1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUDiagnosticInfoUnsupported.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (!Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 287 288 if (!Subtarget->hasFFBL()) 289 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 290 291 static const MVT::SimpleValueType VectorIntTypes[] = { 292 MVT::v2i32, MVT::v4i32 293 }; 294 295 for (MVT VT : VectorIntTypes) { 296 // Expand the following operations for the current type by default. 297 setOperationAction(ISD::ADD, VT, Expand); 298 setOperationAction(ISD::AND, VT, Expand); 299 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 300 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 301 setOperationAction(ISD::MUL, VT, Expand); 302 setOperationAction(ISD::OR, VT, Expand); 303 setOperationAction(ISD::SHL, VT, Expand); 304 setOperationAction(ISD::SRA, VT, Expand); 305 setOperationAction(ISD::SRL, VT, Expand); 306 setOperationAction(ISD::ROTL, VT, Expand); 307 setOperationAction(ISD::ROTR, VT, Expand); 308 setOperationAction(ISD::SUB, VT, Expand); 309 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 310 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 311 setOperationAction(ISD::SDIV, VT, Expand); 312 setOperationAction(ISD::UDIV, VT, Expand); 313 setOperationAction(ISD::SREM, VT, Expand); 314 setOperationAction(ISD::UREM, VT, Expand); 315 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 316 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 317 setOperationAction(ISD::SDIVREM, VT, Custom); 318 setOperationAction(ISD::UDIVREM, VT, Expand); 319 setOperationAction(ISD::ADDC, VT, Expand); 320 setOperationAction(ISD::SUBC, VT, Expand); 321 setOperationAction(ISD::ADDE, VT, Expand); 322 setOperationAction(ISD::SUBE, VT, Expand); 323 setOperationAction(ISD::SELECT, VT, Expand); 324 setOperationAction(ISD::VSELECT, VT, Expand); 325 setOperationAction(ISD::SELECT_CC, VT, Expand); 326 setOperationAction(ISD::XOR, VT, Expand); 327 setOperationAction(ISD::BSWAP, VT, Expand); 328 setOperationAction(ISD::CTPOP, VT, Expand); 329 setOperationAction(ISD::CTTZ, VT, Expand); 330 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 331 setOperationAction(ISD::CTLZ, VT, Expand); 332 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 333 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 334 } 335 336 static const MVT::SimpleValueType FloatVectorTypes[] = { 337 MVT::v2f32, MVT::v4f32 338 }; 339 340 for (MVT VT : FloatVectorTypes) { 341 setOperationAction(ISD::FABS, VT, Expand); 342 setOperationAction(ISD::FMINNUM, VT, Expand); 343 setOperationAction(ISD::FMAXNUM, VT, Expand); 344 setOperationAction(ISD::FADD, VT, Expand); 345 setOperationAction(ISD::FCEIL, VT, Expand); 346 setOperationAction(ISD::FCOS, VT, Expand); 347 setOperationAction(ISD::FDIV, VT, Expand); 348 setOperationAction(ISD::FEXP2, VT, Expand); 349 setOperationAction(ISD::FLOG2, VT, Expand); 350 setOperationAction(ISD::FREM, VT, Expand); 351 setOperationAction(ISD::FPOW, VT, Expand); 352 setOperationAction(ISD::FFLOOR, VT, Expand); 353 setOperationAction(ISD::FTRUNC, VT, Expand); 354 setOperationAction(ISD::FMUL, VT, Expand); 355 setOperationAction(ISD::FMA, VT, Expand); 356 setOperationAction(ISD::FRINT, VT, Expand); 357 setOperationAction(ISD::FNEARBYINT, VT, Expand); 358 setOperationAction(ISD::FSQRT, VT, Expand); 359 setOperationAction(ISD::FSIN, VT, Expand); 360 setOperationAction(ISD::FSUB, VT, Expand); 361 setOperationAction(ISD::FNEG, VT, Expand); 362 setOperationAction(ISD::SELECT, VT, Expand); 363 setOperationAction(ISD::VSELECT, VT, Expand); 364 setOperationAction(ISD::SELECT_CC, VT, Expand); 365 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 366 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 367 } 368 369 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 370 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 371 372 setTargetDAGCombine(ISD::SHL); 373 setTargetDAGCombine(ISD::MUL); 374 setTargetDAGCombine(ISD::SELECT); 375 setTargetDAGCombine(ISD::SELECT_CC); 376 setTargetDAGCombine(ISD::STORE); 377 378 setTargetDAGCombine(ISD::FADD); 379 setTargetDAGCombine(ISD::FSUB); 380 381 setBooleanContents(ZeroOrNegativeOneBooleanContent); 382 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 383 384 setSchedulingPreference(Sched::RegPressure); 385 setJumpIsExpensive(true); 386 387 // SI at least has hardware support for floating point exceptions, but no way 388 // of using or handling them is implemented. They are also optional in OpenCL 389 // (Section 7.3) 390 setHasFloatingPointExceptions(false); 391 392 setSelectIsExpensive(false); 393 PredictableSelectIsExpensive = false; 394 395 setFsqrtIsCheap(true); 396 397 // FIXME: Need to really handle these. 398 MaxStoresPerMemcpy = 4096; 399 MaxStoresPerMemmove = 4096; 400 MaxStoresPerMemset = 4096; 401 } 402 403 //===----------------------------------------------------------------------===// 404 // Target Information 405 //===----------------------------------------------------------------------===// 406 407 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 408 return MVT::i32; 409 } 410 411 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 412 return true; 413 } 414 415 // The backend supports 32 and 64 bit floating point immediates. 416 // FIXME: Why are we reporting vectors of FP immediates as legal? 417 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 418 EVT ScalarVT = VT.getScalarType(); 419 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 420 } 421 422 // We don't want to shrink f64 / f32 constants. 423 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 424 EVT ScalarVT = VT.getScalarType(); 425 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 426 } 427 428 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 429 ISD::LoadExtType, 430 EVT NewVT) const { 431 432 unsigned NewSize = NewVT.getStoreSizeInBits(); 433 434 // If we are reducing to a 32-bit load, this is always better. 435 if (NewSize == 32) 436 return true; 437 438 EVT OldVT = N->getValueType(0); 439 unsigned OldSize = OldVT.getStoreSizeInBits(); 440 441 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 442 // extloads, so doing one requires using a buffer_load. In cases where we 443 // still couldn't use a scalar load, using the wider load shouldn't really 444 // hurt anything. 445 446 // If the old size already had to be an extload, there's no harm in continuing 447 // to reduce the width. 448 return (OldSize < 32); 449 } 450 451 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 452 EVT CastTy) const { 453 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 454 return true; 455 456 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 457 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 458 459 return ((LScalarSize <= CastScalarSize) || 460 (CastScalarSize >= 32) || 461 (LScalarSize < 32)); 462 } 463 464 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 465 // profitable with the expansion for 64-bit since it's generally good to 466 // speculate things. 467 // FIXME: These should really have the size as a parameter. 468 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 469 return true; 470 } 471 472 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 473 return true; 474 } 475 476 //===---------------------------------------------------------------------===// 477 // Target Properties 478 //===---------------------------------------------------------------------===// 479 480 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 481 assert(VT.isFloatingPoint()); 482 return VT == MVT::f32 || VT == MVT::f64; 483 } 484 485 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 486 assert(VT.isFloatingPoint()); 487 return VT == MVT::f32 || VT == MVT::f64; 488 } 489 490 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 491 unsigned NumElem, 492 unsigned AS) const { 493 return true; 494 } 495 496 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 497 // There are few operations which truly have vector input operands. Any vector 498 // operation is going to involve operations on each component, and a 499 // build_vector will be a copy per element, so it always makes sense to use a 500 // build_vector input in place of the extracted element to avoid a copy into a 501 // super register. 502 // 503 // We should probably only do this if all users are extracts only, but this 504 // should be the common case. 505 return true; 506 } 507 508 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 509 // Truncate is just accessing a subregister. 510 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 511 } 512 513 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 514 // Truncate is just accessing a subregister. 515 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 516 (Dest->getPrimitiveSizeInBits() % 32 == 0); 517 } 518 519 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 520 unsigned SrcSize = Src->getScalarSizeInBits(); 521 unsigned DestSize = Dest->getScalarSizeInBits(); 522 523 return SrcSize == 32 && DestSize == 64; 524 } 525 526 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 527 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 528 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 529 // this will enable reducing 64-bit operations the 32-bit, which is always 530 // good. 531 return Src == MVT::i32 && Dest == MVT::i64; 532 } 533 534 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 535 return isZExtFree(Val.getValueType(), VT2); 536 } 537 538 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 539 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 540 // limited number of native 64-bit operations. Shrinking an operation to fit 541 // in a single 32-bit register should always be helpful. As currently used, 542 // this is much less general than the name suggests, and is only used in 543 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 544 // not profitable, and may actually be harmful. 545 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 546 } 547 548 //===---------------------------------------------------------------------===// 549 // TargetLowering Callbacks 550 //===---------------------------------------------------------------------===// 551 552 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 553 const SmallVectorImpl<ISD::InputArg> &Ins) const { 554 555 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 556 } 557 558 SDValue AMDGPUTargetLowering::LowerReturn( 559 SDValue Chain, 560 CallingConv::ID CallConv, 561 bool isVarArg, 562 const SmallVectorImpl<ISD::OutputArg> &Outs, 563 const SmallVectorImpl<SDValue> &OutVals, 564 SDLoc DL, SelectionDAG &DAG) const { 565 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 566 } 567 568 //===---------------------------------------------------------------------===// 569 // Target specific lowering 570 //===---------------------------------------------------------------------===// 571 572 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 573 SmallVectorImpl<SDValue> &InVals) const { 574 SDValue Callee = CLI.Callee; 575 SelectionDAG &DAG = CLI.DAG; 576 577 const Function &Fn = *DAG.getMachineFunction().getFunction(); 578 579 StringRef FuncName("<unknown>"); 580 581 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 582 FuncName = G->getSymbol(); 583 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 584 FuncName = G->getGlobal()->getName(); 585 586 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 587 DAG.getContext()->diagnose(NoCalls); 588 return SDValue(); 589 } 590 591 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 592 SelectionDAG &DAG) const { 593 const Function &Fn = *DAG.getMachineFunction().getFunction(); 594 595 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); 596 DAG.getContext()->diagnose(NoDynamicAlloca); 597 return SDValue(); 598 } 599 600 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 601 SelectionDAG &DAG) const { 602 switch (Op.getOpcode()) { 603 default: 604 Op.getNode()->dump(); 605 llvm_unreachable("Custom lowering code for this" 606 "instruction is not implemented yet!"); 607 break; 608 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 609 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 610 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 611 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 612 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 613 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 614 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 615 case ISD::FREM: return LowerFREM(Op, DAG); 616 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 617 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 618 case ISD::FRINT: return LowerFRINT(Op, DAG); 619 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 620 case ISD::FROUND: return LowerFROUND(Op, DAG); 621 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 622 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 623 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 624 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 625 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 626 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 627 } 628 return Op; 629 } 630 631 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 632 SmallVectorImpl<SDValue> &Results, 633 SelectionDAG &DAG) const { 634 switch (N->getOpcode()) { 635 case ISD::SIGN_EXTEND_INREG: 636 // Different parts of legalization seem to interpret which type of 637 // sign_extend_inreg is the one to check for custom lowering. The extended 638 // from type is what really matters, but some places check for custom 639 // lowering of the result type. This results in trying to use 640 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 641 // nothing here and let the illegal result integer be handled normally. 642 return; 643 case ISD::LOAD: { 644 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 645 if (!Node) 646 return; 647 648 Results.push_back(SDValue(Node, 0)); 649 Results.push_back(SDValue(Node, 1)); 650 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 651 // function 652 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 653 return; 654 } 655 case ISD::STORE: { 656 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 657 if (Lowered.getNode()) 658 Results.push_back(Lowered); 659 return; 660 } 661 default: 662 return; 663 } 664 } 665 666 // FIXME: This implements accesses to initialized globals in the constant 667 // address space by copying them to private and accessing that. It does not 668 // properly handle illegal types or vectors. The private vector loads are not 669 // scalarized, and the illegal scalars hit an assertion. This technique will not 670 // work well with large initializers, and this should eventually be 671 // removed. Initialized globals should be placed into a data section that the 672 // runtime will load into a buffer before the kernel is executed. Uses of the 673 // global need to be replaced with a pointer loaded from an implicit kernel 674 // argument into this buffer holding the copy of the data, which will remove the 675 // need for any of this. 676 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 677 const GlobalValue *GV, 678 const SDValue &InitPtr, 679 SDValue Chain, 680 SelectionDAG &DAG) const { 681 const DataLayout &TD = DAG.getDataLayout(); 682 SDLoc DL(InitPtr); 683 Type *InitTy = Init->getType(); 684 685 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 686 EVT VT = EVT::getEVT(InitTy); 687 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 688 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 689 MachinePointerInfo(UndefValue::get(PtrTy)), false, 690 false, TD.getPrefTypeAlignment(InitTy)); 691 } 692 693 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 694 EVT VT = EVT::getEVT(CFP->getType()); 695 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 696 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 697 MachinePointerInfo(UndefValue::get(PtrTy)), false, 698 false, TD.getPrefTypeAlignment(CFP->getType())); 699 } 700 701 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 702 const StructLayout *SL = TD.getStructLayout(ST); 703 704 EVT PtrVT = InitPtr.getValueType(); 705 SmallVector<SDValue, 8> Chains; 706 707 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 708 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 709 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 710 711 Constant *Elt = Init->getAggregateElement(I); 712 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 713 } 714 715 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 716 } 717 718 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 719 EVT PtrVT = InitPtr.getValueType(); 720 721 unsigned NumElements; 722 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 723 NumElements = AT->getNumElements(); 724 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 725 NumElements = VT->getNumElements(); 726 else 727 llvm_unreachable("Unexpected type"); 728 729 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 730 SmallVector<SDValue, 8> Chains; 731 for (unsigned i = 0; i < NumElements; ++i) { 732 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 733 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 734 735 Constant *Elt = Init->getAggregateElement(i); 736 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 737 } 738 739 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 740 } 741 742 if (isa<UndefValue>(Init)) { 743 EVT VT = EVT::getEVT(InitTy); 744 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 745 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 746 MachinePointerInfo(UndefValue::get(PtrTy)), false, 747 false, TD.getPrefTypeAlignment(InitTy)); 748 } 749 750 Init->dump(); 751 llvm_unreachable("Unhandled constant initializer"); 752 } 753 754 static bool hasDefinedInitializer(const GlobalValue *GV) { 755 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 756 if (!GVar || !GVar->hasInitializer()) 757 return false; 758 759 if (isa<UndefValue>(GVar->getInitializer())) 760 return false; 761 762 return true; 763 } 764 765 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 766 SDValue Op, 767 SelectionDAG &DAG) const { 768 769 const DataLayout &DL = DAG.getDataLayout(); 770 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 771 const GlobalValue *GV = G->getGlobal(); 772 773 switch (G->getAddressSpace()) { 774 case AMDGPUAS::LOCAL_ADDRESS: { 775 // XXX: What does the value of G->getOffset() mean? 776 assert(G->getOffset() == 0 && 777 "Do not know what to do with an non-zero offset"); 778 779 // TODO: We could emit code to handle the initialization somewhere. 780 if (hasDefinedInitializer(GV)) 781 break; 782 783 unsigned Offset; 784 if (MFI->LocalMemoryObjects.count(GV) == 0) { 785 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 786 Offset = MFI->LDSSize; 787 MFI->LocalMemoryObjects[GV] = Offset; 788 // XXX: Account for alignment? 789 MFI->LDSSize += Size; 790 } else { 791 Offset = MFI->LocalMemoryObjects[GV]; 792 } 793 794 return DAG.getConstant(Offset, SDLoc(Op), 795 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 796 } 797 case AMDGPUAS::CONSTANT_ADDRESS: { 798 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 799 Type *EltType = GV->getType()->getElementType(); 800 unsigned Size = DL.getTypeAllocSize(EltType); 801 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 802 803 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 804 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 805 806 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 807 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 808 809 const GlobalVariable *Var = cast<GlobalVariable>(GV); 810 if (!Var->hasInitializer()) { 811 // This has no use, but bugpoint will hit it. 812 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 813 } 814 815 const Constant *Init = Var->getInitializer(); 816 SmallVector<SDNode*, 8> WorkList; 817 818 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 819 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 820 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 821 continue; 822 WorkList.push_back(*I); 823 } 824 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 825 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 826 E = WorkList.end(); I != E; ++I) { 827 SmallVector<SDValue, 8> Ops; 828 Ops.push_back(Chain); 829 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 830 Ops.push_back((*I)->getOperand(i)); 831 } 832 DAG.UpdateNodeOperands(*I, Ops); 833 } 834 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 835 } 836 } 837 838 const Function &Fn = *DAG.getMachineFunction().getFunction(); 839 DiagnosticInfoUnsupported BadInit(Fn, 840 "initializer for address space"); 841 DAG.getContext()->diagnose(BadInit); 842 return SDValue(); 843 } 844 845 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 846 SelectionDAG &DAG) const { 847 SmallVector<SDValue, 8> Args; 848 849 for (const SDUse &U : Op->ops()) 850 DAG.ExtractVectorElements(U.get(), Args); 851 852 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 853 } 854 855 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 856 SelectionDAG &DAG) const { 857 858 SmallVector<SDValue, 8> Args; 859 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 860 EVT VT = Op.getValueType(); 861 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 862 VT.getVectorNumElements()); 863 864 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 865 } 866 867 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 868 SelectionDAG &DAG) const { 869 870 MachineFunction &MF = DAG.getMachineFunction(); 871 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 872 873 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 874 875 unsigned FrameIndex = FIN->getIndex(); 876 unsigned IgnoredFrameReg; 877 unsigned Offset = 878 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 879 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 880 Op.getValueType()); 881 } 882 883 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 884 SelectionDAG &DAG) const { 885 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 886 SDLoc DL(Op); 887 EVT VT = Op.getValueType(); 888 889 switch (IntrinsicID) { 890 default: return Op; 891 case AMDGPUIntrinsic::AMDGPU_abs: 892 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. 893 return LowerIntrinsicIABS(Op, DAG); 894 case AMDGPUIntrinsic::AMDGPU_lrp: 895 return LowerIntrinsicLRP(Op, DAG); 896 897 case AMDGPUIntrinsic::AMDGPU_clamp: 898 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 899 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 900 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 901 902 case Intrinsic::AMDGPU_div_scale: { 903 // 3rd parameter required to be a constant. 904 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 905 if (!Param) 906 return DAG.getUNDEF(VT); 907 908 // Translate to the operands expected by the machine instruction. The 909 // first parameter must be the same as the first instruction. 910 SDValue Numerator = Op.getOperand(1); 911 SDValue Denominator = Op.getOperand(2); 912 913 // Note this order is opposite of the machine instruction's operations, 914 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 915 // intrinsic has the numerator as the first operand to match a normal 916 // division operation. 917 918 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 919 920 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 921 Denominator, Numerator); 922 } 923 924 case Intrinsic::AMDGPU_div_fmas: 925 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 926 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 927 Op.getOperand(4)); 928 929 case Intrinsic::AMDGPU_div_fixup: 930 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 931 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 932 933 case Intrinsic::AMDGPU_trig_preop: 934 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 935 Op.getOperand(1), Op.getOperand(2)); 936 937 case Intrinsic::AMDGPU_rcp: 938 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 939 940 case Intrinsic::AMDGPU_rsq: 941 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 942 943 case AMDGPUIntrinsic::AMDGPU_legacy_rsq: 944 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 945 946 case Intrinsic::AMDGPU_rsq_clamped: 947 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 948 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 949 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 950 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 951 952 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 953 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 954 DAG.getConstantFP(Max, DL, VT)); 955 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 956 DAG.getConstantFP(Min, DL, VT)); 957 } else { 958 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 959 } 960 961 case Intrinsic::AMDGPU_ldexp: 962 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 963 Op.getOperand(2)); 964 965 case AMDGPUIntrinsic::AMDGPU_imax: 966 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), 967 Op.getOperand(2)); 968 case AMDGPUIntrinsic::AMDGPU_umax: 969 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), 970 Op.getOperand(2)); 971 case AMDGPUIntrinsic::AMDGPU_imin: 972 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), 973 Op.getOperand(2)); 974 case AMDGPUIntrinsic::AMDGPU_umin: 975 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), 976 Op.getOperand(2)); 977 978 case AMDGPUIntrinsic::AMDGPU_umul24: 979 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 980 Op.getOperand(1), Op.getOperand(2)); 981 982 case AMDGPUIntrinsic::AMDGPU_imul24: 983 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 984 Op.getOperand(1), Op.getOperand(2)); 985 986 case AMDGPUIntrinsic::AMDGPU_umad24: 987 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 988 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 989 990 case AMDGPUIntrinsic::AMDGPU_imad24: 991 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 992 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 993 994 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: 995 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); 996 997 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: 998 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); 999 1000 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: 1001 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); 1002 1003 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: 1004 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); 1005 1006 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1007 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1008 Op.getOperand(1), 1009 Op.getOperand(2), 1010 Op.getOperand(3)); 1011 1012 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1013 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1014 Op.getOperand(1), 1015 Op.getOperand(2), 1016 Op.getOperand(3)); 1017 1018 case AMDGPUIntrinsic::AMDGPU_bfi: 1019 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 1020 Op.getOperand(1), 1021 Op.getOperand(2), 1022 Op.getOperand(3)); 1023 1024 case AMDGPUIntrinsic::AMDGPU_bfm: 1025 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 1026 Op.getOperand(1), 1027 Op.getOperand(2)); 1028 1029 case AMDGPUIntrinsic::AMDGPU_brev: 1030 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1)); 1031 1032 case Intrinsic::AMDGPU_class: 1033 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 1034 Op.getOperand(1), Op.getOperand(2)); 1035 1036 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 1037 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 1038 1039 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. 1040 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); 1041 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. 1042 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); 1043 } 1044 } 1045 1046 ///IABS(a) = SMAX(sub(0, a), a) 1047 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, 1048 SelectionDAG &DAG) const { 1049 SDLoc DL(Op); 1050 EVT VT = Op.getValueType(); 1051 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1052 Op.getOperand(1)); 1053 1054 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); 1055 } 1056 1057 /// Linear Interpolation 1058 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c) 1059 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, 1060 SelectionDAG &DAG) const { 1061 SDLoc DL(Op); 1062 EVT VT = Op.getValueType(); 1063 // TODO: Should this propagate fast-math-flags? 1064 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, 1065 DAG.getConstantFP(1.0f, DL, MVT::f32), 1066 Op.getOperand(1)); 1067 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, 1068 Op.getOperand(3)); 1069 return DAG.getNode(ISD::FADD, DL, VT, 1070 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), 1071 OneSubAC); 1072 } 1073 1074 /// \brief Generate Min/Max node 1075 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 1076 EVT VT, 1077 SDValue LHS, 1078 SDValue RHS, 1079 SDValue True, 1080 SDValue False, 1081 SDValue CC, 1082 DAGCombinerInfo &DCI) const { 1083 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1084 return SDValue(); 1085 1086 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1087 return SDValue(); 1088 1089 SelectionDAG &DAG = DCI.DAG; 1090 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1091 switch (CCOpcode) { 1092 case ISD::SETOEQ: 1093 case ISD::SETONE: 1094 case ISD::SETUNE: 1095 case ISD::SETNE: 1096 case ISD::SETUEQ: 1097 case ISD::SETEQ: 1098 case ISD::SETFALSE: 1099 case ISD::SETFALSE2: 1100 case ISD::SETTRUE: 1101 case ISD::SETTRUE2: 1102 case ISD::SETUO: 1103 case ISD::SETO: 1104 break; 1105 case ISD::SETULE: 1106 case ISD::SETULT: { 1107 if (LHS == True) 1108 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1109 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1110 } 1111 case ISD::SETOLE: 1112 case ISD::SETOLT: 1113 case ISD::SETLE: 1114 case ISD::SETLT: { 1115 // Ordered. Assume ordered for undefined. 1116 1117 // Only do this after legalization to avoid interfering with other combines 1118 // which might occur. 1119 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1120 !DCI.isCalledByLegalizer()) 1121 return SDValue(); 1122 1123 // We need to permute the operands to get the correct NaN behavior. The 1124 // selected operand is the second one based on the failing compare with NaN, 1125 // so permute it based on the compare type the hardware uses. 1126 if (LHS == True) 1127 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1128 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1129 } 1130 case ISD::SETUGE: 1131 case ISD::SETUGT: { 1132 if (LHS == True) 1133 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1134 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1135 } 1136 case ISD::SETGT: 1137 case ISD::SETGE: 1138 case ISD::SETOGE: 1139 case ISD::SETOGT: { 1140 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1141 !DCI.isCalledByLegalizer()) 1142 return SDValue(); 1143 1144 if (LHS == True) 1145 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1146 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1147 } 1148 case ISD::SETCC_INVALID: 1149 llvm_unreachable("Invalid setcc condcode!"); 1150 } 1151 return SDValue(); 1152 } 1153 1154 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1155 SelectionDAG &DAG) const { 1156 LoadSDNode *Load = cast<LoadSDNode>(Op); 1157 EVT MemVT = Load->getMemoryVT(); 1158 EVT MemEltVT = MemVT.getVectorElementType(); 1159 1160 EVT LoadVT = Op.getValueType(); 1161 EVT EltVT = LoadVT.getVectorElementType(); 1162 EVT PtrVT = Load->getBasePtr().getValueType(); 1163 1164 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1165 SmallVector<SDValue, 8> Loads; 1166 SmallVector<SDValue, 8> Chains; 1167 1168 SDLoc SL(Op); 1169 unsigned MemEltSize = MemEltVT.getStoreSize(); 1170 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1171 1172 for (unsigned i = 0; i < NumElts; ++i) { 1173 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1174 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1175 1176 SDValue NewLoad 1177 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1178 Load->getChain(), Ptr, 1179 SrcValue.getWithOffset(i * MemEltSize), 1180 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1181 Load->isInvariant(), Load->getAlignment()); 1182 Loads.push_back(NewLoad.getValue(0)); 1183 Chains.push_back(NewLoad.getValue(1)); 1184 } 1185 1186 SDValue Ops[] = { 1187 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1188 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1189 }; 1190 1191 return DAG.getMergeValues(Ops, SL); 1192 } 1193 1194 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1195 SelectionDAG &DAG) const { 1196 EVT VT = Op.getValueType(); 1197 1198 // If this is a 2 element vector, we really want to scalarize and not create 1199 // weird 1 element vectors. 1200 if (VT.getVectorNumElements() == 2) 1201 return ScalarizeVectorLoad(Op, DAG); 1202 1203 LoadSDNode *Load = cast<LoadSDNode>(Op); 1204 SDValue BasePtr = Load->getBasePtr(); 1205 EVT PtrVT = BasePtr.getValueType(); 1206 EVT MemVT = Load->getMemoryVT(); 1207 SDLoc SL(Op); 1208 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1209 1210 EVT LoVT, HiVT; 1211 EVT LoMemVT, HiMemVT; 1212 SDValue Lo, Hi; 1213 1214 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1215 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1216 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1217 SDValue LoLoad 1218 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1219 Load->getChain(), BasePtr, 1220 SrcValue, 1221 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1222 Load->isInvariant(), Load->getAlignment()); 1223 1224 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1225 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1226 PtrVT)); 1227 1228 SDValue HiLoad 1229 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1230 Load->getChain(), HiPtr, 1231 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1232 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1233 Load->isInvariant(), Load->getAlignment()); 1234 1235 SDValue Ops[] = { 1236 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1237 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1238 LoLoad.getValue(1), HiLoad.getValue(1)) 1239 }; 1240 1241 return DAG.getMergeValues(Ops, SL); 1242 } 1243 1244 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1245 SelectionDAG &DAG) const { 1246 StoreSDNode *Store = cast<StoreSDNode>(Op); 1247 EVT MemVT = Store->getMemoryVT(); 1248 unsigned MemBits = MemVT.getSizeInBits(); 1249 1250 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1251 // truncating store into an i32 store. 1252 // XXX: We could also handle optimize other vector bitwidths. 1253 if (!MemVT.isVector() || MemBits > 32) { 1254 return SDValue(); 1255 } 1256 1257 SDLoc DL(Op); 1258 SDValue Value = Store->getValue(); 1259 EVT VT = Value.getValueType(); 1260 EVT ElemVT = VT.getVectorElementType(); 1261 SDValue Ptr = Store->getBasePtr(); 1262 EVT MemEltVT = MemVT.getVectorElementType(); 1263 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1264 unsigned MemNumElements = MemVT.getVectorNumElements(); 1265 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1266 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1267 1268 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1269 1270 SDValue PackedValue; 1271 for (unsigned i = 0; i < MemNumElements; ++i) { 1272 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1273 DAG.getConstant(i, DL, MVT::i32)); 1274 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1275 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1276 1277 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1278 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1279 1280 if (i == 0) { 1281 PackedValue = Elt; 1282 } else { 1283 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1284 } 1285 } 1286 1287 if (PackedSize < 32) { 1288 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1289 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1290 Store->getMemOperand()->getPointerInfo(), 1291 PackedVT, 1292 Store->isNonTemporal(), Store->isVolatile(), 1293 Store->getAlignment()); 1294 } 1295 1296 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1297 Store->getMemOperand()->getPointerInfo(), 1298 Store->isVolatile(), Store->isNonTemporal(), 1299 Store->getAlignment()); 1300 } 1301 1302 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1303 SelectionDAG &DAG) const { 1304 StoreSDNode *Store = cast<StoreSDNode>(Op); 1305 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1306 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1307 EVT PtrVT = Store->getBasePtr().getValueType(); 1308 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1309 SDLoc SL(Op); 1310 1311 SmallVector<SDValue, 8> Chains; 1312 1313 unsigned EltSize = MemEltVT.getStoreSize(); 1314 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1315 1316 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1317 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1318 Store->getValue(), 1319 DAG.getConstant(i, SL, MVT::i32)); 1320 1321 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1322 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1323 SDValue NewStore = 1324 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1325 SrcValue.getWithOffset(i * EltSize), 1326 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1327 Store->getAlignment()); 1328 Chains.push_back(NewStore); 1329 } 1330 1331 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1332 } 1333 1334 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1335 SelectionDAG &DAG) const { 1336 StoreSDNode *Store = cast<StoreSDNode>(Op); 1337 SDValue Val = Store->getValue(); 1338 EVT VT = Val.getValueType(); 1339 1340 // If this is a 2 element vector, we really want to scalarize and not create 1341 // weird 1 element vectors. 1342 if (VT.getVectorNumElements() == 2) 1343 return ScalarizeVectorStore(Op, DAG); 1344 1345 EVT MemVT = Store->getMemoryVT(); 1346 SDValue Chain = Store->getChain(); 1347 SDValue BasePtr = Store->getBasePtr(); 1348 SDLoc SL(Op); 1349 1350 EVT LoVT, HiVT; 1351 EVT LoMemVT, HiMemVT; 1352 SDValue Lo, Hi; 1353 1354 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1355 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1356 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1357 1358 EVT PtrVT = BasePtr.getValueType(); 1359 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1360 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1361 PtrVT)); 1362 1363 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1364 SDValue LoStore 1365 = DAG.getTruncStore(Chain, SL, Lo, 1366 BasePtr, 1367 SrcValue, 1368 LoMemVT, 1369 Store->isNonTemporal(), 1370 Store->isVolatile(), 1371 Store->getAlignment()); 1372 SDValue HiStore 1373 = DAG.getTruncStore(Chain, SL, Hi, 1374 HiPtr, 1375 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1376 HiMemVT, 1377 Store->isNonTemporal(), 1378 Store->isVolatile(), 1379 Store->getAlignment()); 1380 1381 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1382 } 1383 1384 1385 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1386 SDLoc DL(Op); 1387 LoadSDNode *Load = cast<LoadSDNode>(Op); 1388 ISD::LoadExtType ExtType = Load->getExtensionType(); 1389 EVT VT = Op.getValueType(); 1390 EVT MemVT = Load->getMemoryVT(); 1391 1392 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1393 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1394 // FIXME: Copied from PPC 1395 // First, load into 32 bits, then truncate to 1 bit. 1396 1397 SDValue Chain = Load->getChain(); 1398 SDValue BasePtr = Load->getBasePtr(); 1399 MachineMemOperand *MMO = Load->getMemOperand(); 1400 1401 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1402 BasePtr, MVT::i8, MMO); 1403 1404 SDValue Ops[] = { 1405 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1406 NewLD.getValue(1) 1407 }; 1408 1409 return DAG.getMergeValues(Ops, DL); 1410 } 1411 1412 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1413 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1414 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1415 return SDValue(); 1416 1417 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1418 // register (2-)byte extract. 1419 1420 // Get Register holding the target. 1421 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1422 DAG.getConstant(2, DL, MVT::i32)); 1423 // Load the Register. 1424 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1425 Load->getChain(), Ptr, 1426 DAG.getTargetConstant(0, DL, MVT::i32), 1427 Op.getOperand(2)); 1428 1429 // Get offset within the register. 1430 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1431 Load->getBasePtr(), 1432 DAG.getConstant(0x3, DL, MVT::i32)); 1433 1434 // Bit offset of target byte (byteIdx * 8). 1435 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1436 DAG.getConstant(3, DL, MVT::i32)); 1437 1438 // Shift to the right. 1439 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1440 1441 // Eliminate the upper bits by setting them to ... 1442 EVT MemEltVT = MemVT.getScalarType(); 1443 1444 // ... ones. 1445 if (ExtType == ISD::SEXTLOAD) { 1446 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1447 1448 SDValue Ops[] = { 1449 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1450 Load->getChain() 1451 }; 1452 1453 return DAG.getMergeValues(Ops, DL); 1454 } 1455 1456 // ... or zeros. 1457 SDValue Ops[] = { 1458 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1459 Load->getChain() 1460 }; 1461 1462 return DAG.getMergeValues(Ops, DL); 1463 } 1464 1465 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1466 SDLoc DL(Op); 1467 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1468 if (Result.getNode()) { 1469 return Result; 1470 } 1471 1472 StoreSDNode *Store = cast<StoreSDNode>(Op); 1473 SDValue Chain = Store->getChain(); 1474 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1475 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1476 Store->getValue().getValueType().isVector()) { 1477 return ScalarizeVectorStore(Op, DAG); 1478 } 1479 1480 EVT MemVT = Store->getMemoryVT(); 1481 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1482 MemVT.bitsLT(MVT::i32)) { 1483 unsigned Mask = 0; 1484 if (Store->getMemoryVT() == MVT::i8) { 1485 Mask = 0xff; 1486 } else if (Store->getMemoryVT() == MVT::i16) { 1487 Mask = 0xffff; 1488 } 1489 SDValue BasePtr = Store->getBasePtr(); 1490 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1491 DAG.getConstant(2, DL, MVT::i32)); 1492 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1493 Chain, Ptr, 1494 DAG.getTargetConstant(0, DL, MVT::i32)); 1495 1496 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1497 DAG.getConstant(0x3, DL, MVT::i32)); 1498 1499 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1500 DAG.getConstant(3, DL, MVT::i32)); 1501 1502 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1503 Store->getValue()); 1504 1505 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1506 1507 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1508 MaskedValue, ShiftAmt); 1509 1510 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1511 DAG.getConstant(Mask, DL, MVT::i32), 1512 ShiftAmt); 1513 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1514 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1515 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1516 1517 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1518 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1519 Chain, Value, Ptr, 1520 DAG.getTargetConstant(0, DL, MVT::i32)); 1521 } 1522 return SDValue(); 1523 } 1524 1525 // This is a shortcut for integer division because we have fast i32<->f32 1526 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1527 // float is enough to accurately represent up to a 24-bit integer. 1528 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1529 SDLoc DL(Op); 1530 EVT VT = Op.getValueType(); 1531 SDValue LHS = Op.getOperand(0); 1532 SDValue RHS = Op.getOperand(1); 1533 MVT IntVT = MVT::i32; 1534 MVT FltVT = MVT::f32; 1535 1536 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1537 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1538 1539 if (VT.isVector()) { 1540 unsigned NElts = VT.getVectorNumElements(); 1541 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1542 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1543 } 1544 1545 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1546 1547 SDValue jq = DAG.getConstant(1, DL, IntVT); 1548 1549 if (sign) { 1550 // char|short jq = ia ^ ib; 1551 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1552 1553 // jq = jq >> (bitsize - 2) 1554 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1555 DAG.getConstant(BitSize - 2, DL, VT)); 1556 1557 // jq = jq | 0x1 1558 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1559 1560 // jq = (int)jq 1561 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1562 } 1563 1564 // int ia = (int)LHS; 1565 SDValue ia = sign ? 1566 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1567 1568 // int ib, (int)RHS; 1569 SDValue ib = sign ? 1570 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1571 1572 // float fa = (float)ia; 1573 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1574 1575 // float fb = (float)ib; 1576 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1577 1578 // TODO: Should this propagate fast-math-flags? 1579 // float fq = native_divide(fa, fb); 1580 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1581 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1582 1583 // fq = trunc(fq); 1584 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1585 1586 // float fqneg = -fq; 1587 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1588 1589 // float fr = mad(fqneg, fb, fa); 1590 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1591 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1592 1593 // int iq = (int)fq; 1594 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1595 1596 // fr = fabs(fr); 1597 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1598 1599 // fb = fabs(fb); 1600 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1601 1602 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1603 1604 // int cv = fr >= fb; 1605 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1606 1607 // jq = (cv ? jq : 0); 1608 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1609 1610 // dst = trunc/extend to legal type 1611 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1612 1613 // dst = iq + jq; 1614 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1615 1616 // Rem needs compensation, it's easier to recompute it 1617 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1618 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1619 1620 SDValue Res[2] = { 1621 Div, 1622 Rem 1623 }; 1624 return DAG.getMergeValues(Res, DL); 1625 } 1626 1627 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1628 SelectionDAG &DAG, 1629 SmallVectorImpl<SDValue> &Results) const { 1630 assert(Op.getValueType() == MVT::i64); 1631 1632 SDLoc DL(Op); 1633 EVT VT = Op.getValueType(); 1634 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1635 1636 SDValue one = DAG.getConstant(1, DL, HalfVT); 1637 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1638 1639 //HiLo split 1640 SDValue LHS = Op.getOperand(0); 1641 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1642 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1643 1644 SDValue RHS = Op.getOperand(1); 1645 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1646 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1647 1648 if (VT == MVT::i64 && 1649 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1650 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1651 1652 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1653 LHS_Lo, RHS_Lo); 1654 1655 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1656 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1657 Results.push_back(DIV); 1658 Results.push_back(REM); 1659 return; 1660 } 1661 1662 // Get Speculative values 1663 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1664 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1665 1666 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1667 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1668 1669 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1670 SDValue DIV_Lo = zero; 1671 1672 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1673 1674 for (unsigned i = 0; i < halfBitWidth; ++i) { 1675 const unsigned bitPos = halfBitWidth - i - 1; 1676 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1677 // Get value of high bit 1678 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1679 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1680 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1681 1682 // Shift 1683 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1684 // Add LHS high bit 1685 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1686 1687 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1688 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1689 1690 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1691 1692 // Update REM 1693 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1694 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1695 } 1696 1697 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1698 Results.push_back(DIV); 1699 Results.push_back(REM); 1700 } 1701 1702 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1703 SelectionDAG &DAG) const { 1704 SDLoc DL(Op); 1705 EVT VT = Op.getValueType(); 1706 1707 if (VT == MVT::i64) { 1708 SmallVector<SDValue, 2> Results; 1709 LowerUDIVREM64(Op, DAG, Results); 1710 return DAG.getMergeValues(Results, DL); 1711 } 1712 1713 SDValue Num = Op.getOperand(0); 1714 SDValue Den = Op.getOperand(1); 1715 1716 if (VT == MVT::i32) { 1717 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1718 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1719 // TODO: We technically could do this for i64, but shouldn't that just be 1720 // handled by something generally reducing 64-bit division on 32-bit 1721 // values to 32-bit? 1722 return LowerDIVREM24(Op, DAG, false); 1723 } 1724 } 1725 1726 // RCP = URECIP(Den) = 2^32 / Den + e 1727 // e is rounding error. 1728 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1729 1730 // RCP_LO = mul(RCP, Den) */ 1731 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1732 1733 // RCP_HI = mulhu (RCP, Den) */ 1734 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1735 1736 // NEG_RCP_LO = -RCP_LO 1737 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1738 RCP_LO); 1739 1740 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1741 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1742 NEG_RCP_LO, RCP_LO, 1743 ISD::SETEQ); 1744 // Calculate the rounding error from the URECIP instruction 1745 // E = mulhu(ABS_RCP_LO, RCP) 1746 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1747 1748 // RCP_A_E = RCP + E 1749 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1750 1751 // RCP_S_E = RCP - E 1752 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1753 1754 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1755 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1756 RCP_A_E, RCP_S_E, 1757 ISD::SETEQ); 1758 // Quotient = mulhu(Tmp0, Num) 1759 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1760 1761 // Num_S_Remainder = Quotient * Den 1762 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1763 1764 // Remainder = Num - Num_S_Remainder 1765 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1766 1767 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1768 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1769 DAG.getConstant(-1, DL, VT), 1770 DAG.getConstant(0, DL, VT), 1771 ISD::SETUGE); 1772 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1773 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1774 Num_S_Remainder, 1775 DAG.getConstant(-1, DL, VT), 1776 DAG.getConstant(0, DL, VT), 1777 ISD::SETUGE); 1778 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1779 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1780 Remainder_GE_Zero); 1781 1782 // Calculate Division result: 1783 1784 // Quotient_A_One = Quotient + 1 1785 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1786 DAG.getConstant(1, DL, VT)); 1787 1788 // Quotient_S_One = Quotient - 1 1789 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1790 DAG.getConstant(1, DL, VT)); 1791 1792 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1793 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1794 Quotient, Quotient_A_One, ISD::SETEQ); 1795 1796 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1797 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1798 Quotient_S_One, Div, ISD::SETEQ); 1799 1800 // Calculate Rem result: 1801 1802 // Remainder_S_Den = Remainder - Den 1803 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1804 1805 // Remainder_A_Den = Remainder + Den 1806 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1807 1808 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1809 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1810 Remainder, Remainder_S_Den, ISD::SETEQ); 1811 1812 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1813 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1814 Remainder_A_Den, Rem, ISD::SETEQ); 1815 SDValue Ops[2] = { 1816 Div, 1817 Rem 1818 }; 1819 return DAG.getMergeValues(Ops, DL); 1820 } 1821 1822 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1823 SelectionDAG &DAG) const { 1824 SDLoc DL(Op); 1825 EVT VT = Op.getValueType(); 1826 1827 SDValue LHS = Op.getOperand(0); 1828 SDValue RHS = Op.getOperand(1); 1829 1830 SDValue Zero = DAG.getConstant(0, DL, VT); 1831 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1832 1833 if (VT == MVT::i32 && 1834 DAG.ComputeNumSignBits(LHS) > 8 && 1835 DAG.ComputeNumSignBits(RHS) > 8) { 1836 return LowerDIVREM24(Op, DAG, true); 1837 } 1838 if (VT == MVT::i64 && 1839 DAG.ComputeNumSignBits(LHS) > 32 && 1840 DAG.ComputeNumSignBits(RHS) > 32) { 1841 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1842 1843 //HiLo split 1844 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1845 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1846 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1847 LHS_Lo, RHS_Lo); 1848 SDValue Res[2] = { 1849 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1850 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1851 }; 1852 return DAG.getMergeValues(Res, DL); 1853 } 1854 1855 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1856 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1857 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1858 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1859 1860 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1861 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1862 1863 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1864 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1865 1866 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1867 SDValue Rem = Div.getValue(1); 1868 1869 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1870 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1871 1872 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1873 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1874 1875 SDValue Res[2] = { 1876 Div, 1877 Rem 1878 }; 1879 return DAG.getMergeValues(Res, DL); 1880 } 1881 1882 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1883 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1884 SDLoc SL(Op); 1885 EVT VT = Op.getValueType(); 1886 SDValue X = Op.getOperand(0); 1887 SDValue Y = Op.getOperand(1); 1888 1889 // TODO: Should this propagate fast-math-flags? 1890 1891 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1892 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1893 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1894 1895 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1896 } 1897 1898 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1899 SDLoc SL(Op); 1900 SDValue Src = Op.getOperand(0); 1901 1902 // result = trunc(src) 1903 // if (src > 0.0 && src != result) 1904 // result += 1.0 1905 1906 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1907 1908 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1909 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1910 1911 EVT SetCCVT = 1912 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1913 1914 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1915 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1916 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1917 1918 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1919 // TODO: Should this propagate fast-math-flags? 1920 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1921 } 1922 1923 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1924 const unsigned FractBits = 52; 1925 const unsigned ExpBits = 11; 1926 1927 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1928 Hi, 1929 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1930 DAG.getConstant(ExpBits, SL, MVT::i32)); 1931 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1932 DAG.getConstant(1023, SL, MVT::i32)); 1933 1934 return Exp; 1935 } 1936 1937 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1938 SDLoc SL(Op); 1939 SDValue Src = Op.getOperand(0); 1940 1941 assert(Op.getValueType() == MVT::f64); 1942 1943 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1944 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1945 1946 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1947 1948 // Extract the upper half, since this is where we will find the sign and 1949 // exponent. 1950 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1951 1952 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1953 1954 const unsigned FractBits = 52; 1955 1956 // Extract the sign bit. 1957 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1958 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1959 1960 // Extend back to to 64-bits. 1961 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1962 Zero, SignBit); 1963 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1964 1965 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1966 const SDValue FractMask 1967 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1968 1969 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1970 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1971 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1972 1973 EVT SetCCVT = 1974 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1975 1976 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1977 1978 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1979 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1980 1981 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1982 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1983 1984 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1985 } 1986 1987 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1988 SDLoc SL(Op); 1989 SDValue Src = Op.getOperand(0); 1990 1991 assert(Op.getValueType() == MVT::f64); 1992 1993 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1994 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1995 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1996 1997 // TODO: Should this propagate fast-math-flags? 1998 1999 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2000 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2001 2002 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2003 2004 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 2005 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2006 2007 EVT SetCCVT = 2008 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2009 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2010 2011 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2012 } 2013 2014 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2015 // FNEARBYINT and FRINT are the same, except in their handling of FP 2016 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2017 // rint, so just treat them as equivalent. 2018 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2019 } 2020 2021 // XXX - May require not supporting f32 denormals? 2022 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 2023 SDLoc SL(Op); 2024 SDValue X = Op.getOperand(0); 2025 2026 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 2027 2028 // TODO: Should this propagate fast-math-flags? 2029 2030 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 2031 2032 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 2033 2034 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 2035 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 2036 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 2037 2038 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 2039 2040 EVT SetCCVT = 2041 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 2042 2043 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2044 2045 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 2046 2047 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 2048 } 2049 2050 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2051 SDLoc SL(Op); 2052 SDValue X = Op.getOperand(0); 2053 2054 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2055 2056 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2057 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2058 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2059 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2060 EVT SetCCVT = 2061 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2062 2063 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2064 2065 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2066 2067 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2068 2069 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2070 MVT::i64); 2071 2072 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2073 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2074 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2075 MVT::i64), 2076 Exp); 2077 2078 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2079 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2080 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2081 ISD::SETNE); 2082 2083 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2084 D, DAG.getConstant(0, SL, MVT::i64)); 2085 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2086 2087 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2088 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2089 2090 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2091 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2092 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2093 2094 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2095 ExpEqNegOne, 2096 DAG.getConstantFP(1.0, SL, MVT::f64), 2097 DAG.getConstantFP(0.0, SL, MVT::f64)); 2098 2099 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2100 2101 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2102 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2103 2104 return K; 2105 } 2106 2107 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2108 EVT VT = Op.getValueType(); 2109 2110 if (VT == MVT::f32) 2111 return LowerFROUND32(Op, DAG); 2112 2113 if (VT == MVT::f64) 2114 return LowerFROUND64(Op, DAG); 2115 2116 llvm_unreachable("unhandled type"); 2117 } 2118 2119 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2120 SDLoc SL(Op); 2121 SDValue Src = Op.getOperand(0); 2122 2123 // result = trunc(src); 2124 // if (src < 0.0 && src != result) 2125 // result += -1.0. 2126 2127 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2128 2129 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2130 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2131 2132 EVT SetCCVT = 2133 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2134 2135 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2136 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2137 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2138 2139 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2140 // TODO: Should this propagate fast-math-flags? 2141 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2142 } 2143 2144 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2145 bool Signed) const { 2146 SDLoc SL(Op); 2147 SDValue Src = Op.getOperand(0); 2148 2149 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2150 2151 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2152 DAG.getConstant(0, SL, MVT::i32)); 2153 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2154 DAG.getConstant(1, SL, MVT::i32)); 2155 2156 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2157 SL, MVT::f64, Hi); 2158 2159 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2160 2161 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2162 DAG.getConstant(32, SL, MVT::i32)); 2163 // TODO: Should this propagate fast-math-flags? 2164 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2165 } 2166 2167 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2168 SelectionDAG &DAG) const { 2169 SDValue S0 = Op.getOperand(0); 2170 if (S0.getValueType() != MVT::i64) 2171 return SDValue(); 2172 2173 EVT DestVT = Op.getValueType(); 2174 if (DestVT == MVT::f64) 2175 return LowerINT_TO_FP64(Op, DAG, false); 2176 2177 assert(DestVT == MVT::f32); 2178 2179 SDLoc DL(Op); 2180 2181 // f32 uint_to_fp i64 2182 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2183 DAG.getConstant(0, DL, MVT::i32)); 2184 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); 2185 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2186 DAG.getConstant(1, DL, MVT::i32)); 2187 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); 2188 // TODO: Should this propagate fast-math-flags? 2189 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, 2190 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 2191 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); 2192 } 2193 2194 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2195 SelectionDAG &DAG) const { 2196 SDValue Src = Op.getOperand(0); 2197 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) 2198 return LowerINT_TO_FP64(Op, DAG, true); 2199 2200 return SDValue(); 2201 } 2202 2203 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2204 bool Signed) const { 2205 SDLoc SL(Op); 2206 2207 SDValue Src = Op.getOperand(0); 2208 2209 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2210 2211 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2212 MVT::f64); 2213 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2214 MVT::f64); 2215 // TODO: Should this propagate fast-math-flags? 2216 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2217 2218 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2219 2220 2221 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2222 2223 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2224 MVT::i32, FloorMul); 2225 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2226 2227 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2228 2229 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2230 } 2231 2232 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2233 SelectionDAG &DAG) const { 2234 SDValue Src = Op.getOperand(0); 2235 2236 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2237 return LowerFP64_TO_INT(Op, DAG, true); 2238 2239 return SDValue(); 2240 } 2241 2242 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2243 SelectionDAG &DAG) const { 2244 SDValue Src = Op.getOperand(0); 2245 2246 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2247 return LowerFP64_TO_INT(Op, DAG, false); 2248 2249 return SDValue(); 2250 } 2251 2252 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2253 SelectionDAG &DAG) const { 2254 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2255 MVT VT = Op.getSimpleValueType(); 2256 MVT ScalarVT = VT.getScalarType(); 2257 2258 if (!VT.isVector()) 2259 return SDValue(); 2260 2261 SDValue Src = Op.getOperand(0); 2262 SDLoc DL(Op); 2263 2264 // TODO: Don't scalarize on Evergreen? 2265 unsigned NElts = VT.getVectorNumElements(); 2266 SmallVector<SDValue, 8> Args; 2267 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2268 2269 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2270 for (unsigned I = 0; I < NElts; ++I) 2271 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2272 2273 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2274 } 2275 2276 //===----------------------------------------------------------------------===// 2277 // Custom DAG optimizations 2278 //===----------------------------------------------------------------------===// 2279 2280 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2281 APInt KnownZero, KnownOne; 2282 EVT VT = Op.getValueType(); 2283 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2284 2285 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2286 } 2287 2288 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2289 EVT VT = Op.getValueType(); 2290 2291 // In order for this to be a signed 24-bit value, bit 23, must 2292 // be a sign bit. 2293 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2294 // as unsigned 24-bit values. 2295 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2296 } 2297 2298 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2299 2300 SelectionDAG &DAG = DCI.DAG; 2301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2302 EVT VT = Op.getValueType(); 2303 2304 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2305 APInt KnownZero, KnownOne; 2306 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2307 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2308 DCI.CommitTargetLoweringOpt(TLO); 2309 } 2310 2311 template <typename IntTy> 2312 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2313 uint32_t Offset, uint32_t Width, SDLoc DL) { 2314 if (Width + Offset < 32) { 2315 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2316 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2317 return DAG.getConstant(Result, DL, MVT::i32); 2318 } 2319 2320 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2321 } 2322 2323 static bool usesAllNormalStores(SDNode *LoadVal) { 2324 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2325 if (!ISD::isNormalStore(*I)) 2326 return false; 2327 } 2328 2329 return true; 2330 } 2331 2332 // If we have a copy of an illegal type, replace it with a load / store of an 2333 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2334 // instructions emitted when handling extloads and truncstores. Ideally we could 2335 // recognize the pack / unpack pattern to eliminate it. 2336 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2337 DAGCombinerInfo &DCI) const { 2338 if (!DCI.isBeforeLegalize()) 2339 return SDValue(); 2340 2341 StoreSDNode *SN = cast<StoreSDNode>(N); 2342 SDValue Value = SN->getValue(); 2343 EVT VT = Value.getValueType(); 2344 2345 if (isTypeLegal(VT) || SN->isVolatile() || 2346 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2347 return SDValue(); 2348 2349 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2350 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2351 return SDValue(); 2352 2353 EVT MemVT = LoadVal->getMemoryVT(); 2354 2355 SDLoc SL(N); 2356 SelectionDAG &DAG = DCI.DAG; 2357 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2358 2359 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2360 LoadVT, SL, 2361 LoadVal->getChain(), 2362 LoadVal->getBasePtr(), 2363 LoadVal->getOffset(), 2364 LoadVT, 2365 LoadVal->getMemOperand()); 2366 2367 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2368 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2369 2370 return DAG.getStore(SN->getChain(), SL, NewLoad, 2371 SN->getBasePtr(), SN->getMemOperand()); 2372 } 2373 2374 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2375 DAGCombinerInfo &DCI) const { 2376 if (N->getValueType(0) != MVT::i64) 2377 return SDValue(); 2378 2379 // i64 (shl x, 32) -> (build_pair 0, x) 2380 2381 // Doing this with moves theoretically helps MI optimizations that understand 2382 // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as 2383 // v_lshl_b64. In the SALU case, I think this is slightly worse since it 2384 // doubles the code size and I'm unsure about cycle count. 2385 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2386 if (!RHS || RHS->getZExtValue() != 32) 2387 return SDValue(); 2388 2389 SDValue LHS = N->getOperand(0); 2390 2391 SDLoc SL(N); 2392 SelectionDAG &DAG = DCI.DAG; 2393 2394 // Extract low 32-bits. 2395 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2396 2397 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2398 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo); 2399 } 2400 2401 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2402 DAGCombinerInfo &DCI) const { 2403 EVT VT = N->getValueType(0); 2404 2405 if (VT.isVector() || VT.getSizeInBits() > 32) 2406 return SDValue(); 2407 2408 SelectionDAG &DAG = DCI.DAG; 2409 SDLoc DL(N); 2410 2411 SDValue N0 = N->getOperand(0); 2412 SDValue N1 = N->getOperand(1); 2413 SDValue Mul; 2414 2415 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2416 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2417 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2418 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2419 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2420 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2421 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2422 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2423 } else { 2424 return SDValue(); 2425 } 2426 2427 // We need to use sext even for MUL_U24, because MUL_U24 is used 2428 // for signed multiply of 8 and 16-bit types. 2429 return DAG.getSExtOrTrunc(Mul, DL, VT); 2430 } 2431 2432 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2433 DAGCombinerInfo &DCI) const { 2434 SelectionDAG &DAG = DCI.DAG; 2435 SDLoc DL(N); 2436 2437 switch(N->getOpcode()) { 2438 default: 2439 break; 2440 case ISD::SHL: { 2441 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2442 break; 2443 2444 return performShlCombine(N, DCI); 2445 } 2446 case ISD::MUL: 2447 return performMulCombine(N, DCI); 2448 case AMDGPUISD::MUL_I24: 2449 case AMDGPUISD::MUL_U24: { 2450 SDValue N0 = N->getOperand(0); 2451 SDValue N1 = N->getOperand(1); 2452 simplifyI24(N0, DCI); 2453 simplifyI24(N1, DCI); 2454 return SDValue(); 2455 } 2456 case ISD::SELECT: { 2457 SDValue Cond = N->getOperand(0); 2458 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { 2459 EVT VT = N->getValueType(0); 2460 SDValue LHS = Cond.getOperand(0); 2461 SDValue RHS = Cond.getOperand(1); 2462 SDValue CC = Cond.getOperand(2); 2463 2464 SDValue True = N->getOperand(1); 2465 SDValue False = N->getOperand(2); 2466 2467 if (VT == MVT::f32) 2468 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 2469 } 2470 2471 break; 2472 } 2473 case AMDGPUISD::BFE_I32: 2474 case AMDGPUISD::BFE_U32: { 2475 assert(!N->getValueType(0).isVector() && 2476 "Vector handling of BFE not implemented"); 2477 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2478 if (!Width) 2479 break; 2480 2481 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2482 if (WidthVal == 0) 2483 return DAG.getConstant(0, DL, MVT::i32); 2484 2485 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2486 if (!Offset) 2487 break; 2488 2489 SDValue BitsFrom = N->getOperand(0); 2490 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2491 2492 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2493 2494 if (OffsetVal == 0) { 2495 // This is already sign / zero extended, so try to fold away extra BFEs. 2496 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2497 2498 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2499 if (OpSignBits >= SignBits) 2500 return BitsFrom; 2501 2502 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2503 if (Signed) { 2504 // This is a sign_extend_inreg. Replace it to take advantage of existing 2505 // DAG Combines. If not eliminated, we will match back to BFE during 2506 // selection. 2507 2508 // TODO: The sext_inreg of extended types ends, although we can could 2509 // handle them in a single BFE. 2510 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2511 DAG.getValueType(SmallVT)); 2512 } 2513 2514 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2515 } 2516 2517 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2518 if (Signed) { 2519 return constantFoldBFE<int32_t>(DAG, 2520 CVal->getSExtValue(), 2521 OffsetVal, 2522 WidthVal, 2523 DL); 2524 } 2525 2526 return constantFoldBFE<uint32_t>(DAG, 2527 CVal->getZExtValue(), 2528 OffsetVal, 2529 WidthVal, 2530 DL); 2531 } 2532 2533 if ((OffsetVal + WidthVal) >= 32) { 2534 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2535 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2536 BitsFrom, ShiftVal); 2537 } 2538 2539 if (BitsFrom.hasOneUse()) { 2540 APInt Demanded = APInt::getBitsSet(32, 2541 OffsetVal, 2542 OffsetVal + WidthVal); 2543 2544 APInt KnownZero, KnownOne; 2545 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2546 !DCI.isBeforeLegalizeOps()); 2547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2548 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2549 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2550 KnownZero, KnownOne, TLO)) { 2551 DCI.CommitTargetLoweringOpt(TLO); 2552 } 2553 } 2554 2555 break; 2556 } 2557 2558 case ISD::STORE: 2559 return performStoreCombine(N, DCI); 2560 } 2561 return SDValue(); 2562 } 2563 2564 //===----------------------------------------------------------------------===// 2565 // Helper functions 2566 //===----------------------------------------------------------------------===// 2567 2568 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2569 SelectionDAG &DAG, 2570 const Function *F, 2571 const SmallVectorImpl<ISD::InputArg> &Ins, 2572 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2573 2574 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2575 if (Ins[i].ArgVT == Ins[i].VT) { 2576 OrigIns.push_back(Ins[i]); 2577 continue; 2578 } 2579 2580 EVT VT; 2581 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2582 // Vector has been split into scalars. 2583 VT = Ins[i].ArgVT.getVectorElementType(); 2584 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2585 Ins[i].ArgVT.getVectorElementType() != 2586 Ins[i].VT.getVectorElementType()) { 2587 // Vector elements have been promoted 2588 VT = Ins[i].ArgVT; 2589 } else { 2590 // Vector has been spilt into smaller vectors. 2591 VT = Ins[i].VT; 2592 } 2593 2594 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2595 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2596 OrigIns.push_back(Arg); 2597 } 2598 } 2599 2600 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2601 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2602 return CFP->isExactlyValue(1.0); 2603 } 2604 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2605 return C->isAllOnesValue(); 2606 } 2607 return false; 2608 } 2609 2610 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2611 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2612 return CFP->getValueAPF().isZero(); 2613 } 2614 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2615 return C->isNullValue(); 2616 } 2617 return false; 2618 } 2619 2620 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2621 const TargetRegisterClass *RC, 2622 unsigned Reg, EVT VT) const { 2623 MachineFunction &MF = DAG.getMachineFunction(); 2624 MachineRegisterInfo &MRI = MF.getRegInfo(); 2625 unsigned VirtualRegister; 2626 if (!MRI.isLiveIn(Reg)) { 2627 VirtualRegister = MRI.createVirtualRegister(RC); 2628 MRI.addLiveIn(Reg, VirtualRegister); 2629 } else { 2630 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2631 } 2632 return DAG.getRegister(VirtualRegister, VT); 2633 } 2634 2635 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2636 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2637 uint64_t ArgOffset = MFI->ABIArgOffset; 2638 switch (Param) { 2639 case GRID_DIM: 2640 return ArgOffset; 2641 case GRID_OFFSET: 2642 return ArgOffset + 4; 2643 } 2644 llvm_unreachable("unexpected implicit parameter type"); 2645 } 2646 2647 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2648 2649 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2650 switch ((AMDGPUISD::NodeType)Opcode) { 2651 case AMDGPUISD::FIRST_NUMBER: break; 2652 // AMDIL DAG nodes 2653 NODE_NAME_CASE(CALL); 2654 NODE_NAME_CASE(UMUL); 2655 NODE_NAME_CASE(RET_FLAG); 2656 NODE_NAME_CASE(BRANCH_COND); 2657 2658 // AMDGPU DAG nodes 2659 NODE_NAME_CASE(DWORDADDR) 2660 NODE_NAME_CASE(FRACT) 2661 NODE_NAME_CASE(CLAMP) 2662 NODE_NAME_CASE(COS_HW) 2663 NODE_NAME_CASE(SIN_HW) 2664 NODE_NAME_CASE(FMAX_LEGACY) 2665 NODE_NAME_CASE(FMIN_LEGACY) 2666 NODE_NAME_CASE(FMAX3) 2667 NODE_NAME_CASE(SMAX3) 2668 NODE_NAME_CASE(UMAX3) 2669 NODE_NAME_CASE(FMIN3) 2670 NODE_NAME_CASE(SMIN3) 2671 NODE_NAME_CASE(UMIN3) 2672 NODE_NAME_CASE(URECIP) 2673 NODE_NAME_CASE(DIV_SCALE) 2674 NODE_NAME_CASE(DIV_FMAS) 2675 NODE_NAME_CASE(DIV_FIXUP) 2676 NODE_NAME_CASE(TRIG_PREOP) 2677 NODE_NAME_CASE(RCP) 2678 NODE_NAME_CASE(RSQ) 2679 NODE_NAME_CASE(RSQ_LEGACY) 2680 NODE_NAME_CASE(RSQ_CLAMPED) 2681 NODE_NAME_CASE(LDEXP) 2682 NODE_NAME_CASE(FP_CLASS) 2683 NODE_NAME_CASE(DOT4) 2684 NODE_NAME_CASE(CARRY) 2685 NODE_NAME_CASE(BORROW) 2686 NODE_NAME_CASE(BFE_U32) 2687 NODE_NAME_CASE(BFE_I32) 2688 NODE_NAME_CASE(BFI) 2689 NODE_NAME_CASE(BFM) 2690 NODE_NAME_CASE(BREV) 2691 NODE_NAME_CASE(MUL_U24) 2692 NODE_NAME_CASE(MUL_I24) 2693 NODE_NAME_CASE(MAD_U24) 2694 NODE_NAME_CASE(MAD_I24) 2695 NODE_NAME_CASE(TEXTURE_FETCH) 2696 NODE_NAME_CASE(EXPORT) 2697 NODE_NAME_CASE(CONST_ADDRESS) 2698 NODE_NAME_CASE(REGISTER_LOAD) 2699 NODE_NAME_CASE(REGISTER_STORE) 2700 NODE_NAME_CASE(LOAD_CONSTANT) 2701 NODE_NAME_CASE(LOAD_INPUT) 2702 NODE_NAME_CASE(SAMPLE) 2703 NODE_NAME_CASE(SAMPLEB) 2704 NODE_NAME_CASE(SAMPLED) 2705 NODE_NAME_CASE(SAMPLEL) 2706 NODE_NAME_CASE(CVT_F32_UBYTE0) 2707 NODE_NAME_CASE(CVT_F32_UBYTE1) 2708 NODE_NAME_CASE(CVT_F32_UBYTE2) 2709 NODE_NAME_CASE(CVT_F32_UBYTE3) 2710 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2711 NODE_NAME_CASE(CONST_DATA_PTR) 2712 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2713 NODE_NAME_CASE(SENDMSG) 2714 NODE_NAME_CASE(INTERP_MOV) 2715 NODE_NAME_CASE(INTERP_P1) 2716 NODE_NAME_CASE(INTERP_P2) 2717 NODE_NAME_CASE(STORE_MSKOR) 2718 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2719 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2720 } 2721 return nullptr; 2722 } 2723 2724 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2725 DAGCombinerInfo &DCI, 2726 unsigned &RefinementSteps, 2727 bool &UseOneConstNR) const { 2728 SelectionDAG &DAG = DCI.DAG; 2729 EVT VT = Operand.getValueType(); 2730 2731 if (VT == MVT::f32) { 2732 RefinementSteps = 0; 2733 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2734 } 2735 2736 // TODO: There is also f64 rsq instruction, but the documentation is less 2737 // clear on its precision. 2738 2739 return SDValue(); 2740 } 2741 2742 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2743 DAGCombinerInfo &DCI, 2744 unsigned &RefinementSteps) const { 2745 SelectionDAG &DAG = DCI.DAG; 2746 EVT VT = Operand.getValueType(); 2747 2748 if (VT == MVT::f32) { 2749 // Reciprocal, < 1 ulp error. 2750 // 2751 // This reciprocal approximation converges to < 0.5 ulp error with one 2752 // newton rhapson performed with two fused multiple adds (FMAs). 2753 2754 RefinementSteps = 0; 2755 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2756 } 2757 2758 // TODO: There is also f64 rcp instruction, but the documentation is less 2759 // clear on its precision. 2760 2761 return SDValue(); 2762 } 2763 2764 static void computeKnownBitsForMinMax(const SDValue Op0, 2765 const SDValue Op1, 2766 APInt &KnownZero, 2767 APInt &KnownOne, 2768 const SelectionDAG &DAG, 2769 unsigned Depth) { 2770 APInt Op0Zero, Op0One; 2771 APInt Op1Zero, Op1One; 2772 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); 2773 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); 2774 2775 KnownZero = Op0Zero & Op1Zero; 2776 KnownOne = Op0One & Op1One; 2777 } 2778 2779 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2780 const SDValue Op, 2781 APInt &KnownZero, 2782 APInt &KnownOne, 2783 const SelectionDAG &DAG, 2784 unsigned Depth) const { 2785 2786 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2787 2788 APInt KnownZero2; 2789 APInt KnownOne2; 2790 unsigned Opc = Op.getOpcode(); 2791 2792 switch (Opc) { 2793 default: 2794 break; 2795 case ISD::INTRINSIC_WO_CHAIN: { 2796 // FIXME: The intrinsic should just use the node. 2797 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 2798 case AMDGPUIntrinsic::AMDGPU_imax: 2799 case AMDGPUIntrinsic::AMDGPU_umax: 2800 case AMDGPUIntrinsic::AMDGPU_imin: 2801 case AMDGPUIntrinsic::AMDGPU_umin: 2802 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), 2803 KnownZero, KnownOne, DAG, Depth); 2804 break; 2805 default: 2806 break; 2807 } 2808 2809 break; 2810 } 2811 case AMDGPUISD::CARRY: 2812 case AMDGPUISD::BORROW: { 2813 KnownZero = APInt::getHighBitsSet(32, 31); 2814 break; 2815 } 2816 2817 case AMDGPUISD::BFE_I32: 2818 case AMDGPUISD::BFE_U32: { 2819 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2820 if (!CWidth) 2821 return; 2822 2823 unsigned BitWidth = 32; 2824 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2825 2826 if (Opc == AMDGPUISD::BFE_U32) 2827 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2828 2829 break; 2830 } 2831 } 2832 } 2833 2834 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2835 SDValue Op, 2836 const SelectionDAG &DAG, 2837 unsigned Depth) const { 2838 switch (Op.getOpcode()) { 2839 case AMDGPUISD::BFE_I32: { 2840 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2841 if (!Width) 2842 return 1; 2843 2844 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2845 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2846 if (!Offset || !Offset->isNullValue()) 2847 return SignBits; 2848 2849 // TODO: Could probably figure something out with non-0 offsets. 2850 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2851 return std::max(SignBits, Op0SignBits); 2852 } 2853 2854 case AMDGPUISD::BFE_U32: { 2855 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2856 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2857 } 2858 2859 case AMDGPUISD::CARRY: 2860 case AMDGPUISD::BORROW: 2861 return 31; 2862 2863 default: 2864 return 1; 2865 } 2866 } 2867