1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
18 
19 #include "AMDGPUISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
41 
42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
43                            CCValAssign::LocInfo LocInfo,
44                            ISD::ArgFlagsTy ArgFlags, CCState &State,
45                            const TargetRegisterClass *RC,
46                            unsigned NumRegs) {
47   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
48   unsigned RegResult = State.AllocateReg(RegList);
49   if (RegResult == AMDGPU::NoRegister)
50     return false;
51 
52   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
53   return true;
54 }
55 
56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
57                               CCValAssign::LocInfo LocInfo,
58                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
59   switch (LocVT.SimpleTy) {
60   case MVT::i64:
61   case MVT::f64:
62   case MVT::v2i32:
63   case MVT::v2f32:
64   case MVT::v4i16:
65   case MVT::v4f16: {
66     // Up to SGPR0-SGPR105
67     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
68                           &AMDGPU::SGPR_64RegClass, 53);
69   }
70   default:
71     return false;
72   }
73 }
74 
75 // Allocate up to VGPR31.
76 //
77 // TODO: Since there are no VGPR alignent requirements would it be better to
78 // split into individual scalar registers?
79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
80                               CCValAssign::LocInfo LocInfo,
81                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
82   switch (LocVT.SimpleTy) {
83   case MVT::i64:
84   case MVT::f64:
85   case MVT::v2i32:
86   case MVT::v2f32:
87   case MVT::v4i16:
88   case MVT::v4f16: {
89     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
90                           &AMDGPU::VReg_64RegClass, 31);
91   }
92   case MVT::v4i32:
93   case MVT::v4f32:
94   case MVT::v2i64:
95   case MVT::v2f64: {
96     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
97                           &AMDGPU::VReg_128RegClass, 29);
98   }
99   case MVT::v8i32:
100   case MVT::v8f32: {
101     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
102                           &AMDGPU::VReg_256RegClass, 25);
103 
104   }
105   case MVT::v16i32:
106   case MVT::v16f32: {
107     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
108                           &AMDGPU::VReg_512RegClass, 17);
109 
110   }
111   default:
112     return false;
113   }
114 }
115 
116 #include "AMDGPUGenCallingConv.inc"
117 
118 // Find a larger type to do a load / store of a vector with.
119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
120   unsigned StoreSize = VT.getStoreSizeInBits();
121   if (StoreSize <= 32)
122     return EVT::getIntegerVT(Ctx, StoreSize);
123 
124   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
125   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
126 }
127 
128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
129   EVT VT = Op.getValueType();
130   KnownBits Known = DAG.computeKnownBits(Op);
131   return VT.getSizeInBits() - Known.countMinLeadingZeros();
132 }
133 
134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
135   EVT VT = Op.getValueType();
136 
137   // In order for this to be a signed 24-bit value, bit 23, must
138   // be a sign bit.
139   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
140 }
141 
142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
143                                            const AMDGPUSubtarget &STI)
144     : TargetLowering(TM), Subtarget(&STI) {
145   // Lower floating point store/load to integer store/load to reduce the number
146   // of patterns in tablegen.
147   setOperationAction(ISD::LOAD, MVT::f32, Promote);
148   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
149 
150   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
151   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
152 
153   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
154   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
155 
156   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
157   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
158 
159   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
160   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
161 
162   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
163   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
164 
165   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
166   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
167 
168   setOperationAction(ISD::LOAD, MVT::i64, Promote);
169   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
170 
171   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
172   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
173 
174   setOperationAction(ISD::LOAD, MVT::f64, Promote);
175   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
176 
177   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
178   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
179 
180   // There are no 64-bit extloads. These should be done as a 32-bit extload and
181   // an extension to 64-bit.
182   for (MVT VT : MVT::integer_valuetypes()) {
183     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
184     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
185     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
186   }
187 
188   for (MVT VT : MVT::integer_valuetypes()) {
189     if (VT == MVT::i64)
190       continue;
191 
192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
193     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
194     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
195     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
196 
197     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
198     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
199     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
200     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
201 
202     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
203     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
204     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
205     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
206   }
207 
208   for (MVT VT : MVT::integer_vector_valuetypes()) {
209     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
210     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
211     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
212     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
213     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
214     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
215     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
216     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
217     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
218     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
219     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
220     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
221   }
222 
223   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
224   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
225   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
226   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
227 
228   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
229   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
230   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
231   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
232 
233   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
234   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
235   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
236   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
237 
238   setOperationAction(ISD::STORE, MVT::f32, Promote);
239   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
240 
241   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
242   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
243 
244   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
245   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
246 
247   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
248   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
249 
250   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
251   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
252 
253   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
254   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
255 
256   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
257   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
258 
259   setOperationAction(ISD::STORE, MVT::i64, Promote);
260   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
261 
262   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
263   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
264 
265   setOperationAction(ISD::STORE, MVT::f64, Promote);
266   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
267 
268   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
269   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
270 
271   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
272   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
273   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
274   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
275 
276   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
277   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
278   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
279   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
280 
281   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
282   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
283   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
284   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
285 
286   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
287   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
288 
289   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
290   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
291 
292   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
293   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
294 
295   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
296   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
297 
298 
299   setOperationAction(ISD::Constant, MVT::i32, Legal);
300   setOperationAction(ISD::Constant, MVT::i64, Legal);
301   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
302   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
303 
304   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
305   setOperationAction(ISD::BRIND, MVT::Other, Expand);
306 
307   // This is totally unsupported, just custom lower to produce an error.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
309 
310   // Library functions.  These default to Expand, but we have instructions
311   // for them.
312   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
313   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
314   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
315   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
316   setOperationAction(ISD::FABS,   MVT::f32, Legal);
317   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
318   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
319   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
320   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
321   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
322 
323   setOperationAction(ISD::FROUND, MVT::f32, Custom);
324   setOperationAction(ISD::FROUND, MVT::f64, Custom);
325 
326   setOperationAction(ISD::FLOG, MVT::f32, Custom);
327   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
328   setOperationAction(ISD::FEXP, MVT::f32, Custom);
329 
330 
331   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
332   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
333 
334   setOperationAction(ISD::FREM, MVT::f32, Custom);
335   setOperationAction(ISD::FREM, MVT::f64, Custom);
336 
337   // Expand to fneg + fadd.
338   setOperationAction(ISD::FSUB, MVT::f64, Expand);
339 
340   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
341   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
342   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
343   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
344   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
345   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
346   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
347   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
348   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
349   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
350   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
351   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
352   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
353   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
354   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
355   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
356   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
357   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
358 
359   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
360   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
361   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
362 
363   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
364   for (MVT VT : ScalarIntVTs) {
365     // These should use [SU]DIVREM, so set them to expand
366     setOperationAction(ISD::SDIV, VT, Expand);
367     setOperationAction(ISD::UDIV, VT, Expand);
368     setOperationAction(ISD::SREM, VT, Expand);
369     setOperationAction(ISD::UREM, VT, Expand);
370 
371     // GPU does not have divrem function for signed or unsigned.
372     setOperationAction(ISD::SDIVREM, VT, Custom);
373     setOperationAction(ISD::UDIVREM, VT, Custom);
374 
375     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
376     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
377     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
378 
379     setOperationAction(ISD::BSWAP, VT, Expand);
380     setOperationAction(ISD::CTTZ, VT, Expand);
381     setOperationAction(ISD::CTLZ, VT, Expand);
382 
383     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
384     setOperationAction(ISD::ADDC, VT, Legal);
385     setOperationAction(ISD::SUBC, VT, Legal);
386     setOperationAction(ISD::ADDE, VT, Legal);
387     setOperationAction(ISD::SUBE, VT, Legal);
388   }
389 
390   // The hardware supports 32-bit ROTR, but not ROTL.
391   setOperationAction(ISD::ROTL, MVT::i32, Expand);
392   setOperationAction(ISD::ROTL, MVT::i64, Expand);
393   setOperationAction(ISD::ROTR, MVT::i64, Expand);
394 
395   setOperationAction(ISD::MUL, MVT::i64, Expand);
396   setOperationAction(ISD::MULHU, MVT::i64, Expand);
397   setOperationAction(ISD::MULHS, MVT::i64, Expand);
398   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
399   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
400   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
401   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
402   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
403 
404   setOperationAction(ISD::SMIN, MVT::i32, Legal);
405   setOperationAction(ISD::UMIN, MVT::i32, Legal);
406   setOperationAction(ISD::SMAX, MVT::i32, Legal);
407   setOperationAction(ISD::UMAX, MVT::i32, Legal);
408 
409   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
410   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
411   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
412   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
413 
414   static const MVT::SimpleValueType VectorIntTypes[] = {
415     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
416   };
417 
418   for (MVT VT : VectorIntTypes) {
419     // Expand the following operations for the current type by default.
420     setOperationAction(ISD::ADD,  VT, Expand);
421     setOperationAction(ISD::AND,  VT, Expand);
422     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
423     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
424     setOperationAction(ISD::MUL,  VT, Expand);
425     setOperationAction(ISD::MULHU, VT, Expand);
426     setOperationAction(ISD::MULHS, VT, Expand);
427     setOperationAction(ISD::OR,   VT, Expand);
428     setOperationAction(ISD::SHL,  VT, Expand);
429     setOperationAction(ISD::SRA,  VT, Expand);
430     setOperationAction(ISD::SRL,  VT, Expand);
431     setOperationAction(ISD::ROTL, VT, Expand);
432     setOperationAction(ISD::ROTR, VT, Expand);
433     setOperationAction(ISD::SUB,  VT, Expand);
434     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
435     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
436     setOperationAction(ISD::SDIV, VT, Expand);
437     setOperationAction(ISD::UDIV, VT, Expand);
438     setOperationAction(ISD::SREM, VT, Expand);
439     setOperationAction(ISD::UREM, VT, Expand);
440     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
441     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
442     setOperationAction(ISD::SDIVREM, VT, Custom);
443     setOperationAction(ISD::UDIVREM, VT, Expand);
444     setOperationAction(ISD::SELECT, VT, Expand);
445     setOperationAction(ISD::VSELECT, VT, Expand);
446     setOperationAction(ISD::SELECT_CC, VT, Expand);
447     setOperationAction(ISD::XOR,  VT, Expand);
448     setOperationAction(ISD::BSWAP, VT, Expand);
449     setOperationAction(ISD::CTPOP, VT, Expand);
450     setOperationAction(ISD::CTTZ, VT, Expand);
451     setOperationAction(ISD::CTLZ, VT, Expand);
452     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
453     setOperationAction(ISD::SETCC, VT, Expand);
454   }
455 
456   static const MVT::SimpleValueType FloatVectorTypes[] = {
457      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
458   };
459 
460   for (MVT VT : FloatVectorTypes) {
461     setOperationAction(ISD::FABS, VT, Expand);
462     setOperationAction(ISD::FMINNUM, VT, Expand);
463     setOperationAction(ISD::FMAXNUM, VT, Expand);
464     setOperationAction(ISD::FADD, VT, Expand);
465     setOperationAction(ISD::FCEIL, VT, Expand);
466     setOperationAction(ISD::FCOS, VT, Expand);
467     setOperationAction(ISD::FDIV, VT, Expand);
468     setOperationAction(ISD::FEXP2, VT, Expand);
469     setOperationAction(ISD::FEXP, VT, Expand);
470     setOperationAction(ISD::FLOG2, VT, Expand);
471     setOperationAction(ISD::FREM, VT, Expand);
472     setOperationAction(ISD::FLOG, VT, Expand);
473     setOperationAction(ISD::FLOG10, VT, Expand);
474     setOperationAction(ISD::FPOW, VT, Expand);
475     setOperationAction(ISD::FFLOOR, VT, Expand);
476     setOperationAction(ISD::FTRUNC, VT, Expand);
477     setOperationAction(ISD::FMUL, VT, Expand);
478     setOperationAction(ISD::FMA, VT, Expand);
479     setOperationAction(ISD::FRINT, VT, Expand);
480     setOperationAction(ISD::FNEARBYINT, VT, Expand);
481     setOperationAction(ISD::FSQRT, VT, Expand);
482     setOperationAction(ISD::FSIN, VT, Expand);
483     setOperationAction(ISD::FSUB, VT, Expand);
484     setOperationAction(ISD::FNEG, VT, Expand);
485     setOperationAction(ISD::VSELECT, VT, Expand);
486     setOperationAction(ISD::SELECT_CC, VT, Expand);
487     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
488     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
489     setOperationAction(ISD::SETCC, VT, Expand);
490     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
491   }
492 
493   // This causes using an unrolled select operation rather than expansion with
494   // bit operations. This is in general better, but the alternative using BFI
495   // instructions may be better if the select sources are SGPRs.
496   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
497   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
498 
499   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
500   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
501 
502   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
503   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
504 
505   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
506   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
507 
508   // There are no libcalls of any kind.
509   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
510     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
511 
512   setBooleanContents(ZeroOrNegativeOneBooleanContent);
513   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
514 
515   setSchedulingPreference(Sched::RegPressure);
516   setJumpIsExpensive(true);
517 
518   // FIXME: This is only partially true. If we have to do vector compares, any
519   // SGPR pair can be a condition register. If we have a uniform condition, we
520   // are better off doing SALU operations, where there is only one SCC. For now,
521   // we don't have a way of knowing during instruction selection if a condition
522   // will be uniform and we always use vector compares. Assume we are using
523   // vector compares until that is fixed.
524   setHasMultipleConditionRegisters(true);
525 
526   PredictableSelectIsExpensive = false;
527 
528   // We want to find all load dependencies for long chains of stores to enable
529   // merging into very wide vectors. The problem is with vectors with > 4
530   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
531   // vectors are a legal type, even though we have to split the loads
532   // usually. When we can more precisely specify load legality per address
533   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
534   // smarter so that they can figure out what to do in 2 iterations without all
535   // N > 4 stores on the same chain.
536   GatherAllAliasesMaxDepth = 16;
537 
538   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
539   // about these during lowering.
540   MaxStoresPerMemcpy  = 0xffffffff;
541   MaxStoresPerMemmove = 0xffffffff;
542   MaxStoresPerMemset  = 0xffffffff;
543 
544   setTargetDAGCombine(ISD::BITCAST);
545   setTargetDAGCombine(ISD::SHL);
546   setTargetDAGCombine(ISD::SRA);
547   setTargetDAGCombine(ISD::SRL);
548   setTargetDAGCombine(ISD::TRUNCATE);
549   setTargetDAGCombine(ISD::MUL);
550   setTargetDAGCombine(ISD::MULHU);
551   setTargetDAGCombine(ISD::MULHS);
552   setTargetDAGCombine(ISD::SELECT);
553   setTargetDAGCombine(ISD::SELECT_CC);
554   setTargetDAGCombine(ISD::STORE);
555   setTargetDAGCombine(ISD::FADD);
556   setTargetDAGCombine(ISD::FSUB);
557   setTargetDAGCombine(ISD::FNEG);
558   setTargetDAGCombine(ISD::FABS);
559   setTargetDAGCombine(ISD::AssertZext);
560   setTargetDAGCombine(ISD::AssertSext);
561 }
562 
563 //===----------------------------------------------------------------------===//
564 // Target Information
565 //===----------------------------------------------------------------------===//
566 
567 LLVM_READNONE
568 static bool fnegFoldsIntoOp(unsigned Opc) {
569   switch (Opc) {
570   case ISD::FADD:
571   case ISD::FSUB:
572   case ISD::FMUL:
573   case ISD::FMA:
574   case ISD::FMAD:
575   case ISD::FMINNUM:
576   case ISD::FMAXNUM:
577   case ISD::FMINNUM_IEEE:
578   case ISD::FMAXNUM_IEEE:
579   case ISD::FSIN:
580   case ISD::FTRUNC:
581   case ISD::FRINT:
582   case ISD::FNEARBYINT:
583   case ISD::FCANONICALIZE:
584   case AMDGPUISD::RCP:
585   case AMDGPUISD::RCP_LEGACY:
586   case AMDGPUISD::RCP_IFLAG:
587   case AMDGPUISD::SIN_HW:
588   case AMDGPUISD::FMUL_LEGACY:
589   case AMDGPUISD::FMIN_LEGACY:
590   case AMDGPUISD::FMAX_LEGACY:
591   case AMDGPUISD::FMED3:
592     return true;
593   default:
594     return false;
595   }
596 }
597 
598 /// \p returns true if the operation will definitely need to use a 64-bit
599 /// encoding, and thus will use a VOP3 encoding regardless of the source
600 /// modifiers.
601 LLVM_READONLY
602 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
603   return N->getNumOperands() > 2 || VT == MVT::f64;
604 }
605 
606 // Most FP instructions support source modifiers, but this could be refined
607 // slightly.
608 LLVM_READONLY
609 static bool hasSourceMods(const SDNode *N) {
610   if (isa<MemSDNode>(N))
611     return false;
612 
613   switch (N->getOpcode()) {
614   case ISD::CopyToReg:
615   case ISD::SELECT:
616   case ISD::FDIV:
617   case ISD::FREM:
618   case ISD::INLINEASM:
619   case ISD::INLINEASM_BR:
620   case AMDGPUISD::INTERP_P1:
621   case AMDGPUISD::INTERP_P2:
622   case AMDGPUISD::DIV_SCALE:
623 
624   // TODO: Should really be looking at the users of the bitcast. These are
625   // problematic because bitcasts are used to legalize all stores to integer
626   // types.
627   case ISD::BITCAST:
628     return false;
629   default:
630     return true;
631   }
632 }
633 
634 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
635                                                  unsigned CostThreshold) {
636   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
637   // it is truly free to use a source modifier in all cases. If there are
638   // multiple users but for each one will necessitate using VOP3, there will be
639   // a code size increase. Try to avoid increasing code size unless we know it
640   // will save on the instruction count.
641   unsigned NumMayIncreaseSize = 0;
642   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
643 
644   // XXX - Should this limit number of uses to check?
645   for (const SDNode *U : N->uses()) {
646     if (!hasSourceMods(U))
647       return false;
648 
649     if (!opMustUseVOP3Encoding(U, VT)) {
650       if (++NumMayIncreaseSize > CostThreshold)
651         return false;
652     }
653   }
654 
655   return true;
656 }
657 
658 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
659   return MVT::i32;
660 }
661 
662 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
663   return true;
664 }
665 
666 // The backend supports 32 and 64 bit floating point immediates.
667 // FIXME: Why are we reporting vectors of FP immediates as legal?
668 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
669                                         bool ForCodeSize) const {
670   EVT ScalarVT = VT.getScalarType();
671   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
672          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
673 }
674 
675 // We don't want to shrink f64 / f32 constants.
676 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
677   EVT ScalarVT = VT.getScalarType();
678   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
679 }
680 
681 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
682                                                  ISD::LoadExtType ExtTy,
683                                                  EVT NewVT) const {
684   // TODO: This may be worth removing. Check regression tests for diffs.
685   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
686     return false;
687 
688   unsigned NewSize = NewVT.getStoreSizeInBits();
689 
690   // If we are reducing to a 32-bit load, this is always better.
691   if (NewSize == 32)
692     return true;
693 
694   EVT OldVT = N->getValueType(0);
695   unsigned OldSize = OldVT.getStoreSizeInBits();
696 
697   MemSDNode *MN = cast<MemSDNode>(N);
698   unsigned AS = MN->getAddressSpace();
699   // Do not shrink an aligned scalar load to sub-dword.
700   // Scalar engine cannot do sub-dword loads.
701   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
702       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
703        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
704        (isa<LoadSDNode>(N) &&
705         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
706       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
707     return false;
708 
709   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
710   // extloads, so doing one requires using a buffer_load. In cases where we
711   // still couldn't use a scalar load, using the wider load shouldn't really
712   // hurt anything.
713 
714   // If the old size already had to be an extload, there's no harm in continuing
715   // to reduce the width.
716   return (OldSize < 32);
717 }
718 
719 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
720                                                    EVT CastTy) const {
721 
722   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
723 
724   if (LoadTy.getScalarType() == MVT::i32)
725     return false;
726 
727   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
728   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
729 
730   return (LScalarSize < CastScalarSize) ||
731          (CastScalarSize >= 32);
732 }
733 
734 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
735 // profitable with the expansion for 64-bit since it's generally good to
736 // speculate things.
737 // FIXME: These should really have the size as a parameter.
738 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
739   return true;
740 }
741 
742 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
743   return true;
744 }
745 
746 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
747   switch (N->getOpcode()) {
748     default:
749     return false;
750     case ISD::EntryToken:
751     case ISD::TokenFactor:
752       return true;
753     case ISD::INTRINSIC_WO_CHAIN:
754     {
755       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
756       switch (IntrID) {
757         default:
758         return false;
759         case Intrinsic::amdgcn_readfirstlane:
760         case Intrinsic::amdgcn_readlane:
761           return true;
762       }
763     }
764     break;
765     case ISD::LOAD:
766     {
767       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
768       if (L->getMemOperand()->getAddrSpace()
769       == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
770         return true;
771       return false;
772     }
773     break;
774   }
775 }
776 
777 //===---------------------------------------------------------------------===//
778 // Target Properties
779 //===---------------------------------------------------------------------===//
780 
781 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
782   assert(VT.isFloatingPoint());
783 
784   // Packed operations do not have a fabs modifier.
785   return VT == MVT::f32 || VT == MVT::f64 ||
786          (Subtarget->has16BitInsts() && VT == MVT::f16);
787 }
788 
789 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
790   assert(VT.isFloatingPoint());
791   return VT == MVT::f32 || VT == MVT::f64 ||
792          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
793          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
794 }
795 
796 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
797                                                          unsigned NumElem,
798                                                          unsigned AS) const {
799   return true;
800 }
801 
802 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
803   // There are few operations which truly have vector input operands. Any vector
804   // operation is going to involve operations on each component, and a
805   // build_vector will be a copy per element, so it always makes sense to use a
806   // build_vector input in place of the extracted element to avoid a copy into a
807   // super register.
808   //
809   // We should probably only do this if all users are extracts only, but this
810   // should be the common case.
811   return true;
812 }
813 
814 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
815   // Truncate is just accessing a subregister.
816 
817   unsigned SrcSize = Source.getSizeInBits();
818   unsigned DestSize = Dest.getSizeInBits();
819 
820   return DestSize < SrcSize && DestSize % 32 == 0 ;
821 }
822 
823 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
824   // Truncate is just accessing a subregister.
825 
826   unsigned SrcSize = Source->getScalarSizeInBits();
827   unsigned DestSize = Dest->getScalarSizeInBits();
828 
829   if (DestSize== 16 && Subtarget->has16BitInsts())
830     return SrcSize >= 32;
831 
832   return DestSize < SrcSize && DestSize % 32 == 0;
833 }
834 
835 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
836   unsigned SrcSize = Src->getScalarSizeInBits();
837   unsigned DestSize = Dest->getScalarSizeInBits();
838 
839   if (SrcSize == 16 && Subtarget->has16BitInsts())
840     return DestSize >= 32;
841 
842   return SrcSize == 32 && DestSize == 64;
843 }
844 
845 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
846   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
847   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
848   // this will enable reducing 64-bit operations the 32-bit, which is always
849   // good.
850 
851   if (Src == MVT::i16)
852     return Dest == MVT::i32 ||Dest == MVT::i64 ;
853 
854   return Src == MVT::i32 && Dest == MVT::i64;
855 }
856 
857 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
858   return isZExtFree(Val.getValueType(), VT2);
859 }
860 
861 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
862   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
863   // limited number of native 64-bit operations. Shrinking an operation to fit
864   // in a single 32-bit register should always be helpful. As currently used,
865   // this is much less general than the name suggests, and is only used in
866   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
867   // not profitable, and may actually be harmful.
868   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
869 }
870 
871 //===---------------------------------------------------------------------===//
872 // TargetLowering Callbacks
873 //===---------------------------------------------------------------------===//
874 
875 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
876                                                   bool IsVarArg) {
877   switch (CC) {
878   case CallingConv::AMDGPU_VS:
879   case CallingConv::AMDGPU_GS:
880   case CallingConv::AMDGPU_PS:
881   case CallingConv::AMDGPU_CS:
882   case CallingConv::AMDGPU_HS:
883   case CallingConv::AMDGPU_ES:
884   case CallingConv::AMDGPU_LS:
885     return CC_AMDGPU;
886   case CallingConv::C:
887   case CallingConv::Fast:
888   case CallingConv::Cold:
889     return CC_AMDGPU_Func;
890   case CallingConv::AMDGPU_KERNEL:
891   case CallingConv::SPIR_KERNEL:
892   default:
893     report_fatal_error("Unsupported calling convention for call");
894   }
895 }
896 
897 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
898                                                     bool IsVarArg) {
899   switch (CC) {
900   case CallingConv::AMDGPU_KERNEL:
901   case CallingConv::SPIR_KERNEL:
902     llvm_unreachable("kernels should not be handled here");
903   case CallingConv::AMDGPU_VS:
904   case CallingConv::AMDGPU_GS:
905   case CallingConv::AMDGPU_PS:
906   case CallingConv::AMDGPU_CS:
907   case CallingConv::AMDGPU_HS:
908   case CallingConv::AMDGPU_ES:
909   case CallingConv::AMDGPU_LS:
910     return RetCC_SI_Shader;
911   case CallingConv::C:
912   case CallingConv::Fast:
913   case CallingConv::Cold:
914     return RetCC_AMDGPU_Func;
915   default:
916     report_fatal_error("Unsupported calling convention.");
917   }
918 }
919 
920 /// The SelectionDAGBuilder will automatically promote function arguments
921 /// with illegal types.  However, this does not work for the AMDGPU targets
922 /// since the function arguments are stored in memory as these illegal types.
923 /// In order to handle this properly we need to get the original types sizes
924 /// from the LLVM IR Function and fixup the ISD:InputArg values before
925 /// passing them to AnalyzeFormalArguments()
926 
927 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
928 /// input values across multiple registers.  Each item in the Ins array
929 /// represents a single value that will be stored in registers.  Ins[x].VT is
930 /// the value type of the value that will be stored in the register, so
931 /// whatever SDNode we lower the argument to needs to be this type.
932 ///
933 /// In order to correctly lower the arguments we need to know the size of each
934 /// argument.  Since Ins[x].VT gives us the size of the register that will
935 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
936 /// for the orignal function argument so that we can deduce the correct memory
937 /// type to use for Ins[x].  In most cases the correct memory type will be
938 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
939 /// we have a kernel argument of type v8i8, this argument will be split into
940 /// 8 parts and each part will be represented by its own item in the Ins array.
941 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
942 /// the argument before it was split.  From this, we deduce that the memory type
943 /// for each individual part is i8.  We pass the memory type as LocVT to the
944 /// calling convention analysis function and the register type (Ins[x].VT) as
945 /// the ValVT.
946 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
947   CCState &State,
948   const SmallVectorImpl<ISD::InputArg> &Ins) const {
949   const MachineFunction &MF = State.getMachineFunction();
950   const Function &Fn = MF.getFunction();
951   LLVMContext &Ctx = Fn.getParent()->getContext();
952   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
953   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
954   CallingConv::ID CC = Fn.getCallingConv();
955 
956   unsigned MaxAlign = 1;
957   uint64_t ExplicitArgOffset = 0;
958   const DataLayout &DL = Fn.getParent()->getDataLayout();
959 
960   unsigned InIndex = 0;
961 
962   for (const Argument &Arg : Fn.args()) {
963     Type *BaseArgTy = Arg.getType();
964     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
965     MaxAlign = std::max(Align, MaxAlign);
966     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
967 
968     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
969     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
970 
971     // We're basically throwing away everything passed into us and starting over
972     // to get accurate in-memory offsets. The "PartOffset" is completely useless
973     // to us as computed in Ins.
974     //
975     // We also need to figure out what type legalization is trying to do to get
976     // the correct memory offsets.
977 
978     SmallVector<EVT, 16> ValueVTs;
979     SmallVector<uint64_t, 16> Offsets;
980     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
981 
982     for (unsigned Value = 0, NumValues = ValueVTs.size();
983          Value != NumValues; ++Value) {
984       uint64_t BasePartOffset = Offsets[Value];
985 
986       EVT ArgVT = ValueVTs[Value];
987       EVT MemVT = ArgVT;
988       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
989       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
990 
991       if (NumRegs == 1) {
992         // This argument is not split, so the IR type is the memory type.
993         if (ArgVT.isExtended()) {
994           // We have an extended type, like i24, so we should just use the
995           // register type.
996           MemVT = RegisterVT;
997         } else {
998           MemVT = ArgVT;
999         }
1000       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1001                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1002         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1003         // We have a vector value which has been split into a vector with
1004         // the same scalar type, but fewer elements.  This should handle
1005         // all the floating-point vector types.
1006         MemVT = RegisterVT;
1007       } else if (ArgVT.isVector() &&
1008                  ArgVT.getVectorNumElements() == NumRegs) {
1009         // This arg has been split so that each element is stored in a separate
1010         // register.
1011         MemVT = ArgVT.getScalarType();
1012       } else if (ArgVT.isExtended()) {
1013         // We have an extended type, like i65.
1014         MemVT = RegisterVT;
1015       } else {
1016         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1017         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1018         if (RegisterVT.isInteger()) {
1019           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1020         } else if (RegisterVT.isVector()) {
1021           assert(!RegisterVT.getScalarType().isFloatingPoint());
1022           unsigned NumElements = RegisterVT.getVectorNumElements();
1023           assert(MemoryBits % NumElements == 0);
1024           // This vector type has been split into another vector type with
1025           // a different elements size.
1026           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1027                                            MemoryBits / NumElements);
1028           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1029         } else {
1030           llvm_unreachable("cannot deduce memory type.");
1031         }
1032       }
1033 
1034       // Convert one element vectors to scalar.
1035       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1036         MemVT = MemVT.getScalarType();
1037 
1038       // Round up vec3/vec5 argument.
1039       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1040         assert(MemVT.getVectorNumElements() == 3 ||
1041                MemVT.getVectorNumElements() == 5);
1042         MemVT = MemVT.getPow2VectorType(State.getContext());
1043       }
1044 
1045       unsigned PartOffset = 0;
1046       for (unsigned i = 0; i != NumRegs; ++i) {
1047         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1048                                                BasePartOffset + PartOffset,
1049                                                MemVT.getSimpleVT(),
1050                                                CCValAssign::Full));
1051         PartOffset += MemVT.getStoreSize();
1052       }
1053     }
1054   }
1055 }
1056 
1057 SDValue AMDGPUTargetLowering::LowerReturn(
1058   SDValue Chain, CallingConv::ID CallConv,
1059   bool isVarArg,
1060   const SmallVectorImpl<ISD::OutputArg> &Outs,
1061   const SmallVectorImpl<SDValue> &OutVals,
1062   const SDLoc &DL, SelectionDAG &DAG) const {
1063   // FIXME: Fails for r600 tests
1064   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1065   // "wave terminate should not have return values");
1066   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1067 }
1068 
1069 //===---------------------------------------------------------------------===//
1070 // Target specific lowering
1071 //===---------------------------------------------------------------------===//
1072 
1073 /// Selects the correct CCAssignFn for a given CallingConvention value.
1074 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1075                                                     bool IsVarArg) {
1076   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1077 }
1078 
1079 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1080                                                       bool IsVarArg) {
1081   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1082 }
1083 
1084 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1085                                                   SelectionDAG &DAG,
1086                                                   MachineFrameInfo &MFI,
1087                                                   int ClobberedFI) const {
1088   SmallVector<SDValue, 8> ArgChains;
1089   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1090   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1091 
1092   // Include the original chain at the beginning of the list. When this is
1093   // used by target LowerCall hooks, this helps legalize find the
1094   // CALLSEQ_BEGIN node.
1095   ArgChains.push_back(Chain);
1096 
1097   // Add a chain value for each stack argument corresponding
1098   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1099                             UE = DAG.getEntryNode().getNode()->use_end();
1100        U != UE; ++U) {
1101     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1102       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1103         if (FI->getIndex() < 0) {
1104           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1105           int64_t InLastByte = InFirstByte;
1106           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1107 
1108           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1109               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1110             ArgChains.push_back(SDValue(L, 1));
1111         }
1112       }
1113     }
1114   }
1115 
1116   // Build a tokenfactor for all the chains.
1117   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1118 }
1119 
1120 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1121                                                  SmallVectorImpl<SDValue> &InVals,
1122                                                  StringRef Reason) const {
1123   SDValue Callee = CLI.Callee;
1124   SelectionDAG &DAG = CLI.DAG;
1125 
1126   const Function &Fn = DAG.getMachineFunction().getFunction();
1127 
1128   StringRef FuncName("<unknown>");
1129 
1130   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1131     FuncName = G->getSymbol();
1132   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1133     FuncName = G->getGlobal()->getName();
1134 
1135   DiagnosticInfoUnsupported NoCalls(
1136     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1137   DAG.getContext()->diagnose(NoCalls);
1138 
1139   if (!CLI.IsTailCall) {
1140     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1141       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1142   }
1143 
1144   return DAG.getEntryNode();
1145 }
1146 
1147 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1148                                         SmallVectorImpl<SDValue> &InVals) const {
1149   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1150 }
1151 
1152 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1153                                                       SelectionDAG &DAG) const {
1154   const Function &Fn = DAG.getMachineFunction().getFunction();
1155 
1156   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1157                                             SDLoc(Op).getDebugLoc());
1158   DAG.getContext()->diagnose(NoDynamicAlloca);
1159   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1160   return DAG.getMergeValues(Ops, SDLoc());
1161 }
1162 
1163 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1164                                              SelectionDAG &DAG) const {
1165   switch (Op.getOpcode()) {
1166   default:
1167     Op->print(errs(), &DAG);
1168     llvm_unreachable("Custom lowering code for this"
1169                      "instruction is not implemented yet!");
1170     break;
1171   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1172   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1173   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1174   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1175   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1176   case ISD::FREM: return LowerFREM(Op, DAG);
1177   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1178   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1179   case ISD::FRINT: return LowerFRINT(Op, DAG);
1180   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1181   case ISD::FROUND: return LowerFROUND(Op, DAG);
1182   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1183   case ISD::FLOG:
1184     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1185   case ISD::FLOG10:
1186     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1187   case ISD::FEXP:
1188     return lowerFEXP(Op, DAG);
1189   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1190   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1191   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1192   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1193   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1194   case ISD::CTTZ:
1195   case ISD::CTTZ_ZERO_UNDEF:
1196   case ISD::CTLZ:
1197   case ISD::CTLZ_ZERO_UNDEF:
1198     return LowerCTLZ_CTTZ(Op, DAG);
1199   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1200   }
1201   return Op;
1202 }
1203 
1204 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1205                                               SmallVectorImpl<SDValue> &Results,
1206                                               SelectionDAG &DAG) const {
1207   switch (N->getOpcode()) {
1208   case ISD::SIGN_EXTEND_INREG:
1209     // Different parts of legalization seem to interpret which type of
1210     // sign_extend_inreg is the one to check for custom lowering. The extended
1211     // from type is what really matters, but some places check for custom
1212     // lowering of the result type. This results in trying to use
1213     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1214     // nothing here and let the illegal result integer be handled normally.
1215     return;
1216   default:
1217     return;
1218   }
1219 }
1220 
1221 static bool hasDefinedInitializer(const GlobalValue *GV) {
1222   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1223   if (!GVar || !GVar->hasInitializer())
1224     return false;
1225 
1226   return !isa<UndefValue>(GVar->getInitializer());
1227 }
1228 
1229 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1230                                                  SDValue Op,
1231                                                  SelectionDAG &DAG) const {
1232 
1233   const DataLayout &DL = DAG.getDataLayout();
1234   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1235   const GlobalValue *GV = G->getGlobal();
1236 
1237   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1238       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1239     if (!MFI->isEntryFunction()) {
1240       const Function &Fn = DAG.getMachineFunction().getFunction();
1241       DiagnosticInfoUnsupported BadLDSDecl(
1242         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1243       DAG.getContext()->diagnose(BadLDSDecl);
1244     }
1245 
1246     // XXX: What does the value of G->getOffset() mean?
1247     assert(G->getOffset() == 0 &&
1248          "Do not know what to do with an non-zero offset");
1249 
1250     // TODO: We could emit code to handle the initialization somewhere.
1251     if (!hasDefinedInitializer(GV)) {
1252       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1253       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1254     }
1255   }
1256 
1257   const Function &Fn = DAG.getMachineFunction().getFunction();
1258   DiagnosticInfoUnsupported BadInit(
1259       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1260   DAG.getContext()->diagnose(BadInit);
1261   return SDValue();
1262 }
1263 
1264 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1265                                                   SelectionDAG &DAG) const {
1266   SmallVector<SDValue, 8> Args;
1267 
1268   EVT VT = Op.getValueType();
1269   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1270     SDLoc SL(Op);
1271     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1272     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1273 
1274     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1275     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1276   }
1277 
1278   for (const SDUse &U : Op->ops())
1279     DAG.ExtractVectorElements(U.get(), Args);
1280 
1281   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1282 }
1283 
1284 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1285                                                      SelectionDAG &DAG) const {
1286 
1287   SmallVector<SDValue, 8> Args;
1288   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1289   EVT VT = Op.getValueType();
1290   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1291                             VT.getVectorNumElements());
1292 
1293   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1294 }
1295 
1296 /// Generate Min/Max node
1297 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1298                                                    SDValue LHS, SDValue RHS,
1299                                                    SDValue True, SDValue False,
1300                                                    SDValue CC,
1301                                                    DAGCombinerInfo &DCI) const {
1302   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1303     return SDValue();
1304 
1305   SelectionDAG &DAG = DCI.DAG;
1306   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1307   switch (CCOpcode) {
1308   case ISD::SETOEQ:
1309   case ISD::SETONE:
1310   case ISD::SETUNE:
1311   case ISD::SETNE:
1312   case ISD::SETUEQ:
1313   case ISD::SETEQ:
1314   case ISD::SETFALSE:
1315   case ISD::SETFALSE2:
1316   case ISD::SETTRUE:
1317   case ISD::SETTRUE2:
1318   case ISD::SETUO:
1319   case ISD::SETO:
1320     break;
1321   case ISD::SETULE:
1322   case ISD::SETULT: {
1323     if (LHS == True)
1324       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1325     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1326   }
1327   case ISD::SETOLE:
1328   case ISD::SETOLT:
1329   case ISD::SETLE:
1330   case ISD::SETLT: {
1331     // Ordered. Assume ordered for undefined.
1332 
1333     // Only do this after legalization to avoid interfering with other combines
1334     // which might occur.
1335     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1336         !DCI.isCalledByLegalizer())
1337       return SDValue();
1338 
1339     // We need to permute the operands to get the correct NaN behavior. The
1340     // selected operand is the second one based on the failing compare with NaN,
1341     // so permute it based on the compare type the hardware uses.
1342     if (LHS == True)
1343       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1344     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1345   }
1346   case ISD::SETUGE:
1347   case ISD::SETUGT: {
1348     if (LHS == True)
1349       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1350     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1351   }
1352   case ISD::SETGT:
1353   case ISD::SETGE:
1354   case ISD::SETOGE:
1355   case ISD::SETOGT: {
1356     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1357         !DCI.isCalledByLegalizer())
1358       return SDValue();
1359 
1360     if (LHS == True)
1361       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1362     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1363   }
1364   case ISD::SETCC_INVALID:
1365     llvm_unreachable("Invalid setcc condcode!");
1366   }
1367   return SDValue();
1368 }
1369 
1370 std::pair<SDValue, SDValue>
1371 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1372   SDLoc SL(Op);
1373 
1374   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1375 
1376   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1377   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1378 
1379   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1380   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1381 
1382   return std::make_pair(Lo, Hi);
1383 }
1384 
1385 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1386   SDLoc SL(Op);
1387 
1388   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1389   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1390   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1391 }
1392 
1393 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1394   SDLoc SL(Op);
1395 
1396   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1397   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1398   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1399 }
1400 
1401 // Split a vector type into two parts. The first part is a power of two vector.
1402 // The second part is whatever is left over, and is a scalar if it would
1403 // otherwise be a 1-vector.
1404 std::pair<EVT, EVT>
1405 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1406   EVT LoVT, HiVT;
1407   EVT EltVT = VT.getVectorElementType();
1408   unsigned NumElts = VT.getVectorNumElements();
1409   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1410   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1411   HiVT = NumElts - LoNumElts == 1
1412              ? EltVT
1413              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1414   return std::make_pair(LoVT, HiVT);
1415 }
1416 
1417 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1418 // scalar.
1419 std::pair<SDValue, SDValue>
1420 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1421                                   const EVT &LoVT, const EVT &HiVT,
1422                                   SelectionDAG &DAG) const {
1423   assert(LoVT.getVectorNumElements() +
1424                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1425              N.getValueType().getVectorNumElements() &&
1426          "More vector elements requested than available!");
1427   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1428   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1429                            DAG.getConstant(0, DL, IdxTy));
1430   SDValue Hi = DAG.getNode(
1431       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1432       HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1433   return std::make_pair(Lo, Hi);
1434 }
1435 
1436 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1437                                               SelectionDAG &DAG) const {
1438   LoadSDNode *Load = cast<LoadSDNode>(Op);
1439   EVT VT = Op.getValueType();
1440 
1441 
1442   // If this is a 2 element vector, we really want to scalarize and not create
1443   // weird 1 element vectors.
1444   if (VT.getVectorNumElements() == 2)
1445     return scalarizeVectorLoad(Load, DAG);
1446 
1447   SDValue BasePtr = Load->getBasePtr();
1448   EVT MemVT = Load->getMemoryVT();
1449   SDLoc SL(Op);
1450 
1451   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1452 
1453   EVT LoVT, HiVT;
1454   EVT LoMemVT, HiMemVT;
1455   SDValue Lo, Hi;
1456 
1457   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1458   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1459   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1460 
1461   unsigned Size = LoMemVT.getStoreSize();
1462   unsigned BaseAlign = Load->getAlignment();
1463   unsigned HiAlign = MinAlign(BaseAlign, Size);
1464 
1465   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1466                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1467                                   BaseAlign, Load->getMemOperand()->getFlags());
1468   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1469   SDValue HiLoad =
1470       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1471                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1472                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1473 
1474   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1475   SDValue Join;
1476   if (LoVT == HiVT) {
1477     // This is the case that the vector is power of two so was evenly split.
1478     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1479   } else {
1480     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1481                        DAG.getConstant(0, SL, IdxTy));
1482     Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1483                                        : ISD::INSERT_VECTOR_ELT,
1484                        SL, VT, Join, HiLoad,
1485                        DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1486   }
1487 
1488   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1489                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1490 
1491   return DAG.getMergeValues(Ops, SL);
1492 }
1493 
1494 // Widen a vector load from vec3 to vec4.
1495 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1496                                               SelectionDAG &DAG) const {
1497   LoadSDNode *Load = cast<LoadSDNode>(Op);
1498   EVT VT = Op.getValueType();
1499   assert(VT.getVectorNumElements() == 3);
1500   SDValue BasePtr = Load->getBasePtr();
1501   EVT MemVT = Load->getMemoryVT();
1502   SDLoc SL(Op);
1503   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1504   unsigned BaseAlign = Load->getAlignment();
1505 
1506   EVT WideVT =
1507       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1508   EVT WideMemVT =
1509       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1510   SDValue WideLoad = DAG.getExtLoad(
1511       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1512       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1513   return DAG.getMergeValues(
1514       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1515                    DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1516        WideLoad.getValue(1)},
1517       SL);
1518 }
1519 
1520 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1521                                                SelectionDAG &DAG) const {
1522   StoreSDNode *Store = cast<StoreSDNode>(Op);
1523   SDValue Val = Store->getValue();
1524   EVT VT = Val.getValueType();
1525 
1526   // If this is a 2 element vector, we really want to scalarize and not create
1527   // weird 1 element vectors.
1528   if (VT.getVectorNumElements() == 2)
1529     return scalarizeVectorStore(Store, DAG);
1530 
1531   EVT MemVT = Store->getMemoryVT();
1532   SDValue Chain = Store->getChain();
1533   SDValue BasePtr = Store->getBasePtr();
1534   SDLoc SL(Op);
1535 
1536   EVT LoVT, HiVT;
1537   EVT LoMemVT, HiMemVT;
1538   SDValue Lo, Hi;
1539 
1540   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1541   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1542   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1543 
1544   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1545 
1546   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1547   unsigned BaseAlign = Store->getAlignment();
1548   unsigned Size = LoMemVT.getStoreSize();
1549   unsigned HiAlign = MinAlign(BaseAlign, Size);
1550 
1551   SDValue LoStore =
1552       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1553                         Store->getMemOperand()->getFlags());
1554   SDValue HiStore =
1555       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1556                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1557 
1558   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1559 }
1560 
1561 // This is a shortcut for integer division because we have fast i32<->f32
1562 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1563 // float is enough to accurately represent up to a 24-bit signed integer.
1564 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1565                                             bool Sign) const {
1566   SDLoc DL(Op);
1567   EVT VT = Op.getValueType();
1568   SDValue LHS = Op.getOperand(0);
1569   SDValue RHS = Op.getOperand(1);
1570   MVT IntVT = MVT::i32;
1571   MVT FltVT = MVT::f32;
1572 
1573   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1574   if (LHSSignBits < 9)
1575     return SDValue();
1576 
1577   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1578   if (RHSSignBits < 9)
1579     return SDValue();
1580 
1581   unsigned BitSize = VT.getSizeInBits();
1582   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1583   unsigned DivBits = BitSize - SignBits;
1584   if (Sign)
1585     ++DivBits;
1586 
1587   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1588   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1589 
1590   SDValue jq = DAG.getConstant(1, DL, IntVT);
1591 
1592   if (Sign) {
1593     // char|short jq = ia ^ ib;
1594     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1595 
1596     // jq = jq >> (bitsize - 2)
1597     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1598                      DAG.getConstant(BitSize - 2, DL, VT));
1599 
1600     // jq = jq | 0x1
1601     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1602   }
1603 
1604   // int ia = (int)LHS;
1605   SDValue ia = LHS;
1606 
1607   // int ib, (int)RHS;
1608   SDValue ib = RHS;
1609 
1610   // float fa = (float)ia;
1611   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1612 
1613   // float fb = (float)ib;
1614   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1615 
1616   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1617                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1618 
1619   // fq = trunc(fq);
1620   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1621 
1622   // float fqneg = -fq;
1623   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1624 
1625   // float fr = mad(fqneg, fb, fa);
1626   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1627                     (unsigned)AMDGPUISD::FMAD_FTZ :
1628                     (unsigned)ISD::FMAD;
1629   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1630 
1631   // int iq = (int)fq;
1632   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1633 
1634   // fr = fabs(fr);
1635   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1636 
1637   // fb = fabs(fb);
1638   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1639 
1640   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1641 
1642   // int cv = fr >= fb;
1643   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1644 
1645   // jq = (cv ? jq : 0);
1646   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1647 
1648   // dst = iq + jq;
1649   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1650 
1651   // Rem needs compensation, it's easier to recompute it
1652   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1653   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1654 
1655   // Truncate to number of bits this divide really is.
1656   if (Sign) {
1657     SDValue InRegSize
1658       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1659     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1660     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1661   } else {
1662     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1663     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1664     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1665   }
1666 
1667   return DAG.getMergeValues({ Div, Rem }, DL);
1668 }
1669 
1670 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1671                                       SelectionDAG &DAG,
1672                                       SmallVectorImpl<SDValue> &Results) const {
1673   SDLoc DL(Op);
1674   EVT VT = Op.getValueType();
1675 
1676   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1677 
1678   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1679 
1680   SDValue One = DAG.getConstant(1, DL, HalfVT);
1681   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1682 
1683   //HiLo split
1684   SDValue LHS = Op.getOperand(0);
1685   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1686   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1687 
1688   SDValue RHS = Op.getOperand(1);
1689   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1690   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1691 
1692   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1693       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1694 
1695     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1696                               LHS_Lo, RHS_Lo);
1697 
1698     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1699     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1700 
1701     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1702     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1703     return;
1704   }
1705 
1706   if (isTypeLegal(MVT::i64)) {
1707     // Compute denominator reciprocal.
1708     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1709                     (unsigned)AMDGPUISD::FMAD_FTZ :
1710                     (unsigned)ISD::FMAD;
1711 
1712     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1713     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1714     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1715       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1716       Cvt_Lo);
1717     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1718     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1719       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1720     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1721       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1722     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1723     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1724       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1725       Mul1);
1726     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1727     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1728     SDValue Rcp64 = DAG.getBitcast(VT,
1729                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1730 
1731     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1732     SDValue One64  = DAG.getConstant(1, DL, VT);
1733     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1734     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1735 
1736     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1737     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1738     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1739     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1740                                     Zero);
1741     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1742                                     One);
1743 
1744     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1745                                   Mulhi1_Lo, Zero1);
1746     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1747                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1748     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1749     SDValue Add1 = DAG.getBitcast(VT,
1750                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1751 
1752     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1753     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1754     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1755                                     Zero);
1756     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1757                                     One);
1758 
1759     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1760                                   Mulhi2_Lo, Zero1);
1761     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1762                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1763     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1764                                   Zero, Add2_Lo.getValue(1));
1765     SDValue Add2 = DAG.getBitcast(VT,
1766                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1767     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1768 
1769     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1770 
1771     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1772     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1773     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1774                                   Mul3_Lo, Zero1);
1775     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1776                                   Mul3_Hi, Sub1_Lo.getValue(1));
1777     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1778     SDValue Sub1 = DAG.getBitcast(VT,
1779                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1780 
1781     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1782     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1783                                  ISD::SETUGE);
1784     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1785                                  ISD::SETUGE);
1786     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1787 
1788     // TODO: Here and below portions of the code can be enclosed into if/endif.
1789     // Currently control flow is unconditional and we have 4 selects after
1790     // potential endif to substitute PHIs.
1791 
1792     // if C3 != 0 ...
1793     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1794                                   RHS_Lo, Zero1);
1795     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1796                                   RHS_Hi, Sub1_Lo.getValue(1));
1797     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1798                                   Zero, Sub2_Lo.getValue(1));
1799     SDValue Sub2 = DAG.getBitcast(VT,
1800                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1801 
1802     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1803 
1804     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1805                                  ISD::SETUGE);
1806     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1807                                  ISD::SETUGE);
1808     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1809 
1810     // if (C6 != 0)
1811     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1812 
1813     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1814                                   RHS_Lo, Zero1);
1815     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1816                                   RHS_Hi, Sub2_Lo.getValue(1));
1817     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1818                                   Zero, Sub3_Lo.getValue(1));
1819     SDValue Sub3 = DAG.getBitcast(VT,
1820                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1821 
1822     // endif C6
1823     // endif C3
1824 
1825     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1826     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1827 
1828     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1829     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1830 
1831     Results.push_back(Div);
1832     Results.push_back(Rem);
1833 
1834     return;
1835   }
1836 
1837   // r600 expandion.
1838   // Get Speculative values
1839   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1840   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1841 
1842   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1843   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1844   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1845 
1846   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1847   SDValue DIV_Lo = Zero;
1848 
1849   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1850 
1851   for (unsigned i = 0; i < halfBitWidth; ++i) {
1852     const unsigned bitPos = halfBitWidth - i - 1;
1853     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1854     // Get value of high bit
1855     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1856     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1857     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1858 
1859     // Shift
1860     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1861     // Add LHS high bit
1862     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1863 
1864     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1865     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1866 
1867     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1868 
1869     // Update REM
1870     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1871     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1872   }
1873 
1874   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1875   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1876   Results.push_back(DIV);
1877   Results.push_back(REM);
1878 }
1879 
1880 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1881                                            SelectionDAG &DAG) const {
1882   SDLoc DL(Op);
1883   EVT VT = Op.getValueType();
1884 
1885   if (VT == MVT::i64) {
1886     SmallVector<SDValue, 2> Results;
1887     LowerUDIVREM64(Op, DAG, Results);
1888     return DAG.getMergeValues(Results, DL);
1889   }
1890 
1891   if (VT == MVT::i32) {
1892     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1893       return Res;
1894   }
1895 
1896   SDValue Num = Op.getOperand(0);
1897   SDValue Den = Op.getOperand(1);
1898 
1899   // RCP =  URECIP(Den) = 2^32 / Den + e
1900   // e is rounding error.
1901   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1902 
1903   // RCP_LO = mul(RCP, Den) */
1904   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1905 
1906   // RCP_HI = mulhu (RCP, Den) */
1907   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1908 
1909   // NEG_RCP_LO = -RCP_LO
1910   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1911                                                      RCP_LO);
1912 
1913   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1914   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1915                                            NEG_RCP_LO, RCP_LO,
1916                                            ISD::SETEQ);
1917   // Calculate the rounding error from the URECIP instruction
1918   // E = mulhu(ABS_RCP_LO, RCP)
1919   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1920 
1921   // RCP_A_E = RCP + E
1922   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1923 
1924   // RCP_S_E = RCP - E
1925   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1926 
1927   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1928   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1929                                      RCP_A_E, RCP_S_E,
1930                                      ISD::SETEQ);
1931   // Quotient = mulhu(Tmp0, Num)
1932   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1933 
1934   // Num_S_Remainder = Quotient * Den
1935   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1936 
1937   // Remainder = Num - Num_S_Remainder
1938   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1939 
1940   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1941   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1942                                                  DAG.getConstant(-1, DL, VT),
1943                                                  DAG.getConstant(0, DL, VT),
1944                                                  ISD::SETUGE);
1945   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1946   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1947                                                   Num_S_Remainder,
1948                                                   DAG.getConstant(-1, DL, VT),
1949                                                   DAG.getConstant(0, DL, VT),
1950                                                   ISD::SETUGE);
1951   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1952   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1953                                                Remainder_GE_Zero);
1954 
1955   // Calculate Division result:
1956 
1957   // Quotient_A_One = Quotient + 1
1958   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1959                                        DAG.getConstant(1, DL, VT));
1960 
1961   // Quotient_S_One = Quotient - 1
1962   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1963                                        DAG.getConstant(1, DL, VT));
1964 
1965   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1966   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1967                                      Quotient, Quotient_A_One, ISD::SETEQ);
1968 
1969   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1970   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1971                             Quotient_S_One, Div, ISD::SETEQ);
1972 
1973   // Calculate Rem result:
1974 
1975   // Remainder_S_Den = Remainder - Den
1976   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1977 
1978   // Remainder_A_Den = Remainder + Den
1979   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1980 
1981   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1982   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1983                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1984 
1985   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1986   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1987                             Remainder_A_Den, Rem, ISD::SETEQ);
1988   SDValue Ops[2] = {
1989     Div,
1990     Rem
1991   };
1992   return DAG.getMergeValues(Ops, DL);
1993 }
1994 
1995 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1996                                            SelectionDAG &DAG) const {
1997   SDLoc DL(Op);
1998   EVT VT = Op.getValueType();
1999 
2000   SDValue LHS = Op.getOperand(0);
2001   SDValue RHS = Op.getOperand(1);
2002 
2003   SDValue Zero = DAG.getConstant(0, DL, VT);
2004   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2005 
2006   if (VT == MVT::i32) {
2007     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2008       return Res;
2009   }
2010 
2011   if (VT == MVT::i64 &&
2012       DAG.ComputeNumSignBits(LHS) > 32 &&
2013       DAG.ComputeNumSignBits(RHS) > 32) {
2014     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2015 
2016     //HiLo split
2017     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2018     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2019     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2020                                  LHS_Lo, RHS_Lo);
2021     SDValue Res[2] = {
2022       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2023       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2024     };
2025     return DAG.getMergeValues(Res, DL);
2026   }
2027 
2028   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2029   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2030   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2031   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2032 
2033   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2034   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2035 
2036   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2037   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2038 
2039   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2040   SDValue Rem = Div.getValue(1);
2041 
2042   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2043   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2044 
2045   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2046   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2047 
2048   SDValue Res[2] = {
2049     Div,
2050     Rem
2051   };
2052   return DAG.getMergeValues(Res, DL);
2053 }
2054 
2055 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2056 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2057   SDLoc SL(Op);
2058   EVT VT = Op.getValueType();
2059   SDValue X = Op.getOperand(0);
2060   SDValue Y = Op.getOperand(1);
2061 
2062   // TODO: Should this propagate fast-math-flags?
2063 
2064   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2065   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2066   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2067 
2068   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2069 }
2070 
2071 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2072   SDLoc SL(Op);
2073   SDValue Src = Op.getOperand(0);
2074 
2075   // result = trunc(src)
2076   // if (src > 0.0 && src != result)
2077   //   result += 1.0
2078 
2079   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2080 
2081   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2082   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2083 
2084   EVT SetCCVT =
2085       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2086 
2087   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2088   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2089   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2090 
2091   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2092   // TODO: Should this propagate fast-math-flags?
2093   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2094 }
2095 
2096 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2097                                   SelectionDAG &DAG) {
2098   const unsigned FractBits = 52;
2099   const unsigned ExpBits = 11;
2100 
2101   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2102                                 Hi,
2103                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2104                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2105   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2106                             DAG.getConstant(1023, SL, MVT::i32));
2107 
2108   return Exp;
2109 }
2110 
2111 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2112   SDLoc SL(Op);
2113   SDValue Src = Op.getOperand(0);
2114 
2115   assert(Op.getValueType() == MVT::f64);
2116 
2117   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2118   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2119 
2120   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2121 
2122   // Extract the upper half, since this is where we will find the sign and
2123   // exponent.
2124   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2125 
2126   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2127 
2128   const unsigned FractBits = 52;
2129 
2130   // Extract the sign bit.
2131   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2132   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2133 
2134   // Extend back to 64-bits.
2135   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2136   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2137 
2138   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2139   const SDValue FractMask
2140     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2141 
2142   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2143   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2144   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2145 
2146   EVT SetCCVT =
2147       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2148 
2149   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2150 
2151   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2152   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2153 
2154   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2155   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2156 
2157   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2158 }
2159 
2160 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2161   SDLoc SL(Op);
2162   SDValue Src = Op.getOperand(0);
2163 
2164   assert(Op.getValueType() == MVT::f64);
2165 
2166   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2167   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2168   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2169 
2170   // TODO: Should this propagate fast-math-flags?
2171 
2172   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2173   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2174 
2175   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2176 
2177   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2178   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2179 
2180   EVT SetCCVT =
2181       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2182   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2183 
2184   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2185 }
2186 
2187 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2188   // FNEARBYINT and FRINT are the same, except in their handling of FP
2189   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2190   // rint, so just treat them as equivalent.
2191   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2192 }
2193 
2194 // XXX - May require not supporting f32 denormals?
2195 
2196 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2197 // compare and vselect end up producing worse code than scalarizing the whole
2198 // operation.
2199 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2200   SDLoc SL(Op);
2201   SDValue X = Op.getOperand(0);
2202   EVT VT = Op.getValueType();
2203 
2204   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2205 
2206   // TODO: Should this propagate fast-math-flags?
2207 
2208   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2209 
2210   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2211 
2212   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2213   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2214   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2215 
2216   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2217 
2218   EVT SetCCVT =
2219       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2220 
2221   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2222 
2223   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2224 
2225   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2226 }
2227 
2228 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2229   SDLoc SL(Op);
2230   SDValue X = Op.getOperand(0);
2231 
2232   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2233 
2234   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2235   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2236   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2237   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2238   EVT SetCCVT =
2239       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2240 
2241   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2242 
2243   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2244 
2245   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2246 
2247   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2248                                        MVT::i64);
2249 
2250   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2251   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2252                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2253                                           MVT::i64),
2254                           Exp);
2255 
2256   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2257   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2258                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2259                               ISD::SETNE);
2260 
2261   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2262                              D, DAG.getConstant(0, SL, MVT::i64));
2263   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2264 
2265   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2266   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2267 
2268   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2269   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2270   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2271 
2272   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2273                             ExpEqNegOne,
2274                             DAG.getConstantFP(1.0, SL, MVT::f64),
2275                             DAG.getConstantFP(0.0, SL, MVT::f64));
2276 
2277   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2278 
2279   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2280   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2281 
2282   return K;
2283 }
2284 
2285 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2286   EVT VT = Op.getValueType();
2287 
2288   if (VT == MVT::f32 || VT == MVT::f16)
2289     return LowerFROUND32_16(Op, DAG);
2290 
2291   if (VT == MVT::f64)
2292     return LowerFROUND64(Op, DAG);
2293 
2294   llvm_unreachable("unhandled type");
2295 }
2296 
2297 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2298   SDLoc SL(Op);
2299   SDValue Src = Op.getOperand(0);
2300 
2301   // result = trunc(src);
2302   // if (src < 0.0 && src != result)
2303   //   result += -1.0.
2304 
2305   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2306 
2307   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2308   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2309 
2310   EVT SetCCVT =
2311       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2312 
2313   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2314   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2315   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2316 
2317   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2318   // TODO: Should this propagate fast-math-flags?
2319   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2320 }
2321 
2322 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2323                                         double Log2BaseInverted) const {
2324   EVT VT = Op.getValueType();
2325 
2326   SDLoc SL(Op);
2327   SDValue Operand = Op.getOperand(0);
2328   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2329   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2330 
2331   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2332 }
2333 
2334 // Return M_LOG2E of appropriate type
2335 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2336   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2337   case MVT::f32:
2338     return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2339   case MVT::f16:
2340     return DAG.getConstantFP(
2341       APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2342       SL, VT);
2343   case MVT::f64:
2344     return DAG.getConstantFP(
2345       APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2346   default:
2347     llvm_unreachable("unsupported fp type");
2348   }
2349 }
2350 
2351 // exp2(M_LOG2E_F * f);
2352 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2353   EVT VT = Op.getValueType();
2354   SDLoc SL(Op);
2355   SDValue Src = Op.getOperand(0);
2356 
2357   const SDValue K = getLog2EVal(DAG, SL, VT);
2358   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2359   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2360 }
2361 
2362 static bool isCtlzOpc(unsigned Opc) {
2363   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2364 }
2365 
2366 static bool isCttzOpc(unsigned Opc) {
2367   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2368 }
2369 
2370 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2371   SDLoc SL(Op);
2372   SDValue Src = Op.getOperand(0);
2373   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2374                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2375 
2376   unsigned ISDOpc, NewOpc;
2377   if (isCtlzOpc(Op.getOpcode())) {
2378     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2379     NewOpc = AMDGPUISD::FFBH_U32;
2380   } else if (isCttzOpc(Op.getOpcode())) {
2381     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2382     NewOpc = AMDGPUISD::FFBL_B32;
2383   } else
2384     llvm_unreachable("Unexpected OPCode!!!");
2385 
2386 
2387   if (ZeroUndef && Src.getValueType() == MVT::i32)
2388     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2389 
2390   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2391 
2392   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2393   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2394 
2395   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2396   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2397 
2398   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2399                                    *DAG.getContext(), MVT::i32);
2400 
2401   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2402   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2403 
2404   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2405   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2406 
2407   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2408   SDValue Add, NewOpr;
2409   if (isCtlzOpc(Op.getOpcode())) {
2410     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2411     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2412     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2413   } else {
2414     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2415     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2416     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2417   }
2418 
2419   if (!ZeroUndef) {
2420     // Test if the full 64-bit input is zero.
2421 
2422     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2423     // which we probably don't want.
2424     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2425     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2426     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2427 
2428     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2429     // with the same cycles, otherwise it is slower.
2430     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2431     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2432 
2433     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2434 
2435     // The instruction returns -1 for 0 input, but the defined intrinsic
2436     // behavior is to return the number of bits.
2437     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2438                          SrcIsZero, Bits32, NewOpr);
2439   }
2440 
2441   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2442 }
2443 
2444 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2445                                                bool Signed) const {
2446   // Unsigned
2447   // cul2f(ulong u)
2448   //{
2449   //  uint lz = clz(u);
2450   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2451   //  u = (u << lz) & 0x7fffffffffffffffUL;
2452   //  ulong t = u & 0xffffffffffUL;
2453   //  uint v = (e << 23) | (uint)(u >> 40);
2454   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2455   //  return as_float(v + r);
2456   //}
2457   // Signed
2458   // cl2f(long l)
2459   //{
2460   //  long s = l >> 63;
2461   //  float r = cul2f((l + s) ^ s);
2462   //  return s ? -r : r;
2463   //}
2464 
2465   SDLoc SL(Op);
2466   SDValue Src = Op.getOperand(0);
2467   SDValue L = Src;
2468 
2469   SDValue S;
2470   if (Signed) {
2471     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2472     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2473 
2474     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2475     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2476   }
2477 
2478   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2479                                    *DAG.getContext(), MVT::f32);
2480 
2481 
2482   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2483   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2484   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2485   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2486 
2487   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2488   SDValue E = DAG.getSelect(SL, MVT::i32,
2489     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2490     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2491     ZeroI32);
2492 
2493   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2494     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2495     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2496 
2497   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2498                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2499 
2500   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2501                              U, DAG.getConstant(40, SL, MVT::i64));
2502 
2503   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2504     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2505     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2506 
2507   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2508   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2509   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2510 
2511   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2512 
2513   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2514 
2515   SDValue R = DAG.getSelect(SL, MVT::i32,
2516     RCmp,
2517     One,
2518     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2519   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2520   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2521 
2522   if (!Signed)
2523     return R;
2524 
2525   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2526   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2527 }
2528 
2529 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2530                                                bool Signed) const {
2531   SDLoc SL(Op);
2532   SDValue Src = Op.getOperand(0);
2533 
2534   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2535 
2536   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2537                            DAG.getConstant(0, SL, MVT::i32));
2538   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2539                            DAG.getConstant(1, SL, MVT::i32));
2540 
2541   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2542                               SL, MVT::f64, Hi);
2543 
2544   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2545 
2546   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2547                               DAG.getConstant(32, SL, MVT::i32));
2548   // TODO: Should this propagate fast-math-flags?
2549   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2550 }
2551 
2552 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2553                                                SelectionDAG &DAG) const {
2554   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2555          "operation should be legal");
2556 
2557   // TODO: Factor out code common with LowerSINT_TO_FP.
2558 
2559   EVT DestVT = Op.getValueType();
2560   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2561     SDLoc DL(Op);
2562     SDValue Src = Op.getOperand(0);
2563 
2564     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2565     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2566     SDValue FPRound =
2567         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2568 
2569     return FPRound;
2570   }
2571 
2572   if (DestVT == MVT::f32)
2573     return LowerINT_TO_FP32(Op, DAG, false);
2574 
2575   assert(DestVT == MVT::f64);
2576   return LowerINT_TO_FP64(Op, DAG, false);
2577 }
2578 
2579 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2580                                               SelectionDAG &DAG) const {
2581   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2582          "operation should be legal");
2583 
2584   // TODO: Factor out code common with LowerUINT_TO_FP.
2585 
2586   EVT DestVT = Op.getValueType();
2587   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2588     SDLoc DL(Op);
2589     SDValue Src = Op.getOperand(0);
2590 
2591     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2592     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2593     SDValue FPRound =
2594         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2595 
2596     return FPRound;
2597   }
2598 
2599   if (DestVT == MVT::f32)
2600     return LowerINT_TO_FP32(Op, DAG, true);
2601 
2602   assert(DestVT == MVT::f64);
2603   return LowerINT_TO_FP64(Op, DAG, true);
2604 }
2605 
2606 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2607                                                bool Signed) const {
2608   SDLoc SL(Op);
2609 
2610   SDValue Src = Op.getOperand(0);
2611 
2612   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2613 
2614   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2615                                  MVT::f64);
2616   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2617                                  MVT::f64);
2618   // TODO: Should this propagate fast-math-flags?
2619   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2620 
2621   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2622 
2623 
2624   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2625 
2626   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2627                            MVT::i32, FloorMul);
2628   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2629 
2630   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2631 
2632   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2633 }
2634 
2635 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2636   SDLoc DL(Op);
2637   SDValue N0 = Op.getOperand(0);
2638 
2639   // Convert to target node to get known bits
2640   if (N0.getValueType() == MVT::f32)
2641     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2642 
2643   if (getTargetMachine().Options.UnsafeFPMath) {
2644     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2645     return SDValue();
2646   }
2647 
2648   assert(N0.getSimpleValueType() == MVT::f64);
2649 
2650   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2651   const unsigned ExpMask = 0x7ff;
2652   const unsigned ExpBiasf64 = 1023;
2653   const unsigned ExpBiasf16 = 15;
2654   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2655   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2656   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2657   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2658                            DAG.getConstant(32, DL, MVT::i64));
2659   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2660   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2661   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2662                           DAG.getConstant(20, DL, MVT::i64));
2663   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2664                   DAG.getConstant(ExpMask, DL, MVT::i32));
2665   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2666   // add the f16 bias (15) to get the biased exponent for the f16 format.
2667   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2668                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2669 
2670   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2671                           DAG.getConstant(8, DL, MVT::i32));
2672   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2673                   DAG.getConstant(0xffe, DL, MVT::i32));
2674 
2675   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2676                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2677   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2678 
2679   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2680   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2681 
2682   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2683   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2684       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2685                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2686 
2687   // N = M | (E << 12);
2688   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2689       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2690                   DAG.getConstant(12, DL, MVT::i32)));
2691 
2692   // B = clamp(1-E, 0, 13);
2693   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2694                                   One, E);
2695   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2696   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2697                   DAG.getConstant(13, DL, MVT::i32));
2698 
2699   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2700                                    DAG.getConstant(0x1000, DL, MVT::i32));
2701 
2702   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2703   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2704   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2705   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2706 
2707   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2708   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2709                               DAG.getConstant(0x7, DL, MVT::i32));
2710   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2711                   DAG.getConstant(2, DL, MVT::i32));
2712   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2713                                One, Zero, ISD::SETEQ);
2714   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2715                                One, Zero, ISD::SETGT);
2716   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2717   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2718 
2719   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2720                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2721   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2722                       I, V, ISD::SETEQ);
2723 
2724   // Extract the sign bit.
2725   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2726                             DAG.getConstant(16, DL, MVT::i32));
2727   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2728                      DAG.getConstant(0x8000, DL, MVT::i32));
2729 
2730   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2731   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2732 }
2733 
2734 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2735                                               SelectionDAG &DAG) const {
2736   SDValue Src = Op.getOperand(0);
2737 
2738   // TODO: Factor out code common with LowerFP_TO_UINT.
2739 
2740   EVT SrcVT = Src.getValueType();
2741   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2742     SDLoc DL(Op);
2743 
2744     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2745     SDValue FpToInt32 =
2746         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2747 
2748     return FpToInt32;
2749   }
2750 
2751   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2752     return LowerFP64_TO_INT(Op, DAG, true);
2753 
2754   return SDValue();
2755 }
2756 
2757 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2758                                               SelectionDAG &DAG) const {
2759   SDValue Src = Op.getOperand(0);
2760 
2761   // TODO: Factor out code common with LowerFP_TO_SINT.
2762 
2763   EVT SrcVT = Src.getValueType();
2764   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2765     SDLoc DL(Op);
2766 
2767     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2768     SDValue FpToInt32 =
2769         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2770 
2771     return FpToInt32;
2772   }
2773 
2774   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2775     return LowerFP64_TO_INT(Op, DAG, false);
2776 
2777   return SDValue();
2778 }
2779 
2780 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2781                                                      SelectionDAG &DAG) const {
2782   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2783   MVT VT = Op.getSimpleValueType();
2784   MVT ScalarVT = VT.getScalarType();
2785 
2786   assert(VT.isVector());
2787 
2788   SDValue Src = Op.getOperand(0);
2789   SDLoc DL(Op);
2790 
2791   // TODO: Don't scalarize on Evergreen?
2792   unsigned NElts = VT.getVectorNumElements();
2793   SmallVector<SDValue, 8> Args;
2794   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2795 
2796   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2797   for (unsigned I = 0; I < NElts; ++I)
2798     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2799 
2800   return DAG.getBuildVector(VT, DL, Args);
2801 }
2802 
2803 //===----------------------------------------------------------------------===//
2804 // Custom DAG optimizations
2805 //===----------------------------------------------------------------------===//
2806 
2807 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2808   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2809 }
2810 
2811 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2812   EVT VT = Op.getValueType();
2813   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2814                                      // as unsigned 24-bit values.
2815     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2816 }
2817 
2818 static SDValue simplifyI24(SDNode *Node24,
2819                            TargetLowering::DAGCombinerInfo &DCI) {
2820   SelectionDAG &DAG = DCI.DAG;
2821   SDValue LHS = Node24->getOperand(0);
2822   SDValue RHS = Node24->getOperand(1);
2823 
2824   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2825 
2826   // First try to simplify using GetDemandedBits which allows the operands to
2827   // have other uses, but will only perform simplifications that involve
2828   // bypassing some nodes for this user.
2829   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2830   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2831   if (DemandedLHS || DemandedRHS)
2832     return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(),
2833                        DemandedLHS ? DemandedLHS : LHS,
2834                        DemandedRHS ? DemandedRHS : RHS);
2835 
2836   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2837   // operands if this node is the only user.
2838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2839   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2840     return SDValue(Node24, 0);
2841   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2842     return SDValue(Node24, 0);
2843 
2844   return SDValue();
2845 }
2846 
2847 template <typename IntTy>
2848 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2849                                uint32_t Width, const SDLoc &DL) {
2850   if (Width + Offset < 32) {
2851     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2852     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2853     return DAG.getConstant(Result, DL, MVT::i32);
2854   }
2855 
2856   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2857 }
2858 
2859 static bool hasVolatileUser(SDNode *Val) {
2860   for (SDNode *U : Val->uses()) {
2861     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2862       if (M->isVolatile())
2863         return true;
2864     }
2865   }
2866 
2867   return false;
2868 }
2869 
2870 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2871   // i32 vectors are the canonical memory type.
2872   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2873     return false;
2874 
2875   if (!VT.isByteSized())
2876     return false;
2877 
2878   unsigned Size = VT.getStoreSize();
2879 
2880   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2881     return false;
2882 
2883   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2884     return false;
2885 
2886   return true;
2887 }
2888 
2889 // Find a load or store from corresponding pattern root.
2890 // Roots may be build_vector, bitconvert or their combinations.
2891 static MemSDNode* findMemSDNode(SDNode *N) {
2892   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
2893   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
2894     return MN;
2895   assert(isa<BuildVectorSDNode>(N));
2896   for (SDValue V : N->op_values())
2897     if (MemSDNode *MN =
2898           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
2899       return MN;
2900   llvm_unreachable("cannot find MemSDNode in the pattern!");
2901 }
2902 
2903 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned,
2904                                             SelectionDAG &DAG,
2905                                             SDNode *N,
2906                                             SDValue Addr,
2907                                             SDValue &VAddr,
2908                                             SDValue &Offset,
2909                                             SDValue &SLC) const {
2910   const GCNSubtarget &ST =
2911         DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
2912   int64_t OffsetVal = 0;
2913 
2914   if (ST.hasFlatInstOffsets() &&
2915       (!ST.hasFlatSegmentOffsetBug() ||
2916        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
2917       DAG.isBaseWithConstantOffset(Addr)) {
2918     SDValue N0 = Addr.getOperand(0);
2919     SDValue N1 = Addr.getOperand(1);
2920     int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
2921 
2922     if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
2923       if ((IsSigned && isInt<12>(COffsetVal)) ||
2924           (!IsSigned && isUInt<11>(COffsetVal))) {
2925         Addr = N0;
2926         OffsetVal = COffsetVal;
2927       }
2928     } else {
2929       if ((IsSigned && isInt<13>(COffsetVal)) ||
2930           (!IsSigned && isUInt<12>(COffsetVal))) {
2931         Addr = N0;
2932         OffsetVal = COffsetVal;
2933       }
2934     }
2935   }
2936 
2937   VAddr = Addr;
2938   Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
2939   SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1);
2940 
2941   return true;
2942 }
2943 
2944 // Replace load of an illegal type with a store of a bitcast to a friendlier
2945 // type.
2946 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2947                                                  DAGCombinerInfo &DCI) const {
2948   if (!DCI.isBeforeLegalize())
2949     return SDValue();
2950 
2951   LoadSDNode *LN = cast<LoadSDNode>(N);
2952   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2953     return SDValue();
2954 
2955   SDLoc SL(N);
2956   SelectionDAG &DAG = DCI.DAG;
2957   EVT VT = LN->getMemoryVT();
2958 
2959   unsigned Size = VT.getStoreSize();
2960   unsigned Align = LN->getAlignment();
2961   if (Align < Size && isTypeLegal(VT)) {
2962     bool IsFast;
2963     unsigned AS = LN->getAddressSpace();
2964 
2965     // Expand unaligned loads earlier than legalization. Due to visitation order
2966     // problems during legalization, the emitted instructions to pack and unpack
2967     // the bytes again are not eliminated in the case of an unaligned copy.
2968     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2969       if (VT.isVector())
2970         return scalarizeVectorLoad(LN, DAG);
2971 
2972       SDValue Ops[2];
2973       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2974       return DAG.getMergeValues(Ops, SDLoc(N));
2975     }
2976 
2977     if (!IsFast)
2978       return SDValue();
2979   }
2980 
2981   if (!shouldCombineMemoryType(VT))
2982     return SDValue();
2983 
2984   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2985 
2986   SDValue NewLoad
2987     = DAG.getLoad(NewVT, SL, LN->getChain(),
2988                   LN->getBasePtr(), LN->getMemOperand());
2989 
2990   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2991   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2992   return SDValue(N, 0);
2993 }
2994 
2995 // Replace store of an illegal type with a store of a bitcast to a friendlier
2996 // type.
2997 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2998                                                   DAGCombinerInfo &DCI) const {
2999   if (!DCI.isBeforeLegalize())
3000     return SDValue();
3001 
3002   StoreSDNode *SN = cast<StoreSDNode>(N);
3003   if (SN->isVolatile() || !ISD::isNormalStore(SN))
3004     return SDValue();
3005 
3006   EVT VT = SN->getMemoryVT();
3007   unsigned Size = VT.getStoreSize();
3008 
3009   SDLoc SL(N);
3010   SelectionDAG &DAG = DCI.DAG;
3011   unsigned Align = SN->getAlignment();
3012   if (Align < Size && isTypeLegal(VT)) {
3013     bool IsFast;
3014     unsigned AS = SN->getAddressSpace();
3015 
3016     // Expand unaligned stores earlier than legalization. Due to visitation
3017     // order problems during legalization, the emitted instructions to pack and
3018     // unpack the bytes again are not eliminated in the case of an unaligned
3019     // copy.
3020     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
3021       if (VT.isVector())
3022         return scalarizeVectorStore(SN, DAG);
3023 
3024       return expandUnalignedStore(SN, DAG);
3025     }
3026 
3027     if (!IsFast)
3028       return SDValue();
3029   }
3030 
3031   if (!shouldCombineMemoryType(VT))
3032     return SDValue();
3033 
3034   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3035   SDValue Val = SN->getValue();
3036 
3037   //DCI.AddToWorklist(Val.getNode());
3038 
3039   bool OtherUses = !Val.hasOneUse();
3040   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3041   if (OtherUses) {
3042     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3043     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3044   }
3045 
3046   return DAG.getStore(SN->getChain(), SL, CastVal,
3047                       SN->getBasePtr(), SN->getMemOperand());
3048 }
3049 
3050 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3051 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3052 // issues.
3053 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3054                                                         DAGCombinerInfo &DCI) const {
3055   SelectionDAG &DAG = DCI.DAG;
3056   SDValue N0 = N->getOperand(0);
3057 
3058   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3059   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3060   if (N0.getOpcode() == ISD::TRUNCATE) {
3061     SDValue N1 = N->getOperand(1);
3062     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3063     SDLoc SL(N);
3064 
3065     SDValue Src = N0.getOperand(0);
3066     EVT SrcVT = Src.getValueType();
3067     if (SrcVT.bitsGE(ExtVT)) {
3068       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3069       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3070     }
3071   }
3072 
3073   return SDValue();
3074 }
3075 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3076 /// binary operation \p Opc to it with the corresponding constant operands.
3077 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3078   DAGCombinerInfo &DCI, const SDLoc &SL,
3079   unsigned Opc, SDValue LHS,
3080   uint32_t ValLo, uint32_t ValHi) const {
3081   SelectionDAG &DAG = DCI.DAG;
3082   SDValue Lo, Hi;
3083   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3084 
3085   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3086   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3087 
3088   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3089   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3090 
3091   // Re-visit the ands. It's possible we eliminated one of them and it could
3092   // simplify the vector.
3093   DCI.AddToWorklist(Lo.getNode());
3094   DCI.AddToWorklist(Hi.getNode());
3095 
3096   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3097   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3098 }
3099 
3100 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3101                                                 DAGCombinerInfo &DCI) const {
3102   EVT VT = N->getValueType(0);
3103 
3104   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3105   if (!RHS)
3106     return SDValue();
3107 
3108   SDValue LHS = N->getOperand(0);
3109   unsigned RHSVal = RHS->getZExtValue();
3110   if (!RHSVal)
3111     return LHS;
3112 
3113   SDLoc SL(N);
3114   SelectionDAG &DAG = DCI.DAG;
3115 
3116   switch (LHS->getOpcode()) {
3117   default:
3118     break;
3119   case ISD::ZERO_EXTEND:
3120   case ISD::SIGN_EXTEND:
3121   case ISD::ANY_EXTEND: {
3122     SDValue X = LHS->getOperand(0);
3123 
3124     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3125         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3126       // Prefer build_vector as the canonical form if packed types are legal.
3127       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3128       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3129        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3130       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3131     }
3132 
3133     // shl (ext x) => zext (shl x), if shift does not overflow int
3134     if (VT != MVT::i64)
3135       break;
3136     KnownBits Known = DAG.computeKnownBits(X);
3137     unsigned LZ = Known.countMinLeadingZeros();
3138     if (LZ < RHSVal)
3139       break;
3140     EVT XVT = X.getValueType();
3141     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3142     return DAG.getZExtOrTrunc(Shl, SL, VT);
3143   }
3144   }
3145 
3146   if (VT != MVT::i64)
3147     return SDValue();
3148 
3149   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3150 
3151   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3152   // common case, splitting this into a move and a 32-bit shift is faster and
3153   // the same code size.
3154   if (RHSVal < 32)
3155     return SDValue();
3156 
3157   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3158 
3159   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3160   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3161 
3162   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3163 
3164   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3165   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3166 }
3167 
3168 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3169                                                 DAGCombinerInfo &DCI) const {
3170   if (N->getValueType(0) != MVT::i64)
3171     return SDValue();
3172 
3173   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3174   if (!RHS)
3175     return SDValue();
3176 
3177   SelectionDAG &DAG = DCI.DAG;
3178   SDLoc SL(N);
3179   unsigned RHSVal = RHS->getZExtValue();
3180 
3181   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3182   if (RHSVal == 32) {
3183     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3184     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3185                                    DAG.getConstant(31, SL, MVT::i32));
3186 
3187     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3188     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3189   }
3190 
3191   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3192   if (RHSVal == 63) {
3193     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3194     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3195                                    DAG.getConstant(31, SL, MVT::i32));
3196     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3197     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3198   }
3199 
3200   return SDValue();
3201 }
3202 
3203 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3204                                                 DAGCombinerInfo &DCI) const {
3205   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3206   if (!RHS)
3207     return SDValue();
3208 
3209   EVT VT = N->getValueType(0);
3210   SDValue LHS = N->getOperand(0);
3211   unsigned ShiftAmt = RHS->getZExtValue();
3212   SelectionDAG &DAG = DCI.DAG;
3213   SDLoc SL(N);
3214 
3215   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3216   // this improves the ability to match BFE patterns in isel.
3217   if (LHS.getOpcode() == ISD::AND) {
3218     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3219       if (Mask->getAPIntValue().isShiftedMask() &&
3220           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3221         return DAG.getNode(
3222             ISD::AND, SL, VT,
3223             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3224             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3225       }
3226     }
3227   }
3228 
3229   if (VT != MVT::i64)
3230     return SDValue();
3231 
3232   if (ShiftAmt < 32)
3233     return SDValue();
3234 
3235   // srl i64:x, C for C >= 32
3236   // =>
3237   //   build_pair (srl hi_32(x), C - 32), 0
3238   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3239   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3240 
3241   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3242   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3243 
3244   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3245   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3246 
3247   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3248 
3249   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3250 }
3251 
3252 SDValue AMDGPUTargetLowering::performTruncateCombine(
3253   SDNode *N, DAGCombinerInfo &DCI) const {
3254   SDLoc SL(N);
3255   SelectionDAG &DAG = DCI.DAG;
3256   EVT VT = N->getValueType(0);
3257   SDValue Src = N->getOperand(0);
3258 
3259   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3260   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3261     SDValue Vec = Src.getOperand(0);
3262     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3263       SDValue Elt0 = Vec.getOperand(0);
3264       EVT EltVT = Elt0.getValueType();
3265       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3266         if (EltVT.isFloatingPoint()) {
3267           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3268                              EltVT.changeTypeToInteger(), Elt0);
3269         }
3270 
3271         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3272       }
3273     }
3274   }
3275 
3276   // Equivalent of above for accessing the high element of a vector as an
3277   // integer operation.
3278   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3279   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3280     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3281       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3282         SDValue BV = stripBitcast(Src.getOperand(0));
3283         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3284             BV.getValueType().getVectorNumElements() == 2) {
3285           SDValue SrcElt = BV.getOperand(1);
3286           EVT SrcEltVT = SrcElt.getValueType();
3287           if (SrcEltVT.isFloatingPoint()) {
3288             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3289                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3290           }
3291 
3292           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3293         }
3294       }
3295     }
3296   }
3297 
3298   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3299   //
3300   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3301   //     i16 (trunc (srl (i32 (trunc x), K)))
3302   if (VT.getScalarSizeInBits() < 32) {
3303     EVT SrcVT = Src.getValueType();
3304     if (SrcVT.getScalarSizeInBits() > 32 &&
3305         (Src.getOpcode() == ISD::SRL ||
3306          Src.getOpcode() == ISD::SRA ||
3307          Src.getOpcode() == ISD::SHL)) {
3308       SDValue Amt = Src.getOperand(1);
3309       KnownBits Known = DAG.computeKnownBits(Amt);
3310       unsigned Size = VT.getScalarSizeInBits();
3311       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3312           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3313         EVT MidVT = VT.isVector() ?
3314           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3315                            VT.getVectorNumElements()) : MVT::i32;
3316 
3317         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3318         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3319                                     Src.getOperand(0));
3320         DCI.AddToWorklist(Trunc.getNode());
3321 
3322         if (Amt.getValueType() != NewShiftVT) {
3323           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3324           DCI.AddToWorklist(Amt.getNode());
3325         }
3326 
3327         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3328                                           Trunc, Amt);
3329         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3330       }
3331     }
3332   }
3333 
3334   return SDValue();
3335 }
3336 
3337 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3338 // instructions. If we only match on the legalized i64 mul expansion,
3339 // SimplifyDemandedBits will be unable to remove them because there will be
3340 // multiple uses due to the separate mul + mulh[su].
3341 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3342                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3343   if (Size <= 32) {
3344     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3345     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3346   }
3347 
3348   // Because we want to eliminate extension instructions before the
3349   // operation, we need to create a single user here (i.e. not the separate
3350   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3351 
3352   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3353 
3354   SDValue Mul = DAG.getNode(MulOpc, SL,
3355                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3356 
3357   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3358                      Mul.getValue(0), Mul.getValue(1));
3359 }
3360 
3361 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3362                                                 DAGCombinerInfo &DCI) const {
3363   EVT VT = N->getValueType(0);
3364 
3365   unsigned Size = VT.getSizeInBits();
3366   if (VT.isVector() || Size > 64)
3367     return SDValue();
3368 
3369   // There are i16 integer mul/mad.
3370   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3371     return SDValue();
3372 
3373   SelectionDAG &DAG = DCI.DAG;
3374   SDLoc DL(N);
3375 
3376   SDValue N0 = N->getOperand(0);
3377   SDValue N1 = N->getOperand(1);
3378 
3379   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3380   // in the source into any_extends if the result of the mul is truncated. Since
3381   // we can assume the high bits are whatever we want, use the underlying value
3382   // to avoid the unknown high bits from interfering.
3383   if (N0.getOpcode() == ISD::ANY_EXTEND)
3384     N0 = N0.getOperand(0);
3385 
3386   if (N1.getOpcode() == ISD::ANY_EXTEND)
3387     N1 = N1.getOperand(0);
3388 
3389   SDValue Mul;
3390 
3391   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3392     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3393     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3394     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3395   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3396     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3397     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3398     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3399   } else {
3400     return SDValue();
3401   }
3402 
3403   // We need to use sext even for MUL_U24, because MUL_U24 is used
3404   // for signed multiply of 8 and 16-bit types.
3405   return DAG.getSExtOrTrunc(Mul, DL, VT);
3406 }
3407 
3408 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3409                                                   DAGCombinerInfo &DCI) const {
3410   EVT VT = N->getValueType(0);
3411 
3412   if (!Subtarget->hasMulI24() || VT.isVector())
3413     return SDValue();
3414 
3415   SelectionDAG &DAG = DCI.DAG;
3416   SDLoc DL(N);
3417 
3418   SDValue N0 = N->getOperand(0);
3419   SDValue N1 = N->getOperand(1);
3420 
3421   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3422     return SDValue();
3423 
3424   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3425   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3426 
3427   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3428   DCI.AddToWorklist(Mulhi.getNode());
3429   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3430 }
3431 
3432 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3433                                                   DAGCombinerInfo &DCI) const {
3434   EVT VT = N->getValueType(0);
3435 
3436   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3437     return SDValue();
3438 
3439   SelectionDAG &DAG = DCI.DAG;
3440   SDLoc DL(N);
3441 
3442   SDValue N0 = N->getOperand(0);
3443   SDValue N1 = N->getOperand(1);
3444 
3445   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3446     return SDValue();
3447 
3448   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3449   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3450 
3451   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3452   DCI.AddToWorklist(Mulhi.getNode());
3453   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3454 }
3455 
3456 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3457   SDNode *N, DAGCombinerInfo &DCI) const {
3458   SelectionDAG &DAG = DCI.DAG;
3459 
3460   // Simplify demanded bits before splitting into multiple users.
3461   if (SDValue V = simplifyI24(N, DCI))
3462     return V;
3463 
3464   SDValue N0 = N->getOperand(0);
3465   SDValue N1 = N->getOperand(1);
3466 
3467   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3468 
3469   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3470   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3471 
3472   SDLoc SL(N);
3473 
3474   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3475   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3476   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3477 }
3478 
3479 static bool isNegativeOne(SDValue Val) {
3480   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3481     return C->isAllOnesValue();
3482   return false;
3483 }
3484 
3485 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3486                                           SDValue Op,
3487                                           const SDLoc &DL,
3488                                           unsigned Opc) const {
3489   EVT VT = Op.getValueType();
3490   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3491   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3492                               LegalVT != MVT::i16))
3493     return SDValue();
3494 
3495   if (VT != MVT::i32)
3496     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3497 
3498   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3499   if (VT != MVT::i32)
3500     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3501 
3502   return FFBX;
3503 }
3504 
3505 // The native instructions return -1 on 0 input. Optimize out a select that
3506 // produces -1 on 0.
3507 //
3508 // TODO: If zero is not undef, we could also do this if the output is compared
3509 // against the bitwidth.
3510 //
3511 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3512 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3513                                                  SDValue LHS, SDValue RHS,
3514                                                  DAGCombinerInfo &DCI) const {
3515   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3516   if (!CmpRhs || !CmpRhs->isNullValue())
3517     return SDValue();
3518 
3519   SelectionDAG &DAG = DCI.DAG;
3520   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3521   SDValue CmpLHS = Cond.getOperand(0);
3522 
3523   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3524                                            AMDGPUISD::FFBH_U32;
3525 
3526   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3527   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3528   if (CCOpcode == ISD::SETEQ &&
3529       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3530       RHS.getOperand(0) == CmpLHS &&
3531       isNegativeOne(LHS)) {
3532     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3533   }
3534 
3535   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3536   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3537   if (CCOpcode == ISD::SETNE &&
3538       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3539       LHS.getOperand(0) == CmpLHS &&
3540       isNegativeOne(RHS)) {
3541     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3542   }
3543 
3544   return SDValue();
3545 }
3546 
3547 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3548                                          unsigned Op,
3549                                          const SDLoc &SL,
3550                                          SDValue Cond,
3551                                          SDValue N1,
3552                                          SDValue N2) {
3553   SelectionDAG &DAG = DCI.DAG;
3554   EVT VT = N1.getValueType();
3555 
3556   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3557                                   N1.getOperand(0), N2.getOperand(0));
3558   DCI.AddToWorklist(NewSelect.getNode());
3559   return DAG.getNode(Op, SL, VT, NewSelect);
3560 }
3561 
3562 // Pull a free FP operation out of a select so it may fold into uses.
3563 //
3564 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3565 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3566 //
3567 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3568 // select c, (fabs x), +k -> fabs (select c, x, k)
3569 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3570                                     SDValue N) {
3571   SelectionDAG &DAG = DCI.DAG;
3572   SDValue Cond = N.getOperand(0);
3573   SDValue LHS = N.getOperand(1);
3574   SDValue RHS = N.getOperand(2);
3575 
3576   EVT VT = N.getValueType();
3577   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3578       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3579     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3580                                      SDLoc(N), Cond, LHS, RHS);
3581   }
3582 
3583   bool Inv = false;
3584   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3585     std::swap(LHS, RHS);
3586     Inv = true;
3587   }
3588 
3589   // TODO: Support vector constants.
3590   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3591   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3592     SDLoc SL(N);
3593     // If one side is an fneg/fabs and the other is a constant, we can push the
3594     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3595     SDValue NewLHS = LHS.getOperand(0);
3596     SDValue NewRHS = RHS;
3597 
3598     // Careful: if the neg can be folded up, don't try to pull it back down.
3599     bool ShouldFoldNeg = true;
3600 
3601     if (NewLHS.hasOneUse()) {
3602       unsigned Opc = NewLHS.getOpcode();
3603       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3604         ShouldFoldNeg = false;
3605       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3606         ShouldFoldNeg = false;
3607     }
3608 
3609     if (ShouldFoldNeg) {
3610       if (LHS.getOpcode() == ISD::FNEG)
3611         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3612       else if (CRHS->isNegative())
3613         return SDValue();
3614 
3615       if (Inv)
3616         std::swap(NewLHS, NewRHS);
3617 
3618       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3619                                       Cond, NewLHS, NewRHS);
3620       DCI.AddToWorklist(NewSelect.getNode());
3621       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3622     }
3623   }
3624 
3625   return SDValue();
3626 }
3627 
3628 
3629 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3630                                                    DAGCombinerInfo &DCI) const {
3631   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3632     return Folded;
3633 
3634   SDValue Cond = N->getOperand(0);
3635   if (Cond.getOpcode() != ISD::SETCC)
3636     return SDValue();
3637 
3638   EVT VT = N->getValueType(0);
3639   SDValue LHS = Cond.getOperand(0);
3640   SDValue RHS = Cond.getOperand(1);
3641   SDValue CC = Cond.getOperand(2);
3642 
3643   SDValue True = N->getOperand(1);
3644   SDValue False = N->getOperand(2);
3645 
3646   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3647     SelectionDAG &DAG = DCI.DAG;
3648     if ((DAG.isConstantValueOfAnyType(True) ||
3649          DAG.isConstantValueOfAnyType(True)) &&
3650         (!DAG.isConstantValueOfAnyType(False) &&
3651          !DAG.isConstantValueOfAnyType(False))) {
3652       // Swap cmp + select pair to move constant to false input.
3653       // This will allow using VOPC cndmasks more often.
3654       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3655 
3656       SDLoc SL(N);
3657       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3658                                             LHS.getValueType().isInteger());
3659 
3660       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3661       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3662     }
3663 
3664     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3665       SDValue MinMax
3666         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3667       // Revisit this node so we can catch min3/max3/med3 patterns.
3668       //DCI.AddToWorklist(MinMax.getNode());
3669       return MinMax;
3670     }
3671   }
3672 
3673   // There's no reason to not do this if the condition has other uses.
3674   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3675 }
3676 
3677 static bool isInv2Pi(const APFloat &APF) {
3678   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3679   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3680   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3681 
3682   return APF.bitwiseIsEqual(KF16) ||
3683          APF.bitwiseIsEqual(KF32) ||
3684          APF.bitwiseIsEqual(KF64);
3685 }
3686 
3687 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3688 // additional cost to negate them.
3689 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3690   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3691     if (C->isZero() && !C->isNegative())
3692       return true;
3693 
3694     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3695       return true;
3696   }
3697 
3698   return false;
3699 }
3700 
3701 static unsigned inverseMinMax(unsigned Opc) {
3702   switch (Opc) {
3703   case ISD::FMAXNUM:
3704     return ISD::FMINNUM;
3705   case ISD::FMINNUM:
3706     return ISD::FMAXNUM;
3707   case ISD::FMAXNUM_IEEE:
3708     return ISD::FMINNUM_IEEE;
3709   case ISD::FMINNUM_IEEE:
3710     return ISD::FMAXNUM_IEEE;
3711   case AMDGPUISD::FMAX_LEGACY:
3712     return AMDGPUISD::FMIN_LEGACY;
3713   case AMDGPUISD::FMIN_LEGACY:
3714     return  AMDGPUISD::FMAX_LEGACY;
3715   default:
3716     llvm_unreachable("invalid min/max opcode");
3717   }
3718 }
3719 
3720 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3721                                                  DAGCombinerInfo &DCI) const {
3722   SelectionDAG &DAG = DCI.DAG;
3723   SDValue N0 = N->getOperand(0);
3724   EVT VT = N->getValueType(0);
3725 
3726   unsigned Opc = N0.getOpcode();
3727 
3728   // If the input has multiple uses and we can either fold the negate down, or
3729   // the other uses cannot, give up. This both prevents unprofitable
3730   // transformations and infinite loops: we won't repeatedly try to fold around
3731   // a negate that has no 'good' form.
3732   if (N0.hasOneUse()) {
3733     // This may be able to fold into the source, but at a code size cost. Don't
3734     // fold if the fold into the user is free.
3735     if (allUsesHaveSourceMods(N, 0))
3736       return SDValue();
3737   } else {
3738     if (fnegFoldsIntoOp(Opc) &&
3739         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3740       return SDValue();
3741   }
3742 
3743   SDLoc SL(N);
3744   switch (Opc) {
3745   case ISD::FADD: {
3746     if (!mayIgnoreSignedZero(N0))
3747       return SDValue();
3748 
3749     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3750     SDValue LHS = N0.getOperand(0);
3751     SDValue RHS = N0.getOperand(1);
3752 
3753     if (LHS.getOpcode() != ISD::FNEG)
3754       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3755     else
3756       LHS = LHS.getOperand(0);
3757 
3758     if (RHS.getOpcode() != ISD::FNEG)
3759       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3760     else
3761       RHS = RHS.getOperand(0);
3762 
3763     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3764     if (Res.getOpcode() != ISD::FADD)
3765       return SDValue(); // Op got folded away.
3766     if (!N0.hasOneUse())
3767       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3768     return Res;
3769   }
3770   case ISD::FMUL:
3771   case AMDGPUISD::FMUL_LEGACY: {
3772     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3773     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3774     SDValue LHS = N0.getOperand(0);
3775     SDValue RHS = N0.getOperand(1);
3776 
3777     if (LHS.getOpcode() == ISD::FNEG)
3778       LHS = LHS.getOperand(0);
3779     else if (RHS.getOpcode() == ISD::FNEG)
3780       RHS = RHS.getOperand(0);
3781     else
3782       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3783 
3784     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3785     if (Res.getOpcode() != Opc)
3786       return SDValue(); // Op got folded away.
3787     if (!N0.hasOneUse())
3788       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3789     return Res;
3790   }
3791   case ISD::FMA:
3792   case ISD::FMAD: {
3793     if (!mayIgnoreSignedZero(N0))
3794       return SDValue();
3795 
3796     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3797     SDValue LHS = N0.getOperand(0);
3798     SDValue MHS = N0.getOperand(1);
3799     SDValue RHS = N0.getOperand(2);
3800 
3801     if (LHS.getOpcode() == ISD::FNEG)
3802       LHS = LHS.getOperand(0);
3803     else if (MHS.getOpcode() == ISD::FNEG)
3804       MHS = MHS.getOperand(0);
3805     else
3806       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3807 
3808     if (RHS.getOpcode() != ISD::FNEG)
3809       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3810     else
3811       RHS = RHS.getOperand(0);
3812 
3813     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3814     if (Res.getOpcode() != Opc)
3815       return SDValue(); // Op got folded away.
3816     if (!N0.hasOneUse())
3817       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3818     return Res;
3819   }
3820   case ISD::FMAXNUM:
3821   case ISD::FMINNUM:
3822   case ISD::FMAXNUM_IEEE:
3823   case ISD::FMINNUM_IEEE:
3824   case AMDGPUISD::FMAX_LEGACY:
3825   case AMDGPUISD::FMIN_LEGACY: {
3826     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3827     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3828     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3829     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3830 
3831     SDValue LHS = N0.getOperand(0);
3832     SDValue RHS = N0.getOperand(1);
3833 
3834     // 0 doesn't have a negated inline immediate.
3835     // TODO: This constant check should be generalized to other operations.
3836     if (isConstantCostlierToNegate(RHS))
3837       return SDValue();
3838 
3839     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3840     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3841     unsigned Opposite = inverseMinMax(Opc);
3842 
3843     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3844     if (Res.getOpcode() != Opposite)
3845       return SDValue(); // Op got folded away.
3846     if (!N0.hasOneUse())
3847       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3848     return Res;
3849   }
3850   case AMDGPUISD::FMED3: {
3851     SDValue Ops[3];
3852     for (unsigned I = 0; I < 3; ++I)
3853       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3854 
3855     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3856     if (Res.getOpcode() != AMDGPUISD::FMED3)
3857       return SDValue(); // Op got folded away.
3858     if (!N0.hasOneUse())
3859       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3860     return Res;
3861   }
3862   case ISD::FP_EXTEND:
3863   case ISD::FTRUNC:
3864   case ISD::FRINT:
3865   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3866   case ISD::FSIN:
3867   case ISD::FCANONICALIZE:
3868   case AMDGPUISD::RCP:
3869   case AMDGPUISD::RCP_LEGACY:
3870   case AMDGPUISD::RCP_IFLAG:
3871   case AMDGPUISD::SIN_HW: {
3872     SDValue CvtSrc = N0.getOperand(0);
3873     if (CvtSrc.getOpcode() == ISD::FNEG) {
3874       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3875       // (fneg (rcp (fneg x))) -> (rcp x)
3876       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3877     }
3878 
3879     if (!N0.hasOneUse())
3880       return SDValue();
3881 
3882     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3883     // (fneg (rcp x)) -> (rcp (fneg x))
3884     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3885     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3886   }
3887   case ISD::FP_ROUND: {
3888     SDValue CvtSrc = N0.getOperand(0);
3889 
3890     if (CvtSrc.getOpcode() == ISD::FNEG) {
3891       // (fneg (fp_round (fneg x))) -> (fp_round x)
3892       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3893                          CvtSrc.getOperand(0), N0.getOperand(1));
3894     }
3895 
3896     if (!N0.hasOneUse())
3897       return SDValue();
3898 
3899     // (fneg (fp_round x)) -> (fp_round (fneg x))
3900     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3901     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3902   }
3903   case ISD::FP16_TO_FP: {
3904     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3905     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3906     // Put the fneg back as a legal source operation that can be matched later.
3907     SDLoc SL(N);
3908 
3909     SDValue Src = N0.getOperand(0);
3910     EVT SrcVT = Src.getValueType();
3911 
3912     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3913     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3914                                   DAG.getConstant(0x8000, SL, SrcVT));
3915     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3916   }
3917   default:
3918     return SDValue();
3919   }
3920 }
3921 
3922 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3923                                                  DAGCombinerInfo &DCI) const {
3924   SelectionDAG &DAG = DCI.DAG;
3925   SDValue N0 = N->getOperand(0);
3926 
3927   if (!N0.hasOneUse())
3928     return SDValue();
3929 
3930   switch (N0.getOpcode()) {
3931   case ISD::FP16_TO_FP: {
3932     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3933     SDLoc SL(N);
3934     SDValue Src = N0.getOperand(0);
3935     EVT SrcVT = Src.getValueType();
3936 
3937     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3938     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3939                                   DAG.getConstant(0x7fff, SL, SrcVT));
3940     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3941   }
3942   default:
3943     return SDValue();
3944   }
3945 }
3946 
3947 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3948                                                 DAGCombinerInfo &DCI) const {
3949   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3950   if (!CFP)
3951     return SDValue();
3952 
3953   // XXX - Should this flush denormals?
3954   const APFloat &Val = CFP->getValueAPF();
3955   APFloat One(Val.getSemantics(), "1.0");
3956   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3957 }
3958 
3959 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3960                                                 DAGCombinerInfo &DCI) const {
3961   SelectionDAG &DAG = DCI.DAG;
3962   SDLoc DL(N);
3963 
3964   switch(N->getOpcode()) {
3965   default:
3966     break;
3967   case ISD::BITCAST: {
3968     EVT DestVT = N->getValueType(0);
3969 
3970     // Push casts through vector builds. This helps avoid emitting a large
3971     // number of copies when materializing floating point vector constants.
3972     //
3973     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3974     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3975     if (DestVT.isVector()) {
3976       SDValue Src = N->getOperand(0);
3977       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3978         EVT SrcVT = Src.getValueType();
3979         unsigned NElts = DestVT.getVectorNumElements();
3980 
3981         if (SrcVT.getVectorNumElements() == NElts) {
3982           EVT DestEltVT = DestVT.getVectorElementType();
3983 
3984           SmallVector<SDValue, 8> CastedElts;
3985           SDLoc SL(N);
3986           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3987             SDValue Elt = Src.getOperand(I);
3988             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3989           }
3990 
3991           return DAG.getBuildVector(DestVT, SL, CastedElts);
3992         }
3993       }
3994     }
3995 
3996     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3997       break;
3998 
3999     // Fold bitcasts of constants.
4000     //
4001     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4002     // TODO: Generalize and move to DAGCombiner
4003     SDValue Src = N->getOperand(0);
4004     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4005       if (Src.getValueType() == MVT::i64) {
4006         SDLoc SL(N);
4007         uint64_t CVal = C->getZExtValue();
4008         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4009                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4010                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4011         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4012       }
4013     }
4014 
4015     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4016       const APInt &Val = C->getValueAPF().bitcastToAPInt();
4017       SDLoc SL(N);
4018       uint64_t CVal = Val.getZExtValue();
4019       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4020                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4021                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4022 
4023       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4024     }
4025 
4026     break;
4027   }
4028   case ISD::SHL: {
4029     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4030       break;
4031 
4032     return performShlCombine(N, DCI);
4033   }
4034   case ISD::SRL: {
4035     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4036       break;
4037 
4038     return performSrlCombine(N, DCI);
4039   }
4040   case ISD::SRA: {
4041     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4042       break;
4043 
4044     return performSraCombine(N, DCI);
4045   }
4046   case ISD::TRUNCATE:
4047     return performTruncateCombine(N, DCI);
4048   case ISD::MUL:
4049     return performMulCombine(N, DCI);
4050   case ISD::MULHS:
4051     return performMulhsCombine(N, DCI);
4052   case ISD::MULHU:
4053     return performMulhuCombine(N, DCI);
4054   case AMDGPUISD::MUL_I24:
4055   case AMDGPUISD::MUL_U24:
4056   case AMDGPUISD::MULHI_I24:
4057   case AMDGPUISD::MULHI_U24: {
4058     if (SDValue V = simplifyI24(N, DCI))
4059       return V;
4060     return SDValue();
4061   }
4062   case AMDGPUISD::MUL_LOHI_I24:
4063   case AMDGPUISD::MUL_LOHI_U24:
4064     return performMulLoHi24Combine(N, DCI);
4065   case ISD::SELECT:
4066     return performSelectCombine(N, DCI);
4067   case ISD::FNEG:
4068     return performFNegCombine(N, DCI);
4069   case ISD::FABS:
4070     return performFAbsCombine(N, DCI);
4071   case AMDGPUISD::BFE_I32:
4072   case AMDGPUISD::BFE_U32: {
4073     assert(!N->getValueType(0).isVector() &&
4074            "Vector handling of BFE not implemented");
4075     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4076     if (!Width)
4077       break;
4078 
4079     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4080     if (WidthVal == 0)
4081       return DAG.getConstant(0, DL, MVT::i32);
4082 
4083     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4084     if (!Offset)
4085       break;
4086 
4087     SDValue BitsFrom = N->getOperand(0);
4088     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4089 
4090     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4091 
4092     if (OffsetVal == 0) {
4093       // This is already sign / zero extended, so try to fold away extra BFEs.
4094       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4095 
4096       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4097       if (OpSignBits >= SignBits)
4098         return BitsFrom;
4099 
4100       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4101       if (Signed) {
4102         // This is a sign_extend_inreg. Replace it to take advantage of existing
4103         // DAG Combines. If not eliminated, we will match back to BFE during
4104         // selection.
4105 
4106         // TODO: The sext_inreg of extended types ends, although we can could
4107         // handle them in a single BFE.
4108         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4109                            DAG.getValueType(SmallVT));
4110       }
4111 
4112       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4113     }
4114 
4115     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4116       if (Signed) {
4117         return constantFoldBFE<int32_t>(DAG,
4118                                         CVal->getSExtValue(),
4119                                         OffsetVal,
4120                                         WidthVal,
4121                                         DL);
4122       }
4123 
4124       return constantFoldBFE<uint32_t>(DAG,
4125                                        CVal->getZExtValue(),
4126                                        OffsetVal,
4127                                        WidthVal,
4128                                        DL);
4129     }
4130 
4131     if ((OffsetVal + WidthVal) >= 32 &&
4132         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4133       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4134       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4135                          BitsFrom, ShiftVal);
4136     }
4137 
4138     if (BitsFrom.hasOneUse()) {
4139       APInt Demanded = APInt::getBitsSet(32,
4140                                          OffsetVal,
4141                                          OffsetVal + WidthVal);
4142 
4143       KnownBits Known;
4144       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4145                                             !DCI.isBeforeLegalizeOps());
4146       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4147       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4148           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4149         DCI.CommitTargetLoweringOpt(TLO);
4150       }
4151     }
4152 
4153     break;
4154   }
4155   case ISD::LOAD:
4156     return performLoadCombine(N, DCI);
4157   case ISD::STORE:
4158     return performStoreCombine(N, DCI);
4159   case AMDGPUISD::RCP:
4160   case AMDGPUISD::RCP_IFLAG:
4161     return performRcpCombine(N, DCI);
4162   case ISD::AssertZext:
4163   case ISD::AssertSext:
4164     return performAssertSZExtCombine(N, DCI);
4165   }
4166   return SDValue();
4167 }
4168 
4169 //===----------------------------------------------------------------------===//
4170 // Helper functions
4171 //===----------------------------------------------------------------------===//
4172 
4173 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4174                                                    const TargetRegisterClass *RC,
4175                                                    unsigned Reg, EVT VT,
4176                                                    const SDLoc &SL,
4177                                                    bool RawReg) const {
4178   MachineFunction &MF = DAG.getMachineFunction();
4179   MachineRegisterInfo &MRI = MF.getRegInfo();
4180   unsigned VReg;
4181 
4182   if (!MRI.isLiveIn(Reg)) {
4183     VReg = MRI.createVirtualRegister(RC);
4184     MRI.addLiveIn(Reg, VReg);
4185   } else {
4186     VReg = MRI.getLiveInVirtReg(Reg);
4187   }
4188 
4189   if (RawReg)
4190     return DAG.getRegister(VReg, VT);
4191 
4192   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4193 }
4194 
4195 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4196                                                   EVT VT,
4197                                                   const SDLoc &SL,
4198                                                   int64_t Offset) const {
4199   MachineFunction &MF = DAG.getMachineFunction();
4200   MachineFrameInfo &MFI = MF.getFrameInfo();
4201 
4202   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
4203   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4204   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4205 
4206   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4207                      MachineMemOperand::MODereferenceable |
4208                      MachineMemOperand::MOInvariant);
4209 }
4210 
4211 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4212                                                    const SDLoc &SL,
4213                                                    SDValue Chain,
4214                                                    SDValue ArgVal,
4215                                                    int64_t Offset) const {
4216   MachineFunction &MF = DAG.getMachineFunction();
4217   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4218 
4219   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4220   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4221                                MachineMemOperand::MODereferenceable);
4222   return Store;
4223 }
4224 
4225 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4226                                              const TargetRegisterClass *RC,
4227                                              EVT VT, const SDLoc &SL,
4228                                              const ArgDescriptor &Arg) const {
4229   assert(Arg && "Attempting to load missing argument");
4230 
4231   if (Arg.isRegister())
4232     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
4233   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4234 }
4235 
4236 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4237     const MachineFunction &MF, const ImplicitParameter Param) const {
4238   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4239   const AMDGPUSubtarget &ST =
4240       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4241   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4242   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4243   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4244                        ExplicitArgOffset;
4245   switch (Param) {
4246   case GRID_DIM:
4247     return ArgOffset;
4248   case GRID_OFFSET:
4249     return ArgOffset + 4;
4250   }
4251   llvm_unreachable("unexpected implicit parameter type");
4252 }
4253 
4254 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4255 
4256 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4257   switch ((AMDGPUISD::NodeType)Opcode) {
4258   case AMDGPUISD::FIRST_NUMBER: break;
4259   // AMDIL DAG nodes
4260   NODE_NAME_CASE(UMUL);
4261   NODE_NAME_CASE(BRANCH_COND);
4262 
4263   // AMDGPU DAG nodes
4264   NODE_NAME_CASE(IF)
4265   NODE_NAME_CASE(ELSE)
4266   NODE_NAME_CASE(LOOP)
4267   NODE_NAME_CASE(CALL)
4268   NODE_NAME_CASE(TC_RETURN)
4269   NODE_NAME_CASE(TRAP)
4270   NODE_NAME_CASE(RET_FLAG)
4271   NODE_NAME_CASE(RETURN_TO_EPILOG)
4272   NODE_NAME_CASE(ENDPGM)
4273   NODE_NAME_CASE(DWORDADDR)
4274   NODE_NAME_CASE(FRACT)
4275   NODE_NAME_CASE(SETCC)
4276   NODE_NAME_CASE(SETREG)
4277   NODE_NAME_CASE(FMA_W_CHAIN)
4278   NODE_NAME_CASE(FMUL_W_CHAIN)
4279   NODE_NAME_CASE(CLAMP)
4280   NODE_NAME_CASE(COS_HW)
4281   NODE_NAME_CASE(SIN_HW)
4282   NODE_NAME_CASE(FMAX_LEGACY)
4283   NODE_NAME_CASE(FMIN_LEGACY)
4284   NODE_NAME_CASE(FMAX3)
4285   NODE_NAME_CASE(SMAX3)
4286   NODE_NAME_CASE(UMAX3)
4287   NODE_NAME_CASE(FMIN3)
4288   NODE_NAME_CASE(SMIN3)
4289   NODE_NAME_CASE(UMIN3)
4290   NODE_NAME_CASE(FMED3)
4291   NODE_NAME_CASE(SMED3)
4292   NODE_NAME_CASE(UMED3)
4293   NODE_NAME_CASE(FDOT2)
4294   NODE_NAME_CASE(URECIP)
4295   NODE_NAME_CASE(DIV_SCALE)
4296   NODE_NAME_CASE(DIV_FMAS)
4297   NODE_NAME_CASE(DIV_FIXUP)
4298   NODE_NAME_CASE(FMAD_FTZ)
4299   NODE_NAME_CASE(TRIG_PREOP)
4300   NODE_NAME_CASE(RCP)
4301   NODE_NAME_CASE(RSQ)
4302   NODE_NAME_CASE(RCP_LEGACY)
4303   NODE_NAME_CASE(RSQ_LEGACY)
4304   NODE_NAME_CASE(RCP_IFLAG)
4305   NODE_NAME_CASE(FMUL_LEGACY)
4306   NODE_NAME_CASE(RSQ_CLAMP)
4307   NODE_NAME_CASE(LDEXP)
4308   NODE_NAME_CASE(FP_CLASS)
4309   NODE_NAME_CASE(DOT4)
4310   NODE_NAME_CASE(CARRY)
4311   NODE_NAME_CASE(BORROW)
4312   NODE_NAME_CASE(BFE_U32)
4313   NODE_NAME_CASE(BFE_I32)
4314   NODE_NAME_CASE(BFI)
4315   NODE_NAME_CASE(BFM)
4316   NODE_NAME_CASE(FFBH_U32)
4317   NODE_NAME_CASE(FFBH_I32)
4318   NODE_NAME_CASE(FFBL_B32)
4319   NODE_NAME_CASE(MUL_U24)
4320   NODE_NAME_CASE(MUL_I24)
4321   NODE_NAME_CASE(MULHI_U24)
4322   NODE_NAME_CASE(MULHI_I24)
4323   NODE_NAME_CASE(MUL_LOHI_U24)
4324   NODE_NAME_CASE(MUL_LOHI_I24)
4325   NODE_NAME_CASE(MAD_U24)
4326   NODE_NAME_CASE(MAD_I24)
4327   NODE_NAME_CASE(MAD_I64_I32)
4328   NODE_NAME_CASE(MAD_U64_U32)
4329   NODE_NAME_CASE(PERM)
4330   NODE_NAME_CASE(TEXTURE_FETCH)
4331   NODE_NAME_CASE(EXPORT)
4332   NODE_NAME_CASE(EXPORT_DONE)
4333   NODE_NAME_CASE(R600_EXPORT)
4334   NODE_NAME_CASE(CONST_ADDRESS)
4335   NODE_NAME_CASE(REGISTER_LOAD)
4336   NODE_NAME_CASE(REGISTER_STORE)
4337   NODE_NAME_CASE(SAMPLE)
4338   NODE_NAME_CASE(SAMPLEB)
4339   NODE_NAME_CASE(SAMPLED)
4340   NODE_NAME_CASE(SAMPLEL)
4341   NODE_NAME_CASE(CVT_F32_UBYTE0)
4342   NODE_NAME_CASE(CVT_F32_UBYTE1)
4343   NODE_NAME_CASE(CVT_F32_UBYTE2)
4344   NODE_NAME_CASE(CVT_F32_UBYTE3)
4345   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4346   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4347   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4348   NODE_NAME_CASE(CVT_PK_I16_I32)
4349   NODE_NAME_CASE(CVT_PK_U16_U32)
4350   NODE_NAME_CASE(FP_TO_FP16)
4351   NODE_NAME_CASE(FP16_ZEXT)
4352   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4353   NODE_NAME_CASE(CONST_DATA_PTR)
4354   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4355   NODE_NAME_CASE(KILL)
4356   NODE_NAME_CASE(DUMMY_CHAIN)
4357   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4358   NODE_NAME_CASE(INIT_EXEC)
4359   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4360   NODE_NAME_CASE(SENDMSG)
4361   NODE_NAME_CASE(SENDMSGHALT)
4362   NODE_NAME_CASE(INTERP_MOV)
4363   NODE_NAME_CASE(INTERP_P1)
4364   NODE_NAME_CASE(INTERP_P2)
4365   NODE_NAME_CASE(INTERP_P1LL_F16)
4366   NODE_NAME_CASE(INTERP_P1LV_F16)
4367   NODE_NAME_CASE(INTERP_P2_F16)
4368   NODE_NAME_CASE(LOAD_D16_HI)
4369   NODE_NAME_CASE(LOAD_D16_LO)
4370   NODE_NAME_CASE(LOAD_D16_HI_I8)
4371   NODE_NAME_CASE(LOAD_D16_HI_U8)
4372   NODE_NAME_CASE(LOAD_D16_LO_I8)
4373   NODE_NAME_CASE(LOAD_D16_LO_U8)
4374   NODE_NAME_CASE(STORE_MSKOR)
4375   NODE_NAME_CASE(LOAD_CONSTANT)
4376   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4377   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4378   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4379   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4380   NODE_NAME_CASE(DS_ORDERED_COUNT)
4381   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4382   NODE_NAME_CASE(ATOMIC_INC)
4383   NODE_NAME_CASE(ATOMIC_DEC)
4384   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4385   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4386   NODE_NAME_CASE(BUFFER_LOAD)
4387   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4388   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4389   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4390   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4391   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4392   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4393   NODE_NAME_CASE(SBUFFER_LOAD)
4394   NODE_NAME_CASE(BUFFER_STORE)
4395   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4396   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4397   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4398   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4399   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4400   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4401   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4402   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4403   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4404   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4405   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4406   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4407   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4408   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4409   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4410 
4411   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4412   }
4413   return nullptr;
4414 }
4415 
4416 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4417                                               SelectionDAG &DAG, int Enabled,
4418                                               int &RefinementSteps,
4419                                               bool &UseOneConstNR,
4420                                               bool Reciprocal) const {
4421   EVT VT = Operand.getValueType();
4422 
4423   if (VT == MVT::f32) {
4424     RefinementSteps = 0;
4425     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4426   }
4427 
4428   // TODO: There is also f64 rsq instruction, but the documentation is less
4429   // clear on its precision.
4430 
4431   return SDValue();
4432 }
4433 
4434 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4435                                                SelectionDAG &DAG, int Enabled,
4436                                                int &RefinementSteps) const {
4437   EVT VT = Operand.getValueType();
4438 
4439   if (VT == MVT::f32) {
4440     // Reciprocal, < 1 ulp error.
4441     //
4442     // This reciprocal approximation converges to < 0.5 ulp error with one
4443     // newton rhapson performed with two fused multiple adds (FMAs).
4444 
4445     RefinementSteps = 0;
4446     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4447   }
4448 
4449   // TODO: There is also f64 rcp instruction, but the documentation is less
4450   // clear on its precision.
4451 
4452   return SDValue();
4453 }
4454 
4455 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4456     const SDValue Op, KnownBits &Known,
4457     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4458 
4459   Known.resetAll(); // Don't know anything.
4460 
4461   unsigned Opc = Op.getOpcode();
4462 
4463   switch (Opc) {
4464   default:
4465     break;
4466   case AMDGPUISD::CARRY:
4467   case AMDGPUISD::BORROW: {
4468     Known.Zero = APInt::getHighBitsSet(32, 31);
4469     break;
4470   }
4471 
4472   case AMDGPUISD::BFE_I32:
4473   case AMDGPUISD::BFE_U32: {
4474     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4475     if (!CWidth)
4476       return;
4477 
4478     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4479 
4480     if (Opc == AMDGPUISD::BFE_U32)
4481       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4482 
4483     break;
4484   }
4485   case AMDGPUISD::FP_TO_FP16:
4486   case AMDGPUISD::FP16_ZEXT: {
4487     unsigned BitWidth = Known.getBitWidth();
4488 
4489     // High bits are zero.
4490     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4491     break;
4492   }
4493   case AMDGPUISD::MUL_U24:
4494   case AMDGPUISD::MUL_I24: {
4495     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4496     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4497     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4498                       RHSKnown.countMinTrailingZeros();
4499     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4500 
4501     // Truncate to 24 bits.
4502     LHSKnown = LHSKnown.trunc(24);
4503     RHSKnown = RHSKnown.trunc(24);
4504 
4505     bool Negative = false;
4506     if (Opc == AMDGPUISD::MUL_I24) {
4507       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4508       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4509       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4510       if (MaxValBits >= 32)
4511         break;
4512       bool LHSNegative = LHSKnown.isNegative();
4513       bool LHSPositive = LHSKnown.isNonNegative();
4514       bool RHSNegative = RHSKnown.isNegative();
4515       bool RHSPositive = RHSKnown.isNonNegative();
4516       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4517         break;
4518       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4519       if (Negative)
4520         Known.One.setHighBits(32 - MaxValBits);
4521       else
4522         Known.Zero.setHighBits(32 - MaxValBits);
4523     } else {
4524       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4525       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4526       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4527       if (MaxValBits >= 32)
4528         break;
4529       Known.Zero.setHighBits(32 - MaxValBits);
4530     }
4531     break;
4532   }
4533   case AMDGPUISD::PERM: {
4534     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4535     if (!CMask)
4536       return;
4537 
4538     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4539     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4540     unsigned Sel = CMask->getZExtValue();
4541 
4542     for (unsigned I = 0; I < 32; I += 8) {
4543       unsigned SelBits = Sel & 0xff;
4544       if (SelBits < 4) {
4545         SelBits *= 8;
4546         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4547         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4548       } else if (SelBits < 7) {
4549         SelBits = (SelBits & 3) * 8;
4550         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4551         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4552       } else if (SelBits == 0x0c) {
4553         Known.Zero |= 0xff << I;
4554       } else if (SelBits > 0x0c) {
4555         Known.One |= 0xff << I;
4556       }
4557       Sel >>= 8;
4558     }
4559     break;
4560   }
4561   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4562     Known.Zero.setHighBits(24);
4563     break;
4564   }
4565   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4566     Known.Zero.setHighBits(16);
4567     break;
4568   }
4569   case ISD::INTRINSIC_WO_CHAIN: {
4570     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4571     switch (IID) {
4572     case Intrinsic::amdgcn_mbcnt_lo:
4573     case Intrinsic::amdgcn_mbcnt_hi: {
4574       const GCNSubtarget &ST =
4575           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4576       // These return at most the wavefront size - 1.
4577       unsigned Size = Op.getValueType().getSizeInBits();
4578       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4579       break;
4580     }
4581     default:
4582       break;
4583     }
4584   }
4585   }
4586 }
4587 
4588 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4589     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4590     unsigned Depth) const {
4591   switch (Op.getOpcode()) {
4592   case AMDGPUISD::BFE_I32: {
4593     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4594     if (!Width)
4595       return 1;
4596 
4597     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4598     if (!isNullConstant(Op.getOperand(1)))
4599       return SignBits;
4600 
4601     // TODO: Could probably figure something out with non-0 offsets.
4602     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4603     return std::max(SignBits, Op0SignBits);
4604   }
4605 
4606   case AMDGPUISD::BFE_U32: {
4607     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4608     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4609   }
4610 
4611   case AMDGPUISD::CARRY:
4612   case AMDGPUISD::BORROW:
4613     return 31;
4614   case AMDGPUISD::BUFFER_LOAD_BYTE:
4615     return 25;
4616   case AMDGPUISD::BUFFER_LOAD_SHORT:
4617     return 17;
4618   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4619     return 24;
4620   case AMDGPUISD::BUFFER_LOAD_USHORT:
4621     return 16;
4622   case AMDGPUISD::FP_TO_FP16:
4623   case AMDGPUISD::FP16_ZEXT:
4624     return 16;
4625   default:
4626     return 1;
4627   }
4628 }
4629 
4630 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4631                                                         const SelectionDAG &DAG,
4632                                                         bool SNaN,
4633                                                         unsigned Depth) const {
4634   unsigned Opcode = Op.getOpcode();
4635   switch (Opcode) {
4636   case AMDGPUISD::FMIN_LEGACY:
4637   case AMDGPUISD::FMAX_LEGACY: {
4638     if (SNaN)
4639       return true;
4640 
4641     // TODO: Can check no nans on one of the operands for each one, but which
4642     // one?
4643     return false;
4644   }
4645   case AMDGPUISD::FMUL_LEGACY:
4646   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4647     if (SNaN)
4648       return true;
4649     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4650            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4651   }
4652   case AMDGPUISD::FMED3:
4653   case AMDGPUISD::FMIN3:
4654   case AMDGPUISD::FMAX3:
4655   case AMDGPUISD::FMAD_FTZ: {
4656     if (SNaN)
4657       return true;
4658     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4659            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4660            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4661   }
4662   case AMDGPUISD::CVT_F32_UBYTE0:
4663   case AMDGPUISD::CVT_F32_UBYTE1:
4664   case AMDGPUISD::CVT_F32_UBYTE2:
4665   case AMDGPUISD::CVT_F32_UBYTE3:
4666     return true;
4667 
4668   case AMDGPUISD::RCP:
4669   case AMDGPUISD::RSQ:
4670   case AMDGPUISD::RCP_LEGACY:
4671   case AMDGPUISD::RSQ_LEGACY:
4672   case AMDGPUISD::RSQ_CLAMP: {
4673     if (SNaN)
4674       return true;
4675 
4676     // TODO: Need is known positive check.
4677     return false;
4678   }
4679   case AMDGPUISD::LDEXP:
4680   case AMDGPUISD::FRACT: {
4681     if (SNaN)
4682       return true;
4683     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4684   }
4685   case AMDGPUISD::DIV_SCALE:
4686   case AMDGPUISD::DIV_FMAS:
4687   case AMDGPUISD::DIV_FIXUP:
4688   case AMDGPUISD::TRIG_PREOP:
4689     // TODO: Refine on operands.
4690     return SNaN;
4691   case AMDGPUISD::SIN_HW:
4692   case AMDGPUISD::COS_HW: {
4693     // TODO: Need check for infinity
4694     return SNaN;
4695   }
4696   case ISD::INTRINSIC_WO_CHAIN: {
4697     unsigned IntrinsicID
4698       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4699     // TODO: Handle more intrinsics
4700     switch (IntrinsicID) {
4701     case Intrinsic::amdgcn_cubeid:
4702       return true;
4703 
4704     case Intrinsic::amdgcn_frexp_mant: {
4705       if (SNaN)
4706         return true;
4707       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4708     }
4709     case Intrinsic::amdgcn_cvt_pkrtz: {
4710       if (SNaN)
4711         return true;
4712       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4713              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4714     }
4715     case Intrinsic::amdgcn_fdot2:
4716       // TODO: Refine on operand
4717       return SNaN;
4718     default:
4719       return false;
4720     }
4721   }
4722   default:
4723     return false;
4724   }
4725 }
4726 
4727 TargetLowering::AtomicExpansionKind
4728 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4729   switch (RMW->getOperation()) {
4730   case AtomicRMWInst::Nand:
4731   case AtomicRMWInst::FAdd:
4732   case AtomicRMWInst::FSub:
4733     return AtomicExpansionKind::CmpXChg;
4734   default:
4735     return AtomicExpansionKind::None;
4736   }
4737 }
4738