFAbsFree(VT);
568 }
569 
570 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
571                                                          unsigned NumElem,
572                                                          unsigned AS) const {
573   return true;
574 }
575 
576 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
577   // There are few operations which truly have vector input operands. Any vector
578   // operation is going to involve operations on each component, and a
579   // build_vector will be a copy per element, so it always makes sense to use a
580   // build_vector input in place of the extracted element to avoid a copy into a
581   // super register.
582   //
583   // We should probably only do this if all users are extracts only, but this
584   // should be the common case.
585   return true;
586 }
587 
588 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
589   // Truncate is just accessing a subregister.
590 
591   unsigned SrcSize = Source.getSizeInBits();
592   unsigned DestSize = Dest.getSizeInBits();
593 
594   return DestSize < SrcSize && DestSize % 32 == 0 ;
595 }
596 
597 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
598   // Truncate is just accessing a subregister.
599 
600   unsigned SrcSize = Source->getScalarSizeInBits();
601   unsigned DestSize = Dest->getScalarSizeInBits();
602 
603   if (DestSize== 16 && Subtarget->has16BitInsts())
604     return SrcSize >= 32;
605 
606   return DestSize < SrcSize && DestSize % 32 == 0;
607 }
608 
609 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
610   unsigned SrcSize = Src->getScalarSizeInBits();
611   unsigned DestSize = Dest->getScalarSizeInBits();
612 
613   if (SrcSize == 16 && Subtarget->has16BitInsts())
614     return DestSize >= 32;
615 
616   return SrcSize == 32 && DestSize == 64;
617 }
618 
619 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
620   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
621   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
622   // this will enable reducing 64-bit operations the 32-bit, which is always
623   // good.
624 
625   if (Src == MVT::i16)
626     return Dest == MVT::i32 ||Dest == MVT::i64 ;
627 
628   return Src == MVT::i32 && Dest == MVT::i64;
629 }
630 
631 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
632   return isZExtFree(Val.getValueType(), VT2);
633 }
634 
635 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
636   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
637   // limited number of native 64-bit operations. Shrinking an operation to fit
638   // in a single 32-bit register should always be helpful. As currently used,
639   // this is much less general than the name suggests, and is only used in
640   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
641   // not profitable, and may actually be harmful.
642   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
643 }
644 
645 //===---------------------------------------------------------------------===//
646 // TargetLowering Callbacks
647 //===---------------------------------------------------------------------===//
648 
649 /// The SelectionDAGBuilder will automatically promote function arguments
650 /// with illegal types.  However, this does not work for the AMDGPU targets
651 /// since the function arguments are stored in memory as these illegal types.
652 /// In order to handle this properly we need to get the original types sizes
653 /// from the LLVM IR Function and fixup the ISD:InputArg values before
654 /// passing them to AnalyzeFormalArguments()
655 
656 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
657 /// input values across multiple registers.  Each item in the Ins array
658 /// represents a single value that will be stored in regsters.  Ins[x].VT is
659 /// the value type of the value that will be stored in the register, so
660 /// whatever SDNode we lower the argument to needs to be this type.
661 ///
662 /// In order to correctly lower the arguments we need to know the size of each
663 /// argument.  Since Ins[x].VT gives us the size of the register that will
664 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
665 /// for the orignal function argument so that we can deduce the correct memory
666 /// type to use for Ins[x].  In most cases the correct memory type will be
667 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
668 /// we have a kernel argument of type v8i8, this argument will be split into
669 /// 8 parts and each part will be represented by its own item in the Ins array.
670 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
671 /// the argument before it was split.  From this, we deduce that the memory type
672 /// for each individual part is i8.  We pass the memory type as LocVT to the
673 /// calling convention analysis function and the register type (Ins[x].VT) as
674 /// the ValVT.
675 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
676                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
677   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
678     const ISD::InputArg &In = Ins[i];
679     EVT MemVT;
680 
681     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
682 
683     if (!Subtarget->isAmdHsaOS() &&
684         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
685       // The ABI says the caller will extend these values to 32-bits.
686       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
687     } else if (NumRegs == 1) {
688       // This argument is not split, so the IR type is the memory type.
689       assert(!In.Flags.isSplit());
690       if (In.ArgVT.isExtended()) {
691         // We have an extended type, like i24, so we should just use the register type
692         MemVT = In.VT;
693       } else {
694         MemVT = In.ArgVT;
695       }
696     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
697                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
698       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
699       // We have a vector value which has been split into a vector with
700       // the same scalar type, but fewer elements.  This should handle
701       // all the floating-point vector types.
702       MemVT = In.VT;
703     } else if (In.ArgVT.isVector() &&
704                In.ArgVT.getVectorNumElements() == NumRegs) {
705       // This arg has been split so that each element is stored in a separate
706       // register.
707       MemVT = In.ArgVT.getScalarType();
708     } else if (In.ArgVT.isExtended()) {
709       // We have an extended type, like i65.
710       MemVT = In.VT;
711     } else {
712       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
713       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
714       if (In.VT.isInteger()) {
715         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
716       } else if (In.VT.isVector()) {
717         assert(!In.VT.getScalarType().isFloatingPoint());
718         unsigned NumElements = In.VT.getVectorNumElements();
719         assert(MemoryBits % NumElements == 0);
720         // This vector type has been split into another vector type with
721         // a different elements size.
722         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
723                                          MemoryBits / NumElements);
724         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
725       } else {
726         llvm_unreachable("cannot deduce memory type.");
727       }
728     }
729 
730     // Convert one element vectors to scalar.
731     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
732       MemVT = MemVT.getScalarType();
733 
734     if (MemVT.isExtended()) {
735       // This should really only happen if we have vec3 arguments
736       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
737       MemVT = MemVT.getPow2VectorType(State.getContext());
738     }
739 
740     assert(MemVT.isSimple());
741     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
742                     State);
743   }
744 }
745 
746 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
747                               const SmallVectorImpl<ISD::InputArg> &Ins) const {
748   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
749 }
750 
751 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
752                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
753 
754   State.AnalyzeReturn(Outs, RetCC_SI);
755 }
756 
757 SDValue
758 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
759                                   bool isVarArg,
760                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
761                                   const SmallVectorImpl<SDValue> &OutVals,
762                                   const SDLoc &DL, SelectionDAG &DAG) const {
763   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
764 }
765 
766 //===---------------------------------------------------------------------===//
767 // Target specific lowering
768 //===---------------------------------------------------------------------===//
769 
770 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
771                                         SmallVectorImpl<SDValue> &InVals) const {
772   SDValue Callee = CLI.Callee;
773   SelectionDAG &DAG = CLI.DAG;
774 
775   const Function &Fn = *DAG.getMachineFunction().getFunction();
776 
777   StringRef FuncName("<unknown>");
778 
779   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
780     FuncName = G->getSymbol();
781   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
782     FuncName = G->getGlobal()->getName();
783 
784   DiagnosticInfoUnsupported NoCalls(
785       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
786   DAG.getContext()->diagnose(NoCalls);
787 
788   for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
789     InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
790 
791   return DAG.getEntryNode();
792 }
793 
794 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
795                                                       SelectionDAG &DAG) const {
796   const Function &Fn = *DAG.getMachineFunction().getFunction();
797 
798   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
799                                             SDLoc(Op).getDebugLoc());
800   DAG.getContext()->diagnose(NoDynamicAlloca);
801   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
802   return DAG.getMergeValues(Ops, SDLoc());
803 }
804 
805 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
806                                              SelectionDAG &DAG) const {
807   switch (Op.getOpcode()) {
808   default:
809     Op->dump(&DAG);
810     llvm_unreachable("Custom lowering code for this"
811                      "instruction is not implemented yet!");
812     break;
813   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
814   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
815   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
816   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
817   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
818   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
819   case ISD::FREM: return LowerFREM(Op, DAG);
820   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
821   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
822   case ISD::FRINT: return LowerFRINT(Op, DAG);
823   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
824   case ISD::FROUND: return LowerFROUND(Op, DAG);
825   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
826   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
827   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
828   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
829   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
830   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
831   case ISD::CTLZ:
832   case ISD::CTLZ_ZERO_UNDEF:
833     return LowerCTLZ(Op, DAG);
834   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
835   }
836   return Op;
837 }
838 
839 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
840                                               SmallVectorImpl<SDValue> &Results,
841                                               SelectionDAG &DAG) const {
842   switch (N->getOpcode()) {
843   case ISD::SIGN_EXTEND_INREG:
844     // Different parts of legalization seem to interpret which type of
845     // sign_extend_inreg is the one to check for custom lowering. The extended
846     // from type is what really matters, but some places check for custom
847     // lowering of the result type. This results in trying to use
848     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
849     // nothing here and let the illegal result integer be handled normally.
850     return;
851   default:
852     return;
853   }
854 }
855 
856 static bool hasDefinedInitializer(const GlobalValue *GV) {
857   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
858   if (!GVar || !GVar->hasInitializer())
859     return false;
860 
861   return !isa<UndefValue>(GVar->getInitializer());
862 }
863 
864 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
865                                                  SDValue Op,
866                                                  SelectionDAG &DAG) const {
867 
868   const DataLayout &DL = DAG.getDataLayout();
869   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
870   const GlobalValue *GV = G->getGlobal();
871 
872   switch (G->getAddressSpace()) {
873   case AMDGPUAS::LOCAL_ADDRESS: {
874     // XXX: What does the value of G->getOffset() mean?
875     assert(G->getOffset() == 0 &&
876          "Do not know what to do with an non-zero offset");
877 
878     // TODO: We could emit code to handle the initialization somewhere.
879     if (hasDefinedInitializer(GV))
880       break;
881 
882     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
883     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
884   }
885   }
886 
887   const Function &Fn = *DAG.getMachineFunction().getFunction();
888   DiagnosticInfoUnsupported BadInit(
889       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
890   DAG.getContext()->diagnose(BadInit);
891   return SDValue();
892 }
893 
894 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
895                                                   SelectionDAG &DAG) const {
896   SmallVector<SDValue, 8> Args;
897 
898   for (const SDUse &U : Op->ops())
899     DAG.ExtractVectorElements(U.get(), Args);
900 
901   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
902 }
903 
904 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
905                                                      SelectionDAG &DAG) const {
906 
907   SmallVector<SDValue, 8> Args;
908   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
909   EVT VT = Op.getValueType();
910   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
911                             VT.getVectorNumElements());
912 
913   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
914 }
915 
916 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
917     SelectionDAG &DAG) const {
918   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
919   SDLoc DL(Op);
920   EVT VT = Op.getValueType();
921 
922   switch (IntrinsicID) {
923     default: return Op;
924     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
925       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
926                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
927 
928     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
929       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
930                          Op.getOperand(1),
931                          Op.getOperand(2),
932                          Op.getOperand(3));
933 
934     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
935       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
936                          Op.getOperand(1),
937                          Op.getOperand(2),
938                          Op.getOperand(3));
939   }
940 }
941 
942 /// \brief Generate Min/Max node
943 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
944                                                    SDValue LHS, SDValue RHS,
945                                                    SDValue True, SDValue False,
946                                                    SDValue CC,
947                                                    DAGCombinerInfo &DCI) const {
948   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
949     return SDValue();
950 
951   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
952     return SDValue();
953 
954   SelectionDAG &DAG = DCI.DAG;
955   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
956   switch (CCOpcode) {
957   case ISD::SETOEQ:
958   case ISD::SETONE:
959   case ISD::SETUNE:
960   case ISD::SETNE:
961   case ISD::SETUEQ:
962   case ISD::SETEQ:
963   case ISD::SETFALSE:
964   case ISD::SETFALSE2:
965   case ISD::SETTRUE:
966   case ISD::SETTRUE2:
967   case ISD::SETUO:
968   case ISD::SETO:
969     break;
970   case ISD::SETULE:
971   case ISD::SETULT: {
972     if (LHS == True)
973       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
974     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
975   }
976   case ISD::SETOLE:
977   case ISD::SETOLT:
978   case ISD::SETLE:
979   case ISD::SETLT: {
980     // Ordered. Assume ordered for undefined.
981 
982     // Only do this after legalization to avoid interfering with other combines
983     // which might occur.
984     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
985         !DCI.isCalledByLegalizer())
986       return SDValue();
987 
988     // We need to permute the operands to get the correct NaN behavior. The
989     // selected operand is the second one based on the failing compare with NaN,
990     // so permute it based on the compare type the hardware uses.
991     if (LHS == True)
992       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
993     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
994   }
995   case ISD::SETUGE:
996   case ISD::SETUGT: {
997     if (LHS == True)
998       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
999     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1000   }
1001   case ISD::SETGT:
1002   case ISD::SETGE:
1003   case ISD::SETOGE:
1004   case ISD::SETOGT: {
1005     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1006         !DCI.isCalledByLegalizer())
1007       return SDValue();
1008 
1009     if (LHS == True)
1010       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1011     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1012   }
1013   case ISD::SETCC_INVALID:
1014     llvm_unreachable("Invalid setcc condcode!");
1015   }
1016   return SDValue();
1017 }
1018 
1019 std::pair<SDValue, SDValue>
1020 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1021   SDLoc SL(Op);
1022 
1023   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1024 
1025   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1026   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1027 
1028   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1029   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1030 
1031   return std::make_pair(Lo, Hi);
1032 }
1033 
1034 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1035   SDLoc SL(Op);
1036 
1037   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1038   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1039   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1040 }
1041 
1042 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1043   SDLoc SL(Op);
1044 
1045   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1046   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1047   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1048 }
1049 
1050 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1051                                               SelectionDAG &DAG) const {
1052   LoadSDNode *Load = cast<LoadSDNode>(Op);
1053   EVT VT = Op.getValueType();
1054 
1055 
1056   // If this is a 2 element vector, we really want to scalarize and not create
1057   // weird 1 element vectors.
1058   if (VT.getVectorNumElements() == 2)
1059     return scalarizeVectorLoad(Load, DAG);
1060 
1061   SDValue BasePtr = Load->getBasePtr();
1062   EVT PtrVT = BasePtr.getValueType();
1063   EVT MemVT = Load->getMemoryVT();
1064   SDLoc SL(Op);
1065 
1066   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1067 
1068   EVT LoVT, HiVT;
1069   EVT LoMemVT, HiMemVT;
1070   SDValue Lo, Hi;
1071 
1072   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1073   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1074   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1075 
1076   unsigned Size = LoMemVT.getStoreSize();
1077   unsigned BaseAlign = Load->getAlignment();
1078   unsigned HiAlign = MinAlign(BaseAlign, Size);
1079 
1080   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1081                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1082                                   BaseAlign, Load->getMemOperand()->getFlags());
1083   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1084                               DAG.getConstant(Size, SL, PtrVT));
1085   SDValue HiLoad =
1086       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1087                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1088                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1089 
1090   SDValue Ops[] = {
1091     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1092     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1093                 LoLoad.getValue(1), HiLoad.getValue(1))
1094   };
1095 
1096   return DAG.getMergeValues(Ops, SL);
1097 }
1098 
1099 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1100                                                SelectionDAG &DAG) const {
1101   StoreSDNode *Store = cast<StoreSDNode>(Op);
1102   SDValue Val = Store->getValue();
1103   EVT VT = Val.getValueType();
1104 
1105   // If this is a 2 element vector, we really want to scalarize and not create
1106   // weird 1 element vectors.
1107   if (VT.getVectorNumElements() == 2)
1108     return scalarizeVectorStore(Store, DAG);
1109 
1110   EVT MemVT = Store->getMemoryVT();
1111   SDValue Chain = Store->getChain();
1112   SDValue BasePtr = Store->getBasePtr();
1113   SDLoc SL(Op);
1114 
1115   EVT LoVT, HiVT;
1116   EVT LoMemVT, HiMemVT;
1117   SDValue Lo, Hi;
1118 
1119   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1120   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1121   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1122 
1123   EVT PtrVT = BasePtr.getValueType();
1124   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1125                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1126                                               PtrVT));
1127 
1128   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1129   unsigned BaseAlign = Store->getAlignment();
1130   unsigned Size = LoMemVT.getStoreSize();
1131   unsigned HiAlign = MinAlign(BaseAlign, Size);
1132 
1133   SDValue LoStore =
1134       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1135                         Store->getMemOperand()->getFlags());
1136   SDValue HiStore =
1137       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1138                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1139 
1140   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1141 }
1142 
1143 // This is a shortcut for integer division because we have fast i32<->f32
1144 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1145 // float is enough to accurately represent up to a 24-bit signed integer.
1146 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1147                                             bool Sign) const {
1148   SDLoc DL(Op);
1149   EVT VT = Op.getValueType();
1150   SDValue LHS = Op.getOperand(0);
1151   SDValue RHS = Op.getOperand(1);
1152   MVT IntVT = MVT::i32;
1153   MVT FltVT = MVT::f32;
1154 
1155   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1156   if (LHSSignBits < 9)
1157     return SDValue();
1158 
1159   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1160   if (RHSSignBits < 9)
1161     return SDValue();
1162 
1163   unsigned BitSize = VT.getSizeInBits();
1164   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1165   unsigned DivBits = BitSize - SignBits;
1166   if (Sign)
1167     ++DivBits;
1168 
1169   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1170   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1171 
1172   SDValue jq = DAG.getConstant(1, DL, IntVT);
1173 
1174   if (Sign) {
1175     // char|short jq = ia ^ ib;
1176     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1177 
1178     // jq = jq >> (bitsize - 2)
1179     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1180                      DAG.getConstant(BitSize - 2, DL, VT));
1181 
1182     // jq = jq | 0x1
1183     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1184   }
1185 
1186   // int ia = (int)LHS;
1187   SDValue ia = LHS;
1188 
1189   // int ib, (int)RHS;
1190   SDValue ib = RHS;
1191 
1192   // float fa = (float)ia;
1193   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1194 
1195   // float fb = (float)ib;
1196   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1197 
1198   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1199                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1200 
1201   // fq = trunc(fq);
1202   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1203 
1204   // float fqneg = -fq;
1205   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1206 
1207   // float fr = mad(fqneg, fb, fa);
1208   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1209 
1210   // int iq = (int)fq;
1211   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1212 
1213   // fr = fabs(fr);
1214   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1215 
1216   // fb = fabs(fb);
1217   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1218 
1219   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1220 
1221   // int cv = fr >= fb;
1222   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1223 
1224   // jq = (cv ? jq : 0);
1225   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1226 
1227   // dst = iq + jq;
1228   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1229 
1230   // Rem needs compensation, it's easier to recompute it
1231   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1232   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1233 
1234   // Truncate to number of bits this divide really is.
1235   if (Sign) {
1236     SDValue InRegSize
1237       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1238     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1239     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1240   } else {
1241     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1242     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1243     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1244   }
1245 
1246   return DAG.getMergeValues({ Div, Rem }, DL);
1247 }
1248 
1249 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1250                                       SelectionDAG &DAG,
1251                                       SmallVectorImpl<SDValue> &Results) const {
1252   assert(Op.getValueType() == MVT::i64);
1253 
1254   SDLoc DL(Op);
1255   EVT VT = Op.getValueType();
1256   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1257 
1258   SDValue one = DAG.getConstant(1, DL, HalfVT);
1259   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1260 
1261   //HiLo split
1262   SDValue LHS = Op.getOperand(0);
1263   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1264   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1265 
1266   SDValue RHS = Op.getOperand(1);
1267   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1268   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1269 
1270   if (VT == MVT::i64 &&
1271     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1272     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1273 
1274     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1275                               LHS_Lo, RHS_Lo);
1276 
1277     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1278     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1279 
1280     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1281     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1282     return;
1283   }
1284 
1285   // Get Speculative values
1286   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1287   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1288 
1289   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1290   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1291   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1292 
1293   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1294   SDValue DIV_Lo = zero;
1295 
1296   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1297 
1298   for (unsigned i = 0; i < halfBitWidth; ++i) {
1299     const unsigned bitPos = halfBitWidth - i - 1;
1300     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1301     // Get value of high bit
1302     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1303     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1304     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1305 
1306     // Shift
1307     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1308     // Add LHS high bit
1309     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1310 
1311     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1312     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1313 
1314     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1315 
1316     // Update REM
1317     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1318     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1319   }
1320 
1321   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1322   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1323   Results.push_back(DIV);
1324   Results.push_back(REM);
1325 }
1326 
1327 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1328                                            SelectionDAG &DAG) const {
1329   SDLoc DL(Op);
1330   EVT VT = Op.getValueType();
1331 
1332   if (VT == MVT::i64) {
1333     SmallVector<SDValue, 2> Results;
1334     LowerUDIVREM64(Op, DAG, Results);
1335     return DAG.getMergeValues(Results, DL);
1336   }
1337 
1338   if (VT == MVT::i32) {
1339     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1340       return Res;
1341   }
1342 
1343   SDValue Num = Op.getOperand(0);
1344   SDValue Den = Op.getOperand(1);
1345 
1346   // RCP =  URECIP(Den) = 2^32 / Den + e
1347   // e is rounding error.
1348   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1349 
1350   // RCP_LO = mul(RCP, Den) */
1351   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1352 
1353   // RCP_HI = mulhu (RCP, Den) */
1354   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1355 
1356   // NEG_RCP_LO = -RCP_LO
1357   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1358                                                      RCP_LO);
1359 
1360   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1361   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1362                                            NEG_RCP_LO, RCP_LO,
1363                                            ISD::SETEQ);
1364   // Calculate the rounding error from the URECIP instruction
1365   // E = mulhu(ABS_RCP_LO, RCP)
1366   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1367 
1368   // RCP_A_E = RCP + E
1369   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1370 
1371   // RCP_S_E = RCP - E
1372   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1373 
1374   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1375   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1376                                      RCP_A_E, RCP_S_E,
1377                                      ISD::SETEQ);
1378   // Quotient = mulhu(Tmp0, Num)
1379   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1380 
1381   // Num_S_Remainder = Quotient * Den
1382   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1383 
1384   // Remainder = Num - Num_S_Remainder
1385   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1386 
1387   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1388   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1389                                                  DAG.getConstant(-1, DL, VT),
1390                                                  DAG.getConstant(0, DL, VT),
1391                                                  ISD::SETUGE);
1392   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1393   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1394                                                   Num_S_Remainder,
1395                                                   DAG.getConstant(-1, DL, VT),
1396                                                   DAG.getConstant(0, DL, VT),
1397                                                   ISD::SETUGE);
1398   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1399   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1400                                                Remainder_GE_Zero);
1401 
1402   // Calculate Division result:
1403 
1404   // Quotient_A_One = Quotient + 1
1405   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1406                                        DAG.getConstant(1, DL, VT));
1407 
1408   // Quotient_S_One = Quotient - 1
1409   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1410                                        DAG.getConstant(1, DL, VT));
1411 
1412   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1413   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1414                                      Quotient, Quotient_A_One, ISD::SETEQ);
1415 
1416   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1417   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1418                             Quotient_S_One, Div, ISD::SETEQ);
1419 
1420   // Calculate Rem result:
1421 
1422   // Remainder_S_Den = Remainder - Den
1423   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1424 
1425   // Remainder_A_Den = Remainder + Den
1426   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1427 
1428   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1429   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1430                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1431 
1432   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1433   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1434                             Remainder_A_Den, Rem, ISD::SETEQ);
1435   SDValue Ops[2] = {
1436     Div,
1437     Rem
1438   };
1439   return DAG.getMergeValues(Ops, DL);
1440 }
1441 
1442 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1443                                            SelectionDAG &DAG) const {
1444   SDLoc DL(Op);
1445   EVT VT = Op.getValueType();
1446 
1447   SDValue LHS = Op.getOperand(0);
1448   SDValue RHS = Op.getOperand(1);
1449 
1450   SDValue Zero = DAG.getConstant(0, DL, VT);
1451   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1452 
1453   if (VT == MVT::i32) {
1454     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1455       return Res;
1456   }
1457 
1458   if (VT == MVT::i64 &&
1459       DAG.ComputeNumSignBits(LHS) > 32 &&
1460       DAG.ComputeNumSignBits(RHS) > 32) {
1461     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1462 
1463     //HiLo split
1464     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1465     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1466     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1467                                  LHS_Lo, RHS_Lo);
1468     SDValue Res[2] = {
1469       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1470       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1471     };
1472     return DAG.getMergeValues(Res, DL);
1473   }
1474 
1475   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1476   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1477   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1478   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1479 
1480   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1481   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1482 
1483   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1484   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1485 
1486   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1487   SDValue Rem = Div.getValue(1);
1488 
1489   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1490   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1491 
1492   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1493   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1494 
1495   SDValue Res[2] = {
1496     Div,
1497     Rem
1498   };
1499   return DAG.getMergeValues(Res, DL);
1500 }
1501 
1502 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1503 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1504   SDLoc SL(Op);
1505   EVT VT = Op.getValueType();
1506   SDValue X = Op.getOperand(0);
1507   SDValue Y = Op.getOperand(1);
1508 
1509   // TODO: Should this propagate fast-math-flags?
1510 
1511   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1512   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1513   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1514 
1515   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1516 }
1517 
1518 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1519   SDLoc SL(Op);
1520   SDValue Src = Op.getOperand(0);
1521 
1522   // result = trunc(src)
1523   // if (src > 0.0 && src != result)
1524   //   result += 1.0
1525 
1526   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1527 
1528   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1529   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1530 
1531   EVT SetCCVT =
1532       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1533 
1534   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1535   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1536   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1537 
1538   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1539   // TODO: Should this propagate fast-math-flags?
1540   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1541 }
1542 
1543 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1544                                   SelectionDAG &DAG) {
1545   const unsigned FractBits = 52;
1546   const unsigned ExpBits = 11;
1547 
1548   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1549                                 Hi,
1550                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1551                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1552   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1553                             DAG.getConstant(1023, SL, MVT::i32));
1554 
1555   return Exp;
1556 }
1557 
1558 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1559   SDLoc SL(Op);
1560   SDValue Src = Op.getOperand(0);
1561 
1562   assert(Op.getValueType() == MVT::f64);
1563 
1564   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1565   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1566 
1567   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1568 
1569   // Extract the upper half, since this is where we will find the sign and
1570   // exponent.
1571   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1572 
1573   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1574 
1575   const unsigned FractBits = 52;
1576 
1577   // Extract the sign bit.
1578   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1579   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1580 
1581   // Extend back to to 64-bits.
1582   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1583   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1584 
1585   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1586   const SDValue FractMask
1587     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1588 
1589   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1590   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1591   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1592 
1593   EVT SetCCVT =
1594       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1595 
1596   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1597 
1598   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1599   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1600 
1601   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1602   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1603 
1604   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1605 }
1606 
1607 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1608   SDLoc SL(Op);
1609   SDValue Src = Op.getOperand(0);
1610 
1611   assert(Op.getValueType() == MVT::f64);
1612 
1613   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1614   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1615   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1616 
1617   // TODO: Should this propagate fast-math-flags?
1618 
1619   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1620   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1621 
1622   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1623 
1624   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1625   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1626 
1627   EVT SetCCVT =
1628       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1629   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1630 
1631   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1632 }
1633 
1634 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1635   // FNEARBYINT and FRINT are the same, except in their handling of FP
1636   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1637   // rint, so just treat them as equivalent.
1638   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1639 }
1640 
1641 // XXX - May require not supporting f32 denormals?
1642 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1643   SDLoc SL(Op);
1644   SDValue X = Op.getOperand(0);
1645 
1646   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1647 
1648   // TODO: Should this propagate fast-math-flags?
1649 
1650   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1651 
1652   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1653 
1654   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1655   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1656   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1657 
1658   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1659 
1660   EVT SetCCVT =
1661       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1662 
1663   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1664 
1665   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1666 
1667   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1668 }
1669 
1670 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1671   SDLoc SL(Op);
1672   SDValue X = Op.getOperand(0);
1673 
1674   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1675 
1676   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1677   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1678   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1679   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1680   EVT SetCCVT =
1681       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1682 
1683   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1684 
1685   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1686 
1687   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1688 
1689   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1690                                        MVT::i64);
1691 
1692   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1693   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1694                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1695                                           MVT::i64),
1696                           Exp);
1697 
1698   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1699   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1700                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1701                               ISD::SETNE);
1702 
1703   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1704                              D, DAG.getConstant(0, SL, MVT::i64));
1705   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1706 
1707   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1708   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1709 
1710   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1711   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1712   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1713 
1714   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1715                             ExpEqNegOne,
1716                             DAG.getConstantFP(1.0, SL, MVT::f64),
1717                             DAG.getConstantFP(0.0, SL, MVT::f64));
1718 
1719   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1720 
1721   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1722   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1723 
1724   return K;
1725 }
1726 
1727 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1728   EVT VT = Op.getValueType();
1729 
1730   if (VT == MVT::f32)
1731     return LowerFROUND32(Op, DAG);
1732 
1733   if (VT == MVT::f64)
1734     return LowerFROUND64(Op, DAG);
1735 
1736   llvm_unreachable("unhandled type");
1737 }
1738 
1739 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1740   SDLoc SL(Op);
1741   SDValue Src = Op.getOperand(0);
1742 
1743   // result = trunc(src);
1744   // if (src < 0.0 && src != result)
1745   //   result += -1.0.
1746 
1747   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1748 
1749   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1750   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1751 
1752   EVT SetCCVT =
1753       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1754 
1755   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1756   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1757   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1758 
1759   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1760   // TODO: Should this propagate fast-math-flags?
1761   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1762 }
1763 
1764 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1765   SDLoc SL(Op);
1766   SDValue Src = Op.getOperand(0);
1767   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1768 
1769   if (ZeroUndef && Src.getValueType() == MVT::i32)
1770     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1771 
1772   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1773 
1774   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1775   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1776 
1777   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1778   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1779 
1780   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1781                                    *DAG.getContext(), MVT::i32);
1782 
1783   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1784 
1785   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1786   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1787 
1788   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1789   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1790 
1791   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1792   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1793 
1794   if (!ZeroUndef) {
1795     // Test if the full 64-bit input is zero.
1796 
1797     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1798     // which we probably don't want.
1799     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1800     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1801 
1802     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1803     // with the same cycles, otherwise it is slower.
1804     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1805     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1806 
1807     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1808 
1809     // The instruction returns -1 for 0 input, but the defined intrinsic
1810     // behavior is to return the number of bits.
1811     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1812                           SrcIsZero, Bits32, NewCtlz);
1813   }
1814 
1815   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1816 }
1817 
1818 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1819                                                bool Signed) const {
1820   // Unsigned
1821   // cul2f(ulong u)
1822   //{
1823   //  uint lz = clz(u);
1824   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1825   //  u = (u << lz) & 0x7fffffffffffffffUL;
1826   //  ulong t = u & 0xffffffffffUL;
1827   //  uint v = (e << 23) | (uint)(u >> 40);
1828   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1829   //  return as_float(v + r);
1830   //}
1831   // Signed
1832   // cl2f(long l)
1833   //{
1834   //  long s = l >> 63;
1835   //  float r = cul2f((l + s) ^ s);
1836   //  return s ? -r : r;
1837   //}
1838 
1839   SDLoc SL(Op);
1840   SDValue Src = Op.getOperand(0);
1841   SDValue L = Src;
1842 
1843   SDValue S;
1844   if (Signed) {
1845     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1846     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1847 
1848     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1849     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1850   }
1851 
1852   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1853                                    *DAG.getContext(), MVT::f32);
1854 
1855 
1856   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1857   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1858   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1859   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1860 
1861   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1862   SDValue E = DAG.getSelect(SL, MVT::i32,
1863     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1864     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1865     ZeroI32);
1866 
1867   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1868     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1869     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1870 
1871   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1872                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1873 
1874   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1875                              U, DAG.getConstant(40, SL, MVT::i64));
1876 
1877   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1878     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1879     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1880 
1881   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1882   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1883   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1884 
1885   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1886 
1887   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1888 
1889   SDValue R = DAG.getSelect(SL, MVT::i32,
1890     RCmp,
1891     One,
1892     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1893   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1894   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1895 
1896   if (!Signed)
1897     return R;
1898 
1899   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1900   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1901 }
1902 
1903 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1904                                                bool Signed) const {
1905   SDLoc SL(Op);
1906   SDValue Src = Op.getOperand(0);
1907 
1908   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1909 
1910   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1911                            DAG.getConstant(0, SL, MVT::i32));
1912   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1913                            DAG.getConstant(1, SL, MVT::i32));
1914 
1915   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
1916                               SL, MVT::f64, Hi);
1917 
1918   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
1919 
1920   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
1921                               DAG.getConstant(32, SL, MVT::i32));
1922   // TODO: Should this propagate fast-math-flags?
1923   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
1924 }
1925 
1926 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1927                                                SelectionDAG &DAG) const {
1928   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1929          "operation should be legal");
1930 
1931   // TODO: Factor out code common with LowerSINT_TO_FP.
1932 
1933   EVT DestVT = Op.getValueType();
1934   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
1935     SDLoc DL(Op);
1936     SDValue Src = Op.getOperand(0);
1937 
1938     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
1939     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
1940     SDValue FPRound =
1941         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
1942 
1943     return FPRound;
1944   }
1945 
1946   if (DestVT == MVT::f32)
1947     return LowerINT_TO_FP32(Op, DAG, false);
1948 
1949   assert(DestVT == MVT::f64);
1950   return LowerINT_TO_FP64(Op, DAG, false);
1951 }
1952 
1953 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
1954                                               SelectionDAG &DAG) const {
1955   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1956          "operation should be legal");
1957 
1958   // TODO: Factor out code common with LowerUINT_TO_FP.
1959 
1960   EVT DestVT = Op.getValueType();
1961   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
1962     SDLoc DL(Op);
1963     SDValue Src = Op.getOperand(0);
1964 
1965     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
1966     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
1967     SDValue FPRound =
1968         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
1969 
1970     return FPRound;
1971   }
1972 
1973   if (DestVT == MVT::f32)
1974     return LowerINT_TO_FP32(Op, DAG, true);
1975 
1976   assert(DestVT == MVT::f64);
1977   return LowerINT_TO_FP64(Op, DAG, true);
1978 }
1979 
1980 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
1981                                                bool Signed) const {
1982   SDLoc SL(Op);
1983 
1984   SDValue Src = Op.getOperand(0);
1985 
1986   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1987 
1988   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
1989                                  MVT::f64);
1990   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
1991                                  MVT::f64);
1992   // TODO: Should this propagate fast-math-flags?
1993   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
1994 
1995   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
1996 
1997 
1998   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
1999 
2000   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2001                            MVT::i32, FloorMul);
2002   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2003 
2004   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2005 
2006   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2007 }
2008 
2009 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2010 
2011   if (getTargetMachine().Options.UnsafeFPMath) {
2012     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2013     return SDValue();
2014   }
2015 
2016   SDLoc DL(Op);
2017   SDValue N0 = Op.getOperand(0);
2018   assert (N0.getSimpleValueType() == MVT::f64);
2019 
2020   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2021   const unsigned ExpMask = 0x7ff;
2022   const unsigned ExpBiasf64 = 1023;
2023   const unsigned ExpBiasf16 = 15;
2024   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2025   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2026   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2027   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2028                            DAG.getConstant(32, DL, MVT::i64));
2029   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2030   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2031   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2032                           DAG.getConstant(20, DL, MVT::i64));
2033   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2034                   DAG.getConstant(ExpMask, DL, MVT::i32));
2035   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2036   // add the f16 bias (15) to get the biased exponent for the f16 format.
2037   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2038                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2039 
2040   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2041                           DAG.getConstant(8, DL, MVT::i32));
2042   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2043                   DAG.getConstant(0xffe, DL, MVT::i32));
2044 
2045   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2046                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2047   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2048 
2049   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2050   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2051 
2052   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2053   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2054       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2055                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2056 
2057   // N = M | (E << 12);
2058   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2059       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2060                   DAG.getConstant(12, DL, MVT::i32)));
2061 
2062   // B = clamp(1-E, 0, 13);
2063   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2064                                   One, E);
2065   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2066   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2067                   DAG.getConstant(13, DL, MVT::i32));
2068 
2069   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2070                                    DAG.getConstant(0x1000, DL, MVT::i32));
2071 
2072   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2073   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2074   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2075   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2076 
2077   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2078   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2079                               DAG.getConstant(0x7, DL, MVT::i32));
2080   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2081                   DAG.getConstant(2, DL, MVT::i32));
2082   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2083                                One, Zero, ISD::SETEQ);
2084   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2085                                One, Zero, ISD::SETGT);
2086   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2087   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2088 
2089   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2090                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2091   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2092                       I, V, ISD::SETEQ);
2093 
2094   // Extract the sign bit.
2095   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2096                             DAG.getConstant(16, DL, MVT::i32));
2097   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2098                      DAG.getConstant(0x8000, DL, MVT::i32));
2099 
2100   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2101   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2102 }
2103 
2104 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2105                                               SelectionDAG &DAG) const {
2106   SDValue Src = Op.getOperand(0);
2107 
2108   // TODO: Factor out code common with LowerFP_TO_UINT.
2109 
2110   EVT SrcVT = Src.getValueType();
2111   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2112     SDLoc DL(Op);
2113 
2114     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2115     SDValue FpToInt32 =
2116         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2117 
2118     return FpToInt32;
2119   }
2120 
2121   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2122     return LowerFP64_TO_INT(Op, DAG, true);
2123 
2124   return SDValue();
2125 }
2126 
2127 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2128                                               SelectionDAG &DAG) const {
2129   SDValue Src = Op.getOperand(0);
2130 
2131   // TODO: Factor out code common with LowerFP_TO_SINT.
2132 
2133   EVT SrcVT = Src.getValueType();
2134   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2135     SDLoc DL(Op);
2136 
2137     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2138     SDValue FpToInt32 =
2139         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2140 
2141     return FpToInt32;
2142   }
2143 
2144   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2145     return LowerFP64_TO_INT(Op, DAG, false);
2146 
2147   return SDValue();
2148 }
2149 
2150 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2151                                                      SelectionDAG &DAG) const {
2152   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2153   MVT VT = Op.getSimpleValueType();
2154   MVT ScalarVT = VT.getScalarType();
2155 
2156   assert(VT.isVector());
2157 
2158   SDValue Src = Op.getOperand(0);
2159   SDLoc DL(Op);
2160 
2161   // TODO: Don't scalarize on Evergreen?
2162   unsigned NElts = VT.getVectorNumElements();
2163   SmallVector<SDValue, 8> Args;
2164   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2165 
2166   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2167   for (unsigned I = 0; I < NElts; ++I)
2168     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2169 
2170   return DAG.getBuildVector(VT, DL, Args);
2171 }
2172 
2173 //===----------------------------------------------------------------------===//
2174 // Custom DAG optimizations
2175 //===----------------------------------------------------------------------===//
2176 
2177 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2178   APInt KnownZero, KnownOne;
2179   EVT VT = Op.getValueType();
2180   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2181 
2182   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2183 }
2184 
2185 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2186   EVT VT = Op.getValueType();
2187 
2188   // In order for this to be a signed 24-bit value, bit 23, must
2189   // be a sign bit.
2190   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2191                                      // as unsigned 24-bit values.
2192          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2193 }
2194 
2195 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2196                         TargetLowering::DAGCombinerInfo &DCI) {
2197 
2198   SelectionDAG &DAG = DCI.DAG;
2199   SDValue Op = Node24->getOperand(OpIdx);
2200   EVT VT = Op.getValueType();
2201 
2202   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2203   APInt KnownZero, KnownOne;
2204   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2205   if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI))
2206     return true;
2207 
2208   return false;
2209 }
2210 
2211 template <typename IntTy>
2212 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2213                                uint32_t Width, const SDLoc &DL) {
2214   if (Width + Offset < 32) {
2215     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2216     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2217     return DAG.getConstant(Result, DL, MVT::i32);
2218   }
2219 
2220   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2221 }
2222 
2223 static bool hasVolatileUser(SDNode *Val) {
2224   for (SDNode *U : Val->uses()) {
2225     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2226       if (M->isVolatile())
2227         return true;
2228     }
2229   }
2230 
2231   return false;
2232 }
2233 
2234 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2235   // i32 vectors are the canonical memory type.
2236   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2237     return false;
2238 
2239   if (!VT.isByteSized())
2240     return false;
2241 
2242   unsigned Size = VT.getStoreSize();
2243 
2244   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2245     return false;
2246 
2247   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2248     return false;
2249 
2250   return true;
2251 }
2252 
2253 // Replace load of an illegal type with a store of a bitcast to a friendlier
2254 // type.
2255 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2256                                                  DAGCombinerInfo &DCI) const {
2257   if (!DCI.isBeforeLegalize())
2258     return SDValue();
2259 
2260   LoadSDNode *LN = cast<LoadSDNode>(N);
2261   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2262     return SDValue();
2263 
2264   SDLoc SL(N);
2265   SelectionDAG &DAG = DCI.DAG;
2266   EVT VT = LN->getMemoryVT();
2267 
2268   unsigned Size = VT.getStoreSize();
2269   unsigned Align = LN->getAlignment();
2270   if (Align < Size && isTypeLegal(VT)) {
2271     bool IsFast;
2272     unsigned AS = LN->getAddressSpace();
2273 
2274     // Expand unaligned loads earlier than legalization. Due to visitation order
2275     // problems during legalization, the emitted instructions to pack and unpack
2276     // the bytes again are not eliminated in the case of an unaligned copy.
2277     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2278       if (VT.isVector())
2279         return scalarizeVectorLoad(LN, DAG);
2280 
2281       SDValue Ops[2];
2282       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2283       return DAG.getMergeValues(Ops, SDLoc(N));
2284     }
2285 
2286     if (!IsFast)
2287       return SDValue();
2288   }
2289 
2290   if (!shouldCombineMemoryType(VT))
2291     return SDValue();
2292 
2293   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2294 
2295   SDValue NewLoad
2296     = DAG.getLoad(NewVT, SL, LN->getChain(),
2297                   LN->getBasePtr(), LN->getMemOperand());
2298 
2299   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2300   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2301   return SDValue(N, 0);
2302 }
2303 
2304 // Replace store of an illegal type with a store of a bitcast to a friendlier
2305 // type.
2306 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2307                                                   DAGCombinerInfo &DCI) const {
2308   if (!DCI.isBeforeLegalize())
2309     return SDValue();
2310 
2311   StoreSDNode *SN = cast<StoreSDNode>(N);
2312   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2313     return SDValue();
2314 
2315   EVT VT = SN->getMemoryVT();
2316   unsigned Size = VT.getStoreSize();
2317 
2318   SDLoc SL(N);
2319   SelectionDAG &DAG = DCI.DAG;
2320   unsigned Align = SN->getAlignment();
2321   if (Align < Size && isTypeLegal(VT)) {
2322     bool IsFast;
2323     unsigned AS = SN->getAddressSpace();
2324 
2325     // Expand unaligned stores earlier than legalization. Due to visitation
2326     // order problems during legalization, the emitted instructions to pack and
2327     // unpack the bytes again are not eliminated in the case of an unaligned
2328     // copy.
2329     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2330       if (VT.isVector())
2331         return scalarizeVectorStore(SN, DAG);
2332 
2333       return expandUnalignedStore(SN, DAG);
2334     }
2335 
2336     if (!IsFast)
2337       return SDValue();
2338   }
2339 
2340   if (!shouldCombineMemoryType(VT))
2341     return SDValue();
2342 
2343   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2344   SDValue Val = SN->getValue();
2345 
2346   //DCI.AddToWorklist(Val.getNode());
2347 
2348   bool OtherUses = !Val.hasOneUse();
2349   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2350   if (OtherUses) {
2351     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2352     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2353   }
2354 
2355   return DAG.getStore(SN->getChain(), SL, CastVal,
2356                       SN->getBasePtr(), SN->getMemOperand());
2357 }
2358 
2359 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2360 /// binary operation \p Opc to it with the corresponding constant operands.
2361 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2362   DAGCombinerInfo &DCI, const SDLoc &SL,
2363   unsigned Opc, SDValue LHS,
2364   uint32_t ValLo, uint32_t ValHi) const {
2365   SelectionDAG &DAG = DCI.DAG;
2366   SDValue Lo, Hi;
2367   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2368 
2369   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2370   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2371 
2372   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2373   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2374 
2375   // Re-visit the ands. It's possible we eliminated one of them and it could
2376   // simplify the vector.
2377   DCI.AddToWorklist(Lo.getNode());
2378   DCI.AddToWorklist(Hi.getNode());
2379 
2380   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2381   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2382 }
2383 
2384 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2385                                                 DAGCombinerInfo &DCI) const {
2386   if (N->getValueType(0) != MVT::i64)
2387     return SDValue();
2388 
2389   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2390 
2391   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2392   // common case, splitting this into a move and a 32-bit shift is faster and
2393   // the same code size.
2394   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2395   if (!RHS)
2396     return SDValue();
2397 
2398   unsigned RHSVal = RHS->getZExtValue();
2399   if (RHSVal < 32)
2400     return SDValue();
2401 
2402   SDValue LHS = N->getOperand(0);
2403 
2404   SDLoc SL(N);
2405   SelectionDAG &DAG = DCI.DAG;
2406 
2407   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2408 
2409   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2410   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2411 
2412   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2413 
2414   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2415   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2416 }
2417 
2418 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2419                                                 DAGCombinerInfo &DCI) const {
2420   if (N->getValueType(0) != MVT::i64)
2421     return SDValue();
2422 
2423   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2424   if (!RHS)
2425     return SDValue();
2426 
2427   SelectionDAG &DAG = DCI.DAG;
2428   SDLoc SL(N);
2429   unsigned RHSVal = RHS->getZExtValue();
2430 
2431   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2432   if (RHSVal == 32) {
2433     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2434     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2435                                    DAG.getConstant(31, SL, MVT::i32));
2436 
2437     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2438     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2439   }
2440 
2441   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2442   if (RHSVal == 63) {
2443     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2444     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2445                                    DAG.getConstant(31, SL, MVT::i32));
2446     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2447     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2448   }
2449 
2450   return SDValue();
2451 }
2452 
2453 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2454                                                 DAGCombinerInfo &DCI) const {
2455   if (N->getValueType(0) != MVT::i64)
2456     return SDValue();
2457 
2458   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2459   if (!RHS)
2460     return SDValue();
2461 
2462   unsigned ShiftAmt = RHS->getZExtValue();
2463   if (ShiftAmt < 32)
2464     return SDValue();
2465 
2466   // srl i64:x, C for C >= 32
2467   // =>
2468   //   build_pair (srl hi_32(x), C - 32), 0
2469 
2470   SelectionDAG &DAG = DCI.DAG;
2471   SDLoc SL(N);
2472 
2473   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2474   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2475 
2476   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2477   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2478                            VecOp, One);
2479 
2480   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2481   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2482 
2483   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2484 
2485   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2486 }
2487 
2488 // We need to specifically handle i64 mul here to avoid unnecessary conversion
2489 // instructions. If we only match on the legalized i64 mul expansion,
2490 // SimplifyDemandedBits will be unable to remove them because there will be
2491 // multiple uses due to the separate mul + mulh[su].
2492 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
2493                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
2494   if (Size <= 32) {
2495     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2496     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
2497   }
2498 
2499   // Because we want to eliminate extension instructions before the
2500   // operation, we need to create a single user here (i.e. not the separate
2501   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
2502 
2503   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
2504 
2505   SDValue Mul = DAG.getNode(MulOpc, SL,
2506                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
2507 
2508   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
2509                      Mul.getValue(0), Mul.getValue(1));
2510 }
2511 
2512 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2513                                                 DAGCombinerInfo &DCI) const {
2514   EVT VT = N->getValueType(0);
2515 
2516   unsigned Size = VT.getSizeInBits();
2517   if (VT.isVector() || Size > 64)
2518     return SDValue();
2519 
2520   // There are i16 integer mul/mad.
2521   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
2522     return SDValue();
2523 
2524   SelectionDAG &DAG = DCI.DAG;
2525   SDLoc DL(N);
2526 
2527   SDValue N0 = N->getOperand(0);
2528   SDValue N1 = N->getOperand(1);
2529   SDValue Mul;
2530 
2531   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2532     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2533     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2534     Mul = getMul24(DAG, DL, N0, N1, Size, false);
2535   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2536     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2537     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2538     Mul = getMul24(DAG, DL, N0, N1, Size, true);
2539   } else {
2540     return SDValue();
2541   }
2542 
2543   // We need to use sext even for MUL_U24, because MUL_U24 is used
2544   // for signed multiply of 8 and 16-bit types.
2545   return DAG.getSExtOrTrunc(Mul, DL, VT);
2546 }
2547 
2548 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
2549                                                   DAGCombinerInfo &DCI) const {
2550   EVT VT = N->getValueType(0);
2551 
2552   if (!Subtarget->hasMulI24() || VT.isVector())
2553     return SDValue();
2554 
2555   SelectionDAG &DAG = DCI.DAG;
2556   SDLoc DL(N);
2557 
2558   SDValue N0 = N->getOperand(0);
2559   SDValue N1 = N->getOperand(1);
2560 
2561   if (!isI24(N0, DAG) || !isI24(N1, DAG))
2562     return SDValue();
2563 
2564   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2565   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2566 
2567   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
2568   DCI.AddToWorklist(Mulhi.getNode());
2569   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
2570 }
2571 
2572 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
2573                                                   DAGCombinerInfo &DCI) const {
2574   EVT VT = N->getValueType(0);
2575 
2576   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
2577     return SDValue();
2578 
2579   SelectionDAG &DAG = DCI.DAG;
2580   SDLoc DL(N);
2581 
2582   SDValue N0 = N->getOperand(0);
2583   SDValue N1 = N->getOperand(1);
2584 
2585   if (!isU24(N0, DAG) || !isU24(N1, DAG))
2586     return SDValue();
2587 
2588   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2589   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2590 
2591   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
2592   DCI.AddToWorklist(Mulhi.getNode());
2593   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
2594 }
2595 
2596 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
2597   SDNode *N, DAGCombinerInfo &DCI) const {
2598   SelectionDAG &DAG = DCI.DAG;
2599 
2600   // Simplify demanded bits before splitting into multiple users.
2601   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
2602     return SDValue();
2603 
2604   SDValue N0 = N->getOperand(0);
2605   SDValue N1 = N->getOperand(1);
2606 
2607   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
2608 
2609   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2610   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
2611 
2612   SDLoc SL(N);
2613 
2614   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
2615   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
2616   return DAG.getMergeValues({ MulLo, MulHi }, SL);
2617 }
2618 
2619 static bool isNegativeOne(SDValue Val) {
2620   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2621     return C->isAllOnesValue();
2622   return false;
2623 }
2624 
2625 static bool isCtlzOpc(unsigned Opc) {
2626   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2627 }
2628 
2629 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG,
2630                                           SDValue Op,
2631                                           const SDLoc &DL) const {
2632   EVT VT = Op.getValueType();
2633   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
2634   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
2635                               LegalVT != MVT::i16))
2636     return SDValue();
2637 
2638   if (VT != MVT::i32)
2639     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
2640 
2641   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op);
2642   if (VT != MVT::i32)
2643     FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH);
2644 
2645   return FFBH;
2646 }
2647 
2648 // The native instructions return -1 on 0 input. Optimize out a select that
2649 // produces -1 on 0.
2650 //
2651 // TODO: If zero is not undef, we could also do this if the output is compared
2652 // against the bitwidth.
2653 //
2654 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2655 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2656                                                  SDValue LHS, SDValue RHS,
2657                                                  DAGCombinerInfo &DCI) const {
2658   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2659   if (!CmpRhs || !CmpRhs->isNullValue())
2660     return SDValue();
2661 
2662   SelectionDAG &DAG = DCI.DAG;
2663   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2664   SDValue CmpLHS = Cond.getOperand(0);
2665 
2666   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2667   if (CCOpcode == ISD::SETEQ &&
2668       isCtlzOpc(RHS.getOpcode()) &&
2669       RHS.getOperand(0) == CmpLHS &&
2670       isNegativeOne(LHS)) {
2671     return getFFBH_U32(DAG, CmpLHS, SL);
2672   }
2673 
2674   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2675   if (CCOpcode == ISD::SETNE &&
2676       isCtlzOpc(LHS.getOpcode()) &&
2677       LHS.getOperand(0) == CmpLHS &&
2678       isNegativeOne(RHS)) {
2679     return getFFBH_U32(DAG, CmpLHS, SL);
2680   }
2681 
2682   return SDValue();
2683 }
2684 
2685 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2686                                                    DAGCombinerInfo &DCI) const {
2687   SDValue Cond = N->getOperand(0);
2688   if (Cond.getOpcode() != ISD::SETCC)
2689     return SDValue();
2690 
2691   EVT VT = N->getValueType(0);
2692   SDValue LHS = Cond.getOperand(0);
2693   SDValue RHS = Cond.getOperand(1);
2694   SDValue CC = Cond.getOperand(2);
2695 
2696   SDValue True = N->getOperand(1);
2697   SDValue False = N->getOperand(2);
2698 
2699   if (VT == MVT::f32 && Cond.hasOneUse()) {
2700     SDValue MinMax
2701       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2702     // Revisit this node so we can catch min3/max3/med3 patterns.
2703     //DCI.AddToWorklist(MinMax.getNode());
2704     return MinMax;
2705   }
2706 
2707   // There's no reason to not do this if the condition has other uses.
2708   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2709 }
2710 
2711 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2712                                                 DAGCombinerInfo &DCI) const {
2713   SelectionDAG &DAG = DCI.DAG;
2714   SDLoc DL(N);
2715 
2716   switch(N->getOpcode()) {
2717   default:
2718     break;
2719   case ISD::BITCAST: {
2720     EVT DestVT = N->getValueType(0);
2721 
2722     // Push casts through vector builds. This helps avoid emitting a large
2723     // number of copies when materializing floating point vector constants.
2724     //
2725     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
2726     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
2727     if (DestVT.isVector()) {
2728       SDValue Src = N->getOperand(0);
2729       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2730         EVT SrcVT = Src.getValueType();
2731         unsigned NElts = DestVT.getVectorNumElements();
2732 
2733         if (SrcVT.getVectorNumElements() == NElts) {
2734           EVT DestEltVT = DestVT.getVectorElementType();
2735 
2736           SmallVector<SDValue, 8> CastedElts;
2737           SDLoc SL(N);
2738           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
2739             SDValue Elt = Src.getOperand(I);
2740             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
2741           }
2742 
2743           return DAG.getBuildVector(DestVT, SL, CastedElts);
2744         }
2745       }
2746     }
2747 
2748     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
2749       break;
2750 
2751     // Fold bitcasts of constants.
2752     //
2753     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
2754     // TODO: Generalize and move to DAGCombiner
2755     SDValue Src = N->getOperand(0);
2756     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
2757       assert(Src.getValueType() == MVT::i64);
2758       SDLoc SL(N);
2759       uint64_t CVal = C->getZExtValue();
2760       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
2761                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2762                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2763     }
2764 
2765     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
2766       const APInt &Val = C->getValueAPF().bitcastToAPInt();
2767       SDLoc SL(N);
2768       uint64_t CVal = Val.getZExtValue();
2769       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2770                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2771                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2772 
2773       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
2774     }
2775 
2776     break;
2777   }
2778   case ISD::SHL: {
2779     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2780       break;
2781 
2782     return performShlCombine(N, DCI);
2783   }
2784   case ISD::SRL: {
2785     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2786       break;
2787 
2788     return performSrlCombine(N, DCI);
2789   }
2790   case ISD::SRA: {
2791     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2792       break;
2793 
2794     return performSraCombine(N, DCI);
2795   }
2796   case ISD::MUL:
2797     return performMulCombine(N, DCI);
2798   case ISD::MULHS:
2799     return performMulhsCombine(N, DCI);
2800   case ISD::MULHU:
2801     return performMulhuCombine(N, DCI);
2802   case AMDGPUISD::MUL_I24:
2803   case AMDGPUISD::MUL_U24:
2804   case AMDGPUISD::MULHI_I24:
2805   case AMDGPUISD::MULHI_U24: {
2806     // If the first call to simplify is successfull, then N may end up being
2807     // deleted, so we shouldn't call simplifyI24 again.
2808     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
2809     return SDValue();
2810   }
2811   case AMDGPUISD::MUL_LOHI_I24:
2812   case AMDGPUISD::MUL_LOHI_U24:
2813     return performMulLoHi24Combine(N, DCI);
2814   case ISD::SELECT:
2815     return performSelectCombine(N, DCI);
2816   case AMDGPUISD::BFE_I32:
2817   case AMDGPUISD::BFE_U32: {
2818     assert(!N->getValueType(0).isVector() &&
2819            "Vector handling of BFE not implemented");
2820     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2821     if (!Width)
2822       break;
2823 
2824     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2825     if (WidthVal == 0)
2826       return DAG.getConstant(0, DL, MVT::i32);
2827 
2828     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2829     if (!Offset)
2830       break;
2831 
2832     SDValue BitsFrom = N->getOperand(0);
2833     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2834 
2835     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2836 
2837     if (OffsetVal == 0) {
2838       // This is already sign / zero extended, so try to fold away extra BFEs.
2839       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2840 
2841       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2842       if (OpSignBits >= SignBits)
2843         return BitsFrom;
2844 
2845       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2846       if (Signed) {
2847         // This is a sign_extend_inreg. Replace it to take advantage of existing
2848         // DAG Combines. If not eliminated, we will match back to BFE during
2849         // selection.
2850 
2851         // TODO: The sext_inreg of extended types ends, although we can could
2852         // handle them in a single BFE.
2853         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2854                            DAG.getValueType(SmallVT));
2855       }
2856 
2857       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2858     }
2859 
2860     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2861       if (Signed) {
2862         return constantFoldBFE<int32_t>(DAG,
2863                                         CVal->getSExtValue(),
2864                                         OffsetVal,
2865                                         WidthVal,
2866                                         DL);
2867       }
2868 
2869       return constantFoldBFE<uint32_t>(DAG,
2870                                        CVal->getZExtValue(),
2871                                        OffsetVal,
2872                                        WidthVal,
2873                                        DL);
2874     }
2875 
2876     if ((OffsetVal + WidthVal) >= 32) {
2877       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2878       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2879                          BitsFrom, ShiftVal);
2880     }
2881 
2882     if (BitsFrom.hasOneUse()) {
2883       APInt Demanded = APInt::getBitsSet(32,
2884                                          OffsetVal,
2885                                          OffsetVal + WidthVal);
2886 
2887       APInt KnownZero, KnownOne;
2888       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2889                                             !DCI.isBeforeLegalizeOps());
2890       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2891       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2892           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2893                                    KnownZero, KnownOne, TLO)) {
2894         DCI.CommitTargetLoweringOpt(TLO);
2895       }
2896     }
2897 
2898     break;
2899   }
2900   case ISD::LOAD:
2901     return performLoadCombine(N, DCI);
2902   case ISD::STORE:
2903     return performStoreCombine(N, DCI);
2904   }
2905   return SDValue();
2906 }
2907 
2908 //===----------------------------------------------------------------------===//
2909 // Helper functions
2910 //===----------------------------------------------------------------------===//
2911 
2912 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2913                                                   const TargetRegisterClass *RC,
2914                                                    unsigned Reg, EVT VT) const {
2915   MachineFunction &MF = DAG.getMachineFunction();
2916   MachineRegisterInfo &MRI = MF.getRegInfo();
2917   unsigned VirtualRegister;
2918   if (!MRI.isLiveIn(Reg)) {
2919     VirtualRegister = MRI.createVirtualRegister(RC);
2920     MRI.addLiveIn(Reg, VirtualRegister);
2921   } else {
2922     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2923   }
2924   return DAG.getRegister(VirtualRegister, VT);
2925 }
2926 
2927 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2928     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2929   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
2930   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
2931   switch (Param) {
2932   case GRID_DIM:
2933     return ArgOffset;
2934   case GRID_OFFSET:
2935     return ArgOffset + 4;
2936   }
2937   llvm_unreachable("unexpected implicit parameter type");
2938 }
2939 
2940 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2941 
2942 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2943   switch ((AMDGPUISD::NodeType)Opcode) {
2944   case AMDGPUISD::FIRST_NUMBER: break;
2945   // AMDIL DAG nodes
2946   NODE_NAME_CASE(CALL);
2947   NODE_NAME_CASE(UMUL);
2948   NODE_NAME_CASE(BRANCH_COND);
2949 
2950   // AMDGPU DAG nodes
2951   NODE_NAME_CASE(ENDPGM)
2952   NODE_NAME_CASE(RETURN)
2953   NODE_NAME_CASE(DWORDADDR)
2954   NODE_NAME_CASE(FRACT)
2955   NODE_NAME_CASE(SETCC)
2956   NODE_NAME_CASE(CLAMP)
2957   NODE_NAME_CASE(COS_HW)
2958   NODE_NAME_CASE(SIN_HW)
2959   NODE_NAME_CASE(FMAX_LEGACY)
2960   NODE_NAME_CASE(FMIN_LEGACY)
2961   NODE_NAME_CASE(FMAX3)
2962   NODE_NAME_CASE(SMAX3)
2963   NODE_NAME_CASE(UMAX3)
2964   NODE_NAME_CASE(FMIN3)
2965   NODE_NAME_CASE(SMIN3)
2966   NODE_NAME_CASE(UMIN3)
2967   NODE_NAME_CASE(FMED3)
2968   NODE_NAME_CASE(SMED3)
2969   NODE_NAME_CASE(UMED3)
2970   NODE_NAME_CASE(URECIP)
2971   NODE_NAME_CASE(DIV_SCALE)
2972   NODE_NAME_CASE(DIV_FMAS)
2973   NODE_NAME_CASE(DIV_FIXUP)
2974   NODE_NAME_CASE(TRIG_PREOP)
2975   NODE_NAME_CASE(RCP)
2976   NODE_NAME_CASE(RSQ)
2977   NODE_NAME_CASE(RCP_LEGACY)
2978   NODE_NAME_CASE(RSQ_LEGACY)
2979   NODE_NAME_CASE(FMUL_LEGACY)
2980   NODE_NAME_CASE(RSQ_CLAMP)
2981   NODE_NAME_CASE(LDEXP)
2982   NODE_NAME_CASE(FP_CLASS)
2983   NODE_NAME_CASE(DOT4)
2984   NODE_NAME_CASE(CARRY)
2985   NODE_NAME_CASE(BORROW)
2986   NODE_NAME_CASE(BFE_U32)
2987   NODE_NAME_CASE(BFE_I32)
2988   NODE_NAME_CASE(BFI)
2989   NODE_NAME_CASE(BFM)
2990   NODE_NAME_CASE(FFBH_U32)
2991   NODE_NAME_CASE(FFBH_I32)
2992   NODE_NAME_CASE(MUL_U24)
2993   NODE_NAME_CASE(MUL_I24)
2994   NODE_NAME_CASE(MULHI_U24)
2995   NODE_NAME_CASE(MULHI_I24)
2996   NODE_NAME_CASE(MUL_LOHI_U24)
2997   NODE_NAME_CASE(MUL_LOHI_I24)
2998   NODE_NAME_CASE(MAD_U24)
2999   NODE_NAME_CASE(MAD_I24)
3000   NODE_NAME_CASE(TEXTURE_FETCH)
3001   NODE_NAME_CASE(EXPORT)
3002   NODE_NAME_CASE(EXPORT_DONE)
3003   NODE_NAME_CASE(R600_EXPORT)
3004   NODE_NAME_CASE(CONST_ADDRESS)
3005   NODE_NAME_CASE(REGISTER_LOAD)
3006   NODE_NAME_CASE(REGISTER_STORE)
3007   NODE_NAME_CASE(LOAD_INPUT)
3008   NODE_NAME_CASE(SAMPLE)
3009   NODE_NAME_CASE(SAMPLEB)
3010   NODE_NAME_CASE(SAMPLED)
3011   NODE_NAME_CASE(SAMPLEL)
3012   NODE_NAME_CASE(CVT_F32_UBYTE0)
3013   NODE_NAME_CASE(CVT_F32_UBYTE1)
3014   NODE_NAME_CASE(CVT_F32_UBYTE2)
3015   NODE_NAME_CASE(CVT_F32_UBYTE3)
3016   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
3017   NODE_NAME_CASE(CONST_DATA_PTR)
3018   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
3019   NODE_NAME_CASE(KILL)
3020   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
3021   NODE_NAME_CASE(SENDMSG)
3022   NODE_NAME_CASE(INTERP_MOV)
3023   NODE_NAME_CASE(INTERP_P1)
3024   NODE_NAME_CASE(INTERP_P2)
3025   NODE_NAME_CASE(STORE_MSKOR)
3026   NODE_NAME_CASE(LOAD_CONSTANT)
3027   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
3028   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
3029   NODE_NAME_CASE(ATOMIC_INC)
3030   NODE_NAME_CASE(ATOMIC_DEC)
3031   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
3032   }
3033   return nullptr;
3034 }
3035 
3036 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
3037                                               SelectionDAG &DAG, int Enabled,
3038                                               int &RefinementSteps,
3039                                               bool &UseOneConstNR,
3040                                               bool Reciprocal) const {
3041   EVT VT = Operand.getValueType();
3042 
3043   if (VT == MVT::f32) {
3044     RefinementSteps = 0;
3045     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
3046   }
3047 
3048   // TODO: There is also f64 rsq instruction, but the documentation is less
3049   // clear on its precision.
3050 
3051   return SDValue();
3052 }
3053 
3054 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
3055                                                SelectionDAG &DAG, int Enabled,
3056                                                int &RefinementSteps) const {
3057   EVT VT = Operand.getValueType();
3058 
3059   if (VT == MVT::f32) {
3060     // Reciprocal, < 1 ulp error.
3061     //
3062     // This reciprocal approximation converges to < 0.5 ulp error with one
3063     // newton rhapson performed with two fused multiple adds (FMAs).
3064 
3065     RefinementSteps = 0;
3066     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
3067   }
3068 
3069   // TODO: There is also f64 rcp instruction, but the documentation is less
3070   // clear on its precision.
3071 
3072   return SDValue();
3073 }
3074 
3075 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
3076   const SDValue Op,
3077   APInt &KnownZero,
3078   APInt &KnownOne,
3079   const SelectionDAG &DAG,
3080   unsigned Depth) const {
3081 
3082   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
3083 
3084   APInt KnownZero2;
3085   APInt KnownOne2;
3086   unsigned Opc = Op.getOpcode();
3087 
3088   switch (Opc) {
3089   default:
3090     break;
3091   case AMDGPUISD::CARRY:
3092   case AMDGPUISD::BORROW: {
3093     KnownZero = APInt::getHighBitsSet(32, 31);
3094     break;
3095   }
3096 
3097   case AMDGPUISD::BFE_I32:
3098   case AMDGPUISD::BFE_U32: {
3099     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3100     if (!CWidth)
3101       return;
3102 
3103     unsigned BitWidth = 32;
3104     uint32_t Width = CWidth->getZExtValue() & 0x1f;
3105 
3106     if (Opc == AMDGPUISD::BFE_U32)
3107       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
3108 
3109     break;
3110   }
3111   }
3112 }
3113 
3114 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
3115   SDValue Op,
3116   const SelectionDAG &DAG,
3117   unsigned Depth) const {
3118   switch (Op.getOpcode()) {
3119   case AMDGPUISD::BFE_I32: {
3120     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3121     if (!Width)
3122       return 1;
3123 
3124     unsigned SignBits = 32 - Width->getZExtValue() + 1;
3125     if (!isNullConstant(Op.getOperand(1)))
3126       return SignBits;
3127 
3128     // TODO: Could probably figure something out with non-0 offsets.
3129     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3130     return std::max(SignBits, Op0SignBits);
3131   }
3132 
3133   case AMDGPUISD::BFE_U32: {
3134     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3135     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
3136   }
3137 
3138   case AMDGPUISD::CARRY:
3139   case AMDGPUISD::BORROW:
3140     return 31;
3141 
3142   default:
3143     return 1;
3144   }
3145 }
3146