1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 18 19 #include "AMDGPUISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUCallLowering.h" 22 #include "AMDGPUFrameLowering.h" 23 #include "AMDGPURegisterInfo.h" 24 #include "AMDGPUSubtarget.h" 25 #include "AMDGPUTargetMachine.h" 26 #include "Utils/AMDGPUBaseInfo.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "SIInstrInfo.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/CallingConvLower.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/Support/KnownBits.h" 40 using namespace llvm; 41 42 #include "AMDGPUGenCallingConv.inc" 43 44 // Find a larger type to do a load / store of a vector with. 45 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 46 unsigned StoreSize = VT.getStoreSizeInBits(); 47 if (StoreSize <= 32) 48 return EVT::getIntegerVT(Ctx, StoreSize); 49 50 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 51 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 52 } 53 54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 55 EVT VT = Op.getValueType(); 56 KnownBits Known = DAG.computeKnownBits(Op); 57 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 58 } 59 60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 61 EVT VT = Op.getValueType(); 62 63 // In order for this to be a signed 24-bit value, bit 23, must 64 // be a sign bit. 65 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 66 } 67 68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 69 const AMDGPUSubtarget &STI) 70 : TargetLowering(TM), Subtarget(&STI) { 71 // Lower floating point store/load to integer store/load to reduce the number 72 // of patterns in tablegen. 73 setOperationAction(ISD::LOAD, MVT::f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 75 76 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 78 79 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 81 82 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 84 85 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 87 88 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 90 91 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 93 94 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 96 97 setOperationAction(ISD::LOAD, MVT::i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 99 100 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 102 103 setOperationAction(ISD::LOAD, MVT::f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 105 106 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 107 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 108 109 // There are no 64-bit extloads. These should be done as a 32-bit extload and 110 // an extension to 64-bit. 111 for (MVT VT : MVT::integer_valuetypes()) { 112 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 113 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 114 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 115 } 116 117 for (MVT VT : MVT::integer_valuetypes()) { 118 if (VT == MVT::i64) 119 continue; 120 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 122 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 123 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 125 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 129 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 130 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 132 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 133 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 134 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 135 } 136 137 for (MVT VT : MVT::integer_vector_valuetypes()) { 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 156 157 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 159 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 160 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 161 162 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 164 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 165 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 166 167 setOperationAction(ISD::STORE, MVT::f32, Promote); 168 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 169 170 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 172 173 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 175 176 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 178 179 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 181 182 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 184 185 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 187 188 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 190 191 setOperationAction(ISD::STORE, MVT::i64, Promote); 192 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 193 194 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 196 197 setOperationAction(ISD::STORE, MVT::f64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 202 203 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 204 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 205 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 206 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 207 208 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 209 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 210 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 211 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 212 213 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 214 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 215 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 216 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 217 218 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 219 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 220 221 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 222 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 223 224 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 225 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 226 227 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 228 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 229 230 231 setOperationAction(ISD::Constant, MVT::i32, Legal); 232 setOperationAction(ISD::Constant, MVT::i64, Legal); 233 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 234 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 235 236 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 237 setOperationAction(ISD::BRIND, MVT::Other, Expand); 238 239 // This is totally unsupported, just custom lower to produce an error. 240 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 241 242 // Library functions. These default to Expand, but we have instructions 243 // for them. 244 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 245 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 246 setOperationAction(ISD::FPOW, MVT::f32, Legal); 247 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 248 setOperationAction(ISD::FABS, MVT::f32, Legal); 249 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 250 setOperationAction(ISD::FRINT, MVT::f32, Legal); 251 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 252 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 253 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 254 255 setOperationAction(ISD::FROUND, MVT::f32, Custom); 256 setOperationAction(ISD::FROUND, MVT::f64, Custom); 257 258 setOperationAction(ISD::FLOG, MVT::f32, Custom); 259 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 260 setOperationAction(ISD::FEXP, MVT::f32, Custom); 261 262 263 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 264 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 265 266 setOperationAction(ISD::FREM, MVT::f32, Custom); 267 setOperationAction(ISD::FREM, MVT::f64, Custom); 268 269 // Expand to fneg + fadd. 270 setOperationAction(ISD::FSUB, MVT::f64, Expand); 271 272 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 273 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 274 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 275 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 276 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 277 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 280 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 281 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 282 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 283 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 284 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 285 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 294 295 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 296 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 297 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 298 299 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 300 for (MVT VT : ScalarIntVTs) { 301 // These should use [SU]DIVREM, so set them to expand 302 setOperationAction(ISD::SDIV, VT, Expand); 303 setOperationAction(ISD::UDIV, VT, Expand); 304 setOperationAction(ISD::SREM, VT, Expand); 305 setOperationAction(ISD::UREM, VT, Expand); 306 307 // GPU does not have divrem function for signed or unsigned. 308 setOperationAction(ISD::SDIVREM, VT, Custom); 309 setOperationAction(ISD::UDIVREM, VT, Custom); 310 311 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 312 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 313 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 314 315 setOperationAction(ISD::BSWAP, VT, Expand); 316 setOperationAction(ISD::CTTZ, VT, Expand); 317 setOperationAction(ISD::CTLZ, VT, Expand); 318 319 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 320 setOperationAction(ISD::ADDC, VT, Legal); 321 setOperationAction(ISD::SUBC, VT, Legal); 322 setOperationAction(ISD::ADDE, VT, Legal); 323 setOperationAction(ISD::SUBE, VT, Legal); 324 } 325 326 // The hardware supports 32-bit ROTR, but not ROTL. 327 setOperationAction(ISD::ROTL, MVT::i32, Expand); 328 setOperationAction(ISD::ROTL, MVT::i64, Expand); 329 setOperationAction(ISD::ROTR, MVT::i64, Expand); 330 331 setOperationAction(ISD::MUL, MVT::i64, Expand); 332 setOperationAction(ISD::MULHU, MVT::i64, Expand); 333 setOperationAction(ISD::MULHS, MVT::i64, Expand); 334 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 335 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 336 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 337 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 338 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 339 340 setOperationAction(ISD::SMIN, MVT::i32, Legal); 341 setOperationAction(ISD::UMIN, MVT::i32, Legal); 342 setOperationAction(ISD::SMAX, MVT::i32, Legal); 343 setOperationAction(ISD::UMAX, MVT::i32, Legal); 344 345 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 346 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 347 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 348 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 349 350 static const MVT::SimpleValueType VectorIntTypes[] = { 351 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 352 }; 353 354 for (MVT VT : VectorIntTypes) { 355 // Expand the following operations for the current type by default. 356 setOperationAction(ISD::ADD, VT, Expand); 357 setOperationAction(ISD::AND, VT, Expand); 358 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 359 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 360 setOperationAction(ISD::MUL, VT, Expand); 361 setOperationAction(ISD::MULHU, VT, Expand); 362 setOperationAction(ISD::MULHS, VT, Expand); 363 setOperationAction(ISD::OR, VT, Expand); 364 setOperationAction(ISD::SHL, VT, Expand); 365 setOperationAction(ISD::SRA, VT, Expand); 366 setOperationAction(ISD::SRL, VT, Expand); 367 setOperationAction(ISD::ROTL, VT, Expand); 368 setOperationAction(ISD::ROTR, VT, Expand); 369 setOperationAction(ISD::SUB, VT, Expand); 370 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 371 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 372 setOperationAction(ISD::SDIV, VT, Expand); 373 setOperationAction(ISD::UDIV, VT, Expand); 374 setOperationAction(ISD::SREM, VT, Expand); 375 setOperationAction(ISD::UREM, VT, Expand); 376 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 377 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 378 setOperationAction(ISD::SDIVREM, VT, Custom); 379 setOperationAction(ISD::UDIVREM, VT, Expand); 380 setOperationAction(ISD::SELECT, VT, Expand); 381 setOperationAction(ISD::VSELECT, VT, Expand); 382 setOperationAction(ISD::SELECT_CC, VT, Expand); 383 setOperationAction(ISD::XOR, VT, Expand); 384 setOperationAction(ISD::BSWAP, VT, Expand); 385 setOperationAction(ISD::CTPOP, VT, Expand); 386 setOperationAction(ISD::CTTZ, VT, Expand); 387 setOperationAction(ISD::CTLZ, VT, Expand); 388 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 389 setOperationAction(ISD::SETCC, VT, Expand); 390 } 391 392 static const MVT::SimpleValueType FloatVectorTypes[] = { 393 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 394 }; 395 396 for (MVT VT : FloatVectorTypes) { 397 setOperationAction(ISD::FABS, VT, Expand); 398 setOperationAction(ISD::FMINNUM, VT, Expand); 399 setOperationAction(ISD::FMAXNUM, VT, Expand); 400 setOperationAction(ISD::FADD, VT, Expand); 401 setOperationAction(ISD::FCEIL, VT, Expand); 402 setOperationAction(ISD::FCOS, VT, Expand); 403 setOperationAction(ISD::FDIV, VT, Expand); 404 setOperationAction(ISD::FEXP2, VT, Expand); 405 setOperationAction(ISD::FEXP, VT, Expand); 406 setOperationAction(ISD::FLOG2, VT, Expand); 407 setOperationAction(ISD::FREM, VT, Expand); 408 setOperationAction(ISD::FLOG, VT, Expand); 409 setOperationAction(ISD::FLOG10, VT, Expand); 410 setOperationAction(ISD::FPOW, VT, Expand); 411 setOperationAction(ISD::FFLOOR, VT, Expand); 412 setOperationAction(ISD::FTRUNC, VT, Expand); 413 setOperationAction(ISD::FMUL, VT, Expand); 414 setOperationAction(ISD::FMA, VT, Expand); 415 setOperationAction(ISD::FRINT, VT, Expand); 416 setOperationAction(ISD::FNEARBYINT, VT, Expand); 417 setOperationAction(ISD::FSQRT, VT, Expand); 418 setOperationAction(ISD::FSIN, VT, Expand); 419 setOperationAction(ISD::FSUB, VT, Expand); 420 setOperationAction(ISD::FNEG, VT, Expand); 421 setOperationAction(ISD::VSELECT, VT, Expand); 422 setOperationAction(ISD::SELECT_CC, VT, Expand); 423 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 424 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 425 setOperationAction(ISD::SETCC, VT, Expand); 426 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 427 } 428 429 // This causes using an unrolled select operation rather than expansion with 430 // bit operations. This is in general better, but the alternative using BFI 431 // instructions may be better if the select sources are SGPRs. 432 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 433 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 434 435 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 436 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 437 438 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 440 441 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 443 444 // There are no libcalls of any kind. 445 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 446 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 447 448 setBooleanContents(ZeroOrNegativeOneBooleanContent); 449 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 450 451 setSchedulingPreference(Sched::RegPressure); 452 setJumpIsExpensive(true); 453 454 // FIXME: This is only partially true. If we have to do vector compares, any 455 // SGPR pair can be a condition register. If we have a uniform condition, we 456 // are better off doing SALU operations, where there is only one SCC. For now, 457 // we don't have a way of knowing during instruction selection if a condition 458 // will be uniform and we always use vector compares. Assume we are using 459 // vector compares until that is fixed. 460 setHasMultipleConditionRegisters(true); 461 462 setMinCmpXchgSizeInBits(32); 463 setSupportsUnalignedAtomics(false); 464 465 PredictableSelectIsExpensive = false; 466 467 // We want to find all load dependencies for long chains of stores to enable 468 // merging into very wide vectors. The problem is with vectors with > 4 469 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 470 // vectors are a legal type, even though we have to split the loads 471 // usually. When we can more precisely specify load legality per address 472 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 473 // smarter so that they can figure out what to do in 2 iterations without all 474 // N > 4 stores on the same chain. 475 GatherAllAliasesMaxDepth = 16; 476 477 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 478 // about these during lowering. 479 MaxStoresPerMemcpy = 0xffffffff; 480 MaxStoresPerMemmove = 0xffffffff; 481 MaxStoresPerMemset = 0xffffffff; 482 483 setTargetDAGCombine(ISD::BITCAST); 484 setTargetDAGCombine(ISD::SHL); 485 setTargetDAGCombine(ISD::SRA); 486 setTargetDAGCombine(ISD::SRL); 487 setTargetDAGCombine(ISD::TRUNCATE); 488 setTargetDAGCombine(ISD::MUL); 489 setTargetDAGCombine(ISD::MULHU); 490 setTargetDAGCombine(ISD::MULHS); 491 setTargetDAGCombine(ISD::SELECT); 492 setTargetDAGCombine(ISD::SELECT_CC); 493 setTargetDAGCombine(ISD::STORE); 494 setTargetDAGCombine(ISD::FADD); 495 setTargetDAGCombine(ISD::FSUB); 496 setTargetDAGCombine(ISD::FNEG); 497 setTargetDAGCombine(ISD::FABS); 498 setTargetDAGCombine(ISD::AssertZext); 499 setTargetDAGCombine(ISD::AssertSext); 500 } 501 502 //===----------------------------------------------------------------------===// 503 // Target Information 504 //===----------------------------------------------------------------------===// 505 506 LLVM_READNONE 507 static bool fnegFoldsIntoOp(unsigned Opc) { 508 switch (Opc) { 509 case ISD::FADD: 510 case ISD::FSUB: 511 case ISD::FMUL: 512 case ISD::FMA: 513 case ISD::FMAD: 514 case ISD::FMINNUM: 515 case ISD::FMAXNUM: 516 case ISD::FMINNUM_IEEE: 517 case ISD::FMAXNUM_IEEE: 518 case ISD::FSIN: 519 case ISD::FTRUNC: 520 case ISD::FRINT: 521 case ISD::FNEARBYINT: 522 case ISD::FCANONICALIZE: 523 case AMDGPUISD::RCP: 524 case AMDGPUISD::RCP_LEGACY: 525 case AMDGPUISD::RCP_IFLAG: 526 case AMDGPUISD::SIN_HW: 527 case AMDGPUISD::FMUL_LEGACY: 528 case AMDGPUISD::FMIN_LEGACY: 529 case AMDGPUISD::FMAX_LEGACY: 530 case AMDGPUISD::FMED3: 531 return true; 532 default: 533 return false; 534 } 535 } 536 537 /// \p returns true if the operation will definitely need to use a 64-bit 538 /// encoding, and thus will use a VOP3 encoding regardless of the source 539 /// modifiers. 540 LLVM_READONLY 541 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 542 return N->getNumOperands() > 2 || VT == MVT::f64; 543 } 544 545 // Most FP instructions support source modifiers, but this could be refined 546 // slightly. 547 LLVM_READONLY 548 static bool hasSourceMods(const SDNode *N) { 549 if (isa<MemSDNode>(N)) 550 return false; 551 552 switch (N->getOpcode()) { 553 case ISD::CopyToReg: 554 case ISD::SELECT: 555 case ISD::FDIV: 556 case ISD::FREM: 557 case ISD::INLINEASM: 558 case ISD::INLINEASM_BR: 559 case AMDGPUISD::INTERP_P1: 560 case AMDGPUISD::INTERP_P2: 561 case AMDGPUISD::DIV_SCALE: 562 563 // TODO: Should really be looking at the users of the bitcast. These are 564 // problematic because bitcasts are used to legalize all stores to integer 565 // types. 566 case ISD::BITCAST: 567 return false; 568 default: 569 return true; 570 } 571 } 572 573 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 574 unsigned CostThreshold) { 575 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 576 // it is truly free to use a source modifier in all cases. If there are 577 // multiple users but for each one will necessitate using VOP3, there will be 578 // a code size increase. Try to avoid increasing code size unless we know it 579 // will save on the instruction count. 580 unsigned NumMayIncreaseSize = 0; 581 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 582 583 // XXX - Should this limit number of uses to check? 584 for (const SDNode *U : N->uses()) { 585 if (!hasSourceMods(U)) 586 return false; 587 588 if (!opMustUseVOP3Encoding(U, VT)) { 589 if (++NumMayIncreaseSize > CostThreshold) 590 return false; 591 } 592 } 593 594 return true; 595 } 596 597 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 598 return MVT::i32; 599 } 600 601 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 602 return true; 603 } 604 605 // The backend supports 32 and 64 bit floating point immediates. 606 // FIXME: Why are we reporting vectors of FP immediates as legal? 607 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 608 bool ForCodeSize) const { 609 EVT ScalarVT = VT.getScalarType(); 610 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 611 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 612 } 613 614 // We don't want to shrink f64 / f32 constants. 615 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 616 EVT ScalarVT = VT.getScalarType(); 617 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 618 } 619 620 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 621 ISD::LoadExtType ExtTy, 622 EVT NewVT) const { 623 // TODO: This may be worth removing. Check regression tests for diffs. 624 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 625 return false; 626 627 unsigned NewSize = NewVT.getStoreSizeInBits(); 628 629 // If we are reducing to a 32-bit load, this is always better. 630 if (NewSize == 32) 631 return true; 632 633 EVT OldVT = N->getValueType(0); 634 unsigned OldSize = OldVT.getStoreSizeInBits(); 635 636 MemSDNode *MN = cast<MemSDNode>(N); 637 unsigned AS = MN->getAddressSpace(); 638 // Do not shrink an aligned scalar load to sub-dword. 639 // Scalar engine cannot do sub-dword loads. 640 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 641 (AS == AMDGPUAS::CONSTANT_ADDRESS || 642 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 643 (isa<LoadSDNode>(N) && 644 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 645 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 646 return false; 647 648 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 649 // extloads, so doing one requires using a buffer_load. In cases where we 650 // still couldn't use a scalar load, using the wider load shouldn't really 651 // hurt anything. 652 653 // If the old size already had to be an extload, there's no harm in continuing 654 // to reduce the width. 655 return (OldSize < 32); 656 } 657 658 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 659 const SelectionDAG &DAG, 660 const MachineMemOperand &MMO) const { 661 662 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 663 664 if (LoadTy.getScalarType() == MVT::i32) 665 return false; 666 667 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 668 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 669 670 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 671 return false; 672 673 bool Fast = false; 674 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), CastTy, 675 MMO, &Fast) && Fast; 676 } 677 678 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 679 // profitable with the expansion for 64-bit since it's generally good to 680 // speculate things. 681 // FIXME: These should really have the size as a parameter. 682 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 683 return true; 684 } 685 686 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 687 return true; 688 } 689 690 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 691 switch (N->getOpcode()) { 692 default: 693 return false; 694 case ISD::EntryToken: 695 case ISD::TokenFactor: 696 return true; 697 case ISD::INTRINSIC_WO_CHAIN: 698 { 699 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 700 switch (IntrID) { 701 default: 702 return false; 703 case Intrinsic::amdgcn_readfirstlane: 704 case Intrinsic::amdgcn_readlane: 705 return true; 706 } 707 } 708 break; 709 case ISD::LOAD: 710 { 711 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 712 if (L->getMemOperand()->getAddrSpace() 713 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 714 return true; 715 return false; 716 } 717 break; 718 } 719 } 720 721 //===---------------------------------------------------------------------===// 722 // Target Properties 723 //===---------------------------------------------------------------------===// 724 725 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 726 assert(VT.isFloatingPoint()); 727 728 // Packed operations do not have a fabs modifier. 729 return VT == MVT::f32 || VT == MVT::f64 || 730 (Subtarget->has16BitInsts() && VT == MVT::f16); 731 } 732 733 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 734 assert(VT.isFloatingPoint()); 735 return VT == MVT::f32 || VT == MVT::f64 || 736 (Subtarget->has16BitInsts() && VT == MVT::f16) || 737 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 738 } 739 740 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 741 unsigned NumElem, 742 unsigned AS) const { 743 return true; 744 } 745 746 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 747 // There are few operations which truly have vector input operands. Any vector 748 // operation is going to involve operations on each component, and a 749 // build_vector will be a copy per element, so it always makes sense to use a 750 // build_vector input in place of the extracted element to avoid a copy into a 751 // super register. 752 // 753 // We should probably only do this if all users are extracts only, but this 754 // should be the common case. 755 return true; 756 } 757 758 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 759 // Truncate is just accessing a subregister. 760 761 unsigned SrcSize = Source.getSizeInBits(); 762 unsigned DestSize = Dest.getSizeInBits(); 763 764 return DestSize < SrcSize && DestSize % 32 == 0 ; 765 } 766 767 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 768 // Truncate is just accessing a subregister. 769 770 unsigned SrcSize = Source->getScalarSizeInBits(); 771 unsigned DestSize = Dest->getScalarSizeInBits(); 772 773 if (DestSize== 16 && Subtarget->has16BitInsts()) 774 return SrcSize >= 32; 775 776 return DestSize < SrcSize && DestSize % 32 == 0; 777 } 778 779 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 780 unsigned SrcSize = Src->getScalarSizeInBits(); 781 unsigned DestSize = Dest->getScalarSizeInBits(); 782 783 if (SrcSize == 16 && Subtarget->has16BitInsts()) 784 return DestSize >= 32; 785 786 return SrcSize == 32 && DestSize == 64; 787 } 788 789 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 790 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 791 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 792 // this will enable reducing 64-bit operations the 32-bit, which is always 793 // good. 794 795 if (Src == MVT::i16) 796 return Dest == MVT::i32 ||Dest == MVT::i64 ; 797 798 return Src == MVT::i32 && Dest == MVT::i64; 799 } 800 801 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 802 return isZExtFree(Val.getValueType(), VT2); 803 } 804 805 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 806 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 807 // limited number of native 64-bit operations. Shrinking an operation to fit 808 // in a single 32-bit register should always be helpful. As currently used, 809 // this is much less general than the name suggests, and is only used in 810 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 811 // not profitable, and may actually be harmful. 812 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 813 } 814 815 //===---------------------------------------------------------------------===// 816 // TargetLowering Callbacks 817 //===---------------------------------------------------------------------===// 818 819 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 820 bool IsVarArg) { 821 switch (CC) { 822 case CallingConv::AMDGPU_VS: 823 case CallingConv::AMDGPU_GS: 824 case CallingConv::AMDGPU_PS: 825 case CallingConv::AMDGPU_CS: 826 case CallingConv::AMDGPU_HS: 827 case CallingConv::AMDGPU_ES: 828 case CallingConv::AMDGPU_LS: 829 return CC_AMDGPU; 830 case CallingConv::C: 831 case CallingConv::Fast: 832 case CallingConv::Cold: 833 return CC_AMDGPU_Func; 834 case CallingConv::AMDGPU_KERNEL: 835 case CallingConv::SPIR_KERNEL: 836 default: 837 report_fatal_error("Unsupported calling convention for call"); 838 } 839 } 840 841 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 842 bool IsVarArg) { 843 switch (CC) { 844 case CallingConv::AMDGPU_KERNEL: 845 case CallingConv::SPIR_KERNEL: 846 llvm_unreachable("kernels should not be handled here"); 847 case CallingConv::AMDGPU_VS: 848 case CallingConv::AMDGPU_GS: 849 case CallingConv::AMDGPU_PS: 850 case CallingConv::AMDGPU_CS: 851 case CallingConv::AMDGPU_HS: 852 case CallingConv::AMDGPU_ES: 853 case CallingConv::AMDGPU_LS: 854 return RetCC_SI_Shader; 855 case CallingConv::C: 856 case CallingConv::Fast: 857 case CallingConv::Cold: 858 return RetCC_AMDGPU_Func; 859 default: 860 report_fatal_error("Unsupported calling convention."); 861 } 862 } 863 864 /// The SelectionDAGBuilder will automatically promote function arguments 865 /// with illegal types. However, this does not work for the AMDGPU targets 866 /// since the function arguments are stored in memory as these illegal types. 867 /// In order to handle this properly we need to get the original types sizes 868 /// from the LLVM IR Function and fixup the ISD:InputArg values before 869 /// passing them to AnalyzeFormalArguments() 870 871 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 872 /// input values across multiple registers. Each item in the Ins array 873 /// represents a single value that will be stored in registers. Ins[x].VT is 874 /// the value type of the value that will be stored in the register, so 875 /// whatever SDNode we lower the argument to needs to be this type. 876 /// 877 /// In order to correctly lower the arguments we need to know the size of each 878 /// argument. Since Ins[x].VT gives us the size of the register that will 879 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 880 /// for the orignal function argument so that we can deduce the correct memory 881 /// type to use for Ins[x]. In most cases the correct memory type will be 882 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 883 /// we have a kernel argument of type v8i8, this argument will be split into 884 /// 8 parts and each part will be represented by its own item in the Ins array. 885 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 886 /// the argument before it was split. From this, we deduce that the memory type 887 /// for each individual part is i8. We pass the memory type as LocVT to the 888 /// calling convention analysis function and the register type (Ins[x].VT) as 889 /// the ValVT. 890 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 891 CCState &State, 892 const SmallVectorImpl<ISD::InputArg> &Ins) const { 893 const MachineFunction &MF = State.getMachineFunction(); 894 const Function &Fn = MF.getFunction(); 895 LLVMContext &Ctx = Fn.getParent()->getContext(); 896 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 897 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 898 CallingConv::ID CC = Fn.getCallingConv(); 899 900 unsigned MaxAlign = 1; 901 uint64_t ExplicitArgOffset = 0; 902 const DataLayout &DL = Fn.getParent()->getDataLayout(); 903 904 unsigned InIndex = 0; 905 906 for (const Argument &Arg : Fn.args()) { 907 Type *BaseArgTy = Arg.getType(); 908 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 909 MaxAlign = std::max(Align, MaxAlign); 910 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 911 912 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 913 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 914 915 // We're basically throwing away everything passed into us and starting over 916 // to get accurate in-memory offsets. The "PartOffset" is completely useless 917 // to us as computed in Ins. 918 // 919 // We also need to figure out what type legalization is trying to do to get 920 // the correct memory offsets. 921 922 SmallVector<EVT, 16> ValueVTs; 923 SmallVector<uint64_t, 16> Offsets; 924 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 925 926 for (unsigned Value = 0, NumValues = ValueVTs.size(); 927 Value != NumValues; ++Value) { 928 uint64_t BasePartOffset = Offsets[Value]; 929 930 EVT ArgVT = ValueVTs[Value]; 931 EVT MemVT = ArgVT; 932 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 933 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 934 935 if (NumRegs == 1) { 936 // This argument is not split, so the IR type is the memory type. 937 if (ArgVT.isExtended()) { 938 // We have an extended type, like i24, so we should just use the 939 // register type. 940 MemVT = RegisterVT; 941 } else { 942 MemVT = ArgVT; 943 } 944 } else if (ArgVT.isVector() && RegisterVT.isVector() && 945 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 946 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 947 // We have a vector value which has been split into a vector with 948 // the same scalar type, but fewer elements. This should handle 949 // all the floating-point vector types. 950 MemVT = RegisterVT; 951 } else if (ArgVT.isVector() && 952 ArgVT.getVectorNumElements() == NumRegs) { 953 // This arg has been split so that each element is stored in a separate 954 // register. 955 MemVT = ArgVT.getScalarType(); 956 } else if (ArgVT.isExtended()) { 957 // We have an extended type, like i65. 958 MemVT = RegisterVT; 959 } else { 960 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 961 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 962 if (RegisterVT.isInteger()) { 963 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 964 } else if (RegisterVT.isVector()) { 965 assert(!RegisterVT.getScalarType().isFloatingPoint()); 966 unsigned NumElements = RegisterVT.getVectorNumElements(); 967 assert(MemoryBits % NumElements == 0); 968 // This vector type has been split into another vector type with 969 // a different elements size. 970 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 971 MemoryBits / NumElements); 972 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 973 } else { 974 llvm_unreachable("cannot deduce memory type."); 975 } 976 } 977 978 // Convert one element vectors to scalar. 979 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 980 MemVT = MemVT.getScalarType(); 981 982 // Round up vec3/vec5 argument. 983 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 984 assert(MemVT.getVectorNumElements() == 3 || 985 MemVT.getVectorNumElements() == 5); 986 MemVT = MemVT.getPow2VectorType(State.getContext()); 987 } 988 989 unsigned PartOffset = 0; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 992 BasePartOffset + PartOffset, 993 MemVT.getSimpleVT(), 994 CCValAssign::Full)); 995 PartOffset += MemVT.getStoreSize(); 996 } 997 } 998 } 999 } 1000 1001 SDValue AMDGPUTargetLowering::LowerReturn( 1002 SDValue Chain, CallingConv::ID CallConv, 1003 bool isVarArg, 1004 const SmallVectorImpl<ISD::OutputArg> &Outs, 1005 const SmallVectorImpl<SDValue> &OutVals, 1006 const SDLoc &DL, SelectionDAG &DAG) const { 1007 // FIXME: Fails for r600 tests 1008 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1009 // "wave terminate should not have return values"); 1010 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1011 } 1012 1013 //===---------------------------------------------------------------------===// 1014 // Target specific lowering 1015 //===---------------------------------------------------------------------===// 1016 1017 /// Selects the correct CCAssignFn for a given CallingConvention value. 1018 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1019 bool IsVarArg) { 1020 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1021 } 1022 1023 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1024 bool IsVarArg) { 1025 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1026 } 1027 1028 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1029 SelectionDAG &DAG, 1030 MachineFrameInfo &MFI, 1031 int ClobberedFI) const { 1032 SmallVector<SDValue, 8> ArgChains; 1033 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1034 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1035 1036 // Include the original chain at the beginning of the list. When this is 1037 // used by target LowerCall hooks, this helps legalize find the 1038 // CALLSEQ_BEGIN node. 1039 ArgChains.push_back(Chain); 1040 1041 // Add a chain value for each stack argument corresponding 1042 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1043 UE = DAG.getEntryNode().getNode()->use_end(); 1044 U != UE; ++U) { 1045 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1046 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1047 if (FI->getIndex() < 0) { 1048 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1049 int64_t InLastByte = InFirstByte; 1050 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1051 1052 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1053 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1054 ArgChains.push_back(SDValue(L, 1)); 1055 } 1056 } 1057 } 1058 } 1059 1060 // Build a tokenfactor for all the chains. 1061 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1062 } 1063 1064 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1065 SmallVectorImpl<SDValue> &InVals, 1066 StringRef Reason) const { 1067 SDValue Callee = CLI.Callee; 1068 SelectionDAG &DAG = CLI.DAG; 1069 1070 const Function &Fn = DAG.getMachineFunction().getFunction(); 1071 1072 StringRef FuncName("<unknown>"); 1073 1074 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1075 FuncName = G->getSymbol(); 1076 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1077 FuncName = G->getGlobal()->getName(); 1078 1079 DiagnosticInfoUnsupported NoCalls( 1080 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1081 DAG.getContext()->diagnose(NoCalls); 1082 1083 if (!CLI.IsTailCall) { 1084 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1085 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1086 } 1087 1088 return DAG.getEntryNode(); 1089 } 1090 1091 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1092 SmallVectorImpl<SDValue> &InVals) const { 1093 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1094 } 1095 1096 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1097 SelectionDAG &DAG) const { 1098 const Function &Fn = DAG.getMachineFunction().getFunction(); 1099 1100 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1101 SDLoc(Op).getDebugLoc()); 1102 DAG.getContext()->diagnose(NoDynamicAlloca); 1103 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1104 return DAG.getMergeValues(Ops, SDLoc()); 1105 } 1106 1107 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1108 SelectionDAG &DAG) const { 1109 switch (Op.getOpcode()) { 1110 default: 1111 Op->print(errs(), &DAG); 1112 llvm_unreachable("Custom lowering code for this" 1113 "instruction is not implemented yet!"); 1114 break; 1115 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1116 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1117 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1118 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1119 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1120 case ISD::FREM: return LowerFREM(Op, DAG); 1121 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1122 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1123 case ISD::FRINT: return LowerFRINT(Op, DAG); 1124 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1125 case ISD::FROUND: return LowerFROUND(Op, DAG); 1126 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1127 case ISD::FLOG: 1128 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1129 case ISD::FLOG10: 1130 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1131 case ISD::FEXP: 1132 return lowerFEXP(Op, DAG); 1133 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1134 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1135 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1136 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1137 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1138 case ISD::CTTZ: 1139 case ISD::CTTZ_ZERO_UNDEF: 1140 case ISD::CTLZ: 1141 case ISD::CTLZ_ZERO_UNDEF: 1142 return LowerCTLZ_CTTZ(Op, DAG); 1143 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1144 } 1145 return Op; 1146 } 1147 1148 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1149 SmallVectorImpl<SDValue> &Results, 1150 SelectionDAG &DAG) const { 1151 switch (N->getOpcode()) { 1152 case ISD::SIGN_EXTEND_INREG: 1153 // Different parts of legalization seem to interpret which type of 1154 // sign_extend_inreg is the one to check for custom lowering. The extended 1155 // from type is what really matters, but some places check for custom 1156 // lowering of the result type. This results in trying to use 1157 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1158 // nothing here and let the illegal result integer be handled normally. 1159 return; 1160 default: 1161 return; 1162 } 1163 } 1164 1165 static bool hasDefinedInitializer(const GlobalValue *GV) { 1166 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1167 if (!GVar || !GVar->hasInitializer()) 1168 return false; 1169 1170 return !isa<UndefValue>(GVar->getInitializer()); 1171 } 1172 1173 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1174 SDValue Op, 1175 SelectionDAG &DAG) const { 1176 1177 const DataLayout &DL = DAG.getDataLayout(); 1178 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1179 const GlobalValue *GV = G->getGlobal(); 1180 1181 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1182 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1183 if (!MFI->isEntryFunction()) { 1184 const Function &Fn = DAG.getMachineFunction().getFunction(); 1185 DiagnosticInfoUnsupported BadLDSDecl( 1186 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1187 DAG.getContext()->diagnose(BadLDSDecl); 1188 } 1189 1190 // XXX: What does the value of G->getOffset() mean? 1191 assert(G->getOffset() == 0 && 1192 "Do not know what to do with an non-zero offset"); 1193 1194 // TODO: We could emit code to handle the initialization somewhere. 1195 if (!hasDefinedInitializer(GV)) { 1196 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1197 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1198 } 1199 } 1200 1201 const Function &Fn = DAG.getMachineFunction().getFunction(); 1202 DiagnosticInfoUnsupported BadInit( 1203 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1204 DAG.getContext()->diagnose(BadInit); 1205 return SDValue(); 1206 } 1207 1208 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1209 SelectionDAG &DAG) const { 1210 SmallVector<SDValue, 8> Args; 1211 1212 EVT VT = Op.getValueType(); 1213 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1214 SDLoc SL(Op); 1215 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1216 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1217 1218 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1219 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1220 } 1221 1222 for (const SDUse &U : Op->ops()) 1223 DAG.ExtractVectorElements(U.get(), Args); 1224 1225 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1226 } 1227 1228 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1229 SelectionDAG &DAG) const { 1230 1231 SmallVector<SDValue, 8> Args; 1232 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1233 EVT VT = Op.getValueType(); 1234 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1235 VT.getVectorNumElements()); 1236 1237 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1238 } 1239 1240 /// Generate Min/Max node 1241 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1242 SDValue LHS, SDValue RHS, 1243 SDValue True, SDValue False, 1244 SDValue CC, 1245 DAGCombinerInfo &DCI) const { 1246 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1247 return SDValue(); 1248 1249 SelectionDAG &DAG = DCI.DAG; 1250 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1251 switch (CCOpcode) { 1252 case ISD::SETOEQ: 1253 case ISD::SETONE: 1254 case ISD::SETUNE: 1255 case ISD::SETNE: 1256 case ISD::SETUEQ: 1257 case ISD::SETEQ: 1258 case ISD::SETFALSE: 1259 case ISD::SETFALSE2: 1260 case ISD::SETTRUE: 1261 case ISD::SETTRUE2: 1262 case ISD::SETUO: 1263 case ISD::SETO: 1264 break; 1265 case ISD::SETULE: 1266 case ISD::SETULT: { 1267 if (LHS == True) 1268 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1269 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1270 } 1271 case ISD::SETOLE: 1272 case ISD::SETOLT: 1273 case ISD::SETLE: 1274 case ISD::SETLT: { 1275 // Ordered. Assume ordered for undefined. 1276 1277 // Only do this after legalization to avoid interfering with other combines 1278 // which might occur. 1279 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1280 !DCI.isCalledByLegalizer()) 1281 return SDValue(); 1282 1283 // We need to permute the operands to get the correct NaN behavior. The 1284 // selected operand is the second one based on the failing compare with NaN, 1285 // so permute it based on the compare type the hardware uses. 1286 if (LHS == True) 1287 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1288 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1289 } 1290 case ISD::SETUGE: 1291 case ISD::SETUGT: { 1292 if (LHS == True) 1293 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1294 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1295 } 1296 case ISD::SETGT: 1297 case ISD::SETGE: 1298 case ISD::SETOGE: 1299 case ISD::SETOGT: { 1300 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1301 !DCI.isCalledByLegalizer()) 1302 return SDValue(); 1303 1304 if (LHS == True) 1305 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1306 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1307 } 1308 case ISD::SETCC_INVALID: 1309 llvm_unreachable("Invalid setcc condcode!"); 1310 } 1311 return SDValue(); 1312 } 1313 1314 std::pair<SDValue, SDValue> 1315 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1316 SDLoc SL(Op); 1317 1318 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1319 1320 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1321 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1322 1323 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1324 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1325 1326 return std::make_pair(Lo, Hi); 1327 } 1328 1329 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1330 SDLoc SL(Op); 1331 1332 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1333 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1334 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1335 } 1336 1337 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1338 SDLoc SL(Op); 1339 1340 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1341 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1342 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1343 } 1344 1345 // Split a vector type into two parts. The first part is a power of two vector. 1346 // The second part is whatever is left over, and is a scalar if it would 1347 // otherwise be a 1-vector. 1348 std::pair<EVT, EVT> 1349 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1350 EVT LoVT, HiVT; 1351 EVT EltVT = VT.getVectorElementType(); 1352 unsigned NumElts = VT.getVectorNumElements(); 1353 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1354 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1355 HiVT = NumElts - LoNumElts == 1 1356 ? EltVT 1357 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1358 return std::make_pair(LoVT, HiVT); 1359 } 1360 1361 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1362 // scalar. 1363 std::pair<SDValue, SDValue> 1364 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1365 const EVT &LoVT, const EVT &HiVT, 1366 SelectionDAG &DAG) const { 1367 assert(LoVT.getVectorNumElements() + 1368 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1369 N.getValueType().getVectorNumElements() && 1370 "More vector elements requested than available!"); 1371 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1372 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1373 DAG.getConstant(0, DL, IdxTy)); 1374 SDValue Hi = DAG.getNode( 1375 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1376 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1377 return std::make_pair(Lo, Hi); 1378 } 1379 1380 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1381 SelectionDAG &DAG) const { 1382 LoadSDNode *Load = cast<LoadSDNode>(Op); 1383 EVT VT = Op.getValueType(); 1384 1385 1386 // If this is a 2 element vector, we really want to scalarize and not create 1387 // weird 1 element vectors. 1388 if (VT.getVectorNumElements() == 2) 1389 return scalarizeVectorLoad(Load, DAG); 1390 1391 SDValue BasePtr = Load->getBasePtr(); 1392 EVT MemVT = Load->getMemoryVT(); 1393 SDLoc SL(Op); 1394 1395 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1396 1397 EVT LoVT, HiVT; 1398 EVT LoMemVT, HiMemVT; 1399 SDValue Lo, Hi; 1400 1401 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1402 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1403 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1404 1405 unsigned Size = LoMemVT.getStoreSize(); 1406 unsigned BaseAlign = Load->getAlignment(); 1407 unsigned HiAlign = MinAlign(BaseAlign, Size); 1408 1409 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1410 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1411 BaseAlign, Load->getMemOperand()->getFlags()); 1412 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1413 SDValue HiLoad = 1414 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1415 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1416 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1417 1418 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1419 SDValue Join; 1420 if (LoVT == HiVT) { 1421 // This is the case that the vector is power of two so was evenly split. 1422 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1423 } else { 1424 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1425 DAG.getConstant(0, SL, IdxTy)); 1426 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1427 : ISD::INSERT_VECTOR_ELT, 1428 SL, VT, Join, HiLoad, 1429 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1430 } 1431 1432 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1433 LoLoad.getValue(1), HiLoad.getValue(1))}; 1434 1435 return DAG.getMergeValues(Ops, SL); 1436 } 1437 1438 // Widen a vector load from vec3 to vec4. 1439 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1440 SelectionDAG &DAG) const { 1441 LoadSDNode *Load = cast<LoadSDNode>(Op); 1442 EVT VT = Op.getValueType(); 1443 assert(VT.getVectorNumElements() == 3); 1444 SDValue BasePtr = Load->getBasePtr(); 1445 EVT MemVT = Load->getMemoryVT(); 1446 SDLoc SL(Op); 1447 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1448 unsigned BaseAlign = Load->getAlignment(); 1449 1450 EVT WideVT = 1451 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1452 EVT WideMemVT = 1453 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1454 SDValue WideLoad = DAG.getExtLoad( 1455 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1456 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1457 return DAG.getMergeValues( 1458 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1459 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1460 WideLoad.getValue(1)}, 1461 SL); 1462 } 1463 1464 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1465 SelectionDAG &DAG) const { 1466 StoreSDNode *Store = cast<StoreSDNode>(Op); 1467 SDValue Val = Store->getValue(); 1468 EVT VT = Val.getValueType(); 1469 1470 // If this is a 2 element vector, we really want to scalarize and not create 1471 // weird 1 element vectors. 1472 if (VT.getVectorNumElements() == 2) 1473 return scalarizeVectorStore(Store, DAG); 1474 1475 EVT MemVT = Store->getMemoryVT(); 1476 SDValue Chain = Store->getChain(); 1477 SDValue BasePtr = Store->getBasePtr(); 1478 SDLoc SL(Op); 1479 1480 EVT LoVT, HiVT; 1481 EVT LoMemVT, HiMemVT; 1482 SDValue Lo, Hi; 1483 1484 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1485 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1486 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1487 1488 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1489 1490 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1491 unsigned BaseAlign = Store->getAlignment(); 1492 unsigned Size = LoMemVT.getStoreSize(); 1493 unsigned HiAlign = MinAlign(BaseAlign, Size); 1494 1495 SDValue LoStore = 1496 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1497 Store->getMemOperand()->getFlags()); 1498 SDValue HiStore = 1499 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1500 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1501 1502 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1503 } 1504 1505 // This is a shortcut for integer division because we have fast i32<->f32 1506 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1507 // float is enough to accurately represent up to a 24-bit signed integer. 1508 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1509 bool Sign) const { 1510 SDLoc DL(Op); 1511 EVT VT = Op.getValueType(); 1512 SDValue LHS = Op.getOperand(0); 1513 SDValue RHS = Op.getOperand(1); 1514 MVT IntVT = MVT::i32; 1515 MVT FltVT = MVT::f32; 1516 1517 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1518 if (LHSSignBits < 9) 1519 return SDValue(); 1520 1521 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1522 if (RHSSignBits < 9) 1523 return SDValue(); 1524 1525 unsigned BitSize = VT.getSizeInBits(); 1526 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1527 unsigned DivBits = BitSize - SignBits; 1528 if (Sign) 1529 ++DivBits; 1530 1531 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1532 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1533 1534 SDValue jq = DAG.getConstant(1, DL, IntVT); 1535 1536 if (Sign) { 1537 // char|short jq = ia ^ ib; 1538 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1539 1540 // jq = jq >> (bitsize - 2) 1541 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1542 DAG.getConstant(BitSize - 2, DL, VT)); 1543 1544 // jq = jq | 0x1 1545 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1546 } 1547 1548 // int ia = (int)LHS; 1549 SDValue ia = LHS; 1550 1551 // int ib, (int)RHS; 1552 SDValue ib = RHS; 1553 1554 // float fa = (float)ia; 1555 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1556 1557 // float fb = (float)ib; 1558 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1559 1560 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1561 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1562 1563 // fq = trunc(fq); 1564 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1565 1566 // float fqneg = -fq; 1567 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1568 1569 // float fr = mad(fqneg, fb, fa); 1570 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1571 (unsigned)AMDGPUISD::FMAD_FTZ : 1572 (unsigned)ISD::FMAD; 1573 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1574 1575 // int iq = (int)fq; 1576 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1577 1578 // fr = fabs(fr); 1579 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1580 1581 // fb = fabs(fb); 1582 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1583 1584 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1585 1586 // int cv = fr >= fb; 1587 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1588 1589 // jq = (cv ? jq : 0); 1590 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1591 1592 // dst = iq + jq; 1593 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1594 1595 // Rem needs compensation, it's easier to recompute it 1596 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1597 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1598 1599 // Truncate to number of bits this divide really is. 1600 if (Sign) { 1601 SDValue InRegSize 1602 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1603 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1604 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1605 } else { 1606 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1607 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1608 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1609 } 1610 1611 return DAG.getMergeValues({ Div, Rem }, DL); 1612 } 1613 1614 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1615 SelectionDAG &DAG, 1616 SmallVectorImpl<SDValue> &Results) const { 1617 SDLoc DL(Op); 1618 EVT VT = Op.getValueType(); 1619 1620 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1621 1622 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1623 1624 SDValue One = DAG.getConstant(1, DL, HalfVT); 1625 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1626 1627 //HiLo split 1628 SDValue LHS = Op.getOperand(0); 1629 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1630 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1631 1632 SDValue RHS = Op.getOperand(1); 1633 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1634 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1635 1636 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1637 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1638 1639 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1640 LHS_Lo, RHS_Lo); 1641 1642 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1643 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1644 1645 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1646 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1647 return; 1648 } 1649 1650 if (isTypeLegal(MVT::i64)) { 1651 // Compute denominator reciprocal. 1652 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1653 (unsigned)AMDGPUISD::FMAD_FTZ : 1654 (unsigned)ISD::FMAD; 1655 1656 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1657 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1658 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1659 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1660 Cvt_Lo); 1661 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1662 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1663 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1664 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1665 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1666 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1667 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1668 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1669 Mul1); 1670 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1671 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1672 SDValue Rcp64 = DAG.getBitcast(VT, 1673 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1674 1675 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1676 SDValue One64 = DAG.getConstant(1, DL, VT); 1677 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1678 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1679 1680 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1681 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1682 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1683 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1684 Zero); 1685 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1686 One); 1687 1688 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1689 Mulhi1_Lo, Zero1); 1690 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1691 Mulhi1_Hi, Add1_Lo.getValue(1)); 1692 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1693 SDValue Add1 = DAG.getBitcast(VT, 1694 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1695 1696 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1697 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1698 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1699 Zero); 1700 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1701 One); 1702 1703 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1704 Mulhi2_Lo, Zero1); 1705 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1706 Mulhi2_Hi, Add1_Lo.getValue(1)); 1707 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1708 Zero, Add2_Lo.getValue(1)); 1709 SDValue Add2 = DAG.getBitcast(VT, 1710 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1711 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1712 1713 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1714 1715 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1716 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1717 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1718 Mul3_Lo, Zero1); 1719 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1720 Mul3_Hi, Sub1_Lo.getValue(1)); 1721 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1722 SDValue Sub1 = DAG.getBitcast(VT, 1723 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1724 1725 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1726 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1727 ISD::SETUGE); 1728 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1729 ISD::SETUGE); 1730 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1731 1732 // TODO: Here and below portions of the code can be enclosed into if/endif. 1733 // Currently control flow is unconditional and we have 4 selects after 1734 // potential endif to substitute PHIs. 1735 1736 // if C3 != 0 ... 1737 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1738 RHS_Lo, Zero1); 1739 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1740 RHS_Hi, Sub1_Lo.getValue(1)); 1741 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1742 Zero, Sub2_Lo.getValue(1)); 1743 SDValue Sub2 = DAG.getBitcast(VT, 1744 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1745 1746 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1747 1748 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1749 ISD::SETUGE); 1750 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1751 ISD::SETUGE); 1752 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1753 1754 // if (C6 != 0) 1755 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1756 1757 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1758 RHS_Lo, Zero1); 1759 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1760 RHS_Hi, Sub2_Lo.getValue(1)); 1761 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1762 Zero, Sub3_Lo.getValue(1)); 1763 SDValue Sub3 = DAG.getBitcast(VT, 1764 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1765 1766 // endif C6 1767 // endif C3 1768 1769 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1770 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1771 1772 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1773 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1774 1775 Results.push_back(Div); 1776 Results.push_back(Rem); 1777 1778 return; 1779 } 1780 1781 // r600 expandion. 1782 // Get Speculative values 1783 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1784 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1785 1786 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1787 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1788 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1789 1790 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1791 SDValue DIV_Lo = Zero; 1792 1793 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1794 1795 for (unsigned i = 0; i < halfBitWidth; ++i) { 1796 const unsigned bitPos = halfBitWidth - i - 1; 1797 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1798 // Get value of high bit 1799 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1800 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1801 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1802 1803 // Shift 1804 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1805 // Add LHS high bit 1806 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1807 1808 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1809 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1810 1811 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1812 1813 // Update REM 1814 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1815 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1816 } 1817 1818 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1819 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1820 Results.push_back(DIV); 1821 Results.push_back(REM); 1822 } 1823 1824 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1825 SelectionDAG &DAG) const { 1826 SDLoc DL(Op); 1827 EVT VT = Op.getValueType(); 1828 1829 if (VT == MVT::i64) { 1830 SmallVector<SDValue, 2> Results; 1831 LowerUDIVREM64(Op, DAG, Results); 1832 return DAG.getMergeValues(Results, DL); 1833 } 1834 1835 if (VT == MVT::i32) { 1836 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1837 return Res; 1838 } 1839 1840 SDValue Num = Op.getOperand(0); 1841 SDValue Den = Op.getOperand(1); 1842 1843 // RCP = URECIP(Den) = 2^32 / Den + e 1844 // e is rounding error. 1845 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1846 1847 // RCP_LO = mul(RCP, Den) */ 1848 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1849 1850 // RCP_HI = mulhu (RCP, Den) */ 1851 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1852 1853 // NEG_RCP_LO = -RCP_LO 1854 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1855 RCP_LO); 1856 1857 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1858 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1859 NEG_RCP_LO, RCP_LO, 1860 ISD::SETEQ); 1861 // Calculate the rounding error from the URECIP instruction 1862 // E = mulhu(ABS_RCP_LO, RCP) 1863 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1864 1865 // RCP_A_E = RCP + E 1866 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1867 1868 // RCP_S_E = RCP - E 1869 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1870 1871 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1872 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1873 RCP_A_E, RCP_S_E, 1874 ISD::SETEQ); 1875 // Quotient = mulhu(Tmp0, Num) 1876 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1877 1878 // Num_S_Remainder = Quotient * Den 1879 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1880 1881 // Remainder = Num - Num_S_Remainder 1882 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1883 1884 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1885 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1886 DAG.getConstant(-1, DL, VT), 1887 DAG.getConstant(0, DL, VT), 1888 ISD::SETUGE); 1889 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1890 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1891 Num_S_Remainder, 1892 DAG.getConstant(-1, DL, VT), 1893 DAG.getConstant(0, DL, VT), 1894 ISD::SETUGE); 1895 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1896 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1897 Remainder_GE_Zero); 1898 1899 // Calculate Division result: 1900 1901 // Quotient_A_One = Quotient + 1 1902 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1903 DAG.getConstant(1, DL, VT)); 1904 1905 // Quotient_S_One = Quotient - 1 1906 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1907 DAG.getConstant(1, DL, VT)); 1908 1909 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1910 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1911 Quotient, Quotient_A_One, ISD::SETEQ); 1912 1913 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1914 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1915 Quotient_S_One, Div, ISD::SETEQ); 1916 1917 // Calculate Rem result: 1918 1919 // Remainder_S_Den = Remainder - Den 1920 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1921 1922 // Remainder_A_Den = Remainder + Den 1923 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1924 1925 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1926 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1927 Remainder, Remainder_S_Den, ISD::SETEQ); 1928 1929 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1930 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1931 Remainder_A_Den, Rem, ISD::SETEQ); 1932 SDValue Ops[2] = { 1933 Div, 1934 Rem 1935 }; 1936 return DAG.getMergeValues(Ops, DL); 1937 } 1938 1939 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1940 SelectionDAG &DAG) const { 1941 SDLoc DL(Op); 1942 EVT VT = Op.getValueType(); 1943 1944 SDValue LHS = Op.getOperand(0); 1945 SDValue RHS = Op.getOperand(1); 1946 1947 SDValue Zero = DAG.getConstant(0, DL, VT); 1948 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1949 1950 if (VT == MVT::i32) { 1951 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1952 return Res; 1953 } 1954 1955 if (VT == MVT::i64 && 1956 DAG.ComputeNumSignBits(LHS) > 32 && 1957 DAG.ComputeNumSignBits(RHS) > 32) { 1958 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1959 1960 //HiLo split 1961 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1962 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1963 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1964 LHS_Lo, RHS_Lo); 1965 SDValue Res[2] = { 1966 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1967 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1968 }; 1969 return DAG.getMergeValues(Res, DL); 1970 } 1971 1972 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1973 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1974 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1975 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1976 1977 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1978 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1979 1980 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1981 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1982 1983 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1984 SDValue Rem = Div.getValue(1); 1985 1986 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1987 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1988 1989 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1990 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1991 1992 SDValue Res[2] = { 1993 Div, 1994 Rem 1995 }; 1996 return DAG.getMergeValues(Res, DL); 1997 } 1998 1999 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2000 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2001 SDLoc SL(Op); 2002 EVT VT = Op.getValueType(); 2003 SDValue X = Op.getOperand(0); 2004 SDValue Y = Op.getOperand(1); 2005 2006 // TODO: Should this propagate fast-math-flags? 2007 2008 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2009 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2010 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2011 2012 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2013 } 2014 2015 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2016 SDLoc SL(Op); 2017 SDValue Src = Op.getOperand(0); 2018 2019 // result = trunc(src) 2020 // if (src > 0.0 && src != result) 2021 // result += 1.0 2022 2023 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2024 2025 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2026 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2027 2028 EVT SetCCVT = 2029 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2030 2031 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2032 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2033 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2034 2035 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2036 // TODO: Should this propagate fast-math-flags? 2037 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2038 } 2039 2040 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2041 SelectionDAG &DAG) { 2042 const unsigned FractBits = 52; 2043 const unsigned ExpBits = 11; 2044 2045 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2046 Hi, 2047 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2048 DAG.getConstant(ExpBits, SL, MVT::i32)); 2049 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2050 DAG.getConstant(1023, SL, MVT::i32)); 2051 2052 return Exp; 2053 } 2054 2055 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2056 SDLoc SL(Op); 2057 SDValue Src = Op.getOperand(0); 2058 2059 assert(Op.getValueType() == MVT::f64); 2060 2061 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2062 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2063 2064 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2065 2066 // Extract the upper half, since this is where we will find the sign and 2067 // exponent. 2068 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2069 2070 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2071 2072 const unsigned FractBits = 52; 2073 2074 // Extract the sign bit. 2075 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2076 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2077 2078 // Extend back to 64-bits. 2079 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2080 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2081 2082 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2083 const SDValue FractMask 2084 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2085 2086 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2087 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2088 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2089 2090 EVT SetCCVT = 2091 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2092 2093 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2094 2095 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2096 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2097 2098 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2099 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2100 2101 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2102 } 2103 2104 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2105 SDLoc SL(Op); 2106 SDValue Src = Op.getOperand(0); 2107 2108 assert(Op.getValueType() == MVT::f64); 2109 2110 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2111 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2112 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2113 2114 // TODO: Should this propagate fast-math-flags? 2115 2116 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2117 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2118 2119 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2120 2121 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2122 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2123 2124 EVT SetCCVT = 2125 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2126 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2127 2128 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2129 } 2130 2131 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2132 // FNEARBYINT and FRINT are the same, except in their handling of FP 2133 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2134 // rint, so just treat them as equivalent. 2135 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2136 } 2137 2138 // XXX - May require not supporting f32 denormals? 2139 2140 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2141 // compare and vselect end up producing worse code than scalarizing the whole 2142 // operation. 2143 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2144 SDLoc SL(Op); 2145 SDValue X = Op.getOperand(0); 2146 EVT VT = Op.getValueType(); 2147 2148 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2149 2150 // TODO: Should this propagate fast-math-flags? 2151 2152 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2153 2154 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2155 2156 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2157 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2158 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2159 2160 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2161 2162 EVT SetCCVT = 2163 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2164 2165 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2166 2167 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2168 2169 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2170 } 2171 2172 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2173 SDLoc SL(Op); 2174 SDValue X = Op.getOperand(0); 2175 2176 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2177 2178 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2179 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2180 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2181 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2182 EVT SetCCVT = 2183 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2184 2185 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2186 2187 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2188 2189 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2190 2191 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2192 MVT::i64); 2193 2194 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2195 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2196 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2197 MVT::i64), 2198 Exp); 2199 2200 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2201 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2202 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2203 ISD::SETNE); 2204 2205 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2206 D, DAG.getConstant(0, SL, MVT::i64)); 2207 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2208 2209 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2210 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2211 2212 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2213 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2214 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2215 2216 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2217 ExpEqNegOne, 2218 DAG.getConstantFP(1.0, SL, MVT::f64), 2219 DAG.getConstantFP(0.0, SL, MVT::f64)); 2220 2221 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2222 2223 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2224 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2225 2226 return K; 2227 } 2228 2229 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2230 EVT VT = Op.getValueType(); 2231 2232 if (VT == MVT::f32 || VT == MVT::f16) 2233 return LowerFROUND32_16(Op, DAG); 2234 2235 if (VT == MVT::f64) 2236 return LowerFROUND64(Op, DAG); 2237 2238 llvm_unreachable("unhandled type"); 2239 } 2240 2241 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2242 SDLoc SL(Op); 2243 SDValue Src = Op.getOperand(0); 2244 2245 // result = trunc(src); 2246 // if (src < 0.0 && src != result) 2247 // result += -1.0. 2248 2249 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2250 2251 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2252 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2253 2254 EVT SetCCVT = 2255 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2256 2257 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2258 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2259 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2260 2261 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2262 // TODO: Should this propagate fast-math-flags? 2263 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2264 } 2265 2266 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2267 double Log2BaseInverted) const { 2268 EVT VT = Op.getValueType(); 2269 2270 SDLoc SL(Op); 2271 SDValue Operand = Op.getOperand(0); 2272 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2273 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2274 2275 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2276 } 2277 2278 // Return M_LOG2E of appropriate type 2279 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2280 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2281 case MVT::f32: 2282 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2283 case MVT::f16: 2284 return DAG.getConstantFP( 2285 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2286 SL, VT); 2287 case MVT::f64: 2288 return DAG.getConstantFP( 2289 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2290 default: 2291 llvm_unreachable("unsupported fp type"); 2292 } 2293 } 2294 2295 // exp2(M_LOG2E_F * f); 2296 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2297 EVT VT = Op.getValueType(); 2298 SDLoc SL(Op); 2299 SDValue Src = Op.getOperand(0); 2300 2301 const SDValue K = getLog2EVal(DAG, SL, VT); 2302 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2303 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2304 } 2305 2306 static bool isCtlzOpc(unsigned Opc) { 2307 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2308 } 2309 2310 static bool isCttzOpc(unsigned Opc) { 2311 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2312 } 2313 2314 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2315 SDLoc SL(Op); 2316 SDValue Src = Op.getOperand(0); 2317 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2318 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2319 2320 unsigned ISDOpc, NewOpc; 2321 if (isCtlzOpc(Op.getOpcode())) { 2322 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2323 NewOpc = AMDGPUISD::FFBH_U32; 2324 } else if (isCttzOpc(Op.getOpcode())) { 2325 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2326 NewOpc = AMDGPUISD::FFBL_B32; 2327 } else 2328 llvm_unreachable("Unexpected OPCode!!!"); 2329 2330 2331 if (ZeroUndef && Src.getValueType() == MVT::i32) 2332 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2333 2334 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2335 2336 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2337 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2338 2339 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2340 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2341 2342 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2343 *DAG.getContext(), MVT::i32); 2344 2345 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2346 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2347 2348 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2349 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2350 2351 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2352 SDValue Add, NewOpr; 2353 if (isCtlzOpc(Op.getOpcode())) { 2354 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2355 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2356 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2357 } else { 2358 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2359 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2360 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2361 } 2362 2363 if (!ZeroUndef) { 2364 // Test if the full 64-bit input is zero. 2365 2366 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2367 // which we probably don't want. 2368 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2369 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2370 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2371 2372 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2373 // with the same cycles, otherwise it is slower. 2374 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2375 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2376 2377 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2378 2379 // The instruction returns -1 for 0 input, but the defined intrinsic 2380 // behavior is to return the number of bits. 2381 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2382 SrcIsZero, Bits32, NewOpr); 2383 } 2384 2385 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2386 } 2387 2388 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2389 bool Signed) const { 2390 // Unsigned 2391 // cul2f(ulong u) 2392 //{ 2393 // uint lz = clz(u); 2394 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2395 // u = (u << lz) & 0x7fffffffffffffffUL; 2396 // ulong t = u & 0xffffffffffUL; 2397 // uint v = (e << 23) | (uint)(u >> 40); 2398 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2399 // return as_float(v + r); 2400 //} 2401 // Signed 2402 // cl2f(long l) 2403 //{ 2404 // long s = l >> 63; 2405 // float r = cul2f((l + s) ^ s); 2406 // return s ? -r : r; 2407 //} 2408 2409 SDLoc SL(Op); 2410 SDValue Src = Op.getOperand(0); 2411 SDValue L = Src; 2412 2413 SDValue S; 2414 if (Signed) { 2415 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2416 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2417 2418 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2419 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2420 } 2421 2422 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2423 *DAG.getContext(), MVT::f32); 2424 2425 2426 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2427 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2428 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2429 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2430 2431 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2432 SDValue E = DAG.getSelect(SL, MVT::i32, 2433 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2434 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2435 ZeroI32); 2436 2437 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2438 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2439 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2440 2441 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2442 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2443 2444 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2445 U, DAG.getConstant(40, SL, MVT::i64)); 2446 2447 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2448 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2449 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2450 2451 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2452 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2453 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2454 2455 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2456 2457 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2458 2459 SDValue R = DAG.getSelect(SL, MVT::i32, 2460 RCmp, 2461 One, 2462 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2463 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2464 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2465 2466 if (!Signed) 2467 return R; 2468 2469 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2470 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2471 } 2472 2473 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2474 bool Signed) const { 2475 SDLoc SL(Op); 2476 SDValue Src = Op.getOperand(0); 2477 2478 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2479 2480 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2481 DAG.getConstant(0, SL, MVT::i32)); 2482 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2483 DAG.getConstant(1, SL, MVT::i32)); 2484 2485 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2486 SL, MVT::f64, Hi); 2487 2488 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2489 2490 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2491 DAG.getConstant(32, SL, MVT::i32)); 2492 // TODO: Should this propagate fast-math-flags? 2493 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2494 } 2495 2496 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2497 SelectionDAG &DAG) const { 2498 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2499 "operation should be legal"); 2500 2501 // TODO: Factor out code common with LowerSINT_TO_FP. 2502 2503 EVT DestVT = Op.getValueType(); 2504 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2505 SDLoc DL(Op); 2506 SDValue Src = Op.getOperand(0); 2507 2508 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2509 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2510 SDValue FPRound = 2511 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2512 2513 return FPRound; 2514 } 2515 2516 if (DestVT == MVT::f32) 2517 return LowerINT_TO_FP32(Op, DAG, false); 2518 2519 assert(DestVT == MVT::f64); 2520 return LowerINT_TO_FP64(Op, DAG, false); 2521 } 2522 2523 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2524 SelectionDAG &DAG) const { 2525 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2526 "operation should be legal"); 2527 2528 // TODO: Factor out code common with LowerUINT_TO_FP. 2529 2530 EVT DestVT = Op.getValueType(); 2531 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2532 SDLoc DL(Op); 2533 SDValue Src = Op.getOperand(0); 2534 2535 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2536 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2537 SDValue FPRound = 2538 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2539 2540 return FPRound; 2541 } 2542 2543 if (DestVT == MVT::f32) 2544 return LowerINT_TO_FP32(Op, DAG, true); 2545 2546 assert(DestVT == MVT::f64); 2547 return LowerINT_TO_FP64(Op, DAG, true); 2548 } 2549 2550 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2551 bool Signed) const { 2552 SDLoc SL(Op); 2553 2554 SDValue Src = Op.getOperand(0); 2555 2556 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2557 2558 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2559 MVT::f64); 2560 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2561 MVT::f64); 2562 // TODO: Should this propagate fast-math-flags? 2563 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2564 2565 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2566 2567 2568 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2569 2570 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2571 MVT::i32, FloorMul); 2572 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2573 2574 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2575 2576 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2577 } 2578 2579 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2580 SDLoc DL(Op); 2581 SDValue N0 = Op.getOperand(0); 2582 2583 // Convert to target node to get known bits 2584 if (N0.getValueType() == MVT::f32) 2585 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2586 2587 if (getTargetMachine().Options.UnsafeFPMath) { 2588 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2589 return SDValue(); 2590 } 2591 2592 assert(N0.getSimpleValueType() == MVT::f64); 2593 2594 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2595 const unsigned ExpMask = 0x7ff; 2596 const unsigned ExpBiasf64 = 1023; 2597 const unsigned ExpBiasf16 = 15; 2598 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2599 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2600 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2601 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2602 DAG.getConstant(32, DL, MVT::i64)); 2603 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2604 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2605 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2606 DAG.getConstant(20, DL, MVT::i64)); 2607 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2608 DAG.getConstant(ExpMask, DL, MVT::i32)); 2609 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2610 // add the f16 bias (15) to get the biased exponent for the f16 format. 2611 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2612 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2613 2614 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2615 DAG.getConstant(8, DL, MVT::i32)); 2616 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2617 DAG.getConstant(0xffe, DL, MVT::i32)); 2618 2619 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2620 DAG.getConstant(0x1ff, DL, MVT::i32)); 2621 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2622 2623 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2624 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2625 2626 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2627 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2628 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2629 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2630 2631 // N = M | (E << 12); 2632 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2633 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2634 DAG.getConstant(12, DL, MVT::i32))); 2635 2636 // B = clamp(1-E, 0, 13); 2637 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2638 One, E); 2639 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2640 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2641 DAG.getConstant(13, DL, MVT::i32)); 2642 2643 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2644 DAG.getConstant(0x1000, DL, MVT::i32)); 2645 2646 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2647 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2648 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2649 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2650 2651 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2652 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2653 DAG.getConstant(0x7, DL, MVT::i32)); 2654 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2655 DAG.getConstant(2, DL, MVT::i32)); 2656 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2657 One, Zero, ISD::SETEQ); 2658 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2659 One, Zero, ISD::SETGT); 2660 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2661 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2662 2663 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2664 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2665 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2666 I, V, ISD::SETEQ); 2667 2668 // Extract the sign bit. 2669 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2670 DAG.getConstant(16, DL, MVT::i32)); 2671 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2672 DAG.getConstant(0x8000, DL, MVT::i32)); 2673 2674 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2675 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2676 } 2677 2678 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2679 SelectionDAG &DAG) const { 2680 SDValue Src = Op.getOperand(0); 2681 2682 // TODO: Factor out code common with LowerFP_TO_UINT. 2683 2684 EVT SrcVT = Src.getValueType(); 2685 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2686 SDLoc DL(Op); 2687 2688 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2689 SDValue FpToInt32 = 2690 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2691 2692 return FpToInt32; 2693 } 2694 2695 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2696 return LowerFP64_TO_INT(Op, DAG, true); 2697 2698 return SDValue(); 2699 } 2700 2701 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2702 SelectionDAG &DAG) const { 2703 SDValue Src = Op.getOperand(0); 2704 2705 // TODO: Factor out code common with LowerFP_TO_SINT. 2706 2707 EVT SrcVT = Src.getValueType(); 2708 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2709 SDLoc DL(Op); 2710 2711 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2712 SDValue FpToInt32 = 2713 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2714 2715 return FpToInt32; 2716 } 2717 2718 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2719 return LowerFP64_TO_INT(Op, DAG, false); 2720 2721 return SDValue(); 2722 } 2723 2724 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2725 SelectionDAG &DAG) const { 2726 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2727 MVT VT = Op.getSimpleValueType(); 2728 MVT ScalarVT = VT.getScalarType(); 2729 2730 assert(VT.isVector()); 2731 2732 SDValue Src = Op.getOperand(0); 2733 SDLoc DL(Op); 2734 2735 // TODO: Don't scalarize on Evergreen? 2736 unsigned NElts = VT.getVectorNumElements(); 2737 SmallVector<SDValue, 8> Args; 2738 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2739 2740 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2741 for (unsigned I = 0; I < NElts; ++I) 2742 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2743 2744 return DAG.getBuildVector(VT, DL, Args); 2745 } 2746 2747 //===----------------------------------------------------------------------===// 2748 // Custom DAG optimizations 2749 //===----------------------------------------------------------------------===// 2750 2751 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2752 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2753 } 2754 2755 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2756 EVT VT = Op.getValueType(); 2757 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2758 // as unsigned 24-bit values. 2759 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2760 } 2761 2762 static SDValue simplifyI24(SDNode *Node24, 2763 TargetLowering::DAGCombinerInfo &DCI) { 2764 SelectionDAG &DAG = DCI.DAG; 2765 SDValue LHS = Node24->getOperand(0); 2766 SDValue RHS = Node24->getOperand(1); 2767 2768 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2769 2770 // First try to simplify using GetDemandedBits which allows the operands to 2771 // have other uses, but will only perform simplifications that involve 2772 // bypassing some nodes for this user. 2773 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2774 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2775 if (DemandedLHS || DemandedRHS) 2776 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(), 2777 DemandedLHS ? DemandedLHS : LHS, 2778 DemandedRHS ? DemandedRHS : RHS); 2779 2780 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2781 // operands if this node is the only user. 2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2783 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2784 return SDValue(Node24, 0); 2785 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2786 return SDValue(Node24, 0); 2787 2788 return SDValue(); 2789 } 2790 2791 template <typename IntTy> 2792 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2793 uint32_t Width, const SDLoc &DL) { 2794 if (Width + Offset < 32) { 2795 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2796 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2797 return DAG.getConstant(Result, DL, MVT::i32); 2798 } 2799 2800 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2801 } 2802 2803 static bool hasVolatileUser(SDNode *Val) { 2804 for (SDNode *U : Val->uses()) { 2805 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2806 if (M->isVolatile()) 2807 return true; 2808 } 2809 } 2810 2811 return false; 2812 } 2813 2814 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2815 // i32 vectors are the canonical memory type. 2816 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2817 return false; 2818 2819 if (!VT.isByteSized()) 2820 return false; 2821 2822 unsigned Size = VT.getStoreSize(); 2823 2824 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2825 return false; 2826 2827 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2828 return false; 2829 2830 return true; 2831 } 2832 2833 // Find a load or store from corresponding pattern root. 2834 // Roots may be build_vector, bitconvert or their combinations. 2835 static MemSDNode* findMemSDNode(SDNode *N) { 2836 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 2837 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 2838 return MN; 2839 assert(isa<BuildVectorSDNode>(N)); 2840 for (SDValue V : N->op_values()) 2841 if (MemSDNode *MN = 2842 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 2843 return MN; 2844 llvm_unreachable("cannot find MemSDNode in the pattern!"); 2845 } 2846 2847 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned, 2848 SelectionDAG &DAG, 2849 SDNode *N, 2850 SDValue Addr, 2851 SDValue &VAddr, 2852 SDValue &Offset, 2853 SDValue &SLC) const { 2854 const GCNSubtarget &ST = 2855 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 2856 int64_t OffsetVal = 0; 2857 2858 if (ST.hasFlatInstOffsets() && 2859 (!ST.hasFlatSegmentOffsetBug() || 2860 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) && 2861 DAG.isBaseWithConstantOffset(Addr)) { 2862 SDValue N0 = Addr.getOperand(0); 2863 SDValue N1 = Addr.getOperand(1); 2864 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 2865 2866 const SIInstrInfo *TII = ST.getInstrInfo(); 2867 if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(), 2868 IsSigned)) { 2869 Addr = N0; 2870 OffsetVal = COffsetVal; 2871 } 2872 } 2873 2874 VAddr = Addr; 2875 Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 2876 SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1); 2877 2878 return true; 2879 } 2880 2881 // Replace load of an illegal type with a store of a bitcast to a friendlier 2882 // type. 2883 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2884 DAGCombinerInfo &DCI) const { 2885 if (!DCI.isBeforeLegalize()) 2886 return SDValue(); 2887 2888 LoadSDNode *LN = cast<LoadSDNode>(N); 2889 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2890 return SDValue(); 2891 2892 SDLoc SL(N); 2893 SelectionDAG &DAG = DCI.DAG; 2894 EVT VT = LN->getMemoryVT(); 2895 2896 unsigned Size = VT.getStoreSize(); 2897 unsigned Align = LN->getAlignment(); 2898 if (Align < Size && isTypeLegal(VT)) { 2899 bool IsFast; 2900 unsigned AS = LN->getAddressSpace(); 2901 2902 // Expand unaligned loads earlier than legalization. Due to visitation order 2903 // problems during legalization, the emitted instructions to pack and unpack 2904 // the bytes again are not eliminated in the case of an unaligned copy. 2905 if (!allowsMisalignedMemoryAccesses( 2906 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2907 if (VT.isVector()) 2908 return scalarizeVectorLoad(LN, DAG); 2909 2910 SDValue Ops[2]; 2911 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2912 return DAG.getMergeValues(Ops, SDLoc(N)); 2913 } 2914 2915 if (!IsFast) 2916 return SDValue(); 2917 } 2918 2919 if (!shouldCombineMemoryType(VT)) 2920 return SDValue(); 2921 2922 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2923 2924 SDValue NewLoad 2925 = DAG.getLoad(NewVT, SL, LN->getChain(), 2926 LN->getBasePtr(), LN->getMemOperand()); 2927 2928 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2929 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2930 return SDValue(N, 0); 2931 } 2932 2933 // Replace store of an illegal type with a store of a bitcast to a friendlier 2934 // type. 2935 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2936 DAGCombinerInfo &DCI) const { 2937 if (!DCI.isBeforeLegalize()) 2938 return SDValue(); 2939 2940 StoreSDNode *SN = cast<StoreSDNode>(N); 2941 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2942 return SDValue(); 2943 2944 EVT VT = SN->getMemoryVT(); 2945 unsigned Size = VT.getStoreSize(); 2946 2947 SDLoc SL(N); 2948 SelectionDAG &DAG = DCI.DAG; 2949 unsigned Align = SN->getAlignment(); 2950 if (Align < Size && isTypeLegal(VT)) { 2951 bool IsFast; 2952 unsigned AS = SN->getAddressSpace(); 2953 2954 // Expand unaligned stores earlier than legalization. Due to visitation 2955 // order problems during legalization, the emitted instructions to pack and 2956 // unpack the bytes again are not eliminated in the case of an unaligned 2957 // copy. 2958 if (!allowsMisalignedMemoryAccesses( 2959 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2960 if (VT.isVector()) 2961 return scalarizeVectorStore(SN, DAG); 2962 2963 return expandUnalignedStore(SN, DAG); 2964 } 2965 2966 if (!IsFast) 2967 return SDValue(); 2968 } 2969 2970 if (!shouldCombineMemoryType(VT)) 2971 return SDValue(); 2972 2973 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2974 SDValue Val = SN->getValue(); 2975 2976 //DCI.AddToWorklist(Val.getNode()); 2977 2978 bool OtherUses = !Val.hasOneUse(); 2979 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2980 if (OtherUses) { 2981 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2982 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2983 } 2984 2985 return DAG.getStore(SN->getChain(), SL, CastVal, 2986 SN->getBasePtr(), SN->getMemOperand()); 2987 } 2988 2989 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2990 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2991 // issues. 2992 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2993 DAGCombinerInfo &DCI) const { 2994 SelectionDAG &DAG = DCI.DAG; 2995 SDValue N0 = N->getOperand(0); 2996 2997 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2998 // (vt2 (truncate (assertzext vt0:x, vt1))) 2999 if (N0.getOpcode() == ISD::TRUNCATE) { 3000 SDValue N1 = N->getOperand(1); 3001 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3002 SDLoc SL(N); 3003 3004 SDValue Src = N0.getOperand(0); 3005 EVT SrcVT = Src.getValueType(); 3006 if (SrcVT.bitsGE(ExtVT)) { 3007 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3008 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3009 } 3010 } 3011 3012 return SDValue(); 3013 } 3014 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3015 /// binary operation \p Opc to it with the corresponding constant operands. 3016 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3017 DAGCombinerInfo &DCI, const SDLoc &SL, 3018 unsigned Opc, SDValue LHS, 3019 uint32_t ValLo, uint32_t ValHi) const { 3020 SelectionDAG &DAG = DCI.DAG; 3021 SDValue Lo, Hi; 3022 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3023 3024 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3025 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3026 3027 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3028 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3029 3030 // Re-visit the ands. It's possible we eliminated one of them and it could 3031 // simplify the vector. 3032 DCI.AddToWorklist(Lo.getNode()); 3033 DCI.AddToWorklist(Hi.getNode()); 3034 3035 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3036 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3037 } 3038 3039 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3040 DAGCombinerInfo &DCI) const { 3041 EVT VT = N->getValueType(0); 3042 3043 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3044 if (!RHS) 3045 return SDValue(); 3046 3047 SDValue LHS = N->getOperand(0); 3048 unsigned RHSVal = RHS->getZExtValue(); 3049 if (!RHSVal) 3050 return LHS; 3051 3052 SDLoc SL(N); 3053 SelectionDAG &DAG = DCI.DAG; 3054 3055 switch (LHS->getOpcode()) { 3056 default: 3057 break; 3058 case ISD::ZERO_EXTEND: 3059 case ISD::SIGN_EXTEND: 3060 case ISD::ANY_EXTEND: { 3061 SDValue X = LHS->getOperand(0); 3062 3063 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3064 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3065 // Prefer build_vector as the canonical form if packed types are legal. 3066 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3067 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3068 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3069 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3070 } 3071 3072 // shl (ext x) => zext (shl x), if shift does not overflow int 3073 if (VT != MVT::i64) 3074 break; 3075 KnownBits Known = DAG.computeKnownBits(X); 3076 unsigned LZ = Known.countMinLeadingZeros(); 3077 if (LZ < RHSVal) 3078 break; 3079 EVT XVT = X.getValueType(); 3080 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3081 return DAG.getZExtOrTrunc(Shl, SL, VT); 3082 } 3083 } 3084 3085 if (VT != MVT::i64) 3086 return SDValue(); 3087 3088 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3089 3090 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3091 // common case, splitting this into a move and a 32-bit shift is faster and 3092 // the same code size. 3093 if (RHSVal < 32) 3094 return SDValue(); 3095 3096 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3097 3098 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3099 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3100 3101 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3102 3103 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3104 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3105 } 3106 3107 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3108 DAGCombinerInfo &DCI) const { 3109 if (N->getValueType(0) != MVT::i64) 3110 return SDValue(); 3111 3112 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3113 if (!RHS) 3114 return SDValue(); 3115 3116 SelectionDAG &DAG = DCI.DAG; 3117 SDLoc SL(N); 3118 unsigned RHSVal = RHS->getZExtValue(); 3119 3120 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3121 if (RHSVal == 32) { 3122 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3123 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3124 DAG.getConstant(31, SL, MVT::i32)); 3125 3126 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3127 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3128 } 3129 3130 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3131 if (RHSVal == 63) { 3132 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3133 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3134 DAG.getConstant(31, SL, MVT::i32)); 3135 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3136 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3137 } 3138 3139 return SDValue(); 3140 } 3141 3142 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3143 DAGCombinerInfo &DCI) const { 3144 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3145 if (!RHS) 3146 return SDValue(); 3147 3148 EVT VT = N->getValueType(0); 3149 SDValue LHS = N->getOperand(0); 3150 unsigned ShiftAmt = RHS->getZExtValue(); 3151 SelectionDAG &DAG = DCI.DAG; 3152 SDLoc SL(N); 3153 3154 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3155 // this improves the ability to match BFE patterns in isel. 3156 if (LHS.getOpcode() == ISD::AND) { 3157 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3158 if (Mask->getAPIntValue().isShiftedMask() && 3159 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3160 return DAG.getNode( 3161 ISD::AND, SL, VT, 3162 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3163 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3164 } 3165 } 3166 } 3167 3168 if (VT != MVT::i64) 3169 return SDValue(); 3170 3171 if (ShiftAmt < 32) 3172 return SDValue(); 3173 3174 // srl i64:x, C for C >= 32 3175 // => 3176 // build_pair (srl hi_32(x), C - 32), 0 3177 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3178 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3179 3180 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3181 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3182 3183 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3184 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3185 3186 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3187 3188 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3189 } 3190 3191 SDValue AMDGPUTargetLowering::performTruncateCombine( 3192 SDNode *N, DAGCombinerInfo &DCI) const { 3193 SDLoc SL(N); 3194 SelectionDAG &DAG = DCI.DAG; 3195 EVT VT = N->getValueType(0); 3196 SDValue Src = N->getOperand(0); 3197 3198 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3199 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3200 SDValue Vec = Src.getOperand(0); 3201 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3202 SDValue Elt0 = Vec.getOperand(0); 3203 EVT EltVT = Elt0.getValueType(); 3204 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3205 if (EltVT.isFloatingPoint()) { 3206 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3207 EltVT.changeTypeToInteger(), Elt0); 3208 } 3209 3210 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3211 } 3212 } 3213 } 3214 3215 // Equivalent of above for accessing the high element of a vector as an 3216 // integer operation. 3217 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3218 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3219 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3220 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3221 SDValue BV = stripBitcast(Src.getOperand(0)); 3222 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3223 BV.getValueType().getVectorNumElements() == 2) { 3224 SDValue SrcElt = BV.getOperand(1); 3225 EVT SrcEltVT = SrcElt.getValueType(); 3226 if (SrcEltVT.isFloatingPoint()) { 3227 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3228 SrcEltVT.changeTypeToInteger(), SrcElt); 3229 } 3230 3231 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3232 } 3233 } 3234 } 3235 } 3236 3237 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3238 // 3239 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3240 // i16 (trunc (srl (i32 (trunc x), K))) 3241 if (VT.getScalarSizeInBits() < 32) { 3242 EVT SrcVT = Src.getValueType(); 3243 if (SrcVT.getScalarSizeInBits() > 32 && 3244 (Src.getOpcode() == ISD::SRL || 3245 Src.getOpcode() == ISD::SRA || 3246 Src.getOpcode() == ISD::SHL)) { 3247 SDValue Amt = Src.getOperand(1); 3248 KnownBits Known = DAG.computeKnownBits(Amt); 3249 unsigned Size = VT.getScalarSizeInBits(); 3250 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3251 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3252 EVT MidVT = VT.isVector() ? 3253 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3254 VT.getVectorNumElements()) : MVT::i32; 3255 3256 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3257 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3258 Src.getOperand(0)); 3259 DCI.AddToWorklist(Trunc.getNode()); 3260 3261 if (Amt.getValueType() != NewShiftVT) { 3262 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3263 DCI.AddToWorklist(Amt.getNode()); 3264 } 3265 3266 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3267 Trunc, Amt); 3268 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3269 } 3270 } 3271 } 3272 3273 return SDValue(); 3274 } 3275 3276 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3277 // instructions. If we only match on the legalized i64 mul expansion, 3278 // SimplifyDemandedBits will be unable to remove them because there will be 3279 // multiple uses due to the separate mul + mulh[su]. 3280 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3281 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3282 if (Size <= 32) { 3283 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3284 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3285 } 3286 3287 // Because we want to eliminate extension instructions before the 3288 // operation, we need to create a single user here (i.e. not the separate 3289 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3290 3291 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3292 3293 SDValue Mul = DAG.getNode(MulOpc, SL, 3294 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3295 3296 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3297 Mul.getValue(0), Mul.getValue(1)); 3298 } 3299 3300 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3301 DAGCombinerInfo &DCI) const { 3302 EVT VT = N->getValueType(0); 3303 3304 unsigned Size = VT.getSizeInBits(); 3305 if (VT.isVector() || Size > 64) 3306 return SDValue(); 3307 3308 // There are i16 integer mul/mad. 3309 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3310 return SDValue(); 3311 3312 SelectionDAG &DAG = DCI.DAG; 3313 SDLoc DL(N); 3314 3315 SDValue N0 = N->getOperand(0); 3316 SDValue N1 = N->getOperand(1); 3317 3318 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3319 // in the source into any_extends if the result of the mul is truncated. Since 3320 // we can assume the high bits are whatever we want, use the underlying value 3321 // to avoid the unknown high bits from interfering. 3322 if (N0.getOpcode() == ISD::ANY_EXTEND) 3323 N0 = N0.getOperand(0); 3324 3325 if (N1.getOpcode() == ISD::ANY_EXTEND) 3326 N1 = N1.getOperand(0); 3327 3328 SDValue Mul; 3329 3330 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3331 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3332 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3333 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3334 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3335 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3336 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3337 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3338 } else { 3339 return SDValue(); 3340 } 3341 3342 // We need to use sext even for MUL_U24, because MUL_U24 is used 3343 // for signed multiply of 8 and 16-bit types. 3344 return DAG.getSExtOrTrunc(Mul, DL, VT); 3345 } 3346 3347 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3348 DAGCombinerInfo &DCI) const { 3349 EVT VT = N->getValueType(0); 3350 3351 if (!Subtarget->hasMulI24() || VT.isVector()) 3352 return SDValue(); 3353 3354 SelectionDAG &DAG = DCI.DAG; 3355 SDLoc DL(N); 3356 3357 SDValue N0 = N->getOperand(0); 3358 SDValue N1 = N->getOperand(1); 3359 3360 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3361 return SDValue(); 3362 3363 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3364 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3365 3366 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3367 DCI.AddToWorklist(Mulhi.getNode()); 3368 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3369 } 3370 3371 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3372 DAGCombinerInfo &DCI) const { 3373 EVT VT = N->getValueType(0); 3374 3375 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3376 return SDValue(); 3377 3378 SelectionDAG &DAG = DCI.DAG; 3379 SDLoc DL(N); 3380 3381 SDValue N0 = N->getOperand(0); 3382 SDValue N1 = N->getOperand(1); 3383 3384 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3385 return SDValue(); 3386 3387 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3388 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3389 3390 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3391 DCI.AddToWorklist(Mulhi.getNode()); 3392 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3393 } 3394 3395 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3396 SDNode *N, DAGCombinerInfo &DCI) const { 3397 SelectionDAG &DAG = DCI.DAG; 3398 3399 // Simplify demanded bits before splitting into multiple users. 3400 if (SDValue V = simplifyI24(N, DCI)) 3401 return V; 3402 3403 SDValue N0 = N->getOperand(0); 3404 SDValue N1 = N->getOperand(1); 3405 3406 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3407 3408 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3409 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3410 3411 SDLoc SL(N); 3412 3413 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3414 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3415 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3416 } 3417 3418 static bool isNegativeOne(SDValue Val) { 3419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3420 return C->isAllOnesValue(); 3421 return false; 3422 } 3423 3424 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3425 SDValue Op, 3426 const SDLoc &DL, 3427 unsigned Opc) const { 3428 EVT VT = Op.getValueType(); 3429 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3430 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3431 LegalVT != MVT::i16)) 3432 return SDValue(); 3433 3434 if (VT != MVT::i32) 3435 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3436 3437 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3438 if (VT != MVT::i32) 3439 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3440 3441 return FFBX; 3442 } 3443 3444 // The native instructions return -1 on 0 input. Optimize out a select that 3445 // produces -1 on 0. 3446 // 3447 // TODO: If zero is not undef, we could also do this if the output is compared 3448 // against the bitwidth. 3449 // 3450 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3451 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3452 SDValue LHS, SDValue RHS, 3453 DAGCombinerInfo &DCI) const { 3454 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3455 if (!CmpRhs || !CmpRhs->isNullValue()) 3456 return SDValue(); 3457 3458 SelectionDAG &DAG = DCI.DAG; 3459 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3460 SDValue CmpLHS = Cond.getOperand(0); 3461 3462 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3463 AMDGPUISD::FFBH_U32; 3464 3465 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3466 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3467 if (CCOpcode == ISD::SETEQ && 3468 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3469 RHS.getOperand(0) == CmpLHS && 3470 isNegativeOne(LHS)) { 3471 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3472 } 3473 3474 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3475 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3476 if (CCOpcode == ISD::SETNE && 3477 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3478 LHS.getOperand(0) == CmpLHS && 3479 isNegativeOne(RHS)) { 3480 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3481 } 3482 3483 return SDValue(); 3484 } 3485 3486 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3487 unsigned Op, 3488 const SDLoc &SL, 3489 SDValue Cond, 3490 SDValue N1, 3491 SDValue N2) { 3492 SelectionDAG &DAG = DCI.DAG; 3493 EVT VT = N1.getValueType(); 3494 3495 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3496 N1.getOperand(0), N2.getOperand(0)); 3497 DCI.AddToWorklist(NewSelect.getNode()); 3498 return DAG.getNode(Op, SL, VT, NewSelect); 3499 } 3500 3501 // Pull a free FP operation out of a select so it may fold into uses. 3502 // 3503 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3504 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3505 // 3506 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3507 // select c, (fabs x), +k -> fabs (select c, x, k) 3508 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3509 SDValue N) { 3510 SelectionDAG &DAG = DCI.DAG; 3511 SDValue Cond = N.getOperand(0); 3512 SDValue LHS = N.getOperand(1); 3513 SDValue RHS = N.getOperand(2); 3514 3515 EVT VT = N.getValueType(); 3516 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3517 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3518 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3519 SDLoc(N), Cond, LHS, RHS); 3520 } 3521 3522 bool Inv = false; 3523 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3524 std::swap(LHS, RHS); 3525 Inv = true; 3526 } 3527 3528 // TODO: Support vector constants. 3529 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3530 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3531 SDLoc SL(N); 3532 // If one side is an fneg/fabs and the other is a constant, we can push the 3533 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3534 SDValue NewLHS = LHS.getOperand(0); 3535 SDValue NewRHS = RHS; 3536 3537 // Careful: if the neg can be folded up, don't try to pull it back down. 3538 bool ShouldFoldNeg = true; 3539 3540 if (NewLHS.hasOneUse()) { 3541 unsigned Opc = NewLHS.getOpcode(); 3542 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3543 ShouldFoldNeg = false; 3544 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3545 ShouldFoldNeg = false; 3546 } 3547 3548 if (ShouldFoldNeg) { 3549 if (LHS.getOpcode() == ISD::FNEG) 3550 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3551 else if (CRHS->isNegative()) 3552 return SDValue(); 3553 3554 if (Inv) 3555 std::swap(NewLHS, NewRHS); 3556 3557 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3558 Cond, NewLHS, NewRHS); 3559 DCI.AddToWorklist(NewSelect.getNode()); 3560 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3561 } 3562 } 3563 3564 return SDValue(); 3565 } 3566 3567 3568 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3569 DAGCombinerInfo &DCI) const { 3570 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3571 return Folded; 3572 3573 SDValue Cond = N->getOperand(0); 3574 if (Cond.getOpcode() != ISD::SETCC) 3575 return SDValue(); 3576 3577 EVT VT = N->getValueType(0); 3578 SDValue LHS = Cond.getOperand(0); 3579 SDValue RHS = Cond.getOperand(1); 3580 SDValue CC = Cond.getOperand(2); 3581 3582 SDValue True = N->getOperand(1); 3583 SDValue False = N->getOperand(2); 3584 3585 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3586 SelectionDAG &DAG = DCI.DAG; 3587 if (DAG.isConstantValueOfAnyType(True) && 3588 !DAG.isConstantValueOfAnyType(False)) { 3589 // Swap cmp + select pair to move constant to false input. 3590 // This will allow using VOPC cndmasks more often. 3591 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3592 3593 SDLoc SL(N); 3594 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3595 LHS.getValueType().isInteger()); 3596 3597 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3598 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3599 } 3600 3601 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3602 SDValue MinMax 3603 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3604 // Revisit this node so we can catch min3/max3/med3 patterns. 3605 //DCI.AddToWorklist(MinMax.getNode()); 3606 return MinMax; 3607 } 3608 } 3609 3610 // There's no reason to not do this if the condition has other uses. 3611 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3612 } 3613 3614 static bool isInv2Pi(const APFloat &APF) { 3615 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3616 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3617 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3618 3619 return APF.bitwiseIsEqual(KF16) || 3620 APF.bitwiseIsEqual(KF32) || 3621 APF.bitwiseIsEqual(KF64); 3622 } 3623 3624 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3625 // additional cost to negate them. 3626 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3627 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3628 if (C->isZero() && !C->isNegative()) 3629 return true; 3630 3631 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3632 return true; 3633 } 3634 3635 return false; 3636 } 3637 3638 static unsigned inverseMinMax(unsigned Opc) { 3639 switch (Opc) { 3640 case ISD::FMAXNUM: 3641 return ISD::FMINNUM; 3642 case ISD::FMINNUM: 3643 return ISD::FMAXNUM; 3644 case ISD::FMAXNUM_IEEE: 3645 return ISD::FMINNUM_IEEE; 3646 case ISD::FMINNUM_IEEE: 3647 return ISD::FMAXNUM_IEEE; 3648 case AMDGPUISD::FMAX_LEGACY: 3649 return AMDGPUISD::FMIN_LEGACY; 3650 case AMDGPUISD::FMIN_LEGACY: 3651 return AMDGPUISD::FMAX_LEGACY; 3652 default: 3653 llvm_unreachable("invalid min/max opcode"); 3654 } 3655 } 3656 3657 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3658 DAGCombinerInfo &DCI) const { 3659 SelectionDAG &DAG = DCI.DAG; 3660 SDValue N0 = N->getOperand(0); 3661 EVT VT = N->getValueType(0); 3662 3663 unsigned Opc = N0.getOpcode(); 3664 3665 // If the input has multiple uses and we can either fold the negate down, or 3666 // the other uses cannot, give up. This both prevents unprofitable 3667 // transformations and infinite loops: we won't repeatedly try to fold around 3668 // a negate that has no 'good' form. 3669 if (N0.hasOneUse()) { 3670 // This may be able to fold into the source, but at a code size cost. Don't 3671 // fold if the fold into the user is free. 3672 if (allUsesHaveSourceMods(N, 0)) 3673 return SDValue(); 3674 } else { 3675 if (fnegFoldsIntoOp(Opc) && 3676 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3677 return SDValue(); 3678 } 3679 3680 SDLoc SL(N); 3681 switch (Opc) { 3682 case ISD::FADD: { 3683 if (!mayIgnoreSignedZero(N0)) 3684 return SDValue(); 3685 3686 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3687 SDValue LHS = N0.getOperand(0); 3688 SDValue RHS = N0.getOperand(1); 3689 3690 if (LHS.getOpcode() != ISD::FNEG) 3691 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3692 else 3693 LHS = LHS.getOperand(0); 3694 3695 if (RHS.getOpcode() != ISD::FNEG) 3696 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3697 else 3698 RHS = RHS.getOperand(0); 3699 3700 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3701 if (Res.getOpcode() != ISD::FADD) 3702 return SDValue(); // Op got folded away. 3703 if (!N0.hasOneUse()) 3704 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3705 return Res; 3706 } 3707 case ISD::FMUL: 3708 case AMDGPUISD::FMUL_LEGACY: { 3709 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3710 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3711 SDValue LHS = N0.getOperand(0); 3712 SDValue RHS = N0.getOperand(1); 3713 3714 if (LHS.getOpcode() == ISD::FNEG) 3715 LHS = LHS.getOperand(0); 3716 else if (RHS.getOpcode() == ISD::FNEG) 3717 RHS = RHS.getOperand(0); 3718 else 3719 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3720 3721 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3722 if (Res.getOpcode() != Opc) 3723 return SDValue(); // Op got folded away. 3724 if (!N0.hasOneUse()) 3725 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3726 return Res; 3727 } 3728 case ISD::FMA: 3729 case ISD::FMAD: { 3730 if (!mayIgnoreSignedZero(N0)) 3731 return SDValue(); 3732 3733 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3734 SDValue LHS = N0.getOperand(0); 3735 SDValue MHS = N0.getOperand(1); 3736 SDValue RHS = N0.getOperand(2); 3737 3738 if (LHS.getOpcode() == ISD::FNEG) 3739 LHS = LHS.getOperand(0); 3740 else if (MHS.getOpcode() == ISD::FNEG) 3741 MHS = MHS.getOperand(0); 3742 else 3743 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3744 3745 if (RHS.getOpcode() != ISD::FNEG) 3746 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3747 else 3748 RHS = RHS.getOperand(0); 3749 3750 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3751 if (Res.getOpcode() != Opc) 3752 return SDValue(); // Op got folded away. 3753 if (!N0.hasOneUse()) 3754 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3755 return Res; 3756 } 3757 case ISD::FMAXNUM: 3758 case ISD::FMINNUM: 3759 case ISD::FMAXNUM_IEEE: 3760 case ISD::FMINNUM_IEEE: 3761 case AMDGPUISD::FMAX_LEGACY: 3762 case AMDGPUISD::FMIN_LEGACY: { 3763 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3764 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3765 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3766 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3767 3768 SDValue LHS = N0.getOperand(0); 3769 SDValue RHS = N0.getOperand(1); 3770 3771 // 0 doesn't have a negated inline immediate. 3772 // TODO: This constant check should be generalized to other operations. 3773 if (isConstantCostlierToNegate(RHS)) 3774 return SDValue(); 3775 3776 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3777 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3778 unsigned Opposite = inverseMinMax(Opc); 3779 3780 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3781 if (Res.getOpcode() != Opposite) 3782 return SDValue(); // Op got folded away. 3783 if (!N0.hasOneUse()) 3784 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3785 return Res; 3786 } 3787 case AMDGPUISD::FMED3: { 3788 SDValue Ops[3]; 3789 for (unsigned I = 0; I < 3; ++I) 3790 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3791 3792 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3793 if (Res.getOpcode() != AMDGPUISD::FMED3) 3794 return SDValue(); // Op got folded away. 3795 if (!N0.hasOneUse()) 3796 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3797 return Res; 3798 } 3799 case ISD::FP_EXTEND: 3800 case ISD::FTRUNC: 3801 case ISD::FRINT: 3802 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3803 case ISD::FSIN: 3804 case ISD::FCANONICALIZE: 3805 case AMDGPUISD::RCP: 3806 case AMDGPUISD::RCP_LEGACY: 3807 case AMDGPUISD::RCP_IFLAG: 3808 case AMDGPUISD::SIN_HW: { 3809 SDValue CvtSrc = N0.getOperand(0); 3810 if (CvtSrc.getOpcode() == ISD::FNEG) { 3811 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3812 // (fneg (rcp (fneg x))) -> (rcp x) 3813 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3814 } 3815 3816 if (!N0.hasOneUse()) 3817 return SDValue(); 3818 3819 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3820 // (fneg (rcp x)) -> (rcp (fneg x)) 3821 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3822 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3823 } 3824 case ISD::FP_ROUND: { 3825 SDValue CvtSrc = N0.getOperand(0); 3826 3827 if (CvtSrc.getOpcode() == ISD::FNEG) { 3828 // (fneg (fp_round (fneg x))) -> (fp_round x) 3829 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3830 CvtSrc.getOperand(0), N0.getOperand(1)); 3831 } 3832 3833 if (!N0.hasOneUse()) 3834 return SDValue(); 3835 3836 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3837 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3838 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3839 } 3840 case ISD::FP16_TO_FP: { 3841 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3842 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3843 // Put the fneg back as a legal source operation that can be matched later. 3844 SDLoc SL(N); 3845 3846 SDValue Src = N0.getOperand(0); 3847 EVT SrcVT = Src.getValueType(); 3848 3849 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3850 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3851 DAG.getConstant(0x8000, SL, SrcVT)); 3852 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3853 } 3854 default: 3855 return SDValue(); 3856 } 3857 } 3858 3859 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3860 DAGCombinerInfo &DCI) const { 3861 SelectionDAG &DAG = DCI.DAG; 3862 SDValue N0 = N->getOperand(0); 3863 3864 if (!N0.hasOneUse()) 3865 return SDValue(); 3866 3867 switch (N0.getOpcode()) { 3868 case ISD::FP16_TO_FP: { 3869 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3870 SDLoc SL(N); 3871 SDValue Src = N0.getOperand(0); 3872 EVT SrcVT = Src.getValueType(); 3873 3874 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3875 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3876 DAG.getConstant(0x7fff, SL, SrcVT)); 3877 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3878 } 3879 default: 3880 return SDValue(); 3881 } 3882 } 3883 3884 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3885 DAGCombinerInfo &DCI) const { 3886 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3887 if (!CFP) 3888 return SDValue(); 3889 3890 // XXX - Should this flush denormals? 3891 const APFloat &Val = CFP->getValueAPF(); 3892 APFloat One(Val.getSemantics(), "1.0"); 3893 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3894 } 3895 3896 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3897 DAGCombinerInfo &DCI) const { 3898 SelectionDAG &DAG = DCI.DAG; 3899 SDLoc DL(N); 3900 3901 switch(N->getOpcode()) { 3902 default: 3903 break; 3904 case ISD::BITCAST: { 3905 EVT DestVT = N->getValueType(0); 3906 3907 // Push casts through vector builds. This helps avoid emitting a large 3908 // number of copies when materializing floating point vector constants. 3909 // 3910 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3911 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3912 if (DestVT.isVector()) { 3913 SDValue Src = N->getOperand(0); 3914 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3915 EVT SrcVT = Src.getValueType(); 3916 unsigned NElts = DestVT.getVectorNumElements(); 3917 3918 if (SrcVT.getVectorNumElements() == NElts) { 3919 EVT DestEltVT = DestVT.getVectorElementType(); 3920 3921 SmallVector<SDValue, 8> CastedElts; 3922 SDLoc SL(N); 3923 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3924 SDValue Elt = Src.getOperand(I); 3925 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3926 } 3927 3928 return DAG.getBuildVector(DestVT, SL, CastedElts); 3929 } 3930 } 3931 } 3932 3933 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3934 break; 3935 3936 // Fold bitcasts of constants. 3937 // 3938 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3939 // TODO: Generalize and move to DAGCombiner 3940 SDValue Src = N->getOperand(0); 3941 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3942 if (Src.getValueType() == MVT::i64) { 3943 SDLoc SL(N); 3944 uint64_t CVal = C->getZExtValue(); 3945 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3946 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3947 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3948 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3949 } 3950 } 3951 3952 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3953 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3954 SDLoc SL(N); 3955 uint64_t CVal = Val.getZExtValue(); 3956 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3957 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3958 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3959 3960 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3961 } 3962 3963 break; 3964 } 3965 case ISD::SHL: { 3966 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3967 break; 3968 3969 return performShlCombine(N, DCI); 3970 } 3971 case ISD::SRL: { 3972 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3973 break; 3974 3975 return performSrlCombine(N, DCI); 3976 } 3977 case ISD::SRA: { 3978 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3979 break; 3980 3981 return performSraCombine(N, DCI); 3982 } 3983 case ISD::TRUNCATE: 3984 return performTruncateCombine(N, DCI); 3985 case ISD::MUL: 3986 return performMulCombine(N, DCI); 3987 case ISD::MULHS: 3988 return performMulhsCombine(N, DCI); 3989 case ISD::MULHU: 3990 return performMulhuCombine(N, DCI); 3991 case AMDGPUISD::MUL_I24: 3992 case AMDGPUISD::MUL_U24: 3993 case AMDGPUISD::MULHI_I24: 3994 case AMDGPUISD::MULHI_U24: { 3995 if (SDValue V = simplifyI24(N, DCI)) 3996 return V; 3997 return SDValue(); 3998 } 3999 case AMDGPUISD::MUL_LOHI_I24: 4000 case AMDGPUISD::MUL_LOHI_U24: 4001 return performMulLoHi24Combine(N, DCI); 4002 case ISD::SELECT: 4003 return performSelectCombine(N, DCI); 4004 case ISD::FNEG: 4005 return performFNegCombine(N, DCI); 4006 case ISD::FABS: 4007 return performFAbsCombine(N, DCI); 4008 case AMDGPUISD::BFE_I32: 4009 case AMDGPUISD::BFE_U32: { 4010 assert(!N->getValueType(0).isVector() && 4011 "Vector handling of BFE not implemented"); 4012 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4013 if (!Width) 4014 break; 4015 4016 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4017 if (WidthVal == 0) 4018 return DAG.getConstant(0, DL, MVT::i32); 4019 4020 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4021 if (!Offset) 4022 break; 4023 4024 SDValue BitsFrom = N->getOperand(0); 4025 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4026 4027 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4028 4029 if (OffsetVal == 0) { 4030 // This is already sign / zero extended, so try to fold away extra BFEs. 4031 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4032 4033 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4034 if (OpSignBits >= SignBits) 4035 return BitsFrom; 4036 4037 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4038 if (Signed) { 4039 // This is a sign_extend_inreg. Replace it to take advantage of existing 4040 // DAG Combines. If not eliminated, we will match back to BFE during 4041 // selection. 4042 4043 // TODO: The sext_inreg of extended types ends, although we can could 4044 // handle them in a single BFE. 4045 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4046 DAG.getValueType(SmallVT)); 4047 } 4048 4049 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4050 } 4051 4052 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4053 if (Signed) { 4054 return constantFoldBFE<int32_t>(DAG, 4055 CVal->getSExtValue(), 4056 OffsetVal, 4057 WidthVal, 4058 DL); 4059 } 4060 4061 return constantFoldBFE<uint32_t>(DAG, 4062 CVal->getZExtValue(), 4063 OffsetVal, 4064 WidthVal, 4065 DL); 4066 } 4067 4068 if ((OffsetVal + WidthVal) >= 32 && 4069 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4070 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4071 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4072 BitsFrom, ShiftVal); 4073 } 4074 4075 if (BitsFrom.hasOneUse()) { 4076 APInt Demanded = APInt::getBitsSet(32, 4077 OffsetVal, 4078 OffsetVal + WidthVal); 4079 4080 KnownBits Known; 4081 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4082 !DCI.isBeforeLegalizeOps()); 4083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4084 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4085 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4086 DCI.CommitTargetLoweringOpt(TLO); 4087 } 4088 } 4089 4090 break; 4091 } 4092 case ISD::LOAD: 4093 return performLoadCombine(N, DCI); 4094 case ISD::STORE: 4095 return performStoreCombine(N, DCI); 4096 case AMDGPUISD::RCP: 4097 case AMDGPUISD::RCP_IFLAG: 4098 return performRcpCombine(N, DCI); 4099 case ISD::AssertZext: 4100 case ISD::AssertSext: 4101 return performAssertSZExtCombine(N, DCI); 4102 } 4103 return SDValue(); 4104 } 4105 4106 //===----------------------------------------------------------------------===// 4107 // Helper functions 4108 //===----------------------------------------------------------------------===// 4109 4110 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4111 const TargetRegisterClass *RC, 4112 unsigned Reg, EVT VT, 4113 const SDLoc &SL, 4114 bool RawReg) const { 4115 MachineFunction &MF = DAG.getMachineFunction(); 4116 MachineRegisterInfo &MRI = MF.getRegInfo(); 4117 unsigned VReg; 4118 4119 if (!MRI.isLiveIn(Reg)) { 4120 VReg = MRI.createVirtualRegister(RC); 4121 MRI.addLiveIn(Reg, VReg); 4122 } else { 4123 VReg = MRI.getLiveInVirtReg(Reg); 4124 } 4125 4126 if (RawReg) 4127 return DAG.getRegister(VReg, VT); 4128 4129 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4130 } 4131 4132 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4133 EVT VT, 4134 const SDLoc &SL, 4135 int64_t Offset) const { 4136 MachineFunction &MF = DAG.getMachineFunction(); 4137 MachineFrameInfo &MFI = MF.getFrameInfo(); 4138 4139 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 4140 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4141 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4142 4143 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4144 MachineMemOperand::MODereferenceable | 4145 MachineMemOperand::MOInvariant); 4146 } 4147 4148 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4149 const SDLoc &SL, 4150 SDValue Chain, 4151 SDValue ArgVal, 4152 int64_t Offset) const { 4153 MachineFunction &MF = DAG.getMachineFunction(); 4154 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4155 4156 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4157 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4158 MachineMemOperand::MODereferenceable); 4159 return Store; 4160 } 4161 4162 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4163 const TargetRegisterClass *RC, 4164 EVT VT, const SDLoc &SL, 4165 const ArgDescriptor &Arg) const { 4166 assert(Arg && "Attempting to load missing argument"); 4167 4168 SDValue V = Arg.isRegister() ? 4169 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4170 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4171 4172 if (!Arg.isMasked()) 4173 return V; 4174 4175 unsigned Mask = Arg.getMask(); 4176 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4177 V = DAG.getNode(ISD::SRL, SL, VT, V, 4178 DAG.getShiftAmountConstant(Shift, VT, SL)); 4179 return DAG.getNode(ISD::AND, SL, VT, V, 4180 DAG.getConstant(Mask >> Shift, SL, VT)); 4181 } 4182 4183 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4184 const MachineFunction &MF, const ImplicitParameter Param) const { 4185 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4186 const AMDGPUSubtarget &ST = 4187 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4188 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4189 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4190 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4191 ExplicitArgOffset; 4192 switch (Param) { 4193 case GRID_DIM: 4194 return ArgOffset; 4195 case GRID_OFFSET: 4196 return ArgOffset + 4; 4197 } 4198 llvm_unreachable("unexpected implicit parameter type"); 4199 } 4200 4201 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4202 4203 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4204 switch ((AMDGPUISD::NodeType)Opcode) { 4205 case AMDGPUISD::FIRST_NUMBER: break; 4206 // AMDIL DAG nodes 4207 NODE_NAME_CASE(UMUL); 4208 NODE_NAME_CASE(BRANCH_COND); 4209 4210 // AMDGPU DAG nodes 4211 NODE_NAME_CASE(IF) 4212 NODE_NAME_CASE(ELSE) 4213 NODE_NAME_CASE(LOOP) 4214 NODE_NAME_CASE(CALL) 4215 NODE_NAME_CASE(TC_RETURN) 4216 NODE_NAME_CASE(TRAP) 4217 NODE_NAME_CASE(RET_FLAG) 4218 NODE_NAME_CASE(RETURN_TO_EPILOG) 4219 NODE_NAME_CASE(ENDPGM) 4220 NODE_NAME_CASE(DWORDADDR) 4221 NODE_NAME_CASE(FRACT) 4222 NODE_NAME_CASE(SETCC) 4223 NODE_NAME_CASE(SETREG) 4224 NODE_NAME_CASE(FMA_W_CHAIN) 4225 NODE_NAME_CASE(FMUL_W_CHAIN) 4226 NODE_NAME_CASE(CLAMP) 4227 NODE_NAME_CASE(COS_HW) 4228 NODE_NAME_CASE(SIN_HW) 4229 NODE_NAME_CASE(FMAX_LEGACY) 4230 NODE_NAME_CASE(FMIN_LEGACY) 4231 NODE_NAME_CASE(FMAX3) 4232 NODE_NAME_CASE(SMAX3) 4233 NODE_NAME_CASE(UMAX3) 4234 NODE_NAME_CASE(FMIN3) 4235 NODE_NAME_CASE(SMIN3) 4236 NODE_NAME_CASE(UMIN3) 4237 NODE_NAME_CASE(FMED3) 4238 NODE_NAME_CASE(SMED3) 4239 NODE_NAME_CASE(UMED3) 4240 NODE_NAME_CASE(FDOT2) 4241 NODE_NAME_CASE(URECIP) 4242 NODE_NAME_CASE(DIV_SCALE) 4243 NODE_NAME_CASE(DIV_FMAS) 4244 NODE_NAME_CASE(DIV_FIXUP) 4245 NODE_NAME_CASE(FMAD_FTZ) 4246 NODE_NAME_CASE(TRIG_PREOP) 4247 NODE_NAME_CASE(RCP) 4248 NODE_NAME_CASE(RSQ) 4249 NODE_NAME_CASE(RCP_LEGACY) 4250 NODE_NAME_CASE(RSQ_LEGACY) 4251 NODE_NAME_CASE(RCP_IFLAG) 4252 NODE_NAME_CASE(FMUL_LEGACY) 4253 NODE_NAME_CASE(RSQ_CLAMP) 4254 NODE_NAME_CASE(LDEXP) 4255 NODE_NAME_CASE(FP_CLASS) 4256 NODE_NAME_CASE(DOT4) 4257 NODE_NAME_CASE(CARRY) 4258 NODE_NAME_CASE(BORROW) 4259 NODE_NAME_CASE(BFE_U32) 4260 NODE_NAME_CASE(BFE_I32) 4261 NODE_NAME_CASE(BFI) 4262 NODE_NAME_CASE(BFM) 4263 NODE_NAME_CASE(FFBH_U32) 4264 NODE_NAME_CASE(FFBH_I32) 4265 NODE_NAME_CASE(FFBL_B32) 4266 NODE_NAME_CASE(MUL_U24) 4267 NODE_NAME_CASE(MUL_I24) 4268 NODE_NAME_CASE(MULHI_U24) 4269 NODE_NAME_CASE(MULHI_I24) 4270 NODE_NAME_CASE(MUL_LOHI_U24) 4271 NODE_NAME_CASE(MUL_LOHI_I24) 4272 NODE_NAME_CASE(MAD_U24) 4273 NODE_NAME_CASE(MAD_I24) 4274 NODE_NAME_CASE(MAD_I64_I32) 4275 NODE_NAME_CASE(MAD_U64_U32) 4276 NODE_NAME_CASE(PERM) 4277 NODE_NAME_CASE(TEXTURE_FETCH) 4278 NODE_NAME_CASE(EXPORT) 4279 NODE_NAME_CASE(EXPORT_DONE) 4280 NODE_NAME_CASE(R600_EXPORT) 4281 NODE_NAME_CASE(CONST_ADDRESS) 4282 NODE_NAME_CASE(REGISTER_LOAD) 4283 NODE_NAME_CASE(REGISTER_STORE) 4284 NODE_NAME_CASE(SAMPLE) 4285 NODE_NAME_CASE(SAMPLEB) 4286 NODE_NAME_CASE(SAMPLED) 4287 NODE_NAME_CASE(SAMPLEL) 4288 NODE_NAME_CASE(CVT_F32_UBYTE0) 4289 NODE_NAME_CASE(CVT_F32_UBYTE1) 4290 NODE_NAME_CASE(CVT_F32_UBYTE2) 4291 NODE_NAME_CASE(CVT_F32_UBYTE3) 4292 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4293 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4294 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4295 NODE_NAME_CASE(CVT_PK_I16_I32) 4296 NODE_NAME_CASE(CVT_PK_U16_U32) 4297 NODE_NAME_CASE(FP_TO_FP16) 4298 NODE_NAME_CASE(FP16_ZEXT) 4299 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4300 NODE_NAME_CASE(CONST_DATA_PTR) 4301 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4302 NODE_NAME_CASE(LDS) 4303 NODE_NAME_CASE(KILL) 4304 NODE_NAME_CASE(DUMMY_CHAIN) 4305 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4306 NODE_NAME_CASE(INIT_EXEC) 4307 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4308 NODE_NAME_CASE(SENDMSG) 4309 NODE_NAME_CASE(SENDMSGHALT) 4310 NODE_NAME_CASE(INTERP_MOV) 4311 NODE_NAME_CASE(INTERP_P1) 4312 NODE_NAME_CASE(INTERP_P2) 4313 NODE_NAME_CASE(INTERP_P1LL_F16) 4314 NODE_NAME_CASE(INTERP_P1LV_F16) 4315 NODE_NAME_CASE(INTERP_P2_F16) 4316 NODE_NAME_CASE(LOAD_D16_HI) 4317 NODE_NAME_CASE(LOAD_D16_LO) 4318 NODE_NAME_CASE(LOAD_D16_HI_I8) 4319 NODE_NAME_CASE(LOAD_D16_HI_U8) 4320 NODE_NAME_CASE(LOAD_D16_LO_I8) 4321 NODE_NAME_CASE(LOAD_D16_LO_U8) 4322 NODE_NAME_CASE(STORE_MSKOR) 4323 NODE_NAME_CASE(LOAD_CONSTANT) 4324 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4325 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4326 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4327 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4328 NODE_NAME_CASE(DS_ORDERED_COUNT) 4329 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4330 NODE_NAME_CASE(ATOMIC_INC) 4331 NODE_NAME_CASE(ATOMIC_DEC) 4332 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4333 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4334 NODE_NAME_CASE(BUFFER_LOAD) 4335 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4336 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4337 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4338 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4339 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4340 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4341 NODE_NAME_CASE(SBUFFER_LOAD) 4342 NODE_NAME_CASE(BUFFER_STORE) 4343 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4344 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4345 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4346 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4347 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4348 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4349 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4350 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4351 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4352 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4353 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4354 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4355 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4356 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4357 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4358 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4359 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4360 NODE_NAME_CASE(ATOMIC_FADD) 4361 NODE_NAME_CASE(ATOMIC_PK_FADD) 4362 4363 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4364 } 4365 return nullptr; 4366 } 4367 4368 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4369 SelectionDAG &DAG, int Enabled, 4370 int &RefinementSteps, 4371 bool &UseOneConstNR, 4372 bool Reciprocal) const { 4373 EVT VT = Operand.getValueType(); 4374 4375 if (VT == MVT::f32) { 4376 RefinementSteps = 0; 4377 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4378 } 4379 4380 // TODO: There is also f64 rsq instruction, but the documentation is less 4381 // clear on its precision. 4382 4383 return SDValue(); 4384 } 4385 4386 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4387 SelectionDAG &DAG, int Enabled, 4388 int &RefinementSteps) const { 4389 EVT VT = Operand.getValueType(); 4390 4391 if (VT == MVT::f32) { 4392 // Reciprocal, < 1 ulp error. 4393 // 4394 // This reciprocal approximation converges to < 0.5 ulp error with one 4395 // newton rhapson performed with two fused multiple adds (FMAs). 4396 4397 RefinementSteps = 0; 4398 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4399 } 4400 4401 // TODO: There is also f64 rcp instruction, but the documentation is less 4402 // clear on its precision. 4403 4404 return SDValue(); 4405 } 4406 4407 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4408 const SDValue Op, KnownBits &Known, 4409 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4410 4411 Known.resetAll(); // Don't know anything. 4412 4413 unsigned Opc = Op.getOpcode(); 4414 4415 switch (Opc) { 4416 default: 4417 break; 4418 case AMDGPUISD::CARRY: 4419 case AMDGPUISD::BORROW: { 4420 Known.Zero = APInt::getHighBitsSet(32, 31); 4421 break; 4422 } 4423 4424 case AMDGPUISD::BFE_I32: 4425 case AMDGPUISD::BFE_U32: { 4426 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4427 if (!CWidth) 4428 return; 4429 4430 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4431 4432 if (Opc == AMDGPUISD::BFE_U32) 4433 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4434 4435 break; 4436 } 4437 case AMDGPUISD::FP_TO_FP16: 4438 case AMDGPUISD::FP16_ZEXT: { 4439 unsigned BitWidth = Known.getBitWidth(); 4440 4441 // High bits are zero. 4442 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4443 break; 4444 } 4445 case AMDGPUISD::MUL_U24: 4446 case AMDGPUISD::MUL_I24: { 4447 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4448 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4449 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4450 RHSKnown.countMinTrailingZeros(); 4451 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4452 4453 // Truncate to 24 bits. 4454 LHSKnown = LHSKnown.trunc(24); 4455 RHSKnown = RHSKnown.trunc(24); 4456 4457 bool Negative = false; 4458 if (Opc == AMDGPUISD::MUL_I24) { 4459 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4460 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4461 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4462 if (MaxValBits >= 32) 4463 break; 4464 bool LHSNegative = LHSKnown.isNegative(); 4465 bool LHSPositive = LHSKnown.isNonNegative(); 4466 bool RHSNegative = RHSKnown.isNegative(); 4467 bool RHSPositive = RHSKnown.isNonNegative(); 4468 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4469 break; 4470 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4471 if (Negative) 4472 Known.One.setHighBits(32 - MaxValBits); 4473 else 4474 Known.Zero.setHighBits(32 - MaxValBits); 4475 } else { 4476 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4477 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4478 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4479 if (MaxValBits >= 32) 4480 break; 4481 Known.Zero.setHighBits(32 - MaxValBits); 4482 } 4483 break; 4484 } 4485 case AMDGPUISD::PERM: { 4486 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4487 if (!CMask) 4488 return; 4489 4490 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4491 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4492 unsigned Sel = CMask->getZExtValue(); 4493 4494 for (unsigned I = 0; I < 32; I += 8) { 4495 unsigned SelBits = Sel & 0xff; 4496 if (SelBits < 4) { 4497 SelBits *= 8; 4498 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4499 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4500 } else if (SelBits < 7) { 4501 SelBits = (SelBits & 3) * 8; 4502 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4503 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4504 } else if (SelBits == 0x0c) { 4505 Known.Zero |= 0xFFull << I; 4506 } else if (SelBits > 0x0c) { 4507 Known.One |= 0xFFull << I; 4508 } 4509 Sel >>= 8; 4510 } 4511 break; 4512 } 4513 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4514 Known.Zero.setHighBits(24); 4515 break; 4516 } 4517 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4518 Known.Zero.setHighBits(16); 4519 break; 4520 } 4521 case AMDGPUISD::LDS: { 4522 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4523 unsigned Align = GA->getGlobal()->getAlignment(); 4524 4525 Known.Zero.setHighBits(16); 4526 if (Align) 4527 Known.Zero.setLowBits(Log2_32(Align)); 4528 break; 4529 } 4530 case ISD::INTRINSIC_WO_CHAIN: { 4531 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4532 switch (IID) { 4533 case Intrinsic::amdgcn_mbcnt_lo: 4534 case Intrinsic::amdgcn_mbcnt_hi: { 4535 const GCNSubtarget &ST = 4536 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4537 // These return at most the wavefront size - 1. 4538 unsigned Size = Op.getValueType().getSizeInBits(); 4539 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4540 break; 4541 } 4542 default: 4543 break; 4544 } 4545 } 4546 } 4547 } 4548 4549 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4550 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4551 unsigned Depth) const { 4552 switch (Op.getOpcode()) { 4553 case AMDGPUISD::BFE_I32: { 4554 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4555 if (!Width) 4556 return 1; 4557 4558 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4559 if (!isNullConstant(Op.getOperand(1))) 4560 return SignBits; 4561 4562 // TODO: Could probably figure something out with non-0 offsets. 4563 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4564 return std::max(SignBits, Op0SignBits); 4565 } 4566 4567 case AMDGPUISD::BFE_U32: { 4568 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4569 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4570 } 4571 4572 case AMDGPUISD::CARRY: 4573 case AMDGPUISD::BORROW: 4574 return 31; 4575 case AMDGPUISD::BUFFER_LOAD_BYTE: 4576 return 25; 4577 case AMDGPUISD::BUFFER_LOAD_SHORT: 4578 return 17; 4579 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4580 return 24; 4581 case AMDGPUISD::BUFFER_LOAD_USHORT: 4582 return 16; 4583 case AMDGPUISD::FP_TO_FP16: 4584 case AMDGPUISD::FP16_ZEXT: 4585 return 16; 4586 default: 4587 return 1; 4588 } 4589 } 4590 4591 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4592 const SelectionDAG &DAG, 4593 bool SNaN, 4594 unsigned Depth) const { 4595 unsigned Opcode = Op.getOpcode(); 4596 switch (Opcode) { 4597 case AMDGPUISD::FMIN_LEGACY: 4598 case AMDGPUISD::FMAX_LEGACY: { 4599 if (SNaN) 4600 return true; 4601 4602 // TODO: Can check no nans on one of the operands for each one, but which 4603 // one? 4604 return false; 4605 } 4606 case AMDGPUISD::FMUL_LEGACY: 4607 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4608 if (SNaN) 4609 return true; 4610 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4611 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4612 } 4613 case AMDGPUISD::FMED3: 4614 case AMDGPUISD::FMIN3: 4615 case AMDGPUISD::FMAX3: 4616 case AMDGPUISD::FMAD_FTZ: { 4617 if (SNaN) 4618 return true; 4619 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4620 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4621 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4622 } 4623 case AMDGPUISD::CVT_F32_UBYTE0: 4624 case AMDGPUISD::CVT_F32_UBYTE1: 4625 case AMDGPUISD::CVT_F32_UBYTE2: 4626 case AMDGPUISD::CVT_F32_UBYTE3: 4627 return true; 4628 4629 case AMDGPUISD::RCP: 4630 case AMDGPUISD::RSQ: 4631 case AMDGPUISD::RCP_LEGACY: 4632 case AMDGPUISD::RSQ_LEGACY: 4633 case AMDGPUISD::RSQ_CLAMP: { 4634 if (SNaN) 4635 return true; 4636 4637 // TODO: Need is known positive check. 4638 return false; 4639 } 4640 case AMDGPUISD::LDEXP: 4641 case AMDGPUISD::FRACT: { 4642 if (SNaN) 4643 return true; 4644 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4645 } 4646 case AMDGPUISD::DIV_SCALE: 4647 case AMDGPUISD::DIV_FMAS: 4648 case AMDGPUISD::DIV_FIXUP: 4649 case AMDGPUISD::TRIG_PREOP: 4650 // TODO: Refine on operands. 4651 return SNaN; 4652 case AMDGPUISD::SIN_HW: 4653 case AMDGPUISD::COS_HW: { 4654 // TODO: Need check for infinity 4655 return SNaN; 4656 } 4657 case ISD::INTRINSIC_WO_CHAIN: { 4658 unsigned IntrinsicID 4659 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4660 // TODO: Handle more intrinsics 4661 switch (IntrinsicID) { 4662 case Intrinsic::amdgcn_cubeid: 4663 return true; 4664 4665 case Intrinsic::amdgcn_frexp_mant: { 4666 if (SNaN) 4667 return true; 4668 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4669 } 4670 case Intrinsic::amdgcn_cvt_pkrtz: { 4671 if (SNaN) 4672 return true; 4673 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4674 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4675 } 4676 case Intrinsic::amdgcn_fdot2: 4677 // TODO: Refine on operand 4678 return SNaN; 4679 default: 4680 return false; 4681 } 4682 } 4683 default: 4684 return false; 4685 } 4686 } 4687 4688 TargetLowering::AtomicExpansionKind 4689 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4690 switch (RMW->getOperation()) { 4691 case AtomicRMWInst::Nand: 4692 case AtomicRMWInst::FAdd: 4693 case AtomicRMWInst::FSub: 4694 return AtomicExpansionKind::CmpXChg; 4695 default: 4696 return AtomicExpansionKind::None; 4697 } 4698 } 4699