1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 18 19 #include "AMDGPUISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUCallLowering.h" 22 #include "AMDGPUFrameLowering.h" 23 #include "AMDGPURegisterInfo.h" 24 #include "AMDGPUSubtarget.h" 25 #include "AMDGPUTargetMachine.h" 26 #include "Utils/AMDGPUBaseInfo.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "SIInstrInfo.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/CallingConvLower.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/Support/KnownBits.h" 40 using namespace llvm; 41 42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 43 CCValAssign::LocInfo LocInfo, 44 ISD::ArgFlagsTy ArgFlags, CCState &State, 45 const TargetRegisterClass *RC, 46 unsigned NumRegs) { 47 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 48 unsigned RegResult = State.AllocateReg(RegList); 49 if (RegResult == AMDGPU::NoRegister) 50 return false; 51 52 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 53 return true; 54 } 55 56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 57 CCValAssign::LocInfo LocInfo, 58 ISD::ArgFlagsTy ArgFlags, CCState &State) { 59 switch (LocVT.SimpleTy) { 60 case MVT::i64: 61 case MVT::f64: 62 case MVT::v2i32: 63 case MVT::v2f32: 64 case MVT::v4i16: 65 case MVT::v4f16: { 66 // Up to SGPR0-SGPR105 67 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 68 &AMDGPU::SGPR_64RegClass, 53); 69 } 70 default: 71 return false; 72 } 73 } 74 75 // Allocate up to VGPR31. 76 // 77 // TODO: Since there are no VGPR alignent requirements would it be better to 78 // split into individual scalar registers? 79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 80 CCValAssign::LocInfo LocInfo, 81 ISD::ArgFlagsTy ArgFlags, CCState &State) { 82 switch (LocVT.SimpleTy) { 83 case MVT::i64: 84 case MVT::f64: 85 case MVT::v2i32: 86 case MVT::v2f32: 87 case MVT::v4i16: 88 case MVT::v4f16: { 89 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 90 &AMDGPU::VReg_64RegClass, 31); 91 } 92 case MVT::v4i32: 93 case MVT::v4f32: 94 case MVT::v2i64: 95 case MVT::v2f64: { 96 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 97 &AMDGPU::VReg_128RegClass, 29); 98 } 99 case MVT::v8i32: 100 case MVT::v8f32: { 101 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 102 &AMDGPU::VReg_256RegClass, 25); 103 104 } 105 case MVT::v16i32: 106 case MVT::v16f32: { 107 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 108 &AMDGPU::VReg_512RegClass, 17); 109 110 } 111 default: 112 return false; 113 } 114 } 115 116 #include "AMDGPUGenCallingConv.inc" 117 118 // Find a larger type to do a load / store of a vector with. 119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 120 unsigned StoreSize = VT.getStoreSizeInBits(); 121 if (StoreSize <= 32) 122 return EVT::getIntegerVT(Ctx, StoreSize); 123 124 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 125 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 126 } 127 128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 129 EVT VT = Op.getValueType(); 130 KnownBits Known = DAG.computeKnownBits(Op); 131 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 132 } 133 134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 135 EVT VT = Op.getValueType(); 136 137 // In order for this to be a signed 24-bit value, bit 23, must 138 // be a sign bit. 139 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 140 } 141 142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 143 const AMDGPUSubtarget &STI) 144 : TargetLowering(TM), Subtarget(&STI) { 145 // Lower floating point store/load to integer store/load to reduce the number 146 // of patterns in tablegen. 147 setOperationAction(ISD::LOAD, MVT::f32, Promote); 148 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 149 150 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 152 153 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 161 162 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 164 165 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 167 168 setOperationAction(ISD::LOAD, MVT::i64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 170 171 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 173 174 setOperationAction(ISD::LOAD, MVT::f64, Promote); 175 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 176 177 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 178 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 179 180 // There are no 64-bit extloads. These should be done as a 32-bit extload and 181 // an extension to 64-bit. 182 for (MVT VT : MVT::integer_valuetypes()) { 183 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 184 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 185 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 186 } 187 188 for (MVT VT : MVT::integer_valuetypes()) { 189 if (VT == MVT::i64) 190 continue; 191 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 193 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 194 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 196 197 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 198 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 200 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 201 202 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 204 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 205 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 206 } 207 208 for (MVT VT : MVT::integer_vector_valuetypes()) { 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 211 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 213 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 214 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 215 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 218 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 219 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 220 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 221 } 222 223 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 226 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 227 228 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 232 233 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 237 238 setOperationAction(ISD::STORE, MVT::f32, Promote); 239 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 240 241 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 243 244 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 246 247 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 249 250 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 252 253 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 254 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 255 256 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 258 259 setOperationAction(ISD::STORE, MVT::i64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 261 262 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 263 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 264 265 setOperationAction(ISD::STORE, MVT::f64, Promote); 266 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 267 268 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 269 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 270 271 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 272 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 275 276 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 277 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 280 281 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 282 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 283 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 284 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 285 286 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 287 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 288 289 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 290 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 291 292 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 293 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 294 295 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 296 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 297 298 299 setOperationAction(ISD::Constant, MVT::i32, Legal); 300 setOperationAction(ISD::Constant, MVT::i64, Legal); 301 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 303 304 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 305 setOperationAction(ISD::BRIND, MVT::Other, Expand); 306 307 // This is totally unsupported, just custom lower to produce an error. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 309 310 // Library functions. These default to Expand, but we have instructions 311 // for them. 312 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 314 setOperationAction(ISD::FPOW, MVT::f32, Legal); 315 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 316 setOperationAction(ISD::FABS, MVT::f32, Legal); 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FRINT, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 321 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 322 323 setOperationAction(ISD::FROUND, MVT::f32, Custom); 324 setOperationAction(ISD::FROUND, MVT::f64, Custom); 325 326 setOperationAction(ISD::FLOG, MVT::f32, Custom); 327 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 328 setOperationAction(ISD::FEXP, MVT::f32, Custom); 329 330 331 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 332 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 333 334 setOperationAction(ISD::FREM, MVT::f32, Custom); 335 setOperationAction(ISD::FREM, MVT::f64, Custom); 336 337 // Expand to fneg + fadd. 338 setOperationAction(ISD::FSUB, MVT::f64, Expand); 339 340 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 341 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 342 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 343 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 344 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 345 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 346 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 347 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 358 359 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 360 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 361 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 362 363 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 364 for (MVT VT : ScalarIntVTs) { 365 // These should use [SU]DIVREM, so set them to expand 366 setOperationAction(ISD::SDIV, VT, Expand); 367 setOperationAction(ISD::UDIV, VT, Expand); 368 setOperationAction(ISD::SREM, VT, Expand); 369 setOperationAction(ISD::UREM, VT, Expand); 370 371 // GPU does not have divrem function for signed or unsigned. 372 setOperationAction(ISD::SDIVREM, VT, Custom); 373 setOperationAction(ISD::UDIVREM, VT, Custom); 374 375 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 376 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 377 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 378 379 setOperationAction(ISD::BSWAP, VT, Expand); 380 setOperationAction(ISD::CTTZ, VT, Expand); 381 setOperationAction(ISD::CTLZ, VT, Expand); 382 383 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 384 setOperationAction(ISD::ADDC, VT, Legal); 385 setOperationAction(ISD::SUBC, VT, Legal); 386 setOperationAction(ISD::ADDE, VT, Legal); 387 setOperationAction(ISD::SUBE, VT, Legal); 388 } 389 390 // The hardware supports 32-bit ROTR, but not ROTL. 391 setOperationAction(ISD::ROTL, MVT::i32, Expand); 392 setOperationAction(ISD::ROTL, MVT::i64, Expand); 393 setOperationAction(ISD::ROTR, MVT::i64, Expand); 394 395 setOperationAction(ISD::MUL, MVT::i64, Expand); 396 setOperationAction(ISD::MULHU, MVT::i64, Expand); 397 setOperationAction(ISD::MULHS, MVT::i64, Expand); 398 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 399 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 400 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 401 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 402 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 403 404 setOperationAction(ISD::SMIN, MVT::i32, Legal); 405 setOperationAction(ISD::UMIN, MVT::i32, Legal); 406 setOperationAction(ISD::SMAX, MVT::i32, Legal); 407 setOperationAction(ISD::UMAX, MVT::i32, Legal); 408 409 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 410 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 411 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 412 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 413 414 static const MVT::SimpleValueType VectorIntTypes[] = { 415 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 416 }; 417 418 for (MVT VT : VectorIntTypes) { 419 // Expand the following operations for the current type by default. 420 setOperationAction(ISD::ADD, VT, Expand); 421 setOperationAction(ISD::AND, VT, Expand); 422 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 423 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 424 setOperationAction(ISD::MUL, VT, Expand); 425 setOperationAction(ISD::MULHU, VT, Expand); 426 setOperationAction(ISD::MULHS, VT, Expand); 427 setOperationAction(ISD::OR, VT, Expand); 428 setOperationAction(ISD::SHL, VT, Expand); 429 setOperationAction(ISD::SRA, VT, Expand); 430 setOperationAction(ISD::SRL, VT, Expand); 431 setOperationAction(ISD::ROTL, VT, Expand); 432 setOperationAction(ISD::ROTR, VT, Expand); 433 setOperationAction(ISD::SUB, VT, Expand); 434 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 435 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 436 setOperationAction(ISD::SDIV, VT, Expand); 437 setOperationAction(ISD::UDIV, VT, Expand); 438 setOperationAction(ISD::SREM, VT, Expand); 439 setOperationAction(ISD::UREM, VT, Expand); 440 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 441 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 442 setOperationAction(ISD::SDIVREM, VT, Custom); 443 setOperationAction(ISD::UDIVREM, VT, Expand); 444 setOperationAction(ISD::SELECT, VT, Expand); 445 setOperationAction(ISD::VSELECT, VT, Expand); 446 setOperationAction(ISD::SELECT_CC, VT, Expand); 447 setOperationAction(ISD::XOR, VT, Expand); 448 setOperationAction(ISD::BSWAP, VT, Expand); 449 setOperationAction(ISD::CTPOP, VT, Expand); 450 setOperationAction(ISD::CTTZ, VT, Expand); 451 setOperationAction(ISD::CTLZ, VT, Expand); 452 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 453 setOperationAction(ISD::SETCC, VT, Expand); 454 } 455 456 static const MVT::SimpleValueType FloatVectorTypes[] = { 457 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 458 }; 459 460 for (MVT VT : FloatVectorTypes) { 461 setOperationAction(ISD::FABS, VT, Expand); 462 setOperationAction(ISD::FMINNUM, VT, Expand); 463 setOperationAction(ISD::FMAXNUM, VT, Expand); 464 setOperationAction(ISD::FADD, VT, Expand); 465 setOperationAction(ISD::FCEIL, VT, Expand); 466 setOperationAction(ISD::FCOS, VT, Expand); 467 setOperationAction(ISD::FDIV, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FEXP, VT, Expand); 470 setOperationAction(ISD::FLOG2, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FLOG, VT, Expand); 473 setOperationAction(ISD::FLOG10, VT, Expand); 474 setOperationAction(ISD::FPOW, VT, Expand); 475 setOperationAction(ISD::FFLOOR, VT, Expand); 476 setOperationAction(ISD::FTRUNC, VT, Expand); 477 setOperationAction(ISD::FMUL, VT, Expand); 478 setOperationAction(ISD::FMA, VT, Expand); 479 setOperationAction(ISD::FRINT, VT, Expand); 480 setOperationAction(ISD::FNEARBYINT, VT, Expand); 481 setOperationAction(ISD::FSQRT, VT, Expand); 482 setOperationAction(ISD::FSIN, VT, Expand); 483 setOperationAction(ISD::FSUB, VT, Expand); 484 setOperationAction(ISD::FNEG, VT, Expand); 485 setOperationAction(ISD::VSELECT, VT, Expand); 486 setOperationAction(ISD::SELECT_CC, VT, Expand); 487 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 488 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 489 setOperationAction(ISD::SETCC, VT, Expand); 490 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 491 } 492 493 // This causes using an unrolled select operation rather than expansion with 494 // bit operations. This is in general better, but the alternative using BFI 495 // instructions may be better if the select sources are SGPRs. 496 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 497 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 498 499 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 500 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 501 502 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 503 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 504 505 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 506 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 507 508 // There are no libcalls of any kind. 509 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 510 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 511 512 setBooleanContents(ZeroOrNegativeOneBooleanContent); 513 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 514 515 setSchedulingPreference(Sched::RegPressure); 516 setJumpIsExpensive(true); 517 518 // FIXME: This is only partially true. If we have to do vector compares, any 519 // SGPR pair can be a condition register. If we have a uniform condition, we 520 // are better off doing SALU operations, where there is only one SCC. For now, 521 // we don't have a way of knowing during instruction selection if a condition 522 // will be uniform and we always use vector compares. Assume we are using 523 // vector compares until that is fixed. 524 setHasMultipleConditionRegisters(true); 525 526 PredictableSelectIsExpensive = false; 527 528 // We want to find all load dependencies for long chains of stores to enable 529 // merging into very wide vectors. The problem is with vectors with > 4 530 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 531 // vectors are a legal type, even though we have to split the loads 532 // usually. When we can more precisely specify load legality per address 533 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 534 // smarter so that they can figure out what to do in 2 iterations without all 535 // N > 4 stores on the same chain. 536 GatherAllAliasesMaxDepth = 16; 537 538 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 539 // about these during lowering. 540 MaxStoresPerMemcpy = 0xffffffff; 541 MaxStoresPerMemmove = 0xffffffff; 542 MaxStoresPerMemset = 0xffffffff; 543 544 setTargetDAGCombine(ISD::BITCAST); 545 setTargetDAGCombine(ISD::SHL); 546 setTargetDAGCombine(ISD::SRA); 547 setTargetDAGCombine(ISD::SRL); 548 setTargetDAGCombine(ISD::TRUNCATE); 549 setTargetDAGCombine(ISD::MUL); 550 setTargetDAGCombine(ISD::MULHU); 551 setTargetDAGCombine(ISD::MULHS); 552 setTargetDAGCombine(ISD::SELECT); 553 setTargetDAGCombine(ISD::SELECT_CC); 554 setTargetDAGCombine(ISD::STORE); 555 setTargetDAGCombine(ISD::FADD); 556 setTargetDAGCombine(ISD::FSUB); 557 setTargetDAGCombine(ISD::FNEG); 558 setTargetDAGCombine(ISD::FABS); 559 setTargetDAGCombine(ISD::AssertZext); 560 setTargetDAGCombine(ISD::AssertSext); 561 } 562 563 //===----------------------------------------------------------------------===// 564 // Target Information 565 //===----------------------------------------------------------------------===// 566 567 LLVM_READNONE 568 static bool fnegFoldsIntoOp(unsigned Opc) { 569 switch (Opc) { 570 case ISD::FADD: 571 case ISD::FSUB: 572 case ISD::FMUL: 573 case ISD::FMA: 574 case ISD::FMAD: 575 case ISD::FMINNUM: 576 case ISD::FMAXNUM: 577 case ISD::FMINNUM_IEEE: 578 case ISD::FMAXNUM_IEEE: 579 case ISD::FSIN: 580 case ISD::FTRUNC: 581 case ISD::FRINT: 582 case ISD::FNEARBYINT: 583 case ISD::FCANONICALIZE: 584 case AMDGPUISD::RCP: 585 case AMDGPUISD::RCP_LEGACY: 586 case AMDGPUISD::RCP_IFLAG: 587 case AMDGPUISD::SIN_HW: 588 case AMDGPUISD::FMUL_LEGACY: 589 case AMDGPUISD::FMIN_LEGACY: 590 case AMDGPUISD::FMAX_LEGACY: 591 case AMDGPUISD::FMED3: 592 return true; 593 default: 594 return false; 595 } 596 } 597 598 /// \p returns true if the operation will definitely need to use a 64-bit 599 /// encoding, and thus will use a VOP3 encoding regardless of the source 600 /// modifiers. 601 LLVM_READONLY 602 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 603 return N->getNumOperands() > 2 || VT == MVT::f64; 604 } 605 606 // Most FP instructions support source modifiers, but this could be refined 607 // slightly. 608 LLVM_READONLY 609 static bool hasSourceMods(const SDNode *N) { 610 if (isa<MemSDNode>(N)) 611 return false; 612 613 switch (N->getOpcode()) { 614 case ISD::CopyToReg: 615 case ISD::SELECT: 616 case ISD::FDIV: 617 case ISD::FREM: 618 case ISD::INLINEASM: 619 case ISD::INLINEASM_BR: 620 case AMDGPUISD::INTERP_P1: 621 case AMDGPUISD::INTERP_P2: 622 case AMDGPUISD::DIV_SCALE: 623 624 // TODO: Should really be looking at the users of the bitcast. These are 625 // problematic because bitcasts are used to legalize all stores to integer 626 // types. 627 case ISD::BITCAST: 628 return false; 629 default: 630 return true; 631 } 632 } 633 634 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 635 unsigned CostThreshold) { 636 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 637 // it is truly free to use a source modifier in all cases. If there are 638 // multiple users but for each one will necessitate using VOP3, there will be 639 // a code size increase. Try to avoid increasing code size unless we know it 640 // will save on the instruction count. 641 unsigned NumMayIncreaseSize = 0; 642 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 643 644 // XXX - Should this limit number of uses to check? 645 for (const SDNode *U : N->uses()) { 646 if (!hasSourceMods(U)) 647 return false; 648 649 if (!opMustUseVOP3Encoding(U, VT)) { 650 if (++NumMayIncreaseSize > CostThreshold) 651 return false; 652 } 653 } 654 655 return true; 656 } 657 658 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 659 return MVT::i32; 660 } 661 662 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 663 return true; 664 } 665 666 // The backend supports 32 and 64 bit floating point immediates. 667 // FIXME: Why are we reporting vectors of FP immediates as legal? 668 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 669 bool ForCodeSize) const { 670 EVT ScalarVT = VT.getScalarType(); 671 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 672 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 673 } 674 675 // We don't want to shrink f64 / f32 constants. 676 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 677 EVT ScalarVT = VT.getScalarType(); 678 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 679 } 680 681 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 682 ISD::LoadExtType ExtTy, 683 EVT NewVT) const { 684 // TODO: This may be worth removing. Check regression tests for diffs. 685 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 686 return false; 687 688 unsigned NewSize = NewVT.getStoreSizeInBits(); 689 690 // If we are reducing to a 32-bit load, this is always better. 691 if (NewSize == 32) 692 return true; 693 694 EVT OldVT = N->getValueType(0); 695 unsigned OldSize = OldVT.getStoreSizeInBits(); 696 697 MemSDNode *MN = cast<MemSDNode>(N); 698 unsigned AS = MN->getAddressSpace(); 699 // Do not shrink an aligned scalar load to sub-dword. 700 // Scalar engine cannot do sub-dword loads. 701 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 702 (AS == AMDGPUAS::CONSTANT_ADDRESS || 703 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 704 (isa<LoadSDNode>(N) && 705 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 706 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 707 return false; 708 709 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 710 // extloads, so doing one requires using a buffer_load. In cases where we 711 // still couldn't use a scalar load, using the wider load shouldn't really 712 // hurt anything. 713 714 // If the old size already had to be an extload, there's no harm in continuing 715 // to reduce the width. 716 return (OldSize < 32); 717 } 718 719 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 720 EVT CastTy) const { 721 722 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 723 724 if (LoadTy.getScalarType() == MVT::i32) 725 return false; 726 727 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 728 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 729 730 return (LScalarSize < CastScalarSize) || 731 (CastScalarSize >= 32); 732 } 733 734 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 735 // profitable with the expansion for 64-bit since it's generally good to 736 // speculate things. 737 // FIXME: These should really have the size as a parameter. 738 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 739 return true; 740 } 741 742 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 743 return true; 744 } 745 746 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 747 switch (N->getOpcode()) { 748 default: 749 return false; 750 case ISD::EntryToken: 751 case ISD::TokenFactor: 752 return true; 753 case ISD::INTRINSIC_WO_CHAIN: 754 { 755 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 756 switch (IntrID) { 757 default: 758 return false; 759 case Intrinsic::amdgcn_readfirstlane: 760 case Intrinsic::amdgcn_readlane: 761 return true; 762 } 763 } 764 break; 765 case ISD::LOAD: 766 { 767 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 768 if (L->getMemOperand()->getAddrSpace() 769 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 770 return true; 771 return false; 772 } 773 break; 774 } 775 } 776 777 //===---------------------------------------------------------------------===// 778 // Target Properties 779 //===---------------------------------------------------------------------===// 780 781 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 782 assert(VT.isFloatingPoint()); 783 784 // Packed operations do not have a fabs modifier. 785 return VT == MVT::f32 || VT == MVT::f64 || 786 (Subtarget->has16BitInsts() && VT == MVT::f16); 787 } 788 789 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 790 assert(VT.isFloatingPoint()); 791 return VT == MVT::f32 || VT == MVT::f64 || 792 (Subtarget->has16BitInsts() && VT == MVT::f16) || 793 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 794 } 795 796 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 797 unsigned NumElem, 798 unsigned AS) const { 799 return true; 800 } 801 802 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 803 // There are few operations which truly have vector input operands. Any vector 804 // operation is going to involve operations on each component, and a 805 // build_vector will be a copy per element, so it always makes sense to use a 806 // build_vector input in place of the extracted element to avoid a copy into a 807 // super register. 808 // 809 // We should probably only do this if all users are extracts only, but this 810 // should be the common case. 811 return true; 812 } 813 814 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 815 // Truncate is just accessing a subregister. 816 817 unsigned SrcSize = Source.getSizeInBits(); 818 unsigned DestSize = Dest.getSizeInBits(); 819 820 return DestSize < SrcSize && DestSize % 32 == 0 ; 821 } 822 823 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 824 // Truncate is just accessing a subregister. 825 826 unsigned SrcSize = Source->getScalarSizeInBits(); 827 unsigned DestSize = Dest->getScalarSizeInBits(); 828 829 if (DestSize== 16 && Subtarget->has16BitInsts()) 830 return SrcSize >= 32; 831 832 return DestSize < SrcSize && DestSize % 32 == 0; 833 } 834 835 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 836 unsigned SrcSize = Src->getScalarSizeInBits(); 837 unsigned DestSize = Dest->getScalarSizeInBits(); 838 839 if (SrcSize == 16 && Subtarget->has16BitInsts()) 840 return DestSize >= 32; 841 842 return SrcSize == 32 && DestSize == 64; 843 } 844 845 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 846 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 847 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 848 // this will enable reducing 64-bit operations the 32-bit, which is always 849 // good. 850 851 if (Src == MVT::i16) 852 return Dest == MVT::i32 ||Dest == MVT::i64 ; 853 854 return Src == MVT::i32 && Dest == MVT::i64; 855 } 856 857 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 858 return isZExtFree(Val.getValueType(), VT2); 859 } 860 861 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 862 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 863 // limited number of native 64-bit operations. Shrinking an operation to fit 864 // in a single 32-bit register should always be helpful. As currently used, 865 // this is much less general than the name suggests, and is only used in 866 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 867 // not profitable, and may actually be harmful. 868 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 869 } 870 871 //===---------------------------------------------------------------------===// 872 // TargetLowering Callbacks 873 //===---------------------------------------------------------------------===// 874 875 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 876 bool IsVarArg) { 877 switch (CC) { 878 case CallingConv::AMDGPU_VS: 879 case CallingConv::AMDGPU_GS: 880 case CallingConv::AMDGPU_PS: 881 case CallingConv::AMDGPU_CS: 882 case CallingConv::AMDGPU_HS: 883 case CallingConv::AMDGPU_ES: 884 case CallingConv::AMDGPU_LS: 885 return CC_AMDGPU; 886 case CallingConv::C: 887 case CallingConv::Fast: 888 case CallingConv::Cold: 889 return CC_AMDGPU_Func; 890 case CallingConv::AMDGPU_KERNEL: 891 case CallingConv::SPIR_KERNEL: 892 default: 893 report_fatal_error("Unsupported calling convention for call"); 894 } 895 } 896 897 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 898 bool IsVarArg) { 899 switch (CC) { 900 case CallingConv::AMDGPU_KERNEL: 901 case CallingConv::SPIR_KERNEL: 902 llvm_unreachable("kernels should not be handled here"); 903 case CallingConv::AMDGPU_VS: 904 case CallingConv::AMDGPU_GS: 905 case CallingConv::AMDGPU_PS: 906 case CallingConv::AMDGPU_CS: 907 case CallingConv::AMDGPU_HS: 908 case CallingConv::AMDGPU_ES: 909 case CallingConv::AMDGPU_LS: 910 return RetCC_SI_Shader; 911 case CallingConv::C: 912 case CallingConv::Fast: 913 case CallingConv::Cold: 914 return RetCC_AMDGPU_Func; 915 default: 916 report_fatal_error("Unsupported calling convention."); 917 } 918 } 919 920 /// The SelectionDAGBuilder will automatically promote function arguments 921 /// with illegal types. However, this does not work for the AMDGPU targets 922 /// since the function arguments are stored in memory as these illegal types. 923 /// In order to handle this properly we need to get the original types sizes 924 /// from the LLVM IR Function and fixup the ISD:InputArg values before 925 /// passing them to AnalyzeFormalArguments() 926 927 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 928 /// input values across multiple registers. Each item in the Ins array 929 /// represents a single value that will be stored in registers. Ins[x].VT is 930 /// the value type of the value that will be stored in the register, so 931 /// whatever SDNode we lower the argument to needs to be this type. 932 /// 933 /// In order to correctly lower the arguments we need to know the size of each 934 /// argument. Since Ins[x].VT gives us the size of the register that will 935 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 936 /// for the orignal function argument so that we can deduce the correct memory 937 /// type to use for Ins[x]. In most cases the correct memory type will be 938 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 939 /// we have a kernel argument of type v8i8, this argument will be split into 940 /// 8 parts and each part will be represented by its own item in the Ins array. 941 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 942 /// the argument before it was split. From this, we deduce that the memory type 943 /// for each individual part is i8. We pass the memory type as LocVT to the 944 /// calling convention analysis function and the register type (Ins[x].VT) as 945 /// the ValVT. 946 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 947 CCState &State, 948 const SmallVectorImpl<ISD::InputArg> &Ins) const { 949 const MachineFunction &MF = State.getMachineFunction(); 950 const Function &Fn = MF.getFunction(); 951 LLVMContext &Ctx = Fn.getParent()->getContext(); 952 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 953 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 954 CallingConv::ID CC = Fn.getCallingConv(); 955 956 unsigned MaxAlign = 1; 957 uint64_t ExplicitArgOffset = 0; 958 const DataLayout &DL = Fn.getParent()->getDataLayout(); 959 960 unsigned InIndex = 0; 961 962 for (const Argument &Arg : Fn.args()) { 963 Type *BaseArgTy = Arg.getType(); 964 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 965 MaxAlign = std::max(Align, MaxAlign); 966 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 967 968 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 969 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 970 971 // We're basically throwing away everything passed into us and starting over 972 // to get accurate in-memory offsets. The "PartOffset" is completely useless 973 // to us as computed in Ins. 974 // 975 // We also need to figure out what type legalization is trying to do to get 976 // the correct memory offsets. 977 978 SmallVector<EVT, 16> ValueVTs; 979 SmallVector<uint64_t, 16> Offsets; 980 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 981 982 for (unsigned Value = 0, NumValues = ValueVTs.size(); 983 Value != NumValues; ++Value) { 984 uint64_t BasePartOffset = Offsets[Value]; 985 986 EVT ArgVT = ValueVTs[Value]; 987 EVT MemVT = ArgVT; 988 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 989 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 990 991 if (NumRegs == 1) { 992 // This argument is not split, so the IR type is the memory type. 993 if (ArgVT.isExtended()) { 994 // We have an extended type, like i24, so we should just use the 995 // register type. 996 MemVT = RegisterVT; 997 } else { 998 MemVT = ArgVT; 999 } 1000 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1001 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1002 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1003 // We have a vector value which has been split into a vector with 1004 // the same scalar type, but fewer elements. This should handle 1005 // all the floating-point vector types. 1006 MemVT = RegisterVT; 1007 } else if (ArgVT.isVector() && 1008 ArgVT.getVectorNumElements() == NumRegs) { 1009 // This arg has been split so that each element is stored in a separate 1010 // register. 1011 MemVT = ArgVT.getScalarType(); 1012 } else if (ArgVT.isExtended()) { 1013 // We have an extended type, like i65. 1014 MemVT = RegisterVT; 1015 } else { 1016 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1017 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1018 if (RegisterVT.isInteger()) { 1019 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1020 } else if (RegisterVT.isVector()) { 1021 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1022 unsigned NumElements = RegisterVT.getVectorNumElements(); 1023 assert(MemoryBits % NumElements == 0); 1024 // This vector type has been split into another vector type with 1025 // a different elements size. 1026 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1027 MemoryBits / NumElements); 1028 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1029 } else { 1030 llvm_unreachable("cannot deduce memory type."); 1031 } 1032 } 1033 1034 // Convert one element vectors to scalar. 1035 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1036 MemVT = MemVT.getScalarType(); 1037 1038 // Round up vec3/vec5 argument. 1039 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1040 assert(MemVT.getVectorNumElements() == 3 || 1041 MemVT.getVectorNumElements() == 5); 1042 MemVT = MemVT.getPow2VectorType(State.getContext()); 1043 } 1044 1045 unsigned PartOffset = 0; 1046 for (unsigned i = 0; i != NumRegs; ++i) { 1047 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1048 BasePartOffset + PartOffset, 1049 MemVT.getSimpleVT(), 1050 CCValAssign::Full)); 1051 PartOffset += MemVT.getStoreSize(); 1052 } 1053 } 1054 } 1055 } 1056 1057 SDValue AMDGPUTargetLowering::LowerReturn( 1058 SDValue Chain, CallingConv::ID CallConv, 1059 bool isVarArg, 1060 const SmallVectorImpl<ISD::OutputArg> &Outs, 1061 const SmallVectorImpl<SDValue> &OutVals, 1062 const SDLoc &DL, SelectionDAG &DAG) const { 1063 // FIXME: Fails for r600 tests 1064 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1065 // "wave terminate should not have return values"); 1066 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1067 } 1068 1069 //===---------------------------------------------------------------------===// 1070 // Target specific lowering 1071 //===---------------------------------------------------------------------===// 1072 1073 /// Selects the correct CCAssignFn for a given CallingConvention value. 1074 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1075 bool IsVarArg) { 1076 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1077 } 1078 1079 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1080 bool IsVarArg) { 1081 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1082 } 1083 1084 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1085 SelectionDAG &DAG, 1086 MachineFrameInfo &MFI, 1087 int ClobberedFI) const { 1088 SmallVector<SDValue, 8> ArgChains; 1089 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1090 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1091 1092 // Include the original chain at the beginning of the list. When this is 1093 // used by target LowerCall hooks, this helps legalize find the 1094 // CALLSEQ_BEGIN node. 1095 ArgChains.push_back(Chain); 1096 1097 // Add a chain value for each stack argument corresponding 1098 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1099 UE = DAG.getEntryNode().getNode()->use_end(); 1100 U != UE; ++U) { 1101 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1102 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1103 if (FI->getIndex() < 0) { 1104 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1105 int64_t InLastByte = InFirstByte; 1106 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1107 1108 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1109 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1110 ArgChains.push_back(SDValue(L, 1)); 1111 } 1112 } 1113 } 1114 } 1115 1116 // Build a tokenfactor for all the chains. 1117 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1118 } 1119 1120 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1121 SmallVectorImpl<SDValue> &InVals, 1122 StringRef Reason) const { 1123 SDValue Callee = CLI.Callee; 1124 SelectionDAG &DAG = CLI.DAG; 1125 1126 const Function &Fn = DAG.getMachineFunction().getFunction(); 1127 1128 StringRef FuncName("<unknown>"); 1129 1130 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1131 FuncName = G->getSymbol(); 1132 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1133 FuncName = G->getGlobal()->getName(); 1134 1135 DiagnosticInfoUnsupported NoCalls( 1136 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1137 DAG.getContext()->diagnose(NoCalls); 1138 1139 if (!CLI.IsTailCall) { 1140 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1141 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1142 } 1143 1144 return DAG.getEntryNode(); 1145 } 1146 1147 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1148 SmallVectorImpl<SDValue> &InVals) const { 1149 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1150 } 1151 1152 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1153 SelectionDAG &DAG) const { 1154 const Function &Fn = DAG.getMachineFunction().getFunction(); 1155 1156 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1157 SDLoc(Op).getDebugLoc()); 1158 DAG.getContext()->diagnose(NoDynamicAlloca); 1159 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1160 return DAG.getMergeValues(Ops, SDLoc()); 1161 } 1162 1163 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1164 SelectionDAG &DAG) const { 1165 switch (Op.getOpcode()) { 1166 default: 1167 Op->print(errs(), &DAG); 1168 llvm_unreachable("Custom lowering code for this" 1169 "instruction is not implemented yet!"); 1170 break; 1171 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1172 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1173 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1174 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1175 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1176 case ISD::FREM: return LowerFREM(Op, DAG); 1177 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1178 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1179 case ISD::FRINT: return LowerFRINT(Op, DAG); 1180 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1181 case ISD::FROUND: return LowerFROUND(Op, DAG); 1182 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1183 case ISD::FLOG: 1184 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1185 case ISD::FLOG10: 1186 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1187 case ISD::FEXP: 1188 return lowerFEXP(Op, DAG); 1189 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1190 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1191 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1192 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1193 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1194 case ISD::CTTZ: 1195 case ISD::CTTZ_ZERO_UNDEF: 1196 case ISD::CTLZ: 1197 case ISD::CTLZ_ZERO_UNDEF: 1198 return LowerCTLZ_CTTZ(Op, DAG); 1199 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1200 } 1201 return Op; 1202 } 1203 1204 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1205 SmallVectorImpl<SDValue> &Results, 1206 SelectionDAG &DAG) const { 1207 switch (N->getOpcode()) { 1208 case ISD::SIGN_EXTEND_INREG: 1209 // Different parts of legalization seem to interpret which type of 1210 // sign_extend_inreg is the one to check for custom lowering. The extended 1211 // from type is what really matters, but some places check for custom 1212 // lowering of the result type. This results in trying to use 1213 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1214 // nothing here and let the illegal result integer be handled normally. 1215 return; 1216 default: 1217 return; 1218 } 1219 } 1220 1221 static bool hasDefinedInitializer(const GlobalValue *GV) { 1222 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1223 if (!GVar || !GVar->hasInitializer()) 1224 return false; 1225 1226 return !isa<UndefValue>(GVar->getInitializer()); 1227 } 1228 1229 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1230 SDValue Op, 1231 SelectionDAG &DAG) const { 1232 1233 const DataLayout &DL = DAG.getDataLayout(); 1234 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1235 const GlobalValue *GV = G->getGlobal(); 1236 1237 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1238 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1239 if (!MFI->isEntryFunction()) { 1240 const Function &Fn = DAG.getMachineFunction().getFunction(); 1241 DiagnosticInfoUnsupported BadLDSDecl( 1242 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1243 DAG.getContext()->diagnose(BadLDSDecl); 1244 } 1245 1246 // XXX: What does the value of G->getOffset() mean? 1247 assert(G->getOffset() == 0 && 1248 "Do not know what to do with an non-zero offset"); 1249 1250 // TODO: We could emit code to handle the initialization somewhere. 1251 if (!hasDefinedInitializer(GV)) { 1252 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1253 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1254 } 1255 } 1256 1257 const Function &Fn = DAG.getMachineFunction().getFunction(); 1258 DiagnosticInfoUnsupported BadInit( 1259 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1260 DAG.getContext()->diagnose(BadInit); 1261 return SDValue(); 1262 } 1263 1264 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1265 SelectionDAG &DAG) const { 1266 SmallVector<SDValue, 8> Args; 1267 1268 EVT VT = Op.getValueType(); 1269 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1270 SDLoc SL(Op); 1271 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1272 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1273 1274 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1275 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1276 } 1277 1278 for (const SDUse &U : Op->ops()) 1279 DAG.ExtractVectorElements(U.get(), Args); 1280 1281 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1282 } 1283 1284 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1285 SelectionDAG &DAG) const { 1286 1287 SmallVector<SDValue, 8> Args; 1288 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1289 EVT VT = Op.getValueType(); 1290 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1291 VT.getVectorNumElements()); 1292 1293 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1294 } 1295 1296 /// Generate Min/Max node 1297 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1298 SDValue LHS, SDValue RHS, 1299 SDValue True, SDValue False, 1300 SDValue CC, 1301 DAGCombinerInfo &DCI) const { 1302 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1303 return SDValue(); 1304 1305 SelectionDAG &DAG = DCI.DAG; 1306 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1307 switch (CCOpcode) { 1308 case ISD::SETOEQ: 1309 case ISD::SETONE: 1310 case ISD::SETUNE: 1311 case ISD::SETNE: 1312 case ISD::SETUEQ: 1313 case ISD::SETEQ: 1314 case ISD::SETFALSE: 1315 case ISD::SETFALSE2: 1316 case ISD::SETTRUE: 1317 case ISD::SETTRUE2: 1318 case ISD::SETUO: 1319 case ISD::SETO: 1320 break; 1321 case ISD::SETULE: 1322 case ISD::SETULT: { 1323 if (LHS == True) 1324 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1325 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1326 } 1327 case ISD::SETOLE: 1328 case ISD::SETOLT: 1329 case ISD::SETLE: 1330 case ISD::SETLT: { 1331 // Ordered. Assume ordered for undefined. 1332 1333 // Only do this after legalization to avoid interfering with other combines 1334 // which might occur. 1335 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1336 !DCI.isCalledByLegalizer()) 1337 return SDValue(); 1338 1339 // We need to permute the operands to get the correct NaN behavior. The 1340 // selected operand is the second one based on the failing compare with NaN, 1341 // so permute it based on the compare type the hardware uses. 1342 if (LHS == True) 1343 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1344 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1345 } 1346 case ISD::SETUGE: 1347 case ISD::SETUGT: { 1348 if (LHS == True) 1349 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1350 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1351 } 1352 case ISD::SETGT: 1353 case ISD::SETGE: 1354 case ISD::SETOGE: 1355 case ISD::SETOGT: { 1356 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1357 !DCI.isCalledByLegalizer()) 1358 return SDValue(); 1359 1360 if (LHS == True) 1361 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1362 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1363 } 1364 case ISD::SETCC_INVALID: 1365 llvm_unreachable("Invalid setcc condcode!"); 1366 } 1367 return SDValue(); 1368 } 1369 1370 std::pair<SDValue, SDValue> 1371 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1372 SDLoc SL(Op); 1373 1374 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1375 1376 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1377 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1378 1379 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1380 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1381 1382 return std::make_pair(Lo, Hi); 1383 } 1384 1385 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1386 SDLoc SL(Op); 1387 1388 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1389 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1390 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1391 } 1392 1393 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1394 SDLoc SL(Op); 1395 1396 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1397 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1398 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1399 } 1400 1401 // Split a vector type into two parts. The first part is a power of two vector. 1402 // The second part is whatever is left over, and is a scalar if it would 1403 // otherwise be a 1-vector. 1404 std::pair<EVT, EVT> 1405 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1406 EVT LoVT, HiVT; 1407 EVT EltVT = VT.getVectorElementType(); 1408 unsigned NumElts = VT.getVectorNumElements(); 1409 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1410 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1411 HiVT = NumElts - LoNumElts == 1 1412 ? EltVT 1413 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1414 return std::make_pair(LoVT, HiVT); 1415 } 1416 1417 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1418 // scalar. 1419 std::pair<SDValue, SDValue> 1420 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1421 const EVT &LoVT, const EVT &HiVT, 1422 SelectionDAG &DAG) const { 1423 assert(LoVT.getVectorNumElements() + 1424 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1425 N.getValueType().getVectorNumElements() && 1426 "More vector elements requested than available!"); 1427 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1428 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1429 DAG.getConstant(0, DL, IdxTy)); 1430 SDValue Hi = DAG.getNode( 1431 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1432 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1433 return std::make_pair(Lo, Hi); 1434 } 1435 1436 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1437 SelectionDAG &DAG) const { 1438 LoadSDNode *Load = cast<LoadSDNode>(Op); 1439 EVT VT = Op.getValueType(); 1440 1441 1442 // If this is a 2 element vector, we really want to scalarize and not create 1443 // weird 1 element vectors. 1444 if (VT.getVectorNumElements() == 2) 1445 return scalarizeVectorLoad(Load, DAG); 1446 1447 SDValue BasePtr = Load->getBasePtr(); 1448 EVT MemVT = Load->getMemoryVT(); 1449 SDLoc SL(Op); 1450 1451 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1452 1453 EVT LoVT, HiVT; 1454 EVT LoMemVT, HiMemVT; 1455 SDValue Lo, Hi; 1456 1457 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1458 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1459 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1460 1461 unsigned Size = LoMemVT.getStoreSize(); 1462 unsigned BaseAlign = Load->getAlignment(); 1463 unsigned HiAlign = MinAlign(BaseAlign, Size); 1464 1465 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1466 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1467 BaseAlign, Load->getMemOperand()->getFlags()); 1468 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1469 SDValue HiLoad = 1470 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1471 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1472 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1473 1474 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1475 SDValue Join; 1476 if (LoVT == HiVT) { 1477 // This is the case that the vector is power of two so was evenly split. 1478 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1479 } else { 1480 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1481 DAG.getConstant(0, SL, IdxTy)); 1482 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1483 : ISD::INSERT_VECTOR_ELT, 1484 SL, VT, Join, HiLoad, 1485 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1486 } 1487 1488 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1489 LoLoad.getValue(1), HiLoad.getValue(1))}; 1490 1491 return DAG.getMergeValues(Ops, SL); 1492 } 1493 1494 // Widen a vector load from vec3 to vec4. 1495 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1496 SelectionDAG &DAG) const { 1497 LoadSDNode *Load = cast<LoadSDNode>(Op); 1498 EVT VT = Op.getValueType(); 1499 assert(VT.getVectorNumElements() == 3); 1500 SDValue BasePtr = Load->getBasePtr(); 1501 EVT MemVT = Load->getMemoryVT(); 1502 SDLoc SL(Op); 1503 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1504 unsigned BaseAlign = Load->getAlignment(); 1505 1506 EVT WideVT = 1507 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1508 EVT WideMemVT = 1509 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1510 SDValue WideLoad = DAG.getExtLoad( 1511 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1512 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1513 return DAG.getMergeValues( 1514 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1515 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1516 WideLoad.getValue(1)}, 1517 SL); 1518 } 1519 1520 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1521 SelectionDAG &DAG) const { 1522 StoreSDNode *Store = cast<StoreSDNode>(Op); 1523 SDValue Val = Store->getValue(); 1524 EVT VT = Val.getValueType(); 1525 1526 // If this is a 2 element vector, we really want to scalarize and not create 1527 // weird 1 element vectors. 1528 if (VT.getVectorNumElements() == 2) 1529 return scalarizeVectorStore(Store, DAG); 1530 1531 EVT MemVT = Store->getMemoryVT(); 1532 SDValue Chain = Store->getChain(); 1533 SDValue BasePtr = Store->getBasePtr(); 1534 SDLoc SL(Op); 1535 1536 EVT LoVT, HiVT; 1537 EVT LoMemVT, HiMemVT; 1538 SDValue Lo, Hi; 1539 1540 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1541 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1542 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1543 1544 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1545 1546 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1547 unsigned BaseAlign = Store->getAlignment(); 1548 unsigned Size = LoMemVT.getStoreSize(); 1549 unsigned HiAlign = MinAlign(BaseAlign, Size); 1550 1551 SDValue LoStore = 1552 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1553 Store->getMemOperand()->getFlags()); 1554 SDValue HiStore = 1555 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1556 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1557 1558 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1559 } 1560 1561 // This is a shortcut for integer division because we have fast i32<->f32 1562 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1563 // float is enough to accurately represent up to a 24-bit signed integer. 1564 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1565 bool Sign) const { 1566 SDLoc DL(Op); 1567 EVT VT = Op.getValueType(); 1568 SDValue LHS = Op.getOperand(0); 1569 SDValue RHS = Op.getOperand(1); 1570 MVT IntVT = MVT::i32; 1571 MVT FltVT = MVT::f32; 1572 1573 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1574 if (LHSSignBits < 9) 1575 return SDValue(); 1576 1577 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1578 if (RHSSignBits < 9) 1579 return SDValue(); 1580 1581 unsigned BitSize = VT.getSizeInBits(); 1582 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1583 unsigned DivBits = BitSize - SignBits; 1584 if (Sign) 1585 ++DivBits; 1586 1587 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1588 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1589 1590 SDValue jq = DAG.getConstant(1, DL, IntVT); 1591 1592 if (Sign) { 1593 // char|short jq = ia ^ ib; 1594 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1595 1596 // jq = jq >> (bitsize - 2) 1597 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1598 DAG.getConstant(BitSize - 2, DL, VT)); 1599 1600 // jq = jq | 0x1 1601 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1602 } 1603 1604 // int ia = (int)LHS; 1605 SDValue ia = LHS; 1606 1607 // int ib, (int)RHS; 1608 SDValue ib = RHS; 1609 1610 // float fa = (float)ia; 1611 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1612 1613 // float fb = (float)ib; 1614 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1615 1616 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1617 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1618 1619 // fq = trunc(fq); 1620 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1621 1622 // float fqneg = -fq; 1623 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1624 1625 // float fr = mad(fqneg, fb, fa); 1626 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1627 (unsigned)AMDGPUISD::FMAD_FTZ : 1628 (unsigned)ISD::FMAD; 1629 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1630 1631 // int iq = (int)fq; 1632 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1633 1634 // fr = fabs(fr); 1635 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1636 1637 // fb = fabs(fb); 1638 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1639 1640 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1641 1642 // int cv = fr >= fb; 1643 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1644 1645 // jq = (cv ? jq : 0); 1646 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1647 1648 // dst = iq + jq; 1649 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1650 1651 // Rem needs compensation, it's easier to recompute it 1652 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1653 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1654 1655 // Truncate to number of bits this divide really is. 1656 if (Sign) { 1657 SDValue InRegSize 1658 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1659 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1660 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1661 } else { 1662 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1663 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1664 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1665 } 1666 1667 return DAG.getMergeValues({ Div, Rem }, DL); 1668 } 1669 1670 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1671 SelectionDAG &DAG, 1672 SmallVectorImpl<SDValue> &Results) const { 1673 SDLoc DL(Op); 1674 EVT VT = Op.getValueType(); 1675 1676 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1677 1678 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1679 1680 SDValue One = DAG.getConstant(1, DL, HalfVT); 1681 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1682 1683 //HiLo split 1684 SDValue LHS = Op.getOperand(0); 1685 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1686 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1687 1688 SDValue RHS = Op.getOperand(1); 1689 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1690 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1691 1692 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1693 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1694 1695 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1696 LHS_Lo, RHS_Lo); 1697 1698 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1699 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1700 1701 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1702 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1703 return; 1704 } 1705 1706 if (isTypeLegal(MVT::i64)) { 1707 // Compute denominator reciprocal. 1708 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1709 (unsigned)AMDGPUISD::FMAD_FTZ : 1710 (unsigned)ISD::FMAD; 1711 1712 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1713 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1714 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1715 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1716 Cvt_Lo); 1717 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1718 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1719 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1720 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1721 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1722 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1723 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1724 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1725 Mul1); 1726 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1727 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1728 SDValue Rcp64 = DAG.getBitcast(VT, 1729 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1730 1731 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1732 SDValue One64 = DAG.getConstant(1, DL, VT); 1733 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1734 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1735 1736 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1737 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1738 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1739 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1740 Zero); 1741 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1742 One); 1743 1744 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1745 Mulhi1_Lo, Zero1); 1746 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1747 Mulhi1_Hi, Add1_Lo.getValue(1)); 1748 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1749 SDValue Add1 = DAG.getBitcast(VT, 1750 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1751 1752 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1753 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1754 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1755 Zero); 1756 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1757 One); 1758 1759 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1760 Mulhi2_Lo, Zero1); 1761 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1762 Mulhi2_Hi, Add1_Lo.getValue(1)); 1763 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1764 Zero, Add2_Lo.getValue(1)); 1765 SDValue Add2 = DAG.getBitcast(VT, 1766 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1767 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1768 1769 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1770 1771 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1772 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1773 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1774 Mul3_Lo, Zero1); 1775 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1776 Mul3_Hi, Sub1_Lo.getValue(1)); 1777 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1778 SDValue Sub1 = DAG.getBitcast(VT, 1779 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1780 1781 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1782 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1783 ISD::SETUGE); 1784 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1785 ISD::SETUGE); 1786 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1787 1788 // TODO: Here and below portions of the code can be enclosed into if/endif. 1789 // Currently control flow is unconditional and we have 4 selects after 1790 // potential endif to substitute PHIs. 1791 1792 // if C3 != 0 ... 1793 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1794 RHS_Lo, Zero1); 1795 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1796 RHS_Hi, Sub1_Lo.getValue(1)); 1797 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1798 Zero, Sub2_Lo.getValue(1)); 1799 SDValue Sub2 = DAG.getBitcast(VT, 1800 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1801 1802 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1803 1804 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1805 ISD::SETUGE); 1806 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1807 ISD::SETUGE); 1808 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1809 1810 // if (C6 != 0) 1811 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1812 1813 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1814 RHS_Lo, Zero1); 1815 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1816 RHS_Hi, Sub2_Lo.getValue(1)); 1817 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1818 Zero, Sub3_Lo.getValue(1)); 1819 SDValue Sub3 = DAG.getBitcast(VT, 1820 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1821 1822 // endif C6 1823 // endif C3 1824 1825 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1826 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1827 1828 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1829 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1830 1831 Results.push_back(Div); 1832 Results.push_back(Rem); 1833 1834 return; 1835 } 1836 1837 // r600 expandion. 1838 // Get Speculative values 1839 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1840 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1841 1842 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1843 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1844 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1845 1846 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1847 SDValue DIV_Lo = Zero; 1848 1849 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1850 1851 for (unsigned i = 0; i < halfBitWidth; ++i) { 1852 const unsigned bitPos = halfBitWidth - i - 1; 1853 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1854 // Get value of high bit 1855 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1856 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1857 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1858 1859 // Shift 1860 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1861 // Add LHS high bit 1862 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1863 1864 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1865 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1866 1867 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1868 1869 // Update REM 1870 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1871 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1872 } 1873 1874 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1875 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1876 Results.push_back(DIV); 1877 Results.push_back(REM); 1878 } 1879 1880 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1881 SelectionDAG &DAG) const { 1882 SDLoc DL(Op); 1883 EVT VT = Op.getValueType(); 1884 1885 if (VT == MVT::i64) { 1886 SmallVector<SDValue, 2> Results; 1887 LowerUDIVREM64(Op, DAG, Results); 1888 return DAG.getMergeValues(Results, DL); 1889 } 1890 1891 if (VT == MVT::i32) { 1892 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1893 return Res; 1894 } 1895 1896 SDValue Num = Op.getOperand(0); 1897 SDValue Den = Op.getOperand(1); 1898 1899 // RCP = URECIP(Den) = 2^32 / Den + e 1900 // e is rounding error. 1901 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1902 1903 // RCP_LO = mul(RCP, Den) */ 1904 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1905 1906 // RCP_HI = mulhu (RCP, Den) */ 1907 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1908 1909 // NEG_RCP_LO = -RCP_LO 1910 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1911 RCP_LO); 1912 1913 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1914 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1915 NEG_RCP_LO, RCP_LO, 1916 ISD::SETEQ); 1917 // Calculate the rounding error from the URECIP instruction 1918 // E = mulhu(ABS_RCP_LO, RCP) 1919 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1920 1921 // RCP_A_E = RCP + E 1922 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1923 1924 // RCP_S_E = RCP - E 1925 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1926 1927 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1928 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1929 RCP_A_E, RCP_S_E, 1930 ISD::SETEQ); 1931 // Quotient = mulhu(Tmp0, Num) 1932 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1933 1934 // Num_S_Remainder = Quotient * Den 1935 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1936 1937 // Remainder = Num - Num_S_Remainder 1938 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1939 1940 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1941 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1942 DAG.getConstant(-1, DL, VT), 1943 DAG.getConstant(0, DL, VT), 1944 ISD::SETUGE); 1945 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1946 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1947 Num_S_Remainder, 1948 DAG.getConstant(-1, DL, VT), 1949 DAG.getConstant(0, DL, VT), 1950 ISD::SETUGE); 1951 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1952 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1953 Remainder_GE_Zero); 1954 1955 // Calculate Division result: 1956 1957 // Quotient_A_One = Quotient + 1 1958 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1959 DAG.getConstant(1, DL, VT)); 1960 1961 // Quotient_S_One = Quotient - 1 1962 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1963 DAG.getConstant(1, DL, VT)); 1964 1965 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1966 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1967 Quotient, Quotient_A_One, ISD::SETEQ); 1968 1969 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1970 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1971 Quotient_S_One, Div, ISD::SETEQ); 1972 1973 // Calculate Rem result: 1974 1975 // Remainder_S_Den = Remainder - Den 1976 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1977 1978 // Remainder_A_Den = Remainder + Den 1979 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1980 1981 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1982 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1983 Remainder, Remainder_S_Den, ISD::SETEQ); 1984 1985 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1986 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1987 Remainder_A_Den, Rem, ISD::SETEQ); 1988 SDValue Ops[2] = { 1989 Div, 1990 Rem 1991 }; 1992 return DAG.getMergeValues(Ops, DL); 1993 } 1994 1995 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1996 SelectionDAG &DAG) const { 1997 SDLoc DL(Op); 1998 EVT VT = Op.getValueType(); 1999 2000 SDValue LHS = Op.getOperand(0); 2001 SDValue RHS = Op.getOperand(1); 2002 2003 SDValue Zero = DAG.getConstant(0, DL, VT); 2004 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2005 2006 if (VT == MVT::i32) { 2007 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2008 return Res; 2009 } 2010 2011 if (VT == MVT::i64 && 2012 DAG.ComputeNumSignBits(LHS) > 32 && 2013 DAG.ComputeNumSignBits(RHS) > 32) { 2014 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2015 2016 //HiLo split 2017 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2018 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2019 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2020 LHS_Lo, RHS_Lo); 2021 SDValue Res[2] = { 2022 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2023 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2024 }; 2025 return DAG.getMergeValues(Res, DL); 2026 } 2027 2028 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2029 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2030 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2031 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2032 2033 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2034 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2035 2036 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2037 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2038 2039 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2040 SDValue Rem = Div.getValue(1); 2041 2042 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2043 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2044 2045 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2046 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2047 2048 SDValue Res[2] = { 2049 Div, 2050 Rem 2051 }; 2052 return DAG.getMergeValues(Res, DL); 2053 } 2054 2055 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2056 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2057 SDLoc SL(Op); 2058 EVT VT = Op.getValueType(); 2059 SDValue X = Op.getOperand(0); 2060 SDValue Y = Op.getOperand(1); 2061 2062 // TODO: Should this propagate fast-math-flags? 2063 2064 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2065 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2066 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2067 2068 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2069 } 2070 2071 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2072 SDLoc SL(Op); 2073 SDValue Src = Op.getOperand(0); 2074 2075 // result = trunc(src) 2076 // if (src > 0.0 && src != result) 2077 // result += 1.0 2078 2079 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2080 2081 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2082 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2083 2084 EVT SetCCVT = 2085 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2086 2087 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2088 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2089 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2090 2091 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2092 // TODO: Should this propagate fast-math-flags? 2093 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2094 } 2095 2096 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2097 SelectionDAG &DAG) { 2098 const unsigned FractBits = 52; 2099 const unsigned ExpBits = 11; 2100 2101 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2102 Hi, 2103 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2104 DAG.getConstant(ExpBits, SL, MVT::i32)); 2105 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2106 DAG.getConstant(1023, SL, MVT::i32)); 2107 2108 return Exp; 2109 } 2110 2111 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2112 SDLoc SL(Op); 2113 SDValue Src = Op.getOperand(0); 2114 2115 assert(Op.getValueType() == MVT::f64); 2116 2117 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2118 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2119 2120 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2121 2122 // Extract the upper half, since this is where we will find the sign and 2123 // exponent. 2124 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2125 2126 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2127 2128 const unsigned FractBits = 52; 2129 2130 // Extract the sign bit. 2131 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2132 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2133 2134 // Extend back to 64-bits. 2135 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2136 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2137 2138 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2139 const SDValue FractMask 2140 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2141 2142 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2143 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2144 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2145 2146 EVT SetCCVT = 2147 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2148 2149 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2150 2151 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2152 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2153 2154 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2155 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2156 2157 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2158 } 2159 2160 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2161 SDLoc SL(Op); 2162 SDValue Src = Op.getOperand(0); 2163 2164 assert(Op.getValueType() == MVT::f64); 2165 2166 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2167 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2168 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2169 2170 // TODO: Should this propagate fast-math-flags? 2171 2172 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2173 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2174 2175 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2176 2177 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2178 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2179 2180 EVT SetCCVT = 2181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2182 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2183 2184 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2185 } 2186 2187 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2188 // FNEARBYINT and FRINT are the same, except in their handling of FP 2189 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2190 // rint, so just treat them as equivalent. 2191 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2192 } 2193 2194 // XXX - May require not supporting f32 denormals? 2195 2196 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2197 // compare and vselect end up producing worse code than scalarizing the whole 2198 // operation. 2199 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2200 SDLoc SL(Op); 2201 SDValue X = Op.getOperand(0); 2202 EVT VT = Op.getValueType(); 2203 2204 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2205 2206 // TODO: Should this propagate fast-math-flags? 2207 2208 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2209 2210 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2211 2212 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2213 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2214 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2215 2216 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2217 2218 EVT SetCCVT = 2219 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2220 2221 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2222 2223 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2224 2225 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2226 } 2227 2228 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2229 SDLoc SL(Op); 2230 SDValue X = Op.getOperand(0); 2231 2232 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2233 2234 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2235 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2236 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2237 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2238 EVT SetCCVT = 2239 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2240 2241 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2242 2243 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2244 2245 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2246 2247 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2248 MVT::i64); 2249 2250 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2251 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2252 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2253 MVT::i64), 2254 Exp); 2255 2256 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2257 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2258 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2259 ISD::SETNE); 2260 2261 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2262 D, DAG.getConstant(0, SL, MVT::i64)); 2263 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2264 2265 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2266 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2267 2268 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2269 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2270 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2271 2272 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2273 ExpEqNegOne, 2274 DAG.getConstantFP(1.0, SL, MVT::f64), 2275 DAG.getConstantFP(0.0, SL, MVT::f64)); 2276 2277 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2278 2279 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2280 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2281 2282 return K; 2283 } 2284 2285 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2286 EVT VT = Op.getValueType(); 2287 2288 if (VT == MVT::f32 || VT == MVT::f16) 2289 return LowerFROUND32_16(Op, DAG); 2290 2291 if (VT == MVT::f64) 2292 return LowerFROUND64(Op, DAG); 2293 2294 llvm_unreachable("unhandled type"); 2295 } 2296 2297 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2298 SDLoc SL(Op); 2299 SDValue Src = Op.getOperand(0); 2300 2301 // result = trunc(src); 2302 // if (src < 0.0 && src != result) 2303 // result += -1.0. 2304 2305 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2306 2307 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2308 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2309 2310 EVT SetCCVT = 2311 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2312 2313 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2314 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2315 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2316 2317 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2318 // TODO: Should this propagate fast-math-flags? 2319 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2320 } 2321 2322 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2323 double Log2BaseInverted) const { 2324 EVT VT = Op.getValueType(); 2325 2326 SDLoc SL(Op); 2327 SDValue Operand = Op.getOperand(0); 2328 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2329 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2330 2331 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2332 } 2333 2334 // Return M_LOG2E of appropriate type 2335 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2336 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2337 case MVT::f32: 2338 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2339 case MVT::f16: 2340 return DAG.getConstantFP( 2341 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2342 SL, VT); 2343 case MVT::f64: 2344 return DAG.getConstantFP( 2345 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2346 default: 2347 llvm_unreachable("unsupported fp type"); 2348 } 2349 } 2350 2351 // exp2(M_LOG2E_F * f); 2352 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2353 EVT VT = Op.getValueType(); 2354 SDLoc SL(Op); 2355 SDValue Src = Op.getOperand(0); 2356 2357 const SDValue K = getLog2EVal(DAG, SL, VT); 2358 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2359 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2360 } 2361 2362 static bool isCtlzOpc(unsigned Opc) { 2363 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2364 } 2365 2366 static bool isCttzOpc(unsigned Opc) { 2367 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2368 } 2369 2370 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2371 SDLoc SL(Op); 2372 SDValue Src = Op.getOperand(0); 2373 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2374 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2375 2376 unsigned ISDOpc, NewOpc; 2377 if (isCtlzOpc(Op.getOpcode())) { 2378 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2379 NewOpc = AMDGPUISD::FFBH_U32; 2380 } else if (isCttzOpc(Op.getOpcode())) { 2381 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2382 NewOpc = AMDGPUISD::FFBL_B32; 2383 } else 2384 llvm_unreachable("Unexpected OPCode!!!"); 2385 2386 2387 if (ZeroUndef && Src.getValueType() == MVT::i32) 2388 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2389 2390 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2391 2392 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2393 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2394 2395 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2396 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2397 2398 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2399 *DAG.getContext(), MVT::i32); 2400 2401 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2402 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2403 2404 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2405 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2406 2407 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2408 SDValue Add, NewOpr; 2409 if (isCtlzOpc(Op.getOpcode())) { 2410 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2411 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2412 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2413 } else { 2414 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2415 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2416 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2417 } 2418 2419 if (!ZeroUndef) { 2420 // Test if the full 64-bit input is zero. 2421 2422 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2423 // which we probably don't want. 2424 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2425 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2426 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2427 2428 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2429 // with the same cycles, otherwise it is slower. 2430 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2431 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2432 2433 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2434 2435 // The instruction returns -1 for 0 input, but the defined intrinsic 2436 // behavior is to return the number of bits. 2437 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2438 SrcIsZero, Bits32, NewOpr); 2439 } 2440 2441 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2442 } 2443 2444 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2445 bool Signed) const { 2446 // Unsigned 2447 // cul2f(ulong u) 2448 //{ 2449 // uint lz = clz(u); 2450 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2451 // u = (u << lz) & 0x7fffffffffffffffUL; 2452 // ulong t = u & 0xffffffffffUL; 2453 // uint v = (e << 23) | (uint)(u >> 40); 2454 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2455 // return as_float(v + r); 2456 //} 2457 // Signed 2458 // cl2f(long l) 2459 //{ 2460 // long s = l >> 63; 2461 // float r = cul2f((l + s) ^ s); 2462 // return s ? -r : r; 2463 //} 2464 2465 SDLoc SL(Op); 2466 SDValue Src = Op.getOperand(0); 2467 SDValue L = Src; 2468 2469 SDValue S; 2470 if (Signed) { 2471 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2472 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2473 2474 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2475 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2476 } 2477 2478 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2479 *DAG.getContext(), MVT::f32); 2480 2481 2482 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2483 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2484 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2485 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2486 2487 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2488 SDValue E = DAG.getSelect(SL, MVT::i32, 2489 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2490 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2491 ZeroI32); 2492 2493 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2494 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2495 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2496 2497 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2498 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2499 2500 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2501 U, DAG.getConstant(40, SL, MVT::i64)); 2502 2503 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2504 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2505 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2506 2507 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2508 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2509 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2510 2511 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2512 2513 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2514 2515 SDValue R = DAG.getSelect(SL, MVT::i32, 2516 RCmp, 2517 One, 2518 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2519 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2520 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2521 2522 if (!Signed) 2523 return R; 2524 2525 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2526 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2527 } 2528 2529 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2530 bool Signed) const { 2531 SDLoc SL(Op); 2532 SDValue Src = Op.getOperand(0); 2533 2534 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2535 2536 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2537 DAG.getConstant(0, SL, MVT::i32)); 2538 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2539 DAG.getConstant(1, SL, MVT::i32)); 2540 2541 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2542 SL, MVT::f64, Hi); 2543 2544 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2545 2546 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2547 DAG.getConstant(32, SL, MVT::i32)); 2548 // TODO: Should this propagate fast-math-flags? 2549 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2550 } 2551 2552 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2553 SelectionDAG &DAG) const { 2554 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2555 "operation should be legal"); 2556 2557 // TODO: Factor out code common with LowerSINT_TO_FP. 2558 2559 EVT DestVT = Op.getValueType(); 2560 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2561 SDLoc DL(Op); 2562 SDValue Src = Op.getOperand(0); 2563 2564 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2565 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2566 SDValue FPRound = 2567 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2568 2569 return FPRound; 2570 } 2571 2572 if (DestVT == MVT::f32) 2573 return LowerINT_TO_FP32(Op, DAG, false); 2574 2575 assert(DestVT == MVT::f64); 2576 return LowerINT_TO_FP64(Op, DAG, false); 2577 } 2578 2579 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2580 SelectionDAG &DAG) const { 2581 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2582 "operation should be legal"); 2583 2584 // TODO: Factor out code common with LowerUINT_TO_FP. 2585 2586 EVT DestVT = Op.getValueType(); 2587 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2588 SDLoc DL(Op); 2589 SDValue Src = Op.getOperand(0); 2590 2591 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2592 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2593 SDValue FPRound = 2594 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2595 2596 return FPRound; 2597 } 2598 2599 if (DestVT == MVT::f32) 2600 return LowerINT_TO_FP32(Op, DAG, true); 2601 2602 assert(DestVT == MVT::f64); 2603 return LowerINT_TO_FP64(Op, DAG, true); 2604 } 2605 2606 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2607 bool Signed) const { 2608 SDLoc SL(Op); 2609 2610 SDValue Src = Op.getOperand(0); 2611 2612 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2613 2614 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2615 MVT::f64); 2616 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2617 MVT::f64); 2618 // TODO: Should this propagate fast-math-flags? 2619 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2620 2621 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2622 2623 2624 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2625 2626 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2627 MVT::i32, FloorMul); 2628 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2629 2630 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2631 2632 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2633 } 2634 2635 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2636 SDLoc DL(Op); 2637 SDValue N0 = Op.getOperand(0); 2638 2639 // Convert to target node to get known bits 2640 if (N0.getValueType() == MVT::f32) 2641 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2642 2643 if (getTargetMachine().Options.UnsafeFPMath) { 2644 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2645 return SDValue(); 2646 } 2647 2648 assert(N0.getSimpleValueType() == MVT::f64); 2649 2650 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2651 const unsigned ExpMask = 0x7ff; 2652 const unsigned ExpBiasf64 = 1023; 2653 const unsigned ExpBiasf16 = 15; 2654 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2655 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2656 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2657 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2658 DAG.getConstant(32, DL, MVT::i64)); 2659 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2660 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2661 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2662 DAG.getConstant(20, DL, MVT::i64)); 2663 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2664 DAG.getConstant(ExpMask, DL, MVT::i32)); 2665 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2666 // add the f16 bias (15) to get the biased exponent for the f16 format. 2667 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2668 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2669 2670 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2671 DAG.getConstant(8, DL, MVT::i32)); 2672 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2673 DAG.getConstant(0xffe, DL, MVT::i32)); 2674 2675 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2676 DAG.getConstant(0x1ff, DL, MVT::i32)); 2677 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2678 2679 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2680 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2681 2682 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2683 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2684 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2685 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2686 2687 // N = M | (E << 12); 2688 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2689 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2690 DAG.getConstant(12, DL, MVT::i32))); 2691 2692 // B = clamp(1-E, 0, 13); 2693 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2694 One, E); 2695 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2696 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2697 DAG.getConstant(13, DL, MVT::i32)); 2698 2699 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2700 DAG.getConstant(0x1000, DL, MVT::i32)); 2701 2702 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2703 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2704 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2705 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2706 2707 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2708 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2709 DAG.getConstant(0x7, DL, MVT::i32)); 2710 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2711 DAG.getConstant(2, DL, MVT::i32)); 2712 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2713 One, Zero, ISD::SETEQ); 2714 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2715 One, Zero, ISD::SETGT); 2716 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2717 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2718 2719 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2720 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2721 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2722 I, V, ISD::SETEQ); 2723 2724 // Extract the sign bit. 2725 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2726 DAG.getConstant(16, DL, MVT::i32)); 2727 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2728 DAG.getConstant(0x8000, DL, MVT::i32)); 2729 2730 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2731 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2732 } 2733 2734 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2735 SelectionDAG &DAG) const { 2736 SDValue Src = Op.getOperand(0); 2737 2738 // TODO: Factor out code common with LowerFP_TO_UINT. 2739 2740 EVT SrcVT = Src.getValueType(); 2741 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2742 SDLoc DL(Op); 2743 2744 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2745 SDValue FpToInt32 = 2746 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2747 2748 return FpToInt32; 2749 } 2750 2751 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2752 return LowerFP64_TO_INT(Op, DAG, true); 2753 2754 return SDValue(); 2755 } 2756 2757 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2758 SelectionDAG &DAG) const { 2759 SDValue Src = Op.getOperand(0); 2760 2761 // TODO: Factor out code common with LowerFP_TO_SINT. 2762 2763 EVT SrcVT = Src.getValueType(); 2764 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2765 SDLoc DL(Op); 2766 2767 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2768 SDValue FpToInt32 = 2769 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2770 2771 return FpToInt32; 2772 } 2773 2774 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2775 return LowerFP64_TO_INT(Op, DAG, false); 2776 2777 return SDValue(); 2778 } 2779 2780 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2781 SelectionDAG &DAG) const { 2782 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2783 MVT VT = Op.getSimpleValueType(); 2784 MVT ScalarVT = VT.getScalarType(); 2785 2786 assert(VT.isVector()); 2787 2788 SDValue Src = Op.getOperand(0); 2789 SDLoc DL(Op); 2790 2791 // TODO: Don't scalarize on Evergreen? 2792 unsigned NElts = VT.getVectorNumElements(); 2793 SmallVector<SDValue, 8> Args; 2794 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2795 2796 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2797 for (unsigned I = 0; I < NElts; ++I) 2798 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2799 2800 return DAG.getBuildVector(VT, DL, Args); 2801 } 2802 2803 //===----------------------------------------------------------------------===// 2804 // Custom DAG optimizations 2805 //===----------------------------------------------------------------------===// 2806 2807 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2808 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2809 } 2810 2811 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2812 EVT VT = Op.getValueType(); 2813 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2814 // as unsigned 24-bit values. 2815 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2816 } 2817 2818 static SDValue simplifyI24(SDNode *Node24, 2819 TargetLowering::DAGCombinerInfo &DCI) { 2820 SelectionDAG &DAG = DCI.DAG; 2821 SDValue LHS = Node24->getOperand(0); 2822 SDValue RHS = Node24->getOperand(1); 2823 2824 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2825 2826 // First try to simplify using GetDemandedBits which allows the operands to 2827 // have other uses, but will only perform simplifications that involve 2828 // bypassing some nodes for this user. 2829 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2830 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2831 if (DemandedLHS || DemandedRHS) 2832 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(), 2833 DemandedLHS ? DemandedLHS : LHS, 2834 DemandedRHS ? DemandedRHS : RHS); 2835 2836 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2837 // operands if this node is the only user. 2838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2839 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2840 return SDValue(Node24, 0); 2841 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2842 return SDValue(Node24, 0); 2843 2844 return SDValue(); 2845 } 2846 2847 template <typename IntTy> 2848 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2849 uint32_t Width, const SDLoc &DL) { 2850 if (Width + Offset < 32) { 2851 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2852 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2853 return DAG.getConstant(Result, DL, MVT::i32); 2854 } 2855 2856 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2857 } 2858 2859 static bool hasVolatileUser(SDNode *Val) { 2860 for (SDNode *U : Val->uses()) { 2861 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2862 if (M->isVolatile()) 2863 return true; 2864 } 2865 } 2866 2867 return false; 2868 } 2869 2870 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2871 // i32 vectors are the canonical memory type. 2872 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2873 return false; 2874 2875 if (!VT.isByteSized()) 2876 return false; 2877 2878 unsigned Size = VT.getStoreSize(); 2879 2880 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2881 return false; 2882 2883 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2884 return false; 2885 2886 return true; 2887 } 2888 2889 // Find a load or store from corresponding pattern root. 2890 // Roots may be build_vector, bitconvert or their combinations. 2891 static MemSDNode* findMemSDNode(SDNode *N) { 2892 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 2893 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 2894 return MN; 2895 assert(isa<BuildVectorSDNode>(N)); 2896 for (SDValue V : N->op_values()) 2897 if (MemSDNode *MN = 2898 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 2899 return MN; 2900 llvm_unreachable("cannot find MemSDNode in the pattern!"); 2901 } 2902 2903 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned, 2904 SelectionDAG &DAG, 2905 SDNode *N, 2906 SDValue Addr, 2907 SDValue &VAddr, 2908 SDValue &Offset, 2909 SDValue &SLC) const { 2910 const GCNSubtarget &ST = 2911 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 2912 int64_t OffsetVal = 0; 2913 2914 if (ST.hasFlatInstOffsets() && 2915 (!ST.hasFlatSegmentOffsetBug() || 2916 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) && 2917 DAG.isBaseWithConstantOffset(Addr)) { 2918 SDValue N0 = Addr.getOperand(0); 2919 SDValue N1 = Addr.getOperand(1); 2920 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 2921 2922 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 2923 if ((IsSigned && isInt<12>(COffsetVal)) || 2924 (!IsSigned && isUInt<11>(COffsetVal))) { 2925 Addr = N0; 2926 OffsetVal = COffsetVal; 2927 } 2928 } else { 2929 if ((IsSigned && isInt<13>(COffsetVal)) || 2930 (!IsSigned && isUInt<12>(COffsetVal))) { 2931 Addr = N0; 2932 OffsetVal = COffsetVal; 2933 } 2934 } 2935 } 2936 2937 VAddr = Addr; 2938 Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 2939 SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1); 2940 2941 return true; 2942 } 2943 2944 // Replace load of an illegal type with a store of a bitcast to a friendlier 2945 // type. 2946 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2947 DAGCombinerInfo &DCI) const { 2948 if (!DCI.isBeforeLegalize()) 2949 return SDValue(); 2950 2951 LoadSDNode *LN = cast<LoadSDNode>(N); 2952 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2953 return SDValue(); 2954 2955 SDLoc SL(N); 2956 SelectionDAG &DAG = DCI.DAG; 2957 EVT VT = LN->getMemoryVT(); 2958 2959 unsigned Size = VT.getStoreSize(); 2960 unsigned Align = LN->getAlignment(); 2961 if (Align < Size && isTypeLegal(VT)) { 2962 bool IsFast; 2963 unsigned AS = LN->getAddressSpace(); 2964 2965 // Expand unaligned loads earlier than legalization. Due to visitation order 2966 // problems during legalization, the emitted instructions to pack and unpack 2967 // the bytes again are not eliminated in the case of an unaligned copy. 2968 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2969 if (VT.isVector()) 2970 return scalarizeVectorLoad(LN, DAG); 2971 2972 SDValue Ops[2]; 2973 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2974 return DAG.getMergeValues(Ops, SDLoc(N)); 2975 } 2976 2977 if (!IsFast) 2978 return SDValue(); 2979 } 2980 2981 if (!shouldCombineMemoryType(VT)) 2982 return SDValue(); 2983 2984 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2985 2986 SDValue NewLoad 2987 = DAG.getLoad(NewVT, SL, LN->getChain(), 2988 LN->getBasePtr(), LN->getMemOperand()); 2989 2990 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2991 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2992 return SDValue(N, 0); 2993 } 2994 2995 // Replace store of an illegal type with a store of a bitcast to a friendlier 2996 // type. 2997 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2998 DAGCombinerInfo &DCI) const { 2999 if (!DCI.isBeforeLegalize()) 3000 return SDValue(); 3001 3002 StoreSDNode *SN = cast<StoreSDNode>(N); 3003 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 3004 return SDValue(); 3005 3006 EVT VT = SN->getMemoryVT(); 3007 unsigned Size = VT.getStoreSize(); 3008 3009 SDLoc SL(N); 3010 SelectionDAG &DAG = DCI.DAG; 3011 unsigned Align = SN->getAlignment(); 3012 if (Align < Size && isTypeLegal(VT)) { 3013 bool IsFast; 3014 unsigned AS = SN->getAddressSpace(); 3015 3016 // Expand unaligned stores earlier than legalization. Due to visitation 3017 // order problems during legalization, the emitted instructions to pack and 3018 // unpack the bytes again are not eliminated in the case of an unaligned 3019 // copy. 3020 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 3021 if (VT.isVector()) 3022 return scalarizeVectorStore(SN, DAG); 3023 3024 return expandUnalignedStore(SN, DAG); 3025 } 3026 3027 if (!IsFast) 3028 return SDValue(); 3029 } 3030 3031 if (!shouldCombineMemoryType(VT)) 3032 return SDValue(); 3033 3034 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3035 SDValue Val = SN->getValue(); 3036 3037 //DCI.AddToWorklist(Val.getNode()); 3038 3039 bool OtherUses = !Val.hasOneUse(); 3040 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3041 if (OtherUses) { 3042 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3043 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3044 } 3045 3046 return DAG.getStore(SN->getChain(), SL, CastVal, 3047 SN->getBasePtr(), SN->getMemOperand()); 3048 } 3049 3050 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3051 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3052 // issues. 3053 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3054 DAGCombinerInfo &DCI) const { 3055 SelectionDAG &DAG = DCI.DAG; 3056 SDValue N0 = N->getOperand(0); 3057 3058 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3059 // (vt2 (truncate (assertzext vt0:x, vt1))) 3060 if (N0.getOpcode() == ISD::TRUNCATE) { 3061 SDValue N1 = N->getOperand(1); 3062 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3063 SDLoc SL(N); 3064 3065 SDValue Src = N0.getOperand(0); 3066 EVT SrcVT = Src.getValueType(); 3067 if (SrcVT.bitsGE(ExtVT)) { 3068 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3069 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3070 } 3071 } 3072 3073 return SDValue(); 3074 } 3075 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3076 /// binary operation \p Opc to it with the corresponding constant operands. 3077 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3078 DAGCombinerInfo &DCI, const SDLoc &SL, 3079 unsigned Opc, SDValue LHS, 3080 uint32_t ValLo, uint32_t ValHi) const { 3081 SelectionDAG &DAG = DCI.DAG; 3082 SDValue Lo, Hi; 3083 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3084 3085 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3086 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3087 3088 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3089 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3090 3091 // Re-visit the ands. It's possible we eliminated one of them and it could 3092 // simplify the vector. 3093 DCI.AddToWorklist(Lo.getNode()); 3094 DCI.AddToWorklist(Hi.getNode()); 3095 3096 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3097 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3098 } 3099 3100 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3101 DAGCombinerInfo &DCI) const { 3102 EVT VT = N->getValueType(0); 3103 3104 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3105 if (!RHS) 3106 return SDValue(); 3107 3108 SDValue LHS = N->getOperand(0); 3109 unsigned RHSVal = RHS->getZExtValue(); 3110 if (!RHSVal) 3111 return LHS; 3112 3113 SDLoc SL(N); 3114 SelectionDAG &DAG = DCI.DAG; 3115 3116 switch (LHS->getOpcode()) { 3117 default: 3118 break; 3119 case ISD::ZERO_EXTEND: 3120 case ISD::SIGN_EXTEND: 3121 case ISD::ANY_EXTEND: { 3122 SDValue X = LHS->getOperand(0); 3123 3124 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3125 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3126 // Prefer build_vector as the canonical form if packed types are legal. 3127 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3128 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3129 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3130 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3131 } 3132 3133 // shl (ext x) => zext (shl x), if shift does not overflow int 3134 if (VT != MVT::i64) 3135 break; 3136 KnownBits Known = DAG.computeKnownBits(X); 3137 unsigned LZ = Known.countMinLeadingZeros(); 3138 if (LZ < RHSVal) 3139 break; 3140 EVT XVT = X.getValueType(); 3141 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3142 return DAG.getZExtOrTrunc(Shl, SL, VT); 3143 } 3144 } 3145 3146 if (VT != MVT::i64) 3147 return SDValue(); 3148 3149 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3150 3151 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3152 // common case, splitting this into a move and a 32-bit shift is faster and 3153 // the same code size. 3154 if (RHSVal < 32) 3155 return SDValue(); 3156 3157 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3158 3159 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3160 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3161 3162 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3163 3164 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3165 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3166 } 3167 3168 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3169 DAGCombinerInfo &DCI) const { 3170 if (N->getValueType(0) != MVT::i64) 3171 return SDValue(); 3172 3173 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3174 if (!RHS) 3175 return SDValue(); 3176 3177 SelectionDAG &DAG = DCI.DAG; 3178 SDLoc SL(N); 3179 unsigned RHSVal = RHS->getZExtValue(); 3180 3181 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3182 if (RHSVal == 32) { 3183 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3184 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3185 DAG.getConstant(31, SL, MVT::i32)); 3186 3187 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3188 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3189 } 3190 3191 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3192 if (RHSVal == 63) { 3193 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3194 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3195 DAG.getConstant(31, SL, MVT::i32)); 3196 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3197 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3198 } 3199 3200 return SDValue(); 3201 } 3202 3203 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3204 DAGCombinerInfo &DCI) const { 3205 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3206 if (!RHS) 3207 return SDValue(); 3208 3209 EVT VT = N->getValueType(0); 3210 SDValue LHS = N->getOperand(0); 3211 unsigned ShiftAmt = RHS->getZExtValue(); 3212 SelectionDAG &DAG = DCI.DAG; 3213 SDLoc SL(N); 3214 3215 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3216 // this improves the ability to match BFE patterns in isel. 3217 if (LHS.getOpcode() == ISD::AND) { 3218 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3219 if (Mask->getAPIntValue().isShiftedMask() && 3220 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3221 return DAG.getNode( 3222 ISD::AND, SL, VT, 3223 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3224 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3225 } 3226 } 3227 } 3228 3229 if (VT != MVT::i64) 3230 return SDValue(); 3231 3232 if (ShiftAmt < 32) 3233 return SDValue(); 3234 3235 // srl i64:x, C for C >= 32 3236 // => 3237 // build_pair (srl hi_32(x), C - 32), 0 3238 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3239 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3240 3241 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3242 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3243 3244 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3245 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3246 3247 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3248 3249 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3250 } 3251 3252 SDValue AMDGPUTargetLowering::performTruncateCombine( 3253 SDNode *N, DAGCombinerInfo &DCI) const { 3254 SDLoc SL(N); 3255 SelectionDAG &DAG = DCI.DAG; 3256 EVT VT = N->getValueType(0); 3257 SDValue Src = N->getOperand(0); 3258 3259 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3260 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3261 SDValue Vec = Src.getOperand(0); 3262 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3263 SDValue Elt0 = Vec.getOperand(0); 3264 EVT EltVT = Elt0.getValueType(); 3265 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3266 if (EltVT.isFloatingPoint()) { 3267 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3268 EltVT.changeTypeToInteger(), Elt0); 3269 } 3270 3271 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3272 } 3273 } 3274 } 3275 3276 // Equivalent of above for accessing the high element of a vector as an 3277 // integer operation. 3278 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3279 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3280 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3281 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3282 SDValue BV = stripBitcast(Src.getOperand(0)); 3283 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3284 BV.getValueType().getVectorNumElements() == 2) { 3285 SDValue SrcElt = BV.getOperand(1); 3286 EVT SrcEltVT = SrcElt.getValueType(); 3287 if (SrcEltVT.isFloatingPoint()) { 3288 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3289 SrcEltVT.changeTypeToInteger(), SrcElt); 3290 } 3291 3292 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3293 } 3294 } 3295 } 3296 } 3297 3298 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3299 // 3300 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3301 // i16 (trunc (srl (i32 (trunc x), K))) 3302 if (VT.getScalarSizeInBits() < 32) { 3303 EVT SrcVT = Src.getValueType(); 3304 if (SrcVT.getScalarSizeInBits() > 32 && 3305 (Src.getOpcode() == ISD::SRL || 3306 Src.getOpcode() == ISD::SRA || 3307 Src.getOpcode() == ISD::SHL)) { 3308 SDValue Amt = Src.getOperand(1); 3309 KnownBits Known = DAG.computeKnownBits(Amt); 3310 unsigned Size = VT.getScalarSizeInBits(); 3311 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3312 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3313 EVT MidVT = VT.isVector() ? 3314 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3315 VT.getVectorNumElements()) : MVT::i32; 3316 3317 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3318 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3319 Src.getOperand(0)); 3320 DCI.AddToWorklist(Trunc.getNode()); 3321 3322 if (Amt.getValueType() != NewShiftVT) { 3323 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3324 DCI.AddToWorklist(Amt.getNode()); 3325 } 3326 3327 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3328 Trunc, Amt); 3329 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3330 } 3331 } 3332 } 3333 3334 return SDValue(); 3335 } 3336 3337 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3338 // instructions. If we only match on the legalized i64 mul expansion, 3339 // SimplifyDemandedBits will be unable to remove them because there will be 3340 // multiple uses due to the separate mul + mulh[su]. 3341 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3342 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3343 if (Size <= 32) { 3344 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3345 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3346 } 3347 3348 // Because we want to eliminate extension instructions before the 3349 // operation, we need to create a single user here (i.e. not the separate 3350 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3351 3352 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3353 3354 SDValue Mul = DAG.getNode(MulOpc, SL, 3355 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3356 3357 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3358 Mul.getValue(0), Mul.getValue(1)); 3359 } 3360 3361 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3362 DAGCombinerInfo &DCI) const { 3363 EVT VT = N->getValueType(0); 3364 3365 unsigned Size = VT.getSizeInBits(); 3366 if (VT.isVector() || Size > 64) 3367 return SDValue(); 3368 3369 // There are i16 integer mul/mad. 3370 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3371 return SDValue(); 3372 3373 SelectionDAG &DAG = DCI.DAG; 3374 SDLoc DL(N); 3375 3376 SDValue N0 = N->getOperand(0); 3377 SDValue N1 = N->getOperand(1); 3378 3379 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3380 // in the source into any_extends if the result of the mul is truncated. Since 3381 // we can assume the high bits are whatever we want, use the underlying value 3382 // to avoid the unknown high bits from interfering. 3383 if (N0.getOpcode() == ISD::ANY_EXTEND) 3384 N0 = N0.getOperand(0); 3385 3386 if (N1.getOpcode() == ISD::ANY_EXTEND) 3387 N1 = N1.getOperand(0); 3388 3389 SDValue Mul; 3390 3391 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3392 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3393 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3394 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3395 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3396 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3397 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3398 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3399 } else { 3400 return SDValue(); 3401 } 3402 3403 // We need to use sext even for MUL_U24, because MUL_U24 is used 3404 // for signed multiply of 8 and 16-bit types. 3405 return DAG.getSExtOrTrunc(Mul, DL, VT); 3406 } 3407 3408 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3409 DAGCombinerInfo &DCI) const { 3410 EVT VT = N->getValueType(0); 3411 3412 if (!Subtarget->hasMulI24() || VT.isVector()) 3413 return SDValue(); 3414 3415 SelectionDAG &DAG = DCI.DAG; 3416 SDLoc DL(N); 3417 3418 SDValue N0 = N->getOperand(0); 3419 SDValue N1 = N->getOperand(1); 3420 3421 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3422 return SDValue(); 3423 3424 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3425 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3426 3427 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3428 DCI.AddToWorklist(Mulhi.getNode()); 3429 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3430 } 3431 3432 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3433 DAGCombinerInfo &DCI) const { 3434 EVT VT = N->getValueType(0); 3435 3436 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3437 return SDValue(); 3438 3439 SelectionDAG &DAG = DCI.DAG; 3440 SDLoc DL(N); 3441 3442 SDValue N0 = N->getOperand(0); 3443 SDValue N1 = N->getOperand(1); 3444 3445 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3446 return SDValue(); 3447 3448 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3449 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3450 3451 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3452 DCI.AddToWorklist(Mulhi.getNode()); 3453 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3454 } 3455 3456 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3457 SDNode *N, DAGCombinerInfo &DCI) const { 3458 SelectionDAG &DAG = DCI.DAG; 3459 3460 // Simplify demanded bits before splitting into multiple users. 3461 if (SDValue V = simplifyI24(N, DCI)) 3462 return V; 3463 3464 SDValue N0 = N->getOperand(0); 3465 SDValue N1 = N->getOperand(1); 3466 3467 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3468 3469 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3470 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3471 3472 SDLoc SL(N); 3473 3474 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3475 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3476 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3477 } 3478 3479 static bool isNegativeOne(SDValue Val) { 3480 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3481 return C->isAllOnesValue(); 3482 return false; 3483 } 3484 3485 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3486 SDValue Op, 3487 const SDLoc &DL, 3488 unsigned Opc) const { 3489 EVT VT = Op.getValueType(); 3490 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3491 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3492 LegalVT != MVT::i16)) 3493 return SDValue(); 3494 3495 if (VT != MVT::i32) 3496 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3497 3498 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3499 if (VT != MVT::i32) 3500 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3501 3502 return FFBX; 3503 } 3504 3505 // The native instructions return -1 on 0 input. Optimize out a select that 3506 // produces -1 on 0. 3507 // 3508 // TODO: If zero is not undef, we could also do this if the output is compared 3509 // against the bitwidth. 3510 // 3511 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3512 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3513 SDValue LHS, SDValue RHS, 3514 DAGCombinerInfo &DCI) const { 3515 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3516 if (!CmpRhs || !CmpRhs->isNullValue()) 3517 return SDValue(); 3518 3519 SelectionDAG &DAG = DCI.DAG; 3520 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3521 SDValue CmpLHS = Cond.getOperand(0); 3522 3523 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3524 AMDGPUISD::FFBH_U32; 3525 3526 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3527 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3528 if (CCOpcode == ISD::SETEQ && 3529 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3530 RHS.getOperand(0) == CmpLHS && 3531 isNegativeOne(LHS)) { 3532 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3533 } 3534 3535 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3536 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3537 if (CCOpcode == ISD::SETNE && 3538 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3539 LHS.getOperand(0) == CmpLHS && 3540 isNegativeOne(RHS)) { 3541 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3542 } 3543 3544 return SDValue(); 3545 } 3546 3547 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3548 unsigned Op, 3549 const SDLoc &SL, 3550 SDValue Cond, 3551 SDValue N1, 3552 SDValue N2) { 3553 SelectionDAG &DAG = DCI.DAG; 3554 EVT VT = N1.getValueType(); 3555 3556 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3557 N1.getOperand(0), N2.getOperand(0)); 3558 DCI.AddToWorklist(NewSelect.getNode()); 3559 return DAG.getNode(Op, SL, VT, NewSelect); 3560 } 3561 3562 // Pull a free FP operation out of a select so it may fold into uses. 3563 // 3564 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3565 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3566 // 3567 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3568 // select c, (fabs x), +k -> fabs (select c, x, k) 3569 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3570 SDValue N) { 3571 SelectionDAG &DAG = DCI.DAG; 3572 SDValue Cond = N.getOperand(0); 3573 SDValue LHS = N.getOperand(1); 3574 SDValue RHS = N.getOperand(2); 3575 3576 EVT VT = N.getValueType(); 3577 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3578 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3579 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3580 SDLoc(N), Cond, LHS, RHS); 3581 } 3582 3583 bool Inv = false; 3584 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3585 std::swap(LHS, RHS); 3586 Inv = true; 3587 } 3588 3589 // TODO: Support vector constants. 3590 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3591 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3592 SDLoc SL(N); 3593 // If one side is an fneg/fabs and the other is a constant, we can push the 3594 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3595 SDValue NewLHS = LHS.getOperand(0); 3596 SDValue NewRHS = RHS; 3597 3598 // Careful: if the neg can be folded up, don't try to pull it back down. 3599 bool ShouldFoldNeg = true; 3600 3601 if (NewLHS.hasOneUse()) { 3602 unsigned Opc = NewLHS.getOpcode(); 3603 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3604 ShouldFoldNeg = false; 3605 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3606 ShouldFoldNeg = false; 3607 } 3608 3609 if (ShouldFoldNeg) { 3610 if (LHS.getOpcode() == ISD::FNEG) 3611 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3612 else if (CRHS->isNegative()) 3613 return SDValue(); 3614 3615 if (Inv) 3616 std::swap(NewLHS, NewRHS); 3617 3618 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3619 Cond, NewLHS, NewRHS); 3620 DCI.AddToWorklist(NewSelect.getNode()); 3621 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3622 } 3623 } 3624 3625 return SDValue(); 3626 } 3627 3628 3629 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3630 DAGCombinerInfo &DCI) const { 3631 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3632 return Folded; 3633 3634 SDValue Cond = N->getOperand(0); 3635 if (Cond.getOpcode() != ISD::SETCC) 3636 return SDValue(); 3637 3638 EVT VT = N->getValueType(0); 3639 SDValue LHS = Cond.getOperand(0); 3640 SDValue RHS = Cond.getOperand(1); 3641 SDValue CC = Cond.getOperand(2); 3642 3643 SDValue True = N->getOperand(1); 3644 SDValue False = N->getOperand(2); 3645 3646 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3647 SelectionDAG &DAG = DCI.DAG; 3648 if ((DAG.isConstantValueOfAnyType(True) || 3649 DAG.isConstantValueOfAnyType(True)) && 3650 (!DAG.isConstantValueOfAnyType(False) && 3651 !DAG.isConstantValueOfAnyType(False))) { 3652 // Swap cmp + select pair to move constant to false input. 3653 // This will allow using VOPC cndmasks more often. 3654 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3655 3656 SDLoc SL(N); 3657 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3658 LHS.getValueType().isInteger()); 3659 3660 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3661 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3662 } 3663 3664 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3665 SDValue MinMax 3666 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3667 // Revisit this node so we can catch min3/max3/med3 patterns. 3668 //DCI.AddToWorklist(MinMax.getNode()); 3669 return MinMax; 3670 } 3671 } 3672 3673 // There's no reason to not do this if the condition has other uses. 3674 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3675 } 3676 3677 static bool isInv2Pi(const APFloat &APF) { 3678 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3679 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3680 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3681 3682 return APF.bitwiseIsEqual(KF16) || 3683 APF.bitwiseIsEqual(KF32) || 3684 APF.bitwiseIsEqual(KF64); 3685 } 3686 3687 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3688 // additional cost to negate them. 3689 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3690 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3691 if (C->isZero() && !C->isNegative()) 3692 return true; 3693 3694 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3695 return true; 3696 } 3697 3698 return false; 3699 } 3700 3701 static unsigned inverseMinMax(unsigned Opc) { 3702 switch (Opc) { 3703 case ISD::FMAXNUM: 3704 return ISD::FMINNUM; 3705 case ISD::FMINNUM: 3706 return ISD::FMAXNUM; 3707 case ISD::FMAXNUM_IEEE: 3708 return ISD::FMINNUM_IEEE; 3709 case ISD::FMINNUM_IEEE: 3710 return ISD::FMAXNUM_IEEE; 3711 case AMDGPUISD::FMAX_LEGACY: 3712 return AMDGPUISD::FMIN_LEGACY; 3713 case AMDGPUISD::FMIN_LEGACY: 3714 return AMDGPUISD::FMAX_LEGACY; 3715 default: 3716 llvm_unreachable("invalid min/max opcode"); 3717 } 3718 } 3719 3720 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3721 DAGCombinerInfo &DCI) const { 3722 SelectionDAG &DAG = DCI.DAG; 3723 SDValue N0 = N->getOperand(0); 3724 EVT VT = N->getValueType(0); 3725 3726 unsigned Opc = N0.getOpcode(); 3727 3728 // If the input has multiple uses and we can either fold the negate down, or 3729 // the other uses cannot, give up. This both prevents unprofitable 3730 // transformations and infinite loops: we won't repeatedly try to fold around 3731 // a negate that has no 'good' form. 3732 if (N0.hasOneUse()) { 3733 // This may be able to fold into the source, but at a code size cost. Don't 3734 // fold if the fold into the user is free. 3735 if (allUsesHaveSourceMods(N, 0)) 3736 return SDValue(); 3737 } else { 3738 if (fnegFoldsIntoOp(Opc) && 3739 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3740 return SDValue(); 3741 } 3742 3743 SDLoc SL(N); 3744 switch (Opc) { 3745 case ISD::FADD: { 3746 if (!mayIgnoreSignedZero(N0)) 3747 return SDValue(); 3748 3749 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3750 SDValue LHS = N0.getOperand(0); 3751 SDValue RHS = N0.getOperand(1); 3752 3753 if (LHS.getOpcode() != ISD::FNEG) 3754 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3755 else 3756 LHS = LHS.getOperand(0); 3757 3758 if (RHS.getOpcode() != ISD::FNEG) 3759 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3760 else 3761 RHS = RHS.getOperand(0); 3762 3763 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3764 if (Res.getOpcode() != ISD::FADD) 3765 return SDValue(); // Op got folded away. 3766 if (!N0.hasOneUse()) 3767 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3768 return Res; 3769 } 3770 case ISD::FMUL: 3771 case AMDGPUISD::FMUL_LEGACY: { 3772 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3773 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3774 SDValue LHS = N0.getOperand(0); 3775 SDValue RHS = N0.getOperand(1); 3776 3777 if (LHS.getOpcode() == ISD::FNEG) 3778 LHS = LHS.getOperand(0); 3779 else if (RHS.getOpcode() == ISD::FNEG) 3780 RHS = RHS.getOperand(0); 3781 else 3782 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3783 3784 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3785 if (Res.getOpcode() != Opc) 3786 return SDValue(); // Op got folded away. 3787 if (!N0.hasOneUse()) 3788 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3789 return Res; 3790 } 3791 case ISD::FMA: 3792 case ISD::FMAD: { 3793 if (!mayIgnoreSignedZero(N0)) 3794 return SDValue(); 3795 3796 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3797 SDValue LHS = N0.getOperand(0); 3798 SDValue MHS = N0.getOperand(1); 3799 SDValue RHS = N0.getOperand(2); 3800 3801 if (LHS.getOpcode() == ISD::FNEG) 3802 LHS = LHS.getOperand(0); 3803 else if (MHS.getOpcode() == ISD::FNEG) 3804 MHS = MHS.getOperand(0); 3805 else 3806 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3807 3808 if (RHS.getOpcode() != ISD::FNEG) 3809 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3810 else 3811 RHS = RHS.getOperand(0); 3812 3813 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3814 if (Res.getOpcode() != Opc) 3815 return SDValue(); // Op got folded away. 3816 if (!N0.hasOneUse()) 3817 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3818 return Res; 3819 } 3820 case ISD::FMAXNUM: 3821 case ISD::FMINNUM: 3822 case ISD::FMAXNUM_IEEE: 3823 case ISD::FMINNUM_IEEE: 3824 case AMDGPUISD::FMAX_LEGACY: 3825 case AMDGPUISD::FMIN_LEGACY: { 3826 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3827 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3828 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3829 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3830 3831 SDValue LHS = N0.getOperand(0); 3832 SDValue RHS = N0.getOperand(1); 3833 3834 // 0 doesn't have a negated inline immediate. 3835 // TODO: This constant check should be generalized to other operations. 3836 if (isConstantCostlierToNegate(RHS)) 3837 return SDValue(); 3838 3839 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3840 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3841 unsigned Opposite = inverseMinMax(Opc); 3842 3843 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3844 if (Res.getOpcode() != Opposite) 3845 return SDValue(); // Op got folded away. 3846 if (!N0.hasOneUse()) 3847 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3848 return Res; 3849 } 3850 case AMDGPUISD::FMED3: { 3851 SDValue Ops[3]; 3852 for (unsigned I = 0; I < 3; ++I) 3853 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3854 3855 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3856 if (Res.getOpcode() != AMDGPUISD::FMED3) 3857 return SDValue(); // Op got folded away. 3858 if (!N0.hasOneUse()) 3859 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3860 return Res; 3861 } 3862 case ISD::FP_EXTEND: 3863 case ISD::FTRUNC: 3864 case ISD::FRINT: 3865 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3866 case ISD::FSIN: 3867 case ISD::FCANONICALIZE: 3868 case AMDGPUISD::RCP: 3869 case AMDGPUISD::RCP_LEGACY: 3870 case AMDGPUISD::RCP_IFLAG: 3871 case AMDGPUISD::SIN_HW: { 3872 SDValue CvtSrc = N0.getOperand(0); 3873 if (CvtSrc.getOpcode() == ISD::FNEG) { 3874 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3875 // (fneg (rcp (fneg x))) -> (rcp x) 3876 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3877 } 3878 3879 if (!N0.hasOneUse()) 3880 return SDValue(); 3881 3882 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3883 // (fneg (rcp x)) -> (rcp (fneg x)) 3884 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3885 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3886 } 3887 case ISD::FP_ROUND: { 3888 SDValue CvtSrc = N0.getOperand(0); 3889 3890 if (CvtSrc.getOpcode() == ISD::FNEG) { 3891 // (fneg (fp_round (fneg x))) -> (fp_round x) 3892 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3893 CvtSrc.getOperand(0), N0.getOperand(1)); 3894 } 3895 3896 if (!N0.hasOneUse()) 3897 return SDValue(); 3898 3899 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3900 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3901 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3902 } 3903 case ISD::FP16_TO_FP: { 3904 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3905 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3906 // Put the fneg back as a legal source operation that can be matched later. 3907 SDLoc SL(N); 3908 3909 SDValue Src = N0.getOperand(0); 3910 EVT SrcVT = Src.getValueType(); 3911 3912 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3913 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3914 DAG.getConstant(0x8000, SL, SrcVT)); 3915 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3916 } 3917 default: 3918 return SDValue(); 3919 } 3920 } 3921 3922 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3923 DAGCombinerInfo &DCI) const { 3924 SelectionDAG &DAG = DCI.DAG; 3925 SDValue N0 = N->getOperand(0); 3926 3927 if (!N0.hasOneUse()) 3928 return SDValue(); 3929 3930 switch (N0.getOpcode()) { 3931 case ISD::FP16_TO_FP: { 3932 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3933 SDLoc SL(N); 3934 SDValue Src = N0.getOperand(0); 3935 EVT SrcVT = Src.getValueType(); 3936 3937 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3938 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3939 DAG.getConstant(0x7fff, SL, SrcVT)); 3940 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3941 } 3942 default: 3943 return SDValue(); 3944 } 3945 } 3946 3947 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3948 DAGCombinerInfo &DCI) const { 3949 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3950 if (!CFP) 3951 return SDValue(); 3952 3953 // XXX - Should this flush denormals? 3954 const APFloat &Val = CFP->getValueAPF(); 3955 APFloat One(Val.getSemantics(), "1.0"); 3956 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3957 } 3958 3959 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3960 DAGCombinerInfo &DCI) const { 3961 SelectionDAG &DAG = DCI.DAG; 3962 SDLoc DL(N); 3963 3964 switch(N->getOpcode()) { 3965 default: 3966 break; 3967 case ISD::BITCAST: { 3968 EVT DestVT = N->getValueType(0); 3969 3970 // Push casts through vector builds. This helps avoid emitting a large 3971 // number of copies when materializing floating point vector constants. 3972 // 3973 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3974 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3975 if (DestVT.isVector()) { 3976 SDValue Src = N->getOperand(0); 3977 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3978 EVT SrcVT = Src.getValueType(); 3979 unsigned NElts = DestVT.getVectorNumElements(); 3980 3981 if (SrcVT.getVectorNumElements() == NElts) { 3982 EVT DestEltVT = DestVT.getVectorElementType(); 3983 3984 SmallVector<SDValue, 8> CastedElts; 3985 SDLoc SL(N); 3986 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3987 SDValue Elt = Src.getOperand(I); 3988 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3989 } 3990 3991 return DAG.getBuildVector(DestVT, SL, CastedElts); 3992 } 3993 } 3994 } 3995 3996 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3997 break; 3998 3999 // Fold bitcasts of constants. 4000 // 4001 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4002 // TODO: Generalize and move to DAGCombiner 4003 SDValue Src = N->getOperand(0); 4004 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4005 if (Src.getValueType() == MVT::i64) { 4006 SDLoc SL(N); 4007 uint64_t CVal = C->getZExtValue(); 4008 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4009 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4010 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4011 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4012 } 4013 } 4014 4015 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4016 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4017 SDLoc SL(N); 4018 uint64_t CVal = Val.getZExtValue(); 4019 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4020 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4021 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4022 4023 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4024 } 4025 4026 break; 4027 } 4028 case ISD::SHL: { 4029 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4030 break; 4031 4032 return performShlCombine(N, DCI); 4033 } 4034 case ISD::SRL: { 4035 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4036 break; 4037 4038 return performSrlCombine(N, DCI); 4039 } 4040 case ISD::SRA: { 4041 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4042 break; 4043 4044 return performSraCombine(N, DCI); 4045 } 4046 case ISD::TRUNCATE: 4047 return performTruncateCombine(N, DCI); 4048 case ISD::MUL: 4049 return performMulCombine(N, DCI); 4050 case ISD::MULHS: 4051 return performMulhsCombine(N, DCI); 4052 case ISD::MULHU: 4053 return performMulhuCombine(N, DCI); 4054 case AMDGPUISD::MUL_I24: 4055 case AMDGPUISD::MUL_U24: 4056 case AMDGPUISD::MULHI_I24: 4057 case AMDGPUISD::MULHI_U24: { 4058 if (SDValue V = simplifyI24(N, DCI)) 4059 return V; 4060 return SDValue(); 4061 } 4062 case AMDGPUISD::MUL_LOHI_I24: 4063 case AMDGPUISD::MUL_LOHI_U24: 4064 return performMulLoHi24Combine(N, DCI); 4065 case ISD::SELECT: 4066 return performSelectCombine(N, DCI); 4067 case ISD::FNEG: 4068 return performFNegCombine(N, DCI); 4069 case ISD::FABS: 4070 return performFAbsCombine(N, DCI); 4071 case AMDGPUISD::BFE_I32: 4072 case AMDGPUISD::BFE_U32: { 4073 assert(!N->getValueType(0).isVector() && 4074 "Vector handling of BFE not implemented"); 4075 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4076 if (!Width) 4077 break; 4078 4079 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4080 if (WidthVal == 0) 4081 return DAG.getConstant(0, DL, MVT::i32); 4082 4083 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4084 if (!Offset) 4085 break; 4086 4087 SDValue BitsFrom = N->getOperand(0); 4088 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4089 4090 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4091 4092 if (OffsetVal == 0) { 4093 // This is already sign / zero extended, so try to fold away extra BFEs. 4094 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4095 4096 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4097 if (OpSignBits >= SignBits) 4098 return BitsFrom; 4099 4100 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4101 if (Signed) { 4102 // This is a sign_extend_inreg. Replace it to take advantage of existing 4103 // DAG Combines. If not eliminated, we will match back to BFE during 4104 // selection. 4105 4106 // TODO: The sext_inreg of extended types ends, although we can could 4107 // handle them in a single BFE. 4108 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4109 DAG.getValueType(SmallVT)); 4110 } 4111 4112 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4113 } 4114 4115 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4116 if (Signed) { 4117 return constantFoldBFE<int32_t>(DAG, 4118 CVal->getSExtValue(), 4119 OffsetVal, 4120 WidthVal, 4121 DL); 4122 } 4123 4124 return constantFoldBFE<uint32_t>(DAG, 4125 CVal->getZExtValue(), 4126 OffsetVal, 4127 WidthVal, 4128 DL); 4129 } 4130 4131 if ((OffsetVal + WidthVal) >= 32 && 4132 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4133 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4134 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4135 BitsFrom, ShiftVal); 4136 } 4137 4138 if (BitsFrom.hasOneUse()) { 4139 APInt Demanded = APInt::getBitsSet(32, 4140 OffsetVal, 4141 OffsetVal + WidthVal); 4142 4143 KnownBits Known; 4144 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4145 !DCI.isBeforeLegalizeOps()); 4146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4147 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4148 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4149 DCI.CommitTargetLoweringOpt(TLO); 4150 } 4151 } 4152 4153 break; 4154 } 4155 case ISD::LOAD: 4156 return performLoadCombine(N, DCI); 4157 case ISD::STORE: 4158 return performStoreCombine(N, DCI); 4159 case AMDGPUISD::RCP: 4160 case AMDGPUISD::RCP_IFLAG: 4161 return performRcpCombine(N, DCI); 4162 case ISD::AssertZext: 4163 case ISD::AssertSext: 4164 return performAssertSZExtCombine(N, DCI); 4165 } 4166 return SDValue(); 4167 } 4168 4169 //===----------------------------------------------------------------------===// 4170 // Helper functions 4171 //===----------------------------------------------------------------------===// 4172 4173 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4174 const TargetRegisterClass *RC, 4175 unsigned Reg, EVT VT, 4176 const SDLoc &SL, 4177 bool RawReg) const { 4178 MachineFunction &MF = DAG.getMachineFunction(); 4179 MachineRegisterInfo &MRI = MF.getRegInfo(); 4180 unsigned VReg; 4181 4182 if (!MRI.isLiveIn(Reg)) { 4183 VReg = MRI.createVirtualRegister(RC); 4184 MRI.addLiveIn(Reg, VReg); 4185 } else { 4186 VReg = MRI.getLiveInVirtReg(Reg); 4187 } 4188 4189 if (RawReg) 4190 return DAG.getRegister(VReg, VT); 4191 4192 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4193 } 4194 4195 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4196 EVT VT, 4197 const SDLoc &SL, 4198 int64_t Offset) const { 4199 MachineFunction &MF = DAG.getMachineFunction(); 4200 MachineFrameInfo &MFI = MF.getFrameInfo(); 4201 4202 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 4203 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4204 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4205 4206 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4207 MachineMemOperand::MODereferenceable | 4208 MachineMemOperand::MOInvariant); 4209 } 4210 4211 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4212 const SDLoc &SL, 4213 SDValue Chain, 4214 SDValue ArgVal, 4215 int64_t Offset) const { 4216 MachineFunction &MF = DAG.getMachineFunction(); 4217 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4218 4219 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4220 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4221 MachineMemOperand::MODereferenceable); 4222 return Store; 4223 } 4224 4225 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4226 const TargetRegisterClass *RC, 4227 EVT VT, const SDLoc &SL, 4228 const ArgDescriptor &Arg) const { 4229 assert(Arg && "Attempting to load missing argument"); 4230 4231 if (Arg.isRegister()) 4232 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4233 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4234 } 4235 4236 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4237 const MachineFunction &MF, const ImplicitParameter Param) const { 4238 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4239 const AMDGPUSubtarget &ST = 4240 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4241 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4242 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4243 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4244 ExplicitArgOffset; 4245 switch (Param) { 4246 case GRID_DIM: 4247 return ArgOffset; 4248 case GRID_OFFSET: 4249 return ArgOffset + 4; 4250 } 4251 llvm_unreachable("unexpected implicit parameter type"); 4252 } 4253 4254 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4255 4256 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4257 switch ((AMDGPUISD::NodeType)Opcode) { 4258 case AMDGPUISD::FIRST_NUMBER: break; 4259 // AMDIL DAG nodes 4260 NODE_NAME_CASE(UMUL); 4261 NODE_NAME_CASE(BRANCH_COND); 4262 4263 // AMDGPU DAG nodes 4264 NODE_NAME_CASE(IF) 4265 NODE_NAME_CASE(ELSE) 4266 NODE_NAME_CASE(LOOP) 4267 NODE_NAME_CASE(CALL) 4268 NODE_NAME_CASE(TC_RETURN) 4269 NODE_NAME_CASE(TRAP) 4270 NODE_NAME_CASE(RET_FLAG) 4271 NODE_NAME_CASE(RETURN_TO_EPILOG) 4272 NODE_NAME_CASE(ENDPGM) 4273 NODE_NAME_CASE(DWORDADDR) 4274 NODE_NAME_CASE(FRACT) 4275 NODE_NAME_CASE(SETCC) 4276 NODE_NAME_CASE(SETREG) 4277 NODE_NAME_CASE(FMA_W_CHAIN) 4278 NODE_NAME_CASE(FMUL_W_CHAIN) 4279 NODE_NAME_CASE(CLAMP) 4280 NODE_NAME_CASE(COS_HW) 4281 NODE_NAME_CASE(SIN_HW) 4282 NODE_NAME_CASE(FMAX_LEGACY) 4283 NODE_NAME_CASE(FMIN_LEGACY) 4284 NODE_NAME_CASE(FMAX3) 4285 NODE_NAME_CASE(SMAX3) 4286 NODE_NAME_CASE(UMAX3) 4287 NODE_NAME_CASE(FMIN3) 4288 NODE_NAME_CASE(SMIN3) 4289 NODE_NAME_CASE(UMIN3) 4290 NODE_NAME_CASE(FMED3) 4291 NODE_NAME_CASE(SMED3) 4292 NODE_NAME_CASE(UMED3) 4293 NODE_NAME_CASE(FDOT2) 4294 NODE_NAME_CASE(URECIP) 4295 NODE_NAME_CASE(DIV_SCALE) 4296 NODE_NAME_CASE(DIV_FMAS) 4297 NODE_NAME_CASE(DIV_FIXUP) 4298 NODE_NAME_CASE(FMAD_FTZ) 4299 NODE_NAME_CASE(TRIG_PREOP) 4300 NODE_NAME_CASE(RCP) 4301 NODE_NAME_CASE(RSQ) 4302 NODE_NAME_CASE(RCP_LEGACY) 4303 NODE_NAME_CASE(RSQ_LEGACY) 4304 NODE_NAME_CASE(RCP_IFLAG) 4305 NODE_NAME_CASE(FMUL_LEGACY) 4306 NODE_NAME_CASE(RSQ_CLAMP) 4307 NODE_NAME_CASE(LDEXP) 4308 NODE_NAME_CASE(FP_CLASS) 4309 NODE_NAME_CASE(DOT4) 4310 NODE_NAME_CASE(CARRY) 4311 NODE_NAME_CASE(BORROW) 4312 NODE_NAME_CASE(BFE_U32) 4313 NODE_NAME_CASE(BFE_I32) 4314 NODE_NAME_CASE(BFI) 4315 NODE_NAME_CASE(BFM) 4316 NODE_NAME_CASE(FFBH_U32) 4317 NODE_NAME_CASE(FFBH_I32) 4318 NODE_NAME_CASE(FFBL_B32) 4319 NODE_NAME_CASE(MUL_U24) 4320 NODE_NAME_CASE(MUL_I24) 4321 NODE_NAME_CASE(MULHI_U24) 4322 NODE_NAME_CASE(MULHI_I24) 4323 NODE_NAME_CASE(MUL_LOHI_U24) 4324 NODE_NAME_CASE(MUL_LOHI_I24) 4325 NODE_NAME_CASE(MAD_U24) 4326 NODE_NAME_CASE(MAD_I24) 4327 NODE_NAME_CASE(MAD_I64_I32) 4328 NODE_NAME_CASE(MAD_U64_U32) 4329 NODE_NAME_CASE(PERM) 4330 NODE_NAME_CASE(TEXTURE_FETCH) 4331 NODE_NAME_CASE(EXPORT) 4332 NODE_NAME_CASE(EXPORT_DONE) 4333 NODE_NAME_CASE(R600_EXPORT) 4334 NODE_NAME_CASE(CONST_ADDRESS) 4335 NODE_NAME_CASE(REGISTER_LOAD) 4336 NODE_NAME_CASE(REGISTER_STORE) 4337 NODE_NAME_CASE(SAMPLE) 4338 NODE_NAME_CASE(SAMPLEB) 4339 NODE_NAME_CASE(SAMPLED) 4340 NODE_NAME_CASE(SAMPLEL) 4341 NODE_NAME_CASE(CVT_F32_UBYTE0) 4342 NODE_NAME_CASE(CVT_F32_UBYTE1) 4343 NODE_NAME_CASE(CVT_F32_UBYTE2) 4344 NODE_NAME_CASE(CVT_F32_UBYTE3) 4345 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4346 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4347 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4348 NODE_NAME_CASE(CVT_PK_I16_I32) 4349 NODE_NAME_CASE(CVT_PK_U16_U32) 4350 NODE_NAME_CASE(FP_TO_FP16) 4351 NODE_NAME_CASE(FP16_ZEXT) 4352 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4353 NODE_NAME_CASE(CONST_DATA_PTR) 4354 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4355 NODE_NAME_CASE(KILL) 4356 NODE_NAME_CASE(DUMMY_CHAIN) 4357 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4358 NODE_NAME_CASE(INIT_EXEC) 4359 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4360 NODE_NAME_CASE(SENDMSG) 4361 NODE_NAME_CASE(SENDMSGHALT) 4362 NODE_NAME_CASE(INTERP_MOV) 4363 NODE_NAME_CASE(INTERP_P1) 4364 NODE_NAME_CASE(INTERP_P2) 4365 NODE_NAME_CASE(INTERP_P1LL_F16) 4366 NODE_NAME_CASE(INTERP_P1LV_F16) 4367 NODE_NAME_CASE(INTERP_P2_F16) 4368 NODE_NAME_CASE(LOAD_D16_HI) 4369 NODE_NAME_CASE(LOAD_D16_LO) 4370 NODE_NAME_CASE(LOAD_D16_HI_I8) 4371 NODE_NAME_CASE(LOAD_D16_HI_U8) 4372 NODE_NAME_CASE(LOAD_D16_LO_I8) 4373 NODE_NAME_CASE(LOAD_D16_LO_U8) 4374 NODE_NAME_CASE(STORE_MSKOR) 4375 NODE_NAME_CASE(LOAD_CONSTANT) 4376 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4377 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4378 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4379 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4380 NODE_NAME_CASE(DS_ORDERED_COUNT) 4381 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4382 NODE_NAME_CASE(ATOMIC_INC) 4383 NODE_NAME_CASE(ATOMIC_DEC) 4384 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4385 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4386 NODE_NAME_CASE(BUFFER_LOAD) 4387 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4388 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4389 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4390 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4391 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4392 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4393 NODE_NAME_CASE(SBUFFER_LOAD) 4394 NODE_NAME_CASE(BUFFER_STORE) 4395 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4396 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4397 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4398 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4399 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4400 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4401 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4402 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4403 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4404 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4405 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4406 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4407 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4408 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4409 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4410 4411 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4412 } 4413 return nullptr; 4414 } 4415 4416 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4417 SelectionDAG &DAG, int Enabled, 4418 int &RefinementSteps, 4419 bool &UseOneConstNR, 4420 bool Reciprocal) const { 4421 EVT VT = Operand.getValueType(); 4422 4423 if (VT == MVT::f32) { 4424 RefinementSteps = 0; 4425 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4426 } 4427 4428 // TODO: There is also f64 rsq instruction, but the documentation is less 4429 // clear on its precision. 4430 4431 return SDValue(); 4432 } 4433 4434 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4435 SelectionDAG &DAG, int Enabled, 4436 int &RefinementSteps) const { 4437 EVT VT = Operand.getValueType(); 4438 4439 if (VT == MVT::f32) { 4440 // Reciprocal, < 1 ulp error. 4441 // 4442 // This reciprocal approximation converges to < 0.5 ulp error with one 4443 // newton rhapson performed with two fused multiple adds (FMAs). 4444 4445 RefinementSteps = 0; 4446 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4447 } 4448 4449 // TODO: There is also f64 rcp instruction, but the documentation is less 4450 // clear on its precision. 4451 4452 return SDValue(); 4453 } 4454 4455 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4456 const SDValue Op, KnownBits &Known, 4457 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4458 4459 Known.resetAll(); // Don't know anything. 4460 4461 unsigned Opc = Op.getOpcode(); 4462 4463 switch (Opc) { 4464 default: 4465 break; 4466 case AMDGPUISD::CARRY: 4467 case AMDGPUISD::BORROW: { 4468 Known.Zero = APInt::getHighBitsSet(32, 31); 4469 break; 4470 } 4471 4472 case AMDGPUISD::BFE_I32: 4473 case AMDGPUISD::BFE_U32: { 4474 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4475 if (!CWidth) 4476 return; 4477 4478 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4479 4480 if (Opc == AMDGPUISD::BFE_U32) 4481 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4482 4483 break; 4484 } 4485 case AMDGPUISD::FP_TO_FP16: 4486 case AMDGPUISD::FP16_ZEXT: { 4487 unsigned BitWidth = Known.getBitWidth(); 4488 4489 // High bits are zero. 4490 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4491 break; 4492 } 4493 case AMDGPUISD::MUL_U24: 4494 case AMDGPUISD::MUL_I24: { 4495 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4496 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4497 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4498 RHSKnown.countMinTrailingZeros(); 4499 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4500 4501 // Truncate to 24 bits. 4502 LHSKnown = LHSKnown.trunc(24); 4503 RHSKnown = RHSKnown.trunc(24); 4504 4505 bool Negative = false; 4506 if (Opc == AMDGPUISD::MUL_I24) { 4507 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4508 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4509 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4510 if (MaxValBits >= 32) 4511 break; 4512 bool LHSNegative = LHSKnown.isNegative(); 4513 bool LHSPositive = LHSKnown.isNonNegative(); 4514 bool RHSNegative = RHSKnown.isNegative(); 4515 bool RHSPositive = RHSKnown.isNonNegative(); 4516 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4517 break; 4518 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4519 if (Negative) 4520 Known.One.setHighBits(32 - MaxValBits); 4521 else 4522 Known.Zero.setHighBits(32 - MaxValBits); 4523 } else { 4524 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4525 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4526 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4527 if (MaxValBits >= 32) 4528 break; 4529 Known.Zero.setHighBits(32 - MaxValBits); 4530 } 4531 break; 4532 } 4533 case AMDGPUISD::PERM: { 4534 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4535 if (!CMask) 4536 return; 4537 4538 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4539 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4540 unsigned Sel = CMask->getZExtValue(); 4541 4542 for (unsigned I = 0; I < 32; I += 8) { 4543 unsigned SelBits = Sel & 0xff; 4544 if (SelBits < 4) { 4545 SelBits *= 8; 4546 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4547 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4548 } else if (SelBits < 7) { 4549 SelBits = (SelBits & 3) * 8; 4550 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4551 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4552 } else if (SelBits == 0x0c) { 4553 Known.Zero |= 0xff << I; 4554 } else if (SelBits > 0x0c) { 4555 Known.One |= 0xff << I; 4556 } 4557 Sel >>= 8; 4558 } 4559 break; 4560 } 4561 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4562 Known.Zero.setHighBits(24); 4563 break; 4564 } 4565 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4566 Known.Zero.setHighBits(16); 4567 break; 4568 } 4569 case ISD::INTRINSIC_WO_CHAIN: { 4570 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4571 switch (IID) { 4572 case Intrinsic::amdgcn_mbcnt_lo: 4573 case Intrinsic::amdgcn_mbcnt_hi: { 4574 const GCNSubtarget &ST = 4575 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4576 // These return at most the wavefront size - 1. 4577 unsigned Size = Op.getValueType().getSizeInBits(); 4578 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4579 break; 4580 } 4581 default: 4582 break; 4583 } 4584 } 4585 } 4586 } 4587 4588 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4589 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4590 unsigned Depth) const { 4591 switch (Op.getOpcode()) { 4592 case AMDGPUISD::BFE_I32: { 4593 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4594 if (!Width) 4595 return 1; 4596 4597 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4598 if (!isNullConstant(Op.getOperand(1))) 4599 return SignBits; 4600 4601 // TODO: Could probably figure something out with non-0 offsets. 4602 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4603 return std::max(SignBits, Op0SignBits); 4604 } 4605 4606 case AMDGPUISD::BFE_U32: { 4607 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4608 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4609 } 4610 4611 case AMDGPUISD::CARRY: 4612 case AMDGPUISD::BORROW: 4613 return 31; 4614 case AMDGPUISD::BUFFER_LOAD_BYTE: 4615 return 25; 4616 case AMDGPUISD::BUFFER_LOAD_SHORT: 4617 return 17; 4618 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4619 return 24; 4620 case AMDGPUISD::BUFFER_LOAD_USHORT: 4621 return 16; 4622 case AMDGPUISD::FP_TO_FP16: 4623 case AMDGPUISD::FP16_ZEXT: 4624 return 16; 4625 default: 4626 return 1; 4627 } 4628 } 4629 4630 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4631 const SelectionDAG &DAG, 4632 bool SNaN, 4633 unsigned Depth) const { 4634 unsigned Opcode = Op.getOpcode(); 4635 switch (Opcode) { 4636 case AMDGPUISD::FMIN_LEGACY: 4637 case AMDGPUISD::FMAX_LEGACY: { 4638 if (SNaN) 4639 return true; 4640 4641 // TODO: Can check no nans on one of the operands for each one, but which 4642 // one? 4643 return false; 4644 } 4645 case AMDGPUISD::FMUL_LEGACY: 4646 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4647 if (SNaN) 4648 return true; 4649 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4650 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4651 } 4652 case AMDGPUISD::FMED3: 4653 case AMDGPUISD::FMIN3: 4654 case AMDGPUISD::FMAX3: 4655 case AMDGPUISD::FMAD_FTZ: { 4656 if (SNaN) 4657 return true; 4658 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4659 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4660 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4661 } 4662 case AMDGPUISD::CVT_F32_UBYTE0: 4663 case AMDGPUISD::CVT_F32_UBYTE1: 4664 case AMDGPUISD::CVT_F32_UBYTE2: 4665 case AMDGPUISD::CVT_F32_UBYTE3: 4666 return true; 4667 4668 case AMDGPUISD::RCP: 4669 case AMDGPUISD::RSQ: 4670 case AMDGPUISD::RCP_LEGACY: 4671 case AMDGPUISD::RSQ_LEGACY: 4672 case AMDGPUISD::RSQ_CLAMP: { 4673 if (SNaN) 4674 return true; 4675 4676 // TODO: Need is known positive check. 4677 return false; 4678 } 4679 case AMDGPUISD::LDEXP: 4680 case AMDGPUISD::FRACT: { 4681 if (SNaN) 4682 return true; 4683 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4684 } 4685 case AMDGPUISD::DIV_SCALE: 4686 case AMDGPUISD::DIV_FMAS: 4687 case AMDGPUISD::DIV_FIXUP: 4688 case AMDGPUISD::TRIG_PREOP: 4689 // TODO: Refine on operands. 4690 return SNaN; 4691 case AMDGPUISD::SIN_HW: 4692 case AMDGPUISD::COS_HW: { 4693 // TODO: Need check for infinity 4694 return SNaN; 4695 } 4696 case ISD::INTRINSIC_WO_CHAIN: { 4697 unsigned IntrinsicID 4698 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4699 // TODO: Handle more intrinsics 4700 switch (IntrinsicID) { 4701 case Intrinsic::amdgcn_cubeid: 4702 return true; 4703 4704 case Intrinsic::amdgcn_frexp_mant: { 4705 if (SNaN) 4706 return true; 4707 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4708 } 4709 case Intrinsic::amdgcn_cvt_pkrtz: { 4710 if (SNaN) 4711 return true; 4712 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4713 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4714 } 4715 case Intrinsic::amdgcn_fdot2: 4716 // TODO: Refine on operand 4717 return SNaN; 4718 default: 4719 return false; 4720 } 4721 } 4722 default: 4723 return false; 4724 } 4725 } 4726 4727 TargetLowering::AtomicExpansionKind 4728 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4729 switch (RMW->getOperation()) { 4730 case AtomicRMWInst::Nand: 4731 case AtomicRMWInst::FAdd: 4732 case AtomicRMWInst::FSub: 4733 return AtomicExpansionKind::CmpXChg; 4734 default: 4735 return AtomicExpansionKind::None; 4736 } 4737 } 4738