1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59                                            const AMDGPUSubtarget &STI)
60     : TargetLowering(TM), Subtarget(&STI) {
61   // Lower floating point store/load to integer store/load to reduce the number
62   // of patterns in tablegen.
63   setOperationAction(ISD::LOAD, MVT::f32, Promote);
64   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65 
66   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
77 
78   setOperationAction(ISD::LOAD, MVT::i64, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
83 
84   setOperationAction(ISD::LOAD, MVT::f64, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
89 
90   // There are no 64-bit extloads. These should be done as a 32-bit extload and
91   // an extension to 64-bit.
92   for (MVT VT : MVT::integer_valuetypes()) {
93     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
94     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
96   }
97 
98   for (MVT VT : MVT::integer_valuetypes()) {
99     if (VT == MVT::i64)
100       continue;
101 
102     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
106 
107     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
111 
112     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_vector_valuetypes()) {
119     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
131   }
132 
133   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
134   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
137 
138   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
139   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
142 
143   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
147 
148   setOperationAction(ISD::STORE, MVT::f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 
151   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 
154   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
155   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 
157   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 
160   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
161   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 
163   setOperationAction(ISD::STORE, MVT::i64, Promote);
164   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
165 
166   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
167   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
168 
169   setOperationAction(ISD::STORE, MVT::f64, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
177 
178   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
179   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
184 
185   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
186   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
187   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
188   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
189 
190   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
191   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
192   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
193   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
194 
195   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
197   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
198   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
199 
200   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
201   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
202 
203   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
204   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
205 
206   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
207   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
208 
209   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
210   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
211 
212 
213   setOperationAction(ISD::Constant, MVT::i32, Legal);
214   setOperationAction(ISD::Constant, MVT::i64, Legal);
215   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
216   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
217 
218   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
219   setOperationAction(ISD::BRIND, MVT::Other, Expand);
220 
221   // This is totally unsupported, just custom lower to produce an error.
222   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
223 
224   // We need to custom lower some of the intrinsics
225   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
226   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
227 
228   // Library functions.  These default to Expand, but we have instructions
229   // for them.
230   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
231   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
232   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
233   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
234   setOperationAction(ISD::FABS,   MVT::f32, Legal);
235   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
236   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
237   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
238   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
239   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
240 
241   setOperationAction(ISD::FROUND, MVT::f32, Custom);
242   setOperationAction(ISD::FROUND, MVT::f64, Custom);
243 
244   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
245   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
246 
247   setOperationAction(ISD::FREM, MVT::f32, Custom);
248   setOperationAction(ISD::FREM, MVT::f64, Custom);
249 
250   // v_mad_f32 does not support denormals according to some sources.
251   if (!Subtarget->hasFP32Denormals())
252     setOperationAction(ISD::FMAD, MVT::f32, Legal);
253 
254   // Expand to fneg + fadd.
255   setOperationAction(ISD::FSUB, MVT::f64, Expand);
256 
257   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
258   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
259   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
260   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
261   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
262   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
263   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
264   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
265   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
266   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
267 
268   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
269     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
270     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
271     setOperationAction(ISD::FRINT, MVT::f64, Custom);
272     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
273   }
274 
275   if (!Subtarget->hasBFI()) {
276     // fcopysign can be done in a single instruction with BFI.
277     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
279   }
280 
281   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
282 
283   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
284   for (MVT VT : ScalarIntVTs) {
285     // These should use [SU]DIVREM, so set them to expand
286     setOperationAction(ISD::SDIV, VT, Expand);
287     setOperationAction(ISD::UDIV, VT, Expand);
288     setOperationAction(ISD::SREM, VT, Expand);
289     setOperationAction(ISD::UREM, VT, Expand);
290 
291     // GPU does not have divrem function for signed or unsigned.
292     setOperationAction(ISD::SDIVREM, VT, Custom);
293     setOperationAction(ISD::UDIVREM, VT, Custom);
294 
295     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
296     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
297     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
298 
299     setOperationAction(ISD::BSWAP, VT, Expand);
300     setOperationAction(ISD::CTTZ, VT, Expand);
301     setOperationAction(ISD::CTLZ, VT, Expand);
302   }
303 
304   if (!Subtarget->hasBCNT(32))
305     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
306 
307   if (!Subtarget->hasBCNT(64))
308     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
309 
310   // The hardware supports 32-bit ROTR, but not ROTL.
311   setOperationAction(ISD::ROTL, MVT::i32, Expand);
312   setOperationAction(ISD::ROTL, MVT::i64, Expand);
313   setOperationAction(ISD::ROTR, MVT::i64, Expand);
314 
315   setOperationAction(ISD::MUL, MVT::i64, Expand);
316   setOperationAction(ISD::MULHU, MVT::i64, Expand);
317   setOperationAction(ISD::MULHS, MVT::i64, Expand);
318   setOperationAction(ISD::UDIV, MVT::i32, Expand);
319   setOperationAction(ISD::UREM, MVT::i32, Expand);
320   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
321   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
322   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
323   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
324   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
325 
326   setOperationAction(ISD::SMIN, MVT::i32, Legal);
327   setOperationAction(ISD::UMIN, MVT::i32, Legal);
328   setOperationAction(ISD::SMAX, MVT::i32, Legal);
329   setOperationAction(ISD::UMAX, MVT::i32, Legal);
330 
331   if (Subtarget->hasFFBH())
332     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
333 
334   if (Subtarget->hasFFBL())
335     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
336 
337   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
338   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
339 
340   // We only really have 32-bit BFE instructions (and 16-bit on VI).
341   //
342   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
343   // effort to match them now. We want this to be false for i64 cases when the
344   // extraction isn't restricted to the upper or lower half. Ideally we would
345   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
346   // span the midpoint are probably relatively rare, so don't worry about them
347   // for now.
348   if (Subtarget->hasBFE())
349     setHasExtractBitsInsn(true);
350 
351   static const MVT::SimpleValueType VectorIntTypes[] = {
352     MVT::v2i32, MVT::v4i32
353   };
354 
355   for (MVT VT : VectorIntTypes) {
356     // Expand the following operations for the current type by default.
357     setOperationAction(ISD::ADD,  VT, Expand);
358     setOperationAction(ISD::AND,  VT, Expand);
359     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
360     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
361     setOperationAction(ISD::MUL,  VT, Expand);
362     setOperationAction(ISD::OR,   VT, Expand);
363     setOperationAction(ISD::SHL,  VT, Expand);
364     setOperationAction(ISD::SRA,  VT, Expand);
365     setOperationAction(ISD::SRL,  VT, Expand);
366     setOperationAction(ISD::ROTL, VT, Expand);
367     setOperationAction(ISD::ROTR, VT, Expand);
368     setOperationAction(ISD::SUB,  VT, Expand);
369     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
370     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
371     setOperationAction(ISD::SDIV, VT, Expand);
372     setOperationAction(ISD::UDIV, VT, Expand);
373     setOperationAction(ISD::SREM, VT, Expand);
374     setOperationAction(ISD::UREM, VT, Expand);
375     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
376     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
377     setOperationAction(ISD::SDIVREM, VT, Custom);
378     setOperationAction(ISD::UDIVREM, VT, Expand);
379     setOperationAction(ISD::ADDC, VT, Expand);
380     setOperationAction(ISD::SUBC, VT, Expand);
381     setOperationAction(ISD::ADDE, VT, Expand);
382     setOperationAction(ISD::SUBE, VT, Expand);
383     setOperationAction(ISD::SELECT, VT, Expand);
384     setOperationAction(ISD::VSELECT, VT, Expand);
385     setOperationAction(ISD::SELECT_CC, VT, Expand);
386     setOperationAction(ISD::XOR,  VT, Expand);
387     setOperationAction(ISD::BSWAP, VT, Expand);
388     setOperationAction(ISD::CTPOP, VT, Expand);
389     setOperationAction(ISD::CTTZ, VT, Expand);
390     setOperationAction(ISD::CTLZ, VT, Expand);
391     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
392   }
393 
394   static const MVT::SimpleValueType FloatVectorTypes[] = {
395     MVT::v2f32, MVT::v4f32
396   };
397 
398   for (MVT VT : FloatVectorTypes) {
399     setOperationAction(ISD::FABS, VT, Expand);
400     setOperationAction(ISD::FMINNUM, VT, Expand);
401     setOperationAction(ISD::FMAXNUM, VT, Expand);
402     setOperationAction(ISD::FADD, VT, Expand);
403     setOperationAction(ISD::FCEIL, VT, Expand);
404     setOperationAction(ISD::FCOS, VT, Expand);
405     setOperationAction(ISD::FDIV, VT, Expand);
406     setOperationAction(ISD::FEXP2, VT, Expand);
407     setOperationAction(ISD::FLOG2, VT, Expand);
408     setOperationAction(ISD::FREM, VT, Expand);
409     setOperationAction(ISD::FPOW, VT, Expand);
410     setOperationAction(ISD::FFLOOR, VT, Expand);
411     setOperationAction(ISD::FTRUNC, VT, Expand);
412     setOperationAction(ISD::FMUL, VT, Expand);
413     setOperationAction(ISD::FMA, VT, Expand);
414     setOperationAction(ISD::FRINT, VT, Expand);
415     setOperationAction(ISD::FNEARBYINT, VT, Expand);
416     setOperationAction(ISD::FSQRT, VT, Expand);
417     setOperationAction(ISD::FSIN, VT, Expand);
418     setOperationAction(ISD::FSUB, VT, Expand);
419     setOperationAction(ISD::FNEG, VT, Expand);
420     setOperationAction(ISD::VSELECT, VT, Expand);
421     setOperationAction(ISD::SELECT_CC, VT, Expand);
422     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
423     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
424   }
425 
426   // This causes using an unrolled select operation rather than expansion with
427   // bit operations. This is in general better, but the alternative using BFI
428   // instructions may be better if the select sources are SGPRs.
429   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
430   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
431 
432   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
433   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
434 
435   setBooleanContents(ZeroOrNegativeOneBooleanContent);
436   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
437 
438   setSchedulingPreference(Sched::RegPressure);
439   setJumpIsExpensive(true);
440 
441   // SI at least has hardware support for floating point exceptions, but no way
442   // of using or handling them is implemented. They are also optional in OpenCL
443   // (Section 7.3)
444   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
445 
446   setSelectIsExpensive(false);
447   PredictableSelectIsExpensive = false;
448 
449   // We want to find all load dependencies for long chains of stores to enable
450   // merging into very wide vectors. The problem is with vectors with > 4
451   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
452   // vectors are a legal type, even though we have to split the loads
453   // usually. When we can more precisely specify load legality per address
454   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
455   // smarter so that they can figure out what to do in 2 iterations without all
456   // N > 4 stores on the same chain.
457   GatherAllAliasesMaxDepth = 16;
458 
459   // FIXME: Need to really handle these.
460   MaxStoresPerMemcpy  = 4096;
461   MaxStoresPerMemmove = 4096;
462   MaxStoresPerMemset  = 4096;
463 
464   setTargetDAGCombine(ISD::BITCAST);
465   setTargetDAGCombine(ISD::SHL);
466   setTargetDAGCombine(ISD::SRA);
467   setTargetDAGCombine(ISD::SRL);
468   setTargetDAGCombine(ISD::MUL);
469   setTargetDAGCombine(ISD::MULHU);
470   setTargetDAGCombine(ISD::MULHS);
471   setTargetDAGCombine(ISD::SELECT);
472   setTargetDAGCombine(ISD::SELECT_CC);
473   setTargetDAGCombine(ISD::STORE);
474   setTargetDAGCombine(ISD::FADD);
475   setTargetDAGCombine(ISD::FSUB);
476 }
477 
478 //===----------------------------------------------------------------------===//
479 // Target Information
480 //===----------------------------------------------------------------------===//
481 
482 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
483   return MVT::i32;
484 }
485 
486 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
487   return true;
488 }
489 
490 // The backend supports 32 and 64 bit floating point immediates.
491 // FIXME: Why are we reporting vectors of FP immediates as legal?
492 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
493   EVT ScalarVT = VT.getScalarType();
494   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
495 }
496 
497 // We don't want to shrink f64 / f32 constants.
498 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
499   EVT ScalarVT = VT.getScalarType();
500   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
501 }
502 
503 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
504                                                  ISD::LoadExtType,
505                                                  EVT NewVT) const {
506 
507   unsigned NewSize = NewVT.getStoreSizeInBits();
508 
509   // If we are reducing to a 32-bit load, this is always better.
510   if (NewSize == 32)
511     return true;
512 
513   EVT OldVT = N->getValueType(0);
514   unsigned OldSize = OldVT.getStoreSizeInBits();
515 
516   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
517   // extloads, so doing one requires using a buffer_load. In cases where we
518   // still couldn't use a scalar load, using the wider load shouldn't really
519   // hurt anything.
520 
521   // If the old size already had to be an extload, there's no harm in continuing
522   // to reduce the width.
523   return (OldSize < 32);
524 }
525 
526 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
527                                                    EVT CastTy) const {
528 
529   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
530 
531   if (LoadTy.getScalarType() == MVT::i32)
532     return false;
533 
534   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
535   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
536 
537   return (LScalarSize < CastScalarSize) ||
538          (CastScalarSize >= 32);
539 }
540 
541 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
542 // profitable with the expansion for 64-bit since it's generally good to
543 // speculate things.
544 // FIXME: These should really have the size as a parameter.
545 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
546   return true;
547 }
548 
549 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
550   return true;
551 }
552 
553 //===---------------------------------------------------------------------===//
554 // Target Properties
555 //===---------------------------------------------------------------------===//
556 
557 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
558   assert(VT.isFloatingPoint());
559   return VT == MVT::f32 || VT == MVT::f64;
560 }
561 
562 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
563   assert(VT.isFloatingPoint());
564   return VT == MVT::f32 || VT == MVT::f64;
565 }
566 
567 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
568                                                          unsigned NumElem,
569                                                          unsigned AS) const {
570   return true;
571 }
572 
573 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
574   // There are few operations which truly have vector input operands. Any vector
575   // operation is going to involve operations on each component, and a
576   // build_vector will be a copy per element, so it always makes sense to use a
577   // build_vector input in place of the extracted element to avoid a copy into a
578   // super register.
579   //
580   // We should probably only do this if all users are extracts only, but this
581   // should be the common case.
582   return true;
583 }
584 
585 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
586   // Truncate is just accessing a subregister.
587   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
588 }
589 
590 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
591   // Truncate is just accessing a subregister.
592   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
593          (Dest->getPrimitiveSizeInBits() % 32 == 0);
594 }
595 
596 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
597   unsigned SrcSize = Src->getScalarSizeInBits();
598   unsigned DestSize = Dest->getScalarSizeInBits();
599 
600   return SrcSize == 32 && DestSize == 64;
601 }
602 
603 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
604   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
605   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
606   // this will enable reducing 64-bit operations the 32-bit, which is always
607   // good.
608   return Src == MVT::i32 && Dest == MVT::i64;
609 }
610 
611 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
612   return isZExtFree(Val.getValueType(), VT2);
613 }
614 
615 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
616   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
617   // limited number of native 64-bit operations. Shrinking an operation to fit
618   // in a single 32-bit register should always be helpful. As currently used,
619   // this is much less general than the name suggests, and is only used in
620   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
621   // not profitable, and may actually be harmful.
622   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
623 }
624 
625 //===---------------------------------------------------------------------===//
626 // TargetLowering Callbacks
627 //===---------------------------------------------------------------------===//
628 
629 /// The SelectionDAGBuilder will automatically promote function arguments
630 /// with illegal types.  However, this does not work for the AMDGPU targets
631 /// since the function arguments are stored in memory as these illegal types.
632 /// In order to handle this properly we need to get the original types sizes
633 /// from the LLVM IR Function and fixup the ISD:InputArg values before
634 /// passing them to AnalyzeFormalArguments()
635 
636 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
637 /// input values across multiple registers.  Each item in the Ins array
638 /// represents a single value that will be stored in regsters.  Ins[x].VT is
639 /// the value type of the value that will be stored in the register, so
640 /// whatever SDNode we lower the argument to needs to be this type.
641 ///
642 /// In order to correctly lower the arguments we need to know the size of each
643 /// argument.  Since Ins[x].VT gives us the size of the register that will
644 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
645 /// for the orignal function argument so that we can deduce the correct memory
646 /// type to use for Ins[x].  In most cases the correct memory type will be
647 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
648 /// we have a kernel argument of type v8i8, this argument will be split into
649 /// 8 parts and each part will be represented by its own item in the Ins array.
650 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
651 /// the argument before it was split.  From this, we deduce that the memory type
652 /// for each individual part is i8.  We pass the memory type as LocVT to the
653 /// calling convention analysis function and the register type (Ins[x].VT) as
654 /// the ValVT.
655 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
656                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
657   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
658     const ISD::InputArg &In = Ins[i];
659     EVT MemVT;
660 
661     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
662 
663     if (!Subtarget->isAmdHsaOS() &&
664         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
665       // The ABI says the caller will extend these values to 32-bits.
666       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
667     } else if (NumRegs == 1) {
668       // This argument is not split, so the IR type is the memory type.
669       assert(!In.Flags.isSplit());
670       if (In.ArgVT.isExtended()) {
671         // We have an extended type, like i24, so we should just use the register type
672         MemVT = In.VT;
673       } else {
674         MemVT = In.ArgVT;
675       }
676     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
677                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
678       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
679       // We have a vector value which has been split into a vector with
680       // the same scalar type, but fewer elements.  This should handle
681       // all the floating-point vector types.
682       MemVT = In.VT;
683     } else if (In.ArgVT.isVector() &&
684                In.ArgVT.getVectorNumElements() == NumRegs) {
685       // This arg has been split so that each element is stored in a separate
686       // register.
687       MemVT = In.ArgVT.getScalarType();
688     } else if (In.ArgVT.isExtended()) {
689       // We have an extended type, like i65.
690       MemVT = In.VT;
691     } else {
692       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
693       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
694       if (In.VT.isInteger()) {
695         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
696       } else if (In.VT.isVector()) {
697         assert(!In.VT.getScalarType().isFloatingPoint());
698         unsigned NumElements = In.VT.getVectorNumElements();
699         assert(MemoryBits % NumElements == 0);
700         // This vector type has been split into another vector type with
701         // a different elements size.
702         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
703                                          MemoryBits / NumElements);
704         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
705       } else {
706         llvm_unreachable("cannot deduce memory type.");
707       }
708     }
709 
710     // Convert one element vectors to scalar.
711     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
712       MemVT = MemVT.getScalarType();
713 
714     if (MemVT.isExtended()) {
715       // This should really only happen if we have vec3 arguments
716       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
717       MemVT = MemVT.getPow2VectorType(State.getContext());
718     }
719 
720     assert(MemVT.isSimple());
721     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
722                     State);
723   }
724 }
725 
726 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
727                               const SmallVectorImpl<ISD::InputArg> &Ins) const {
728   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
729 }
730 
731 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
732                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
733 
734   State.AnalyzeReturn(Outs, RetCC_SI);
735 }
736 
737 SDValue
738 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
739                                   bool isVarArg,
740                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
741                                   const SmallVectorImpl<SDValue> &OutVals,
742                                   const SDLoc &DL, SelectionDAG &DAG) const {
743   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
744 }
745 
746 //===---------------------------------------------------------------------===//
747 // Target specific lowering
748 //===---------------------------------------------------------------------===//
749 
750 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
751                                         SmallVectorImpl<SDValue> &InVals) const {
752   SDValue Callee = CLI.Callee;
753   SelectionDAG &DAG = CLI.DAG;
754 
755   const Function &Fn = *DAG.getMachineFunction().getFunction();
756 
757   StringRef FuncName("<unknown>");
758 
759   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
760     FuncName = G->getSymbol();
761   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
762     FuncName = G->getGlobal()->getName();
763 
764   DiagnosticInfoUnsupported NoCalls(
765       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
766   DAG.getContext()->diagnose(NoCalls);
767 
768   for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
769     InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
770 
771   return DAG.getEntryNode();
772 }
773 
774 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
775                                                       SelectionDAG &DAG) const {
776   const Function &Fn = *DAG.getMachineFunction().getFunction();
777 
778   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
779                                             SDLoc(Op).getDebugLoc());
780   DAG.getContext()->diagnose(NoDynamicAlloca);
781   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
782   return DAG.getMergeValues(Ops, SDLoc());
783 }
784 
785 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
786                                              SelectionDAG &DAG) const {
787   switch (Op.getOpcode()) {
788   default:
789     Op->dump(&DAG);
790     llvm_unreachable("Custom lowering code for this"
791                      "instruction is not implemented yet!");
792     break;
793   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
794   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
795   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
796   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
797   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
798   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
799   case ISD::FREM: return LowerFREM(Op, DAG);
800   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
801   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
802   case ISD::FRINT: return LowerFRINT(Op, DAG);
803   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
804   case ISD::FROUND: return LowerFROUND(Op, DAG);
805   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
806   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
807   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
808   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
809   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
810   case ISD::CTLZ:
811   case ISD::CTLZ_ZERO_UNDEF:
812     return LowerCTLZ(Op, DAG);
813   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
814   }
815   return Op;
816 }
817 
818 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
819                                               SmallVectorImpl<SDValue> &Results,
820                                               SelectionDAG &DAG) const {
821   switch (N->getOpcode()) {
822   case ISD::SIGN_EXTEND_INREG:
823     // Different parts of legalization seem to interpret which type of
824     // sign_extend_inreg is the one to check for custom lowering. The extended
825     // from type is what really matters, but some places check for custom
826     // lowering of the result type. This results in trying to use
827     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
828     // nothing here and let the illegal result integer be handled normally.
829     return;
830   default:
831     return;
832   }
833 }
834 
835 static bool hasDefinedInitializer(const GlobalValue *GV) {
836   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
837   if (!GVar || !GVar->hasInitializer())
838     return false;
839 
840   return !isa<UndefValue>(GVar->getInitializer());
841 }
842 
843 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
844                                                  SDValue Op,
845                                                  SelectionDAG &DAG) const {
846 
847   const DataLayout &DL = DAG.getDataLayout();
848   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
849   const GlobalValue *GV = G->getGlobal();
850 
851   switch (G->getAddressSpace()) {
852   case AMDGPUAS::LOCAL_ADDRESS: {
853     // XXX: What does the value of G->getOffset() mean?
854     assert(G->getOffset() == 0 &&
855          "Do not know what to do with an non-zero offset");
856 
857     // TODO: We could emit code to handle the initialization somewhere.
858     if (hasDefinedInitializer(GV))
859       break;
860 
861     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
862     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
863   }
864   }
865 
866   const Function &Fn = *DAG.getMachineFunction().getFunction();
867   DiagnosticInfoUnsupported BadInit(
868       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
869   DAG.getContext()->diagnose(BadInit);
870   return SDValue();
871 }
872 
873 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
874                                                   SelectionDAG &DAG) const {
875   SmallVector<SDValue, 8> Args;
876 
877   for (const SDUse &U : Op->ops())
878     DAG.ExtractVectorElements(U.get(), Args);
879 
880   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
881 }
882 
883 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
884                                                      SelectionDAG &DAG) const {
885 
886   SmallVector<SDValue, 8> Args;
887   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
888   EVT VT = Op.getValueType();
889   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
890                             VT.getVectorNumElements());
891 
892   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
893 }
894 
895 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
896     SelectionDAG &DAG) const {
897   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
898   SDLoc DL(Op);
899   EVT VT = Op.getValueType();
900 
901   switch (IntrinsicID) {
902     default: return Op;
903     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
904       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
905                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
906 
907     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
908       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
909                          Op.getOperand(1),
910                          Op.getOperand(2),
911                          Op.getOperand(3));
912 
913     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
914       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
915                          Op.getOperand(1),
916                          Op.getOperand(2),
917                          Op.getOperand(3));
918   }
919 }
920 
921 /// \brief Generate Min/Max node
922 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
923                                                    SDValue LHS, SDValue RHS,
924                                                    SDValue True, SDValue False,
925                                                    SDValue CC,
926                                                    DAGCombinerInfo &DCI) const {
927   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
928     return SDValue();
929 
930   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
931     return SDValue();
932 
933   SelectionDAG &DAG = DCI.DAG;
934   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
935   switch (CCOpcode) {
936   case ISD::SETOEQ:
937   case ISD::SETONE:
938   case ISD::SETUNE:
939   case ISD::SETNE:
940   case ISD::SETUEQ:
941   case ISD::SETEQ:
942   case ISD::SETFALSE:
943   case ISD::SETFALSE2:
944   case ISD::SETTRUE:
945   case ISD::SETTRUE2:
946   case ISD::SETUO:
947   case ISD::SETO:
948     break;
949   case ISD::SETULE:
950   case ISD::SETULT: {
951     if (LHS == True)
952       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
953     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
954   }
955   case ISD::SETOLE:
956   case ISD::SETOLT:
957   case ISD::SETLE:
958   case ISD::SETLT: {
959     // Ordered. Assume ordered for undefined.
960 
961     // Only do this after legalization to avoid interfering with other combines
962     // which might occur.
963     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
964         !DCI.isCalledByLegalizer())
965       return SDValue();
966 
967     // We need to permute the operands to get the correct NaN behavior. The
968     // selected operand is the second one based on the failing compare with NaN,
969     // so permute it based on the compare type the hardware uses.
970     if (LHS == True)
971       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
972     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
973   }
974   case ISD::SETUGE:
975   case ISD::SETUGT: {
976     if (LHS == True)
977       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
978     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
979   }
980   case ISD::SETGT:
981   case ISD::SETGE:
982   case ISD::SETOGE:
983   case ISD::SETOGT: {
984     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
985         !DCI.isCalledByLegalizer())
986       return SDValue();
987 
988     if (LHS == True)
989       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
990     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
991   }
992   case ISD::SETCC_INVALID:
993     llvm_unreachable("Invalid setcc condcode!");
994   }
995   return SDValue();
996 }
997 
998 std::pair<SDValue, SDValue>
999 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1000   SDLoc SL(Op);
1001 
1002   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1003 
1004   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1005   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1006 
1007   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1008   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1009 
1010   return std::make_pair(Lo, Hi);
1011 }
1012 
1013 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1014   SDLoc SL(Op);
1015 
1016   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1017   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1018   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1019 }
1020 
1021 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1022   SDLoc SL(Op);
1023 
1024   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1025   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1026   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1027 }
1028 
1029 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1030                                               SelectionDAG &DAG) const {
1031   LoadSDNode *Load = cast<LoadSDNode>(Op);
1032   EVT VT = Op.getValueType();
1033 
1034 
1035   // If this is a 2 element vector, we really want to scalarize and not create
1036   // weird 1 element vectors.
1037   if (VT.getVectorNumElements() == 2)
1038     return scalarizeVectorLoad(Load, DAG);
1039 
1040   SDValue BasePtr = Load->getBasePtr();
1041   EVT PtrVT = BasePtr.getValueType();
1042   EVT MemVT = Load->getMemoryVT();
1043   SDLoc SL(Op);
1044 
1045   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1046 
1047   EVT LoVT, HiVT;
1048   EVT LoMemVT, HiMemVT;
1049   SDValue Lo, Hi;
1050 
1051   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1052   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1053   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1054 
1055   unsigned Size = LoMemVT.getStoreSize();
1056   unsigned BaseAlign = Load->getAlignment();
1057   unsigned HiAlign = MinAlign(BaseAlign, Size);
1058 
1059   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1060                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1061                                   BaseAlign, Load->getMemOperand()->getFlags());
1062   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1063                               DAG.getConstant(Size, SL, PtrVT));
1064   SDValue HiLoad =
1065       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1066                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1067                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1068 
1069   SDValue Ops[] = {
1070     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1071     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1072                 LoLoad.getValue(1), HiLoad.getValue(1))
1073   };
1074 
1075   return DAG.getMergeValues(Ops, SL);
1076 }
1077 
1078 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1079                                                SelectionDAG &DAG) const {
1080   StoreSDNode *Store = cast<StoreSDNode>(Op);
1081   SDValue Val = Store->getValue();
1082   EVT VT = Val.getValueType();
1083 
1084   // If this is a 2 element vector, we really want to scalarize and not create
1085   // weird 1 element vectors.
1086   if (VT.getVectorNumElements() == 2)
1087     return scalarizeVectorStore(Store, DAG);
1088 
1089   EVT MemVT = Store->getMemoryVT();
1090   SDValue Chain = Store->getChain();
1091   SDValue BasePtr = Store->getBasePtr();
1092   SDLoc SL(Op);
1093 
1094   EVT LoVT, HiVT;
1095   EVT LoMemVT, HiMemVT;
1096   SDValue Lo, Hi;
1097 
1098   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1099   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1100   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1101 
1102   EVT PtrVT = BasePtr.getValueType();
1103   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1104                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1105                                               PtrVT));
1106 
1107   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1108   unsigned BaseAlign = Store->getAlignment();
1109   unsigned Size = LoMemVT.getStoreSize();
1110   unsigned HiAlign = MinAlign(BaseAlign, Size);
1111 
1112   SDValue LoStore =
1113       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1114                         Store->getMemOperand()->getFlags());
1115   SDValue HiStore =
1116       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1117                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1118 
1119   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1120 }
1121 
1122 // This is a shortcut for integer division because we have fast i32<->f32
1123 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1124 // float is enough to accurately represent up to a 24-bit signed integer.
1125 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1126                                             bool Sign) const {
1127   SDLoc DL(Op);
1128   EVT VT = Op.getValueType();
1129   SDValue LHS = Op.getOperand(0);
1130   SDValue RHS = Op.getOperand(1);
1131   MVT IntVT = MVT::i32;
1132   MVT FltVT = MVT::f32;
1133 
1134   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1135   if (LHSSignBits < 9)
1136     return SDValue();
1137 
1138   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1139   if (RHSSignBits < 9)
1140     return SDValue();
1141 
1142   unsigned BitSize = VT.getSizeInBits();
1143   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1144   unsigned DivBits = BitSize - SignBits;
1145   if (Sign)
1146     ++DivBits;
1147 
1148   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1149   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1150 
1151   SDValue jq = DAG.getConstant(1, DL, IntVT);
1152 
1153   if (Sign) {
1154     // char|short jq = ia ^ ib;
1155     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1156 
1157     // jq = jq >> (bitsize - 2)
1158     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1159                      DAG.getConstant(BitSize - 2, DL, VT));
1160 
1161     // jq = jq | 0x1
1162     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1163   }
1164 
1165   // int ia = (int)LHS;
1166   SDValue ia = LHS;
1167 
1168   // int ib, (int)RHS;
1169   SDValue ib = RHS;
1170 
1171   // float fa = (float)ia;
1172   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1173 
1174   // float fb = (float)ib;
1175   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1176 
1177   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1178                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1179 
1180   // fq = trunc(fq);
1181   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1182 
1183   // float fqneg = -fq;
1184   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1185 
1186   // float fr = mad(fqneg, fb, fa);
1187   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1188 
1189   // int iq = (int)fq;
1190   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1191 
1192   // fr = fabs(fr);
1193   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1194 
1195   // fb = fabs(fb);
1196   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1197 
1198   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1199 
1200   // int cv = fr >= fb;
1201   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1202 
1203   // jq = (cv ? jq : 0);
1204   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1205 
1206   // dst = iq + jq;
1207   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1208 
1209   // Rem needs compensation, it's easier to recompute it
1210   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1211   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1212 
1213   // Truncate to number of bits this divide really is.
1214   if (Sign) {
1215     SDValue InRegSize
1216       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1217     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1218     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1219   } else {
1220     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1221     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1222     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1223   }
1224 
1225   return DAG.getMergeValues({ Div, Rem }, DL);
1226 }
1227 
1228 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1229                                       SelectionDAG &DAG,
1230                                       SmallVectorImpl<SDValue> &Results) const {
1231   assert(Op.getValueType() == MVT::i64);
1232 
1233   SDLoc DL(Op);
1234   EVT VT = Op.getValueType();
1235   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1236 
1237   SDValue one = DAG.getConstant(1, DL, HalfVT);
1238   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1239 
1240   //HiLo split
1241   SDValue LHS = Op.getOperand(0);
1242   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1243   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1244 
1245   SDValue RHS = Op.getOperand(1);
1246   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1247   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1248 
1249   if (VT == MVT::i64 &&
1250     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1251     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1252 
1253     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1254                               LHS_Lo, RHS_Lo);
1255 
1256     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1257     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1258 
1259     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1260     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1261     return;
1262   }
1263 
1264   // Get Speculative values
1265   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1266   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1267 
1268   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1269   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1270   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1271 
1272   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1273   SDValue DIV_Lo = zero;
1274 
1275   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1276 
1277   for (unsigned i = 0; i < halfBitWidth; ++i) {
1278     const unsigned bitPos = halfBitWidth - i - 1;
1279     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1280     // Get value of high bit
1281     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1282     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1283     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1284 
1285     // Shift
1286     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1287     // Add LHS high bit
1288     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1289 
1290     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1291     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1292 
1293     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1294 
1295     // Update REM
1296     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1297     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1298   }
1299 
1300   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1301   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1302   Results.push_back(DIV);
1303   Results.push_back(REM);
1304 }
1305 
1306 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1307                                            SelectionDAG &DAG) const {
1308   SDLoc DL(Op);
1309   EVT VT = Op.getValueType();
1310 
1311   if (VT == MVT::i64) {
1312     SmallVector<SDValue, 2> Results;
1313     LowerUDIVREM64(Op, DAG, Results);
1314     return DAG.getMergeValues(Results, DL);
1315   }
1316 
1317   if (VT == MVT::i32) {
1318     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1319       return Res;
1320   }
1321 
1322   SDValue Num = Op.getOperand(0);
1323   SDValue Den = Op.getOperand(1);
1324 
1325   // RCP =  URECIP(Den) = 2^32 / Den + e
1326   // e is rounding error.
1327   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1328 
1329   // RCP_LO = mul(RCP, Den) */
1330   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1331 
1332   // RCP_HI = mulhu (RCP, Den) */
1333   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1334 
1335   // NEG_RCP_LO = -RCP_LO
1336   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1337                                                      RCP_LO);
1338 
1339   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1340   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1341                                            NEG_RCP_LO, RCP_LO,
1342                                            ISD::SETEQ);
1343   // Calculate the rounding error from the URECIP instruction
1344   // E = mulhu(ABS_RCP_LO, RCP)
1345   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1346 
1347   // RCP_A_E = RCP + E
1348   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1349 
1350   // RCP_S_E = RCP - E
1351   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1352 
1353   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1354   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1355                                      RCP_A_E, RCP_S_E,
1356                                      ISD::SETEQ);
1357   // Quotient = mulhu(Tmp0, Num)
1358   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1359 
1360   // Num_S_Remainder = Quotient * Den
1361   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1362 
1363   // Remainder = Num - Num_S_Remainder
1364   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1365 
1366   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1367   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1368                                                  DAG.getConstant(-1, DL, VT),
1369                                                  DAG.getConstant(0, DL, VT),
1370                                                  ISD::SETUGE);
1371   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1372   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1373                                                   Num_S_Remainder,
1374                                                   DAG.getConstant(-1, DL, VT),
1375                                                   DAG.getConstant(0, DL, VT),
1376                                                   ISD::SETUGE);
1377   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1378   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1379                                                Remainder_GE_Zero);
1380 
1381   // Calculate Division result:
1382 
1383   // Quotient_A_One = Quotient + 1
1384   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1385                                        DAG.getConstant(1, DL, VT));
1386 
1387   // Quotient_S_One = Quotient - 1
1388   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1389                                        DAG.getConstant(1, DL, VT));
1390 
1391   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1392   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1393                                      Quotient, Quotient_A_One, ISD::SETEQ);
1394 
1395   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1396   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1397                             Quotient_S_One, Div, ISD::SETEQ);
1398 
1399   // Calculate Rem result:
1400 
1401   // Remainder_S_Den = Remainder - Den
1402   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1403 
1404   // Remainder_A_Den = Remainder + Den
1405   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1406 
1407   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1408   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1409                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1410 
1411   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1412   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1413                             Remainder_A_Den, Rem, ISD::SETEQ);
1414   SDValue Ops[2] = {
1415     Div,
1416     Rem
1417   };
1418   return DAG.getMergeValues(Ops, DL);
1419 }
1420 
1421 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1422                                            SelectionDAG &DAG) const {
1423   SDLoc DL(Op);
1424   EVT VT = Op.getValueType();
1425 
1426   SDValue LHS = Op.getOperand(0);
1427   SDValue RHS = Op.getOperand(1);
1428 
1429   SDValue Zero = DAG.getConstant(0, DL, VT);
1430   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1431 
1432   if (VT == MVT::i32) {
1433     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1434       return Res;
1435   }
1436 
1437   if (VT == MVT::i64 &&
1438       DAG.ComputeNumSignBits(LHS) > 32 &&
1439       DAG.ComputeNumSignBits(RHS) > 32) {
1440     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1441 
1442     //HiLo split
1443     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1444     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1445     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1446                                  LHS_Lo, RHS_Lo);
1447     SDValue Res[2] = {
1448       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1449       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1450     };
1451     return DAG.getMergeValues(Res, DL);
1452   }
1453 
1454   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1455   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1456   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1457   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1458 
1459   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1460   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1461 
1462   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1463   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1464 
1465   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1466   SDValue Rem = Div.getValue(1);
1467 
1468   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1469   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1470 
1471   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1472   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1473 
1474   SDValue Res[2] = {
1475     Div,
1476     Rem
1477   };
1478   return DAG.getMergeValues(Res, DL);
1479 }
1480 
1481 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1482 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1483   SDLoc SL(Op);
1484   EVT VT = Op.getValueType();
1485   SDValue X = Op.getOperand(0);
1486   SDValue Y = Op.getOperand(1);
1487 
1488   // TODO: Should this propagate fast-math-flags?
1489 
1490   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1491   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1492   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1493 
1494   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1495 }
1496 
1497 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1498   SDLoc SL(Op);
1499   SDValue Src = Op.getOperand(0);
1500 
1501   // result = trunc(src)
1502   // if (src > 0.0 && src != result)
1503   //   result += 1.0
1504 
1505   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1506 
1507   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1508   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1509 
1510   EVT SetCCVT =
1511       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1512 
1513   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1514   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1515   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1516 
1517   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1518   // TODO: Should this propagate fast-math-flags?
1519   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1520 }
1521 
1522 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1523                                   SelectionDAG &DAG) {
1524   const unsigned FractBits = 52;
1525   const unsigned ExpBits = 11;
1526 
1527   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1528                                 Hi,
1529                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1530                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1531   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1532                             DAG.getConstant(1023, SL, MVT::i32));
1533 
1534   return Exp;
1535 }
1536 
1537 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1538   SDLoc SL(Op);
1539   SDValue Src = Op.getOperand(0);
1540 
1541   assert(Op.getValueType() == MVT::f64);
1542 
1543   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1544   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1545 
1546   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1547 
1548   // Extract the upper half, since this is where we will find the sign and
1549   // exponent.
1550   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1551 
1552   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1553 
1554   const unsigned FractBits = 52;
1555 
1556   // Extract the sign bit.
1557   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1558   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1559 
1560   // Extend back to to 64-bits.
1561   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1562   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1563 
1564   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1565   const SDValue FractMask
1566     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1567 
1568   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1569   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1570   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1571 
1572   EVT SetCCVT =
1573       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1574 
1575   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1576 
1577   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1578   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1579 
1580   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1581   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1582 
1583   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1584 }
1585 
1586 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1587   SDLoc SL(Op);
1588   SDValue Src = Op.getOperand(0);
1589 
1590   assert(Op.getValueType() == MVT::f64);
1591 
1592   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1593   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1594   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1595 
1596   // TODO: Should this propagate fast-math-flags?
1597 
1598   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1599   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1600 
1601   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1602 
1603   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1604   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1605 
1606   EVT SetCCVT =
1607       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1608   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1609 
1610   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1611 }
1612 
1613 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1614   // FNEARBYINT and FRINT are the same, except in their handling of FP
1615   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1616   // rint, so just treat them as equivalent.
1617   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1618 }
1619 
1620 // XXX - May require not supporting f32 denormals?
1621 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1622   SDLoc SL(Op);
1623   SDValue X = Op.getOperand(0);
1624 
1625   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1626 
1627   // TODO: Should this propagate fast-math-flags?
1628 
1629   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1630 
1631   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1632 
1633   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1634   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1635   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1636 
1637   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1638 
1639   EVT SetCCVT =
1640       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1641 
1642   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1643 
1644   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1645 
1646   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1647 }
1648 
1649 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1650   SDLoc SL(Op);
1651   SDValue X = Op.getOperand(0);
1652 
1653   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1654 
1655   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1656   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1657   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1658   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1659   EVT SetCCVT =
1660       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1661 
1662   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1663 
1664   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1665 
1666   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1667 
1668   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1669                                        MVT::i64);
1670 
1671   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1672   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1673                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1674                                           MVT::i64),
1675                           Exp);
1676 
1677   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1678   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1679                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1680                               ISD::SETNE);
1681 
1682   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1683                              D, DAG.getConstant(0, SL, MVT::i64));
1684   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1685 
1686   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1687   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1688 
1689   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1690   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1691   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1692 
1693   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1694                             ExpEqNegOne,
1695                             DAG.getConstantFP(1.0, SL, MVT::f64),
1696                             DAG.getConstantFP(0.0, SL, MVT::f64));
1697 
1698   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1699 
1700   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1701   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1702 
1703   return K;
1704 }
1705 
1706 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1707   EVT VT = Op.getValueType();
1708 
1709   if (VT == MVT::f32)
1710     return LowerFROUND32(Op, DAG);
1711 
1712   if (VT == MVT::f64)
1713     return LowerFROUND64(Op, DAG);
1714 
1715   llvm_unreachable("unhandled type");
1716 }
1717 
1718 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1719   SDLoc SL(Op);
1720   SDValue Src = Op.getOperand(0);
1721 
1722   // result = trunc(src);
1723   // if (src < 0.0 && src != result)
1724   //   result += -1.0.
1725 
1726   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1727 
1728   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1729   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1730 
1731   EVT SetCCVT =
1732       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1733 
1734   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1735   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1736   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1737 
1738   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1739   // TODO: Should this propagate fast-math-flags?
1740   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1741 }
1742 
1743 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1744   SDLoc SL(Op);
1745   SDValue Src = Op.getOperand(0);
1746   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1747 
1748   if (ZeroUndef && Src.getValueType() == MVT::i32)
1749     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1750 
1751   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1752 
1753   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1754   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1755 
1756   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1757   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1758 
1759   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1760                                    *DAG.getContext(), MVT::i32);
1761 
1762   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1763 
1764   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1765   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1766 
1767   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1768   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1769 
1770   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1771   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1772 
1773   if (!ZeroUndef) {
1774     // Test if the full 64-bit input is zero.
1775 
1776     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1777     // which we probably don't want.
1778     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1779     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1780 
1781     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1782     // with the same cycles, otherwise it is slower.
1783     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1784     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1785 
1786     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1787 
1788     // The instruction returns -1 for 0 input, but the defined intrinsic
1789     // behavior is to return the number of bits.
1790     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1791                           SrcIsZero, Bits32, NewCtlz);
1792   }
1793 
1794   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1795 }
1796 
1797 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1798                                                bool Signed) const {
1799   // Unsigned
1800   // cul2f(ulong u)
1801   //{
1802   //  uint lz = clz(u);
1803   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1804   //  u = (u << lz) & 0x7fffffffffffffffUL;
1805   //  ulong t = u & 0xffffffffffUL;
1806   //  uint v = (e << 23) | (uint)(u >> 40);
1807   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1808   //  return as_float(v + r);
1809   //}
1810   // Signed
1811   // cl2f(long l)
1812   //{
1813   //  long s = l >> 63;
1814   //  float r = cul2f((l + s) ^ s);
1815   //  return s ? -r : r;
1816   //}
1817 
1818   SDLoc SL(Op);
1819   SDValue Src = Op.getOperand(0);
1820   SDValue L = Src;
1821 
1822   SDValue S;
1823   if (Signed) {
1824     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1825     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1826 
1827     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1828     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1829   }
1830 
1831   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1832                                    *DAG.getContext(), MVT::f32);
1833 
1834 
1835   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1836   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1837   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1838   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1839 
1840   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1841   SDValue E = DAG.getSelect(SL, MVT::i32,
1842     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1843     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1844     ZeroI32);
1845 
1846   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1847     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1848     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1849 
1850   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1851                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1852 
1853   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1854                              U, DAG.getConstant(40, SL, MVT::i64));
1855 
1856   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1857     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1858     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1859 
1860   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1861   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1862   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1863 
1864   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1865 
1866   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1867 
1868   SDValue R = DAG.getSelect(SL, MVT::i32,
1869     RCmp,
1870     One,
1871     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1872   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1873   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1874 
1875   if (!Signed)
1876     return R;
1877 
1878   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1879   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1880 }
1881 
1882 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1883                                                bool Signed) const {
1884   SDLoc SL(Op);
1885   SDValue Src = Op.getOperand(0);
1886 
1887   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1888 
1889   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1890                            DAG.getConstant(0, SL, MVT::i32));
1891   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1892                            DAG.getConstant(1, SL, MVT::i32));
1893 
1894   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
1895                               SL, MVT::f64, Hi);
1896 
1897   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
1898 
1899   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
1900                               DAG.getConstant(32, SL, MVT::i32));
1901   // TODO: Should this propagate fast-math-flags?
1902   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
1903 }
1904 
1905 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1906                                                SelectionDAG &DAG) const {
1907   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1908          "operation should be legal");
1909 
1910   EVT DestVT = Op.getValueType();
1911 
1912   if (DestVT == MVT::f32)
1913     return LowerINT_TO_FP32(Op, DAG, false);
1914 
1915   assert(DestVT == MVT::f64);
1916   return LowerINT_TO_FP64(Op, DAG, false);
1917 }
1918 
1919 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
1920                                               SelectionDAG &DAG) const {
1921   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1922          "operation should be legal");
1923 
1924   EVT DestVT = Op.getValueType();
1925   if (DestVT == MVT::f32)
1926     return LowerINT_TO_FP32(Op, DAG, true);
1927 
1928   assert(DestVT == MVT::f64);
1929   return LowerINT_TO_FP64(Op, DAG, true);
1930 }
1931 
1932 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
1933                                                bool Signed) const {
1934   SDLoc SL(Op);
1935 
1936   SDValue Src = Op.getOperand(0);
1937 
1938   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1939 
1940   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
1941                                  MVT::f64);
1942   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
1943                                  MVT::f64);
1944   // TODO: Should this propagate fast-math-flags?
1945   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
1946 
1947   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
1948 
1949 
1950   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
1951 
1952   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
1953                            MVT::i32, FloorMul);
1954   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
1955 
1956   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
1957 
1958   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
1959 }
1960 
1961 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
1962                                               SelectionDAG &DAG) const {
1963   SDValue Src = Op.getOperand(0);
1964 
1965   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1966     return LowerFP64_TO_INT(Op, DAG, true);
1967 
1968   return SDValue();
1969 }
1970 
1971 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
1972                                               SelectionDAG &DAG) const {
1973   SDValue Src = Op.getOperand(0);
1974 
1975   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1976     return LowerFP64_TO_INT(Op, DAG, false);
1977 
1978   return SDValue();
1979 }
1980 
1981 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1982                                                      SelectionDAG &DAG) const {
1983   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1984   MVT VT = Op.getSimpleValueType();
1985   MVT ScalarVT = VT.getScalarType();
1986 
1987   assert(VT.isVector());
1988 
1989   SDValue Src = Op.getOperand(0);
1990   SDLoc DL(Op);
1991 
1992   // TODO: Don't scalarize on Evergreen?
1993   unsigned NElts = VT.getVectorNumElements();
1994   SmallVector<SDValue, 8> Args;
1995   DAG.ExtractVectorElements(Src, Args, 0, NElts);
1996 
1997   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
1998   for (unsigned I = 0; I < NElts; ++I)
1999     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2000 
2001   return DAG.getBuildVector(VT, DL, Args);
2002 }
2003 
2004 //===----------------------------------------------------------------------===//
2005 // Custom DAG optimizations
2006 //===----------------------------------------------------------------------===//
2007 
2008 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2009   APInt KnownZero, KnownOne;
2010   EVT VT = Op.getValueType();
2011   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2012 
2013   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2014 }
2015 
2016 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2017   EVT VT = Op.getValueType();
2018 
2019   // In order for this to be a signed 24-bit value, bit 23, must
2020   // be a sign bit.
2021   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2022                                      // as unsigned 24-bit values.
2023          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2024 }
2025 
2026 static bool simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2027 
2028   SelectionDAG &DAG = DCI.DAG;
2029   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2030   EVT VT = Op.getValueType();
2031 
2032   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2033   APInt KnownZero, KnownOne;
2034   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2035   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) {
2036     DCI.CommitTargetLoweringOpt(TLO);
2037     return true;
2038   }
2039 
2040   return false;
2041 }
2042 
2043 template <typename IntTy>
2044 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2045                                uint32_t Width, const SDLoc &DL) {
2046   if (Width + Offset < 32) {
2047     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2048     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2049     return DAG.getConstant(Result, DL, MVT::i32);
2050   }
2051 
2052   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2053 }
2054 
2055 static bool hasVolatileUser(SDNode *Val) {
2056   for (SDNode *U : Val->uses()) {
2057     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2058       if (M->isVolatile())
2059         return true;
2060     }
2061   }
2062 
2063   return false;
2064 }
2065 
2066 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2067   // i32 vectors are the canonical memory type.
2068   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2069     return false;
2070 
2071   if (!VT.isByteSized())
2072     return false;
2073 
2074   unsigned Size = VT.getStoreSize();
2075 
2076   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2077     return false;
2078 
2079   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2080     return false;
2081 
2082   return true;
2083 }
2084 
2085 // Replace load of an illegal type with a store of a bitcast to a friendlier
2086 // type.
2087 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2088                                                  DAGCombinerInfo &DCI) const {
2089   if (!DCI.isBeforeLegalize())
2090     return SDValue();
2091 
2092   LoadSDNode *LN = cast<LoadSDNode>(N);
2093   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2094     return SDValue();
2095 
2096   SDLoc SL(N);
2097   SelectionDAG &DAG = DCI.DAG;
2098   EVT VT = LN->getMemoryVT();
2099 
2100   unsigned Size = VT.getStoreSize();
2101   unsigned Align = LN->getAlignment();
2102   if (Align < Size && isTypeLegal(VT)) {
2103     bool IsFast;
2104     unsigned AS = LN->getAddressSpace();
2105 
2106     // Expand unaligned loads earlier than legalization. Due to visitation order
2107     // problems during legalization, the emitted instructions to pack and unpack
2108     // the bytes again are not eliminated in the case of an unaligned copy.
2109     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2110       if (VT.isVector())
2111         return scalarizeVectorLoad(LN, DAG);
2112 
2113       SDValue Ops[2];
2114       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2115       return DAG.getMergeValues(Ops, SDLoc(N));
2116     }
2117 
2118     if (!IsFast)
2119       return SDValue();
2120   }
2121 
2122   if (!shouldCombineMemoryType(VT))
2123     return SDValue();
2124 
2125   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2126 
2127   SDValue NewLoad
2128     = DAG.getLoad(NewVT, SL, LN->getChain(),
2129                   LN->getBasePtr(), LN->getMemOperand());
2130 
2131   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2132   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2133   return SDValue(N, 0);
2134 }
2135 
2136 // Replace store of an illegal type with a store of a bitcast to a friendlier
2137 // type.
2138 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2139                                                   DAGCombinerInfo &DCI) const {
2140   if (!DCI.isBeforeLegalize())
2141     return SDValue();
2142 
2143   StoreSDNode *SN = cast<StoreSDNode>(N);
2144   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2145     return SDValue();
2146 
2147   EVT VT = SN->getMemoryVT();
2148   unsigned Size = VT.getStoreSize();
2149 
2150   SDLoc SL(N);
2151   SelectionDAG &DAG = DCI.DAG;
2152   unsigned Align = SN->getAlignment();
2153   if (Align < Size && isTypeLegal(VT)) {
2154     bool IsFast;
2155     unsigned AS = SN->getAddressSpace();
2156 
2157     // Expand unaligned stores earlier than legalization. Due to visitation
2158     // order problems during legalization, the emitted instructions to pack and
2159     // unpack the bytes again are not eliminated in the case of an unaligned
2160     // copy.
2161     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2162       if (VT.isVector())
2163         return scalarizeVectorStore(SN, DAG);
2164 
2165       return expandUnalignedStore(SN, DAG);
2166     }
2167 
2168     if (!IsFast)
2169       return SDValue();
2170   }
2171 
2172   if (!shouldCombineMemoryType(VT))
2173     return SDValue();
2174 
2175   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2176   SDValue Val = SN->getValue();
2177 
2178   //DCI.AddToWorklist(Val.getNode());
2179 
2180   bool OtherUses = !Val.hasOneUse();
2181   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2182   if (OtherUses) {
2183     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2184     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2185   }
2186 
2187   return DAG.getStore(SN->getChain(), SL, CastVal,
2188                       SN->getBasePtr(), SN->getMemOperand());
2189 }
2190 
2191 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2192 /// binary operation \p Opc to it with the corresponding constant operands.
2193 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2194   DAGCombinerInfo &DCI, const SDLoc &SL,
2195   unsigned Opc, SDValue LHS,
2196   uint32_t ValLo, uint32_t ValHi) const {
2197   SelectionDAG &DAG = DCI.DAG;
2198   SDValue Lo, Hi;
2199   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2200 
2201   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2202   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2203 
2204   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2205   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2206 
2207   // Re-visit the ands. It's possible we eliminated one of them and it could
2208   // simplify the vector.
2209   DCI.AddToWorklist(Lo.getNode());
2210   DCI.AddToWorklist(Hi.getNode());
2211 
2212   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2213   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2214 }
2215 
2216 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2217                                                 DAGCombinerInfo &DCI) const {
2218   if (N->getValueType(0) != MVT::i64)
2219     return SDValue();
2220 
2221   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2222 
2223   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2224   // common case, splitting this into a move and a 32-bit shift is faster and
2225   // the same code size.
2226   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2227   if (!RHS)
2228     return SDValue();
2229 
2230   unsigned RHSVal = RHS->getZExtValue();
2231   if (RHSVal < 32)
2232     return SDValue();
2233 
2234   SDValue LHS = N->getOperand(0);
2235 
2236   SDLoc SL(N);
2237   SelectionDAG &DAG = DCI.DAG;
2238 
2239   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2240 
2241   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2242   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2243 
2244   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2245 
2246   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2247   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2248 }
2249 
2250 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2251                                                 DAGCombinerInfo &DCI) const {
2252   if (N->getValueType(0) != MVT::i64)
2253     return SDValue();
2254 
2255   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2256   if (!RHS)
2257     return SDValue();
2258 
2259   SelectionDAG &DAG = DCI.DAG;
2260   SDLoc SL(N);
2261   unsigned RHSVal = RHS->getZExtValue();
2262 
2263   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2264   if (RHSVal == 32) {
2265     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2266     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2267                                    DAG.getConstant(31, SL, MVT::i32));
2268 
2269     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2270     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2271   }
2272 
2273   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2274   if (RHSVal == 63) {
2275     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2276     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2277                                    DAG.getConstant(31, SL, MVT::i32));
2278     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2279     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2280   }
2281 
2282   return SDValue();
2283 }
2284 
2285 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2286                                                 DAGCombinerInfo &DCI) const {
2287   if (N->getValueType(0) != MVT::i64)
2288     return SDValue();
2289 
2290   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2291   if (!RHS)
2292     return SDValue();
2293 
2294   unsigned ShiftAmt = RHS->getZExtValue();
2295   if (ShiftAmt < 32)
2296     return SDValue();
2297 
2298   // srl i64:x, C for C >= 32
2299   // =>
2300   //   build_pair (srl hi_32(x), C - 32), 0
2301 
2302   SelectionDAG &DAG = DCI.DAG;
2303   SDLoc SL(N);
2304 
2305   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2306   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2307 
2308   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2309   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2310                            VecOp, One);
2311 
2312   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2313   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2314 
2315   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2316 
2317   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2318 }
2319 
2320 // We need to specifically handle i64 mul here to avoid unnecessary conversion
2321 // instructions. If we only match on the legalized i64 mul expansion,
2322 // SimplifyDemandedBits will be unable to remove them because there will be
2323 // multiple uses due to the separate mul + mulh[su].
2324 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
2325                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
2326   if (Size <= 32) {
2327     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2328     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
2329   }
2330 
2331   // Because we want to eliminate extension instructions before the
2332   // operation, we need to create a single user here (i.e. not the separate
2333   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
2334 
2335   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
2336 
2337   SDValue Mul = DAG.getNode(MulOpc, SL,
2338                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
2339 
2340   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
2341                      Mul.getValue(0), Mul.getValue(1));
2342 }
2343 
2344 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2345                                                 DAGCombinerInfo &DCI) const {
2346   EVT VT = N->getValueType(0);
2347 
2348   unsigned Size = VT.getSizeInBits();
2349   if (VT.isVector() || Size > 64)
2350     return SDValue();
2351 
2352   SelectionDAG &DAG = DCI.DAG;
2353   SDLoc DL(N);
2354 
2355   SDValue N0 = N->getOperand(0);
2356   SDValue N1 = N->getOperand(1);
2357   SDValue Mul;
2358 
2359   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2360     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2361     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2362     Mul = getMul24(DAG, DL, N0, N1, Size, false);
2363   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2364     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2365     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2366     Mul = getMul24(DAG, DL, N0, N1, Size, true);
2367   } else {
2368     return SDValue();
2369   }
2370 
2371   // We need to use sext even for MUL_U24, because MUL_U24 is used
2372   // for signed multiply of 8 and 16-bit types.
2373   return DAG.getSExtOrTrunc(Mul, DL, VT);
2374 }
2375 
2376 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
2377                                                   DAGCombinerInfo &DCI) const {
2378   EVT VT = N->getValueType(0);
2379 
2380   if (!Subtarget->hasMulI24() || VT.isVector())
2381     return SDValue();
2382 
2383   SelectionDAG &DAG = DCI.DAG;
2384   SDLoc DL(N);
2385 
2386   SDValue N0 = N->getOperand(0);
2387   SDValue N1 = N->getOperand(1);
2388 
2389   if (!isI24(N0, DAG) || !isI24(N1, DAG))
2390     return SDValue();
2391 
2392   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2393   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2394 
2395   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
2396   DCI.AddToWorklist(Mulhi.getNode());
2397   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
2398 }
2399 
2400 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
2401                                                   DAGCombinerInfo &DCI) const {
2402   EVT VT = N->getValueType(0);
2403 
2404   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
2405     return SDValue();
2406 
2407   SelectionDAG &DAG = DCI.DAG;
2408   SDLoc DL(N);
2409 
2410   SDValue N0 = N->getOperand(0);
2411   SDValue N1 = N->getOperand(1);
2412 
2413   if (!isU24(N0, DAG) || !isU24(N1, DAG))
2414     return SDValue();
2415 
2416   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2417   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2418 
2419   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
2420   DCI.AddToWorklist(Mulhi.getNode());
2421   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
2422 }
2423 
2424 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
2425   SDNode *N, DAGCombinerInfo &DCI) const {
2426   SelectionDAG &DAG = DCI.DAG;
2427 
2428   SDValue N0 = N->getOperand(0);
2429   SDValue N1 = N->getOperand(1);
2430 
2431   // Simplify demanded bits before splitting into multiple users.
2432   if (simplifyI24(N0, DCI) || simplifyI24(N1, DCI))
2433     return SDValue();
2434 
2435   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
2436 
2437   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2438   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
2439 
2440   SDLoc SL(N);
2441 
2442   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
2443   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
2444   return DAG.getMergeValues({ MulLo, MulHi }, SL);
2445 }
2446 
2447 static bool isNegativeOne(SDValue Val) {
2448   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2449     return C->isAllOnesValue();
2450   return false;
2451 }
2452 
2453 static bool isCtlzOpc(unsigned Opc) {
2454   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2455 }
2456 
2457 // Get FFBH node if the incoming op may have been type legalized from a smaller
2458 // type VT.
2459 // Need to match pre-legalized type because the generic legalization inserts the
2460 // add/sub between the select and compare.
2461 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG,
2462                            const SDLoc &SL, SDValue Op) {
2463   EVT VT = Op.getValueType();
2464   EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2465   if (LegalVT != MVT::i32)
2466     return SDValue();
2467 
2468   if (VT != MVT::i32)
2469     Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op);
2470 
2471   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op);
2472   if (VT != MVT::i32)
2473     FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH);
2474 
2475   return FFBH;
2476 }
2477 
2478 // The native instructions return -1 on 0 input. Optimize out a select that
2479 // produces -1 on 0.
2480 //
2481 // TODO: If zero is not undef, we could also do this if the output is compared
2482 // against the bitwidth.
2483 //
2484 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2485 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2486                                                  SDValue LHS, SDValue RHS,
2487                                                  DAGCombinerInfo &DCI) const {
2488   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2489   if (!CmpRhs || !CmpRhs->isNullValue())
2490     return SDValue();
2491 
2492   SelectionDAG &DAG = DCI.DAG;
2493   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2494   SDValue CmpLHS = Cond.getOperand(0);
2495 
2496   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2497   if (CCOpcode == ISD::SETEQ &&
2498       isCtlzOpc(RHS.getOpcode()) &&
2499       RHS.getOperand(0) == CmpLHS &&
2500       isNegativeOne(LHS)) {
2501     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2502   }
2503 
2504   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2505   if (CCOpcode == ISD::SETNE &&
2506       isCtlzOpc(LHS.getOpcode()) &&
2507       LHS.getOperand(0) == CmpLHS &&
2508       isNegativeOne(RHS)) {
2509     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2510   }
2511 
2512   return SDValue();
2513 }
2514 
2515 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2516                                                    DAGCombinerInfo &DCI) const {
2517   SDValue Cond = N->getOperand(0);
2518   if (Cond.getOpcode() != ISD::SETCC)
2519     return SDValue();
2520 
2521   EVT VT = N->getValueType(0);
2522   SDValue LHS = Cond.getOperand(0);
2523   SDValue RHS = Cond.getOperand(1);
2524   SDValue CC = Cond.getOperand(2);
2525 
2526   SDValue True = N->getOperand(1);
2527   SDValue False = N->getOperand(2);
2528 
2529   if (VT == MVT::f32 && Cond.hasOneUse()) {
2530     SDValue MinMax
2531       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2532     // Revisit this node so we can catch min3/max3/med3 patterns.
2533     //DCI.AddToWorklist(MinMax.getNode());
2534     return MinMax;
2535   }
2536 
2537   // There's no reason to not do this if the condition has other uses.
2538   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2539 }
2540 
2541 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2542                                                 DAGCombinerInfo &DCI) const {
2543   SelectionDAG &DAG = DCI.DAG;
2544   SDLoc DL(N);
2545 
2546   switch(N->getOpcode()) {
2547   default:
2548     break;
2549   case ISD::BITCAST: {
2550     EVT DestVT = N->getValueType(0);
2551 
2552     // Push casts through vector builds. This helps avoid emitting a large
2553     // number of copies when materializing floating point vector constants.
2554     //
2555     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
2556     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
2557     if (DestVT.isVector()) {
2558       SDValue Src = N->getOperand(0);
2559       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2560         EVT SrcVT = Src.getValueType();
2561         unsigned NElts = DestVT.getVectorNumElements();
2562 
2563         if (SrcVT.getVectorNumElements() == NElts) {
2564           EVT DestEltVT = DestVT.getVectorElementType();
2565 
2566           SmallVector<SDValue, 8> CastedElts;
2567           SDLoc SL(N);
2568           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
2569             SDValue Elt = Src.getOperand(I);
2570             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
2571           }
2572 
2573           return DAG.getBuildVector(DestVT, SL, CastedElts);
2574         }
2575       }
2576     }
2577 
2578     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
2579       break;
2580 
2581     // Fold bitcasts of constants.
2582     //
2583     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
2584     // TODO: Generalize and move to DAGCombiner
2585     SDValue Src = N->getOperand(0);
2586     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
2587       assert(Src.getValueType() == MVT::i64);
2588       SDLoc SL(N);
2589       uint64_t CVal = C->getZExtValue();
2590       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
2591                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2592                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2593     }
2594 
2595     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
2596       const APInt &Val = C->getValueAPF().bitcastToAPInt();
2597       SDLoc SL(N);
2598       uint64_t CVal = Val.getZExtValue();
2599       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2600                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2601                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2602 
2603       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
2604     }
2605 
2606     break;
2607   }
2608   case ISD::SHL: {
2609     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2610       break;
2611 
2612     return performShlCombine(N, DCI);
2613   }
2614   case ISD::SRL: {
2615     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2616       break;
2617 
2618     return performSrlCombine(N, DCI);
2619   }
2620   case ISD::SRA: {
2621     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2622       break;
2623 
2624     return performSraCombine(N, DCI);
2625   }
2626   case ISD::MUL:
2627     return performMulCombine(N, DCI);
2628   case ISD::MULHS:
2629     return performMulhsCombine(N, DCI);
2630   case ISD::MULHU:
2631     return performMulhuCombine(N, DCI);
2632   case AMDGPUISD::MUL_I24:
2633   case AMDGPUISD::MUL_U24:
2634   case AMDGPUISD::MULHI_I24:
2635   case AMDGPUISD::MULHI_U24: {
2636     SDValue N0 = N->getOperand(0);
2637     SDValue N1 = N->getOperand(1);
2638     simplifyI24(N0, DCI);
2639     simplifyI24(N1, DCI);
2640     return SDValue();
2641   }
2642   case AMDGPUISD::MUL_LOHI_I24:
2643   case AMDGPUISD::MUL_LOHI_U24:
2644     return performMulLoHi24Combine(N, DCI);
2645   case ISD::SELECT:
2646     return performSelectCombine(N, DCI);
2647   case AMDGPUISD::BFE_I32:
2648   case AMDGPUISD::BFE_U32: {
2649     assert(!N->getValueType(0).isVector() &&
2650            "Vector handling of BFE not implemented");
2651     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2652     if (!Width)
2653       break;
2654 
2655     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2656     if (WidthVal == 0)
2657       return DAG.getConstant(0, DL, MVT::i32);
2658 
2659     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2660     if (!Offset)
2661       break;
2662 
2663     SDValue BitsFrom = N->getOperand(0);
2664     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2665 
2666     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2667 
2668     if (OffsetVal == 0) {
2669       // This is already sign / zero extended, so try to fold away extra BFEs.
2670       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2671 
2672       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2673       if (OpSignBits >= SignBits)
2674         return BitsFrom;
2675 
2676       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2677       if (Signed) {
2678         // This is a sign_extend_inreg. Replace it to take advantage of existing
2679         // DAG Combines. If not eliminated, we will match back to BFE during
2680         // selection.
2681 
2682         // TODO: The sext_inreg of extended types ends, although we can could
2683         // handle them in a single BFE.
2684         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2685                            DAG.getValueType(SmallVT));
2686       }
2687 
2688       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2689     }
2690 
2691     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2692       if (Signed) {
2693         return constantFoldBFE<int32_t>(DAG,
2694                                         CVal->getSExtValue(),
2695                                         OffsetVal,
2696                                         WidthVal,
2697                                         DL);
2698       }
2699 
2700       return constantFoldBFE<uint32_t>(DAG,
2701                                        CVal->getZExtValue(),
2702                                        OffsetVal,
2703                                        WidthVal,
2704                                        DL);
2705     }
2706 
2707     if ((OffsetVal + WidthVal) >= 32) {
2708       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2709       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2710                          BitsFrom, ShiftVal);
2711     }
2712 
2713     if (BitsFrom.hasOneUse()) {
2714       APInt Demanded = APInt::getBitsSet(32,
2715                                          OffsetVal,
2716                                          OffsetVal + WidthVal);
2717 
2718       APInt KnownZero, KnownOne;
2719       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2720                                             !DCI.isBeforeLegalizeOps());
2721       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2722       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2723           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2724                                    KnownZero, KnownOne, TLO)) {
2725         DCI.CommitTargetLoweringOpt(TLO);
2726       }
2727     }
2728 
2729     break;
2730   }
2731   case ISD::LOAD:
2732     return performLoadCombine(N, DCI);
2733   case ISD::STORE:
2734     return performStoreCombine(N, DCI);
2735   }
2736   return SDValue();
2737 }
2738 
2739 //===----------------------------------------------------------------------===//
2740 // Helper functions
2741 //===----------------------------------------------------------------------===//
2742 
2743 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2744                                                   const TargetRegisterClass *RC,
2745                                                    unsigned Reg, EVT VT) const {
2746   MachineFunction &MF = DAG.getMachineFunction();
2747   MachineRegisterInfo &MRI = MF.getRegInfo();
2748   unsigned VirtualRegister;
2749   if (!MRI.isLiveIn(Reg)) {
2750     VirtualRegister = MRI.createVirtualRegister(RC);
2751     MRI.addLiveIn(Reg, VirtualRegister);
2752   } else {
2753     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2754   }
2755   return DAG.getRegister(VirtualRegister, VT);
2756 }
2757 
2758 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2759     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2760   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
2761   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
2762   switch (Param) {
2763   case GRID_DIM:
2764     return ArgOffset;
2765   case GRID_OFFSET:
2766     return ArgOffset + 4;
2767   }
2768   llvm_unreachable("unexpected implicit parameter type");
2769 }
2770 
2771 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2772 
2773 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2774   switch ((AMDGPUISD::NodeType)Opcode) {
2775   case AMDGPUISD::FIRST_NUMBER: break;
2776   // AMDIL DAG nodes
2777   NODE_NAME_CASE(CALL);
2778   NODE_NAME_CASE(UMUL);
2779   NODE_NAME_CASE(BRANCH_COND);
2780 
2781   // AMDGPU DAG nodes
2782   NODE_NAME_CASE(ENDPGM)
2783   NODE_NAME_CASE(RETURN)
2784   NODE_NAME_CASE(DWORDADDR)
2785   NODE_NAME_CASE(FRACT)
2786   NODE_NAME_CASE(SETCC)
2787   NODE_NAME_CASE(CLAMP)
2788   NODE_NAME_CASE(COS_HW)
2789   NODE_NAME_CASE(SIN_HW)
2790   NODE_NAME_CASE(FMAX_LEGACY)
2791   NODE_NAME_CASE(FMIN_LEGACY)
2792   NODE_NAME_CASE(FMAX3)
2793   NODE_NAME_CASE(SMAX3)
2794   NODE_NAME_CASE(UMAX3)
2795   NODE_NAME_CASE(FMIN3)
2796   NODE_NAME_CASE(SMIN3)
2797   NODE_NAME_CASE(UMIN3)
2798   NODE_NAME_CASE(FMED3)
2799   NODE_NAME_CASE(SMED3)
2800   NODE_NAME_CASE(UMED3)
2801   NODE_NAME_CASE(URECIP)
2802   NODE_NAME_CASE(DIV_SCALE)
2803   NODE_NAME_CASE(DIV_FMAS)
2804   NODE_NAME_CASE(DIV_FIXUP)
2805   NODE_NAME_CASE(TRIG_PREOP)
2806   NODE_NAME_CASE(RCP)
2807   NODE_NAME_CASE(RSQ)
2808   NODE_NAME_CASE(RCP_LEGACY)
2809   NODE_NAME_CASE(RSQ_LEGACY)
2810   NODE_NAME_CASE(FMUL_LEGACY)
2811   NODE_NAME_CASE(RSQ_CLAMP)
2812   NODE_NAME_CASE(LDEXP)
2813   NODE_NAME_CASE(FP_CLASS)
2814   NODE_NAME_CASE(DOT4)
2815   NODE_NAME_CASE(CARRY)
2816   NODE_NAME_CASE(BORROW)
2817   NODE_NAME_CASE(BFE_U32)
2818   NODE_NAME_CASE(BFE_I32)
2819   NODE_NAME_CASE(BFI)
2820   NODE_NAME_CASE(BFM)
2821   NODE_NAME_CASE(FFBH_U32)
2822   NODE_NAME_CASE(FFBH_I32)
2823   NODE_NAME_CASE(MUL_U24)
2824   NODE_NAME_CASE(MUL_I24)
2825   NODE_NAME_CASE(MULHI_U24)
2826   NODE_NAME_CASE(MULHI_I24)
2827   NODE_NAME_CASE(MUL_LOHI_U24)
2828   NODE_NAME_CASE(MUL_LOHI_I24)
2829   NODE_NAME_CASE(MAD_U24)
2830   NODE_NAME_CASE(MAD_I24)
2831   NODE_NAME_CASE(TEXTURE_FETCH)
2832   NODE_NAME_CASE(EXPORT)
2833   NODE_NAME_CASE(CONST_ADDRESS)
2834   NODE_NAME_CASE(REGISTER_LOAD)
2835   NODE_NAME_CASE(REGISTER_STORE)
2836   NODE_NAME_CASE(LOAD_INPUT)
2837   NODE_NAME_CASE(SAMPLE)
2838   NODE_NAME_CASE(SAMPLEB)
2839   NODE_NAME_CASE(SAMPLED)
2840   NODE_NAME_CASE(SAMPLEL)
2841   NODE_NAME_CASE(CVT_F32_UBYTE0)
2842   NODE_NAME_CASE(CVT_F32_UBYTE1)
2843   NODE_NAME_CASE(CVT_F32_UBYTE2)
2844   NODE_NAME_CASE(CVT_F32_UBYTE3)
2845   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2846   NODE_NAME_CASE(CONST_DATA_PTR)
2847   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
2848   NODE_NAME_CASE(KILL)
2849   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2850   NODE_NAME_CASE(SENDMSG)
2851   NODE_NAME_CASE(INTERP_MOV)
2852   NODE_NAME_CASE(INTERP_P1)
2853   NODE_NAME_CASE(INTERP_P2)
2854   NODE_NAME_CASE(STORE_MSKOR)
2855   NODE_NAME_CASE(LOAD_CONSTANT)
2856   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2857   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
2858   NODE_NAME_CASE(ATOMIC_INC)
2859   NODE_NAME_CASE(ATOMIC_DEC)
2860   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2861   }
2862   return nullptr;
2863 }
2864 
2865 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2866                                                DAGCombinerInfo &DCI,
2867                                                unsigned &RefinementSteps,
2868                                                bool &UseOneConstNR) const {
2869   SelectionDAG &DAG = DCI.DAG;
2870   EVT VT = Operand.getValueType();
2871 
2872   if (VT == MVT::f32) {
2873     RefinementSteps = 0;
2874     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2875   }
2876 
2877   // TODO: There is also f64 rsq instruction, but the documentation is less
2878   // clear on its precision.
2879 
2880   return SDValue();
2881 }
2882 
2883 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2884                                                DAGCombinerInfo &DCI,
2885                                                unsigned &RefinementSteps) const {
2886   SelectionDAG &DAG = DCI.DAG;
2887   EVT VT = Operand.getValueType();
2888 
2889   if (VT == MVT::f32) {
2890     // Reciprocal, < 1 ulp error.
2891     //
2892     // This reciprocal approximation converges to < 0.5 ulp error with one
2893     // newton rhapson performed with two fused multiple adds (FMAs).
2894 
2895     RefinementSteps = 0;
2896     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2897   }
2898 
2899   // TODO: There is also f64 rcp instruction, but the documentation is less
2900   // clear on its precision.
2901 
2902   return SDValue();
2903 }
2904 
2905 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2906   const SDValue Op,
2907   APInt &KnownZero,
2908   APInt &KnownOne,
2909   const SelectionDAG &DAG,
2910   unsigned Depth) const {
2911 
2912   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2913 
2914   APInt KnownZero2;
2915   APInt KnownOne2;
2916   unsigned Opc = Op.getOpcode();
2917 
2918   switch (Opc) {
2919   default:
2920     break;
2921   case AMDGPUISD::CARRY:
2922   case AMDGPUISD::BORROW: {
2923     KnownZero = APInt::getHighBitsSet(32, 31);
2924     break;
2925   }
2926 
2927   case AMDGPUISD::BFE_I32:
2928   case AMDGPUISD::BFE_U32: {
2929     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2930     if (!CWidth)
2931       return;
2932 
2933     unsigned BitWidth = 32;
2934     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2935 
2936     if (Opc == AMDGPUISD::BFE_U32)
2937       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2938 
2939     break;
2940   }
2941   }
2942 }
2943 
2944 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2945   SDValue Op,
2946   const SelectionDAG &DAG,
2947   unsigned Depth) const {
2948   switch (Op.getOpcode()) {
2949   case AMDGPUISD::BFE_I32: {
2950     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2951     if (!Width)
2952       return 1;
2953 
2954     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2955     if (!isNullConstant(Op.getOperand(1)))
2956       return SignBits;
2957 
2958     // TODO: Could probably figure something out with non-0 offsets.
2959     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2960     return std::max(SignBits, Op0SignBits);
2961   }
2962 
2963   case AMDGPUISD::BFE_U32: {
2964     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2965     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2966   }
2967 
2968   case AMDGPUISD::CARRY:
2969   case AMDGPUISD::BORROW:
2970     return 31;
2971 
2972   default:
2973     return 1;
2974   }
2975 }
2976