1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUDiagnosticInfoUnsupported.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 287 else 288 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 289 290 if (!Subtarget->hasFFBL()) 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 292 293 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 294 295 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 296 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 297 298 static const MVT::SimpleValueType VectorIntTypes[] = { 299 MVT::v2i32, MVT::v4i32 300 }; 301 302 for (MVT VT : VectorIntTypes) { 303 // Expand the following operations for the current type by default. 304 setOperationAction(ISD::ADD, VT, Expand); 305 setOperationAction(ISD::AND, VT, Expand); 306 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 307 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 308 setOperationAction(ISD::MUL, VT, Expand); 309 setOperationAction(ISD::OR, VT, Expand); 310 setOperationAction(ISD::SHL, VT, Expand); 311 setOperationAction(ISD::SRA, VT, Expand); 312 setOperationAction(ISD::SRL, VT, Expand); 313 setOperationAction(ISD::ROTL, VT, Expand); 314 setOperationAction(ISD::ROTR, VT, Expand); 315 setOperationAction(ISD::SUB, VT, Expand); 316 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 317 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 318 setOperationAction(ISD::SDIV, VT, Expand); 319 setOperationAction(ISD::UDIV, VT, Expand); 320 setOperationAction(ISD::SREM, VT, Expand); 321 setOperationAction(ISD::UREM, VT, Expand); 322 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 323 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 324 setOperationAction(ISD::SDIVREM, VT, Custom); 325 setOperationAction(ISD::UDIVREM, VT, Expand); 326 setOperationAction(ISD::ADDC, VT, Expand); 327 setOperationAction(ISD::SUBC, VT, Expand); 328 setOperationAction(ISD::ADDE, VT, Expand); 329 setOperationAction(ISD::SUBE, VT, Expand); 330 setOperationAction(ISD::SELECT, VT, Expand); 331 setOperationAction(ISD::VSELECT, VT, Expand); 332 setOperationAction(ISD::SELECT_CC, VT, Expand); 333 setOperationAction(ISD::XOR, VT, Expand); 334 setOperationAction(ISD::BSWAP, VT, Expand); 335 setOperationAction(ISD::CTPOP, VT, Expand); 336 setOperationAction(ISD::CTTZ, VT, Expand); 337 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 338 setOperationAction(ISD::CTLZ, VT, Expand); 339 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 340 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 341 } 342 343 static const MVT::SimpleValueType FloatVectorTypes[] = { 344 MVT::v2f32, MVT::v4f32 345 }; 346 347 for (MVT VT : FloatVectorTypes) { 348 setOperationAction(ISD::FABS, VT, Expand); 349 setOperationAction(ISD::FMINNUM, VT, Expand); 350 setOperationAction(ISD::FMAXNUM, VT, Expand); 351 setOperationAction(ISD::FADD, VT, Expand); 352 setOperationAction(ISD::FCEIL, VT, Expand); 353 setOperationAction(ISD::FCOS, VT, Expand); 354 setOperationAction(ISD::FDIV, VT, Expand); 355 setOperationAction(ISD::FEXP2, VT, Expand); 356 setOperationAction(ISD::FLOG2, VT, Expand); 357 setOperationAction(ISD::FREM, VT, Expand); 358 setOperationAction(ISD::FPOW, VT, Expand); 359 setOperationAction(ISD::FFLOOR, VT, Expand); 360 setOperationAction(ISD::FTRUNC, VT, Expand); 361 setOperationAction(ISD::FMUL, VT, Expand); 362 setOperationAction(ISD::FMA, VT, Expand); 363 setOperationAction(ISD::FRINT, VT, Expand); 364 setOperationAction(ISD::FNEARBYINT, VT, Expand); 365 setOperationAction(ISD::FSQRT, VT, Expand); 366 setOperationAction(ISD::FSIN, VT, Expand); 367 setOperationAction(ISD::FSUB, VT, Expand); 368 setOperationAction(ISD::FNEG, VT, Expand); 369 setOperationAction(ISD::SELECT, VT, Expand); 370 setOperationAction(ISD::VSELECT, VT, Expand); 371 setOperationAction(ISD::SELECT_CC, VT, Expand); 372 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 373 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 374 } 375 376 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 377 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 378 379 setTargetDAGCombine(ISD::AND); 380 setTargetDAGCombine(ISD::SHL); 381 setTargetDAGCombine(ISD::SRA); 382 setTargetDAGCombine(ISD::SRL); 383 setTargetDAGCombine(ISD::MUL); 384 setTargetDAGCombine(ISD::SELECT); 385 setTargetDAGCombine(ISD::SELECT_CC); 386 setTargetDAGCombine(ISD::STORE); 387 388 setTargetDAGCombine(ISD::FADD); 389 setTargetDAGCombine(ISD::FSUB); 390 391 setBooleanContents(ZeroOrNegativeOneBooleanContent); 392 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 393 394 setSchedulingPreference(Sched::RegPressure); 395 setJumpIsExpensive(true); 396 397 // SI at least has hardware support for floating point exceptions, but no way 398 // of using or handling them is implemented. They are also optional in OpenCL 399 // (Section 7.3) 400 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 401 402 setSelectIsExpensive(false); 403 PredictableSelectIsExpensive = false; 404 405 setFsqrtIsCheap(true); 406 407 // We want to find all load dependencies for long chains of stores to enable 408 // merging into very wide vectors. The problem is with vectors with > 4 409 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 410 // vectors are a legal type, even though we have to split the loads 411 // usually. When we can more precisely specify load legality per address 412 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 413 // smarter so that they can figure out what to do in 2 iterations without all 414 // N > 4 stores on the same chain. 415 GatherAllAliasesMaxDepth = 16; 416 417 // FIXME: Need to really handle these. 418 MaxStoresPerMemcpy = 4096; 419 MaxStoresPerMemmove = 4096; 420 MaxStoresPerMemset = 4096; 421 } 422 423 //===----------------------------------------------------------------------===// 424 // Target Information 425 //===----------------------------------------------------------------------===// 426 427 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 428 return MVT::i32; 429 } 430 431 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 432 return true; 433 } 434 435 // The backend supports 32 and 64 bit floating point immediates. 436 // FIXME: Why are we reporting vectors of FP immediates as legal? 437 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 438 EVT ScalarVT = VT.getScalarType(); 439 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 440 } 441 442 // We don't want to shrink f64 / f32 constants. 443 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 444 EVT ScalarVT = VT.getScalarType(); 445 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 446 } 447 448 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 449 ISD::LoadExtType, 450 EVT NewVT) const { 451 452 unsigned NewSize = NewVT.getStoreSizeInBits(); 453 454 // If we are reducing to a 32-bit load, this is always better. 455 if (NewSize == 32) 456 return true; 457 458 EVT OldVT = N->getValueType(0); 459 unsigned OldSize = OldVT.getStoreSizeInBits(); 460 461 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 462 // extloads, so doing one requires using a buffer_load. In cases where we 463 // still couldn't use a scalar load, using the wider load shouldn't really 464 // hurt anything. 465 466 // If the old size already had to be an extload, there's no harm in continuing 467 // to reduce the width. 468 return (OldSize < 32); 469 } 470 471 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 472 EVT CastTy) const { 473 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 474 return true; 475 476 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 477 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 478 479 return ((LScalarSize <= CastScalarSize) || 480 (CastScalarSize >= 32) || 481 (LScalarSize < 32)); 482 } 483 484 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 485 // profitable with the expansion for 64-bit since it's generally good to 486 // speculate things. 487 // FIXME: These should really have the size as a parameter. 488 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 489 return true; 490 } 491 492 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 493 return true; 494 } 495 496 //===---------------------------------------------------------------------===// 497 // Target Properties 498 //===---------------------------------------------------------------------===// 499 500 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 501 assert(VT.isFloatingPoint()); 502 return VT == MVT::f32 || VT == MVT::f64; 503 } 504 505 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 506 assert(VT.isFloatingPoint()); 507 return VT == MVT::f32 || VT == MVT::f64; 508 } 509 510 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 511 unsigned NumElem, 512 unsigned AS) const { 513 return true; 514 } 515 516 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 517 // There are few operations which truly have vector input operands. Any vector 518 // operation is going to involve operations on each component, and a 519 // build_vector will be a copy per element, so it always makes sense to use a 520 // build_vector input in place of the extracted element to avoid a copy into a 521 // super register. 522 // 523 // We should probably only do this if all users are extracts only, but this 524 // should be the common case. 525 return true; 526 } 527 528 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 529 // Truncate is just accessing a subregister. 530 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 531 } 532 533 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 534 // Truncate is just accessing a subregister. 535 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 536 (Dest->getPrimitiveSizeInBits() % 32 == 0); 537 } 538 539 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 540 unsigned SrcSize = Src->getScalarSizeInBits(); 541 unsigned DestSize = Dest->getScalarSizeInBits(); 542 543 return SrcSize == 32 && DestSize == 64; 544 } 545 546 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 547 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 548 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 549 // this will enable reducing 64-bit operations the 32-bit, which is always 550 // good. 551 return Src == MVT::i32 && Dest == MVT::i64; 552 } 553 554 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 555 return isZExtFree(Val.getValueType(), VT2); 556 } 557 558 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 559 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 560 // limited number of native 64-bit operations. Shrinking an operation to fit 561 // in a single 32-bit register should always be helpful. As currently used, 562 // this is much less general than the name suggests, and is only used in 563 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 564 // not profitable, and may actually be harmful. 565 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 566 } 567 568 //===---------------------------------------------------------------------===// 569 // TargetLowering Callbacks 570 //===---------------------------------------------------------------------===// 571 572 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 573 const SmallVectorImpl<ISD::InputArg> &Ins) const { 574 575 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 576 } 577 578 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 579 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 580 581 State.AnalyzeReturn(Outs, RetCC_SI); 582 } 583 584 SDValue AMDGPUTargetLowering::LowerReturn( 585 SDValue Chain, 586 CallingConv::ID CallConv, 587 bool isVarArg, 588 const SmallVectorImpl<ISD::OutputArg> &Outs, 589 const SmallVectorImpl<SDValue> &OutVals, 590 SDLoc DL, SelectionDAG &DAG) const { 591 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 592 } 593 594 //===---------------------------------------------------------------------===// 595 // Target specific lowering 596 //===---------------------------------------------------------------------===// 597 598 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 599 SmallVectorImpl<SDValue> &InVals) const { 600 SDValue Callee = CLI.Callee; 601 SelectionDAG &DAG = CLI.DAG; 602 603 const Function &Fn = *DAG.getMachineFunction().getFunction(); 604 605 StringRef FuncName("<unknown>"); 606 607 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 608 FuncName = G->getSymbol(); 609 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 610 FuncName = G->getGlobal()->getName(); 611 612 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 613 DAG.getContext()->diagnose(NoCalls); 614 return SDValue(); 615 } 616 617 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 618 SelectionDAG &DAG) const { 619 const Function &Fn = *DAG.getMachineFunction().getFunction(); 620 621 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); 622 DAG.getContext()->diagnose(NoDynamicAlloca); 623 return SDValue(); 624 } 625 626 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 627 SelectionDAG &DAG) const { 628 switch (Op.getOpcode()) { 629 default: 630 Op.getNode()->dump(); 631 llvm_unreachable("Custom lowering code for this" 632 "instruction is not implemented yet!"); 633 break; 634 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 635 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 636 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 637 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 638 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 639 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 640 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 641 case ISD::FREM: return LowerFREM(Op, DAG); 642 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 643 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 644 case ISD::FRINT: return LowerFRINT(Op, DAG); 645 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 646 case ISD::FROUND: return LowerFROUND(Op, DAG); 647 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 648 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 649 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 650 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 651 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 652 case ISD::CTLZ: 653 case ISD::CTLZ_ZERO_UNDEF: 654 return LowerCTLZ(Op, DAG); 655 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 656 } 657 return Op; 658 } 659 660 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 661 SmallVectorImpl<SDValue> &Results, 662 SelectionDAG &DAG) const { 663 switch (N->getOpcode()) { 664 case ISD::SIGN_EXTEND_INREG: 665 // Different parts of legalization seem to interpret which type of 666 // sign_extend_inreg is the one to check for custom lowering. The extended 667 // from type is what really matters, but some places check for custom 668 // lowering of the result type. This results in trying to use 669 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 670 // nothing here and let the illegal result integer be handled normally. 671 return; 672 case ISD::LOAD: { 673 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 674 if (!Node) 675 return; 676 677 Results.push_back(SDValue(Node, 0)); 678 Results.push_back(SDValue(Node, 1)); 679 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 680 // function 681 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 682 return; 683 } 684 case ISD::STORE: { 685 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 686 if (Lowered.getNode()) 687 Results.push_back(Lowered); 688 return; 689 } 690 default: 691 return; 692 } 693 } 694 695 // FIXME: This implements accesses to initialized globals in the constant 696 // address space by copying them to private and accessing that. It does not 697 // properly handle illegal types or vectors. The private vector loads are not 698 // scalarized, and the illegal scalars hit an assertion. This technique will not 699 // work well with large initializers, and this should eventually be 700 // removed. Initialized globals should be placed into a data section that the 701 // runtime will load into a buffer before the kernel is executed. Uses of the 702 // global need to be replaced with a pointer loaded from an implicit kernel 703 // argument into this buffer holding the copy of the data, which will remove the 704 // need for any of this. 705 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 706 const GlobalValue *GV, 707 const SDValue &InitPtr, 708 SDValue Chain, 709 SelectionDAG &DAG) const { 710 const DataLayout &TD = DAG.getDataLayout(); 711 SDLoc DL(InitPtr); 712 Type *InitTy = Init->getType(); 713 714 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 715 EVT VT = EVT::getEVT(InitTy); 716 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 717 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 718 MachinePointerInfo(UndefValue::get(PtrTy)), false, 719 false, TD.getPrefTypeAlignment(InitTy)); 720 } 721 722 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 723 EVT VT = EVT::getEVT(CFP->getType()); 724 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 725 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 726 MachinePointerInfo(UndefValue::get(PtrTy)), false, 727 false, TD.getPrefTypeAlignment(CFP->getType())); 728 } 729 730 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 731 const StructLayout *SL = TD.getStructLayout(ST); 732 733 EVT PtrVT = InitPtr.getValueType(); 734 SmallVector<SDValue, 8> Chains; 735 736 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 737 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 738 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 739 740 Constant *Elt = Init->getAggregateElement(I); 741 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 742 } 743 744 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 745 } 746 747 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 748 EVT PtrVT = InitPtr.getValueType(); 749 750 unsigned NumElements; 751 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 752 NumElements = AT->getNumElements(); 753 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 754 NumElements = VT->getNumElements(); 755 else 756 llvm_unreachable("Unexpected type"); 757 758 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 759 SmallVector<SDValue, 8> Chains; 760 for (unsigned i = 0; i < NumElements; ++i) { 761 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 762 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 763 764 Constant *Elt = Init->getAggregateElement(i); 765 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 766 } 767 768 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 769 } 770 771 if (isa<UndefValue>(Init)) { 772 EVT VT = EVT::getEVT(InitTy); 773 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 774 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 775 MachinePointerInfo(UndefValue::get(PtrTy)), false, 776 false, TD.getPrefTypeAlignment(InitTy)); 777 } 778 779 Init->dump(); 780 llvm_unreachable("Unhandled constant initializer"); 781 } 782 783 static bool hasDefinedInitializer(const GlobalValue *GV) { 784 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 785 if (!GVar || !GVar->hasInitializer()) 786 return false; 787 788 if (isa<UndefValue>(GVar->getInitializer())) 789 return false; 790 791 return true; 792 } 793 794 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 795 SDValue Op, 796 SelectionDAG &DAG) const { 797 798 const DataLayout &DL = DAG.getDataLayout(); 799 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 800 const GlobalValue *GV = G->getGlobal(); 801 802 switch (G->getAddressSpace()) { 803 case AMDGPUAS::LOCAL_ADDRESS: { 804 // XXX: What does the value of G->getOffset() mean? 805 assert(G->getOffset() == 0 && 806 "Do not know what to do with an non-zero offset"); 807 808 // TODO: We could emit code to handle the initialization somewhere. 809 if (hasDefinedInitializer(GV)) 810 break; 811 812 unsigned Offset; 813 if (MFI->LocalMemoryObjects.count(GV) == 0) { 814 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 815 Offset = MFI->LDSSize; 816 MFI->LocalMemoryObjects[GV] = Offset; 817 // XXX: Account for alignment? 818 MFI->LDSSize += Size; 819 } else { 820 Offset = MFI->LocalMemoryObjects[GV]; 821 } 822 823 return DAG.getConstant(Offset, SDLoc(Op), 824 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 825 } 826 case AMDGPUAS::CONSTANT_ADDRESS: { 827 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 828 Type *EltType = GV->getValueType(); 829 unsigned Size = DL.getTypeAllocSize(EltType); 830 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 831 832 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 833 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 834 835 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 836 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 837 838 const GlobalVariable *Var = cast<GlobalVariable>(GV); 839 if (!Var->hasInitializer()) { 840 // This has no use, but bugpoint will hit it. 841 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 842 } 843 844 const Constant *Init = Var->getInitializer(); 845 SmallVector<SDNode*, 8> WorkList; 846 847 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 848 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 849 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 850 continue; 851 WorkList.push_back(*I); 852 } 853 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 854 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 855 E = WorkList.end(); I != E; ++I) { 856 SmallVector<SDValue, 8> Ops; 857 Ops.push_back(Chain); 858 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 859 Ops.push_back((*I)->getOperand(i)); 860 } 861 DAG.UpdateNodeOperands(*I, Ops); 862 } 863 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 864 } 865 } 866 867 const Function &Fn = *DAG.getMachineFunction().getFunction(); 868 DiagnosticInfoUnsupported BadInit(Fn, 869 "initializer for address space"); 870 DAG.getContext()->diagnose(BadInit); 871 return SDValue(); 872 } 873 874 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 875 SelectionDAG &DAG) const { 876 SmallVector<SDValue, 8> Args; 877 878 for (const SDUse &U : Op->ops()) 879 DAG.ExtractVectorElements(U.get(), Args); 880 881 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 882 } 883 884 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 885 SelectionDAG &DAG) const { 886 887 SmallVector<SDValue, 8> Args; 888 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 889 EVT VT = Op.getValueType(); 890 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 891 VT.getVectorNumElements()); 892 893 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 894 } 895 896 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 897 SelectionDAG &DAG) const { 898 899 MachineFunction &MF = DAG.getMachineFunction(); 900 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 901 902 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 903 904 unsigned FrameIndex = FIN->getIndex(); 905 unsigned IgnoredFrameReg; 906 unsigned Offset = 907 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 908 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 909 Op.getValueType()); 910 } 911 912 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 913 SelectionDAG &DAG) const { 914 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 915 SDLoc DL(Op); 916 EVT VT = Op.getValueType(); 917 918 switch (IntrinsicID) { 919 default: return Op; 920 case AMDGPUIntrinsic::AMDGPU_clamp: 921 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 922 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 923 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 924 925 case Intrinsic::AMDGPU_ldexp: // Legacy name 926 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 927 Op.getOperand(2)); 928 929 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 930 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 931 Op.getOperand(1), 932 Op.getOperand(2), 933 Op.getOperand(3)); 934 935 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 936 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 937 Op.getOperand(1), 938 Op.getOperand(2), 939 Op.getOperand(3)); 940 941 case AMDGPUIntrinsic::AMDGPU_bfi: 942 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 943 Op.getOperand(1), 944 Op.getOperand(2), 945 Op.getOperand(3)); 946 947 case AMDGPUIntrinsic::AMDGPU_bfm: 948 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 949 Op.getOperand(1), 950 Op.getOperand(2)); 951 952 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 953 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 954 955 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 956 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 957 } 958 } 959 960 /// \brief Generate Min/Max node 961 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 962 EVT VT, 963 SDValue LHS, 964 SDValue RHS, 965 SDValue True, 966 SDValue False, 967 SDValue CC, 968 DAGCombinerInfo &DCI) const { 969 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 970 return SDValue(); 971 972 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 973 return SDValue(); 974 975 SelectionDAG &DAG = DCI.DAG; 976 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 977 switch (CCOpcode) { 978 case ISD::SETOEQ: 979 case ISD::SETONE: 980 case ISD::SETUNE: 981 case ISD::SETNE: 982 case ISD::SETUEQ: 983 case ISD::SETEQ: 984 case ISD::SETFALSE: 985 case ISD::SETFALSE2: 986 case ISD::SETTRUE: 987 case ISD::SETTRUE2: 988 case ISD::SETUO: 989 case ISD::SETO: 990 break; 991 case ISD::SETULE: 992 case ISD::SETULT: { 993 if (LHS == True) 994 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 995 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 996 } 997 case ISD::SETOLE: 998 case ISD::SETOLT: 999 case ISD::SETLE: 1000 case ISD::SETLT: { 1001 // Ordered. Assume ordered for undefined. 1002 1003 // Only do this after legalization to avoid interfering with other combines 1004 // which might occur. 1005 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1006 !DCI.isCalledByLegalizer()) 1007 return SDValue(); 1008 1009 // We need to permute the operands to get the correct NaN behavior. The 1010 // selected operand is the second one based on the failing compare with NaN, 1011 // so permute it based on the compare type the hardware uses. 1012 if (LHS == True) 1013 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1014 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1015 } 1016 case ISD::SETUGE: 1017 case ISD::SETUGT: { 1018 if (LHS == True) 1019 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1020 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1021 } 1022 case ISD::SETGT: 1023 case ISD::SETGE: 1024 case ISD::SETOGE: 1025 case ISD::SETOGT: { 1026 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1027 !DCI.isCalledByLegalizer()) 1028 return SDValue(); 1029 1030 if (LHS == True) 1031 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1032 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1033 } 1034 case ISD::SETCC_INVALID: 1035 llvm_unreachable("Invalid setcc condcode!"); 1036 } 1037 return SDValue(); 1038 } 1039 1040 std::pair<SDValue, SDValue> 1041 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1042 SDLoc SL(Op); 1043 1044 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1045 1046 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1047 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1048 1049 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1050 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1051 1052 return std::make_pair(Lo, Hi); 1053 } 1054 1055 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1056 SDLoc SL(Op); 1057 1058 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1059 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1060 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1061 } 1062 1063 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1064 SDLoc SL(Op); 1065 1066 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1067 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1068 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1069 } 1070 1071 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1072 SelectionDAG &DAG) const { 1073 LoadSDNode *Load = cast<LoadSDNode>(Op); 1074 EVT MemVT = Load->getMemoryVT(); 1075 EVT MemEltVT = MemVT.getVectorElementType(); 1076 1077 EVT LoadVT = Op.getValueType(); 1078 EVT EltVT = LoadVT.getVectorElementType(); 1079 EVT PtrVT = Load->getBasePtr().getValueType(); 1080 1081 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1082 SmallVector<SDValue, 8> Loads; 1083 SmallVector<SDValue, 8> Chains; 1084 1085 SDLoc SL(Op); 1086 unsigned MemEltSize = MemEltVT.getStoreSize(); 1087 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1088 1089 for (unsigned i = 0; i < NumElts; ++i) { 1090 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1091 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1092 1093 SDValue NewLoad 1094 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1095 Load->getChain(), Ptr, 1096 SrcValue.getWithOffset(i * MemEltSize), 1097 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1098 Load->isInvariant(), Load->getAlignment()); 1099 Loads.push_back(NewLoad.getValue(0)); 1100 Chains.push_back(NewLoad.getValue(1)); 1101 } 1102 1103 SDValue Ops[] = { 1104 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1105 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1106 }; 1107 1108 return DAG.getMergeValues(Ops, SL); 1109 } 1110 1111 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1112 SelectionDAG &DAG) const { 1113 EVT VT = Op.getValueType(); 1114 1115 // If this is a 2 element vector, we really want to scalarize and not create 1116 // weird 1 element vectors. 1117 if (VT.getVectorNumElements() == 2) 1118 return ScalarizeVectorLoad(Op, DAG); 1119 1120 LoadSDNode *Load = cast<LoadSDNode>(Op); 1121 SDValue BasePtr = Load->getBasePtr(); 1122 EVT PtrVT = BasePtr.getValueType(); 1123 EVT MemVT = Load->getMemoryVT(); 1124 SDLoc SL(Op); 1125 1126 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1127 1128 EVT LoVT, HiVT; 1129 EVT LoMemVT, HiMemVT; 1130 SDValue Lo, Hi; 1131 1132 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1133 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1134 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1135 1136 unsigned Size = LoMemVT.getStoreSize(); 1137 unsigned BaseAlign = Load->getAlignment(); 1138 unsigned HiAlign = MinAlign(BaseAlign, Size); 1139 1140 SDValue LoLoad 1141 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1142 Load->getChain(), BasePtr, 1143 SrcValue, 1144 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1145 Load->isInvariant(), BaseAlign); 1146 1147 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1148 DAG.getConstant(Size, SL, PtrVT)); 1149 1150 SDValue HiLoad 1151 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1152 Load->getChain(), HiPtr, 1153 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1154 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1155 Load->isInvariant(), HiAlign); 1156 1157 SDValue Ops[] = { 1158 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1159 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1160 LoLoad.getValue(1), HiLoad.getValue(1)) 1161 }; 1162 1163 return DAG.getMergeValues(Ops, SL); 1164 } 1165 1166 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1167 SelectionDAG &DAG) const { 1168 StoreSDNode *Store = cast<StoreSDNode>(Op); 1169 EVT MemVT = Store->getMemoryVT(); 1170 unsigned MemBits = MemVT.getSizeInBits(); 1171 1172 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1173 // truncating store into an i32 store. 1174 // XXX: We could also handle optimize other vector bitwidths. 1175 if (!MemVT.isVector() || MemBits > 32) { 1176 return SDValue(); 1177 } 1178 1179 SDLoc DL(Op); 1180 SDValue Value = Store->getValue(); 1181 EVT VT = Value.getValueType(); 1182 EVT ElemVT = VT.getVectorElementType(); 1183 SDValue Ptr = Store->getBasePtr(); 1184 EVT MemEltVT = MemVT.getVectorElementType(); 1185 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1186 unsigned MemNumElements = MemVT.getVectorNumElements(); 1187 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1188 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1189 1190 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1191 1192 SDValue PackedValue; 1193 for (unsigned i = 0; i < MemNumElements; ++i) { 1194 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1195 DAG.getConstant(i, DL, MVT::i32)); 1196 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1197 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1198 1199 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1200 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1201 1202 if (i == 0) { 1203 PackedValue = Elt; 1204 } else { 1205 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1206 } 1207 } 1208 1209 if (PackedSize < 32) { 1210 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1211 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1212 Store->getMemOperand()->getPointerInfo(), 1213 PackedVT, 1214 Store->isNonTemporal(), Store->isVolatile(), 1215 Store->getAlignment()); 1216 } 1217 1218 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1219 Store->getMemOperand()->getPointerInfo(), 1220 Store->isVolatile(), Store->isNonTemporal(), 1221 Store->getAlignment()); 1222 } 1223 1224 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1225 SelectionDAG &DAG) const { 1226 StoreSDNode *Store = cast<StoreSDNode>(Op); 1227 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1228 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1229 EVT PtrVT = Store->getBasePtr().getValueType(); 1230 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1231 SDLoc SL(Op); 1232 1233 SmallVector<SDValue, 8> Chains; 1234 1235 unsigned EltSize = MemEltVT.getStoreSize(); 1236 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1237 1238 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1239 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1240 Store->getValue(), 1241 DAG.getConstant(i, SL, MVT::i32)); 1242 1243 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1244 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1245 SDValue NewStore = 1246 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1247 SrcValue.getWithOffset(i * EltSize), 1248 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1249 Store->getAlignment()); 1250 Chains.push_back(NewStore); 1251 } 1252 1253 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1254 } 1255 1256 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1257 SelectionDAG &DAG) const { 1258 StoreSDNode *Store = cast<StoreSDNode>(Op); 1259 SDValue Val = Store->getValue(); 1260 EVT VT = Val.getValueType(); 1261 1262 // If this is a 2 element vector, we really want to scalarize and not create 1263 // weird 1 element vectors. 1264 if (VT.getVectorNumElements() == 2) 1265 return ScalarizeVectorStore(Op, DAG); 1266 1267 EVT MemVT = Store->getMemoryVT(); 1268 SDValue Chain = Store->getChain(); 1269 SDValue BasePtr = Store->getBasePtr(); 1270 SDLoc SL(Op); 1271 1272 EVT LoVT, HiVT; 1273 EVT LoMemVT, HiMemVT; 1274 SDValue Lo, Hi; 1275 1276 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1277 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1278 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1279 1280 EVT PtrVT = BasePtr.getValueType(); 1281 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1282 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1283 PtrVT)); 1284 1285 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1286 unsigned BaseAlign = Store->getAlignment(); 1287 unsigned Size = LoMemVT.getStoreSize(); 1288 unsigned HiAlign = MinAlign(BaseAlign, Size); 1289 1290 SDValue LoStore 1291 = DAG.getTruncStore(Chain, SL, Lo, 1292 BasePtr, 1293 SrcValue, 1294 LoMemVT, 1295 Store->isNonTemporal(), 1296 Store->isVolatile(), 1297 BaseAlign); 1298 SDValue HiStore 1299 = DAG.getTruncStore(Chain, SL, Hi, 1300 HiPtr, 1301 SrcValue.getWithOffset(Size), 1302 HiMemVT, 1303 Store->isNonTemporal(), 1304 Store->isVolatile(), 1305 HiAlign); 1306 1307 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1308 } 1309 1310 1311 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1312 SDLoc DL(Op); 1313 LoadSDNode *Load = cast<LoadSDNode>(Op); 1314 ISD::LoadExtType ExtType = Load->getExtensionType(); 1315 EVT VT = Op.getValueType(); 1316 EVT MemVT = Load->getMemoryVT(); 1317 1318 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1319 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1320 // FIXME: Copied from PPC 1321 // First, load into 32 bits, then truncate to 1 bit. 1322 1323 SDValue Chain = Load->getChain(); 1324 SDValue BasePtr = Load->getBasePtr(); 1325 MachineMemOperand *MMO = Load->getMemOperand(); 1326 1327 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1328 BasePtr, MVT::i8, MMO); 1329 1330 SDValue Ops[] = { 1331 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1332 NewLD.getValue(1) 1333 }; 1334 1335 return DAG.getMergeValues(Ops, DL); 1336 } 1337 1338 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1339 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1340 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1341 return SDValue(); 1342 1343 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1344 // register (2-)byte extract. 1345 1346 // Get Register holding the target. 1347 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1348 DAG.getConstant(2, DL, MVT::i32)); 1349 // Load the Register. 1350 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1351 Load->getChain(), Ptr, 1352 DAG.getTargetConstant(0, DL, MVT::i32), 1353 Op.getOperand(2)); 1354 1355 // Get offset within the register. 1356 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1357 Load->getBasePtr(), 1358 DAG.getConstant(0x3, DL, MVT::i32)); 1359 1360 // Bit offset of target byte (byteIdx * 8). 1361 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1362 DAG.getConstant(3, DL, MVT::i32)); 1363 1364 // Shift to the right. 1365 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1366 1367 // Eliminate the upper bits by setting them to ... 1368 EVT MemEltVT = MemVT.getScalarType(); 1369 1370 // ... ones. 1371 if (ExtType == ISD::SEXTLOAD) { 1372 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1373 1374 SDValue Ops[] = { 1375 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1376 Load->getChain() 1377 }; 1378 1379 return DAG.getMergeValues(Ops, DL); 1380 } 1381 1382 // ... or zeros. 1383 SDValue Ops[] = { 1384 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1385 Load->getChain() 1386 }; 1387 1388 return DAG.getMergeValues(Ops, DL); 1389 } 1390 1391 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1392 SDLoc DL(Op); 1393 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1394 if (Result.getNode()) { 1395 return Result; 1396 } 1397 1398 StoreSDNode *Store = cast<StoreSDNode>(Op); 1399 SDValue Chain = Store->getChain(); 1400 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1401 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1402 Store->getValue().getValueType().isVector()) { 1403 return SplitVectorStore(Op, DAG); 1404 } 1405 1406 EVT MemVT = Store->getMemoryVT(); 1407 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1408 MemVT.bitsLT(MVT::i32)) { 1409 unsigned Mask = 0; 1410 if (Store->getMemoryVT() == MVT::i8) { 1411 Mask = 0xff; 1412 } else if (Store->getMemoryVT() == MVT::i16) { 1413 Mask = 0xffff; 1414 } 1415 SDValue BasePtr = Store->getBasePtr(); 1416 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1417 DAG.getConstant(2, DL, MVT::i32)); 1418 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1419 Chain, Ptr, 1420 DAG.getTargetConstant(0, DL, MVT::i32)); 1421 1422 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1423 DAG.getConstant(0x3, DL, MVT::i32)); 1424 1425 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1426 DAG.getConstant(3, DL, MVT::i32)); 1427 1428 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1429 Store->getValue()); 1430 1431 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1432 1433 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1434 MaskedValue, ShiftAmt); 1435 1436 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1437 DAG.getConstant(Mask, DL, MVT::i32), 1438 ShiftAmt); 1439 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1440 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1441 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1442 1443 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1444 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1445 Chain, Value, Ptr, 1446 DAG.getTargetConstant(0, DL, MVT::i32)); 1447 } 1448 return SDValue(); 1449 } 1450 1451 // This is a shortcut for integer division because we have fast i32<->f32 1452 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1453 // float is enough to accurately represent up to a 24-bit integer. 1454 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1455 SDLoc DL(Op); 1456 EVT VT = Op.getValueType(); 1457 SDValue LHS = Op.getOperand(0); 1458 SDValue RHS = Op.getOperand(1); 1459 MVT IntVT = MVT::i32; 1460 MVT FltVT = MVT::f32; 1461 1462 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1463 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1464 1465 if (VT.isVector()) { 1466 unsigned NElts = VT.getVectorNumElements(); 1467 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1468 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1469 } 1470 1471 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1472 1473 SDValue jq = DAG.getConstant(1, DL, IntVT); 1474 1475 if (sign) { 1476 // char|short jq = ia ^ ib; 1477 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1478 1479 // jq = jq >> (bitsize - 2) 1480 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1481 DAG.getConstant(BitSize - 2, DL, VT)); 1482 1483 // jq = jq | 0x1 1484 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1485 1486 // jq = (int)jq 1487 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1488 } 1489 1490 // int ia = (int)LHS; 1491 SDValue ia = sign ? 1492 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1493 1494 // int ib, (int)RHS; 1495 SDValue ib = sign ? 1496 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1497 1498 // float fa = (float)ia; 1499 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1500 1501 // float fb = (float)ib; 1502 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1503 1504 // TODO: Should this propagate fast-math-flags? 1505 // float fq = native_divide(fa, fb); 1506 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1507 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1508 1509 // fq = trunc(fq); 1510 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1511 1512 // float fqneg = -fq; 1513 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1514 1515 // float fr = mad(fqneg, fb, fa); 1516 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1517 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1518 1519 // int iq = (int)fq; 1520 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1521 1522 // fr = fabs(fr); 1523 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1524 1525 // fb = fabs(fb); 1526 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1527 1528 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1529 1530 // int cv = fr >= fb; 1531 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1532 1533 // jq = (cv ? jq : 0); 1534 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1535 1536 // dst = trunc/extend to legal type 1537 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1538 1539 // dst = iq + jq; 1540 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1541 1542 // Rem needs compensation, it's easier to recompute it 1543 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1544 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1545 1546 SDValue Res[2] = { 1547 Div, 1548 Rem 1549 }; 1550 return DAG.getMergeValues(Res, DL); 1551 } 1552 1553 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1554 SelectionDAG &DAG, 1555 SmallVectorImpl<SDValue> &Results) const { 1556 assert(Op.getValueType() == MVT::i64); 1557 1558 SDLoc DL(Op); 1559 EVT VT = Op.getValueType(); 1560 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1561 1562 SDValue one = DAG.getConstant(1, DL, HalfVT); 1563 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1564 1565 //HiLo split 1566 SDValue LHS = Op.getOperand(0); 1567 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1568 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1569 1570 SDValue RHS = Op.getOperand(1); 1571 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1572 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1573 1574 if (VT == MVT::i64 && 1575 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1576 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1577 1578 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1579 LHS_Lo, RHS_Lo); 1580 1581 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1582 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1583 Results.push_back(DIV); 1584 Results.push_back(REM); 1585 return; 1586 } 1587 1588 // Get Speculative values 1589 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1590 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1591 1592 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1593 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1594 1595 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1596 SDValue DIV_Lo = zero; 1597 1598 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1599 1600 for (unsigned i = 0; i < halfBitWidth; ++i) { 1601 const unsigned bitPos = halfBitWidth - i - 1; 1602 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1603 // Get value of high bit 1604 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1605 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1606 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1607 1608 // Shift 1609 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1610 // Add LHS high bit 1611 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1612 1613 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1614 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1615 1616 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1617 1618 // Update REM 1619 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1620 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1621 } 1622 1623 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1624 Results.push_back(DIV); 1625 Results.push_back(REM); 1626 } 1627 1628 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1629 SelectionDAG &DAG) const { 1630 SDLoc DL(Op); 1631 EVT VT = Op.getValueType(); 1632 1633 if (VT == MVT::i64) { 1634 SmallVector<SDValue, 2> Results; 1635 LowerUDIVREM64(Op, DAG, Results); 1636 return DAG.getMergeValues(Results, DL); 1637 } 1638 1639 SDValue Num = Op.getOperand(0); 1640 SDValue Den = Op.getOperand(1); 1641 1642 if (VT == MVT::i32) { 1643 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1644 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1645 // TODO: We technically could do this for i64, but shouldn't that just be 1646 // handled by something generally reducing 64-bit division on 32-bit 1647 // values to 32-bit? 1648 return LowerDIVREM24(Op, DAG, false); 1649 } 1650 } 1651 1652 // RCP = URECIP(Den) = 2^32 / Den + e 1653 // e is rounding error. 1654 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1655 1656 // RCP_LO = mul(RCP, Den) */ 1657 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1658 1659 // RCP_HI = mulhu (RCP, Den) */ 1660 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1661 1662 // NEG_RCP_LO = -RCP_LO 1663 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1664 RCP_LO); 1665 1666 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1667 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1668 NEG_RCP_LO, RCP_LO, 1669 ISD::SETEQ); 1670 // Calculate the rounding error from the URECIP instruction 1671 // E = mulhu(ABS_RCP_LO, RCP) 1672 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1673 1674 // RCP_A_E = RCP + E 1675 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1676 1677 // RCP_S_E = RCP - E 1678 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1679 1680 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1681 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1682 RCP_A_E, RCP_S_E, 1683 ISD::SETEQ); 1684 // Quotient = mulhu(Tmp0, Num) 1685 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1686 1687 // Num_S_Remainder = Quotient * Den 1688 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1689 1690 // Remainder = Num - Num_S_Remainder 1691 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1692 1693 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1694 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1695 DAG.getConstant(-1, DL, VT), 1696 DAG.getConstant(0, DL, VT), 1697 ISD::SETUGE); 1698 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1699 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1700 Num_S_Remainder, 1701 DAG.getConstant(-1, DL, VT), 1702 DAG.getConstant(0, DL, VT), 1703 ISD::SETUGE); 1704 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1705 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1706 Remainder_GE_Zero); 1707 1708 // Calculate Division result: 1709 1710 // Quotient_A_One = Quotient + 1 1711 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1712 DAG.getConstant(1, DL, VT)); 1713 1714 // Quotient_S_One = Quotient - 1 1715 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1716 DAG.getConstant(1, DL, VT)); 1717 1718 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1719 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1720 Quotient, Quotient_A_One, ISD::SETEQ); 1721 1722 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1723 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1724 Quotient_S_One, Div, ISD::SETEQ); 1725 1726 // Calculate Rem result: 1727 1728 // Remainder_S_Den = Remainder - Den 1729 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1730 1731 // Remainder_A_Den = Remainder + Den 1732 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1733 1734 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1735 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1736 Remainder, Remainder_S_Den, ISD::SETEQ); 1737 1738 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1739 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1740 Remainder_A_Den, Rem, ISD::SETEQ); 1741 SDValue Ops[2] = { 1742 Div, 1743 Rem 1744 }; 1745 return DAG.getMergeValues(Ops, DL); 1746 } 1747 1748 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1749 SelectionDAG &DAG) const { 1750 SDLoc DL(Op); 1751 EVT VT = Op.getValueType(); 1752 1753 SDValue LHS = Op.getOperand(0); 1754 SDValue RHS = Op.getOperand(1); 1755 1756 SDValue Zero = DAG.getConstant(0, DL, VT); 1757 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1758 1759 if (VT == MVT::i32 && 1760 DAG.ComputeNumSignBits(LHS) > 8 && 1761 DAG.ComputeNumSignBits(RHS) > 8) { 1762 return LowerDIVREM24(Op, DAG, true); 1763 } 1764 if (VT == MVT::i64 && 1765 DAG.ComputeNumSignBits(LHS) > 32 && 1766 DAG.ComputeNumSignBits(RHS) > 32) { 1767 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1768 1769 //HiLo split 1770 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1771 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1772 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1773 LHS_Lo, RHS_Lo); 1774 SDValue Res[2] = { 1775 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1776 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1777 }; 1778 return DAG.getMergeValues(Res, DL); 1779 } 1780 1781 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1782 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1783 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1784 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1785 1786 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1787 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1788 1789 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1790 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1791 1792 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1793 SDValue Rem = Div.getValue(1); 1794 1795 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1796 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1797 1798 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1799 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1800 1801 SDValue Res[2] = { 1802 Div, 1803 Rem 1804 }; 1805 return DAG.getMergeValues(Res, DL); 1806 } 1807 1808 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1809 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1810 SDLoc SL(Op); 1811 EVT VT = Op.getValueType(); 1812 SDValue X = Op.getOperand(0); 1813 SDValue Y = Op.getOperand(1); 1814 1815 // TODO: Should this propagate fast-math-flags? 1816 1817 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1818 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1819 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1820 1821 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1822 } 1823 1824 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1825 SDLoc SL(Op); 1826 SDValue Src = Op.getOperand(0); 1827 1828 // result = trunc(src) 1829 // if (src > 0.0 && src != result) 1830 // result += 1.0 1831 1832 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1833 1834 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1835 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1836 1837 EVT SetCCVT = 1838 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1839 1840 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1841 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1842 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1843 1844 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1845 // TODO: Should this propagate fast-math-flags? 1846 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1847 } 1848 1849 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1850 const unsigned FractBits = 52; 1851 const unsigned ExpBits = 11; 1852 1853 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1854 Hi, 1855 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1856 DAG.getConstant(ExpBits, SL, MVT::i32)); 1857 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1858 DAG.getConstant(1023, SL, MVT::i32)); 1859 1860 return Exp; 1861 } 1862 1863 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1864 SDLoc SL(Op); 1865 SDValue Src = Op.getOperand(0); 1866 1867 assert(Op.getValueType() == MVT::f64); 1868 1869 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1870 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1871 1872 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1873 1874 // Extract the upper half, since this is where we will find the sign and 1875 // exponent. 1876 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1877 1878 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1879 1880 const unsigned FractBits = 52; 1881 1882 // Extract the sign bit. 1883 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1884 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1885 1886 // Extend back to to 64-bits. 1887 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1888 Zero, SignBit); 1889 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1890 1891 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1892 const SDValue FractMask 1893 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1894 1895 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1896 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1897 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1898 1899 EVT SetCCVT = 1900 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1901 1902 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1903 1904 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1905 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1906 1907 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1908 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1909 1910 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1911 } 1912 1913 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1914 SDLoc SL(Op); 1915 SDValue Src = Op.getOperand(0); 1916 1917 assert(Op.getValueType() == MVT::f64); 1918 1919 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1920 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1921 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1922 1923 // TODO: Should this propagate fast-math-flags? 1924 1925 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1926 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1927 1928 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1929 1930 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1931 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1932 1933 EVT SetCCVT = 1934 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1935 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1936 1937 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1938 } 1939 1940 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1941 // FNEARBYINT and FRINT are the same, except in their handling of FP 1942 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1943 // rint, so just treat them as equivalent. 1944 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1945 } 1946 1947 // XXX - May require not supporting f32 denormals? 1948 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1949 SDLoc SL(Op); 1950 SDValue X = Op.getOperand(0); 1951 1952 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1953 1954 // TODO: Should this propagate fast-math-flags? 1955 1956 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1957 1958 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1959 1960 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1961 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1962 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1963 1964 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1965 1966 EVT SetCCVT = 1967 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1968 1969 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1970 1971 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1972 1973 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1974 } 1975 1976 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1977 SDLoc SL(Op); 1978 SDValue X = Op.getOperand(0); 1979 1980 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1981 1982 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1983 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1984 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1985 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1986 EVT SetCCVT = 1987 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1988 1989 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1990 1991 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1992 1993 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1994 1995 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1996 MVT::i64); 1997 1998 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1999 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2000 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2001 MVT::i64), 2002 Exp); 2003 2004 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2005 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2006 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2007 ISD::SETNE); 2008 2009 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2010 D, DAG.getConstant(0, SL, MVT::i64)); 2011 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2012 2013 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2014 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2015 2016 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2017 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2018 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2019 2020 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2021 ExpEqNegOne, 2022 DAG.getConstantFP(1.0, SL, MVT::f64), 2023 DAG.getConstantFP(0.0, SL, MVT::f64)); 2024 2025 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2026 2027 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2028 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2029 2030 return K; 2031 } 2032 2033 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2034 EVT VT = Op.getValueType(); 2035 2036 if (VT == MVT::f32) 2037 return LowerFROUND32(Op, DAG); 2038 2039 if (VT == MVT::f64) 2040 return LowerFROUND64(Op, DAG); 2041 2042 llvm_unreachable("unhandled type"); 2043 } 2044 2045 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2046 SDLoc SL(Op); 2047 SDValue Src = Op.getOperand(0); 2048 2049 // result = trunc(src); 2050 // if (src < 0.0 && src != result) 2051 // result += -1.0. 2052 2053 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2054 2055 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2056 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2057 2058 EVT SetCCVT = 2059 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2060 2061 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2062 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2063 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2064 2065 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2066 // TODO: Should this propagate fast-math-flags? 2067 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2068 } 2069 2070 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 2071 SDLoc SL(Op); 2072 SDValue Src = Op.getOperand(0); 2073 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2074 2075 if (ZeroUndef && Src.getValueType() == MVT::i32) 2076 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 2077 2078 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2079 2080 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2081 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2082 2083 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2084 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2085 2086 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2087 *DAG.getContext(), MVT::i32); 2088 2089 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 2090 2091 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 2092 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 2093 2094 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2095 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 2096 2097 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2098 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 2099 2100 if (!ZeroUndef) { 2101 // Test if the full 64-bit input is zero. 2102 2103 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2104 // which we probably don't want. 2105 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 2106 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 2107 2108 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2109 // with the same cycles, otherwise it is slower. 2110 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2111 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2112 2113 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2114 2115 // The instruction returns -1 for 0 input, but the defined intrinsic 2116 // behavior is to return the number of bits. 2117 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2118 SrcIsZero, Bits32, NewCtlz); 2119 } 2120 2121 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 2122 } 2123 2124 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2125 bool Signed) const { 2126 // Unsigned 2127 // cul2f(ulong u) 2128 //{ 2129 // uint lz = clz(u); 2130 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2131 // u = (u << lz) & 0x7fffffffffffffffUL; 2132 // ulong t = u & 0xffffffffffUL; 2133 // uint v = (e << 23) | (uint)(u >> 40); 2134 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2135 // return as_float(v + r); 2136 //} 2137 // Signed 2138 // cl2f(long l) 2139 //{ 2140 // long s = l >> 63; 2141 // float r = cul2f((l + s) ^ s); 2142 // return s ? -r : r; 2143 //} 2144 2145 SDLoc SL(Op); 2146 SDValue Src = Op.getOperand(0); 2147 SDValue L = Src; 2148 2149 SDValue S; 2150 if (Signed) { 2151 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2152 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2153 2154 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2155 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2156 } 2157 2158 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2159 *DAG.getContext(), MVT::f32); 2160 2161 2162 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2163 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2164 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2165 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2166 2167 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2168 SDValue E = DAG.getSelect(SL, MVT::i32, 2169 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2170 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2171 ZeroI32); 2172 2173 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2174 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2175 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2176 2177 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2178 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2179 2180 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2181 U, DAG.getConstant(40, SL, MVT::i64)); 2182 2183 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2184 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2185 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2186 2187 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2188 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2189 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2190 2191 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2192 2193 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2194 2195 SDValue R = DAG.getSelect(SL, MVT::i32, 2196 RCmp, 2197 One, 2198 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2199 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2200 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2201 2202 if (!Signed) 2203 return R; 2204 2205 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2206 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2207 } 2208 2209 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2210 bool Signed) const { 2211 SDLoc SL(Op); 2212 SDValue Src = Op.getOperand(0); 2213 2214 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2215 2216 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2217 DAG.getConstant(0, SL, MVT::i32)); 2218 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2219 DAG.getConstant(1, SL, MVT::i32)); 2220 2221 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2222 SL, MVT::f64, Hi); 2223 2224 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2225 2226 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2227 DAG.getConstant(32, SL, MVT::i32)); 2228 // TODO: Should this propagate fast-math-flags? 2229 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2230 } 2231 2232 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2233 SelectionDAG &DAG) const { 2234 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2235 "operation should be legal"); 2236 2237 EVT DestVT = Op.getValueType(); 2238 if (DestVT == MVT::f64) 2239 return LowerINT_TO_FP64(Op, DAG, false); 2240 2241 if (DestVT == MVT::f32) 2242 return LowerINT_TO_FP32(Op, DAG, false); 2243 2244 return SDValue(); 2245 } 2246 2247 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2248 SelectionDAG &DAG) const { 2249 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2250 "operation should be legal"); 2251 2252 EVT DestVT = Op.getValueType(); 2253 if (DestVT == MVT::f32) 2254 return LowerINT_TO_FP32(Op, DAG, true); 2255 2256 if (DestVT == MVT::f64) 2257 return LowerINT_TO_FP64(Op, DAG, true); 2258 2259 return SDValue(); 2260 } 2261 2262 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2263 bool Signed) const { 2264 SDLoc SL(Op); 2265 2266 SDValue Src = Op.getOperand(0); 2267 2268 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2269 2270 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2271 MVT::f64); 2272 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2273 MVT::f64); 2274 // TODO: Should this propagate fast-math-flags? 2275 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2276 2277 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2278 2279 2280 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2281 2282 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2283 MVT::i32, FloorMul); 2284 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2285 2286 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2287 2288 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2289 } 2290 2291 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2292 SelectionDAG &DAG) const { 2293 SDValue Src = Op.getOperand(0); 2294 2295 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2296 return LowerFP64_TO_INT(Op, DAG, true); 2297 2298 return SDValue(); 2299 } 2300 2301 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2302 SelectionDAG &DAG) const { 2303 SDValue Src = Op.getOperand(0); 2304 2305 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2306 return LowerFP64_TO_INT(Op, DAG, false); 2307 2308 return SDValue(); 2309 } 2310 2311 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2312 SelectionDAG &DAG) const { 2313 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2314 MVT VT = Op.getSimpleValueType(); 2315 MVT ScalarVT = VT.getScalarType(); 2316 2317 if (!VT.isVector()) 2318 return SDValue(); 2319 2320 SDValue Src = Op.getOperand(0); 2321 SDLoc DL(Op); 2322 2323 // TODO: Don't scalarize on Evergreen? 2324 unsigned NElts = VT.getVectorNumElements(); 2325 SmallVector<SDValue, 8> Args; 2326 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2327 2328 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2329 for (unsigned I = 0; I < NElts; ++I) 2330 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2331 2332 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2333 } 2334 2335 //===----------------------------------------------------------------------===// 2336 // Custom DAG optimizations 2337 //===----------------------------------------------------------------------===// 2338 2339 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2340 APInt KnownZero, KnownOne; 2341 EVT VT = Op.getValueType(); 2342 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2343 2344 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2345 } 2346 2347 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2348 EVT VT = Op.getValueType(); 2349 2350 // In order for this to be a signed 24-bit value, bit 23, must 2351 // be a sign bit. 2352 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2353 // as unsigned 24-bit values. 2354 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2355 } 2356 2357 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2358 2359 SelectionDAG &DAG = DCI.DAG; 2360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2361 EVT VT = Op.getValueType(); 2362 2363 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2364 APInt KnownZero, KnownOne; 2365 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2366 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2367 DCI.CommitTargetLoweringOpt(TLO); 2368 } 2369 2370 template <typename IntTy> 2371 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2372 uint32_t Offset, uint32_t Width, SDLoc DL) { 2373 if (Width + Offset < 32) { 2374 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2375 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2376 return DAG.getConstant(Result, DL, MVT::i32); 2377 } 2378 2379 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2380 } 2381 2382 static bool usesAllNormalStores(SDNode *LoadVal) { 2383 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2384 if (!ISD::isNormalStore(*I)) 2385 return false; 2386 } 2387 2388 return true; 2389 } 2390 2391 // If we have a copy of an illegal type, replace it with a load / store of an 2392 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2393 // instructions emitted when handling extloads and truncstores. Ideally we could 2394 // recognize the pack / unpack pattern to eliminate it. 2395 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2396 DAGCombinerInfo &DCI) const { 2397 if (!DCI.isBeforeLegalize()) 2398 return SDValue(); 2399 2400 StoreSDNode *SN = cast<StoreSDNode>(N); 2401 SDValue Value = SN->getValue(); 2402 EVT VT = Value.getValueType(); 2403 2404 if (isTypeLegal(VT) || SN->isVolatile() || 2405 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2406 return SDValue(); 2407 2408 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2409 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2410 return SDValue(); 2411 2412 EVT MemVT = LoadVal->getMemoryVT(); 2413 2414 SDLoc SL(N); 2415 SelectionDAG &DAG = DCI.DAG; 2416 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2417 2418 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2419 LoadVT, SL, 2420 LoadVal->getChain(), 2421 LoadVal->getBasePtr(), 2422 LoadVal->getOffset(), 2423 LoadVT, 2424 LoadVal->getMemOperand()); 2425 2426 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2427 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2428 2429 return DAG.getStore(SN->getChain(), SL, NewLoad, 2430 SN->getBasePtr(), SN->getMemOperand()); 2431 } 2432 2433 // TODO: Should repeat for other bit ops. 2434 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2435 DAGCombinerInfo &DCI) const { 2436 if (N->getValueType(0) != MVT::i64) 2437 return SDValue(); 2438 2439 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2440 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2441 // combine opportunities since most 64-bit operations are decomposed this way. 2442 // TODO: We won't want this for SALU especially if it is an inline immediate. 2443 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2444 if (!RHS) 2445 return SDValue(); 2446 2447 uint64_t Val = RHS->getZExtValue(); 2448 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2449 // If either half of the constant is 0, this is really a 32-bit and, so 2450 // split it. If we can re-use the full materialized constant, keep it. 2451 return SDValue(); 2452 } 2453 2454 SDLoc SL(N); 2455 SelectionDAG &DAG = DCI.DAG; 2456 2457 SDValue Lo, Hi; 2458 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2459 2460 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2461 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2462 2463 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2464 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2465 2466 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LoAnd, HiAnd); 2467 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2468 } 2469 2470 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2471 DAGCombinerInfo &DCI) const { 2472 if (N->getValueType(0) != MVT::i64) 2473 return SDValue(); 2474 2475 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2476 2477 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2478 // common case, splitting this into a move and a 32-bit shift is faster and 2479 // the same code size. 2480 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2481 if (!RHS) 2482 return SDValue(); 2483 2484 unsigned RHSVal = RHS->getZExtValue(); 2485 if (RHSVal < 32) 2486 return SDValue(); 2487 2488 SDValue LHS = N->getOperand(0); 2489 2490 SDLoc SL(N); 2491 SelectionDAG &DAG = DCI.DAG; 2492 2493 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2494 2495 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2496 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2497 2498 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2499 2500 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Zero, NewShift); 2501 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2502 } 2503 2504 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2505 DAGCombinerInfo &DCI) const { 2506 if (N->getValueType(0) != MVT::i64) 2507 return SDValue(); 2508 2509 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2510 if (!RHS) 2511 return SDValue(); 2512 2513 SelectionDAG &DAG = DCI.DAG; 2514 SDLoc SL(N); 2515 unsigned RHSVal = RHS->getZExtValue(); 2516 2517 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2518 if (RHSVal == 32) { 2519 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2520 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2521 DAG.getConstant(31, SL, MVT::i32)); 2522 2523 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2524 Hi, NewShift); 2525 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2526 } 2527 2528 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2529 if (RHSVal == 63) { 2530 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2531 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2532 DAG.getConstant(31, SL, MVT::i32)); 2533 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2534 NewShift, NewShift); 2535 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2536 } 2537 2538 return SDValue(); 2539 } 2540 2541 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2542 DAGCombinerInfo &DCI) const { 2543 if (N->getValueType(0) != MVT::i64) 2544 return SDValue(); 2545 2546 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2547 if (!RHS) 2548 return SDValue(); 2549 2550 unsigned ShiftAmt = RHS->getZExtValue(); 2551 if (ShiftAmt < 32) 2552 return SDValue(); 2553 2554 // srl i64:x, C for C >= 32 2555 // => 2556 // build_pair (srl hi_32(x), C - 32), 0 2557 2558 SelectionDAG &DAG = DCI.DAG; 2559 SDLoc SL(N); 2560 2561 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2562 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2563 2564 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2565 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2566 VecOp, One); 2567 2568 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2569 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2570 2571 SDValue BuildPair = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2572 NewShift, Zero); 2573 2574 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2575 } 2576 2577 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2578 DAGCombinerInfo &DCI) const { 2579 EVT VT = N->getValueType(0); 2580 2581 if (VT.isVector() || VT.getSizeInBits() > 32) 2582 return SDValue(); 2583 2584 SelectionDAG &DAG = DCI.DAG; 2585 SDLoc DL(N); 2586 2587 SDValue N0 = N->getOperand(0); 2588 SDValue N1 = N->getOperand(1); 2589 SDValue Mul; 2590 2591 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2592 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2593 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2594 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2595 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2596 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2597 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2598 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2599 } else { 2600 return SDValue(); 2601 } 2602 2603 // We need to use sext even for MUL_U24, because MUL_U24 is used 2604 // for signed multiply of 8 and 16-bit types. 2605 return DAG.getSExtOrTrunc(Mul, DL, VT); 2606 } 2607 2608 static bool isNegativeOne(SDValue Val) { 2609 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2610 return C->isAllOnesValue(); 2611 return false; 2612 } 2613 2614 static bool isCtlzOpc(unsigned Opc) { 2615 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2616 } 2617 2618 // Get FFBH node if the incoming op may have been type legalized from a smaller 2619 // type VT. 2620 // Need to match pre-legalized type because the generic legalization inserts the 2621 // add/sub between the select and compare. 2622 static SDValue getFFBH_U32(const TargetLowering &TLI, 2623 SelectionDAG &DAG, SDLoc SL, SDValue Op) { 2624 EVT VT = Op.getValueType(); 2625 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2626 if (LegalVT != MVT::i32) 2627 return SDValue(); 2628 2629 if (VT != MVT::i32) 2630 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2631 2632 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2633 if (VT != MVT::i32) 2634 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2635 2636 return FFBH; 2637 } 2638 2639 // The native instructions return -1 on 0 input. Optimize out a select that 2640 // produces -1 on 0. 2641 // 2642 // TODO: If zero is not undef, we could also do this if the output is compared 2643 // against the bitwidth. 2644 // 2645 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2646 SDValue AMDGPUTargetLowering::performCtlzCombine(SDLoc SL, 2647 SDValue Cond, 2648 SDValue LHS, 2649 SDValue RHS, 2650 DAGCombinerInfo &DCI) const { 2651 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2652 if (!CmpRhs || !CmpRhs->isNullValue()) 2653 return SDValue(); 2654 2655 SelectionDAG &DAG = DCI.DAG; 2656 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2657 SDValue CmpLHS = Cond.getOperand(0); 2658 2659 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2660 if (CCOpcode == ISD::SETEQ && 2661 isCtlzOpc(RHS.getOpcode()) && 2662 RHS.getOperand(0) == CmpLHS && 2663 isNegativeOne(LHS)) { 2664 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2665 } 2666 2667 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2668 if (CCOpcode == ISD::SETNE && 2669 isCtlzOpc(LHS.getOpcode()) && 2670 LHS.getOperand(0) == CmpLHS && 2671 isNegativeOne(RHS)) { 2672 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2673 } 2674 2675 return SDValue(); 2676 } 2677 2678 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2679 DAGCombinerInfo &DCI) const { 2680 SDValue Cond = N->getOperand(0); 2681 if (Cond.getOpcode() != ISD::SETCC) 2682 return SDValue(); 2683 2684 EVT VT = N->getValueType(0); 2685 SDValue LHS = Cond.getOperand(0); 2686 SDValue RHS = Cond.getOperand(1); 2687 SDValue CC = Cond.getOperand(2); 2688 2689 SDValue True = N->getOperand(1); 2690 SDValue False = N->getOperand(2); 2691 2692 if (VT == MVT::f32 && Cond.hasOneUse()) { 2693 SDValue MinMax 2694 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2695 // Revisit this node so we can catch min3/max3/med3 patterns. 2696 //DCI.AddToWorklist(MinMax.getNode()); 2697 return MinMax; 2698 } 2699 2700 // There's no reason to not do this if the condition has other uses. 2701 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2702 } 2703 2704 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2705 DAGCombinerInfo &DCI) const { 2706 SelectionDAG &DAG = DCI.DAG; 2707 SDLoc DL(N); 2708 2709 switch(N->getOpcode()) { 2710 default: 2711 break; 2712 case ISD::SHL: { 2713 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2714 break; 2715 2716 return performShlCombine(N, DCI); 2717 } 2718 case ISD::SRL: { 2719 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2720 break; 2721 2722 return performSrlCombine(N, DCI); 2723 } 2724 case ISD::SRA: { 2725 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2726 break; 2727 2728 return performSraCombine(N, DCI); 2729 } 2730 case ISD::AND: { 2731 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2732 break; 2733 2734 return performAndCombine(N, DCI); 2735 } 2736 case ISD::MUL: 2737 return performMulCombine(N, DCI); 2738 case AMDGPUISD::MUL_I24: 2739 case AMDGPUISD::MUL_U24: { 2740 SDValue N0 = N->getOperand(0); 2741 SDValue N1 = N->getOperand(1); 2742 simplifyI24(N0, DCI); 2743 simplifyI24(N1, DCI); 2744 return SDValue(); 2745 } 2746 case ISD::SELECT: 2747 return performSelectCombine(N, DCI); 2748 case AMDGPUISD::BFE_I32: 2749 case AMDGPUISD::BFE_U32: { 2750 assert(!N->getValueType(0).isVector() && 2751 "Vector handling of BFE not implemented"); 2752 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2753 if (!Width) 2754 break; 2755 2756 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2757 if (WidthVal == 0) 2758 return DAG.getConstant(0, DL, MVT::i32); 2759 2760 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2761 if (!Offset) 2762 break; 2763 2764 SDValue BitsFrom = N->getOperand(0); 2765 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2766 2767 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2768 2769 if (OffsetVal == 0) { 2770 // This is already sign / zero extended, so try to fold away extra BFEs. 2771 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2772 2773 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2774 if (OpSignBits >= SignBits) 2775 return BitsFrom; 2776 2777 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2778 if (Signed) { 2779 // This is a sign_extend_inreg. Replace it to take advantage of existing 2780 // DAG Combines. If not eliminated, we will match back to BFE during 2781 // selection. 2782 2783 // TODO: The sext_inreg of extended types ends, although we can could 2784 // handle them in a single BFE. 2785 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2786 DAG.getValueType(SmallVT)); 2787 } 2788 2789 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2790 } 2791 2792 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2793 if (Signed) { 2794 return constantFoldBFE<int32_t>(DAG, 2795 CVal->getSExtValue(), 2796 OffsetVal, 2797 WidthVal, 2798 DL); 2799 } 2800 2801 return constantFoldBFE<uint32_t>(DAG, 2802 CVal->getZExtValue(), 2803 OffsetVal, 2804 WidthVal, 2805 DL); 2806 } 2807 2808 if ((OffsetVal + WidthVal) >= 32) { 2809 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2810 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2811 BitsFrom, ShiftVal); 2812 } 2813 2814 if (BitsFrom.hasOneUse()) { 2815 APInt Demanded = APInt::getBitsSet(32, 2816 OffsetVal, 2817 OffsetVal + WidthVal); 2818 2819 APInt KnownZero, KnownOne; 2820 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2821 !DCI.isBeforeLegalizeOps()); 2822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2823 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2824 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2825 KnownZero, KnownOne, TLO)) { 2826 DCI.CommitTargetLoweringOpt(TLO); 2827 } 2828 } 2829 2830 break; 2831 } 2832 2833 case ISD::STORE: 2834 return performStoreCombine(N, DCI); 2835 } 2836 return SDValue(); 2837 } 2838 2839 //===----------------------------------------------------------------------===// 2840 // Helper functions 2841 //===----------------------------------------------------------------------===// 2842 2843 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2844 SelectionDAG &DAG, 2845 const Function *F, 2846 const SmallVectorImpl<ISD::InputArg> &Ins, 2847 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2848 2849 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2850 if (Ins[i].ArgVT == Ins[i].VT) { 2851 OrigIns.push_back(Ins[i]); 2852 continue; 2853 } 2854 2855 EVT VT; 2856 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2857 // Vector has been split into scalars. 2858 VT = Ins[i].ArgVT.getVectorElementType(); 2859 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2860 Ins[i].ArgVT.getVectorElementType() != 2861 Ins[i].VT.getVectorElementType()) { 2862 // Vector elements have been promoted 2863 VT = Ins[i].ArgVT; 2864 } else { 2865 // Vector has been spilt into smaller vectors. 2866 VT = Ins[i].VT; 2867 } 2868 2869 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2870 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2871 OrigIns.push_back(Arg); 2872 } 2873 } 2874 2875 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2876 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2877 return CFP->isExactlyValue(1.0); 2878 } 2879 return isAllOnesConstant(Op); 2880 } 2881 2882 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2883 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2884 return CFP->getValueAPF().isZero(); 2885 } 2886 return isNullConstant(Op); 2887 } 2888 2889 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2890 const TargetRegisterClass *RC, 2891 unsigned Reg, EVT VT) const { 2892 MachineFunction &MF = DAG.getMachineFunction(); 2893 MachineRegisterInfo &MRI = MF.getRegInfo(); 2894 unsigned VirtualRegister; 2895 if (!MRI.isLiveIn(Reg)) { 2896 VirtualRegister = MRI.createVirtualRegister(RC); 2897 MRI.addLiveIn(Reg, VirtualRegister); 2898 } else { 2899 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2900 } 2901 return DAG.getRegister(VirtualRegister, VT); 2902 } 2903 2904 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2905 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2906 uint64_t ArgOffset = MFI->ABIArgOffset; 2907 switch (Param) { 2908 case GRID_DIM: 2909 return ArgOffset; 2910 case GRID_OFFSET: 2911 return ArgOffset + 4; 2912 } 2913 llvm_unreachable("unexpected implicit parameter type"); 2914 } 2915 2916 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2917 2918 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2919 switch ((AMDGPUISD::NodeType)Opcode) { 2920 case AMDGPUISD::FIRST_NUMBER: break; 2921 // AMDIL DAG nodes 2922 NODE_NAME_CASE(CALL); 2923 NODE_NAME_CASE(UMUL); 2924 NODE_NAME_CASE(RET_FLAG); 2925 NODE_NAME_CASE(BRANCH_COND); 2926 2927 // AMDGPU DAG nodes 2928 NODE_NAME_CASE(DWORDADDR) 2929 NODE_NAME_CASE(FRACT) 2930 NODE_NAME_CASE(CLAMP) 2931 NODE_NAME_CASE(COS_HW) 2932 NODE_NAME_CASE(SIN_HW) 2933 NODE_NAME_CASE(FMAX_LEGACY) 2934 NODE_NAME_CASE(FMIN_LEGACY) 2935 NODE_NAME_CASE(FMAX3) 2936 NODE_NAME_CASE(SMAX3) 2937 NODE_NAME_CASE(UMAX3) 2938 NODE_NAME_CASE(FMIN3) 2939 NODE_NAME_CASE(SMIN3) 2940 NODE_NAME_CASE(UMIN3) 2941 NODE_NAME_CASE(FMED3) 2942 NODE_NAME_CASE(SMED3) 2943 NODE_NAME_CASE(UMED3) 2944 NODE_NAME_CASE(URECIP) 2945 NODE_NAME_CASE(DIV_SCALE) 2946 NODE_NAME_CASE(DIV_FMAS) 2947 NODE_NAME_CASE(DIV_FIXUP) 2948 NODE_NAME_CASE(TRIG_PREOP) 2949 NODE_NAME_CASE(RCP) 2950 NODE_NAME_CASE(RSQ) 2951 NODE_NAME_CASE(RSQ_LEGACY) 2952 NODE_NAME_CASE(RSQ_CLAMPED) 2953 NODE_NAME_CASE(LDEXP) 2954 NODE_NAME_CASE(FP_CLASS) 2955 NODE_NAME_CASE(DOT4) 2956 NODE_NAME_CASE(CARRY) 2957 NODE_NAME_CASE(BORROW) 2958 NODE_NAME_CASE(BFE_U32) 2959 NODE_NAME_CASE(BFE_I32) 2960 NODE_NAME_CASE(BFI) 2961 NODE_NAME_CASE(BFM) 2962 NODE_NAME_CASE(FFBH_U32) 2963 NODE_NAME_CASE(MUL_U24) 2964 NODE_NAME_CASE(MUL_I24) 2965 NODE_NAME_CASE(MAD_U24) 2966 NODE_NAME_CASE(MAD_I24) 2967 NODE_NAME_CASE(TEXTURE_FETCH) 2968 NODE_NAME_CASE(EXPORT) 2969 NODE_NAME_CASE(CONST_ADDRESS) 2970 NODE_NAME_CASE(REGISTER_LOAD) 2971 NODE_NAME_CASE(REGISTER_STORE) 2972 NODE_NAME_CASE(LOAD_CONSTANT) 2973 NODE_NAME_CASE(LOAD_INPUT) 2974 NODE_NAME_CASE(SAMPLE) 2975 NODE_NAME_CASE(SAMPLEB) 2976 NODE_NAME_CASE(SAMPLED) 2977 NODE_NAME_CASE(SAMPLEL) 2978 NODE_NAME_CASE(CVT_F32_UBYTE0) 2979 NODE_NAME_CASE(CVT_F32_UBYTE1) 2980 NODE_NAME_CASE(CVT_F32_UBYTE2) 2981 NODE_NAME_CASE(CVT_F32_UBYTE3) 2982 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2983 NODE_NAME_CASE(CONST_DATA_PTR) 2984 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2985 NODE_NAME_CASE(SENDMSG) 2986 NODE_NAME_CASE(INTERP_MOV) 2987 NODE_NAME_CASE(INTERP_P1) 2988 NODE_NAME_CASE(INTERP_P2) 2989 NODE_NAME_CASE(STORE_MSKOR) 2990 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2991 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2992 } 2993 return nullptr; 2994 } 2995 2996 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2997 DAGCombinerInfo &DCI, 2998 unsigned &RefinementSteps, 2999 bool &UseOneConstNR) const { 3000 SelectionDAG &DAG = DCI.DAG; 3001 EVT VT = Operand.getValueType(); 3002 3003 if (VT == MVT::f32) { 3004 RefinementSteps = 0; 3005 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3006 } 3007 3008 // TODO: There is also f64 rsq instruction, but the documentation is less 3009 // clear on its precision. 3010 3011 return SDValue(); 3012 } 3013 3014 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3015 DAGCombinerInfo &DCI, 3016 unsigned &RefinementSteps) const { 3017 SelectionDAG &DAG = DCI.DAG; 3018 EVT VT = Operand.getValueType(); 3019 3020 if (VT == MVT::f32) { 3021 // Reciprocal, < 1 ulp error. 3022 // 3023 // This reciprocal approximation converges to < 0.5 ulp error with one 3024 // newton rhapson performed with two fused multiple adds (FMAs). 3025 3026 RefinementSteps = 0; 3027 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3028 } 3029 3030 // TODO: There is also f64 rcp instruction, but the documentation is less 3031 // clear on its precision. 3032 3033 return SDValue(); 3034 } 3035 3036 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3037 const SDValue Op, 3038 APInt &KnownZero, 3039 APInt &KnownOne, 3040 const SelectionDAG &DAG, 3041 unsigned Depth) const { 3042 3043 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3044 3045 APInt KnownZero2; 3046 APInt KnownOne2; 3047 unsigned Opc = Op.getOpcode(); 3048 3049 switch (Opc) { 3050 default: 3051 break; 3052 case AMDGPUISD::CARRY: 3053 case AMDGPUISD::BORROW: { 3054 KnownZero = APInt::getHighBitsSet(32, 31); 3055 break; 3056 } 3057 3058 case AMDGPUISD::BFE_I32: 3059 case AMDGPUISD::BFE_U32: { 3060 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3061 if (!CWidth) 3062 return; 3063 3064 unsigned BitWidth = 32; 3065 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3066 3067 if (Opc == AMDGPUISD::BFE_U32) 3068 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3069 3070 break; 3071 } 3072 } 3073 } 3074 3075 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3076 SDValue Op, 3077 const SelectionDAG &DAG, 3078 unsigned Depth) const { 3079 switch (Op.getOpcode()) { 3080 case AMDGPUISD::BFE_I32: { 3081 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3082 if (!Width) 3083 return 1; 3084 3085 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3086 if (!isNullConstant(Op.getOperand(1))) 3087 return SignBits; 3088 3089 // TODO: Could probably figure something out with non-0 offsets. 3090 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3091 return std::max(SignBits, Op0SignBits); 3092 } 3093 3094 case AMDGPUISD::BFE_U32: { 3095 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3096 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3097 } 3098 3099 case AMDGPUISD::CARRY: 3100 case AMDGPUISD::BORROW: 3101 return 31; 3102 3103 default: 3104 return 1; 3105 } 3106 } 3107