1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "SIInstrInfo.h" 33 using namespace llvm; 34 35 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 36 CCValAssign::LocInfo LocInfo, 37 ISD::ArgFlagsTy ArgFlags, CCState &State) { 38 MachineFunction &MF = State.getMachineFunction(); 39 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 40 41 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 42 ArgFlags.getOrigAlign()); 43 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 44 return true; 45 } 46 47 #include "AMDGPUGenCallingConv.inc" 48 49 // Find a larger type to do a load / store of a vector with. 50 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 51 unsigned StoreSize = VT.getStoreSizeInBits(); 52 if (StoreSize <= 32) 53 return EVT::getIntegerVT(Ctx, StoreSize); 54 55 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 56 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 57 } 58 59 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 60 const AMDGPUSubtarget &STI) 61 : TargetLowering(TM), Subtarget(&STI) { 62 // Lower floating point store/load to integer store/load to reduce the number 63 // of patterns in tablegen. 64 setOperationAction(ISD::LOAD, MVT::f32, Promote); 65 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 66 67 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 68 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 69 70 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 72 73 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 75 76 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 78 79 setOperationAction(ISD::LOAD, MVT::i64, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 81 82 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 84 85 setOperationAction(ISD::LOAD, MVT::f64, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 87 88 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 90 91 // There are no 64-bit extloads. These should be done as a 32-bit extload and 92 // an extension to 64-bit. 93 for (MVT VT : MVT::integer_valuetypes()) { 94 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 95 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 96 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 97 } 98 99 for (MVT VT : MVT::integer_valuetypes()) { 100 if (VT == MVT::i64) 101 continue; 102 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 104 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 106 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 107 108 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 109 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 110 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 111 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 112 113 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 114 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 115 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 116 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 117 } 118 119 for (MVT VT : MVT::integer_vector_valuetypes()) { 120 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 122 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 126 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 127 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 131 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 132 } 133 134 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 137 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 138 139 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 140 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 142 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 143 144 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 148 149 setOperationAction(ISD::STORE, MVT::f32, Promote); 150 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 151 152 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 153 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 154 155 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 156 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 157 158 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 159 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 160 161 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 162 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 163 164 setOperationAction(ISD::STORE, MVT::i64, Promote); 165 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 166 167 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 168 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 169 170 setOperationAction(ISD::STORE, MVT::f64, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 175 176 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 177 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 178 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 179 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 180 181 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 182 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 183 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 184 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 185 186 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 187 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 188 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 189 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 190 191 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 192 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 193 194 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 195 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 196 197 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 198 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 199 200 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 201 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 202 203 204 setOperationAction(ISD::Constant, MVT::i32, Legal); 205 setOperationAction(ISD::Constant, MVT::i64, Legal); 206 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 207 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 208 209 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 210 setOperationAction(ISD::BRIND, MVT::Other, Expand); 211 212 // This is totally unsupported, just custom lower to produce an error. 213 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 214 215 // We need to custom lower some of the intrinsics 216 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 217 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 218 219 // Library functions. These default to Expand, but we have instructions 220 // for them. 221 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 222 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 223 setOperationAction(ISD::FPOW, MVT::f32, Legal); 224 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 225 setOperationAction(ISD::FABS, MVT::f32, Legal); 226 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 227 setOperationAction(ISD::FRINT, MVT::f32, Legal); 228 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 229 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 230 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 231 232 setOperationAction(ISD::FROUND, MVT::f32, Custom); 233 setOperationAction(ISD::FROUND, MVT::f64, Custom); 234 235 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 236 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 237 238 setOperationAction(ISD::FREM, MVT::f32, Custom); 239 setOperationAction(ISD::FREM, MVT::f64, Custom); 240 241 // v_mad_f32 does not support denormals according to some sources. 242 if (!Subtarget->hasFP32Denormals()) 243 setOperationAction(ISD::FMAD, MVT::f32, Legal); 244 245 // Expand to fneg + fadd. 246 setOperationAction(ISD::FSUB, MVT::f64, Expand); 247 248 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 249 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 250 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 251 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 252 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 253 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 254 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 255 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 256 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 257 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 258 259 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 260 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 261 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 262 setOperationAction(ISD::FRINT, MVT::f64, Custom); 263 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 264 } 265 266 if (!Subtarget->hasBFI()) { 267 // fcopysign can be done in a single instruction with BFI. 268 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 269 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 270 } 271 272 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 273 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 274 275 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 276 for (MVT VT : ScalarIntVTs) { 277 // These should use [SU]DIVREM, so set them to expand 278 setOperationAction(ISD::SDIV, VT, Expand); 279 setOperationAction(ISD::UDIV, VT, Expand); 280 setOperationAction(ISD::SREM, VT, Expand); 281 setOperationAction(ISD::UREM, VT, Expand); 282 283 // GPU does not have divrem function for signed or unsigned. 284 setOperationAction(ISD::SDIVREM, VT, Custom); 285 setOperationAction(ISD::UDIVREM, VT, Custom); 286 287 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 288 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 289 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 290 291 setOperationAction(ISD::BSWAP, VT, Expand); 292 setOperationAction(ISD::CTTZ, VT, Expand); 293 setOperationAction(ISD::CTLZ, VT, Expand); 294 } 295 296 if (!Subtarget->hasBCNT(32)) 297 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 298 299 if (!Subtarget->hasBCNT(64)) 300 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 301 302 // The hardware supports 32-bit ROTR, but not ROTL. 303 setOperationAction(ISD::ROTL, MVT::i32, Expand); 304 setOperationAction(ISD::ROTL, MVT::i64, Expand); 305 setOperationAction(ISD::ROTR, MVT::i64, Expand); 306 307 setOperationAction(ISD::MUL, MVT::i64, Expand); 308 setOperationAction(ISD::MULHU, MVT::i64, Expand); 309 setOperationAction(ISD::MULHS, MVT::i64, Expand); 310 setOperationAction(ISD::UDIV, MVT::i32, Expand); 311 setOperationAction(ISD::UREM, MVT::i32, Expand); 312 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 313 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 314 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 315 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 316 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 317 318 setOperationAction(ISD::SMIN, MVT::i32, Legal); 319 setOperationAction(ISD::UMIN, MVT::i32, Legal); 320 setOperationAction(ISD::SMAX, MVT::i32, Legal); 321 setOperationAction(ISD::UMAX, MVT::i32, Legal); 322 323 if (Subtarget->hasFFBH()) 324 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 325 326 if (Subtarget->hasFFBL()) 327 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 328 329 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 330 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 331 332 // We only really have 32-bit BFE instructions (and 16-bit on VI). 333 // 334 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 335 // effort to match them now. We want this to be false for i64 cases when the 336 // extraction isn't restricted to the upper or lower half. Ideally we would 337 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 338 // span the midpoint are probably relatively rare, so don't worry about them 339 // for now. 340 if (Subtarget->hasBFE()) 341 setHasExtractBitsInsn(true); 342 343 static const MVT::SimpleValueType VectorIntTypes[] = { 344 MVT::v2i32, MVT::v4i32 345 }; 346 347 for (MVT VT : VectorIntTypes) { 348 // Expand the following operations for the current type by default. 349 setOperationAction(ISD::ADD, VT, Expand); 350 setOperationAction(ISD::AND, VT, Expand); 351 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 352 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 353 setOperationAction(ISD::MUL, VT, Expand); 354 setOperationAction(ISD::MULHU, VT, Expand); 355 setOperationAction(ISD::MULHS, VT, Expand); 356 setOperationAction(ISD::OR, VT, Expand); 357 setOperationAction(ISD::SHL, VT, Expand); 358 setOperationAction(ISD::SRA, VT, Expand); 359 setOperationAction(ISD::SRL, VT, Expand); 360 setOperationAction(ISD::ROTL, VT, Expand); 361 setOperationAction(ISD::ROTR, VT, Expand); 362 setOperationAction(ISD::SUB, VT, Expand); 363 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 364 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 365 setOperationAction(ISD::SDIV, VT, Expand); 366 setOperationAction(ISD::UDIV, VT, Expand); 367 setOperationAction(ISD::SREM, VT, Expand); 368 setOperationAction(ISD::UREM, VT, Expand); 369 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 370 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 371 setOperationAction(ISD::SDIVREM, VT, Custom); 372 setOperationAction(ISD::UDIVREM, VT, Expand); 373 setOperationAction(ISD::ADDC, VT, Expand); 374 setOperationAction(ISD::SUBC, VT, Expand); 375 setOperationAction(ISD::ADDE, VT, Expand); 376 setOperationAction(ISD::SUBE, VT, Expand); 377 setOperationAction(ISD::SELECT, VT, Expand); 378 setOperationAction(ISD::VSELECT, VT, Expand); 379 setOperationAction(ISD::SELECT_CC, VT, Expand); 380 setOperationAction(ISD::XOR, VT, Expand); 381 setOperationAction(ISD::BSWAP, VT, Expand); 382 setOperationAction(ISD::CTPOP, VT, Expand); 383 setOperationAction(ISD::CTTZ, VT, Expand); 384 setOperationAction(ISD::CTLZ, VT, Expand); 385 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 386 } 387 388 static const MVT::SimpleValueType FloatVectorTypes[] = { 389 MVT::v2f32, MVT::v4f32 390 }; 391 392 for (MVT VT : FloatVectorTypes) { 393 setOperationAction(ISD::FABS, VT, Expand); 394 setOperationAction(ISD::FMINNUM, VT, Expand); 395 setOperationAction(ISD::FMAXNUM, VT, Expand); 396 setOperationAction(ISD::FADD, VT, Expand); 397 setOperationAction(ISD::FCEIL, VT, Expand); 398 setOperationAction(ISD::FCOS, VT, Expand); 399 setOperationAction(ISD::FDIV, VT, Expand); 400 setOperationAction(ISD::FEXP2, VT, Expand); 401 setOperationAction(ISD::FLOG2, VT, Expand); 402 setOperationAction(ISD::FREM, VT, Expand); 403 setOperationAction(ISD::FPOW, VT, Expand); 404 setOperationAction(ISD::FFLOOR, VT, Expand); 405 setOperationAction(ISD::FTRUNC, VT, Expand); 406 setOperationAction(ISD::FMUL, VT, Expand); 407 setOperationAction(ISD::FMA, VT, Expand); 408 setOperationAction(ISD::FRINT, VT, Expand); 409 setOperationAction(ISD::FNEARBYINT, VT, Expand); 410 setOperationAction(ISD::FSQRT, VT, Expand); 411 setOperationAction(ISD::FSIN, VT, Expand); 412 setOperationAction(ISD::FSUB, VT, Expand); 413 setOperationAction(ISD::FNEG, VT, Expand); 414 setOperationAction(ISD::VSELECT, VT, Expand); 415 setOperationAction(ISD::SELECT_CC, VT, Expand); 416 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 417 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 418 } 419 420 // This causes using an unrolled select operation rather than expansion with 421 // bit operations. This is in general better, but the alternative using BFI 422 // instructions may be better if the select sources are SGPRs. 423 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 424 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 425 426 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 427 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 428 429 // There are no libcalls of any kind. 430 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 431 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 432 433 setBooleanContents(ZeroOrNegativeOneBooleanContent); 434 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 435 436 setSchedulingPreference(Sched::RegPressure); 437 setJumpIsExpensive(true); 438 439 // FIXME: This is only partially true. If we have to do vector compares, any 440 // SGPR pair can be a condition register. If we have a uniform condition, we 441 // are better off doing SALU operations, where there is only one SCC. For now, 442 // we don't have a way of knowing during instruction selection if a condition 443 // will be uniform and we always use vector compares. Assume we are using 444 // vector compares until that is fixed. 445 setHasMultipleConditionRegisters(true); 446 447 // SI at least has hardware support for floating point exceptions, but no way 448 // of using or handling them is implemented. They are also optional in OpenCL 449 // (Section 7.3) 450 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 451 452 PredictableSelectIsExpensive = false; 453 454 // We want to find all load dependencies for long chains of stores to enable 455 // merging into very wide vectors. The problem is with vectors with > 4 456 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 457 // vectors are a legal type, even though we have to split the loads 458 // usually. When we can more precisely specify load legality per address 459 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 460 // smarter so that they can figure out what to do in 2 iterations without all 461 // N > 4 stores on the same chain. 462 GatherAllAliasesMaxDepth = 16; 463 464 // FIXME: Need to really handle these. 465 MaxStoresPerMemcpy = 4096; 466 MaxStoresPerMemmove = 4096; 467 MaxStoresPerMemset = 4096; 468 469 setTargetDAGCombine(ISD::BITCAST); 470 setTargetDAGCombine(ISD::SHL); 471 setTargetDAGCombine(ISD::SRA); 472 setTargetDAGCombine(ISD::SRL); 473 setTargetDAGCombine(ISD::MUL); 474 setTargetDAGCombine(ISD::MULHU); 475 setTargetDAGCombine(ISD::MULHS); 476 setTargetDAGCombine(ISD::SELECT); 477 setTargetDAGCombine(ISD::SELECT_CC); 478 setTargetDAGCombine(ISD::STORE); 479 setTargetDAGCombine(ISD::FADD); 480 setTargetDAGCombine(ISD::FSUB); 481 setTargetDAGCombine(ISD::FNEG); 482 setTargetDAGCombine(ISD::FABS); 483 } 484 485 //===----------------------------------------------------------------------===// 486 // Target Information 487 //===----------------------------------------------------------------------===// 488 489 static bool fnegFoldsIntoOp(unsigned Opc) { 490 switch (Opc) { 491 case ISD::FADD: 492 case ISD::FSUB: 493 case ISD::FMUL: 494 case ISD::FMA: 495 case ISD::FMAD: 496 case ISD::FSIN: 497 case ISD::FTRUNC: 498 case ISD::FRINT: 499 case ISD::FNEARBYINT: 500 case AMDGPUISD::RCP: 501 case AMDGPUISD::RCP_LEGACY: 502 case AMDGPUISD::SIN_HW: 503 case AMDGPUISD::FMUL_LEGACY: 504 return true; 505 default: 506 return false; 507 } 508 } 509 510 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 511 return MVT::i32; 512 } 513 514 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 515 return true; 516 } 517 518 // The backend supports 32 and 64 bit floating point immediates. 519 // FIXME: Why are we reporting vectors of FP immediates as legal? 520 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 521 EVT ScalarVT = VT.getScalarType(); 522 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 523 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 524 } 525 526 // We don't want to shrink f64 / f32 constants. 527 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 528 EVT ScalarVT = VT.getScalarType(); 529 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 530 } 531 532 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 533 ISD::LoadExtType, 534 EVT NewVT) const { 535 536 unsigned NewSize = NewVT.getStoreSizeInBits(); 537 538 // If we are reducing to a 32-bit load, this is always better. 539 if (NewSize == 32) 540 return true; 541 542 EVT OldVT = N->getValueType(0); 543 unsigned OldSize = OldVT.getStoreSizeInBits(); 544 545 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 546 // extloads, so doing one requires using a buffer_load. In cases where we 547 // still couldn't use a scalar load, using the wider load shouldn't really 548 // hurt anything. 549 550 // If the old size already had to be an extload, there's no harm in continuing 551 // to reduce the width. 552 return (OldSize < 32); 553 } 554 555 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 556 EVT CastTy) const { 557 558 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 559 560 if (LoadTy.getScalarType() == MVT::i32) 561 return false; 562 563 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 564 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 565 566 return (LScalarSize < CastScalarSize) || 567 (CastScalarSize >= 32); 568 } 569 570 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 571 // profitable with the expansion for 64-bit since it's generally good to 572 // speculate things. 573 // FIXME: These should really have the size as a parameter. 574 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 575 return true; 576 } 577 578 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 579 return true; 580 } 581 582 //===---------------------------------------------------------------------===// 583 // Target Properties 584 //===---------------------------------------------------------------------===// 585 586 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 587 assert(VT.isFloatingPoint()); 588 return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() && 589 VT == MVT::f16); 590 } 591 592 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 593 return isFAbsFree(VT); 594 } 595 596 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 597 unsigned NumElem, 598 unsigned AS) const { 599 return true; 600 } 601 602 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 603 // There are few operations which truly have vector input operands. Any vector 604 // operation is going to involve operations on each component, and a 605 // build_vector will be a copy per element, so it always makes sense to use a 606 // build_vector input in place of the extracted element to avoid a copy into a 607 // super register. 608 // 609 // We should probably only do this if all users are extracts only, but this 610 // should be the common case. 611 return true; 612 } 613 614 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 615 // Truncate is just accessing a subregister. 616 617 unsigned SrcSize = Source.getSizeInBits(); 618 unsigned DestSize = Dest.getSizeInBits(); 619 620 return DestSize < SrcSize && DestSize % 32 == 0 ; 621 } 622 623 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 624 // Truncate is just accessing a subregister. 625 626 unsigned SrcSize = Source->getScalarSizeInBits(); 627 unsigned DestSize = Dest->getScalarSizeInBits(); 628 629 if (DestSize== 16 && Subtarget->has16BitInsts()) 630 return SrcSize >= 32; 631 632 return DestSize < SrcSize && DestSize % 32 == 0; 633 } 634 635 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 636 unsigned SrcSize = Src->getScalarSizeInBits(); 637 unsigned DestSize = Dest->getScalarSizeInBits(); 638 639 if (SrcSize == 16 && Subtarget->has16BitInsts()) 640 return DestSize >= 32; 641 642 return SrcSize == 32 && DestSize == 64; 643 } 644 645 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 646 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 647 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 648 // this will enable reducing 64-bit operations the 32-bit, which is always 649 // good. 650 651 if (Src == MVT::i16) 652 return Dest == MVT::i32 ||Dest == MVT::i64 ; 653 654 return Src == MVT::i32 && Dest == MVT::i64; 655 } 656 657 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 658 return isZExtFree(Val.getValueType(), VT2); 659 } 660 661 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 662 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 663 // limited number of native 64-bit operations. Shrinking an operation to fit 664 // in a single 32-bit register should always be helpful. As currently used, 665 // this is much less general than the name suggests, and is only used in 666 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 667 // not profitable, and may actually be harmful. 668 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 669 } 670 671 //===---------------------------------------------------------------------===// 672 // TargetLowering Callbacks 673 //===---------------------------------------------------------------------===// 674 675 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 676 bool IsVarArg) const { 677 return CC_AMDGPU; 678 } 679 680 /// The SelectionDAGBuilder will automatically promote function arguments 681 /// with illegal types. However, this does not work for the AMDGPU targets 682 /// since the function arguments are stored in memory as these illegal types. 683 /// In order to handle this properly we need to get the original types sizes 684 /// from the LLVM IR Function and fixup the ISD:InputArg values before 685 /// passing them to AnalyzeFormalArguments() 686 687 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 688 /// input values across multiple registers. Each item in the Ins array 689 /// represents a single value that will be stored in regsters. Ins[x].VT is 690 /// the value type of the value that will be stored in the register, so 691 /// whatever SDNode we lower the argument to needs to be this type. 692 /// 693 /// In order to correctly lower the arguments we need to know the size of each 694 /// argument. Since Ins[x].VT gives us the size of the register that will 695 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 696 /// for the orignal function argument so that we can deduce the correct memory 697 /// type to use for Ins[x]. In most cases the correct memory type will be 698 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 699 /// we have a kernel argument of type v8i8, this argument will be split into 700 /// 8 parts and each part will be represented by its own item in the Ins array. 701 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 702 /// the argument before it was split. From this, we deduce that the memory type 703 /// for each individual part is i8. We pass the memory type as LocVT to the 704 /// calling convention analysis function and the register type (Ins[x].VT) as 705 /// the ValVT. 706 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 707 const SmallVectorImpl<ISD::InputArg> &Ins) const { 708 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 709 const ISD::InputArg &In = Ins[i]; 710 EVT MemVT; 711 712 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 713 714 if (!Subtarget->isAmdHsaOS() && 715 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 716 // The ABI says the caller will extend these values to 32-bits. 717 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 718 } else if (NumRegs == 1) { 719 // This argument is not split, so the IR type is the memory type. 720 assert(!In.Flags.isSplit()); 721 if (In.ArgVT.isExtended()) { 722 // We have an extended type, like i24, so we should just use the register type 723 MemVT = In.VT; 724 } else { 725 MemVT = In.ArgVT; 726 } 727 } else if (In.ArgVT.isVector() && In.VT.isVector() && 728 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 729 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 730 // We have a vector value which has been split into a vector with 731 // the same scalar type, but fewer elements. This should handle 732 // all the floating-point vector types. 733 MemVT = In.VT; 734 } else if (In.ArgVT.isVector() && 735 In.ArgVT.getVectorNumElements() == NumRegs) { 736 // This arg has been split so that each element is stored in a separate 737 // register. 738 MemVT = In.ArgVT.getScalarType(); 739 } else if (In.ArgVT.isExtended()) { 740 // We have an extended type, like i65. 741 MemVT = In.VT; 742 } else { 743 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 744 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 745 if (In.VT.isInteger()) { 746 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 747 } else if (In.VT.isVector()) { 748 assert(!In.VT.getScalarType().isFloatingPoint()); 749 unsigned NumElements = In.VT.getVectorNumElements(); 750 assert(MemoryBits % NumElements == 0); 751 // This vector type has been split into another vector type with 752 // a different elements size. 753 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 754 MemoryBits / NumElements); 755 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 756 } else { 757 llvm_unreachable("cannot deduce memory type."); 758 } 759 } 760 761 // Convert one element vectors to scalar. 762 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 763 MemVT = MemVT.getScalarType(); 764 765 if (MemVT.isExtended()) { 766 // This should really only happen if we have vec3 arguments 767 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 768 MemVT = MemVT.getPow2VectorType(State.getContext()); 769 } 770 771 assert(MemVT.isSimple()); 772 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 773 State); 774 } 775 } 776 777 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 778 const SmallVectorImpl<ISD::InputArg> &Ins) const { 779 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 780 } 781 782 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 783 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 784 785 State.AnalyzeReturn(Outs, RetCC_SI); 786 } 787 788 SDValue 789 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 790 bool isVarArg, 791 const SmallVectorImpl<ISD::OutputArg> &Outs, 792 const SmallVectorImpl<SDValue> &OutVals, 793 const SDLoc &DL, SelectionDAG &DAG) const { 794 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 795 } 796 797 //===---------------------------------------------------------------------===// 798 // Target specific lowering 799 //===---------------------------------------------------------------------===// 800 801 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 802 SmallVectorImpl<SDValue> &InVals) const { 803 SDValue Callee = CLI.Callee; 804 SelectionDAG &DAG = CLI.DAG; 805 806 const Function &Fn = *DAG.getMachineFunction().getFunction(); 807 808 StringRef FuncName("<unknown>"); 809 810 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 811 FuncName = G->getSymbol(); 812 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 813 FuncName = G->getGlobal()->getName(); 814 815 DiagnosticInfoUnsupported NoCalls( 816 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 817 DAG.getContext()->diagnose(NoCalls); 818 819 if (!CLI.IsTailCall) { 820 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 821 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 822 } 823 824 return DAG.getEntryNode(); 825 } 826 827 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 828 SelectionDAG &DAG) const { 829 const Function &Fn = *DAG.getMachineFunction().getFunction(); 830 831 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 832 SDLoc(Op).getDebugLoc()); 833 DAG.getContext()->diagnose(NoDynamicAlloca); 834 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 835 return DAG.getMergeValues(Ops, SDLoc()); 836 } 837 838 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 839 SelectionDAG &DAG) const { 840 switch (Op.getOpcode()) { 841 default: 842 Op->print(errs(), &DAG); 843 llvm_unreachable("Custom lowering code for this" 844 "instruction is not implemented yet!"); 845 break; 846 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 847 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 848 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 849 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 850 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 851 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 852 case ISD::FREM: return LowerFREM(Op, DAG); 853 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 854 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 855 case ISD::FRINT: return LowerFRINT(Op, DAG); 856 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 857 case ISD::FROUND: return LowerFROUND(Op, DAG); 858 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 859 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 860 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 861 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 862 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 863 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 864 case ISD::CTLZ: 865 case ISD::CTLZ_ZERO_UNDEF: 866 return LowerCTLZ(Op, DAG); 867 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 868 } 869 return Op; 870 } 871 872 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 873 SmallVectorImpl<SDValue> &Results, 874 SelectionDAG &DAG) const { 875 switch (N->getOpcode()) { 876 case ISD::SIGN_EXTEND_INREG: 877 // Different parts of legalization seem to interpret which type of 878 // sign_extend_inreg is the one to check for custom lowering. The extended 879 // from type is what really matters, but some places check for custom 880 // lowering of the result type. This results in trying to use 881 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 882 // nothing here and let the illegal result integer be handled normally. 883 return; 884 default: 885 return; 886 } 887 } 888 889 static bool hasDefinedInitializer(const GlobalValue *GV) { 890 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 891 if (!GVar || !GVar->hasInitializer()) 892 return false; 893 894 return !isa<UndefValue>(GVar->getInitializer()); 895 } 896 897 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 898 SDValue Op, 899 SelectionDAG &DAG) const { 900 901 const DataLayout &DL = DAG.getDataLayout(); 902 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 903 const GlobalValue *GV = G->getGlobal(); 904 905 switch (G->getAddressSpace()) { 906 case AMDGPUAS::LOCAL_ADDRESS: { 907 // XXX: What does the value of G->getOffset() mean? 908 assert(G->getOffset() == 0 && 909 "Do not know what to do with an non-zero offset"); 910 911 // TODO: We could emit code to handle the initialization somewhere. 912 if (hasDefinedInitializer(GV)) 913 break; 914 915 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 916 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 917 } 918 } 919 920 const Function &Fn = *DAG.getMachineFunction().getFunction(); 921 DiagnosticInfoUnsupported BadInit( 922 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 923 DAG.getContext()->diagnose(BadInit); 924 return SDValue(); 925 } 926 927 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 928 SelectionDAG &DAG) const { 929 SmallVector<SDValue, 8> Args; 930 931 for (const SDUse &U : Op->ops()) 932 DAG.ExtractVectorElements(U.get(), Args); 933 934 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 935 } 936 937 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 938 SelectionDAG &DAG) const { 939 940 SmallVector<SDValue, 8> Args; 941 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 942 EVT VT = Op.getValueType(); 943 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 944 VT.getVectorNumElements()); 945 946 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 947 } 948 949 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 950 SelectionDAG &DAG) const { 951 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 952 SDLoc DL(Op); 953 EVT VT = Op.getValueType(); 954 955 switch (IntrinsicID) { 956 default: return Op; 957 case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. 958 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 959 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 960 961 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 962 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 963 Op.getOperand(1), 964 Op.getOperand(2), 965 Op.getOperand(3)); 966 967 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 968 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 969 Op.getOperand(1), 970 Op.getOperand(2), 971 Op.getOperand(3)); 972 } 973 } 974 975 /// \brief Generate Min/Max node 976 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 977 SDValue LHS, SDValue RHS, 978 SDValue True, SDValue False, 979 SDValue CC, 980 DAGCombinerInfo &DCI) const { 981 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 982 return SDValue(); 983 984 SelectionDAG &DAG = DCI.DAG; 985 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 986 switch (CCOpcode) { 987 case ISD::SETOEQ: 988 case ISD::SETONE: 989 case ISD::SETUNE: 990 case ISD::SETNE: 991 case ISD::SETUEQ: 992 case ISD::SETEQ: 993 case ISD::SETFALSE: 994 case ISD::SETFALSE2: 995 case ISD::SETTRUE: 996 case ISD::SETTRUE2: 997 case ISD::SETUO: 998 case ISD::SETO: 999 break; 1000 case ISD::SETULE: 1001 case ISD::SETULT: { 1002 if (LHS == True) 1003 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1004 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1005 } 1006 case ISD::SETOLE: 1007 case ISD::SETOLT: 1008 case ISD::SETLE: 1009 case ISD::SETLT: { 1010 // Ordered. Assume ordered for undefined. 1011 1012 // Only do this after legalization to avoid interfering with other combines 1013 // which might occur. 1014 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1015 !DCI.isCalledByLegalizer()) 1016 return SDValue(); 1017 1018 // We need to permute the operands to get the correct NaN behavior. The 1019 // selected operand is the second one based on the failing compare with NaN, 1020 // so permute it based on the compare type the hardware uses. 1021 if (LHS == True) 1022 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1023 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1024 } 1025 case ISD::SETUGE: 1026 case ISD::SETUGT: { 1027 if (LHS == True) 1028 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1029 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1030 } 1031 case ISD::SETGT: 1032 case ISD::SETGE: 1033 case ISD::SETOGE: 1034 case ISD::SETOGT: { 1035 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1036 !DCI.isCalledByLegalizer()) 1037 return SDValue(); 1038 1039 if (LHS == True) 1040 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1041 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1042 } 1043 case ISD::SETCC_INVALID: 1044 llvm_unreachable("Invalid setcc condcode!"); 1045 } 1046 return SDValue(); 1047 } 1048 1049 std::pair<SDValue, SDValue> 1050 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1051 SDLoc SL(Op); 1052 1053 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1054 1055 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1056 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1057 1058 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1059 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1060 1061 return std::make_pair(Lo, Hi); 1062 } 1063 1064 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1065 SDLoc SL(Op); 1066 1067 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1068 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1069 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1070 } 1071 1072 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1073 SDLoc SL(Op); 1074 1075 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1076 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1077 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1078 } 1079 1080 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1081 SelectionDAG &DAG) const { 1082 LoadSDNode *Load = cast<LoadSDNode>(Op); 1083 EVT VT = Op.getValueType(); 1084 1085 1086 // If this is a 2 element vector, we really want to scalarize and not create 1087 // weird 1 element vectors. 1088 if (VT.getVectorNumElements() == 2) 1089 return scalarizeVectorLoad(Load, DAG); 1090 1091 SDValue BasePtr = Load->getBasePtr(); 1092 EVT PtrVT = BasePtr.getValueType(); 1093 EVT MemVT = Load->getMemoryVT(); 1094 SDLoc SL(Op); 1095 1096 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1097 1098 EVT LoVT, HiVT; 1099 EVT LoMemVT, HiMemVT; 1100 SDValue Lo, Hi; 1101 1102 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1103 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1104 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1105 1106 unsigned Size = LoMemVT.getStoreSize(); 1107 unsigned BaseAlign = Load->getAlignment(); 1108 unsigned HiAlign = MinAlign(BaseAlign, Size); 1109 1110 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1111 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1112 BaseAlign, Load->getMemOperand()->getFlags()); 1113 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1114 DAG.getConstant(Size, SL, PtrVT)); 1115 SDValue HiLoad = 1116 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1117 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1118 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1119 1120 SDValue Ops[] = { 1121 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1122 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1123 LoLoad.getValue(1), HiLoad.getValue(1)) 1124 }; 1125 1126 return DAG.getMergeValues(Ops, SL); 1127 } 1128 1129 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1130 SelectionDAG &DAG) const { 1131 StoreSDNode *Store = cast<StoreSDNode>(Op); 1132 SDValue Val = Store->getValue(); 1133 EVT VT = Val.getValueType(); 1134 1135 // If this is a 2 element vector, we really want to scalarize and not create 1136 // weird 1 element vectors. 1137 if (VT.getVectorNumElements() == 2) 1138 return scalarizeVectorStore(Store, DAG); 1139 1140 EVT MemVT = Store->getMemoryVT(); 1141 SDValue Chain = Store->getChain(); 1142 SDValue BasePtr = Store->getBasePtr(); 1143 SDLoc SL(Op); 1144 1145 EVT LoVT, HiVT; 1146 EVT LoMemVT, HiMemVT; 1147 SDValue Lo, Hi; 1148 1149 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1150 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1151 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1152 1153 EVT PtrVT = BasePtr.getValueType(); 1154 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1155 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1156 PtrVT)); 1157 1158 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1159 unsigned BaseAlign = Store->getAlignment(); 1160 unsigned Size = LoMemVT.getStoreSize(); 1161 unsigned HiAlign = MinAlign(BaseAlign, Size); 1162 1163 SDValue LoStore = 1164 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1165 Store->getMemOperand()->getFlags()); 1166 SDValue HiStore = 1167 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1168 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1169 1170 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1171 } 1172 1173 // This is a shortcut for integer division because we have fast i32<->f32 1174 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1175 // float is enough to accurately represent up to a 24-bit signed integer. 1176 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1177 bool Sign) const { 1178 SDLoc DL(Op); 1179 EVT VT = Op.getValueType(); 1180 SDValue LHS = Op.getOperand(0); 1181 SDValue RHS = Op.getOperand(1); 1182 MVT IntVT = MVT::i32; 1183 MVT FltVT = MVT::f32; 1184 1185 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1186 if (LHSSignBits < 9) 1187 return SDValue(); 1188 1189 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1190 if (RHSSignBits < 9) 1191 return SDValue(); 1192 1193 unsigned BitSize = VT.getSizeInBits(); 1194 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1195 unsigned DivBits = BitSize - SignBits; 1196 if (Sign) 1197 ++DivBits; 1198 1199 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1200 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1201 1202 SDValue jq = DAG.getConstant(1, DL, IntVT); 1203 1204 if (Sign) { 1205 // char|short jq = ia ^ ib; 1206 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1207 1208 // jq = jq >> (bitsize - 2) 1209 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1210 DAG.getConstant(BitSize - 2, DL, VT)); 1211 1212 // jq = jq | 0x1 1213 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1214 } 1215 1216 // int ia = (int)LHS; 1217 SDValue ia = LHS; 1218 1219 // int ib, (int)RHS; 1220 SDValue ib = RHS; 1221 1222 // float fa = (float)ia; 1223 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1224 1225 // float fb = (float)ib; 1226 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1227 1228 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1229 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1230 1231 // fq = trunc(fq); 1232 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1233 1234 // float fqneg = -fq; 1235 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1236 1237 // float fr = mad(fqneg, fb, fa); 1238 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1239 1240 // int iq = (int)fq; 1241 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1242 1243 // fr = fabs(fr); 1244 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1245 1246 // fb = fabs(fb); 1247 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1248 1249 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1250 1251 // int cv = fr >= fb; 1252 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1253 1254 // jq = (cv ? jq : 0); 1255 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1256 1257 // dst = iq + jq; 1258 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1259 1260 // Rem needs compensation, it's easier to recompute it 1261 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1262 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1263 1264 // Truncate to number of bits this divide really is. 1265 if (Sign) { 1266 SDValue InRegSize 1267 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1268 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1269 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1270 } else { 1271 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1272 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1273 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1274 } 1275 1276 return DAG.getMergeValues({ Div, Rem }, DL); 1277 } 1278 1279 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1280 SelectionDAG &DAG, 1281 SmallVectorImpl<SDValue> &Results) const { 1282 assert(Op.getValueType() == MVT::i64); 1283 1284 SDLoc DL(Op); 1285 EVT VT = Op.getValueType(); 1286 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1287 1288 SDValue one = DAG.getConstant(1, DL, HalfVT); 1289 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1290 1291 //HiLo split 1292 SDValue LHS = Op.getOperand(0); 1293 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1294 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1295 1296 SDValue RHS = Op.getOperand(1); 1297 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1298 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1299 1300 if (VT == MVT::i64 && 1301 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1302 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1303 1304 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1305 LHS_Lo, RHS_Lo); 1306 1307 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1308 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1309 1310 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1311 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1312 return; 1313 } 1314 1315 // Get Speculative values 1316 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1317 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1318 1319 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1320 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1321 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1322 1323 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1324 SDValue DIV_Lo = zero; 1325 1326 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1327 1328 for (unsigned i = 0; i < halfBitWidth; ++i) { 1329 const unsigned bitPos = halfBitWidth - i - 1; 1330 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1331 // Get value of high bit 1332 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1333 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1334 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1335 1336 // Shift 1337 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1338 // Add LHS high bit 1339 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1340 1341 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1342 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1343 1344 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1345 1346 // Update REM 1347 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1348 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1349 } 1350 1351 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1352 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1353 Results.push_back(DIV); 1354 Results.push_back(REM); 1355 } 1356 1357 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1358 SelectionDAG &DAG) const { 1359 SDLoc DL(Op); 1360 EVT VT = Op.getValueType(); 1361 1362 if (VT == MVT::i64) { 1363 SmallVector<SDValue, 2> Results; 1364 LowerUDIVREM64(Op, DAG, Results); 1365 return DAG.getMergeValues(Results, DL); 1366 } 1367 1368 if (VT == MVT::i32) { 1369 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1370 return Res; 1371 } 1372 1373 SDValue Num = Op.getOperand(0); 1374 SDValue Den = Op.getOperand(1); 1375 1376 // RCP = URECIP(Den) = 2^32 / Den + e 1377 // e is rounding error. 1378 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1379 1380 // RCP_LO = mul(RCP, Den) */ 1381 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1382 1383 // RCP_HI = mulhu (RCP, Den) */ 1384 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1385 1386 // NEG_RCP_LO = -RCP_LO 1387 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1388 RCP_LO); 1389 1390 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1391 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1392 NEG_RCP_LO, RCP_LO, 1393 ISD::SETEQ); 1394 // Calculate the rounding error from the URECIP instruction 1395 // E = mulhu(ABS_RCP_LO, RCP) 1396 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1397 1398 // RCP_A_E = RCP + E 1399 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1400 1401 // RCP_S_E = RCP - E 1402 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1403 1404 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1405 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1406 RCP_A_E, RCP_S_E, 1407 ISD::SETEQ); 1408 // Quotient = mulhu(Tmp0, Num) 1409 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1410 1411 // Num_S_Remainder = Quotient * Den 1412 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1413 1414 // Remainder = Num - Num_S_Remainder 1415 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1416 1417 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1418 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1419 DAG.getConstant(-1, DL, VT), 1420 DAG.getConstant(0, DL, VT), 1421 ISD::SETUGE); 1422 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1423 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1424 Num_S_Remainder, 1425 DAG.getConstant(-1, DL, VT), 1426 DAG.getConstant(0, DL, VT), 1427 ISD::SETUGE); 1428 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1429 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1430 Remainder_GE_Zero); 1431 1432 // Calculate Division result: 1433 1434 // Quotient_A_One = Quotient + 1 1435 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1436 DAG.getConstant(1, DL, VT)); 1437 1438 // Quotient_S_One = Quotient - 1 1439 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1440 DAG.getConstant(1, DL, VT)); 1441 1442 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1443 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1444 Quotient, Quotient_A_One, ISD::SETEQ); 1445 1446 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1447 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1448 Quotient_S_One, Div, ISD::SETEQ); 1449 1450 // Calculate Rem result: 1451 1452 // Remainder_S_Den = Remainder - Den 1453 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1454 1455 // Remainder_A_Den = Remainder + Den 1456 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1457 1458 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1459 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1460 Remainder, Remainder_S_Den, ISD::SETEQ); 1461 1462 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1463 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1464 Remainder_A_Den, Rem, ISD::SETEQ); 1465 SDValue Ops[2] = { 1466 Div, 1467 Rem 1468 }; 1469 return DAG.getMergeValues(Ops, DL); 1470 } 1471 1472 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1473 SelectionDAG &DAG) const { 1474 SDLoc DL(Op); 1475 EVT VT = Op.getValueType(); 1476 1477 SDValue LHS = Op.getOperand(0); 1478 SDValue RHS = Op.getOperand(1); 1479 1480 SDValue Zero = DAG.getConstant(0, DL, VT); 1481 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1482 1483 if (VT == MVT::i32) { 1484 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1485 return Res; 1486 } 1487 1488 if (VT == MVT::i64 && 1489 DAG.ComputeNumSignBits(LHS) > 32 && 1490 DAG.ComputeNumSignBits(RHS) > 32) { 1491 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1492 1493 //HiLo split 1494 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1495 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1496 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1497 LHS_Lo, RHS_Lo); 1498 SDValue Res[2] = { 1499 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1500 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1501 }; 1502 return DAG.getMergeValues(Res, DL); 1503 } 1504 1505 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1506 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1507 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1508 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1509 1510 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1511 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1512 1513 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1514 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1515 1516 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1517 SDValue Rem = Div.getValue(1); 1518 1519 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1520 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1521 1522 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1523 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1524 1525 SDValue Res[2] = { 1526 Div, 1527 Rem 1528 }; 1529 return DAG.getMergeValues(Res, DL); 1530 } 1531 1532 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1533 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1534 SDLoc SL(Op); 1535 EVT VT = Op.getValueType(); 1536 SDValue X = Op.getOperand(0); 1537 SDValue Y = Op.getOperand(1); 1538 1539 // TODO: Should this propagate fast-math-flags? 1540 1541 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1542 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1543 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1544 1545 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1546 } 1547 1548 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1549 SDLoc SL(Op); 1550 SDValue Src = Op.getOperand(0); 1551 1552 // result = trunc(src) 1553 // if (src > 0.0 && src != result) 1554 // result += 1.0 1555 1556 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1557 1558 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1559 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1560 1561 EVT SetCCVT = 1562 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1563 1564 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1565 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1566 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1567 1568 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1569 // TODO: Should this propagate fast-math-flags? 1570 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1571 } 1572 1573 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1574 SelectionDAG &DAG) { 1575 const unsigned FractBits = 52; 1576 const unsigned ExpBits = 11; 1577 1578 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1579 Hi, 1580 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1581 DAG.getConstant(ExpBits, SL, MVT::i32)); 1582 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1583 DAG.getConstant(1023, SL, MVT::i32)); 1584 1585 return Exp; 1586 } 1587 1588 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1589 SDLoc SL(Op); 1590 SDValue Src = Op.getOperand(0); 1591 1592 assert(Op.getValueType() == MVT::f64); 1593 1594 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1595 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1596 1597 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1598 1599 // Extract the upper half, since this is where we will find the sign and 1600 // exponent. 1601 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1602 1603 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1604 1605 const unsigned FractBits = 52; 1606 1607 // Extract the sign bit. 1608 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1609 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1610 1611 // Extend back to to 64-bits. 1612 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1613 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1614 1615 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1616 const SDValue FractMask 1617 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1618 1619 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1620 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1621 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1622 1623 EVT SetCCVT = 1624 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1625 1626 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1627 1628 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1629 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1630 1631 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1632 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1633 1634 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1635 } 1636 1637 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1638 SDLoc SL(Op); 1639 SDValue Src = Op.getOperand(0); 1640 1641 assert(Op.getValueType() == MVT::f64); 1642 1643 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1644 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1645 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1646 1647 // TODO: Should this propagate fast-math-flags? 1648 1649 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1650 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1651 1652 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1653 1654 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1655 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1656 1657 EVT SetCCVT = 1658 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1659 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1660 1661 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1662 } 1663 1664 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1665 // FNEARBYINT and FRINT are the same, except in their handling of FP 1666 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1667 // rint, so just treat them as equivalent. 1668 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1669 } 1670 1671 // XXX - May require not supporting f32 denormals? 1672 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1673 SDLoc SL(Op); 1674 SDValue X = Op.getOperand(0); 1675 1676 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1677 1678 // TODO: Should this propagate fast-math-flags? 1679 1680 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1681 1682 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1683 1684 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1685 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1686 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1687 1688 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1689 1690 EVT SetCCVT = 1691 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1692 1693 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1694 1695 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1696 1697 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1698 } 1699 1700 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1701 SDLoc SL(Op); 1702 SDValue X = Op.getOperand(0); 1703 1704 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1705 1706 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1707 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1708 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1709 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1710 EVT SetCCVT = 1711 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1712 1713 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1714 1715 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1716 1717 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1718 1719 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1720 MVT::i64); 1721 1722 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1723 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1724 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1725 MVT::i64), 1726 Exp); 1727 1728 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1729 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1730 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1731 ISD::SETNE); 1732 1733 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1734 D, DAG.getConstant(0, SL, MVT::i64)); 1735 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1736 1737 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1738 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1739 1740 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1741 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1742 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1743 1744 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1745 ExpEqNegOne, 1746 DAG.getConstantFP(1.0, SL, MVT::f64), 1747 DAG.getConstantFP(0.0, SL, MVT::f64)); 1748 1749 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1750 1751 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1752 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1753 1754 return K; 1755 } 1756 1757 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1758 EVT VT = Op.getValueType(); 1759 1760 if (VT == MVT::f32) 1761 return LowerFROUND32(Op, DAG); 1762 1763 if (VT == MVT::f64) 1764 return LowerFROUND64(Op, DAG); 1765 1766 llvm_unreachable("unhandled type"); 1767 } 1768 1769 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1770 SDLoc SL(Op); 1771 SDValue Src = Op.getOperand(0); 1772 1773 // result = trunc(src); 1774 // if (src < 0.0 && src != result) 1775 // result += -1.0. 1776 1777 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1778 1779 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1780 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1781 1782 EVT SetCCVT = 1783 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1784 1785 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1786 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1787 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1788 1789 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1790 // TODO: Should this propagate fast-math-flags? 1791 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1792 } 1793 1794 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1795 SDLoc SL(Op); 1796 SDValue Src = Op.getOperand(0); 1797 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1798 1799 if (ZeroUndef && Src.getValueType() == MVT::i32) 1800 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1801 1802 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1803 1804 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1805 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1806 1807 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1808 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1809 1810 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1811 *DAG.getContext(), MVT::i32); 1812 1813 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1814 1815 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1816 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1817 1818 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1819 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1820 1821 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1822 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1823 1824 if (!ZeroUndef) { 1825 // Test if the full 64-bit input is zero. 1826 1827 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1828 // which we probably don't want. 1829 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1830 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1831 1832 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1833 // with the same cycles, otherwise it is slower. 1834 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1835 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1836 1837 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1838 1839 // The instruction returns -1 for 0 input, but the defined intrinsic 1840 // behavior is to return the number of bits. 1841 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1842 SrcIsZero, Bits32, NewCtlz); 1843 } 1844 1845 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1846 } 1847 1848 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1849 bool Signed) const { 1850 // Unsigned 1851 // cul2f(ulong u) 1852 //{ 1853 // uint lz = clz(u); 1854 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1855 // u = (u << lz) & 0x7fffffffffffffffUL; 1856 // ulong t = u & 0xffffffffffUL; 1857 // uint v = (e << 23) | (uint)(u >> 40); 1858 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1859 // return as_float(v + r); 1860 //} 1861 // Signed 1862 // cl2f(long l) 1863 //{ 1864 // long s = l >> 63; 1865 // float r = cul2f((l + s) ^ s); 1866 // return s ? -r : r; 1867 //} 1868 1869 SDLoc SL(Op); 1870 SDValue Src = Op.getOperand(0); 1871 SDValue L = Src; 1872 1873 SDValue S; 1874 if (Signed) { 1875 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1876 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1877 1878 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1879 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1880 } 1881 1882 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1883 *DAG.getContext(), MVT::f32); 1884 1885 1886 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1887 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1888 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1889 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1890 1891 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1892 SDValue E = DAG.getSelect(SL, MVT::i32, 1893 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1894 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1895 ZeroI32); 1896 1897 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1898 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1899 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1900 1901 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1902 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1903 1904 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1905 U, DAG.getConstant(40, SL, MVT::i64)); 1906 1907 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1908 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1909 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1910 1911 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1912 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1913 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1914 1915 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1916 1917 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1918 1919 SDValue R = DAG.getSelect(SL, MVT::i32, 1920 RCmp, 1921 One, 1922 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1923 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1924 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1925 1926 if (!Signed) 1927 return R; 1928 1929 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1930 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1931 } 1932 1933 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1934 bool Signed) const { 1935 SDLoc SL(Op); 1936 SDValue Src = Op.getOperand(0); 1937 1938 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1939 1940 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1941 DAG.getConstant(0, SL, MVT::i32)); 1942 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1943 DAG.getConstant(1, SL, MVT::i32)); 1944 1945 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 1946 SL, MVT::f64, Hi); 1947 1948 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 1949 1950 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 1951 DAG.getConstant(32, SL, MVT::i32)); 1952 // TODO: Should this propagate fast-math-flags? 1953 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 1954 } 1955 1956 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 1957 SelectionDAG &DAG) const { 1958 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1959 "operation should be legal"); 1960 1961 // TODO: Factor out code common with LowerSINT_TO_FP. 1962 1963 EVT DestVT = Op.getValueType(); 1964 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 1965 SDLoc DL(Op); 1966 SDValue Src = Op.getOperand(0); 1967 1968 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 1969 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 1970 SDValue FPRound = 1971 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 1972 1973 return FPRound; 1974 } 1975 1976 if (DestVT == MVT::f32) 1977 return LowerINT_TO_FP32(Op, DAG, false); 1978 1979 assert(DestVT == MVT::f64); 1980 return LowerINT_TO_FP64(Op, DAG, false); 1981 } 1982 1983 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 1984 SelectionDAG &DAG) const { 1985 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1986 "operation should be legal"); 1987 1988 // TODO: Factor out code common with LowerUINT_TO_FP. 1989 1990 EVT DestVT = Op.getValueType(); 1991 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 1992 SDLoc DL(Op); 1993 SDValue Src = Op.getOperand(0); 1994 1995 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 1996 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 1997 SDValue FPRound = 1998 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 1999 2000 return FPRound; 2001 } 2002 2003 if (DestVT == MVT::f32) 2004 return LowerINT_TO_FP32(Op, DAG, true); 2005 2006 assert(DestVT == MVT::f64); 2007 return LowerINT_TO_FP64(Op, DAG, true); 2008 } 2009 2010 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2011 bool Signed) const { 2012 SDLoc SL(Op); 2013 2014 SDValue Src = Op.getOperand(0); 2015 2016 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2017 2018 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2019 MVT::f64); 2020 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2021 MVT::f64); 2022 // TODO: Should this propagate fast-math-flags? 2023 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2024 2025 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2026 2027 2028 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2029 2030 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2031 MVT::i32, FloorMul); 2032 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2033 2034 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2035 2036 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2037 } 2038 2039 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2040 2041 if (getTargetMachine().Options.UnsafeFPMath) { 2042 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2043 return SDValue(); 2044 } 2045 2046 SDLoc DL(Op); 2047 SDValue N0 = Op.getOperand(0); 2048 assert (N0.getSimpleValueType() == MVT::f64); 2049 2050 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2051 const unsigned ExpMask = 0x7ff; 2052 const unsigned ExpBiasf64 = 1023; 2053 const unsigned ExpBiasf16 = 15; 2054 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2055 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2056 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2057 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2058 DAG.getConstant(32, DL, MVT::i64)); 2059 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2060 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2061 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2062 DAG.getConstant(20, DL, MVT::i64)); 2063 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2064 DAG.getConstant(ExpMask, DL, MVT::i32)); 2065 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2066 // add the f16 bias (15) to get the biased exponent for the f16 format. 2067 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2068 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2069 2070 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2071 DAG.getConstant(8, DL, MVT::i32)); 2072 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2073 DAG.getConstant(0xffe, DL, MVT::i32)); 2074 2075 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2076 DAG.getConstant(0x1ff, DL, MVT::i32)); 2077 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2078 2079 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2080 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2081 2082 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2083 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2084 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2085 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2086 2087 // N = M | (E << 12); 2088 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2089 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2090 DAG.getConstant(12, DL, MVT::i32))); 2091 2092 // B = clamp(1-E, 0, 13); 2093 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2094 One, E); 2095 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2096 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2097 DAG.getConstant(13, DL, MVT::i32)); 2098 2099 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2100 DAG.getConstant(0x1000, DL, MVT::i32)); 2101 2102 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2103 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2104 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2105 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2106 2107 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2108 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2109 DAG.getConstant(0x7, DL, MVT::i32)); 2110 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2111 DAG.getConstant(2, DL, MVT::i32)); 2112 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2113 One, Zero, ISD::SETEQ); 2114 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2115 One, Zero, ISD::SETGT); 2116 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2117 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2118 2119 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2120 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2121 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2122 I, V, ISD::SETEQ); 2123 2124 // Extract the sign bit. 2125 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2126 DAG.getConstant(16, DL, MVT::i32)); 2127 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2128 DAG.getConstant(0x8000, DL, MVT::i32)); 2129 2130 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2131 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2132 } 2133 2134 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2135 SelectionDAG &DAG) const { 2136 SDValue Src = Op.getOperand(0); 2137 2138 // TODO: Factor out code common with LowerFP_TO_UINT. 2139 2140 EVT SrcVT = Src.getValueType(); 2141 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2142 SDLoc DL(Op); 2143 2144 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2145 SDValue FpToInt32 = 2146 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2147 2148 return FpToInt32; 2149 } 2150 2151 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2152 return LowerFP64_TO_INT(Op, DAG, true); 2153 2154 return SDValue(); 2155 } 2156 2157 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2158 SelectionDAG &DAG) const { 2159 SDValue Src = Op.getOperand(0); 2160 2161 // TODO: Factor out code common with LowerFP_TO_SINT. 2162 2163 EVT SrcVT = Src.getValueType(); 2164 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2165 SDLoc DL(Op); 2166 2167 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2168 SDValue FpToInt32 = 2169 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2170 2171 return FpToInt32; 2172 } 2173 2174 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2175 return LowerFP64_TO_INT(Op, DAG, false); 2176 2177 return SDValue(); 2178 } 2179 2180 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2181 SelectionDAG &DAG) const { 2182 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2183 MVT VT = Op.getSimpleValueType(); 2184 MVT ScalarVT = VT.getScalarType(); 2185 2186 assert(VT.isVector()); 2187 2188 SDValue Src = Op.getOperand(0); 2189 SDLoc DL(Op); 2190 2191 // TODO: Don't scalarize on Evergreen? 2192 unsigned NElts = VT.getVectorNumElements(); 2193 SmallVector<SDValue, 8> Args; 2194 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2195 2196 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2197 for (unsigned I = 0; I < NElts; ++I) 2198 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2199 2200 return DAG.getBuildVector(VT, DL, Args); 2201 } 2202 2203 //===----------------------------------------------------------------------===// 2204 // Custom DAG optimizations 2205 //===----------------------------------------------------------------------===// 2206 2207 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2208 APInt KnownZero, KnownOne; 2209 EVT VT = Op.getValueType(); 2210 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2211 2212 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2213 } 2214 2215 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2216 EVT VT = Op.getValueType(); 2217 2218 // In order for this to be a signed 24-bit value, bit 23, must 2219 // be a sign bit. 2220 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2221 // as unsigned 24-bit values. 2222 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2223 } 2224 2225 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2226 TargetLowering::DAGCombinerInfo &DCI) { 2227 2228 SelectionDAG &DAG = DCI.DAG; 2229 SDValue Op = Node24->getOperand(OpIdx); 2230 EVT VT = Op.getValueType(); 2231 2232 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2233 APInt KnownZero, KnownOne; 2234 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2235 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2236 return true; 2237 2238 return false; 2239 } 2240 2241 template <typename IntTy> 2242 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2243 uint32_t Width, const SDLoc &DL) { 2244 if (Width + Offset < 32) { 2245 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2246 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2247 return DAG.getConstant(Result, DL, MVT::i32); 2248 } 2249 2250 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2251 } 2252 2253 static bool hasVolatileUser(SDNode *Val) { 2254 for (SDNode *U : Val->uses()) { 2255 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2256 if (M->isVolatile()) 2257 return true; 2258 } 2259 } 2260 2261 return false; 2262 } 2263 2264 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2265 // i32 vectors are the canonical memory type. 2266 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2267 return false; 2268 2269 if (!VT.isByteSized()) 2270 return false; 2271 2272 unsigned Size = VT.getStoreSize(); 2273 2274 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2275 return false; 2276 2277 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2278 return false; 2279 2280 return true; 2281 } 2282 2283 // Replace load of an illegal type with a store of a bitcast to a friendlier 2284 // type. 2285 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2286 DAGCombinerInfo &DCI) const { 2287 if (!DCI.isBeforeLegalize()) 2288 return SDValue(); 2289 2290 LoadSDNode *LN = cast<LoadSDNode>(N); 2291 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2292 return SDValue(); 2293 2294 SDLoc SL(N); 2295 SelectionDAG &DAG = DCI.DAG; 2296 EVT VT = LN->getMemoryVT(); 2297 2298 unsigned Size = VT.getStoreSize(); 2299 unsigned Align = LN->getAlignment(); 2300 if (Align < Size && isTypeLegal(VT)) { 2301 bool IsFast; 2302 unsigned AS = LN->getAddressSpace(); 2303 2304 // Expand unaligned loads earlier than legalization. Due to visitation order 2305 // problems during legalization, the emitted instructions to pack and unpack 2306 // the bytes again are not eliminated in the case of an unaligned copy. 2307 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2308 if (VT.isVector()) 2309 return scalarizeVectorLoad(LN, DAG); 2310 2311 SDValue Ops[2]; 2312 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2313 return DAG.getMergeValues(Ops, SDLoc(N)); 2314 } 2315 2316 if (!IsFast) 2317 return SDValue(); 2318 } 2319 2320 if (!shouldCombineMemoryType(VT)) 2321 return SDValue(); 2322 2323 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2324 2325 SDValue NewLoad 2326 = DAG.getLoad(NewVT, SL, LN->getChain(), 2327 LN->getBasePtr(), LN->getMemOperand()); 2328 2329 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2330 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2331 return SDValue(N, 0); 2332 } 2333 2334 // Replace store of an illegal type with a store of a bitcast to a friendlier 2335 // type. 2336 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2337 DAGCombinerInfo &DCI) const { 2338 if (!DCI.isBeforeLegalize()) 2339 return SDValue(); 2340 2341 StoreSDNode *SN = cast<StoreSDNode>(N); 2342 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2343 return SDValue(); 2344 2345 EVT VT = SN->getMemoryVT(); 2346 unsigned Size = VT.getStoreSize(); 2347 2348 SDLoc SL(N); 2349 SelectionDAG &DAG = DCI.DAG; 2350 unsigned Align = SN->getAlignment(); 2351 if (Align < Size && isTypeLegal(VT)) { 2352 bool IsFast; 2353 unsigned AS = SN->getAddressSpace(); 2354 2355 // Expand unaligned stores earlier than legalization. Due to visitation 2356 // order problems during legalization, the emitted instructions to pack and 2357 // unpack the bytes again are not eliminated in the case of an unaligned 2358 // copy. 2359 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2360 if (VT.isVector()) 2361 return scalarizeVectorStore(SN, DAG); 2362 2363 return expandUnalignedStore(SN, DAG); 2364 } 2365 2366 if (!IsFast) 2367 return SDValue(); 2368 } 2369 2370 if (!shouldCombineMemoryType(VT)) 2371 return SDValue(); 2372 2373 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2374 SDValue Val = SN->getValue(); 2375 2376 //DCI.AddToWorklist(Val.getNode()); 2377 2378 bool OtherUses = !Val.hasOneUse(); 2379 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2380 if (OtherUses) { 2381 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2382 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2383 } 2384 2385 return DAG.getStore(SN->getChain(), SL, CastVal, 2386 SN->getBasePtr(), SN->getMemOperand()); 2387 } 2388 2389 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2390 /// binary operation \p Opc to it with the corresponding constant operands. 2391 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2392 DAGCombinerInfo &DCI, const SDLoc &SL, 2393 unsigned Opc, SDValue LHS, 2394 uint32_t ValLo, uint32_t ValHi) const { 2395 SelectionDAG &DAG = DCI.DAG; 2396 SDValue Lo, Hi; 2397 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2398 2399 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2400 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2401 2402 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2403 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2404 2405 // Re-visit the ands. It's possible we eliminated one of them and it could 2406 // simplify the vector. 2407 DCI.AddToWorklist(Lo.getNode()); 2408 DCI.AddToWorklist(Hi.getNode()); 2409 2410 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2411 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2412 } 2413 2414 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2415 DAGCombinerInfo &DCI) const { 2416 if (N->getValueType(0) != MVT::i64) 2417 return SDValue(); 2418 2419 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2420 2421 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2422 // common case, splitting this into a move and a 32-bit shift is faster and 2423 // the same code size. 2424 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2425 if (!RHS) 2426 return SDValue(); 2427 2428 unsigned RHSVal = RHS->getZExtValue(); 2429 if (RHSVal < 32) 2430 return SDValue(); 2431 2432 SDValue LHS = N->getOperand(0); 2433 2434 SDLoc SL(N); 2435 SelectionDAG &DAG = DCI.DAG; 2436 2437 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2438 2439 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2440 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2441 2442 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2443 2444 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2445 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2446 } 2447 2448 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2449 DAGCombinerInfo &DCI) const { 2450 if (N->getValueType(0) != MVT::i64) 2451 return SDValue(); 2452 2453 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2454 if (!RHS) 2455 return SDValue(); 2456 2457 SelectionDAG &DAG = DCI.DAG; 2458 SDLoc SL(N); 2459 unsigned RHSVal = RHS->getZExtValue(); 2460 2461 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2462 if (RHSVal == 32) { 2463 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2464 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2465 DAG.getConstant(31, SL, MVT::i32)); 2466 2467 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2468 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2469 } 2470 2471 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2472 if (RHSVal == 63) { 2473 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2474 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2475 DAG.getConstant(31, SL, MVT::i32)); 2476 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2477 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2478 } 2479 2480 return SDValue(); 2481 } 2482 2483 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2484 DAGCombinerInfo &DCI) const { 2485 if (N->getValueType(0) != MVT::i64) 2486 return SDValue(); 2487 2488 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2489 if (!RHS) 2490 return SDValue(); 2491 2492 unsigned ShiftAmt = RHS->getZExtValue(); 2493 if (ShiftAmt < 32) 2494 return SDValue(); 2495 2496 // srl i64:x, C for C >= 32 2497 // => 2498 // build_pair (srl hi_32(x), C - 32), 0 2499 2500 SelectionDAG &DAG = DCI.DAG; 2501 SDLoc SL(N); 2502 2503 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2504 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2505 2506 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2507 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2508 VecOp, One); 2509 2510 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2511 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2512 2513 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2514 2515 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2516 } 2517 2518 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2519 // instructions. If we only match on the legalized i64 mul expansion, 2520 // SimplifyDemandedBits will be unable to remove them because there will be 2521 // multiple uses due to the separate mul + mulh[su]. 2522 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2523 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2524 if (Size <= 32) { 2525 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2526 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2527 } 2528 2529 // Because we want to eliminate extension instructions before the 2530 // operation, we need to create a single user here (i.e. not the separate 2531 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2532 2533 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2534 2535 SDValue Mul = DAG.getNode(MulOpc, SL, 2536 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2537 2538 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2539 Mul.getValue(0), Mul.getValue(1)); 2540 } 2541 2542 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2543 DAGCombinerInfo &DCI) const { 2544 EVT VT = N->getValueType(0); 2545 2546 unsigned Size = VT.getSizeInBits(); 2547 if (VT.isVector() || Size > 64) 2548 return SDValue(); 2549 2550 // There are i16 integer mul/mad. 2551 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2552 return SDValue(); 2553 2554 SelectionDAG &DAG = DCI.DAG; 2555 SDLoc DL(N); 2556 2557 SDValue N0 = N->getOperand(0); 2558 SDValue N1 = N->getOperand(1); 2559 SDValue Mul; 2560 2561 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2562 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2563 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2564 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2565 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2566 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2567 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2568 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2569 } else { 2570 return SDValue(); 2571 } 2572 2573 // We need to use sext even for MUL_U24, because MUL_U24 is used 2574 // for signed multiply of 8 and 16-bit types. 2575 return DAG.getSExtOrTrunc(Mul, DL, VT); 2576 } 2577 2578 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2579 DAGCombinerInfo &DCI) const { 2580 EVT VT = N->getValueType(0); 2581 2582 if (!Subtarget->hasMulI24() || VT.isVector()) 2583 return SDValue(); 2584 2585 SelectionDAG &DAG = DCI.DAG; 2586 SDLoc DL(N); 2587 2588 SDValue N0 = N->getOperand(0); 2589 SDValue N1 = N->getOperand(1); 2590 2591 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2592 return SDValue(); 2593 2594 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2595 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2596 2597 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2598 DCI.AddToWorklist(Mulhi.getNode()); 2599 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2600 } 2601 2602 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2603 DAGCombinerInfo &DCI) const { 2604 EVT VT = N->getValueType(0); 2605 2606 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2607 return SDValue(); 2608 2609 SelectionDAG &DAG = DCI.DAG; 2610 SDLoc DL(N); 2611 2612 SDValue N0 = N->getOperand(0); 2613 SDValue N1 = N->getOperand(1); 2614 2615 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2616 return SDValue(); 2617 2618 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2619 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2620 2621 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2622 DCI.AddToWorklist(Mulhi.getNode()); 2623 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2624 } 2625 2626 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2627 SDNode *N, DAGCombinerInfo &DCI) const { 2628 SelectionDAG &DAG = DCI.DAG; 2629 2630 // Simplify demanded bits before splitting into multiple users. 2631 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2632 return SDValue(); 2633 2634 SDValue N0 = N->getOperand(0); 2635 SDValue N1 = N->getOperand(1); 2636 2637 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2638 2639 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2640 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2641 2642 SDLoc SL(N); 2643 2644 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2645 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2646 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2647 } 2648 2649 static bool isNegativeOne(SDValue Val) { 2650 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2651 return C->isAllOnesValue(); 2652 return false; 2653 } 2654 2655 static bool isCtlzOpc(unsigned Opc) { 2656 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2657 } 2658 2659 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2660 SDValue Op, 2661 const SDLoc &DL) const { 2662 EVT VT = Op.getValueType(); 2663 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2664 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2665 LegalVT != MVT::i16)) 2666 return SDValue(); 2667 2668 if (VT != MVT::i32) 2669 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2670 2671 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2672 if (VT != MVT::i32) 2673 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2674 2675 return FFBH; 2676 } 2677 2678 // The native instructions return -1 on 0 input. Optimize out a select that 2679 // produces -1 on 0. 2680 // 2681 // TODO: If zero is not undef, we could also do this if the output is compared 2682 // against the bitwidth. 2683 // 2684 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2685 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2686 SDValue LHS, SDValue RHS, 2687 DAGCombinerInfo &DCI) const { 2688 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2689 if (!CmpRhs || !CmpRhs->isNullValue()) 2690 return SDValue(); 2691 2692 SelectionDAG &DAG = DCI.DAG; 2693 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2694 SDValue CmpLHS = Cond.getOperand(0); 2695 2696 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2697 if (CCOpcode == ISD::SETEQ && 2698 isCtlzOpc(RHS.getOpcode()) && 2699 RHS.getOperand(0) == CmpLHS && 2700 isNegativeOne(LHS)) { 2701 return getFFBH_U32(DAG, CmpLHS, SL); 2702 } 2703 2704 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2705 if (CCOpcode == ISD::SETNE && 2706 isCtlzOpc(LHS.getOpcode()) && 2707 LHS.getOperand(0) == CmpLHS && 2708 isNegativeOne(RHS)) { 2709 return getFFBH_U32(DAG, CmpLHS, SL); 2710 } 2711 2712 return SDValue(); 2713 } 2714 2715 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 2716 unsigned Op, 2717 const SDLoc &SL, 2718 SDValue Cond, 2719 SDValue N1, 2720 SDValue N2) { 2721 SelectionDAG &DAG = DCI.DAG; 2722 EVT VT = N1.getValueType(); 2723 2724 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 2725 N1.getOperand(0), N2.getOperand(0)); 2726 DCI.AddToWorklist(NewSelect.getNode()); 2727 return DAG.getNode(Op, SL, VT, NewSelect); 2728 } 2729 2730 // Pull a free FP operation out of a select so it may fold into uses. 2731 // 2732 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 2733 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 2734 // 2735 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 2736 // select c, (fabs x), +k -> fabs (select c, x, k) 2737 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 2738 SDValue N) { 2739 SelectionDAG &DAG = DCI.DAG; 2740 SDValue Cond = N.getOperand(0); 2741 SDValue LHS = N.getOperand(1); 2742 SDValue RHS = N.getOperand(2); 2743 2744 EVT VT = N.getValueType(); 2745 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 2746 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 2747 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 2748 SDLoc(N), Cond, LHS, RHS); 2749 } 2750 2751 bool Inv = false; 2752 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 2753 std::swap(LHS, RHS); 2754 Inv = true; 2755 } 2756 2757 // TODO: Support vector constants. 2758 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 2759 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 2760 SDLoc SL(N); 2761 // If one side is an fneg/fabs and the other is a constant, we can push the 2762 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 2763 SDValue NewLHS = LHS.getOperand(0); 2764 SDValue NewRHS = RHS; 2765 2766 // Careful: if the neg can be folded up, don't try to pull it back down. 2767 bool ShouldFoldNeg = true; 2768 2769 if (NewLHS.hasOneUse()) { 2770 unsigned Opc = NewLHS.getOpcode(); 2771 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 2772 ShouldFoldNeg = false; 2773 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 2774 ShouldFoldNeg = false; 2775 } 2776 2777 if (ShouldFoldNeg) { 2778 if (LHS.getOpcode() == ISD::FNEG) 2779 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2780 else if (CRHS->isNegative()) 2781 return SDValue(); 2782 2783 if (Inv) 2784 std::swap(NewLHS, NewRHS); 2785 2786 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 2787 Cond, NewLHS, NewRHS); 2788 DCI.AddToWorklist(NewSelect.getNode()); 2789 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 2790 } 2791 } 2792 2793 return SDValue(); 2794 } 2795 2796 2797 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2798 DAGCombinerInfo &DCI) const { 2799 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 2800 return Folded; 2801 2802 SDValue Cond = N->getOperand(0); 2803 if (Cond.getOpcode() != ISD::SETCC) 2804 return SDValue(); 2805 2806 EVT VT = N->getValueType(0); 2807 SDValue LHS = Cond.getOperand(0); 2808 SDValue RHS = Cond.getOperand(1); 2809 SDValue CC = Cond.getOperand(2); 2810 2811 SDValue True = N->getOperand(1); 2812 SDValue False = N->getOperand(2); 2813 2814 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 2815 SelectionDAG &DAG = DCI.DAG; 2816 if ((DAG.isConstantValueOfAnyType(True) || 2817 DAG.isConstantValueOfAnyType(True)) && 2818 (!DAG.isConstantValueOfAnyType(False) && 2819 !DAG.isConstantValueOfAnyType(False))) { 2820 // Swap cmp + select pair to move constant to false input. 2821 // This will allow using VOPC cndmasks more often. 2822 // select (setcc x, y), k, x -> select (setcc y, x) x, x 2823 2824 SDLoc SL(N); 2825 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 2826 LHS.getValueType().isInteger()); 2827 2828 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 2829 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 2830 } 2831 2832 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 2833 SDValue MinMax 2834 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2835 // Revisit this node so we can catch min3/max3/med3 patterns. 2836 //DCI.AddToWorklist(MinMax.getNode()); 2837 return MinMax; 2838 } 2839 } 2840 2841 // There's no reason to not do this if the condition has other uses. 2842 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2843 } 2844 2845 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 2846 DAGCombinerInfo &DCI) const { 2847 SelectionDAG &DAG = DCI.DAG; 2848 SDValue N0 = N->getOperand(0); 2849 EVT VT = N->getValueType(0); 2850 2851 unsigned Opc = N0.getOpcode(); 2852 2853 // If the input has multiple uses and we can either fold the negate down, or 2854 // the other uses cannot, give up. This both prevents unprofitable 2855 // transformations and infinite loops: we won't repeatedly try to fold around 2856 // a negate that has no 'good' form. 2857 // 2858 // TODO: Check users can fold 2859 if (fnegFoldsIntoOp(Opc) && !N0.hasOneUse()) 2860 return SDValue(); 2861 2862 SDLoc SL(N); 2863 switch (Opc) { 2864 case ISD::FADD: { 2865 if (!mayIgnoreSignedZero(N0)) 2866 return SDValue(); 2867 2868 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 2869 SDValue LHS = N0.getOperand(0); 2870 SDValue RHS = N0.getOperand(1); 2871 2872 if (LHS.getOpcode() != ISD::FNEG) 2873 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 2874 else 2875 LHS = LHS.getOperand(0); 2876 2877 if (RHS.getOpcode() != ISD::FNEG) 2878 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2879 else 2880 RHS = RHS.getOperand(0); 2881 2882 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 2883 if (!N0.hasOneUse()) 2884 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 2885 return Res; 2886 } 2887 case ISD::FMUL: 2888 case AMDGPUISD::FMUL_LEGACY: { 2889 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 2890 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 2891 SDValue LHS = N0.getOperand(0); 2892 SDValue RHS = N0.getOperand(1); 2893 2894 if (LHS.getOpcode() == ISD::FNEG) 2895 LHS = LHS.getOperand(0); 2896 else if (RHS.getOpcode() == ISD::FNEG) 2897 RHS = RHS.getOperand(0); 2898 else 2899 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2900 2901 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 2902 if (!N0.hasOneUse()) 2903 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 2904 return Res; 2905 } 2906 case ISD::FMA: 2907 case ISD::FMAD: { 2908 if (!mayIgnoreSignedZero(N0)) 2909 return SDValue(); 2910 2911 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 2912 SDValue LHS = N0.getOperand(0); 2913 SDValue MHS = N0.getOperand(1); 2914 SDValue RHS = N0.getOperand(2); 2915 2916 if (LHS.getOpcode() == ISD::FNEG) 2917 LHS = LHS.getOperand(0); 2918 else if (MHS.getOpcode() == ISD::FNEG) 2919 MHS = MHS.getOperand(0); 2920 else 2921 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 2922 2923 if (RHS.getOpcode() != ISD::FNEG) 2924 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2925 else 2926 RHS = RHS.getOperand(0); 2927 2928 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 2929 if (!N0.hasOneUse()) 2930 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 2931 return Res; 2932 } 2933 case ISD::FP_EXTEND: 2934 case ISD::FTRUNC: 2935 case ISD::FRINT: 2936 case ISD::FNEARBYINT: // XXX - Should fround be handled? 2937 case ISD::FSIN: 2938 case AMDGPUISD::RCP: 2939 case AMDGPUISD::RCP_LEGACY: 2940 case AMDGPUISD::SIN_HW: { 2941 SDValue CvtSrc = N0.getOperand(0); 2942 if (CvtSrc.getOpcode() == ISD::FNEG) { 2943 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 2944 // (fneg (rcp (fneg x))) -> (rcp x) 2945 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 2946 } 2947 2948 if (!N0.hasOneUse()) 2949 return SDValue(); 2950 2951 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 2952 // (fneg (rcp x)) -> (rcp (fneg x)) 2953 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 2954 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 2955 } 2956 case ISD::FP_ROUND: { 2957 SDValue CvtSrc = N0.getOperand(0); 2958 2959 if (CvtSrc.getOpcode() == ISD::FNEG) { 2960 // (fneg (fp_round (fneg x))) -> (fp_round x) 2961 return DAG.getNode(ISD::FP_ROUND, SL, VT, 2962 CvtSrc.getOperand(0), N0.getOperand(1)); 2963 } 2964 2965 if (!N0.hasOneUse()) 2966 return SDValue(); 2967 2968 // (fneg (fp_round x)) -> (fp_round (fneg x)) 2969 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 2970 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 2971 } 2972 case ISD::FP16_TO_FP: { 2973 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 2974 // f16, but legalization of f16 fneg ends up pulling it out of the source. 2975 // Put the fneg back as a legal source operation that can be matched later. 2976 SDLoc SL(N); 2977 2978 SDValue Src = N0.getOperand(0); 2979 EVT SrcVT = Src.getValueType(); 2980 2981 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 2982 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 2983 DAG.getConstant(0x8000, SL, SrcVT)); 2984 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 2985 } 2986 default: 2987 return SDValue(); 2988 } 2989 } 2990 2991 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 2992 DAGCombinerInfo &DCI) const { 2993 SelectionDAG &DAG = DCI.DAG; 2994 SDValue N0 = N->getOperand(0); 2995 2996 if (!N0.hasOneUse()) 2997 return SDValue(); 2998 2999 switch (N0.getOpcode()) { 3000 case ISD::FP16_TO_FP: { 3001 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3002 SDLoc SL(N); 3003 SDValue Src = N0.getOperand(0); 3004 EVT SrcVT = Src.getValueType(); 3005 3006 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3007 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3008 DAG.getConstant(0x7fff, SL, SrcVT)); 3009 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3010 } 3011 default: 3012 return SDValue(); 3013 } 3014 } 3015 3016 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3017 DAGCombinerInfo &DCI) const { 3018 SelectionDAG &DAG = DCI.DAG; 3019 SDLoc DL(N); 3020 3021 switch(N->getOpcode()) { 3022 default: 3023 break; 3024 case ISD::BITCAST: { 3025 EVT DestVT = N->getValueType(0); 3026 3027 // Push casts through vector builds. This helps avoid emitting a large 3028 // number of copies when materializing floating point vector constants. 3029 // 3030 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3031 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3032 if (DestVT.isVector()) { 3033 SDValue Src = N->getOperand(0); 3034 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3035 EVT SrcVT = Src.getValueType(); 3036 unsigned NElts = DestVT.getVectorNumElements(); 3037 3038 if (SrcVT.getVectorNumElements() == NElts) { 3039 EVT DestEltVT = DestVT.getVectorElementType(); 3040 3041 SmallVector<SDValue, 8> CastedElts; 3042 SDLoc SL(N); 3043 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3044 SDValue Elt = Src.getOperand(I); 3045 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3046 } 3047 3048 return DAG.getBuildVector(DestVT, SL, CastedElts); 3049 } 3050 } 3051 } 3052 3053 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3054 break; 3055 3056 // Fold bitcasts of constants. 3057 // 3058 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3059 // TODO: Generalize and move to DAGCombiner 3060 SDValue Src = N->getOperand(0); 3061 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3062 assert(Src.getValueType() == MVT::i64); 3063 SDLoc SL(N); 3064 uint64_t CVal = C->getZExtValue(); 3065 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3066 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3067 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3068 } 3069 3070 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3071 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3072 SDLoc SL(N); 3073 uint64_t CVal = Val.getZExtValue(); 3074 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3075 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3076 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3077 3078 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3079 } 3080 3081 break; 3082 } 3083 case ISD::SHL: { 3084 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3085 break; 3086 3087 return performShlCombine(N, DCI); 3088 } 3089 case ISD::SRL: { 3090 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3091 break; 3092 3093 return performSrlCombine(N, DCI); 3094 } 3095 case ISD::SRA: { 3096 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3097 break; 3098 3099 return performSraCombine(N, DCI); 3100 } 3101 case ISD::MUL: 3102 return performMulCombine(N, DCI); 3103 case ISD::MULHS: 3104 return performMulhsCombine(N, DCI); 3105 case ISD::MULHU: 3106 return performMulhuCombine(N, DCI); 3107 case AMDGPUISD::MUL_I24: 3108 case AMDGPUISD::MUL_U24: 3109 case AMDGPUISD::MULHI_I24: 3110 case AMDGPUISD::MULHI_U24: { 3111 // If the first call to simplify is successfull, then N may end up being 3112 // deleted, so we shouldn't call simplifyI24 again. 3113 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3114 return SDValue(); 3115 } 3116 case AMDGPUISD::MUL_LOHI_I24: 3117 case AMDGPUISD::MUL_LOHI_U24: 3118 return performMulLoHi24Combine(N, DCI); 3119 case ISD::SELECT: 3120 return performSelectCombine(N, DCI); 3121 case ISD::FNEG: 3122 return performFNegCombine(N, DCI); 3123 case ISD::FABS: 3124 return performFAbsCombine(N, DCI); 3125 case AMDGPUISD::BFE_I32: 3126 case AMDGPUISD::BFE_U32: { 3127 assert(!N->getValueType(0).isVector() && 3128 "Vector handling of BFE not implemented"); 3129 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3130 if (!Width) 3131 break; 3132 3133 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3134 if (WidthVal == 0) 3135 return DAG.getConstant(0, DL, MVT::i32); 3136 3137 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3138 if (!Offset) 3139 break; 3140 3141 SDValue BitsFrom = N->getOperand(0); 3142 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3143 3144 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3145 3146 if (OffsetVal == 0) { 3147 // This is already sign / zero extended, so try to fold away extra BFEs. 3148 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3149 3150 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3151 if (OpSignBits >= SignBits) 3152 return BitsFrom; 3153 3154 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3155 if (Signed) { 3156 // This is a sign_extend_inreg. Replace it to take advantage of existing 3157 // DAG Combines. If not eliminated, we will match back to BFE during 3158 // selection. 3159 3160 // TODO: The sext_inreg of extended types ends, although we can could 3161 // handle them in a single BFE. 3162 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3163 DAG.getValueType(SmallVT)); 3164 } 3165 3166 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3167 } 3168 3169 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3170 if (Signed) { 3171 return constantFoldBFE<int32_t>(DAG, 3172 CVal->getSExtValue(), 3173 OffsetVal, 3174 WidthVal, 3175 DL); 3176 } 3177 3178 return constantFoldBFE<uint32_t>(DAG, 3179 CVal->getZExtValue(), 3180 OffsetVal, 3181 WidthVal, 3182 DL); 3183 } 3184 3185 if ((OffsetVal + WidthVal) >= 32) { 3186 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3187 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3188 BitsFrom, ShiftVal); 3189 } 3190 3191 if (BitsFrom.hasOneUse()) { 3192 APInt Demanded = APInt::getBitsSet(32, 3193 OffsetVal, 3194 OffsetVal + WidthVal); 3195 3196 APInt KnownZero, KnownOne; 3197 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3198 !DCI.isBeforeLegalizeOps()); 3199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3200 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 3201 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 3202 KnownZero, KnownOne, TLO)) { 3203 DCI.CommitTargetLoweringOpt(TLO); 3204 } 3205 } 3206 3207 break; 3208 } 3209 case ISD::LOAD: 3210 return performLoadCombine(N, DCI); 3211 case ISD::STORE: 3212 return performStoreCombine(N, DCI); 3213 } 3214 return SDValue(); 3215 } 3216 3217 //===----------------------------------------------------------------------===// 3218 // Helper functions 3219 //===----------------------------------------------------------------------===// 3220 3221 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3222 const TargetRegisterClass *RC, 3223 unsigned Reg, EVT VT) const { 3224 MachineFunction &MF = DAG.getMachineFunction(); 3225 MachineRegisterInfo &MRI = MF.getRegInfo(); 3226 unsigned VirtualRegister; 3227 if (!MRI.isLiveIn(Reg)) { 3228 VirtualRegister = MRI.createVirtualRegister(RC); 3229 MRI.addLiveIn(Reg, VirtualRegister); 3230 } else { 3231 VirtualRegister = MRI.getLiveInVirtReg(Reg); 3232 } 3233 return DAG.getRegister(VirtualRegister, VT); 3234 } 3235 3236 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3237 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3238 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3239 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3240 switch (Param) { 3241 case GRID_DIM: 3242 return ArgOffset; 3243 case GRID_OFFSET: 3244 return ArgOffset + 4; 3245 } 3246 llvm_unreachable("unexpected implicit parameter type"); 3247 } 3248 3249 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3250 3251 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3252 switch ((AMDGPUISD::NodeType)Opcode) { 3253 case AMDGPUISD::FIRST_NUMBER: break; 3254 // AMDIL DAG nodes 3255 NODE_NAME_CASE(CALL); 3256 NODE_NAME_CASE(UMUL); 3257 NODE_NAME_CASE(BRANCH_COND); 3258 3259 // AMDGPU DAG nodes 3260 NODE_NAME_CASE(ENDPGM) 3261 NODE_NAME_CASE(RETURN) 3262 NODE_NAME_CASE(DWORDADDR) 3263 NODE_NAME_CASE(FRACT) 3264 NODE_NAME_CASE(SETCC) 3265 NODE_NAME_CASE(SETREG) 3266 NODE_NAME_CASE(FMA_W_CHAIN) 3267 NODE_NAME_CASE(FMUL_W_CHAIN) 3268 NODE_NAME_CASE(CLAMP) 3269 NODE_NAME_CASE(COS_HW) 3270 NODE_NAME_CASE(SIN_HW) 3271 NODE_NAME_CASE(FMAX_LEGACY) 3272 NODE_NAME_CASE(FMIN_LEGACY) 3273 NODE_NAME_CASE(FMAX3) 3274 NODE_NAME_CASE(SMAX3) 3275 NODE_NAME_CASE(UMAX3) 3276 NODE_NAME_CASE(FMIN3) 3277 NODE_NAME_CASE(SMIN3) 3278 NODE_NAME_CASE(UMIN3) 3279 NODE_NAME_CASE(FMED3) 3280 NODE_NAME_CASE(SMED3) 3281 NODE_NAME_CASE(UMED3) 3282 NODE_NAME_CASE(URECIP) 3283 NODE_NAME_CASE(DIV_SCALE) 3284 NODE_NAME_CASE(DIV_FMAS) 3285 NODE_NAME_CASE(DIV_FIXUP) 3286 NODE_NAME_CASE(TRIG_PREOP) 3287 NODE_NAME_CASE(RCP) 3288 NODE_NAME_CASE(RSQ) 3289 NODE_NAME_CASE(RCP_LEGACY) 3290 NODE_NAME_CASE(RSQ_LEGACY) 3291 NODE_NAME_CASE(FMUL_LEGACY) 3292 NODE_NAME_CASE(RSQ_CLAMP) 3293 NODE_NAME_CASE(LDEXP) 3294 NODE_NAME_CASE(FP_CLASS) 3295 NODE_NAME_CASE(DOT4) 3296 NODE_NAME_CASE(CARRY) 3297 NODE_NAME_CASE(BORROW) 3298 NODE_NAME_CASE(BFE_U32) 3299 NODE_NAME_CASE(BFE_I32) 3300 NODE_NAME_CASE(BFI) 3301 NODE_NAME_CASE(BFM) 3302 NODE_NAME_CASE(FFBH_U32) 3303 NODE_NAME_CASE(FFBH_I32) 3304 NODE_NAME_CASE(MUL_U24) 3305 NODE_NAME_CASE(MUL_I24) 3306 NODE_NAME_CASE(MULHI_U24) 3307 NODE_NAME_CASE(MULHI_I24) 3308 NODE_NAME_CASE(MUL_LOHI_U24) 3309 NODE_NAME_CASE(MUL_LOHI_I24) 3310 NODE_NAME_CASE(MAD_U24) 3311 NODE_NAME_CASE(MAD_I24) 3312 NODE_NAME_CASE(TEXTURE_FETCH) 3313 NODE_NAME_CASE(EXPORT) 3314 NODE_NAME_CASE(EXPORT_DONE) 3315 NODE_NAME_CASE(R600_EXPORT) 3316 NODE_NAME_CASE(CONST_ADDRESS) 3317 NODE_NAME_CASE(REGISTER_LOAD) 3318 NODE_NAME_CASE(REGISTER_STORE) 3319 NODE_NAME_CASE(LOAD_INPUT) 3320 NODE_NAME_CASE(SAMPLE) 3321 NODE_NAME_CASE(SAMPLEB) 3322 NODE_NAME_CASE(SAMPLED) 3323 NODE_NAME_CASE(SAMPLEL) 3324 NODE_NAME_CASE(CVT_F32_UBYTE0) 3325 NODE_NAME_CASE(CVT_F32_UBYTE1) 3326 NODE_NAME_CASE(CVT_F32_UBYTE2) 3327 NODE_NAME_CASE(CVT_F32_UBYTE3) 3328 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3329 NODE_NAME_CASE(CONST_DATA_PTR) 3330 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3331 NODE_NAME_CASE(KILL) 3332 NODE_NAME_CASE(DUMMY_CHAIN) 3333 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3334 NODE_NAME_CASE(SENDMSG) 3335 NODE_NAME_CASE(SENDMSGHALT) 3336 NODE_NAME_CASE(INTERP_MOV) 3337 NODE_NAME_CASE(INTERP_P1) 3338 NODE_NAME_CASE(INTERP_P2) 3339 NODE_NAME_CASE(STORE_MSKOR) 3340 NODE_NAME_CASE(LOAD_CONSTANT) 3341 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3342 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3343 NODE_NAME_CASE(ATOMIC_INC) 3344 NODE_NAME_CASE(ATOMIC_DEC) 3345 NODE_NAME_CASE(BUFFER_LOAD) 3346 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3347 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3348 } 3349 return nullptr; 3350 } 3351 3352 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3353 SelectionDAG &DAG, int Enabled, 3354 int &RefinementSteps, 3355 bool &UseOneConstNR, 3356 bool Reciprocal) const { 3357 EVT VT = Operand.getValueType(); 3358 3359 if (VT == MVT::f32) { 3360 RefinementSteps = 0; 3361 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3362 } 3363 3364 // TODO: There is also f64 rsq instruction, but the documentation is less 3365 // clear on its precision. 3366 3367 return SDValue(); 3368 } 3369 3370 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3371 SelectionDAG &DAG, int Enabled, 3372 int &RefinementSteps) const { 3373 EVT VT = Operand.getValueType(); 3374 3375 if (VT == MVT::f32) { 3376 // Reciprocal, < 1 ulp error. 3377 // 3378 // This reciprocal approximation converges to < 0.5 ulp error with one 3379 // newton rhapson performed with two fused multiple adds (FMAs). 3380 3381 RefinementSteps = 0; 3382 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3383 } 3384 3385 // TODO: There is also f64 rcp instruction, but the documentation is less 3386 // clear on its precision. 3387 3388 return SDValue(); 3389 } 3390 3391 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3392 const SDValue Op, 3393 APInt &KnownZero, 3394 APInt &KnownOne, 3395 const SelectionDAG &DAG, 3396 unsigned Depth) const { 3397 3398 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3399 3400 APInt KnownZero2; 3401 APInt KnownOne2; 3402 unsigned Opc = Op.getOpcode(); 3403 3404 switch (Opc) { 3405 default: 3406 break; 3407 case AMDGPUISD::CARRY: 3408 case AMDGPUISD::BORROW: { 3409 KnownZero = APInt::getHighBitsSet(32, 31); 3410 break; 3411 } 3412 3413 case AMDGPUISD::BFE_I32: 3414 case AMDGPUISD::BFE_U32: { 3415 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3416 if (!CWidth) 3417 return; 3418 3419 unsigned BitWidth = 32; 3420 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3421 3422 if (Opc == AMDGPUISD::BFE_U32) 3423 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3424 3425 break; 3426 } 3427 } 3428 } 3429 3430 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3431 SDValue Op, 3432 const SelectionDAG &DAG, 3433 unsigned Depth) const { 3434 switch (Op.getOpcode()) { 3435 case AMDGPUISD::BFE_I32: { 3436 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3437 if (!Width) 3438 return 1; 3439 3440 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3441 if (!isNullConstant(Op.getOperand(1))) 3442 return SignBits; 3443 3444 // TODO: Could probably figure something out with non-0 offsets. 3445 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3446 return std::max(SignBits, Op0SignBits); 3447 } 3448 3449 case AMDGPUISD::BFE_U32: { 3450 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3451 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3452 } 3453 3454 case AMDGPUISD::CARRY: 3455 case AMDGPUISD::BORROW: 3456 return 31; 3457 3458 default: 3459 return 1; 3460 } 3461 } 3462