1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "SIInstrInfo.h" 34 using namespace llvm; 35 36 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 37 CCValAssign::LocInfo LocInfo, 38 ISD::ArgFlagsTy ArgFlags, CCState &State) { 39 MachineFunction &MF = State.getMachineFunction(); 40 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 41 42 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 43 ArgFlags.getOrigAlign()); 44 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 45 return true; 46 } 47 48 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 49 CCValAssign::LocInfo LocInfo, 50 ISD::ArgFlagsTy ArgFlags, CCState &State, 51 const TargetRegisterClass *RC, 52 unsigned NumRegs) { 53 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 54 unsigned RegResult = State.AllocateReg(RegList); 55 if (RegResult == AMDGPU::NoRegister) 56 return false; 57 58 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 59 return true; 60 } 61 62 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 63 CCValAssign::LocInfo LocInfo, 64 ISD::ArgFlagsTy ArgFlags, CCState &State) { 65 switch (LocVT.SimpleTy) { 66 case MVT::i64: 67 case MVT::f64: 68 case MVT::v2i32: 69 case MVT::v2f32: { 70 // Up to SGPR0-SGPR39 71 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 72 &AMDGPU::SGPR_64RegClass, 20); 73 } 74 default: 75 return false; 76 } 77 } 78 79 #include "AMDGPUGenCallingConv.inc" 80 81 // Find a larger type to do a load / store of a vector with. 82 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 83 unsigned StoreSize = VT.getStoreSizeInBits(); 84 if (StoreSize <= 32) 85 return EVT::getIntegerVT(Ctx, StoreSize); 86 87 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 88 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 89 } 90 91 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 92 const AMDGPUSubtarget &STI) 93 : TargetLowering(TM), Subtarget(&STI) { 94 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 95 // Lower floating point store/load to integer store/load to reduce the number 96 // of patterns in tablegen. 97 setOperationAction(ISD::LOAD, MVT::f32, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 99 100 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 105 106 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 107 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 108 109 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 110 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 111 112 setOperationAction(ISD::LOAD, MVT::i64, Promote); 113 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 114 115 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 116 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 117 118 setOperationAction(ISD::LOAD, MVT::f64, Promote); 119 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 120 121 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 122 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 123 124 // There are no 64-bit extloads. These should be done as a 32-bit extload and 125 // an extension to 64-bit. 126 for (MVT VT : MVT::integer_valuetypes()) { 127 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 128 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 129 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 130 } 131 132 for (MVT VT : MVT::integer_valuetypes()) { 133 if (VT == MVT::i64) 134 continue; 135 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 140 141 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 142 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 144 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 145 146 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 148 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 149 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 150 } 151 152 for (MVT VT : MVT::integer_vector_valuetypes()) { 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 154 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 155 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 157 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 158 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 159 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 160 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 161 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 162 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 163 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 164 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 165 } 166 167 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 171 172 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 173 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 174 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 176 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 181 182 setOperationAction(ISD::STORE, MVT::f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 184 185 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 187 188 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 190 191 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 193 194 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 196 197 setOperationAction(ISD::STORE, MVT::i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 202 203 setOperationAction(ISD::STORE, MVT::f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 205 206 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 208 209 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 210 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 211 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 212 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 213 214 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 215 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 216 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 217 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 218 219 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 220 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 221 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 222 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 265 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 266 267 setOperationAction(ISD::FREM, MVT::f32, Custom); 268 setOperationAction(ISD::FREM, MVT::f64, Custom); 269 270 // v_mad_f32 does not support denormals according to some sources. 271 if (!Subtarget->hasFP32Denormals()) 272 setOperationAction(ISD::FMAD, MVT::f32, Legal); 273 274 // Expand to fneg + fadd. 275 setOperationAction(ISD::FSUB, MVT::f64, Expand); 276 277 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 281 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 282 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 283 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 284 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 285 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 287 288 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 289 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 290 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 291 setOperationAction(ISD::FRINT, MVT::f64, Custom); 292 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 293 } 294 295 if (!Subtarget->hasBFI()) { 296 // fcopysign can be done in a single instruction with BFI. 297 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 298 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 299 } 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 } 325 326 if (!Subtarget->hasBCNT(32)) 327 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 328 329 if (!Subtarget->hasBCNT(64)) 330 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UDIV, MVT::i32, Expand); 341 setOperationAction(ISD::UREM, MVT::i32, Expand); 342 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 343 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 344 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 345 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 346 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 347 348 setOperationAction(ISD::SMIN, MVT::i32, Legal); 349 setOperationAction(ISD::UMIN, MVT::i32, Legal); 350 setOperationAction(ISD::SMAX, MVT::i32, Legal); 351 setOperationAction(ISD::UMAX, MVT::i32, Legal); 352 353 if (Subtarget->hasFFBH()) 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 355 356 if (Subtarget->hasFFBL()) 357 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 358 359 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 360 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 361 362 // We only really have 32-bit BFE instructions (and 16-bit on VI). 363 // 364 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 365 // effort to match them now. We want this to be false for i64 cases when the 366 // extraction isn't restricted to the upper or lower half. Ideally we would 367 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 368 // span the midpoint are probably relatively rare, so don't worry about them 369 // for now. 370 if (Subtarget->hasBFE()) 371 setHasExtractBitsInsn(true); 372 373 static const MVT::SimpleValueType VectorIntTypes[] = { 374 MVT::v2i32, MVT::v4i32 375 }; 376 377 for (MVT VT : VectorIntTypes) { 378 // Expand the following operations for the current type by default. 379 setOperationAction(ISD::ADD, VT, Expand); 380 setOperationAction(ISD::AND, VT, Expand); 381 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 382 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 383 setOperationAction(ISD::MUL, VT, Expand); 384 setOperationAction(ISD::MULHU, VT, Expand); 385 setOperationAction(ISD::MULHS, VT, Expand); 386 setOperationAction(ISD::OR, VT, Expand); 387 setOperationAction(ISD::SHL, VT, Expand); 388 setOperationAction(ISD::SRA, VT, Expand); 389 setOperationAction(ISD::SRL, VT, Expand); 390 setOperationAction(ISD::ROTL, VT, Expand); 391 setOperationAction(ISD::ROTR, VT, Expand); 392 setOperationAction(ISD::SUB, VT, Expand); 393 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 394 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 395 setOperationAction(ISD::SDIV, VT, Expand); 396 setOperationAction(ISD::UDIV, VT, Expand); 397 setOperationAction(ISD::SREM, VT, Expand); 398 setOperationAction(ISD::UREM, VT, Expand); 399 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 400 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 401 setOperationAction(ISD::SDIVREM, VT, Custom); 402 setOperationAction(ISD::UDIVREM, VT, Expand); 403 setOperationAction(ISD::ADDC, VT, Expand); 404 setOperationAction(ISD::SUBC, VT, Expand); 405 setOperationAction(ISD::ADDE, VT, Expand); 406 setOperationAction(ISD::SUBE, VT, Expand); 407 setOperationAction(ISD::SELECT, VT, Expand); 408 setOperationAction(ISD::VSELECT, VT, Expand); 409 setOperationAction(ISD::SELECT_CC, VT, Expand); 410 setOperationAction(ISD::XOR, VT, Expand); 411 setOperationAction(ISD::BSWAP, VT, Expand); 412 setOperationAction(ISD::CTPOP, VT, Expand); 413 setOperationAction(ISD::CTTZ, VT, Expand); 414 setOperationAction(ISD::CTLZ, VT, Expand); 415 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 416 } 417 418 static const MVT::SimpleValueType FloatVectorTypes[] = { 419 MVT::v2f32, MVT::v4f32 420 }; 421 422 for (MVT VT : FloatVectorTypes) { 423 setOperationAction(ISD::FABS, VT, Expand); 424 setOperationAction(ISD::FMINNUM, VT, Expand); 425 setOperationAction(ISD::FMAXNUM, VT, Expand); 426 setOperationAction(ISD::FADD, VT, Expand); 427 setOperationAction(ISD::FCEIL, VT, Expand); 428 setOperationAction(ISD::FCOS, VT, Expand); 429 setOperationAction(ISD::FDIV, VT, Expand); 430 setOperationAction(ISD::FEXP2, VT, Expand); 431 setOperationAction(ISD::FLOG2, VT, Expand); 432 setOperationAction(ISD::FREM, VT, Expand); 433 setOperationAction(ISD::FPOW, VT, Expand); 434 setOperationAction(ISD::FFLOOR, VT, Expand); 435 setOperationAction(ISD::FTRUNC, VT, Expand); 436 setOperationAction(ISD::FMUL, VT, Expand); 437 setOperationAction(ISD::FMA, VT, Expand); 438 setOperationAction(ISD::FRINT, VT, Expand); 439 setOperationAction(ISD::FNEARBYINT, VT, Expand); 440 setOperationAction(ISD::FSQRT, VT, Expand); 441 setOperationAction(ISD::FSIN, VT, Expand); 442 setOperationAction(ISD::FSUB, VT, Expand); 443 setOperationAction(ISD::FNEG, VT, Expand); 444 setOperationAction(ISD::VSELECT, VT, Expand); 445 setOperationAction(ISD::SELECT_CC, VT, Expand); 446 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 447 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 448 } 449 450 // This causes using an unrolled select operation rather than expansion with 451 // bit operations. This is in general better, but the alternative using BFI 452 // instructions may be better if the select sources are SGPRs. 453 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 454 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 455 456 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 457 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 458 459 // There are no libcalls of any kind. 460 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 461 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 462 463 setBooleanContents(ZeroOrNegativeOneBooleanContent); 464 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 465 466 setSchedulingPreference(Sched::RegPressure); 467 setJumpIsExpensive(true); 468 469 // FIXME: This is only partially true. If we have to do vector compares, any 470 // SGPR pair can be a condition register. If we have a uniform condition, we 471 // are better off doing SALU operations, where there is only one SCC. For now, 472 // we don't have a way of knowing during instruction selection if a condition 473 // will be uniform and we always use vector compares. Assume we are using 474 // vector compares until that is fixed. 475 setHasMultipleConditionRegisters(true); 476 477 // SI at least has hardware support for floating point exceptions, but no way 478 // of using or handling them is implemented. They are also optional in OpenCL 479 // (Section 7.3) 480 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 481 482 PredictableSelectIsExpensive = false; 483 484 // We want to find all load dependencies for long chains of stores to enable 485 // merging into very wide vectors. The problem is with vectors with > 4 486 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 487 // vectors are a legal type, even though we have to split the loads 488 // usually. When we can more precisely specify load legality per address 489 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 490 // smarter so that they can figure out what to do in 2 iterations without all 491 // N > 4 stores on the same chain. 492 GatherAllAliasesMaxDepth = 16; 493 494 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 495 // about these during lowering. 496 MaxStoresPerMemcpy = 0xffffffff; 497 MaxStoresPerMemmove = 0xffffffff; 498 MaxStoresPerMemset = 0xffffffff; 499 500 setTargetDAGCombine(ISD::BITCAST); 501 setTargetDAGCombine(ISD::SHL); 502 setTargetDAGCombine(ISD::SRA); 503 setTargetDAGCombine(ISD::SRL); 504 setTargetDAGCombine(ISD::MUL); 505 setTargetDAGCombine(ISD::MULHU); 506 setTargetDAGCombine(ISD::MULHS); 507 setTargetDAGCombine(ISD::SELECT); 508 setTargetDAGCombine(ISD::SELECT_CC); 509 setTargetDAGCombine(ISD::STORE); 510 setTargetDAGCombine(ISD::FADD); 511 setTargetDAGCombine(ISD::FSUB); 512 setTargetDAGCombine(ISD::FNEG); 513 setTargetDAGCombine(ISD::FABS); 514 } 515 516 //===----------------------------------------------------------------------===// 517 // Target Information 518 //===----------------------------------------------------------------------===// 519 520 LLVM_READNONE 521 static bool fnegFoldsIntoOp(unsigned Opc) { 522 switch (Opc) { 523 case ISD::FADD: 524 case ISD::FSUB: 525 case ISD::FMUL: 526 case ISD::FMA: 527 case ISD::FMAD: 528 case ISD::FMINNUM: 529 case ISD::FMAXNUM: 530 case ISD::FSIN: 531 case ISD::FTRUNC: 532 case ISD::FRINT: 533 case ISD::FNEARBYINT: 534 case AMDGPUISD::RCP: 535 case AMDGPUISD::RCP_LEGACY: 536 case AMDGPUISD::SIN_HW: 537 case AMDGPUISD::FMUL_LEGACY: 538 case AMDGPUISD::FMIN_LEGACY: 539 case AMDGPUISD::FMAX_LEGACY: 540 return true; 541 default: 542 return false; 543 } 544 } 545 546 /// \p returns true if the operation will definitely need to use a 64-bit 547 /// encoding, and thus will use a VOP3 encoding regardless of the source 548 /// modifiers. 549 LLVM_READONLY 550 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 551 return N->getNumOperands() > 2 || VT == MVT::f64; 552 } 553 554 // Most FP instructions support source modifiers, but this could be refined 555 // slightly. 556 LLVM_READONLY 557 static bool hasSourceMods(const SDNode *N) { 558 if (isa<MemSDNode>(N)) 559 return false; 560 561 switch (N->getOpcode()) { 562 case ISD::CopyToReg: 563 case ISD::SELECT: 564 case ISD::FDIV: 565 case ISD::FREM: 566 case ISD::INLINEASM: 567 case AMDGPUISD::INTERP_P1: 568 case AMDGPUISD::INTERP_P2: 569 case AMDGPUISD::DIV_SCALE: 570 return false; 571 default: 572 return true; 573 } 574 } 575 576 static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4) { 577 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 578 // it is truly free to use a source modifier in all cases. If there are 579 // multiple users but for each one will necessitate using VOP3, there will be 580 // a code size increase. Try to avoid increasing code size unless we know it 581 // will save on the instruction count. 582 unsigned NumMayIncreaseSize = 0; 583 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 584 585 // XXX - Should this limit number of uses to check? 586 for (const SDNode *U : N->uses()) { 587 if (!hasSourceMods(U)) 588 return false; 589 590 if (!opMustUseVOP3Encoding(U, VT)) { 591 if (++NumMayIncreaseSize > CostThreshold) 592 return false; 593 } 594 } 595 596 return true; 597 } 598 599 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 600 return MVT::i32; 601 } 602 603 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 604 return true; 605 } 606 607 // The backend supports 32 and 64 bit floating point immediates. 608 // FIXME: Why are we reporting vectors of FP immediates as legal? 609 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 610 EVT ScalarVT = VT.getScalarType(); 611 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 612 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 613 } 614 615 // We don't want to shrink f64 / f32 constants. 616 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 617 EVT ScalarVT = VT.getScalarType(); 618 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 619 } 620 621 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 622 ISD::LoadExtType, 623 EVT NewVT) const { 624 625 unsigned NewSize = NewVT.getStoreSizeInBits(); 626 627 // If we are reducing to a 32-bit load, this is always better. 628 if (NewSize == 32) 629 return true; 630 631 EVT OldVT = N->getValueType(0); 632 unsigned OldSize = OldVT.getStoreSizeInBits(); 633 634 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 635 // extloads, so doing one requires using a buffer_load. In cases where we 636 // still couldn't use a scalar load, using the wider load shouldn't really 637 // hurt anything. 638 639 // If the old size already had to be an extload, there's no harm in continuing 640 // to reduce the width. 641 return (OldSize < 32); 642 } 643 644 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 645 EVT CastTy) const { 646 647 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 648 649 if (LoadTy.getScalarType() == MVT::i32) 650 return false; 651 652 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 653 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 654 655 return (LScalarSize < CastScalarSize) || 656 (CastScalarSize >= 32); 657 } 658 659 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 660 // profitable with the expansion for 64-bit since it's generally good to 661 // speculate things. 662 // FIXME: These should really have the size as a parameter. 663 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 664 return true; 665 } 666 667 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 668 return true; 669 } 670 671 //===---------------------------------------------------------------------===// 672 // Target Properties 673 //===---------------------------------------------------------------------===// 674 675 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 676 assert(VT.isFloatingPoint()); 677 678 // Packed operations do not have a fabs modifier. 679 return VT == MVT::f32 || VT == MVT::f64 || 680 (Subtarget->has16BitInsts() && VT == MVT::f16); 681 } 682 683 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 684 assert(VT.isFloatingPoint()); 685 return VT == MVT::f32 || VT == MVT::f64 || 686 (Subtarget->has16BitInsts() && VT == MVT::f16) || 687 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 688 } 689 690 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 691 unsigned NumElem, 692 unsigned AS) const { 693 return true; 694 } 695 696 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 697 // There are few operations which truly have vector input operands. Any vector 698 // operation is going to involve operations on each component, and a 699 // build_vector will be a copy per element, so it always makes sense to use a 700 // build_vector input in place of the extracted element to avoid a copy into a 701 // super register. 702 // 703 // We should probably only do this if all users are extracts only, but this 704 // should be the common case. 705 return true; 706 } 707 708 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 709 // Truncate is just accessing a subregister. 710 711 unsigned SrcSize = Source.getSizeInBits(); 712 unsigned DestSize = Dest.getSizeInBits(); 713 714 return DestSize < SrcSize && DestSize % 32 == 0 ; 715 } 716 717 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 718 // Truncate is just accessing a subregister. 719 720 unsigned SrcSize = Source->getScalarSizeInBits(); 721 unsigned DestSize = Dest->getScalarSizeInBits(); 722 723 if (DestSize== 16 && Subtarget->has16BitInsts()) 724 return SrcSize >= 32; 725 726 return DestSize < SrcSize && DestSize % 32 == 0; 727 } 728 729 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 730 unsigned SrcSize = Src->getScalarSizeInBits(); 731 unsigned DestSize = Dest->getScalarSizeInBits(); 732 733 if (SrcSize == 16 && Subtarget->has16BitInsts()) 734 return DestSize >= 32; 735 736 return SrcSize == 32 && DestSize == 64; 737 } 738 739 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 740 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 741 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 742 // this will enable reducing 64-bit operations the 32-bit, which is always 743 // good. 744 745 if (Src == MVT::i16) 746 return Dest == MVT::i32 ||Dest == MVT::i64 ; 747 748 return Src == MVT::i32 && Dest == MVT::i64; 749 } 750 751 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 752 return isZExtFree(Val.getValueType(), VT2); 753 } 754 755 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 756 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 757 // limited number of native 64-bit operations. Shrinking an operation to fit 758 // in a single 32-bit register should always be helpful. As currently used, 759 // this is much less general than the name suggests, and is only used in 760 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 761 // not profitable, and may actually be harmful. 762 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 763 } 764 765 //===---------------------------------------------------------------------===// 766 // TargetLowering Callbacks 767 //===---------------------------------------------------------------------===// 768 769 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 770 bool IsVarArg) const { 771 return CC_AMDGPU; 772 } 773 774 /// The SelectionDAGBuilder will automatically promote function arguments 775 /// with illegal types. However, this does not work for the AMDGPU targets 776 /// since the function arguments are stored in memory as these illegal types. 777 /// In order to handle this properly we need to get the original types sizes 778 /// from the LLVM IR Function and fixup the ISD:InputArg values before 779 /// passing them to AnalyzeFormalArguments() 780 781 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 782 /// input values across multiple registers. Each item in the Ins array 783 /// represents a single value that will be stored in regsters. Ins[x].VT is 784 /// the value type of the value that will be stored in the register, so 785 /// whatever SDNode we lower the argument to needs to be this type. 786 /// 787 /// In order to correctly lower the arguments we need to know the size of each 788 /// argument. Since Ins[x].VT gives us the size of the register that will 789 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 790 /// for the orignal function argument so that we can deduce the correct memory 791 /// type to use for Ins[x]. In most cases the correct memory type will be 792 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 793 /// we have a kernel argument of type v8i8, this argument will be split into 794 /// 8 parts and each part will be represented by its own item in the Ins array. 795 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 796 /// the argument before it was split. From this, we deduce that the memory type 797 /// for each individual part is i8. We pass the memory type as LocVT to the 798 /// calling convention analysis function and the register type (Ins[x].VT) as 799 /// the ValVT. 800 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 801 const SmallVectorImpl<ISD::InputArg> &Ins) const { 802 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 803 const ISD::InputArg &In = Ins[i]; 804 EVT MemVT; 805 806 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 807 808 if (!Subtarget->isAmdHsaOS() && 809 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 810 // The ABI says the caller will extend these values to 32-bits. 811 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 812 } else if (NumRegs == 1) { 813 // This argument is not split, so the IR type is the memory type. 814 assert(!In.Flags.isSplit()); 815 if (In.ArgVT.isExtended()) { 816 // We have an extended type, like i24, so we should just use the register type 817 MemVT = In.VT; 818 } else { 819 MemVT = In.ArgVT; 820 } 821 } else if (In.ArgVT.isVector() && In.VT.isVector() && 822 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 823 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 824 // We have a vector value which has been split into a vector with 825 // the same scalar type, but fewer elements. This should handle 826 // all the floating-point vector types. 827 MemVT = In.VT; 828 } else if (In.ArgVT.isVector() && 829 In.ArgVT.getVectorNumElements() == NumRegs) { 830 // This arg has been split so that each element is stored in a separate 831 // register. 832 MemVT = In.ArgVT.getScalarType(); 833 } else if (In.ArgVT.isExtended()) { 834 // We have an extended type, like i65. 835 MemVT = In.VT; 836 } else { 837 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 838 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 839 if (In.VT.isInteger()) { 840 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 841 } else if (In.VT.isVector()) { 842 assert(!In.VT.getScalarType().isFloatingPoint()); 843 unsigned NumElements = In.VT.getVectorNumElements(); 844 assert(MemoryBits % NumElements == 0); 845 // This vector type has been split into another vector type with 846 // a different elements size. 847 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 848 MemoryBits / NumElements); 849 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 850 } else { 851 llvm_unreachable("cannot deduce memory type."); 852 } 853 } 854 855 // Convert one element vectors to scalar. 856 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 857 MemVT = MemVT.getScalarType(); 858 859 if (MemVT.isExtended()) { 860 // This should really only happen if we have vec3 arguments 861 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 862 MemVT = MemVT.getPow2VectorType(State.getContext()); 863 } 864 865 assert(MemVT.isSimple()); 866 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 867 State); 868 } 869 } 870 871 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 872 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 873 874 State.AnalyzeReturn(Outs, RetCC_SI); 875 } 876 877 SDValue 878 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 879 bool isVarArg, 880 const SmallVectorImpl<ISD::OutputArg> &Outs, 881 const SmallVectorImpl<SDValue> &OutVals, 882 const SDLoc &DL, SelectionDAG &DAG) const { 883 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 884 } 885 886 //===---------------------------------------------------------------------===// 887 // Target specific lowering 888 //===---------------------------------------------------------------------===// 889 890 /// Selects the correct CCAssignFn for a given CallingConvention value. 891 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 892 bool IsVarArg) { 893 switch (CC) { 894 case CallingConv::C: 895 case CallingConv::AMDGPU_KERNEL: 896 case CallingConv::SPIR_KERNEL: 897 return CC_AMDGPU_Kernel; 898 case CallingConv::AMDGPU_VS: 899 case CallingConv::AMDGPU_HS: 900 case CallingConv::AMDGPU_GS: 901 case CallingConv::AMDGPU_PS: 902 case CallingConv::AMDGPU_CS: 903 return CC_AMDGPU; 904 default: 905 report_fatal_error("Unsupported calling convention."); 906 } 907 } 908 909 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 910 SmallVectorImpl<SDValue> &InVals) const { 911 SDValue Callee = CLI.Callee; 912 SelectionDAG &DAG = CLI.DAG; 913 914 const Function &Fn = *DAG.getMachineFunction().getFunction(); 915 916 StringRef FuncName("<unknown>"); 917 918 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 919 FuncName = G->getSymbol(); 920 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 921 FuncName = G->getGlobal()->getName(); 922 923 DiagnosticInfoUnsupported NoCalls( 924 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 925 DAG.getContext()->diagnose(NoCalls); 926 927 if (!CLI.IsTailCall) { 928 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 929 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 930 } 931 932 return DAG.getEntryNode(); 933 } 934 935 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 936 SelectionDAG &DAG) const { 937 const Function &Fn = *DAG.getMachineFunction().getFunction(); 938 939 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 940 SDLoc(Op).getDebugLoc()); 941 DAG.getContext()->diagnose(NoDynamicAlloca); 942 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 943 return DAG.getMergeValues(Ops, SDLoc()); 944 } 945 946 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 947 SelectionDAG &DAG) const { 948 switch (Op.getOpcode()) { 949 default: 950 Op->print(errs(), &DAG); 951 llvm_unreachable("Custom lowering code for this" 952 "instruction is not implemented yet!"); 953 break; 954 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 955 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 956 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 957 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 958 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 959 case ISD::FREM: return LowerFREM(Op, DAG); 960 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 961 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 962 case ISD::FRINT: return LowerFRINT(Op, DAG); 963 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 964 case ISD::FROUND: return LowerFROUND(Op, DAG); 965 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 966 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 967 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 968 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 969 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 970 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 971 case ISD::CTLZ: 972 case ISD::CTLZ_ZERO_UNDEF: 973 return LowerCTLZ(Op, DAG); 974 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 975 } 976 return Op; 977 } 978 979 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 980 SmallVectorImpl<SDValue> &Results, 981 SelectionDAG &DAG) const { 982 switch (N->getOpcode()) { 983 case ISD::SIGN_EXTEND_INREG: 984 // Different parts of legalization seem to interpret which type of 985 // sign_extend_inreg is the one to check for custom lowering. The extended 986 // from type is what really matters, but some places check for custom 987 // lowering of the result type. This results in trying to use 988 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 989 // nothing here and let the illegal result integer be handled normally. 990 return; 991 default: 992 return; 993 } 994 } 995 996 static bool hasDefinedInitializer(const GlobalValue *GV) { 997 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 998 if (!GVar || !GVar->hasInitializer()) 999 return false; 1000 1001 return !isa<UndefValue>(GVar->getInitializer()); 1002 } 1003 1004 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1005 SDValue Op, 1006 SelectionDAG &DAG) const { 1007 1008 const DataLayout &DL = DAG.getDataLayout(); 1009 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1010 const GlobalValue *GV = G->getGlobal(); 1011 1012 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1013 // XXX: What does the value of G->getOffset() mean? 1014 assert(G->getOffset() == 0 && 1015 "Do not know what to do with an non-zero offset"); 1016 1017 // TODO: We could emit code to handle the initialization somewhere. 1018 if (!hasDefinedInitializer(GV)) { 1019 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1020 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1021 } 1022 } 1023 1024 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1025 DiagnosticInfoUnsupported BadInit( 1026 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1027 DAG.getContext()->diagnose(BadInit); 1028 return SDValue(); 1029 } 1030 1031 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1032 SelectionDAG &DAG) const { 1033 SmallVector<SDValue, 8> Args; 1034 1035 for (const SDUse &U : Op->ops()) 1036 DAG.ExtractVectorElements(U.get(), Args); 1037 1038 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1039 } 1040 1041 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1042 SelectionDAG &DAG) const { 1043 1044 SmallVector<SDValue, 8> Args; 1045 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1046 EVT VT = Op.getValueType(); 1047 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1048 VT.getVectorNumElements()); 1049 1050 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1051 } 1052 1053 /// \brief Generate Min/Max node 1054 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1055 SDValue LHS, SDValue RHS, 1056 SDValue True, SDValue False, 1057 SDValue CC, 1058 DAGCombinerInfo &DCI) const { 1059 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1060 return SDValue(); 1061 1062 SelectionDAG &DAG = DCI.DAG; 1063 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1064 switch (CCOpcode) { 1065 case ISD::SETOEQ: 1066 case ISD::SETONE: 1067 case ISD::SETUNE: 1068 case ISD::SETNE: 1069 case ISD::SETUEQ: 1070 case ISD::SETEQ: 1071 case ISD::SETFALSE: 1072 case ISD::SETFALSE2: 1073 case ISD::SETTRUE: 1074 case ISD::SETTRUE2: 1075 case ISD::SETUO: 1076 case ISD::SETO: 1077 break; 1078 case ISD::SETULE: 1079 case ISD::SETULT: { 1080 if (LHS == True) 1081 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1082 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1083 } 1084 case ISD::SETOLE: 1085 case ISD::SETOLT: 1086 case ISD::SETLE: 1087 case ISD::SETLT: { 1088 // Ordered. Assume ordered for undefined. 1089 1090 // Only do this after legalization to avoid interfering with other combines 1091 // which might occur. 1092 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1093 !DCI.isCalledByLegalizer()) 1094 return SDValue(); 1095 1096 // We need to permute the operands to get the correct NaN behavior. The 1097 // selected operand is the second one based on the failing compare with NaN, 1098 // so permute it based on the compare type the hardware uses. 1099 if (LHS == True) 1100 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1101 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1102 } 1103 case ISD::SETUGE: 1104 case ISD::SETUGT: { 1105 if (LHS == True) 1106 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1107 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1108 } 1109 case ISD::SETGT: 1110 case ISD::SETGE: 1111 case ISD::SETOGE: 1112 case ISD::SETOGT: { 1113 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1114 !DCI.isCalledByLegalizer()) 1115 return SDValue(); 1116 1117 if (LHS == True) 1118 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1119 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1120 } 1121 case ISD::SETCC_INVALID: 1122 llvm_unreachable("Invalid setcc condcode!"); 1123 } 1124 return SDValue(); 1125 } 1126 1127 std::pair<SDValue, SDValue> 1128 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1129 SDLoc SL(Op); 1130 1131 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1132 1133 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1134 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1135 1136 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1137 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1138 1139 return std::make_pair(Lo, Hi); 1140 } 1141 1142 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1143 SDLoc SL(Op); 1144 1145 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1146 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1147 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1148 } 1149 1150 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1151 SDLoc SL(Op); 1152 1153 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1154 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1155 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1156 } 1157 1158 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1159 SelectionDAG &DAG) const { 1160 LoadSDNode *Load = cast<LoadSDNode>(Op); 1161 EVT VT = Op.getValueType(); 1162 1163 1164 // If this is a 2 element vector, we really want to scalarize and not create 1165 // weird 1 element vectors. 1166 if (VT.getVectorNumElements() == 2) 1167 return scalarizeVectorLoad(Load, DAG); 1168 1169 SDValue BasePtr = Load->getBasePtr(); 1170 EVT PtrVT = BasePtr.getValueType(); 1171 EVT MemVT = Load->getMemoryVT(); 1172 SDLoc SL(Op); 1173 1174 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1175 1176 EVT LoVT, HiVT; 1177 EVT LoMemVT, HiMemVT; 1178 SDValue Lo, Hi; 1179 1180 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1181 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1182 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1183 1184 unsigned Size = LoMemVT.getStoreSize(); 1185 unsigned BaseAlign = Load->getAlignment(); 1186 unsigned HiAlign = MinAlign(BaseAlign, Size); 1187 1188 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1189 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1190 BaseAlign, Load->getMemOperand()->getFlags()); 1191 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1192 DAG.getConstant(Size, SL, PtrVT)); 1193 SDValue HiLoad = 1194 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1195 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1196 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1197 1198 SDValue Ops[] = { 1199 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1200 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1201 LoLoad.getValue(1), HiLoad.getValue(1)) 1202 }; 1203 1204 return DAG.getMergeValues(Ops, SL); 1205 } 1206 1207 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1208 SelectionDAG &DAG) const { 1209 StoreSDNode *Store = cast<StoreSDNode>(Op); 1210 SDValue Val = Store->getValue(); 1211 EVT VT = Val.getValueType(); 1212 1213 // If this is a 2 element vector, we really want to scalarize and not create 1214 // weird 1 element vectors. 1215 if (VT.getVectorNumElements() == 2) 1216 return scalarizeVectorStore(Store, DAG); 1217 1218 EVT MemVT = Store->getMemoryVT(); 1219 SDValue Chain = Store->getChain(); 1220 SDValue BasePtr = Store->getBasePtr(); 1221 SDLoc SL(Op); 1222 1223 EVT LoVT, HiVT; 1224 EVT LoMemVT, HiMemVT; 1225 SDValue Lo, Hi; 1226 1227 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1228 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1229 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1230 1231 EVT PtrVT = BasePtr.getValueType(); 1232 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1233 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1234 PtrVT)); 1235 1236 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1237 unsigned BaseAlign = Store->getAlignment(); 1238 unsigned Size = LoMemVT.getStoreSize(); 1239 unsigned HiAlign = MinAlign(BaseAlign, Size); 1240 1241 SDValue LoStore = 1242 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1243 Store->getMemOperand()->getFlags()); 1244 SDValue HiStore = 1245 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1246 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1247 1248 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1249 } 1250 1251 // This is a shortcut for integer division because we have fast i32<->f32 1252 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1253 // float is enough to accurately represent up to a 24-bit signed integer. 1254 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1255 bool Sign) const { 1256 SDLoc DL(Op); 1257 EVT VT = Op.getValueType(); 1258 SDValue LHS = Op.getOperand(0); 1259 SDValue RHS = Op.getOperand(1); 1260 MVT IntVT = MVT::i32; 1261 MVT FltVT = MVT::f32; 1262 1263 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1264 if (LHSSignBits < 9) 1265 return SDValue(); 1266 1267 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1268 if (RHSSignBits < 9) 1269 return SDValue(); 1270 1271 unsigned BitSize = VT.getSizeInBits(); 1272 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1273 unsigned DivBits = BitSize - SignBits; 1274 if (Sign) 1275 ++DivBits; 1276 1277 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1278 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1279 1280 SDValue jq = DAG.getConstant(1, DL, IntVT); 1281 1282 if (Sign) { 1283 // char|short jq = ia ^ ib; 1284 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1285 1286 // jq = jq >> (bitsize - 2) 1287 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1288 DAG.getConstant(BitSize - 2, DL, VT)); 1289 1290 // jq = jq | 0x1 1291 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1292 } 1293 1294 // int ia = (int)LHS; 1295 SDValue ia = LHS; 1296 1297 // int ib, (int)RHS; 1298 SDValue ib = RHS; 1299 1300 // float fa = (float)ia; 1301 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1302 1303 // float fb = (float)ib; 1304 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1305 1306 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1307 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1308 1309 // fq = trunc(fq); 1310 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1311 1312 // float fqneg = -fq; 1313 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1314 1315 // float fr = mad(fqneg, fb, fa); 1316 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1317 (unsigned)AMDGPUISD::FMAD_FTZ : 1318 (unsigned)ISD::FMAD; 1319 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1320 1321 // int iq = (int)fq; 1322 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1323 1324 // fr = fabs(fr); 1325 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1326 1327 // fb = fabs(fb); 1328 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1329 1330 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1331 1332 // int cv = fr >= fb; 1333 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1334 1335 // jq = (cv ? jq : 0); 1336 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1337 1338 // dst = iq + jq; 1339 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1340 1341 // Rem needs compensation, it's easier to recompute it 1342 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1343 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1344 1345 // Truncate to number of bits this divide really is. 1346 if (Sign) { 1347 SDValue InRegSize 1348 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1349 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1350 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1351 } else { 1352 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1353 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1354 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1355 } 1356 1357 return DAG.getMergeValues({ Div, Rem }, DL); 1358 } 1359 1360 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1361 SelectionDAG &DAG, 1362 SmallVectorImpl<SDValue> &Results) const { 1363 assert(Op.getValueType() == MVT::i64); 1364 1365 SDLoc DL(Op); 1366 EVT VT = Op.getValueType(); 1367 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1368 1369 SDValue one = DAG.getConstant(1, DL, HalfVT); 1370 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1371 1372 //HiLo split 1373 SDValue LHS = Op.getOperand(0); 1374 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1375 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1376 1377 SDValue RHS = Op.getOperand(1); 1378 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1379 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1380 1381 if (VT == MVT::i64 && 1382 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1383 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1384 1385 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1386 LHS_Lo, RHS_Lo); 1387 1388 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1389 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1390 1391 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1392 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1393 return; 1394 } 1395 1396 // Get Speculative values 1397 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1398 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1399 1400 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1401 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1402 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1403 1404 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1405 SDValue DIV_Lo = zero; 1406 1407 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1408 1409 for (unsigned i = 0; i < halfBitWidth; ++i) { 1410 const unsigned bitPos = halfBitWidth - i - 1; 1411 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1412 // Get value of high bit 1413 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1414 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1415 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1416 1417 // Shift 1418 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1419 // Add LHS high bit 1420 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1421 1422 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1423 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1424 1425 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1426 1427 // Update REM 1428 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1429 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1430 } 1431 1432 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1433 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1434 Results.push_back(DIV); 1435 Results.push_back(REM); 1436 } 1437 1438 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1439 SelectionDAG &DAG) const { 1440 SDLoc DL(Op); 1441 EVT VT = Op.getValueType(); 1442 1443 if (VT == MVT::i64) { 1444 SmallVector<SDValue, 2> Results; 1445 LowerUDIVREM64(Op, DAG, Results); 1446 return DAG.getMergeValues(Results, DL); 1447 } 1448 1449 if (VT == MVT::i32) { 1450 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1451 return Res; 1452 } 1453 1454 SDValue Num = Op.getOperand(0); 1455 SDValue Den = Op.getOperand(1); 1456 1457 // RCP = URECIP(Den) = 2^32 / Den + e 1458 // e is rounding error. 1459 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1460 1461 // RCP_LO = mul(RCP, Den) */ 1462 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1463 1464 // RCP_HI = mulhu (RCP, Den) */ 1465 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1466 1467 // NEG_RCP_LO = -RCP_LO 1468 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1469 RCP_LO); 1470 1471 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1472 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1473 NEG_RCP_LO, RCP_LO, 1474 ISD::SETEQ); 1475 // Calculate the rounding error from the URECIP instruction 1476 // E = mulhu(ABS_RCP_LO, RCP) 1477 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1478 1479 // RCP_A_E = RCP + E 1480 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1481 1482 // RCP_S_E = RCP - E 1483 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1484 1485 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1486 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1487 RCP_A_E, RCP_S_E, 1488 ISD::SETEQ); 1489 // Quotient = mulhu(Tmp0, Num) 1490 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1491 1492 // Num_S_Remainder = Quotient * Den 1493 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1494 1495 // Remainder = Num - Num_S_Remainder 1496 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1497 1498 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1499 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1500 DAG.getConstant(-1, DL, VT), 1501 DAG.getConstant(0, DL, VT), 1502 ISD::SETUGE); 1503 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1504 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1505 Num_S_Remainder, 1506 DAG.getConstant(-1, DL, VT), 1507 DAG.getConstant(0, DL, VT), 1508 ISD::SETUGE); 1509 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1510 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1511 Remainder_GE_Zero); 1512 1513 // Calculate Division result: 1514 1515 // Quotient_A_One = Quotient + 1 1516 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1517 DAG.getConstant(1, DL, VT)); 1518 1519 // Quotient_S_One = Quotient - 1 1520 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1521 DAG.getConstant(1, DL, VT)); 1522 1523 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1524 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1525 Quotient, Quotient_A_One, ISD::SETEQ); 1526 1527 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1528 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1529 Quotient_S_One, Div, ISD::SETEQ); 1530 1531 // Calculate Rem result: 1532 1533 // Remainder_S_Den = Remainder - Den 1534 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1535 1536 // Remainder_A_Den = Remainder + Den 1537 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1538 1539 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1540 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1541 Remainder, Remainder_S_Den, ISD::SETEQ); 1542 1543 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1544 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1545 Remainder_A_Den, Rem, ISD::SETEQ); 1546 SDValue Ops[2] = { 1547 Div, 1548 Rem 1549 }; 1550 return DAG.getMergeValues(Ops, DL); 1551 } 1552 1553 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1554 SelectionDAG &DAG) const { 1555 SDLoc DL(Op); 1556 EVT VT = Op.getValueType(); 1557 1558 SDValue LHS = Op.getOperand(0); 1559 SDValue RHS = Op.getOperand(1); 1560 1561 SDValue Zero = DAG.getConstant(0, DL, VT); 1562 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1563 1564 if (VT == MVT::i32) { 1565 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1566 return Res; 1567 } 1568 1569 if (VT == MVT::i64 && 1570 DAG.ComputeNumSignBits(LHS) > 32 && 1571 DAG.ComputeNumSignBits(RHS) > 32) { 1572 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1573 1574 //HiLo split 1575 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1576 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1577 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1578 LHS_Lo, RHS_Lo); 1579 SDValue Res[2] = { 1580 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1581 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1582 }; 1583 return DAG.getMergeValues(Res, DL); 1584 } 1585 1586 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1587 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1588 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1589 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1590 1591 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1592 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1593 1594 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1595 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1596 1597 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1598 SDValue Rem = Div.getValue(1); 1599 1600 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1601 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1602 1603 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1604 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1605 1606 SDValue Res[2] = { 1607 Div, 1608 Rem 1609 }; 1610 return DAG.getMergeValues(Res, DL); 1611 } 1612 1613 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1614 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1615 SDLoc SL(Op); 1616 EVT VT = Op.getValueType(); 1617 SDValue X = Op.getOperand(0); 1618 SDValue Y = Op.getOperand(1); 1619 1620 // TODO: Should this propagate fast-math-flags? 1621 1622 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1623 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1624 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1625 1626 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1627 } 1628 1629 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1630 SDLoc SL(Op); 1631 SDValue Src = Op.getOperand(0); 1632 1633 // result = trunc(src) 1634 // if (src > 0.0 && src != result) 1635 // result += 1.0 1636 1637 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1638 1639 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1640 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1641 1642 EVT SetCCVT = 1643 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1644 1645 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1646 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1647 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1648 1649 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1650 // TODO: Should this propagate fast-math-flags? 1651 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1652 } 1653 1654 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1655 SelectionDAG &DAG) { 1656 const unsigned FractBits = 52; 1657 const unsigned ExpBits = 11; 1658 1659 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1660 Hi, 1661 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1662 DAG.getConstant(ExpBits, SL, MVT::i32)); 1663 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1664 DAG.getConstant(1023, SL, MVT::i32)); 1665 1666 return Exp; 1667 } 1668 1669 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1670 SDLoc SL(Op); 1671 SDValue Src = Op.getOperand(0); 1672 1673 assert(Op.getValueType() == MVT::f64); 1674 1675 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1676 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1677 1678 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1679 1680 // Extract the upper half, since this is where we will find the sign and 1681 // exponent. 1682 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1683 1684 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1685 1686 const unsigned FractBits = 52; 1687 1688 // Extract the sign bit. 1689 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1690 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1691 1692 // Extend back to to 64-bits. 1693 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1694 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1695 1696 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1697 const SDValue FractMask 1698 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1699 1700 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1701 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1702 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1703 1704 EVT SetCCVT = 1705 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1706 1707 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1708 1709 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1710 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1711 1712 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1713 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1714 1715 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1716 } 1717 1718 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1719 SDLoc SL(Op); 1720 SDValue Src = Op.getOperand(0); 1721 1722 assert(Op.getValueType() == MVT::f64); 1723 1724 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1725 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1726 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1727 1728 // TODO: Should this propagate fast-math-flags? 1729 1730 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1731 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1732 1733 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1734 1735 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1736 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1737 1738 EVT SetCCVT = 1739 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1740 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1741 1742 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1743 } 1744 1745 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1746 // FNEARBYINT and FRINT are the same, except in their handling of FP 1747 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1748 // rint, so just treat them as equivalent. 1749 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1750 } 1751 1752 // XXX - May require not supporting f32 denormals? 1753 1754 // Don't handle v2f16. The extra instructions to scalarize and repack around the 1755 // compare and vselect end up producing worse code than scalarizing the whole 1756 // operation. 1757 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 1758 SDLoc SL(Op); 1759 SDValue X = Op.getOperand(0); 1760 EVT VT = Op.getValueType(); 1761 1762 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 1763 1764 // TODO: Should this propagate fast-math-flags? 1765 1766 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 1767 1768 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 1769 1770 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 1771 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 1772 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 1773 1774 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 1775 1776 EVT SetCCVT = 1777 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1778 1779 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1780 1781 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 1782 1783 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 1784 } 1785 1786 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1787 SDLoc SL(Op); 1788 SDValue X = Op.getOperand(0); 1789 1790 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1791 1792 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1793 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1794 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1795 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1796 EVT SetCCVT = 1797 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1798 1799 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1800 1801 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1802 1803 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1804 1805 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1806 MVT::i64); 1807 1808 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1809 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1810 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1811 MVT::i64), 1812 Exp); 1813 1814 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1815 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1816 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1817 ISD::SETNE); 1818 1819 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1820 D, DAG.getConstant(0, SL, MVT::i64)); 1821 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1822 1823 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1824 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1825 1826 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1827 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1828 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1829 1830 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1831 ExpEqNegOne, 1832 DAG.getConstantFP(1.0, SL, MVT::f64), 1833 DAG.getConstantFP(0.0, SL, MVT::f64)); 1834 1835 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1836 1837 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1838 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1839 1840 return K; 1841 } 1842 1843 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1844 EVT VT = Op.getValueType(); 1845 1846 if (VT == MVT::f32 || VT == MVT::f16) 1847 return LowerFROUND32_16(Op, DAG); 1848 1849 if (VT == MVT::f64) 1850 return LowerFROUND64(Op, DAG); 1851 1852 llvm_unreachable("unhandled type"); 1853 } 1854 1855 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1856 SDLoc SL(Op); 1857 SDValue Src = Op.getOperand(0); 1858 1859 // result = trunc(src); 1860 // if (src < 0.0 && src != result) 1861 // result += -1.0. 1862 1863 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1864 1865 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1866 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1867 1868 EVT SetCCVT = 1869 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1870 1871 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1872 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1873 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1874 1875 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1876 // TODO: Should this propagate fast-math-flags? 1877 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1878 } 1879 1880 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1881 SDLoc SL(Op); 1882 SDValue Src = Op.getOperand(0); 1883 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1884 1885 if (ZeroUndef && Src.getValueType() == MVT::i32) 1886 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1887 1888 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1889 1890 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1891 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1892 1893 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1894 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1895 1896 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1897 *DAG.getContext(), MVT::i32); 1898 1899 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1900 1901 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1902 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1903 1904 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1905 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1906 1907 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1908 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1909 1910 if (!ZeroUndef) { 1911 // Test if the full 64-bit input is zero. 1912 1913 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1914 // which we probably don't want. 1915 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1916 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1917 1918 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1919 // with the same cycles, otherwise it is slower. 1920 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1921 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1922 1923 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1924 1925 // The instruction returns -1 for 0 input, but the defined intrinsic 1926 // behavior is to return the number of bits. 1927 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1928 SrcIsZero, Bits32, NewCtlz); 1929 } 1930 1931 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1932 } 1933 1934 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1935 bool Signed) const { 1936 // Unsigned 1937 // cul2f(ulong u) 1938 //{ 1939 // uint lz = clz(u); 1940 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1941 // u = (u << lz) & 0x7fffffffffffffffUL; 1942 // ulong t = u & 0xffffffffffUL; 1943 // uint v = (e << 23) | (uint)(u >> 40); 1944 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1945 // return as_float(v + r); 1946 //} 1947 // Signed 1948 // cl2f(long l) 1949 //{ 1950 // long s = l >> 63; 1951 // float r = cul2f((l + s) ^ s); 1952 // return s ? -r : r; 1953 //} 1954 1955 SDLoc SL(Op); 1956 SDValue Src = Op.getOperand(0); 1957 SDValue L = Src; 1958 1959 SDValue S; 1960 if (Signed) { 1961 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1962 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1963 1964 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1965 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1966 } 1967 1968 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1969 *DAG.getContext(), MVT::f32); 1970 1971 1972 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1973 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1974 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1975 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1976 1977 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1978 SDValue E = DAG.getSelect(SL, MVT::i32, 1979 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1980 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1981 ZeroI32); 1982 1983 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1984 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1985 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1986 1987 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1988 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1989 1990 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1991 U, DAG.getConstant(40, SL, MVT::i64)); 1992 1993 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1994 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1995 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1996 1997 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1998 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1999 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2000 2001 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2002 2003 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2004 2005 SDValue R = DAG.getSelect(SL, MVT::i32, 2006 RCmp, 2007 One, 2008 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2009 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2010 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2011 2012 if (!Signed) 2013 return R; 2014 2015 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2016 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2017 } 2018 2019 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2020 bool Signed) const { 2021 SDLoc SL(Op); 2022 SDValue Src = Op.getOperand(0); 2023 2024 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2025 2026 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2027 DAG.getConstant(0, SL, MVT::i32)); 2028 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2029 DAG.getConstant(1, SL, MVT::i32)); 2030 2031 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2032 SL, MVT::f64, Hi); 2033 2034 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2035 2036 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2037 DAG.getConstant(32, SL, MVT::i32)); 2038 // TODO: Should this propagate fast-math-flags? 2039 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2040 } 2041 2042 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2043 SelectionDAG &DAG) const { 2044 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2045 "operation should be legal"); 2046 2047 // TODO: Factor out code common with LowerSINT_TO_FP. 2048 2049 EVT DestVT = Op.getValueType(); 2050 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2051 SDLoc DL(Op); 2052 SDValue Src = Op.getOperand(0); 2053 2054 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2055 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2056 SDValue FPRound = 2057 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2058 2059 return FPRound; 2060 } 2061 2062 if (DestVT == MVT::f32) 2063 return LowerINT_TO_FP32(Op, DAG, false); 2064 2065 assert(DestVT == MVT::f64); 2066 return LowerINT_TO_FP64(Op, DAG, false); 2067 } 2068 2069 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2070 SelectionDAG &DAG) const { 2071 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2072 "operation should be legal"); 2073 2074 // TODO: Factor out code common with LowerUINT_TO_FP. 2075 2076 EVT DestVT = Op.getValueType(); 2077 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2078 SDLoc DL(Op); 2079 SDValue Src = Op.getOperand(0); 2080 2081 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2082 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2083 SDValue FPRound = 2084 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2085 2086 return FPRound; 2087 } 2088 2089 if (DestVT == MVT::f32) 2090 return LowerINT_TO_FP32(Op, DAG, true); 2091 2092 assert(DestVT == MVT::f64); 2093 return LowerINT_TO_FP64(Op, DAG, true); 2094 } 2095 2096 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2097 bool Signed) const { 2098 SDLoc SL(Op); 2099 2100 SDValue Src = Op.getOperand(0); 2101 2102 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2103 2104 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2105 MVT::f64); 2106 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2107 MVT::f64); 2108 // TODO: Should this propagate fast-math-flags? 2109 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2110 2111 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2112 2113 2114 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2115 2116 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2117 MVT::i32, FloorMul); 2118 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2119 2120 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2121 2122 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2123 } 2124 2125 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2126 SDLoc DL(Op); 2127 SDValue N0 = Op.getOperand(0); 2128 2129 // Convert to target node to get known bits 2130 if (N0.getValueType() == MVT::f32) 2131 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2132 2133 if (getTargetMachine().Options.UnsafeFPMath) { 2134 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2135 return SDValue(); 2136 } 2137 2138 assert(N0.getSimpleValueType() == MVT::f64); 2139 2140 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2141 const unsigned ExpMask = 0x7ff; 2142 const unsigned ExpBiasf64 = 1023; 2143 const unsigned ExpBiasf16 = 15; 2144 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2145 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2146 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2147 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2148 DAG.getConstant(32, DL, MVT::i64)); 2149 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2150 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2151 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2152 DAG.getConstant(20, DL, MVT::i64)); 2153 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2154 DAG.getConstant(ExpMask, DL, MVT::i32)); 2155 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2156 // add the f16 bias (15) to get the biased exponent for the f16 format. 2157 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2158 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2159 2160 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2161 DAG.getConstant(8, DL, MVT::i32)); 2162 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2163 DAG.getConstant(0xffe, DL, MVT::i32)); 2164 2165 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2166 DAG.getConstant(0x1ff, DL, MVT::i32)); 2167 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2168 2169 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2170 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2171 2172 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2173 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2174 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2175 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2176 2177 // N = M | (E << 12); 2178 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2179 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2180 DAG.getConstant(12, DL, MVT::i32))); 2181 2182 // B = clamp(1-E, 0, 13); 2183 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2184 One, E); 2185 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2186 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2187 DAG.getConstant(13, DL, MVT::i32)); 2188 2189 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2190 DAG.getConstant(0x1000, DL, MVT::i32)); 2191 2192 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2193 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2194 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2195 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2196 2197 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2198 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2199 DAG.getConstant(0x7, DL, MVT::i32)); 2200 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2201 DAG.getConstant(2, DL, MVT::i32)); 2202 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2203 One, Zero, ISD::SETEQ); 2204 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2205 One, Zero, ISD::SETGT); 2206 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2207 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2208 2209 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2210 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2211 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2212 I, V, ISD::SETEQ); 2213 2214 // Extract the sign bit. 2215 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2216 DAG.getConstant(16, DL, MVT::i32)); 2217 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2218 DAG.getConstant(0x8000, DL, MVT::i32)); 2219 2220 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2221 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2222 } 2223 2224 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2225 SelectionDAG &DAG) const { 2226 SDValue Src = Op.getOperand(0); 2227 2228 // TODO: Factor out code common with LowerFP_TO_UINT. 2229 2230 EVT SrcVT = Src.getValueType(); 2231 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2232 SDLoc DL(Op); 2233 2234 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2235 SDValue FpToInt32 = 2236 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2237 2238 return FpToInt32; 2239 } 2240 2241 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2242 return LowerFP64_TO_INT(Op, DAG, true); 2243 2244 return SDValue(); 2245 } 2246 2247 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2248 SelectionDAG &DAG) const { 2249 SDValue Src = Op.getOperand(0); 2250 2251 // TODO: Factor out code common with LowerFP_TO_SINT. 2252 2253 EVT SrcVT = Src.getValueType(); 2254 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2255 SDLoc DL(Op); 2256 2257 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2258 SDValue FpToInt32 = 2259 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2260 2261 return FpToInt32; 2262 } 2263 2264 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2265 return LowerFP64_TO_INT(Op, DAG, false); 2266 2267 return SDValue(); 2268 } 2269 2270 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2271 SelectionDAG &DAG) const { 2272 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2273 MVT VT = Op.getSimpleValueType(); 2274 MVT ScalarVT = VT.getScalarType(); 2275 2276 assert(VT.isVector()); 2277 2278 SDValue Src = Op.getOperand(0); 2279 SDLoc DL(Op); 2280 2281 // TODO: Don't scalarize on Evergreen? 2282 unsigned NElts = VT.getVectorNumElements(); 2283 SmallVector<SDValue, 8> Args; 2284 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2285 2286 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2287 for (unsigned I = 0; I < NElts; ++I) 2288 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2289 2290 return DAG.getBuildVector(VT, DL, Args); 2291 } 2292 2293 //===----------------------------------------------------------------------===// 2294 // Custom DAG optimizations 2295 //===----------------------------------------------------------------------===// 2296 2297 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2298 KnownBits Known; 2299 EVT VT = Op.getValueType(); 2300 DAG.computeKnownBits(Op, Known); 2301 2302 return (VT.getSizeInBits() - Known.Zero.countLeadingOnes()) <= 24; 2303 } 2304 2305 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2306 EVT VT = Op.getValueType(); 2307 2308 // In order for this to be a signed 24-bit value, bit 23, must 2309 // be a sign bit. 2310 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2311 // as unsigned 24-bit values. 2312 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2313 } 2314 2315 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2316 TargetLowering::DAGCombinerInfo &DCI) { 2317 2318 SelectionDAG &DAG = DCI.DAG; 2319 SDValue Op = Node24->getOperand(OpIdx); 2320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2321 EVT VT = Op.getValueType(); 2322 2323 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2324 APInt KnownZero, KnownOne; 2325 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2326 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2327 return true; 2328 2329 return false; 2330 } 2331 2332 template <typename IntTy> 2333 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2334 uint32_t Width, const SDLoc &DL) { 2335 if (Width + Offset < 32) { 2336 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2337 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2338 return DAG.getConstant(Result, DL, MVT::i32); 2339 } 2340 2341 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2342 } 2343 2344 static bool hasVolatileUser(SDNode *Val) { 2345 for (SDNode *U : Val->uses()) { 2346 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2347 if (M->isVolatile()) 2348 return true; 2349 } 2350 } 2351 2352 return false; 2353 } 2354 2355 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2356 // i32 vectors are the canonical memory type. 2357 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2358 return false; 2359 2360 if (!VT.isByteSized()) 2361 return false; 2362 2363 unsigned Size = VT.getStoreSize(); 2364 2365 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2366 return false; 2367 2368 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2369 return false; 2370 2371 return true; 2372 } 2373 2374 // Replace load of an illegal type with a store of a bitcast to a friendlier 2375 // type. 2376 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2377 DAGCombinerInfo &DCI) const { 2378 if (!DCI.isBeforeLegalize()) 2379 return SDValue(); 2380 2381 LoadSDNode *LN = cast<LoadSDNode>(N); 2382 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2383 return SDValue(); 2384 2385 SDLoc SL(N); 2386 SelectionDAG &DAG = DCI.DAG; 2387 EVT VT = LN->getMemoryVT(); 2388 2389 unsigned Size = VT.getStoreSize(); 2390 unsigned Align = LN->getAlignment(); 2391 if (Align < Size && isTypeLegal(VT)) { 2392 bool IsFast; 2393 unsigned AS = LN->getAddressSpace(); 2394 2395 // Expand unaligned loads earlier than legalization. Due to visitation order 2396 // problems during legalization, the emitted instructions to pack and unpack 2397 // the bytes again are not eliminated in the case of an unaligned copy. 2398 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2399 if (VT.isVector()) 2400 return scalarizeVectorLoad(LN, DAG); 2401 2402 SDValue Ops[2]; 2403 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2404 return DAG.getMergeValues(Ops, SDLoc(N)); 2405 } 2406 2407 if (!IsFast) 2408 return SDValue(); 2409 } 2410 2411 if (!shouldCombineMemoryType(VT)) 2412 return SDValue(); 2413 2414 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2415 2416 SDValue NewLoad 2417 = DAG.getLoad(NewVT, SL, LN->getChain(), 2418 LN->getBasePtr(), LN->getMemOperand()); 2419 2420 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2421 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2422 return SDValue(N, 0); 2423 } 2424 2425 // Replace store of an illegal type with a store of a bitcast to a friendlier 2426 // type. 2427 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2428 DAGCombinerInfo &DCI) const { 2429 if (!DCI.isBeforeLegalize()) 2430 return SDValue(); 2431 2432 StoreSDNode *SN = cast<StoreSDNode>(N); 2433 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2434 return SDValue(); 2435 2436 EVT VT = SN->getMemoryVT(); 2437 unsigned Size = VT.getStoreSize(); 2438 2439 SDLoc SL(N); 2440 SelectionDAG &DAG = DCI.DAG; 2441 unsigned Align = SN->getAlignment(); 2442 if (Align < Size && isTypeLegal(VT)) { 2443 bool IsFast; 2444 unsigned AS = SN->getAddressSpace(); 2445 2446 // Expand unaligned stores earlier than legalization. Due to visitation 2447 // order problems during legalization, the emitted instructions to pack and 2448 // unpack the bytes again are not eliminated in the case of an unaligned 2449 // copy. 2450 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2451 if (VT.isVector()) 2452 return scalarizeVectorStore(SN, DAG); 2453 2454 return expandUnalignedStore(SN, DAG); 2455 } 2456 2457 if (!IsFast) 2458 return SDValue(); 2459 } 2460 2461 if (!shouldCombineMemoryType(VT)) 2462 return SDValue(); 2463 2464 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2465 SDValue Val = SN->getValue(); 2466 2467 //DCI.AddToWorklist(Val.getNode()); 2468 2469 bool OtherUses = !Val.hasOneUse(); 2470 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2471 if (OtherUses) { 2472 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2473 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2474 } 2475 2476 return DAG.getStore(SN->getChain(), SL, CastVal, 2477 SN->getBasePtr(), SN->getMemOperand()); 2478 } 2479 2480 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2481 DAGCombinerInfo &DCI) const { 2482 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2483 if (!CSrc) 2484 return SDValue(); 2485 2486 const APFloat &F = CSrc->getValueAPF(); 2487 APFloat Zero = APFloat::getZero(F.getSemantics()); 2488 APFloat::cmpResult Cmp0 = F.compare(Zero); 2489 if (Cmp0 == APFloat::cmpLessThan || 2490 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2491 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2492 } 2493 2494 APFloat One(F.getSemantics(), "1.0"); 2495 APFloat::cmpResult Cmp1 = F.compare(One); 2496 if (Cmp1 == APFloat::cmpGreaterThan) 2497 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2498 2499 return SDValue(CSrc, 0); 2500 } 2501 2502 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2503 /// binary operation \p Opc to it with the corresponding constant operands. 2504 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2505 DAGCombinerInfo &DCI, const SDLoc &SL, 2506 unsigned Opc, SDValue LHS, 2507 uint32_t ValLo, uint32_t ValHi) const { 2508 SelectionDAG &DAG = DCI.DAG; 2509 SDValue Lo, Hi; 2510 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2511 2512 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2513 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2514 2515 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2516 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2517 2518 // Re-visit the ands. It's possible we eliminated one of them and it could 2519 // simplify the vector. 2520 DCI.AddToWorklist(Lo.getNode()); 2521 DCI.AddToWorklist(Hi.getNode()); 2522 2523 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2524 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2525 } 2526 2527 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2528 DAGCombinerInfo &DCI) const { 2529 if (N->getValueType(0) != MVT::i64) 2530 return SDValue(); 2531 2532 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2533 2534 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2535 // common case, splitting this into a move and a 32-bit shift is faster and 2536 // the same code size. 2537 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2538 if (!RHS) 2539 return SDValue(); 2540 2541 unsigned RHSVal = RHS->getZExtValue(); 2542 if (RHSVal < 32) 2543 return SDValue(); 2544 2545 SDValue LHS = N->getOperand(0); 2546 2547 SDLoc SL(N); 2548 SelectionDAG &DAG = DCI.DAG; 2549 2550 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2551 2552 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2553 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2554 2555 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2556 2557 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2558 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2559 } 2560 2561 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2562 DAGCombinerInfo &DCI) const { 2563 if (N->getValueType(0) != MVT::i64) 2564 return SDValue(); 2565 2566 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2567 if (!RHS) 2568 return SDValue(); 2569 2570 SelectionDAG &DAG = DCI.DAG; 2571 SDLoc SL(N); 2572 unsigned RHSVal = RHS->getZExtValue(); 2573 2574 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2575 if (RHSVal == 32) { 2576 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2577 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2578 DAG.getConstant(31, SL, MVT::i32)); 2579 2580 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2581 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2582 } 2583 2584 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2585 if (RHSVal == 63) { 2586 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2587 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2588 DAG.getConstant(31, SL, MVT::i32)); 2589 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2590 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2591 } 2592 2593 return SDValue(); 2594 } 2595 2596 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2597 DAGCombinerInfo &DCI) const { 2598 if (N->getValueType(0) != MVT::i64) 2599 return SDValue(); 2600 2601 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2602 if (!RHS) 2603 return SDValue(); 2604 2605 unsigned ShiftAmt = RHS->getZExtValue(); 2606 if (ShiftAmt < 32) 2607 return SDValue(); 2608 2609 // srl i64:x, C for C >= 32 2610 // => 2611 // build_pair (srl hi_32(x), C - 32), 0 2612 2613 SelectionDAG &DAG = DCI.DAG; 2614 SDLoc SL(N); 2615 2616 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2617 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2618 2619 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2620 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2621 VecOp, One); 2622 2623 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2624 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2625 2626 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2627 2628 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2629 } 2630 2631 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2632 // instructions. If we only match on the legalized i64 mul expansion, 2633 // SimplifyDemandedBits will be unable to remove them because there will be 2634 // multiple uses due to the separate mul + mulh[su]. 2635 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2636 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2637 if (Size <= 32) { 2638 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2639 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2640 } 2641 2642 // Because we want to eliminate extension instructions before the 2643 // operation, we need to create a single user here (i.e. not the separate 2644 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2645 2646 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2647 2648 SDValue Mul = DAG.getNode(MulOpc, SL, 2649 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2650 2651 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2652 Mul.getValue(0), Mul.getValue(1)); 2653 } 2654 2655 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2656 DAGCombinerInfo &DCI) const { 2657 EVT VT = N->getValueType(0); 2658 2659 unsigned Size = VT.getSizeInBits(); 2660 if (VT.isVector() || Size > 64) 2661 return SDValue(); 2662 2663 // There are i16 integer mul/mad. 2664 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2665 return SDValue(); 2666 2667 SelectionDAG &DAG = DCI.DAG; 2668 SDLoc DL(N); 2669 2670 SDValue N0 = N->getOperand(0); 2671 SDValue N1 = N->getOperand(1); 2672 SDValue Mul; 2673 2674 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2675 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2676 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2677 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2678 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2679 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2680 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2681 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2682 } else { 2683 return SDValue(); 2684 } 2685 2686 // We need to use sext even for MUL_U24, because MUL_U24 is used 2687 // for signed multiply of 8 and 16-bit types. 2688 return DAG.getSExtOrTrunc(Mul, DL, VT); 2689 } 2690 2691 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2692 DAGCombinerInfo &DCI) const { 2693 EVT VT = N->getValueType(0); 2694 2695 if (!Subtarget->hasMulI24() || VT.isVector()) 2696 return SDValue(); 2697 2698 SelectionDAG &DAG = DCI.DAG; 2699 SDLoc DL(N); 2700 2701 SDValue N0 = N->getOperand(0); 2702 SDValue N1 = N->getOperand(1); 2703 2704 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2705 return SDValue(); 2706 2707 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2708 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2709 2710 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2711 DCI.AddToWorklist(Mulhi.getNode()); 2712 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2713 } 2714 2715 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2716 DAGCombinerInfo &DCI) const { 2717 EVT VT = N->getValueType(0); 2718 2719 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2720 return SDValue(); 2721 2722 SelectionDAG &DAG = DCI.DAG; 2723 SDLoc DL(N); 2724 2725 SDValue N0 = N->getOperand(0); 2726 SDValue N1 = N->getOperand(1); 2727 2728 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2729 return SDValue(); 2730 2731 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2732 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2733 2734 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2735 DCI.AddToWorklist(Mulhi.getNode()); 2736 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2737 } 2738 2739 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2740 SDNode *N, DAGCombinerInfo &DCI) const { 2741 SelectionDAG &DAG = DCI.DAG; 2742 2743 // Simplify demanded bits before splitting into multiple users. 2744 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2745 return SDValue(); 2746 2747 SDValue N0 = N->getOperand(0); 2748 SDValue N1 = N->getOperand(1); 2749 2750 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2751 2752 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2753 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2754 2755 SDLoc SL(N); 2756 2757 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2758 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2759 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2760 } 2761 2762 static bool isNegativeOne(SDValue Val) { 2763 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2764 return C->isAllOnesValue(); 2765 return false; 2766 } 2767 2768 static bool isCtlzOpc(unsigned Opc) { 2769 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2770 } 2771 2772 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2773 SDValue Op, 2774 const SDLoc &DL) const { 2775 EVT VT = Op.getValueType(); 2776 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2777 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2778 LegalVT != MVT::i16)) 2779 return SDValue(); 2780 2781 if (VT != MVT::i32) 2782 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2783 2784 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2785 if (VT != MVT::i32) 2786 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2787 2788 return FFBH; 2789 } 2790 2791 // The native instructions return -1 on 0 input. Optimize out a select that 2792 // produces -1 on 0. 2793 // 2794 // TODO: If zero is not undef, we could also do this if the output is compared 2795 // against the bitwidth. 2796 // 2797 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2798 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2799 SDValue LHS, SDValue RHS, 2800 DAGCombinerInfo &DCI) const { 2801 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2802 if (!CmpRhs || !CmpRhs->isNullValue()) 2803 return SDValue(); 2804 2805 SelectionDAG &DAG = DCI.DAG; 2806 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2807 SDValue CmpLHS = Cond.getOperand(0); 2808 2809 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2810 if (CCOpcode == ISD::SETEQ && 2811 isCtlzOpc(RHS.getOpcode()) && 2812 RHS.getOperand(0) == CmpLHS && 2813 isNegativeOne(LHS)) { 2814 return getFFBH_U32(DAG, CmpLHS, SL); 2815 } 2816 2817 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2818 if (CCOpcode == ISD::SETNE && 2819 isCtlzOpc(LHS.getOpcode()) && 2820 LHS.getOperand(0) == CmpLHS && 2821 isNegativeOne(RHS)) { 2822 return getFFBH_U32(DAG, CmpLHS, SL); 2823 } 2824 2825 return SDValue(); 2826 } 2827 2828 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 2829 unsigned Op, 2830 const SDLoc &SL, 2831 SDValue Cond, 2832 SDValue N1, 2833 SDValue N2) { 2834 SelectionDAG &DAG = DCI.DAG; 2835 EVT VT = N1.getValueType(); 2836 2837 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 2838 N1.getOperand(0), N2.getOperand(0)); 2839 DCI.AddToWorklist(NewSelect.getNode()); 2840 return DAG.getNode(Op, SL, VT, NewSelect); 2841 } 2842 2843 // Pull a free FP operation out of a select so it may fold into uses. 2844 // 2845 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 2846 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 2847 // 2848 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 2849 // select c, (fabs x), +k -> fabs (select c, x, k) 2850 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 2851 SDValue N) { 2852 SelectionDAG &DAG = DCI.DAG; 2853 SDValue Cond = N.getOperand(0); 2854 SDValue LHS = N.getOperand(1); 2855 SDValue RHS = N.getOperand(2); 2856 2857 EVT VT = N.getValueType(); 2858 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 2859 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 2860 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 2861 SDLoc(N), Cond, LHS, RHS); 2862 } 2863 2864 bool Inv = false; 2865 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 2866 std::swap(LHS, RHS); 2867 Inv = true; 2868 } 2869 2870 // TODO: Support vector constants. 2871 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 2872 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 2873 SDLoc SL(N); 2874 // If one side is an fneg/fabs and the other is a constant, we can push the 2875 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 2876 SDValue NewLHS = LHS.getOperand(0); 2877 SDValue NewRHS = RHS; 2878 2879 // Careful: if the neg can be folded up, don't try to pull it back down. 2880 bool ShouldFoldNeg = true; 2881 2882 if (NewLHS.hasOneUse()) { 2883 unsigned Opc = NewLHS.getOpcode(); 2884 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 2885 ShouldFoldNeg = false; 2886 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 2887 ShouldFoldNeg = false; 2888 } 2889 2890 if (ShouldFoldNeg) { 2891 if (LHS.getOpcode() == ISD::FNEG) 2892 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2893 else if (CRHS->isNegative()) 2894 return SDValue(); 2895 2896 if (Inv) 2897 std::swap(NewLHS, NewRHS); 2898 2899 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 2900 Cond, NewLHS, NewRHS); 2901 DCI.AddToWorklist(NewSelect.getNode()); 2902 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 2903 } 2904 } 2905 2906 return SDValue(); 2907 } 2908 2909 2910 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2911 DAGCombinerInfo &DCI) const { 2912 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 2913 return Folded; 2914 2915 SDValue Cond = N->getOperand(0); 2916 if (Cond.getOpcode() != ISD::SETCC) 2917 return SDValue(); 2918 2919 EVT VT = N->getValueType(0); 2920 SDValue LHS = Cond.getOperand(0); 2921 SDValue RHS = Cond.getOperand(1); 2922 SDValue CC = Cond.getOperand(2); 2923 2924 SDValue True = N->getOperand(1); 2925 SDValue False = N->getOperand(2); 2926 2927 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 2928 SelectionDAG &DAG = DCI.DAG; 2929 if ((DAG.isConstantValueOfAnyType(True) || 2930 DAG.isConstantValueOfAnyType(True)) && 2931 (!DAG.isConstantValueOfAnyType(False) && 2932 !DAG.isConstantValueOfAnyType(False))) { 2933 // Swap cmp + select pair to move constant to false input. 2934 // This will allow using VOPC cndmasks more often. 2935 // select (setcc x, y), k, x -> select (setcc y, x) x, x 2936 2937 SDLoc SL(N); 2938 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 2939 LHS.getValueType().isInteger()); 2940 2941 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 2942 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 2943 } 2944 2945 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 2946 SDValue MinMax 2947 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2948 // Revisit this node so we can catch min3/max3/med3 patterns. 2949 //DCI.AddToWorklist(MinMax.getNode()); 2950 return MinMax; 2951 } 2952 } 2953 2954 // There's no reason to not do this if the condition has other uses. 2955 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2956 } 2957 2958 static bool isConstantFPZero(SDValue N) { 2959 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 2960 return C->isZero() && !C->isNegative(); 2961 return false; 2962 } 2963 2964 static unsigned inverseMinMax(unsigned Opc) { 2965 switch (Opc) { 2966 case ISD::FMAXNUM: 2967 return ISD::FMINNUM; 2968 case ISD::FMINNUM: 2969 return ISD::FMAXNUM; 2970 case AMDGPUISD::FMAX_LEGACY: 2971 return AMDGPUISD::FMIN_LEGACY; 2972 case AMDGPUISD::FMIN_LEGACY: 2973 return AMDGPUISD::FMAX_LEGACY; 2974 default: 2975 llvm_unreachable("invalid min/max opcode"); 2976 } 2977 } 2978 2979 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 2980 DAGCombinerInfo &DCI) const { 2981 SelectionDAG &DAG = DCI.DAG; 2982 SDValue N0 = N->getOperand(0); 2983 EVT VT = N->getValueType(0); 2984 2985 unsigned Opc = N0.getOpcode(); 2986 2987 // If the input has multiple uses and we can either fold the negate down, or 2988 // the other uses cannot, give up. This both prevents unprofitable 2989 // transformations and infinite loops: we won't repeatedly try to fold around 2990 // a negate that has no 'good' form. 2991 if (N0.hasOneUse()) { 2992 // This may be able to fold into the source, but at a code size cost. Don't 2993 // fold if the fold into the user is free. 2994 if (allUsesHaveSourceMods(N, 0)) 2995 return SDValue(); 2996 } else { 2997 if (fnegFoldsIntoOp(Opc) && 2998 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 2999 return SDValue(); 3000 } 3001 3002 SDLoc SL(N); 3003 switch (Opc) { 3004 case ISD::FADD: { 3005 if (!mayIgnoreSignedZero(N0)) 3006 return SDValue(); 3007 3008 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3009 SDValue LHS = N0.getOperand(0); 3010 SDValue RHS = N0.getOperand(1); 3011 3012 if (LHS.getOpcode() != ISD::FNEG) 3013 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3014 else 3015 LHS = LHS.getOperand(0); 3016 3017 if (RHS.getOpcode() != ISD::FNEG) 3018 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3019 else 3020 RHS = RHS.getOperand(0); 3021 3022 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3023 if (!N0.hasOneUse()) 3024 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3025 return Res; 3026 } 3027 case ISD::FMUL: 3028 case AMDGPUISD::FMUL_LEGACY: { 3029 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3030 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3031 SDValue LHS = N0.getOperand(0); 3032 SDValue RHS = N0.getOperand(1); 3033 3034 if (LHS.getOpcode() == ISD::FNEG) 3035 LHS = LHS.getOperand(0); 3036 else if (RHS.getOpcode() == ISD::FNEG) 3037 RHS = RHS.getOperand(0); 3038 else 3039 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3040 3041 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3042 if (!N0.hasOneUse()) 3043 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3044 return Res; 3045 } 3046 case ISD::FMA: 3047 case ISD::FMAD: { 3048 if (!mayIgnoreSignedZero(N0)) 3049 return SDValue(); 3050 3051 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3052 SDValue LHS = N0.getOperand(0); 3053 SDValue MHS = N0.getOperand(1); 3054 SDValue RHS = N0.getOperand(2); 3055 3056 if (LHS.getOpcode() == ISD::FNEG) 3057 LHS = LHS.getOperand(0); 3058 else if (MHS.getOpcode() == ISD::FNEG) 3059 MHS = MHS.getOperand(0); 3060 else 3061 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3062 3063 if (RHS.getOpcode() != ISD::FNEG) 3064 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3065 else 3066 RHS = RHS.getOperand(0); 3067 3068 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3069 if (!N0.hasOneUse()) 3070 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3071 return Res; 3072 } 3073 case ISD::FMAXNUM: 3074 case ISD::FMINNUM: 3075 case AMDGPUISD::FMAX_LEGACY: 3076 case AMDGPUISD::FMIN_LEGACY: { 3077 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3078 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3079 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3080 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3081 3082 SDValue LHS = N0.getOperand(0); 3083 SDValue RHS = N0.getOperand(1); 3084 3085 // 0 doesn't have a negated inline immediate. 3086 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3087 // operations. 3088 if (isConstantFPZero(RHS)) 3089 return SDValue(); 3090 3091 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3092 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3093 unsigned Opposite = inverseMinMax(Opc); 3094 3095 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3096 if (!N0.hasOneUse()) 3097 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3098 return Res; 3099 } 3100 case ISD::FP_EXTEND: 3101 case ISD::FTRUNC: 3102 case ISD::FRINT: 3103 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3104 case ISD::FSIN: 3105 case AMDGPUISD::RCP: 3106 case AMDGPUISD::RCP_LEGACY: 3107 case AMDGPUISD::SIN_HW: { 3108 SDValue CvtSrc = N0.getOperand(0); 3109 if (CvtSrc.getOpcode() == ISD::FNEG) { 3110 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3111 // (fneg (rcp (fneg x))) -> (rcp x) 3112 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3113 } 3114 3115 if (!N0.hasOneUse()) 3116 return SDValue(); 3117 3118 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3119 // (fneg (rcp x)) -> (rcp (fneg x)) 3120 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3121 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3122 } 3123 case ISD::FP_ROUND: { 3124 SDValue CvtSrc = N0.getOperand(0); 3125 3126 if (CvtSrc.getOpcode() == ISD::FNEG) { 3127 // (fneg (fp_round (fneg x))) -> (fp_round x) 3128 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3129 CvtSrc.getOperand(0), N0.getOperand(1)); 3130 } 3131 3132 if (!N0.hasOneUse()) 3133 return SDValue(); 3134 3135 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3136 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3137 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3138 } 3139 case ISD::FP16_TO_FP: { 3140 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3141 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3142 // Put the fneg back as a legal source operation that can be matched later. 3143 SDLoc SL(N); 3144 3145 SDValue Src = N0.getOperand(0); 3146 EVT SrcVT = Src.getValueType(); 3147 3148 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3149 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3150 DAG.getConstant(0x8000, SL, SrcVT)); 3151 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3152 } 3153 default: 3154 return SDValue(); 3155 } 3156 } 3157 3158 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3159 DAGCombinerInfo &DCI) const { 3160 SelectionDAG &DAG = DCI.DAG; 3161 SDValue N0 = N->getOperand(0); 3162 3163 if (!N0.hasOneUse()) 3164 return SDValue(); 3165 3166 switch (N0.getOpcode()) { 3167 case ISD::FP16_TO_FP: { 3168 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3169 SDLoc SL(N); 3170 SDValue Src = N0.getOperand(0); 3171 EVT SrcVT = Src.getValueType(); 3172 3173 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3174 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3175 DAG.getConstant(0x7fff, SL, SrcVT)); 3176 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3177 } 3178 default: 3179 return SDValue(); 3180 } 3181 } 3182 3183 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3184 DAGCombinerInfo &DCI) const { 3185 SelectionDAG &DAG = DCI.DAG; 3186 SDLoc DL(N); 3187 3188 switch(N->getOpcode()) { 3189 default: 3190 break; 3191 case ISD::BITCAST: { 3192 EVT DestVT = N->getValueType(0); 3193 3194 // Push casts through vector builds. This helps avoid emitting a large 3195 // number of copies when materializing floating point vector constants. 3196 // 3197 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3198 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3199 if (DestVT.isVector()) { 3200 SDValue Src = N->getOperand(0); 3201 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3202 EVT SrcVT = Src.getValueType(); 3203 unsigned NElts = DestVT.getVectorNumElements(); 3204 3205 if (SrcVT.getVectorNumElements() == NElts) { 3206 EVT DestEltVT = DestVT.getVectorElementType(); 3207 3208 SmallVector<SDValue, 8> CastedElts; 3209 SDLoc SL(N); 3210 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3211 SDValue Elt = Src.getOperand(I); 3212 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3213 } 3214 3215 return DAG.getBuildVector(DestVT, SL, CastedElts); 3216 } 3217 } 3218 } 3219 3220 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3221 break; 3222 3223 // Fold bitcasts of constants. 3224 // 3225 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3226 // TODO: Generalize and move to DAGCombiner 3227 SDValue Src = N->getOperand(0); 3228 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3229 assert(Src.getValueType() == MVT::i64); 3230 SDLoc SL(N); 3231 uint64_t CVal = C->getZExtValue(); 3232 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3233 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3234 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3235 } 3236 3237 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3238 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3239 SDLoc SL(N); 3240 uint64_t CVal = Val.getZExtValue(); 3241 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3242 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3243 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3244 3245 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3246 } 3247 3248 break; 3249 } 3250 case ISD::SHL: { 3251 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3252 break; 3253 3254 return performShlCombine(N, DCI); 3255 } 3256 case ISD::SRL: { 3257 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3258 break; 3259 3260 return performSrlCombine(N, DCI); 3261 } 3262 case ISD::SRA: { 3263 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3264 break; 3265 3266 return performSraCombine(N, DCI); 3267 } 3268 case ISD::MUL: 3269 return performMulCombine(N, DCI); 3270 case ISD::MULHS: 3271 return performMulhsCombine(N, DCI); 3272 case ISD::MULHU: 3273 return performMulhuCombine(N, DCI); 3274 case AMDGPUISD::MUL_I24: 3275 case AMDGPUISD::MUL_U24: 3276 case AMDGPUISD::MULHI_I24: 3277 case AMDGPUISD::MULHI_U24: { 3278 // If the first call to simplify is successfull, then N may end up being 3279 // deleted, so we shouldn't call simplifyI24 again. 3280 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3281 return SDValue(); 3282 } 3283 case AMDGPUISD::MUL_LOHI_I24: 3284 case AMDGPUISD::MUL_LOHI_U24: 3285 return performMulLoHi24Combine(N, DCI); 3286 case ISD::SELECT: 3287 return performSelectCombine(N, DCI); 3288 case ISD::FNEG: 3289 return performFNegCombine(N, DCI); 3290 case ISD::FABS: 3291 return performFAbsCombine(N, DCI); 3292 case AMDGPUISD::BFE_I32: 3293 case AMDGPUISD::BFE_U32: { 3294 assert(!N->getValueType(0).isVector() && 3295 "Vector handling of BFE not implemented"); 3296 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3297 if (!Width) 3298 break; 3299 3300 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3301 if (WidthVal == 0) 3302 return DAG.getConstant(0, DL, MVT::i32); 3303 3304 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3305 if (!Offset) 3306 break; 3307 3308 SDValue BitsFrom = N->getOperand(0); 3309 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3310 3311 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3312 3313 if (OffsetVal == 0) { 3314 // This is already sign / zero extended, so try to fold away extra BFEs. 3315 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3316 3317 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3318 if (OpSignBits >= SignBits) 3319 return BitsFrom; 3320 3321 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3322 if (Signed) { 3323 // This is a sign_extend_inreg. Replace it to take advantage of existing 3324 // DAG Combines. If not eliminated, we will match back to BFE during 3325 // selection. 3326 3327 // TODO: The sext_inreg of extended types ends, although we can could 3328 // handle them in a single BFE. 3329 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3330 DAG.getValueType(SmallVT)); 3331 } 3332 3333 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3334 } 3335 3336 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3337 if (Signed) { 3338 return constantFoldBFE<int32_t>(DAG, 3339 CVal->getSExtValue(), 3340 OffsetVal, 3341 WidthVal, 3342 DL); 3343 } 3344 3345 return constantFoldBFE<uint32_t>(DAG, 3346 CVal->getZExtValue(), 3347 OffsetVal, 3348 WidthVal, 3349 DL); 3350 } 3351 3352 if ((OffsetVal + WidthVal) >= 32) { 3353 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3354 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3355 BitsFrom, ShiftVal); 3356 } 3357 3358 if (BitsFrom.hasOneUse()) { 3359 APInt Demanded = APInt::getBitsSet(32, 3360 OffsetVal, 3361 OffsetVal + WidthVal); 3362 3363 KnownBits Known; 3364 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3365 !DCI.isBeforeLegalizeOps()); 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3368 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3369 DCI.CommitTargetLoweringOpt(TLO); 3370 } 3371 } 3372 3373 break; 3374 } 3375 case ISD::LOAD: 3376 return performLoadCombine(N, DCI); 3377 case ISD::STORE: 3378 return performStoreCombine(N, DCI); 3379 case AMDGPUISD::CLAMP: 3380 return performClampCombine(N, DCI); 3381 case AMDGPUISD::RCP: { 3382 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3383 // XXX - Should this flush denormals? 3384 const APFloat &Val = CFP->getValueAPF(); 3385 APFloat One(Val.getSemantics(), "1.0"); 3386 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3387 } 3388 3389 break; 3390 } 3391 } 3392 return SDValue(); 3393 } 3394 3395 //===----------------------------------------------------------------------===// 3396 // Helper functions 3397 //===----------------------------------------------------------------------===// 3398 3399 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3400 const TargetRegisterClass *RC, 3401 unsigned Reg, EVT VT) const { 3402 MachineFunction &MF = DAG.getMachineFunction(); 3403 MachineRegisterInfo &MRI = MF.getRegInfo(); 3404 unsigned VirtualRegister; 3405 if (!MRI.isLiveIn(Reg)) { 3406 VirtualRegister = MRI.createVirtualRegister(RC); 3407 MRI.addLiveIn(Reg, VirtualRegister); 3408 } else { 3409 VirtualRegister = MRI.getLiveInVirtReg(Reg); 3410 } 3411 return DAG.getRegister(VirtualRegister, VT); 3412 } 3413 3414 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3415 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3416 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3417 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3418 switch (Param) { 3419 case GRID_DIM: 3420 return ArgOffset; 3421 case GRID_OFFSET: 3422 return ArgOffset + 4; 3423 } 3424 llvm_unreachable("unexpected implicit parameter type"); 3425 } 3426 3427 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3428 3429 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3430 switch ((AMDGPUISD::NodeType)Opcode) { 3431 case AMDGPUISD::FIRST_NUMBER: break; 3432 // AMDIL DAG nodes 3433 NODE_NAME_CASE(UMUL); 3434 NODE_NAME_CASE(BRANCH_COND); 3435 3436 // AMDGPU DAG nodes 3437 NODE_NAME_CASE(IF) 3438 NODE_NAME_CASE(ELSE) 3439 NODE_NAME_CASE(LOOP) 3440 NODE_NAME_CASE(CALL) 3441 NODE_NAME_CASE(TRAP) 3442 NODE_NAME_CASE(RET_FLAG) 3443 NODE_NAME_CASE(RETURN_TO_EPILOG) 3444 NODE_NAME_CASE(ENDPGM) 3445 NODE_NAME_CASE(DWORDADDR) 3446 NODE_NAME_CASE(FRACT) 3447 NODE_NAME_CASE(SETCC) 3448 NODE_NAME_CASE(SETREG) 3449 NODE_NAME_CASE(FMA_W_CHAIN) 3450 NODE_NAME_CASE(FMUL_W_CHAIN) 3451 NODE_NAME_CASE(CLAMP) 3452 NODE_NAME_CASE(COS_HW) 3453 NODE_NAME_CASE(SIN_HW) 3454 NODE_NAME_CASE(FMAX_LEGACY) 3455 NODE_NAME_CASE(FMIN_LEGACY) 3456 NODE_NAME_CASE(FMAX3) 3457 NODE_NAME_CASE(SMAX3) 3458 NODE_NAME_CASE(UMAX3) 3459 NODE_NAME_CASE(FMIN3) 3460 NODE_NAME_CASE(SMIN3) 3461 NODE_NAME_CASE(UMIN3) 3462 NODE_NAME_CASE(FMED3) 3463 NODE_NAME_CASE(SMED3) 3464 NODE_NAME_CASE(UMED3) 3465 NODE_NAME_CASE(URECIP) 3466 NODE_NAME_CASE(DIV_SCALE) 3467 NODE_NAME_CASE(DIV_FMAS) 3468 NODE_NAME_CASE(DIV_FIXUP) 3469 NODE_NAME_CASE(FMAD_FTZ) 3470 NODE_NAME_CASE(TRIG_PREOP) 3471 NODE_NAME_CASE(RCP) 3472 NODE_NAME_CASE(RSQ) 3473 NODE_NAME_CASE(RCP_LEGACY) 3474 NODE_NAME_CASE(RSQ_LEGACY) 3475 NODE_NAME_CASE(FMUL_LEGACY) 3476 NODE_NAME_CASE(RSQ_CLAMP) 3477 NODE_NAME_CASE(LDEXP) 3478 NODE_NAME_CASE(FP_CLASS) 3479 NODE_NAME_CASE(DOT4) 3480 NODE_NAME_CASE(CARRY) 3481 NODE_NAME_CASE(BORROW) 3482 NODE_NAME_CASE(BFE_U32) 3483 NODE_NAME_CASE(BFE_I32) 3484 NODE_NAME_CASE(BFI) 3485 NODE_NAME_CASE(BFM) 3486 NODE_NAME_CASE(FFBH_U32) 3487 NODE_NAME_CASE(FFBH_I32) 3488 NODE_NAME_CASE(MUL_U24) 3489 NODE_NAME_CASE(MUL_I24) 3490 NODE_NAME_CASE(MULHI_U24) 3491 NODE_NAME_CASE(MULHI_I24) 3492 NODE_NAME_CASE(MUL_LOHI_U24) 3493 NODE_NAME_CASE(MUL_LOHI_I24) 3494 NODE_NAME_CASE(MAD_U24) 3495 NODE_NAME_CASE(MAD_I24) 3496 NODE_NAME_CASE(TEXTURE_FETCH) 3497 NODE_NAME_CASE(EXPORT) 3498 NODE_NAME_CASE(EXPORT_DONE) 3499 NODE_NAME_CASE(R600_EXPORT) 3500 NODE_NAME_CASE(CONST_ADDRESS) 3501 NODE_NAME_CASE(REGISTER_LOAD) 3502 NODE_NAME_CASE(REGISTER_STORE) 3503 NODE_NAME_CASE(SAMPLE) 3504 NODE_NAME_CASE(SAMPLEB) 3505 NODE_NAME_CASE(SAMPLED) 3506 NODE_NAME_CASE(SAMPLEL) 3507 NODE_NAME_CASE(CVT_F32_UBYTE0) 3508 NODE_NAME_CASE(CVT_F32_UBYTE1) 3509 NODE_NAME_CASE(CVT_F32_UBYTE2) 3510 NODE_NAME_CASE(CVT_F32_UBYTE3) 3511 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3512 NODE_NAME_CASE(FP_TO_FP16) 3513 NODE_NAME_CASE(FP16_ZEXT) 3514 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3515 NODE_NAME_CASE(CONST_DATA_PTR) 3516 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3517 NODE_NAME_CASE(KILL) 3518 NODE_NAME_CASE(DUMMY_CHAIN) 3519 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3520 NODE_NAME_CASE(INIT_EXEC) 3521 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 3522 NODE_NAME_CASE(SENDMSG) 3523 NODE_NAME_CASE(SENDMSGHALT) 3524 NODE_NAME_CASE(INTERP_MOV) 3525 NODE_NAME_CASE(INTERP_P1) 3526 NODE_NAME_CASE(INTERP_P2) 3527 NODE_NAME_CASE(STORE_MSKOR) 3528 NODE_NAME_CASE(LOAD_CONSTANT) 3529 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3530 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3531 NODE_NAME_CASE(ATOMIC_INC) 3532 NODE_NAME_CASE(ATOMIC_DEC) 3533 NODE_NAME_CASE(BUFFER_LOAD) 3534 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3535 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3536 } 3537 return nullptr; 3538 } 3539 3540 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3541 SelectionDAG &DAG, int Enabled, 3542 int &RefinementSteps, 3543 bool &UseOneConstNR, 3544 bool Reciprocal) const { 3545 EVT VT = Operand.getValueType(); 3546 3547 if (VT == MVT::f32) { 3548 RefinementSteps = 0; 3549 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3550 } 3551 3552 // TODO: There is also f64 rsq instruction, but the documentation is less 3553 // clear on its precision. 3554 3555 return SDValue(); 3556 } 3557 3558 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3559 SelectionDAG &DAG, int Enabled, 3560 int &RefinementSteps) const { 3561 EVT VT = Operand.getValueType(); 3562 3563 if (VT == MVT::f32) { 3564 // Reciprocal, < 1 ulp error. 3565 // 3566 // This reciprocal approximation converges to < 0.5 ulp error with one 3567 // newton rhapson performed with two fused multiple adds (FMAs). 3568 3569 RefinementSteps = 0; 3570 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3571 } 3572 3573 // TODO: There is also f64 rcp instruction, but the documentation is less 3574 // clear on its precision. 3575 3576 return SDValue(); 3577 } 3578 3579 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3580 const SDValue Op, KnownBits &Known, 3581 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 3582 3583 Known.Zero.clearAllBits(); Known.One.clearAllBits(); // Don't know anything. 3584 3585 KnownBits Known2; 3586 unsigned Opc = Op.getOpcode(); 3587 3588 switch (Opc) { 3589 default: 3590 break; 3591 case AMDGPUISD::CARRY: 3592 case AMDGPUISD::BORROW: { 3593 Known.Zero = APInt::getHighBitsSet(32, 31); 3594 break; 3595 } 3596 3597 case AMDGPUISD::BFE_I32: 3598 case AMDGPUISD::BFE_U32: { 3599 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3600 if (!CWidth) 3601 return; 3602 3603 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3604 3605 if (Opc == AMDGPUISD::BFE_U32) 3606 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 3607 3608 break; 3609 } 3610 case AMDGPUISD::FP_TO_FP16: 3611 case AMDGPUISD::FP16_ZEXT: { 3612 unsigned BitWidth = Known.getBitWidth(); 3613 3614 // High bits are zero. 3615 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 3616 break; 3617 } 3618 } 3619 } 3620 3621 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3622 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3623 unsigned Depth) const { 3624 switch (Op.getOpcode()) { 3625 case AMDGPUISD::BFE_I32: { 3626 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3627 if (!Width) 3628 return 1; 3629 3630 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3631 if (!isNullConstant(Op.getOperand(1))) 3632 return SignBits; 3633 3634 // TODO: Could probably figure something out with non-0 offsets. 3635 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3636 return std::max(SignBits, Op0SignBits); 3637 } 3638 3639 case AMDGPUISD::BFE_U32: { 3640 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3641 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3642 } 3643 3644 case AMDGPUISD::CARRY: 3645 case AMDGPUISD::BORROW: 3646 return 31; 3647 case AMDGPUISD::FP_TO_FP16: 3648 case AMDGPUISD::FP16_ZEXT: 3649 return 16; 3650 default: 3651 return 1; 3652 } 3653 } 3654