1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 18 19 #include "AMDGPUISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUCallLowering.h" 22 #include "AMDGPUFrameLowering.h" 23 #include "AMDGPURegisterInfo.h" 24 #include "AMDGPUSubtarget.h" 25 #include "AMDGPUTargetMachine.h" 26 #include "Utils/AMDGPUBaseInfo.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "SIInstrInfo.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/CallingConvLower.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/Support/KnownBits.h" 40 using namespace llvm; 41 42 #include "AMDGPUGenCallingConv.inc" 43 44 // Find a larger type to do a load / store of a vector with. 45 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 46 unsigned StoreSize = VT.getStoreSizeInBits(); 47 if (StoreSize <= 32) 48 return EVT::getIntegerVT(Ctx, StoreSize); 49 50 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 51 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 52 } 53 54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 55 EVT VT = Op.getValueType(); 56 KnownBits Known = DAG.computeKnownBits(Op); 57 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 58 } 59 60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 61 EVT VT = Op.getValueType(); 62 63 // In order for this to be a signed 24-bit value, bit 23, must 64 // be a sign bit. 65 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 66 } 67 68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 69 const AMDGPUSubtarget &STI) 70 : TargetLowering(TM), Subtarget(&STI) { 71 // Lower floating point store/load to integer store/load to reduce the number 72 // of patterns in tablegen. 73 setOperationAction(ISD::LOAD, MVT::f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 75 76 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 78 79 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 81 82 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 84 85 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 87 88 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 90 91 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 93 94 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 96 97 setOperationAction(ISD::LOAD, MVT::i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 99 100 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 102 103 setOperationAction(ISD::LOAD, MVT::f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 105 106 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 107 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 108 109 // There are no 64-bit extloads. These should be done as a 32-bit extload and 110 // an extension to 64-bit. 111 for (MVT VT : MVT::integer_valuetypes()) { 112 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 113 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 114 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 115 } 116 117 for (MVT VT : MVT::integer_valuetypes()) { 118 if (VT == MVT::i64) 119 continue; 120 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 122 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 123 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 125 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 129 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 130 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 132 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 133 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 134 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 135 } 136 137 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 151 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 152 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 153 } 154 155 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 159 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 160 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 162 163 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 164 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 165 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 167 168 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 171 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 172 173 setOperationAction(ISD::STORE, MVT::f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 175 176 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 178 179 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 181 182 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 184 185 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 187 188 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 190 191 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 193 194 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 196 197 setOperationAction(ISD::STORE, MVT::i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 202 203 setOperationAction(ISD::STORE, MVT::f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 205 206 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 208 209 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 210 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 211 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 212 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 213 214 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 215 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 216 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 217 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 218 219 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 220 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 221 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 222 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 223 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 224 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 225 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 226 227 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 228 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 229 230 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 231 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 232 233 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 234 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 235 236 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 237 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 238 239 240 setOperationAction(ISD::Constant, MVT::i32, Legal); 241 setOperationAction(ISD::Constant, MVT::i64, Legal); 242 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 243 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 244 245 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 246 setOperationAction(ISD::BRIND, MVT::Other, Expand); 247 248 // This is totally unsupported, just custom lower to produce an error. 249 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 250 251 // Library functions. These default to Expand, but we have instructions 252 // for them. 253 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 254 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 255 setOperationAction(ISD::FPOW, MVT::f32, Legal); 256 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 257 setOperationAction(ISD::FABS, MVT::f32, Legal); 258 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 259 setOperationAction(ISD::FRINT, MVT::f32, Legal); 260 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 261 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 262 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 263 264 setOperationAction(ISD::FROUND, MVT::f32, Custom); 265 setOperationAction(ISD::FROUND, MVT::f64, Custom); 266 267 setOperationAction(ISD::FLOG, MVT::f32, Custom); 268 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 269 setOperationAction(ISD::FEXP, MVT::f32, Custom); 270 271 272 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 273 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 274 275 setOperationAction(ISD::FREM, MVT::f32, Custom); 276 setOperationAction(ISD::FREM, MVT::f64, Custom); 277 278 // Expand to fneg + fadd. 279 setOperationAction(ISD::FSUB, MVT::f64, Expand); 280 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 286 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 287 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 288 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 300 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 301 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 302 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 303 304 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 305 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 306 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 307 308 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 309 for (MVT VT : ScalarIntVTs) { 310 // These should use [SU]DIVREM, so set them to expand 311 setOperationAction(ISD::SDIV, VT, Expand); 312 setOperationAction(ISD::UDIV, VT, Expand); 313 setOperationAction(ISD::SREM, VT, Expand); 314 setOperationAction(ISD::UREM, VT, Expand); 315 316 // GPU does not have divrem function for signed or unsigned. 317 setOperationAction(ISD::SDIVREM, VT, Custom); 318 setOperationAction(ISD::UDIVREM, VT, Custom); 319 320 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 321 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 322 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 323 324 setOperationAction(ISD::BSWAP, VT, Expand); 325 setOperationAction(ISD::CTTZ, VT, Expand); 326 setOperationAction(ISD::CTLZ, VT, Expand); 327 328 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 329 setOperationAction(ISD::ADDC, VT, Legal); 330 setOperationAction(ISD::SUBC, VT, Legal); 331 setOperationAction(ISD::ADDE, VT, Legal); 332 setOperationAction(ISD::SUBE, VT, Legal); 333 } 334 335 // The hardware supports 32-bit ROTR, but not ROTL. 336 setOperationAction(ISD::ROTL, MVT::i32, Expand); 337 setOperationAction(ISD::ROTL, MVT::i64, Expand); 338 setOperationAction(ISD::ROTR, MVT::i64, Expand); 339 340 setOperationAction(ISD::MUL, MVT::i64, Expand); 341 setOperationAction(ISD::MULHU, MVT::i64, Expand); 342 setOperationAction(ISD::MULHS, MVT::i64, Expand); 343 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 344 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 345 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 346 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 347 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 348 349 setOperationAction(ISD::SMIN, MVT::i32, Legal); 350 setOperationAction(ISD::UMIN, MVT::i32, Legal); 351 setOperationAction(ISD::SMAX, MVT::i32, Legal); 352 setOperationAction(ISD::UMAX, MVT::i32, Legal); 353 354 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 355 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 356 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 357 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 358 359 static const MVT::SimpleValueType VectorIntTypes[] = { 360 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 361 }; 362 363 for (MVT VT : VectorIntTypes) { 364 // Expand the following operations for the current type by default. 365 setOperationAction(ISD::ADD, VT, Expand); 366 setOperationAction(ISD::AND, VT, Expand); 367 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 368 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 369 setOperationAction(ISD::MUL, VT, Expand); 370 setOperationAction(ISD::MULHU, VT, Expand); 371 setOperationAction(ISD::MULHS, VT, Expand); 372 setOperationAction(ISD::OR, VT, Expand); 373 setOperationAction(ISD::SHL, VT, Expand); 374 setOperationAction(ISD::SRA, VT, Expand); 375 setOperationAction(ISD::SRL, VT, Expand); 376 setOperationAction(ISD::ROTL, VT, Expand); 377 setOperationAction(ISD::ROTR, VT, Expand); 378 setOperationAction(ISD::SUB, VT, Expand); 379 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 380 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 381 setOperationAction(ISD::SDIV, VT, Expand); 382 setOperationAction(ISD::UDIV, VT, Expand); 383 setOperationAction(ISD::SREM, VT, Expand); 384 setOperationAction(ISD::UREM, VT, Expand); 385 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 386 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 387 setOperationAction(ISD::SDIVREM, VT, Custom); 388 setOperationAction(ISD::UDIVREM, VT, Expand); 389 setOperationAction(ISD::SELECT, VT, Expand); 390 setOperationAction(ISD::VSELECT, VT, Expand); 391 setOperationAction(ISD::SELECT_CC, VT, Expand); 392 setOperationAction(ISD::XOR, VT, Expand); 393 setOperationAction(ISD::BSWAP, VT, Expand); 394 setOperationAction(ISD::CTPOP, VT, Expand); 395 setOperationAction(ISD::CTTZ, VT, Expand); 396 setOperationAction(ISD::CTLZ, VT, Expand); 397 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 398 setOperationAction(ISD::SETCC, VT, Expand); 399 } 400 401 static const MVT::SimpleValueType FloatVectorTypes[] = { 402 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 403 }; 404 405 for (MVT VT : FloatVectorTypes) { 406 setOperationAction(ISD::FABS, VT, Expand); 407 setOperationAction(ISD::FMINNUM, VT, Expand); 408 setOperationAction(ISD::FMAXNUM, VT, Expand); 409 setOperationAction(ISD::FADD, VT, Expand); 410 setOperationAction(ISD::FCEIL, VT, Expand); 411 setOperationAction(ISD::FCOS, VT, Expand); 412 setOperationAction(ISD::FDIV, VT, Expand); 413 setOperationAction(ISD::FEXP2, VT, Expand); 414 setOperationAction(ISD::FEXP, VT, Expand); 415 setOperationAction(ISD::FLOG2, VT, Expand); 416 setOperationAction(ISD::FREM, VT, Expand); 417 setOperationAction(ISD::FLOG, VT, Expand); 418 setOperationAction(ISD::FLOG10, VT, Expand); 419 setOperationAction(ISD::FPOW, VT, Expand); 420 setOperationAction(ISD::FFLOOR, VT, Expand); 421 setOperationAction(ISD::FTRUNC, VT, Expand); 422 setOperationAction(ISD::FMUL, VT, Expand); 423 setOperationAction(ISD::FMA, VT, Expand); 424 setOperationAction(ISD::FRINT, VT, Expand); 425 setOperationAction(ISD::FNEARBYINT, VT, Expand); 426 setOperationAction(ISD::FSQRT, VT, Expand); 427 setOperationAction(ISD::FSIN, VT, Expand); 428 setOperationAction(ISD::FSUB, VT, Expand); 429 setOperationAction(ISD::FNEG, VT, Expand); 430 setOperationAction(ISD::VSELECT, VT, Expand); 431 setOperationAction(ISD::SELECT_CC, VT, Expand); 432 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 433 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 434 setOperationAction(ISD::SETCC, VT, Expand); 435 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 436 } 437 438 // This causes using an unrolled select operation rather than expansion with 439 // bit operations. This is in general better, but the alternative using BFI 440 // instructions may be better if the select sources are SGPRs. 441 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 443 444 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 446 447 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 449 450 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 451 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 452 453 // There are no libcalls of any kind. 454 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 455 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 456 457 setBooleanContents(ZeroOrNegativeOneBooleanContent); 458 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 459 460 setSchedulingPreference(Sched::RegPressure); 461 setJumpIsExpensive(true); 462 463 // FIXME: This is only partially true. If we have to do vector compares, any 464 // SGPR pair can be a condition register. If we have a uniform condition, we 465 // are better off doing SALU operations, where there is only one SCC. For now, 466 // we don't have a way of knowing during instruction selection if a condition 467 // will be uniform and we always use vector compares. Assume we are using 468 // vector compares until that is fixed. 469 setHasMultipleConditionRegisters(true); 470 471 setMinCmpXchgSizeInBits(32); 472 setSupportsUnalignedAtomics(false); 473 474 PredictableSelectIsExpensive = false; 475 476 // We want to find all load dependencies for long chains of stores to enable 477 // merging into very wide vectors. The problem is with vectors with > 4 478 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 479 // vectors are a legal type, even though we have to split the loads 480 // usually. When we can more precisely specify load legality per address 481 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 482 // smarter so that they can figure out what to do in 2 iterations without all 483 // N > 4 stores on the same chain. 484 GatherAllAliasesMaxDepth = 16; 485 486 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 487 // about these during lowering. 488 MaxStoresPerMemcpy = 0xffffffff; 489 MaxStoresPerMemmove = 0xffffffff; 490 MaxStoresPerMemset = 0xffffffff; 491 492 setTargetDAGCombine(ISD::BITCAST); 493 setTargetDAGCombine(ISD::SHL); 494 setTargetDAGCombine(ISD::SRA); 495 setTargetDAGCombine(ISD::SRL); 496 setTargetDAGCombine(ISD::TRUNCATE); 497 setTargetDAGCombine(ISD::MUL); 498 setTargetDAGCombine(ISD::MULHU); 499 setTargetDAGCombine(ISD::MULHS); 500 setTargetDAGCombine(ISD::SELECT); 501 setTargetDAGCombine(ISD::SELECT_CC); 502 setTargetDAGCombine(ISD::STORE); 503 setTargetDAGCombine(ISD::FADD); 504 setTargetDAGCombine(ISD::FSUB); 505 setTargetDAGCombine(ISD::FNEG); 506 setTargetDAGCombine(ISD::FABS); 507 setTargetDAGCombine(ISD::AssertZext); 508 setTargetDAGCombine(ISD::AssertSext); 509 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 510 } 511 512 //===----------------------------------------------------------------------===// 513 // Target Information 514 //===----------------------------------------------------------------------===// 515 516 LLVM_READNONE 517 static bool fnegFoldsIntoOp(unsigned Opc) { 518 switch (Opc) { 519 case ISD::FADD: 520 case ISD::FSUB: 521 case ISD::FMUL: 522 case ISD::FMA: 523 case ISD::FMAD: 524 case ISD::FMINNUM: 525 case ISD::FMAXNUM: 526 case ISD::FMINNUM_IEEE: 527 case ISD::FMAXNUM_IEEE: 528 case ISD::FSIN: 529 case ISD::FTRUNC: 530 case ISD::FRINT: 531 case ISD::FNEARBYINT: 532 case ISD::FCANONICALIZE: 533 case AMDGPUISD::RCP: 534 case AMDGPUISD::RCP_LEGACY: 535 case AMDGPUISD::RCP_IFLAG: 536 case AMDGPUISD::SIN_HW: 537 case AMDGPUISD::FMUL_LEGACY: 538 case AMDGPUISD::FMIN_LEGACY: 539 case AMDGPUISD::FMAX_LEGACY: 540 case AMDGPUISD::FMED3: 541 return true; 542 default: 543 return false; 544 } 545 } 546 547 /// \p returns true if the operation will definitely need to use a 64-bit 548 /// encoding, and thus will use a VOP3 encoding regardless of the source 549 /// modifiers. 550 LLVM_READONLY 551 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 552 return N->getNumOperands() > 2 || VT == MVT::f64; 553 } 554 555 // Most FP instructions support source modifiers, but this could be refined 556 // slightly. 557 LLVM_READONLY 558 static bool hasSourceMods(const SDNode *N) { 559 if (isa<MemSDNode>(N)) 560 return false; 561 562 switch (N->getOpcode()) { 563 case ISD::CopyToReg: 564 case ISD::SELECT: 565 case ISD::FDIV: 566 case ISD::FREM: 567 case ISD::INLINEASM: 568 case ISD::INLINEASM_BR: 569 case AMDGPUISD::INTERP_P1: 570 case AMDGPUISD::INTERP_P2: 571 case AMDGPUISD::DIV_SCALE: 572 573 // TODO: Should really be looking at the users of the bitcast. These are 574 // problematic because bitcasts are used to legalize all stores to integer 575 // types. 576 case ISD::BITCAST: 577 return false; 578 default: 579 return true; 580 } 581 } 582 583 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 584 unsigned CostThreshold) { 585 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 586 // it is truly free to use a source modifier in all cases. If there are 587 // multiple users but for each one will necessitate using VOP3, there will be 588 // a code size increase. Try to avoid increasing code size unless we know it 589 // will save on the instruction count. 590 unsigned NumMayIncreaseSize = 0; 591 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 592 593 // XXX - Should this limit number of uses to check? 594 for (const SDNode *U : N->uses()) { 595 if (!hasSourceMods(U)) 596 return false; 597 598 if (!opMustUseVOP3Encoding(U, VT)) { 599 if (++NumMayIncreaseSize > CostThreshold) 600 return false; 601 } 602 } 603 604 return true; 605 } 606 607 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 608 return MVT::i32; 609 } 610 611 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 612 return true; 613 } 614 615 // The backend supports 32 and 64 bit floating point immediates. 616 // FIXME: Why are we reporting vectors of FP immediates as legal? 617 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 618 bool ForCodeSize) const { 619 EVT ScalarVT = VT.getScalarType(); 620 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 621 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 622 } 623 624 // We don't want to shrink f64 / f32 constants. 625 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 626 EVT ScalarVT = VT.getScalarType(); 627 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 628 } 629 630 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 631 ISD::LoadExtType ExtTy, 632 EVT NewVT) const { 633 // TODO: This may be worth removing. Check regression tests for diffs. 634 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 635 return false; 636 637 unsigned NewSize = NewVT.getStoreSizeInBits(); 638 639 // If we are reducing to a 32-bit load, this is always better. 640 if (NewSize == 32) 641 return true; 642 643 EVT OldVT = N->getValueType(0); 644 unsigned OldSize = OldVT.getStoreSizeInBits(); 645 646 MemSDNode *MN = cast<MemSDNode>(N); 647 unsigned AS = MN->getAddressSpace(); 648 // Do not shrink an aligned scalar load to sub-dword. 649 // Scalar engine cannot do sub-dword loads. 650 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 651 (AS == AMDGPUAS::CONSTANT_ADDRESS || 652 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 653 (isa<LoadSDNode>(N) && 654 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 655 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 656 return false; 657 658 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 659 // extloads, so doing one requires using a buffer_load. In cases where we 660 // still couldn't use a scalar load, using the wider load shouldn't really 661 // hurt anything. 662 663 // If the old size already had to be an extload, there's no harm in continuing 664 // to reduce the width. 665 return (OldSize < 32); 666 } 667 668 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 669 const SelectionDAG &DAG, 670 const MachineMemOperand &MMO) const { 671 672 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 673 674 if (LoadTy.getScalarType() == MVT::i32) 675 return false; 676 677 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 678 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 679 680 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 681 return false; 682 683 bool Fast = false; 684 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), CastTy, 685 MMO, &Fast) && Fast; 686 } 687 688 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 689 // profitable with the expansion for 64-bit since it's generally good to 690 // speculate things. 691 // FIXME: These should really have the size as a parameter. 692 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 693 return true; 694 } 695 696 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 697 return true; 698 } 699 700 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 701 switch (N->getOpcode()) { 702 default: 703 return false; 704 case ISD::EntryToken: 705 case ISD::TokenFactor: 706 return true; 707 case ISD::INTRINSIC_WO_CHAIN: 708 { 709 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 710 switch (IntrID) { 711 default: 712 return false; 713 case Intrinsic::amdgcn_readfirstlane: 714 case Intrinsic::amdgcn_readlane: 715 return true; 716 } 717 } 718 break; 719 case ISD::LOAD: 720 { 721 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 722 if (L->getMemOperand()->getAddrSpace() 723 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 724 return true; 725 return false; 726 } 727 break; 728 } 729 } 730 731 //===---------------------------------------------------------------------===// 732 // Target Properties 733 //===---------------------------------------------------------------------===// 734 735 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 736 assert(VT.isFloatingPoint()); 737 738 // Packed operations do not have a fabs modifier. 739 return VT == MVT::f32 || VT == MVT::f64 || 740 (Subtarget->has16BitInsts() && VT == MVT::f16); 741 } 742 743 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 744 assert(VT.isFloatingPoint()); 745 return VT == MVT::f32 || VT == MVT::f64 || 746 (Subtarget->has16BitInsts() && VT == MVT::f16) || 747 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 748 } 749 750 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 751 unsigned NumElem, 752 unsigned AS) const { 753 return true; 754 } 755 756 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 757 // There are few operations which truly have vector input operands. Any vector 758 // operation is going to involve operations on each component, and a 759 // build_vector will be a copy per element, so it always makes sense to use a 760 // build_vector input in place of the extracted element to avoid a copy into a 761 // super register. 762 // 763 // We should probably only do this if all users are extracts only, but this 764 // should be the common case. 765 return true; 766 } 767 768 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 769 // Truncate is just accessing a subregister. 770 771 unsigned SrcSize = Source.getSizeInBits(); 772 unsigned DestSize = Dest.getSizeInBits(); 773 774 return DestSize < SrcSize && DestSize % 32 == 0 ; 775 } 776 777 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 778 // Truncate is just accessing a subregister. 779 780 unsigned SrcSize = Source->getScalarSizeInBits(); 781 unsigned DestSize = Dest->getScalarSizeInBits(); 782 783 if (DestSize== 16 && Subtarget->has16BitInsts()) 784 return SrcSize >= 32; 785 786 return DestSize < SrcSize && DestSize % 32 == 0; 787 } 788 789 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 790 unsigned SrcSize = Src->getScalarSizeInBits(); 791 unsigned DestSize = Dest->getScalarSizeInBits(); 792 793 if (SrcSize == 16 && Subtarget->has16BitInsts()) 794 return DestSize >= 32; 795 796 return SrcSize == 32 && DestSize == 64; 797 } 798 799 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 800 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 801 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 802 // this will enable reducing 64-bit operations the 32-bit, which is always 803 // good. 804 805 if (Src == MVT::i16) 806 return Dest == MVT::i32 ||Dest == MVT::i64 ; 807 808 return Src == MVT::i32 && Dest == MVT::i64; 809 } 810 811 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 812 return isZExtFree(Val.getValueType(), VT2); 813 } 814 815 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 816 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 817 // limited number of native 64-bit operations. Shrinking an operation to fit 818 // in a single 32-bit register should always be helpful. As currently used, 819 // this is much less general than the name suggests, and is only used in 820 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 821 // not profitable, and may actually be harmful. 822 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 823 } 824 825 //===---------------------------------------------------------------------===// 826 // TargetLowering Callbacks 827 //===---------------------------------------------------------------------===// 828 829 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 830 bool IsVarArg) { 831 switch (CC) { 832 case CallingConv::AMDGPU_VS: 833 case CallingConv::AMDGPU_GS: 834 case CallingConv::AMDGPU_PS: 835 case CallingConv::AMDGPU_CS: 836 case CallingConv::AMDGPU_HS: 837 case CallingConv::AMDGPU_ES: 838 case CallingConv::AMDGPU_LS: 839 return CC_AMDGPU; 840 case CallingConv::C: 841 case CallingConv::Fast: 842 case CallingConv::Cold: 843 return CC_AMDGPU_Func; 844 case CallingConv::AMDGPU_KERNEL: 845 case CallingConv::SPIR_KERNEL: 846 default: 847 report_fatal_error("Unsupported calling convention for call"); 848 } 849 } 850 851 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 852 bool IsVarArg) { 853 switch (CC) { 854 case CallingConv::AMDGPU_KERNEL: 855 case CallingConv::SPIR_KERNEL: 856 llvm_unreachable("kernels should not be handled here"); 857 case CallingConv::AMDGPU_VS: 858 case CallingConv::AMDGPU_GS: 859 case CallingConv::AMDGPU_PS: 860 case CallingConv::AMDGPU_CS: 861 case CallingConv::AMDGPU_HS: 862 case CallingConv::AMDGPU_ES: 863 case CallingConv::AMDGPU_LS: 864 return RetCC_SI_Shader; 865 case CallingConv::C: 866 case CallingConv::Fast: 867 case CallingConv::Cold: 868 return RetCC_AMDGPU_Func; 869 default: 870 report_fatal_error("Unsupported calling convention."); 871 } 872 } 873 874 /// The SelectionDAGBuilder will automatically promote function arguments 875 /// with illegal types. However, this does not work for the AMDGPU targets 876 /// since the function arguments are stored in memory as these illegal types. 877 /// In order to handle this properly we need to get the original types sizes 878 /// from the LLVM IR Function and fixup the ISD:InputArg values before 879 /// passing them to AnalyzeFormalArguments() 880 881 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 882 /// input values across multiple registers. Each item in the Ins array 883 /// represents a single value that will be stored in registers. Ins[x].VT is 884 /// the value type of the value that will be stored in the register, so 885 /// whatever SDNode we lower the argument to needs to be this type. 886 /// 887 /// In order to correctly lower the arguments we need to know the size of each 888 /// argument. Since Ins[x].VT gives us the size of the register that will 889 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 890 /// for the orignal function argument so that we can deduce the correct memory 891 /// type to use for Ins[x]. In most cases the correct memory type will be 892 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 893 /// we have a kernel argument of type v8i8, this argument will be split into 894 /// 8 parts and each part will be represented by its own item in the Ins array. 895 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 896 /// the argument before it was split. From this, we deduce that the memory type 897 /// for each individual part is i8. We pass the memory type as LocVT to the 898 /// calling convention analysis function and the register type (Ins[x].VT) as 899 /// the ValVT. 900 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 901 CCState &State, 902 const SmallVectorImpl<ISD::InputArg> &Ins) const { 903 const MachineFunction &MF = State.getMachineFunction(); 904 const Function &Fn = MF.getFunction(); 905 LLVMContext &Ctx = Fn.getParent()->getContext(); 906 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 907 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 908 CallingConv::ID CC = Fn.getCallingConv(); 909 910 unsigned MaxAlign = 1; 911 uint64_t ExplicitArgOffset = 0; 912 const DataLayout &DL = Fn.getParent()->getDataLayout(); 913 914 unsigned InIndex = 0; 915 916 for (const Argument &Arg : Fn.args()) { 917 Type *BaseArgTy = Arg.getType(); 918 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 919 MaxAlign = std::max(Align, MaxAlign); 920 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 921 922 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 923 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 924 925 // We're basically throwing away everything passed into us and starting over 926 // to get accurate in-memory offsets. The "PartOffset" is completely useless 927 // to us as computed in Ins. 928 // 929 // We also need to figure out what type legalization is trying to do to get 930 // the correct memory offsets. 931 932 SmallVector<EVT, 16> ValueVTs; 933 SmallVector<uint64_t, 16> Offsets; 934 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 935 936 for (unsigned Value = 0, NumValues = ValueVTs.size(); 937 Value != NumValues; ++Value) { 938 uint64_t BasePartOffset = Offsets[Value]; 939 940 EVT ArgVT = ValueVTs[Value]; 941 EVT MemVT = ArgVT; 942 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 943 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 944 945 if (NumRegs == 1) { 946 // This argument is not split, so the IR type is the memory type. 947 if (ArgVT.isExtended()) { 948 // We have an extended type, like i24, so we should just use the 949 // register type. 950 MemVT = RegisterVT; 951 } else { 952 MemVT = ArgVT; 953 } 954 } else if (ArgVT.isVector() && RegisterVT.isVector() && 955 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 956 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 957 // We have a vector value which has been split into a vector with 958 // the same scalar type, but fewer elements. This should handle 959 // all the floating-point vector types. 960 MemVT = RegisterVT; 961 } else if (ArgVT.isVector() && 962 ArgVT.getVectorNumElements() == NumRegs) { 963 // This arg has been split so that each element is stored in a separate 964 // register. 965 MemVT = ArgVT.getScalarType(); 966 } else if (ArgVT.isExtended()) { 967 // We have an extended type, like i65. 968 MemVT = RegisterVT; 969 } else { 970 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 971 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 972 if (RegisterVT.isInteger()) { 973 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 974 } else if (RegisterVT.isVector()) { 975 assert(!RegisterVT.getScalarType().isFloatingPoint()); 976 unsigned NumElements = RegisterVT.getVectorNumElements(); 977 assert(MemoryBits % NumElements == 0); 978 // This vector type has been split into another vector type with 979 // a different elements size. 980 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 981 MemoryBits / NumElements); 982 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 983 } else { 984 llvm_unreachable("cannot deduce memory type."); 985 } 986 } 987 988 // Convert one element vectors to scalar. 989 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 990 MemVT = MemVT.getScalarType(); 991 992 // Round up vec3/vec5 argument. 993 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 994 assert(MemVT.getVectorNumElements() == 3 || 995 MemVT.getVectorNumElements() == 5); 996 MemVT = MemVT.getPow2VectorType(State.getContext()); 997 } 998 999 unsigned PartOffset = 0; 1000 for (unsigned i = 0; i != NumRegs; ++i) { 1001 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1002 BasePartOffset + PartOffset, 1003 MemVT.getSimpleVT(), 1004 CCValAssign::Full)); 1005 PartOffset += MemVT.getStoreSize(); 1006 } 1007 } 1008 } 1009 } 1010 1011 SDValue AMDGPUTargetLowering::LowerReturn( 1012 SDValue Chain, CallingConv::ID CallConv, 1013 bool isVarArg, 1014 const SmallVectorImpl<ISD::OutputArg> &Outs, 1015 const SmallVectorImpl<SDValue> &OutVals, 1016 const SDLoc &DL, SelectionDAG &DAG) const { 1017 // FIXME: Fails for r600 tests 1018 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1019 // "wave terminate should not have return values"); 1020 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1021 } 1022 1023 //===---------------------------------------------------------------------===// 1024 // Target specific lowering 1025 //===---------------------------------------------------------------------===// 1026 1027 /// Selects the correct CCAssignFn for a given CallingConvention value. 1028 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1029 bool IsVarArg) { 1030 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1031 } 1032 1033 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1034 bool IsVarArg) { 1035 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1036 } 1037 1038 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1039 SelectionDAG &DAG, 1040 MachineFrameInfo &MFI, 1041 int ClobberedFI) const { 1042 SmallVector<SDValue, 8> ArgChains; 1043 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1044 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1045 1046 // Include the original chain at the beginning of the list. When this is 1047 // used by target LowerCall hooks, this helps legalize find the 1048 // CALLSEQ_BEGIN node. 1049 ArgChains.push_back(Chain); 1050 1051 // Add a chain value for each stack argument corresponding 1052 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1053 UE = DAG.getEntryNode().getNode()->use_end(); 1054 U != UE; ++U) { 1055 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1056 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1057 if (FI->getIndex() < 0) { 1058 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1059 int64_t InLastByte = InFirstByte; 1060 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1061 1062 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1063 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1064 ArgChains.push_back(SDValue(L, 1)); 1065 } 1066 } 1067 } 1068 } 1069 1070 // Build a tokenfactor for all the chains. 1071 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1072 } 1073 1074 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1075 SmallVectorImpl<SDValue> &InVals, 1076 StringRef Reason) const { 1077 SDValue Callee = CLI.Callee; 1078 SelectionDAG &DAG = CLI.DAG; 1079 1080 const Function &Fn = DAG.getMachineFunction().getFunction(); 1081 1082 StringRef FuncName("<unknown>"); 1083 1084 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1085 FuncName = G->getSymbol(); 1086 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1087 FuncName = G->getGlobal()->getName(); 1088 1089 DiagnosticInfoUnsupported NoCalls( 1090 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1091 DAG.getContext()->diagnose(NoCalls); 1092 1093 if (!CLI.IsTailCall) { 1094 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1095 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1096 } 1097 1098 return DAG.getEntryNode(); 1099 } 1100 1101 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1102 SmallVectorImpl<SDValue> &InVals) const { 1103 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1104 } 1105 1106 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1107 SelectionDAG &DAG) const { 1108 const Function &Fn = DAG.getMachineFunction().getFunction(); 1109 1110 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1111 SDLoc(Op).getDebugLoc()); 1112 DAG.getContext()->diagnose(NoDynamicAlloca); 1113 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1114 return DAG.getMergeValues(Ops, SDLoc()); 1115 } 1116 1117 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1118 SelectionDAG &DAG) const { 1119 switch (Op.getOpcode()) { 1120 default: 1121 Op->print(errs(), &DAG); 1122 llvm_unreachable("Custom lowering code for this" 1123 "instruction is not implemented yet!"); 1124 break; 1125 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1126 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1127 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1128 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1129 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1130 case ISD::FREM: return LowerFREM(Op, DAG); 1131 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1132 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1133 case ISD::FRINT: return LowerFRINT(Op, DAG); 1134 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1135 case ISD::FROUND: return LowerFROUND(Op, DAG); 1136 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1137 case ISD::FLOG: 1138 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1139 case ISD::FLOG10: 1140 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1141 case ISD::FEXP: 1142 return lowerFEXP(Op, DAG); 1143 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1144 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1145 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1146 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1147 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1148 case ISD::CTTZ: 1149 case ISD::CTTZ_ZERO_UNDEF: 1150 case ISD::CTLZ: 1151 case ISD::CTLZ_ZERO_UNDEF: 1152 return LowerCTLZ_CTTZ(Op, DAG); 1153 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1154 } 1155 return Op; 1156 } 1157 1158 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1159 SmallVectorImpl<SDValue> &Results, 1160 SelectionDAG &DAG) const { 1161 switch (N->getOpcode()) { 1162 case ISD::SIGN_EXTEND_INREG: 1163 // Different parts of legalization seem to interpret which type of 1164 // sign_extend_inreg is the one to check for custom lowering. The extended 1165 // from type is what really matters, but some places check for custom 1166 // lowering of the result type. This results in trying to use 1167 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1168 // nothing here and let the illegal result integer be handled normally. 1169 return; 1170 default: 1171 return; 1172 } 1173 } 1174 1175 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1176 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1177 if (!GVar || !GVar->hasInitializer()) 1178 return false; 1179 1180 return !isa<UndefValue>(GVar->getInitializer()); 1181 } 1182 1183 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1184 SDValue Op, 1185 SelectionDAG &DAG) const { 1186 1187 const DataLayout &DL = DAG.getDataLayout(); 1188 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1189 const GlobalValue *GV = G->getGlobal(); 1190 1191 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1192 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1193 if (!MFI->isEntryFunction()) { 1194 const Function &Fn = DAG.getMachineFunction().getFunction(); 1195 DiagnosticInfoUnsupported BadLDSDecl( 1196 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1197 DAG.getContext()->diagnose(BadLDSDecl); 1198 } 1199 1200 // XXX: What does the value of G->getOffset() mean? 1201 assert(G->getOffset() == 0 && 1202 "Do not know what to do with an non-zero offset"); 1203 1204 // TODO: We could emit code to handle the initialization somewhere. 1205 if (!hasDefinedInitializer(GV)) { 1206 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1207 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1208 } 1209 } 1210 1211 const Function &Fn = DAG.getMachineFunction().getFunction(); 1212 DiagnosticInfoUnsupported BadInit( 1213 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1214 DAG.getContext()->diagnose(BadInit); 1215 return SDValue(); 1216 } 1217 1218 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1219 SelectionDAG &DAG) const { 1220 SmallVector<SDValue, 8> Args; 1221 1222 EVT VT = Op.getValueType(); 1223 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1224 SDLoc SL(Op); 1225 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1226 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1227 1228 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1229 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1230 } 1231 1232 for (const SDUse &U : Op->ops()) 1233 DAG.ExtractVectorElements(U.get(), Args); 1234 1235 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1236 } 1237 1238 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1239 SelectionDAG &DAG) const { 1240 1241 SmallVector<SDValue, 8> Args; 1242 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1243 EVT VT = Op.getValueType(); 1244 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1245 VT.getVectorNumElements()); 1246 1247 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1248 } 1249 1250 /// Generate Min/Max node 1251 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1252 SDValue LHS, SDValue RHS, 1253 SDValue True, SDValue False, 1254 SDValue CC, 1255 DAGCombinerInfo &DCI) const { 1256 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1257 return SDValue(); 1258 1259 SelectionDAG &DAG = DCI.DAG; 1260 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1261 switch (CCOpcode) { 1262 case ISD::SETOEQ: 1263 case ISD::SETONE: 1264 case ISD::SETUNE: 1265 case ISD::SETNE: 1266 case ISD::SETUEQ: 1267 case ISD::SETEQ: 1268 case ISD::SETFALSE: 1269 case ISD::SETFALSE2: 1270 case ISD::SETTRUE: 1271 case ISD::SETTRUE2: 1272 case ISD::SETUO: 1273 case ISD::SETO: 1274 break; 1275 case ISD::SETULE: 1276 case ISD::SETULT: { 1277 if (LHS == True) 1278 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1279 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1280 } 1281 case ISD::SETOLE: 1282 case ISD::SETOLT: 1283 case ISD::SETLE: 1284 case ISD::SETLT: { 1285 // Ordered. Assume ordered for undefined. 1286 1287 // Only do this after legalization to avoid interfering with other combines 1288 // which might occur. 1289 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1290 !DCI.isCalledByLegalizer()) 1291 return SDValue(); 1292 1293 // We need to permute the operands to get the correct NaN behavior. The 1294 // selected operand is the second one based on the failing compare with NaN, 1295 // so permute it based on the compare type the hardware uses. 1296 if (LHS == True) 1297 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1298 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1299 } 1300 case ISD::SETUGE: 1301 case ISD::SETUGT: { 1302 if (LHS == True) 1303 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1304 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1305 } 1306 case ISD::SETGT: 1307 case ISD::SETGE: 1308 case ISD::SETOGE: 1309 case ISD::SETOGT: { 1310 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1311 !DCI.isCalledByLegalizer()) 1312 return SDValue(); 1313 1314 if (LHS == True) 1315 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1316 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1317 } 1318 case ISD::SETCC_INVALID: 1319 llvm_unreachable("Invalid setcc condcode!"); 1320 } 1321 return SDValue(); 1322 } 1323 1324 std::pair<SDValue, SDValue> 1325 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1326 SDLoc SL(Op); 1327 1328 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1329 1330 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1331 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1332 1333 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1334 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1335 1336 return std::make_pair(Lo, Hi); 1337 } 1338 1339 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1340 SDLoc SL(Op); 1341 1342 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1343 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1344 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1345 } 1346 1347 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1348 SDLoc SL(Op); 1349 1350 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1351 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1352 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1353 } 1354 1355 // Split a vector type into two parts. The first part is a power of two vector. 1356 // The second part is whatever is left over, and is a scalar if it would 1357 // otherwise be a 1-vector. 1358 std::pair<EVT, EVT> 1359 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1360 EVT LoVT, HiVT; 1361 EVT EltVT = VT.getVectorElementType(); 1362 unsigned NumElts = VT.getVectorNumElements(); 1363 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1364 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1365 HiVT = NumElts - LoNumElts == 1 1366 ? EltVT 1367 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1368 return std::make_pair(LoVT, HiVT); 1369 } 1370 1371 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1372 // scalar. 1373 std::pair<SDValue, SDValue> 1374 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1375 const EVT &LoVT, const EVT &HiVT, 1376 SelectionDAG &DAG) const { 1377 assert(LoVT.getVectorNumElements() + 1378 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1379 N.getValueType().getVectorNumElements() && 1380 "More vector elements requested than available!"); 1381 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1382 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1383 DAG.getConstant(0, DL, IdxTy)); 1384 SDValue Hi = DAG.getNode( 1385 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1386 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1387 return std::make_pair(Lo, Hi); 1388 } 1389 1390 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1391 SelectionDAG &DAG) const { 1392 LoadSDNode *Load = cast<LoadSDNode>(Op); 1393 EVT VT = Op.getValueType(); 1394 1395 1396 // If this is a 2 element vector, we really want to scalarize and not create 1397 // weird 1 element vectors. 1398 if (VT.getVectorNumElements() == 2) 1399 return scalarizeVectorLoad(Load, DAG); 1400 1401 SDValue BasePtr = Load->getBasePtr(); 1402 EVT MemVT = Load->getMemoryVT(); 1403 SDLoc SL(Op); 1404 1405 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1406 1407 EVT LoVT, HiVT; 1408 EVT LoMemVT, HiMemVT; 1409 SDValue Lo, Hi; 1410 1411 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1412 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1413 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1414 1415 unsigned Size = LoMemVT.getStoreSize(); 1416 unsigned BaseAlign = Load->getAlignment(); 1417 unsigned HiAlign = MinAlign(BaseAlign, Size); 1418 1419 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1420 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1421 BaseAlign, Load->getMemOperand()->getFlags()); 1422 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1423 SDValue HiLoad = 1424 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1425 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1426 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1427 1428 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1429 SDValue Join; 1430 if (LoVT == HiVT) { 1431 // This is the case that the vector is power of two so was evenly split. 1432 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1433 } else { 1434 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1435 DAG.getConstant(0, SL, IdxTy)); 1436 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1437 : ISD::INSERT_VECTOR_ELT, 1438 SL, VT, Join, HiLoad, 1439 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1440 } 1441 1442 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1443 LoLoad.getValue(1), HiLoad.getValue(1))}; 1444 1445 return DAG.getMergeValues(Ops, SL); 1446 } 1447 1448 // Widen a vector load from vec3 to vec4. 1449 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1450 SelectionDAG &DAG) const { 1451 LoadSDNode *Load = cast<LoadSDNode>(Op); 1452 EVT VT = Op.getValueType(); 1453 assert(VT.getVectorNumElements() == 3); 1454 SDValue BasePtr = Load->getBasePtr(); 1455 EVT MemVT = Load->getMemoryVT(); 1456 SDLoc SL(Op); 1457 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1458 unsigned BaseAlign = Load->getAlignment(); 1459 1460 EVT WideVT = 1461 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1462 EVT WideMemVT = 1463 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1464 SDValue WideLoad = DAG.getExtLoad( 1465 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1466 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1467 return DAG.getMergeValues( 1468 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1469 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1470 WideLoad.getValue(1)}, 1471 SL); 1472 } 1473 1474 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1475 SelectionDAG &DAG) const { 1476 StoreSDNode *Store = cast<StoreSDNode>(Op); 1477 SDValue Val = Store->getValue(); 1478 EVT VT = Val.getValueType(); 1479 1480 // If this is a 2 element vector, we really want to scalarize and not create 1481 // weird 1 element vectors. 1482 if (VT.getVectorNumElements() == 2) 1483 return scalarizeVectorStore(Store, DAG); 1484 1485 EVT MemVT = Store->getMemoryVT(); 1486 SDValue Chain = Store->getChain(); 1487 SDValue BasePtr = Store->getBasePtr(); 1488 SDLoc SL(Op); 1489 1490 EVT LoVT, HiVT; 1491 EVT LoMemVT, HiMemVT; 1492 SDValue Lo, Hi; 1493 1494 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1495 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1496 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1497 1498 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1499 1500 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1501 unsigned BaseAlign = Store->getAlignment(); 1502 unsigned Size = LoMemVT.getStoreSize(); 1503 unsigned HiAlign = MinAlign(BaseAlign, Size); 1504 1505 SDValue LoStore = 1506 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1507 Store->getMemOperand()->getFlags()); 1508 SDValue HiStore = 1509 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1510 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1511 1512 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1513 } 1514 1515 // This is a shortcut for integer division because we have fast i32<->f32 1516 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1517 // float is enough to accurately represent up to a 24-bit signed integer. 1518 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1519 bool Sign) const { 1520 SDLoc DL(Op); 1521 EVT VT = Op.getValueType(); 1522 SDValue LHS = Op.getOperand(0); 1523 SDValue RHS = Op.getOperand(1); 1524 MVT IntVT = MVT::i32; 1525 MVT FltVT = MVT::f32; 1526 1527 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1528 if (LHSSignBits < 9) 1529 return SDValue(); 1530 1531 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1532 if (RHSSignBits < 9) 1533 return SDValue(); 1534 1535 unsigned BitSize = VT.getSizeInBits(); 1536 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1537 unsigned DivBits = BitSize - SignBits; 1538 if (Sign) 1539 ++DivBits; 1540 1541 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1542 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1543 1544 SDValue jq = DAG.getConstant(1, DL, IntVT); 1545 1546 if (Sign) { 1547 // char|short jq = ia ^ ib; 1548 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1549 1550 // jq = jq >> (bitsize - 2) 1551 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1552 DAG.getConstant(BitSize - 2, DL, VT)); 1553 1554 // jq = jq | 0x1 1555 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1556 } 1557 1558 // int ia = (int)LHS; 1559 SDValue ia = LHS; 1560 1561 // int ib, (int)RHS; 1562 SDValue ib = RHS; 1563 1564 // float fa = (float)ia; 1565 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1566 1567 // float fb = (float)ib; 1568 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1569 1570 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1571 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1572 1573 // fq = trunc(fq); 1574 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1575 1576 // float fqneg = -fq; 1577 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1578 1579 // float fr = mad(fqneg, fb, fa); 1580 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1581 (unsigned)AMDGPUISD::FMAD_FTZ : 1582 (unsigned)ISD::FMAD; 1583 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1584 1585 // int iq = (int)fq; 1586 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1587 1588 // fr = fabs(fr); 1589 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1590 1591 // fb = fabs(fb); 1592 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1593 1594 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1595 1596 // int cv = fr >= fb; 1597 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1598 1599 // jq = (cv ? jq : 0); 1600 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1601 1602 // dst = iq + jq; 1603 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1604 1605 // Rem needs compensation, it's easier to recompute it 1606 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1607 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1608 1609 // Truncate to number of bits this divide really is. 1610 if (Sign) { 1611 SDValue InRegSize 1612 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1613 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1614 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1615 } else { 1616 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1617 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1618 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1619 } 1620 1621 return DAG.getMergeValues({ Div, Rem }, DL); 1622 } 1623 1624 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1625 SelectionDAG &DAG, 1626 SmallVectorImpl<SDValue> &Results) const { 1627 SDLoc DL(Op); 1628 EVT VT = Op.getValueType(); 1629 1630 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1631 1632 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1633 1634 SDValue One = DAG.getConstant(1, DL, HalfVT); 1635 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1636 1637 //HiLo split 1638 SDValue LHS = Op.getOperand(0); 1639 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1640 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1641 1642 SDValue RHS = Op.getOperand(1); 1643 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1644 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1645 1646 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1647 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1648 1649 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1650 LHS_Lo, RHS_Lo); 1651 1652 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1653 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1654 1655 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1656 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1657 return; 1658 } 1659 1660 if (isTypeLegal(MVT::i64)) { 1661 // Compute denominator reciprocal. 1662 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1663 (unsigned)AMDGPUISD::FMAD_FTZ : 1664 (unsigned)ISD::FMAD; 1665 1666 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1667 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1668 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1669 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1670 Cvt_Lo); 1671 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1672 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1673 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1674 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1675 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1676 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1677 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1678 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1679 Mul1); 1680 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1681 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1682 SDValue Rcp64 = DAG.getBitcast(VT, 1683 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1684 1685 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1686 SDValue One64 = DAG.getConstant(1, DL, VT); 1687 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1688 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1689 1690 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1691 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1692 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1693 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1694 Zero); 1695 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1696 One); 1697 1698 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1699 Mulhi1_Lo, Zero1); 1700 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1701 Mulhi1_Hi, Add1_Lo.getValue(1)); 1702 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1703 SDValue Add1 = DAG.getBitcast(VT, 1704 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1705 1706 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1707 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1708 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1709 Zero); 1710 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1711 One); 1712 1713 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1714 Mulhi2_Lo, Zero1); 1715 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1716 Mulhi2_Hi, Add1_Lo.getValue(1)); 1717 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1718 Zero, Add2_Lo.getValue(1)); 1719 SDValue Add2 = DAG.getBitcast(VT, 1720 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1721 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1722 1723 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1724 1725 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1726 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1727 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1728 Mul3_Lo, Zero1); 1729 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1730 Mul3_Hi, Sub1_Lo.getValue(1)); 1731 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1732 SDValue Sub1 = DAG.getBitcast(VT, 1733 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1734 1735 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1736 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1737 ISD::SETUGE); 1738 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1739 ISD::SETUGE); 1740 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1741 1742 // TODO: Here and below portions of the code can be enclosed into if/endif. 1743 // Currently control flow is unconditional and we have 4 selects after 1744 // potential endif to substitute PHIs. 1745 1746 // if C3 != 0 ... 1747 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1748 RHS_Lo, Zero1); 1749 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1750 RHS_Hi, Sub1_Lo.getValue(1)); 1751 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1752 Zero, Sub2_Lo.getValue(1)); 1753 SDValue Sub2 = DAG.getBitcast(VT, 1754 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1755 1756 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1757 1758 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1759 ISD::SETUGE); 1760 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1761 ISD::SETUGE); 1762 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1763 1764 // if (C6 != 0) 1765 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1766 1767 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1768 RHS_Lo, Zero1); 1769 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1770 RHS_Hi, Sub2_Lo.getValue(1)); 1771 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1772 Zero, Sub3_Lo.getValue(1)); 1773 SDValue Sub3 = DAG.getBitcast(VT, 1774 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1775 1776 // endif C6 1777 // endif C3 1778 1779 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1780 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1781 1782 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1783 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1784 1785 Results.push_back(Div); 1786 Results.push_back(Rem); 1787 1788 return; 1789 } 1790 1791 // r600 expandion. 1792 // Get Speculative values 1793 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1794 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1795 1796 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1797 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1798 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1799 1800 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1801 SDValue DIV_Lo = Zero; 1802 1803 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1804 1805 for (unsigned i = 0; i < halfBitWidth; ++i) { 1806 const unsigned bitPos = halfBitWidth - i - 1; 1807 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1808 // Get value of high bit 1809 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1810 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1811 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1812 1813 // Shift 1814 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1815 // Add LHS high bit 1816 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1817 1818 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1819 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1820 1821 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1822 1823 // Update REM 1824 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1825 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1826 } 1827 1828 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1829 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1830 Results.push_back(DIV); 1831 Results.push_back(REM); 1832 } 1833 1834 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1835 SelectionDAG &DAG) const { 1836 SDLoc DL(Op); 1837 EVT VT = Op.getValueType(); 1838 1839 if (VT == MVT::i64) { 1840 SmallVector<SDValue, 2> Results; 1841 LowerUDIVREM64(Op, DAG, Results); 1842 return DAG.getMergeValues(Results, DL); 1843 } 1844 1845 if (VT == MVT::i32) { 1846 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1847 return Res; 1848 } 1849 1850 SDValue Num = Op.getOperand(0); 1851 SDValue Den = Op.getOperand(1); 1852 1853 // RCP = URECIP(Den) = 2^32 / Den + e 1854 // e is rounding error. 1855 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1856 1857 // RCP_LO = mul(RCP, Den) */ 1858 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1859 1860 // RCP_HI = mulhu (RCP, Den) */ 1861 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1862 1863 // NEG_RCP_LO = -RCP_LO 1864 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1865 RCP_LO); 1866 1867 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1868 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1869 NEG_RCP_LO, RCP_LO, 1870 ISD::SETEQ); 1871 // Calculate the rounding error from the URECIP instruction 1872 // E = mulhu(ABS_RCP_LO, RCP) 1873 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1874 1875 // RCP_A_E = RCP + E 1876 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1877 1878 // RCP_S_E = RCP - E 1879 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1880 1881 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1882 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1883 RCP_A_E, RCP_S_E, 1884 ISD::SETEQ); 1885 // Quotient = mulhu(Tmp0, Num) 1886 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1887 1888 // Num_S_Remainder = Quotient * Den 1889 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1890 1891 // Remainder = Num - Num_S_Remainder 1892 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1893 1894 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1895 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1896 DAG.getConstant(-1, DL, VT), 1897 DAG.getConstant(0, DL, VT), 1898 ISD::SETUGE); 1899 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1900 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1901 Num_S_Remainder, 1902 DAG.getConstant(-1, DL, VT), 1903 DAG.getConstant(0, DL, VT), 1904 ISD::SETUGE); 1905 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1906 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1907 Remainder_GE_Zero); 1908 1909 // Calculate Division result: 1910 1911 // Quotient_A_One = Quotient + 1 1912 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1913 DAG.getConstant(1, DL, VT)); 1914 1915 // Quotient_S_One = Quotient - 1 1916 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1917 DAG.getConstant(1, DL, VT)); 1918 1919 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1920 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1921 Quotient, Quotient_A_One, ISD::SETEQ); 1922 1923 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1924 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1925 Quotient_S_One, Div, ISD::SETEQ); 1926 1927 // Calculate Rem result: 1928 1929 // Remainder_S_Den = Remainder - Den 1930 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1931 1932 // Remainder_A_Den = Remainder + Den 1933 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1934 1935 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1936 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1937 Remainder, Remainder_S_Den, ISD::SETEQ); 1938 1939 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1940 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1941 Remainder_A_Den, Rem, ISD::SETEQ); 1942 SDValue Ops[2] = { 1943 Div, 1944 Rem 1945 }; 1946 return DAG.getMergeValues(Ops, DL); 1947 } 1948 1949 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1950 SelectionDAG &DAG) const { 1951 SDLoc DL(Op); 1952 EVT VT = Op.getValueType(); 1953 1954 SDValue LHS = Op.getOperand(0); 1955 SDValue RHS = Op.getOperand(1); 1956 1957 SDValue Zero = DAG.getConstant(0, DL, VT); 1958 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1959 1960 if (VT == MVT::i32) { 1961 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1962 return Res; 1963 } 1964 1965 if (VT == MVT::i64 && 1966 DAG.ComputeNumSignBits(LHS) > 32 && 1967 DAG.ComputeNumSignBits(RHS) > 32) { 1968 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1969 1970 //HiLo split 1971 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1972 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1973 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1974 LHS_Lo, RHS_Lo); 1975 SDValue Res[2] = { 1976 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1977 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1978 }; 1979 return DAG.getMergeValues(Res, DL); 1980 } 1981 1982 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1983 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1984 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1985 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1986 1987 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1988 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1989 1990 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1991 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1992 1993 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1994 SDValue Rem = Div.getValue(1); 1995 1996 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1997 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1998 1999 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2000 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2001 2002 SDValue Res[2] = { 2003 Div, 2004 Rem 2005 }; 2006 return DAG.getMergeValues(Res, DL); 2007 } 2008 2009 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2010 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2011 SDLoc SL(Op); 2012 EVT VT = Op.getValueType(); 2013 SDValue X = Op.getOperand(0); 2014 SDValue Y = Op.getOperand(1); 2015 2016 // TODO: Should this propagate fast-math-flags? 2017 2018 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2019 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2020 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2021 2022 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2023 } 2024 2025 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2026 SDLoc SL(Op); 2027 SDValue Src = Op.getOperand(0); 2028 2029 // result = trunc(src) 2030 // if (src > 0.0 && src != result) 2031 // result += 1.0 2032 2033 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2034 2035 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2036 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2037 2038 EVT SetCCVT = 2039 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2040 2041 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2042 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2043 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2044 2045 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2046 // TODO: Should this propagate fast-math-flags? 2047 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2048 } 2049 2050 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2051 SelectionDAG &DAG) { 2052 const unsigned FractBits = 52; 2053 const unsigned ExpBits = 11; 2054 2055 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2056 Hi, 2057 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2058 DAG.getConstant(ExpBits, SL, MVT::i32)); 2059 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2060 DAG.getConstant(1023, SL, MVT::i32)); 2061 2062 return Exp; 2063 } 2064 2065 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2066 SDLoc SL(Op); 2067 SDValue Src = Op.getOperand(0); 2068 2069 assert(Op.getValueType() == MVT::f64); 2070 2071 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2072 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2073 2074 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2075 2076 // Extract the upper half, since this is where we will find the sign and 2077 // exponent. 2078 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2079 2080 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2081 2082 const unsigned FractBits = 52; 2083 2084 // Extract the sign bit. 2085 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2086 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2087 2088 // Extend back to 64-bits. 2089 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2090 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2091 2092 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2093 const SDValue FractMask 2094 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2095 2096 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2097 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2098 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2099 2100 EVT SetCCVT = 2101 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2102 2103 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2104 2105 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2106 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2107 2108 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2109 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2110 2111 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2112 } 2113 2114 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2115 SDLoc SL(Op); 2116 SDValue Src = Op.getOperand(0); 2117 2118 assert(Op.getValueType() == MVT::f64); 2119 2120 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2121 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2122 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2123 2124 // TODO: Should this propagate fast-math-flags? 2125 2126 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2127 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2128 2129 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2130 2131 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2132 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2133 2134 EVT SetCCVT = 2135 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2136 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2137 2138 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2139 } 2140 2141 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2142 // FNEARBYINT and FRINT are the same, except in their handling of FP 2143 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2144 // rint, so just treat them as equivalent. 2145 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2146 } 2147 2148 // XXX - May require not supporting f32 denormals? 2149 2150 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2151 // compare and vselect end up producing worse code than scalarizing the whole 2152 // operation. 2153 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2154 SDLoc SL(Op); 2155 SDValue X = Op.getOperand(0); 2156 EVT VT = Op.getValueType(); 2157 2158 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2159 2160 // TODO: Should this propagate fast-math-flags? 2161 2162 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2163 2164 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2165 2166 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2167 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2168 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2169 2170 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2171 2172 EVT SetCCVT = 2173 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2174 2175 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2176 2177 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2178 2179 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2180 } 2181 2182 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2183 SDLoc SL(Op); 2184 SDValue X = Op.getOperand(0); 2185 2186 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2187 2188 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2189 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2190 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2191 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2192 EVT SetCCVT = 2193 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2194 2195 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2196 2197 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2198 2199 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2200 2201 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2202 MVT::i64); 2203 2204 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2205 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2206 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2207 MVT::i64), 2208 Exp); 2209 2210 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2211 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2212 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2213 ISD::SETNE); 2214 2215 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2216 D, DAG.getConstant(0, SL, MVT::i64)); 2217 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2218 2219 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2220 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2221 2222 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2223 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2224 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2225 2226 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2227 ExpEqNegOne, 2228 DAG.getConstantFP(1.0, SL, MVT::f64), 2229 DAG.getConstantFP(0.0, SL, MVT::f64)); 2230 2231 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2232 2233 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2234 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2235 2236 return K; 2237 } 2238 2239 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2240 EVT VT = Op.getValueType(); 2241 2242 if (VT == MVT::f32 || VT == MVT::f16) 2243 return LowerFROUND32_16(Op, DAG); 2244 2245 if (VT == MVT::f64) 2246 return LowerFROUND64(Op, DAG); 2247 2248 llvm_unreachable("unhandled type"); 2249 } 2250 2251 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2252 SDLoc SL(Op); 2253 SDValue Src = Op.getOperand(0); 2254 2255 // result = trunc(src); 2256 // if (src < 0.0 && src != result) 2257 // result += -1.0. 2258 2259 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2260 2261 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2262 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2263 2264 EVT SetCCVT = 2265 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2266 2267 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2268 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2269 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2270 2271 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2272 // TODO: Should this propagate fast-math-flags? 2273 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2274 } 2275 2276 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2277 double Log2BaseInverted) const { 2278 EVT VT = Op.getValueType(); 2279 2280 SDLoc SL(Op); 2281 SDValue Operand = Op.getOperand(0); 2282 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2283 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2284 2285 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2286 } 2287 2288 // Return M_LOG2E of appropriate type 2289 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2290 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2291 case MVT::f32: 2292 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2293 case MVT::f16: 2294 return DAG.getConstantFP( 2295 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2296 SL, VT); 2297 case MVT::f64: 2298 return DAG.getConstantFP( 2299 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2300 default: 2301 llvm_unreachable("unsupported fp type"); 2302 } 2303 } 2304 2305 // exp2(M_LOG2E_F * f); 2306 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2307 EVT VT = Op.getValueType(); 2308 SDLoc SL(Op); 2309 SDValue Src = Op.getOperand(0); 2310 2311 const SDValue K = getLog2EVal(DAG, SL, VT); 2312 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2313 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2314 } 2315 2316 static bool isCtlzOpc(unsigned Opc) { 2317 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2318 } 2319 2320 static bool isCttzOpc(unsigned Opc) { 2321 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2322 } 2323 2324 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2325 SDLoc SL(Op); 2326 SDValue Src = Op.getOperand(0); 2327 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2328 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2329 2330 unsigned ISDOpc, NewOpc; 2331 if (isCtlzOpc(Op.getOpcode())) { 2332 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2333 NewOpc = AMDGPUISD::FFBH_U32; 2334 } else if (isCttzOpc(Op.getOpcode())) { 2335 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2336 NewOpc = AMDGPUISD::FFBL_B32; 2337 } else 2338 llvm_unreachable("Unexpected OPCode!!!"); 2339 2340 2341 if (ZeroUndef && Src.getValueType() == MVT::i32) 2342 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2343 2344 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2345 2346 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2347 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2348 2349 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2350 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2351 2352 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2353 *DAG.getContext(), MVT::i32); 2354 2355 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2356 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2357 2358 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2359 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2360 2361 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2362 SDValue Add, NewOpr; 2363 if (isCtlzOpc(Op.getOpcode())) { 2364 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2365 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2366 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2367 } else { 2368 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2369 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2370 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2371 } 2372 2373 if (!ZeroUndef) { 2374 // Test if the full 64-bit input is zero. 2375 2376 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2377 // which we probably don't want. 2378 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2379 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2380 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2381 2382 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2383 // with the same cycles, otherwise it is slower. 2384 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2385 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2386 2387 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2388 2389 // The instruction returns -1 for 0 input, but the defined intrinsic 2390 // behavior is to return the number of bits. 2391 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2392 SrcIsZero, Bits32, NewOpr); 2393 } 2394 2395 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2396 } 2397 2398 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2399 bool Signed) const { 2400 // Unsigned 2401 // cul2f(ulong u) 2402 //{ 2403 // uint lz = clz(u); 2404 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2405 // u = (u << lz) & 0x7fffffffffffffffUL; 2406 // ulong t = u & 0xffffffffffUL; 2407 // uint v = (e << 23) | (uint)(u >> 40); 2408 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2409 // return as_float(v + r); 2410 //} 2411 // Signed 2412 // cl2f(long l) 2413 //{ 2414 // long s = l >> 63; 2415 // float r = cul2f((l + s) ^ s); 2416 // return s ? -r : r; 2417 //} 2418 2419 SDLoc SL(Op); 2420 SDValue Src = Op.getOperand(0); 2421 SDValue L = Src; 2422 2423 SDValue S; 2424 if (Signed) { 2425 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2426 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2427 2428 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2429 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2430 } 2431 2432 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2433 *DAG.getContext(), MVT::f32); 2434 2435 2436 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2437 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2438 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2439 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2440 2441 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2442 SDValue E = DAG.getSelect(SL, MVT::i32, 2443 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2444 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2445 ZeroI32); 2446 2447 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2448 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2449 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2450 2451 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2452 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2453 2454 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2455 U, DAG.getConstant(40, SL, MVT::i64)); 2456 2457 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2458 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2459 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2460 2461 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2462 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2463 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2464 2465 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2466 2467 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2468 2469 SDValue R = DAG.getSelect(SL, MVT::i32, 2470 RCmp, 2471 One, 2472 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2473 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2474 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2475 2476 if (!Signed) 2477 return R; 2478 2479 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2480 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2481 } 2482 2483 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2484 bool Signed) const { 2485 SDLoc SL(Op); 2486 SDValue Src = Op.getOperand(0); 2487 2488 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2489 2490 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2491 DAG.getConstant(0, SL, MVT::i32)); 2492 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2493 DAG.getConstant(1, SL, MVT::i32)); 2494 2495 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2496 SL, MVT::f64, Hi); 2497 2498 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2499 2500 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2501 DAG.getConstant(32, SL, MVT::i32)); 2502 // TODO: Should this propagate fast-math-flags? 2503 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2504 } 2505 2506 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2507 SelectionDAG &DAG) const { 2508 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2509 "operation should be legal"); 2510 2511 // TODO: Factor out code common with LowerSINT_TO_FP. 2512 2513 EVT DestVT = Op.getValueType(); 2514 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2515 SDLoc DL(Op); 2516 SDValue Src = Op.getOperand(0); 2517 2518 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2519 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2520 SDValue FPRound = 2521 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2522 2523 return FPRound; 2524 } 2525 2526 if (DestVT == MVT::f32) 2527 return LowerINT_TO_FP32(Op, DAG, false); 2528 2529 assert(DestVT == MVT::f64); 2530 return LowerINT_TO_FP64(Op, DAG, false); 2531 } 2532 2533 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2534 SelectionDAG &DAG) const { 2535 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2536 "operation should be legal"); 2537 2538 // TODO: Factor out code common with LowerUINT_TO_FP. 2539 2540 EVT DestVT = Op.getValueType(); 2541 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2542 SDLoc DL(Op); 2543 SDValue Src = Op.getOperand(0); 2544 2545 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2546 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2547 SDValue FPRound = 2548 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2549 2550 return FPRound; 2551 } 2552 2553 if (DestVT == MVT::f32) 2554 return LowerINT_TO_FP32(Op, DAG, true); 2555 2556 assert(DestVT == MVT::f64); 2557 return LowerINT_TO_FP64(Op, DAG, true); 2558 } 2559 2560 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2561 bool Signed) const { 2562 SDLoc SL(Op); 2563 2564 SDValue Src = Op.getOperand(0); 2565 2566 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2567 2568 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2569 MVT::f64); 2570 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2571 MVT::f64); 2572 // TODO: Should this propagate fast-math-flags? 2573 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2574 2575 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2576 2577 2578 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2579 2580 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2581 MVT::i32, FloorMul); 2582 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2583 2584 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2585 2586 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2587 } 2588 2589 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2590 SDLoc DL(Op); 2591 SDValue N0 = Op.getOperand(0); 2592 2593 // Convert to target node to get known bits 2594 if (N0.getValueType() == MVT::f32) 2595 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2596 2597 if (getTargetMachine().Options.UnsafeFPMath) { 2598 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2599 return SDValue(); 2600 } 2601 2602 assert(N0.getSimpleValueType() == MVT::f64); 2603 2604 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2605 const unsigned ExpMask = 0x7ff; 2606 const unsigned ExpBiasf64 = 1023; 2607 const unsigned ExpBiasf16 = 15; 2608 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2609 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2610 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2611 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2612 DAG.getConstant(32, DL, MVT::i64)); 2613 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2614 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2615 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2616 DAG.getConstant(20, DL, MVT::i64)); 2617 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2618 DAG.getConstant(ExpMask, DL, MVT::i32)); 2619 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2620 // add the f16 bias (15) to get the biased exponent for the f16 format. 2621 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2622 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2623 2624 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2625 DAG.getConstant(8, DL, MVT::i32)); 2626 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2627 DAG.getConstant(0xffe, DL, MVT::i32)); 2628 2629 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2630 DAG.getConstant(0x1ff, DL, MVT::i32)); 2631 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2632 2633 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2634 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2635 2636 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2637 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2638 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2639 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2640 2641 // N = M | (E << 12); 2642 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2643 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2644 DAG.getConstant(12, DL, MVT::i32))); 2645 2646 // B = clamp(1-E, 0, 13); 2647 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2648 One, E); 2649 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2650 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2651 DAG.getConstant(13, DL, MVT::i32)); 2652 2653 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2654 DAG.getConstant(0x1000, DL, MVT::i32)); 2655 2656 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2657 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2658 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2659 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2660 2661 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2662 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2663 DAG.getConstant(0x7, DL, MVT::i32)); 2664 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2665 DAG.getConstant(2, DL, MVT::i32)); 2666 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2667 One, Zero, ISD::SETEQ); 2668 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2669 One, Zero, ISD::SETGT); 2670 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2671 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2672 2673 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2674 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2675 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2676 I, V, ISD::SETEQ); 2677 2678 // Extract the sign bit. 2679 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2680 DAG.getConstant(16, DL, MVT::i32)); 2681 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2682 DAG.getConstant(0x8000, DL, MVT::i32)); 2683 2684 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2685 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2686 } 2687 2688 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2689 SelectionDAG &DAG) const { 2690 SDValue Src = Op.getOperand(0); 2691 2692 // TODO: Factor out code common with LowerFP_TO_UINT. 2693 2694 EVT SrcVT = Src.getValueType(); 2695 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2696 SDLoc DL(Op); 2697 2698 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2699 SDValue FpToInt32 = 2700 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2701 2702 return FpToInt32; 2703 } 2704 2705 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2706 return LowerFP64_TO_INT(Op, DAG, true); 2707 2708 return SDValue(); 2709 } 2710 2711 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2712 SelectionDAG &DAG) const { 2713 SDValue Src = Op.getOperand(0); 2714 2715 // TODO: Factor out code common with LowerFP_TO_SINT. 2716 2717 EVT SrcVT = Src.getValueType(); 2718 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2719 SDLoc DL(Op); 2720 2721 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2722 SDValue FpToInt32 = 2723 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2724 2725 return FpToInt32; 2726 } 2727 2728 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2729 return LowerFP64_TO_INT(Op, DAG, false); 2730 2731 return SDValue(); 2732 } 2733 2734 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2735 SelectionDAG &DAG) const { 2736 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2737 MVT VT = Op.getSimpleValueType(); 2738 MVT ScalarVT = VT.getScalarType(); 2739 2740 assert(VT.isVector()); 2741 2742 SDValue Src = Op.getOperand(0); 2743 SDLoc DL(Op); 2744 2745 // TODO: Don't scalarize on Evergreen? 2746 unsigned NElts = VT.getVectorNumElements(); 2747 SmallVector<SDValue, 8> Args; 2748 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2749 2750 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2751 for (unsigned I = 0; I < NElts; ++I) 2752 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2753 2754 return DAG.getBuildVector(VT, DL, Args); 2755 } 2756 2757 //===----------------------------------------------------------------------===// 2758 // Custom DAG optimizations 2759 //===----------------------------------------------------------------------===// 2760 2761 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2762 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2763 } 2764 2765 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2766 EVT VT = Op.getValueType(); 2767 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2768 // as unsigned 24-bit values. 2769 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2770 } 2771 2772 static SDValue simplifyI24(SDNode *Node24, 2773 TargetLowering::DAGCombinerInfo &DCI) { 2774 SelectionDAG &DAG = DCI.DAG; 2775 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2776 2777 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2778 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2779 unsigned NewOpcode = Node24->getOpcode(); 2780 if (IsIntrin) { 2781 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2782 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2783 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2784 } 2785 2786 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2787 2788 // First try to simplify using GetDemandedBits which allows the operands to 2789 // have other uses, but will only perform simplifications that involve 2790 // bypassing some nodes for this user. 2791 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2792 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2793 if (DemandedLHS || DemandedRHS) 2794 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2795 DemandedLHS ? DemandedLHS : LHS, 2796 DemandedRHS ? DemandedRHS : RHS); 2797 2798 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2799 // operands if this node is the only user. 2800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2801 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2802 return SDValue(Node24, 0); 2803 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2804 return SDValue(Node24, 0); 2805 2806 return SDValue(); 2807 } 2808 2809 template <typename IntTy> 2810 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2811 uint32_t Width, const SDLoc &DL) { 2812 if (Width + Offset < 32) { 2813 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2814 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2815 return DAG.getConstant(Result, DL, MVT::i32); 2816 } 2817 2818 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2819 } 2820 2821 static bool hasVolatileUser(SDNode *Val) { 2822 for (SDNode *U : Val->uses()) { 2823 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2824 if (M->isVolatile()) 2825 return true; 2826 } 2827 } 2828 2829 return false; 2830 } 2831 2832 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2833 // i32 vectors are the canonical memory type. 2834 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2835 return false; 2836 2837 if (!VT.isByteSized()) 2838 return false; 2839 2840 unsigned Size = VT.getStoreSize(); 2841 2842 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2843 return false; 2844 2845 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2846 return false; 2847 2848 return true; 2849 } 2850 2851 // Find a load or store from corresponding pattern root. 2852 // Roots may be build_vector, bitconvert or their combinations. 2853 static MemSDNode* findMemSDNode(SDNode *N) { 2854 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 2855 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 2856 return MN; 2857 assert(isa<BuildVectorSDNode>(N)); 2858 for (SDValue V : N->op_values()) 2859 if (MemSDNode *MN = 2860 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 2861 return MN; 2862 llvm_unreachable("cannot find MemSDNode in the pattern!"); 2863 } 2864 2865 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned, 2866 SelectionDAG &DAG, 2867 SDNode *N, 2868 SDValue Addr, 2869 SDValue &VAddr, 2870 SDValue &Offset, 2871 SDValue &SLC) const { 2872 const GCNSubtarget &ST = 2873 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 2874 int64_t OffsetVal = 0; 2875 2876 if (ST.hasFlatInstOffsets() && 2877 (!ST.hasFlatSegmentOffsetBug() || 2878 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) && 2879 DAG.isBaseWithConstantOffset(Addr)) { 2880 SDValue N0 = Addr.getOperand(0); 2881 SDValue N1 = Addr.getOperand(1); 2882 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 2883 2884 const SIInstrInfo *TII = ST.getInstrInfo(); 2885 if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(), 2886 IsSigned)) { 2887 Addr = N0; 2888 OffsetVal = COffsetVal; 2889 } 2890 } 2891 2892 VAddr = Addr; 2893 Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 2894 SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1); 2895 2896 return true; 2897 } 2898 2899 // Replace load of an illegal type with a store of a bitcast to a friendlier 2900 // type. 2901 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2902 DAGCombinerInfo &DCI) const { 2903 if (!DCI.isBeforeLegalize()) 2904 return SDValue(); 2905 2906 LoadSDNode *LN = cast<LoadSDNode>(N); 2907 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2908 return SDValue(); 2909 2910 SDLoc SL(N); 2911 SelectionDAG &DAG = DCI.DAG; 2912 EVT VT = LN->getMemoryVT(); 2913 2914 unsigned Size = VT.getStoreSize(); 2915 unsigned Align = LN->getAlignment(); 2916 if (Align < Size && isTypeLegal(VT)) { 2917 bool IsFast; 2918 unsigned AS = LN->getAddressSpace(); 2919 2920 // Expand unaligned loads earlier than legalization. Due to visitation order 2921 // problems during legalization, the emitted instructions to pack and unpack 2922 // the bytes again are not eliminated in the case of an unaligned copy. 2923 if (!allowsMisalignedMemoryAccesses( 2924 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2925 if (VT.isVector()) 2926 return scalarizeVectorLoad(LN, DAG); 2927 2928 SDValue Ops[2]; 2929 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2930 return DAG.getMergeValues(Ops, SDLoc(N)); 2931 } 2932 2933 if (!IsFast) 2934 return SDValue(); 2935 } 2936 2937 if (!shouldCombineMemoryType(VT)) 2938 return SDValue(); 2939 2940 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2941 2942 SDValue NewLoad 2943 = DAG.getLoad(NewVT, SL, LN->getChain(), 2944 LN->getBasePtr(), LN->getMemOperand()); 2945 2946 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2947 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2948 return SDValue(N, 0); 2949 } 2950 2951 // Replace store of an illegal type with a store of a bitcast to a friendlier 2952 // type. 2953 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2954 DAGCombinerInfo &DCI) const { 2955 if (!DCI.isBeforeLegalize()) 2956 return SDValue(); 2957 2958 StoreSDNode *SN = cast<StoreSDNode>(N); 2959 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2960 return SDValue(); 2961 2962 EVT VT = SN->getMemoryVT(); 2963 unsigned Size = VT.getStoreSize(); 2964 2965 SDLoc SL(N); 2966 SelectionDAG &DAG = DCI.DAG; 2967 unsigned Align = SN->getAlignment(); 2968 if (Align < Size && isTypeLegal(VT)) { 2969 bool IsFast; 2970 unsigned AS = SN->getAddressSpace(); 2971 2972 // Expand unaligned stores earlier than legalization. Due to visitation 2973 // order problems during legalization, the emitted instructions to pack and 2974 // unpack the bytes again are not eliminated in the case of an unaligned 2975 // copy. 2976 if (!allowsMisalignedMemoryAccesses( 2977 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2978 if (VT.isVector()) 2979 return scalarizeVectorStore(SN, DAG); 2980 2981 return expandUnalignedStore(SN, DAG); 2982 } 2983 2984 if (!IsFast) 2985 return SDValue(); 2986 } 2987 2988 if (!shouldCombineMemoryType(VT)) 2989 return SDValue(); 2990 2991 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2992 SDValue Val = SN->getValue(); 2993 2994 //DCI.AddToWorklist(Val.getNode()); 2995 2996 bool OtherUses = !Val.hasOneUse(); 2997 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2998 if (OtherUses) { 2999 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3000 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3001 } 3002 3003 return DAG.getStore(SN->getChain(), SL, CastVal, 3004 SN->getBasePtr(), SN->getMemOperand()); 3005 } 3006 3007 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3008 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3009 // issues. 3010 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3011 DAGCombinerInfo &DCI) const { 3012 SelectionDAG &DAG = DCI.DAG; 3013 SDValue N0 = N->getOperand(0); 3014 3015 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3016 // (vt2 (truncate (assertzext vt0:x, vt1))) 3017 if (N0.getOpcode() == ISD::TRUNCATE) { 3018 SDValue N1 = N->getOperand(1); 3019 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3020 SDLoc SL(N); 3021 3022 SDValue Src = N0.getOperand(0); 3023 EVT SrcVT = Src.getValueType(); 3024 if (SrcVT.bitsGE(ExtVT)) { 3025 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3026 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3027 } 3028 } 3029 3030 return SDValue(); 3031 } 3032 3033 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3034 SDNode *N, DAGCombinerInfo &DCI) const { 3035 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3036 switch (IID) { 3037 case Intrinsic::amdgcn_mul_i24: 3038 case Intrinsic::amdgcn_mul_u24: 3039 return simplifyI24(N, DCI); 3040 default: 3041 return SDValue(); 3042 } 3043 } 3044 3045 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3046 /// binary operation \p Opc to it with the corresponding constant operands. 3047 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3048 DAGCombinerInfo &DCI, const SDLoc &SL, 3049 unsigned Opc, SDValue LHS, 3050 uint32_t ValLo, uint32_t ValHi) const { 3051 SelectionDAG &DAG = DCI.DAG; 3052 SDValue Lo, Hi; 3053 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3054 3055 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3056 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3057 3058 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3059 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3060 3061 // Re-visit the ands. It's possible we eliminated one of them and it could 3062 // simplify the vector. 3063 DCI.AddToWorklist(Lo.getNode()); 3064 DCI.AddToWorklist(Hi.getNode()); 3065 3066 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3067 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3068 } 3069 3070 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3071 DAGCombinerInfo &DCI) const { 3072 EVT VT = N->getValueType(0); 3073 3074 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3075 if (!RHS) 3076 return SDValue(); 3077 3078 SDValue LHS = N->getOperand(0); 3079 unsigned RHSVal = RHS->getZExtValue(); 3080 if (!RHSVal) 3081 return LHS; 3082 3083 SDLoc SL(N); 3084 SelectionDAG &DAG = DCI.DAG; 3085 3086 switch (LHS->getOpcode()) { 3087 default: 3088 break; 3089 case ISD::ZERO_EXTEND: 3090 case ISD::SIGN_EXTEND: 3091 case ISD::ANY_EXTEND: { 3092 SDValue X = LHS->getOperand(0); 3093 3094 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3095 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3096 // Prefer build_vector as the canonical form if packed types are legal. 3097 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3098 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3099 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3100 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3101 } 3102 3103 // shl (ext x) => zext (shl x), if shift does not overflow int 3104 if (VT != MVT::i64) 3105 break; 3106 KnownBits Known = DAG.computeKnownBits(X); 3107 unsigned LZ = Known.countMinLeadingZeros(); 3108 if (LZ < RHSVal) 3109 break; 3110 EVT XVT = X.getValueType(); 3111 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3112 return DAG.getZExtOrTrunc(Shl, SL, VT); 3113 } 3114 } 3115 3116 if (VT != MVT::i64) 3117 return SDValue(); 3118 3119 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3120 3121 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3122 // common case, splitting this into a move and a 32-bit shift is faster and 3123 // the same code size. 3124 if (RHSVal < 32) 3125 return SDValue(); 3126 3127 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3128 3129 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3130 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3131 3132 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3133 3134 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3135 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3136 } 3137 3138 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3139 DAGCombinerInfo &DCI) const { 3140 if (N->getValueType(0) != MVT::i64) 3141 return SDValue(); 3142 3143 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3144 if (!RHS) 3145 return SDValue(); 3146 3147 SelectionDAG &DAG = DCI.DAG; 3148 SDLoc SL(N); 3149 unsigned RHSVal = RHS->getZExtValue(); 3150 3151 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3152 if (RHSVal == 32) { 3153 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3154 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3155 DAG.getConstant(31, SL, MVT::i32)); 3156 3157 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3158 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3159 } 3160 3161 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3162 if (RHSVal == 63) { 3163 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3164 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3165 DAG.getConstant(31, SL, MVT::i32)); 3166 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3167 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3168 } 3169 3170 return SDValue(); 3171 } 3172 3173 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3174 DAGCombinerInfo &DCI) const { 3175 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3176 if (!RHS) 3177 return SDValue(); 3178 3179 EVT VT = N->getValueType(0); 3180 SDValue LHS = N->getOperand(0); 3181 unsigned ShiftAmt = RHS->getZExtValue(); 3182 SelectionDAG &DAG = DCI.DAG; 3183 SDLoc SL(N); 3184 3185 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3186 // this improves the ability to match BFE patterns in isel. 3187 if (LHS.getOpcode() == ISD::AND) { 3188 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3189 if (Mask->getAPIntValue().isShiftedMask() && 3190 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3191 return DAG.getNode( 3192 ISD::AND, SL, VT, 3193 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3194 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3195 } 3196 } 3197 } 3198 3199 if (VT != MVT::i64) 3200 return SDValue(); 3201 3202 if (ShiftAmt < 32) 3203 return SDValue(); 3204 3205 // srl i64:x, C for C >= 32 3206 // => 3207 // build_pair (srl hi_32(x), C - 32), 0 3208 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3209 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3210 3211 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3212 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3213 3214 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3215 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3216 3217 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3218 3219 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3220 } 3221 3222 SDValue AMDGPUTargetLowering::performTruncateCombine( 3223 SDNode *N, DAGCombinerInfo &DCI) const { 3224 SDLoc SL(N); 3225 SelectionDAG &DAG = DCI.DAG; 3226 EVT VT = N->getValueType(0); 3227 SDValue Src = N->getOperand(0); 3228 3229 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3230 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3231 SDValue Vec = Src.getOperand(0); 3232 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3233 SDValue Elt0 = Vec.getOperand(0); 3234 EVT EltVT = Elt0.getValueType(); 3235 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3236 if (EltVT.isFloatingPoint()) { 3237 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3238 EltVT.changeTypeToInteger(), Elt0); 3239 } 3240 3241 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3242 } 3243 } 3244 } 3245 3246 // Equivalent of above for accessing the high element of a vector as an 3247 // integer operation. 3248 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3249 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3250 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3251 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3252 SDValue BV = stripBitcast(Src.getOperand(0)); 3253 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3254 BV.getValueType().getVectorNumElements() == 2) { 3255 SDValue SrcElt = BV.getOperand(1); 3256 EVT SrcEltVT = SrcElt.getValueType(); 3257 if (SrcEltVT.isFloatingPoint()) { 3258 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3259 SrcEltVT.changeTypeToInteger(), SrcElt); 3260 } 3261 3262 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3263 } 3264 } 3265 } 3266 } 3267 3268 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3269 // 3270 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3271 // i16 (trunc (srl (i32 (trunc x), K))) 3272 if (VT.getScalarSizeInBits() < 32) { 3273 EVT SrcVT = Src.getValueType(); 3274 if (SrcVT.getScalarSizeInBits() > 32 && 3275 (Src.getOpcode() == ISD::SRL || 3276 Src.getOpcode() == ISD::SRA || 3277 Src.getOpcode() == ISD::SHL)) { 3278 SDValue Amt = Src.getOperand(1); 3279 KnownBits Known = DAG.computeKnownBits(Amt); 3280 unsigned Size = VT.getScalarSizeInBits(); 3281 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3282 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3283 EVT MidVT = VT.isVector() ? 3284 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3285 VT.getVectorNumElements()) : MVT::i32; 3286 3287 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3288 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3289 Src.getOperand(0)); 3290 DCI.AddToWorklist(Trunc.getNode()); 3291 3292 if (Amt.getValueType() != NewShiftVT) { 3293 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3294 DCI.AddToWorklist(Amt.getNode()); 3295 } 3296 3297 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3298 Trunc, Amt); 3299 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3300 } 3301 } 3302 } 3303 3304 return SDValue(); 3305 } 3306 3307 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3308 // instructions. If we only match on the legalized i64 mul expansion, 3309 // SimplifyDemandedBits will be unable to remove them because there will be 3310 // multiple uses due to the separate mul + mulh[su]. 3311 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3312 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3313 if (Size <= 32) { 3314 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3315 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3316 } 3317 3318 // Because we want to eliminate extension instructions before the 3319 // operation, we need to create a single user here (i.e. not the separate 3320 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3321 3322 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3323 3324 SDValue Mul = DAG.getNode(MulOpc, SL, 3325 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3326 3327 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3328 Mul.getValue(0), Mul.getValue(1)); 3329 } 3330 3331 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3332 DAGCombinerInfo &DCI) const { 3333 EVT VT = N->getValueType(0); 3334 3335 unsigned Size = VT.getSizeInBits(); 3336 if (VT.isVector() || Size > 64) 3337 return SDValue(); 3338 3339 // There are i16 integer mul/mad. 3340 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3341 return SDValue(); 3342 3343 SelectionDAG &DAG = DCI.DAG; 3344 SDLoc DL(N); 3345 3346 SDValue N0 = N->getOperand(0); 3347 SDValue N1 = N->getOperand(1); 3348 3349 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3350 // in the source into any_extends if the result of the mul is truncated. Since 3351 // we can assume the high bits are whatever we want, use the underlying value 3352 // to avoid the unknown high bits from interfering. 3353 if (N0.getOpcode() == ISD::ANY_EXTEND) 3354 N0 = N0.getOperand(0); 3355 3356 if (N1.getOpcode() == ISD::ANY_EXTEND) 3357 N1 = N1.getOperand(0); 3358 3359 SDValue Mul; 3360 3361 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3362 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3363 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3364 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3365 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3366 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3367 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3368 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3369 } else { 3370 return SDValue(); 3371 } 3372 3373 // We need to use sext even for MUL_U24, because MUL_U24 is used 3374 // for signed multiply of 8 and 16-bit types. 3375 return DAG.getSExtOrTrunc(Mul, DL, VT); 3376 } 3377 3378 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3379 DAGCombinerInfo &DCI) const { 3380 EVT VT = N->getValueType(0); 3381 3382 if (!Subtarget->hasMulI24() || VT.isVector()) 3383 return SDValue(); 3384 3385 SelectionDAG &DAG = DCI.DAG; 3386 SDLoc DL(N); 3387 3388 SDValue N0 = N->getOperand(0); 3389 SDValue N1 = N->getOperand(1); 3390 3391 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3392 return SDValue(); 3393 3394 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3395 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3396 3397 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3398 DCI.AddToWorklist(Mulhi.getNode()); 3399 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3400 } 3401 3402 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3403 DAGCombinerInfo &DCI) const { 3404 EVT VT = N->getValueType(0); 3405 3406 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3407 return SDValue(); 3408 3409 SelectionDAG &DAG = DCI.DAG; 3410 SDLoc DL(N); 3411 3412 SDValue N0 = N->getOperand(0); 3413 SDValue N1 = N->getOperand(1); 3414 3415 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3416 return SDValue(); 3417 3418 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3419 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3420 3421 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3422 DCI.AddToWorklist(Mulhi.getNode()); 3423 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3424 } 3425 3426 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3427 SDNode *N, DAGCombinerInfo &DCI) const { 3428 SelectionDAG &DAG = DCI.DAG; 3429 3430 // Simplify demanded bits before splitting into multiple users. 3431 if (SDValue V = simplifyI24(N, DCI)) 3432 return V; 3433 3434 SDValue N0 = N->getOperand(0); 3435 SDValue N1 = N->getOperand(1); 3436 3437 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3438 3439 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3440 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3441 3442 SDLoc SL(N); 3443 3444 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3445 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3446 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3447 } 3448 3449 static bool isNegativeOne(SDValue Val) { 3450 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3451 return C->isAllOnesValue(); 3452 return false; 3453 } 3454 3455 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3456 SDValue Op, 3457 const SDLoc &DL, 3458 unsigned Opc) const { 3459 EVT VT = Op.getValueType(); 3460 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3461 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3462 LegalVT != MVT::i16)) 3463 return SDValue(); 3464 3465 if (VT != MVT::i32) 3466 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3467 3468 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3469 if (VT != MVT::i32) 3470 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3471 3472 return FFBX; 3473 } 3474 3475 // The native instructions return -1 on 0 input. Optimize out a select that 3476 // produces -1 on 0. 3477 // 3478 // TODO: If zero is not undef, we could also do this if the output is compared 3479 // against the bitwidth. 3480 // 3481 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3482 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3483 SDValue LHS, SDValue RHS, 3484 DAGCombinerInfo &DCI) const { 3485 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3486 if (!CmpRhs || !CmpRhs->isNullValue()) 3487 return SDValue(); 3488 3489 SelectionDAG &DAG = DCI.DAG; 3490 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3491 SDValue CmpLHS = Cond.getOperand(0); 3492 3493 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3494 AMDGPUISD::FFBH_U32; 3495 3496 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3497 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3498 if (CCOpcode == ISD::SETEQ && 3499 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3500 RHS.getOperand(0) == CmpLHS && 3501 isNegativeOne(LHS)) { 3502 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3503 } 3504 3505 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3506 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3507 if (CCOpcode == ISD::SETNE && 3508 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3509 LHS.getOperand(0) == CmpLHS && 3510 isNegativeOne(RHS)) { 3511 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3512 } 3513 3514 return SDValue(); 3515 } 3516 3517 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3518 unsigned Op, 3519 const SDLoc &SL, 3520 SDValue Cond, 3521 SDValue N1, 3522 SDValue N2) { 3523 SelectionDAG &DAG = DCI.DAG; 3524 EVT VT = N1.getValueType(); 3525 3526 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3527 N1.getOperand(0), N2.getOperand(0)); 3528 DCI.AddToWorklist(NewSelect.getNode()); 3529 return DAG.getNode(Op, SL, VT, NewSelect); 3530 } 3531 3532 // Pull a free FP operation out of a select so it may fold into uses. 3533 // 3534 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3535 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3536 // 3537 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3538 // select c, (fabs x), +k -> fabs (select c, x, k) 3539 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3540 SDValue N) { 3541 SelectionDAG &DAG = DCI.DAG; 3542 SDValue Cond = N.getOperand(0); 3543 SDValue LHS = N.getOperand(1); 3544 SDValue RHS = N.getOperand(2); 3545 3546 EVT VT = N.getValueType(); 3547 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3548 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3549 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3550 SDLoc(N), Cond, LHS, RHS); 3551 } 3552 3553 bool Inv = false; 3554 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3555 std::swap(LHS, RHS); 3556 Inv = true; 3557 } 3558 3559 // TODO: Support vector constants. 3560 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3561 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3562 SDLoc SL(N); 3563 // If one side is an fneg/fabs and the other is a constant, we can push the 3564 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3565 SDValue NewLHS = LHS.getOperand(0); 3566 SDValue NewRHS = RHS; 3567 3568 // Careful: if the neg can be folded up, don't try to pull it back down. 3569 bool ShouldFoldNeg = true; 3570 3571 if (NewLHS.hasOneUse()) { 3572 unsigned Opc = NewLHS.getOpcode(); 3573 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3574 ShouldFoldNeg = false; 3575 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3576 ShouldFoldNeg = false; 3577 } 3578 3579 if (ShouldFoldNeg) { 3580 if (LHS.getOpcode() == ISD::FNEG) 3581 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3582 else if (CRHS->isNegative()) 3583 return SDValue(); 3584 3585 if (Inv) 3586 std::swap(NewLHS, NewRHS); 3587 3588 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3589 Cond, NewLHS, NewRHS); 3590 DCI.AddToWorklist(NewSelect.getNode()); 3591 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3592 } 3593 } 3594 3595 return SDValue(); 3596 } 3597 3598 3599 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3600 DAGCombinerInfo &DCI) const { 3601 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3602 return Folded; 3603 3604 SDValue Cond = N->getOperand(0); 3605 if (Cond.getOpcode() != ISD::SETCC) 3606 return SDValue(); 3607 3608 EVT VT = N->getValueType(0); 3609 SDValue LHS = Cond.getOperand(0); 3610 SDValue RHS = Cond.getOperand(1); 3611 SDValue CC = Cond.getOperand(2); 3612 3613 SDValue True = N->getOperand(1); 3614 SDValue False = N->getOperand(2); 3615 3616 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3617 SelectionDAG &DAG = DCI.DAG; 3618 if (DAG.isConstantValueOfAnyType(True) && 3619 !DAG.isConstantValueOfAnyType(False)) { 3620 // Swap cmp + select pair to move constant to false input. 3621 // This will allow using VOPC cndmasks more often. 3622 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3623 3624 SDLoc SL(N); 3625 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3626 LHS.getValueType().isInteger()); 3627 3628 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3629 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3630 } 3631 3632 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3633 SDValue MinMax 3634 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3635 // Revisit this node so we can catch min3/max3/med3 patterns. 3636 //DCI.AddToWorklist(MinMax.getNode()); 3637 return MinMax; 3638 } 3639 } 3640 3641 // There's no reason to not do this if the condition has other uses. 3642 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3643 } 3644 3645 static bool isInv2Pi(const APFloat &APF) { 3646 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3647 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3648 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3649 3650 return APF.bitwiseIsEqual(KF16) || 3651 APF.bitwiseIsEqual(KF32) || 3652 APF.bitwiseIsEqual(KF64); 3653 } 3654 3655 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3656 // additional cost to negate them. 3657 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3658 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3659 if (C->isZero() && !C->isNegative()) 3660 return true; 3661 3662 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3663 return true; 3664 } 3665 3666 return false; 3667 } 3668 3669 static unsigned inverseMinMax(unsigned Opc) { 3670 switch (Opc) { 3671 case ISD::FMAXNUM: 3672 return ISD::FMINNUM; 3673 case ISD::FMINNUM: 3674 return ISD::FMAXNUM; 3675 case ISD::FMAXNUM_IEEE: 3676 return ISD::FMINNUM_IEEE; 3677 case ISD::FMINNUM_IEEE: 3678 return ISD::FMAXNUM_IEEE; 3679 case AMDGPUISD::FMAX_LEGACY: 3680 return AMDGPUISD::FMIN_LEGACY; 3681 case AMDGPUISD::FMIN_LEGACY: 3682 return AMDGPUISD::FMAX_LEGACY; 3683 default: 3684 llvm_unreachable("invalid min/max opcode"); 3685 } 3686 } 3687 3688 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3689 DAGCombinerInfo &DCI) const { 3690 SelectionDAG &DAG = DCI.DAG; 3691 SDValue N0 = N->getOperand(0); 3692 EVT VT = N->getValueType(0); 3693 3694 unsigned Opc = N0.getOpcode(); 3695 3696 // If the input has multiple uses and we can either fold the negate down, or 3697 // the other uses cannot, give up. This both prevents unprofitable 3698 // transformations and infinite loops: we won't repeatedly try to fold around 3699 // a negate that has no 'good' form. 3700 if (N0.hasOneUse()) { 3701 // This may be able to fold into the source, but at a code size cost. Don't 3702 // fold if the fold into the user is free. 3703 if (allUsesHaveSourceMods(N, 0)) 3704 return SDValue(); 3705 } else { 3706 if (fnegFoldsIntoOp(Opc) && 3707 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3708 return SDValue(); 3709 } 3710 3711 SDLoc SL(N); 3712 switch (Opc) { 3713 case ISD::FADD: { 3714 if (!mayIgnoreSignedZero(N0)) 3715 return SDValue(); 3716 3717 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3718 SDValue LHS = N0.getOperand(0); 3719 SDValue RHS = N0.getOperand(1); 3720 3721 if (LHS.getOpcode() != ISD::FNEG) 3722 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3723 else 3724 LHS = LHS.getOperand(0); 3725 3726 if (RHS.getOpcode() != ISD::FNEG) 3727 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3728 else 3729 RHS = RHS.getOperand(0); 3730 3731 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3732 if (Res.getOpcode() != ISD::FADD) 3733 return SDValue(); // Op got folded away. 3734 if (!N0.hasOneUse()) 3735 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3736 return Res; 3737 } 3738 case ISD::FMUL: 3739 case AMDGPUISD::FMUL_LEGACY: { 3740 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3741 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3742 SDValue LHS = N0.getOperand(0); 3743 SDValue RHS = N0.getOperand(1); 3744 3745 if (LHS.getOpcode() == ISD::FNEG) 3746 LHS = LHS.getOperand(0); 3747 else if (RHS.getOpcode() == ISD::FNEG) 3748 RHS = RHS.getOperand(0); 3749 else 3750 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3751 3752 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3753 if (Res.getOpcode() != Opc) 3754 return SDValue(); // Op got folded away. 3755 if (!N0.hasOneUse()) 3756 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3757 return Res; 3758 } 3759 case ISD::FMA: 3760 case ISD::FMAD: { 3761 if (!mayIgnoreSignedZero(N0)) 3762 return SDValue(); 3763 3764 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3765 SDValue LHS = N0.getOperand(0); 3766 SDValue MHS = N0.getOperand(1); 3767 SDValue RHS = N0.getOperand(2); 3768 3769 if (LHS.getOpcode() == ISD::FNEG) 3770 LHS = LHS.getOperand(0); 3771 else if (MHS.getOpcode() == ISD::FNEG) 3772 MHS = MHS.getOperand(0); 3773 else 3774 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3775 3776 if (RHS.getOpcode() != ISD::FNEG) 3777 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3778 else 3779 RHS = RHS.getOperand(0); 3780 3781 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3782 if (Res.getOpcode() != Opc) 3783 return SDValue(); // Op got folded away. 3784 if (!N0.hasOneUse()) 3785 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3786 return Res; 3787 } 3788 case ISD::FMAXNUM: 3789 case ISD::FMINNUM: 3790 case ISD::FMAXNUM_IEEE: 3791 case ISD::FMINNUM_IEEE: 3792 case AMDGPUISD::FMAX_LEGACY: 3793 case AMDGPUISD::FMIN_LEGACY: { 3794 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3795 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3796 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3797 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3798 3799 SDValue LHS = N0.getOperand(0); 3800 SDValue RHS = N0.getOperand(1); 3801 3802 // 0 doesn't have a negated inline immediate. 3803 // TODO: This constant check should be generalized to other operations. 3804 if (isConstantCostlierToNegate(RHS)) 3805 return SDValue(); 3806 3807 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3808 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3809 unsigned Opposite = inverseMinMax(Opc); 3810 3811 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3812 if (Res.getOpcode() != Opposite) 3813 return SDValue(); // Op got folded away. 3814 if (!N0.hasOneUse()) 3815 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3816 return Res; 3817 } 3818 case AMDGPUISD::FMED3: { 3819 SDValue Ops[3]; 3820 for (unsigned I = 0; I < 3; ++I) 3821 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3822 3823 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3824 if (Res.getOpcode() != AMDGPUISD::FMED3) 3825 return SDValue(); // Op got folded away. 3826 if (!N0.hasOneUse()) 3827 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3828 return Res; 3829 } 3830 case ISD::FP_EXTEND: 3831 case ISD::FTRUNC: 3832 case ISD::FRINT: 3833 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3834 case ISD::FSIN: 3835 case ISD::FCANONICALIZE: 3836 case AMDGPUISD::RCP: 3837 case AMDGPUISD::RCP_LEGACY: 3838 case AMDGPUISD::RCP_IFLAG: 3839 case AMDGPUISD::SIN_HW: { 3840 SDValue CvtSrc = N0.getOperand(0); 3841 if (CvtSrc.getOpcode() == ISD::FNEG) { 3842 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3843 // (fneg (rcp (fneg x))) -> (rcp x) 3844 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3845 } 3846 3847 if (!N0.hasOneUse()) 3848 return SDValue(); 3849 3850 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3851 // (fneg (rcp x)) -> (rcp (fneg x)) 3852 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3853 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3854 } 3855 case ISD::FP_ROUND: { 3856 SDValue CvtSrc = N0.getOperand(0); 3857 3858 if (CvtSrc.getOpcode() == ISD::FNEG) { 3859 // (fneg (fp_round (fneg x))) -> (fp_round x) 3860 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3861 CvtSrc.getOperand(0), N0.getOperand(1)); 3862 } 3863 3864 if (!N0.hasOneUse()) 3865 return SDValue(); 3866 3867 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3868 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3869 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3870 } 3871 case ISD::FP16_TO_FP: { 3872 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3873 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3874 // Put the fneg back as a legal source operation that can be matched later. 3875 SDLoc SL(N); 3876 3877 SDValue Src = N0.getOperand(0); 3878 EVT SrcVT = Src.getValueType(); 3879 3880 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3881 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3882 DAG.getConstant(0x8000, SL, SrcVT)); 3883 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3884 } 3885 default: 3886 return SDValue(); 3887 } 3888 } 3889 3890 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3891 DAGCombinerInfo &DCI) const { 3892 SelectionDAG &DAG = DCI.DAG; 3893 SDValue N0 = N->getOperand(0); 3894 3895 if (!N0.hasOneUse()) 3896 return SDValue(); 3897 3898 switch (N0.getOpcode()) { 3899 case ISD::FP16_TO_FP: { 3900 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3901 SDLoc SL(N); 3902 SDValue Src = N0.getOperand(0); 3903 EVT SrcVT = Src.getValueType(); 3904 3905 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3906 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3907 DAG.getConstant(0x7fff, SL, SrcVT)); 3908 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3909 } 3910 default: 3911 return SDValue(); 3912 } 3913 } 3914 3915 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3916 DAGCombinerInfo &DCI) const { 3917 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3918 if (!CFP) 3919 return SDValue(); 3920 3921 // XXX - Should this flush denormals? 3922 const APFloat &Val = CFP->getValueAPF(); 3923 APFloat One(Val.getSemantics(), "1.0"); 3924 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3925 } 3926 3927 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3928 DAGCombinerInfo &DCI) const { 3929 SelectionDAG &DAG = DCI.DAG; 3930 SDLoc DL(N); 3931 3932 switch(N->getOpcode()) { 3933 default: 3934 break; 3935 case ISD::BITCAST: { 3936 EVT DestVT = N->getValueType(0); 3937 3938 // Push casts through vector builds. This helps avoid emitting a large 3939 // number of copies when materializing floating point vector constants. 3940 // 3941 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3942 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3943 if (DestVT.isVector()) { 3944 SDValue Src = N->getOperand(0); 3945 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3946 EVT SrcVT = Src.getValueType(); 3947 unsigned NElts = DestVT.getVectorNumElements(); 3948 3949 if (SrcVT.getVectorNumElements() == NElts) { 3950 EVT DestEltVT = DestVT.getVectorElementType(); 3951 3952 SmallVector<SDValue, 8> CastedElts; 3953 SDLoc SL(N); 3954 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3955 SDValue Elt = Src.getOperand(I); 3956 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3957 } 3958 3959 return DAG.getBuildVector(DestVT, SL, CastedElts); 3960 } 3961 } 3962 } 3963 3964 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3965 break; 3966 3967 // Fold bitcasts of constants. 3968 // 3969 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3970 // TODO: Generalize and move to DAGCombiner 3971 SDValue Src = N->getOperand(0); 3972 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3973 if (Src.getValueType() == MVT::i64) { 3974 SDLoc SL(N); 3975 uint64_t CVal = C->getZExtValue(); 3976 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3977 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3978 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3979 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3980 } 3981 } 3982 3983 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3984 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3985 SDLoc SL(N); 3986 uint64_t CVal = Val.getZExtValue(); 3987 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3988 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3989 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3990 3991 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3992 } 3993 3994 break; 3995 } 3996 case ISD::SHL: { 3997 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3998 break; 3999 4000 return performShlCombine(N, DCI); 4001 } 4002 case ISD::SRL: { 4003 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4004 break; 4005 4006 return performSrlCombine(N, DCI); 4007 } 4008 case ISD::SRA: { 4009 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4010 break; 4011 4012 return performSraCombine(N, DCI); 4013 } 4014 case ISD::TRUNCATE: 4015 return performTruncateCombine(N, DCI); 4016 case ISD::MUL: 4017 return performMulCombine(N, DCI); 4018 case ISD::MULHS: 4019 return performMulhsCombine(N, DCI); 4020 case ISD::MULHU: 4021 return performMulhuCombine(N, DCI); 4022 case AMDGPUISD::MUL_I24: 4023 case AMDGPUISD::MUL_U24: 4024 case AMDGPUISD::MULHI_I24: 4025 case AMDGPUISD::MULHI_U24: { 4026 if (SDValue V = simplifyI24(N, DCI)) 4027 return V; 4028 return SDValue(); 4029 } 4030 case AMDGPUISD::MUL_LOHI_I24: 4031 case AMDGPUISD::MUL_LOHI_U24: 4032 return performMulLoHi24Combine(N, DCI); 4033 case ISD::SELECT: 4034 return performSelectCombine(N, DCI); 4035 case ISD::FNEG: 4036 return performFNegCombine(N, DCI); 4037 case ISD::FABS: 4038 return performFAbsCombine(N, DCI); 4039 case AMDGPUISD::BFE_I32: 4040 case AMDGPUISD::BFE_U32: { 4041 assert(!N->getValueType(0).isVector() && 4042 "Vector handling of BFE not implemented"); 4043 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4044 if (!Width) 4045 break; 4046 4047 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4048 if (WidthVal == 0) 4049 return DAG.getConstant(0, DL, MVT::i32); 4050 4051 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4052 if (!Offset) 4053 break; 4054 4055 SDValue BitsFrom = N->getOperand(0); 4056 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4057 4058 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4059 4060 if (OffsetVal == 0) { 4061 // This is already sign / zero extended, so try to fold away extra BFEs. 4062 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4063 4064 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4065 if (OpSignBits >= SignBits) 4066 return BitsFrom; 4067 4068 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4069 if (Signed) { 4070 // This is a sign_extend_inreg. Replace it to take advantage of existing 4071 // DAG Combines. If not eliminated, we will match back to BFE during 4072 // selection. 4073 4074 // TODO: The sext_inreg of extended types ends, although we can could 4075 // handle them in a single BFE. 4076 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4077 DAG.getValueType(SmallVT)); 4078 } 4079 4080 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4081 } 4082 4083 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4084 if (Signed) { 4085 return constantFoldBFE<int32_t>(DAG, 4086 CVal->getSExtValue(), 4087 OffsetVal, 4088 WidthVal, 4089 DL); 4090 } 4091 4092 return constantFoldBFE<uint32_t>(DAG, 4093 CVal->getZExtValue(), 4094 OffsetVal, 4095 WidthVal, 4096 DL); 4097 } 4098 4099 if ((OffsetVal + WidthVal) >= 32 && 4100 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4101 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4102 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4103 BitsFrom, ShiftVal); 4104 } 4105 4106 if (BitsFrom.hasOneUse()) { 4107 APInt Demanded = APInt::getBitsSet(32, 4108 OffsetVal, 4109 OffsetVal + WidthVal); 4110 4111 KnownBits Known; 4112 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4113 !DCI.isBeforeLegalizeOps()); 4114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4115 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4116 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4117 DCI.CommitTargetLoweringOpt(TLO); 4118 } 4119 } 4120 4121 break; 4122 } 4123 case ISD::LOAD: 4124 return performLoadCombine(N, DCI); 4125 case ISD::STORE: 4126 return performStoreCombine(N, DCI); 4127 case AMDGPUISD::RCP: 4128 case AMDGPUISD::RCP_IFLAG: 4129 return performRcpCombine(N, DCI); 4130 case ISD::AssertZext: 4131 case ISD::AssertSext: 4132 return performAssertSZExtCombine(N, DCI); 4133 case ISD::INTRINSIC_WO_CHAIN: 4134 return performIntrinsicWOChainCombine(N, DCI); 4135 } 4136 return SDValue(); 4137 } 4138 4139 //===----------------------------------------------------------------------===// 4140 // Helper functions 4141 //===----------------------------------------------------------------------===// 4142 4143 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4144 const TargetRegisterClass *RC, 4145 unsigned Reg, EVT VT, 4146 const SDLoc &SL, 4147 bool RawReg) const { 4148 MachineFunction &MF = DAG.getMachineFunction(); 4149 MachineRegisterInfo &MRI = MF.getRegInfo(); 4150 unsigned VReg; 4151 4152 if (!MRI.isLiveIn(Reg)) { 4153 VReg = MRI.createVirtualRegister(RC); 4154 MRI.addLiveIn(Reg, VReg); 4155 } else { 4156 VReg = MRI.getLiveInVirtReg(Reg); 4157 } 4158 4159 if (RawReg) 4160 return DAG.getRegister(VReg, VT); 4161 4162 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4163 } 4164 4165 // This may be called multiple times, and nothing prevents creating multiple 4166 // objects at the same offset. See if we already defined this object. 4167 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4168 int64_t Offset) { 4169 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4170 if (MFI.getObjectOffset(I) == Offset) { 4171 assert(MFI.getObjectSize(I) == Size); 4172 return I; 4173 } 4174 } 4175 4176 return MFI.CreateFixedObject(Size, Offset, true); 4177 } 4178 4179 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4180 EVT VT, 4181 const SDLoc &SL, 4182 int64_t Offset) const { 4183 MachineFunction &MF = DAG.getMachineFunction(); 4184 MachineFrameInfo &MFI = MF.getFrameInfo(); 4185 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4186 4187 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4188 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4189 4190 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4191 MachineMemOperand::MODereferenceable | 4192 MachineMemOperand::MOInvariant); 4193 } 4194 4195 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4196 const SDLoc &SL, 4197 SDValue Chain, 4198 SDValue ArgVal, 4199 int64_t Offset) const { 4200 MachineFunction &MF = DAG.getMachineFunction(); 4201 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4202 4203 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4204 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4205 MachineMemOperand::MODereferenceable); 4206 return Store; 4207 } 4208 4209 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4210 const TargetRegisterClass *RC, 4211 EVT VT, const SDLoc &SL, 4212 const ArgDescriptor &Arg) const { 4213 assert(Arg && "Attempting to load missing argument"); 4214 4215 SDValue V = Arg.isRegister() ? 4216 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4217 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4218 4219 if (!Arg.isMasked()) 4220 return V; 4221 4222 unsigned Mask = Arg.getMask(); 4223 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4224 V = DAG.getNode(ISD::SRL, SL, VT, V, 4225 DAG.getShiftAmountConstant(Shift, VT, SL)); 4226 return DAG.getNode(ISD::AND, SL, VT, V, 4227 DAG.getConstant(Mask >> Shift, SL, VT)); 4228 } 4229 4230 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4231 const MachineFunction &MF, const ImplicitParameter Param) const { 4232 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4233 const AMDGPUSubtarget &ST = 4234 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4235 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4236 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4237 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4238 ExplicitArgOffset; 4239 switch (Param) { 4240 case GRID_DIM: 4241 return ArgOffset; 4242 case GRID_OFFSET: 4243 return ArgOffset + 4; 4244 } 4245 llvm_unreachable("unexpected implicit parameter type"); 4246 } 4247 4248 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4249 4250 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4251 switch ((AMDGPUISD::NodeType)Opcode) { 4252 case AMDGPUISD::FIRST_NUMBER: break; 4253 // AMDIL DAG nodes 4254 NODE_NAME_CASE(UMUL); 4255 NODE_NAME_CASE(BRANCH_COND); 4256 4257 // AMDGPU DAG nodes 4258 NODE_NAME_CASE(IF) 4259 NODE_NAME_CASE(ELSE) 4260 NODE_NAME_CASE(LOOP) 4261 NODE_NAME_CASE(CALL) 4262 NODE_NAME_CASE(TC_RETURN) 4263 NODE_NAME_CASE(TRAP) 4264 NODE_NAME_CASE(RET_FLAG) 4265 NODE_NAME_CASE(RETURN_TO_EPILOG) 4266 NODE_NAME_CASE(ENDPGM) 4267 NODE_NAME_CASE(DWORDADDR) 4268 NODE_NAME_CASE(FRACT) 4269 NODE_NAME_CASE(SETCC) 4270 NODE_NAME_CASE(SETREG) 4271 NODE_NAME_CASE(DENORM_MODE) 4272 NODE_NAME_CASE(FMA_W_CHAIN) 4273 NODE_NAME_CASE(FMUL_W_CHAIN) 4274 NODE_NAME_CASE(CLAMP) 4275 NODE_NAME_CASE(COS_HW) 4276 NODE_NAME_CASE(SIN_HW) 4277 NODE_NAME_CASE(FMAX_LEGACY) 4278 NODE_NAME_CASE(FMIN_LEGACY) 4279 NODE_NAME_CASE(FMAX3) 4280 NODE_NAME_CASE(SMAX3) 4281 NODE_NAME_CASE(UMAX3) 4282 NODE_NAME_CASE(FMIN3) 4283 NODE_NAME_CASE(SMIN3) 4284 NODE_NAME_CASE(UMIN3) 4285 NODE_NAME_CASE(FMED3) 4286 NODE_NAME_CASE(SMED3) 4287 NODE_NAME_CASE(UMED3) 4288 NODE_NAME_CASE(FDOT2) 4289 NODE_NAME_CASE(URECIP) 4290 NODE_NAME_CASE(DIV_SCALE) 4291 NODE_NAME_CASE(DIV_FMAS) 4292 NODE_NAME_CASE(DIV_FIXUP) 4293 NODE_NAME_CASE(FMAD_FTZ) 4294 NODE_NAME_CASE(TRIG_PREOP) 4295 NODE_NAME_CASE(RCP) 4296 NODE_NAME_CASE(RSQ) 4297 NODE_NAME_CASE(RCP_LEGACY) 4298 NODE_NAME_CASE(RSQ_LEGACY) 4299 NODE_NAME_CASE(RCP_IFLAG) 4300 NODE_NAME_CASE(FMUL_LEGACY) 4301 NODE_NAME_CASE(RSQ_CLAMP) 4302 NODE_NAME_CASE(LDEXP) 4303 NODE_NAME_CASE(FP_CLASS) 4304 NODE_NAME_CASE(DOT4) 4305 NODE_NAME_CASE(CARRY) 4306 NODE_NAME_CASE(BORROW) 4307 NODE_NAME_CASE(BFE_U32) 4308 NODE_NAME_CASE(BFE_I32) 4309 NODE_NAME_CASE(BFI) 4310 NODE_NAME_CASE(BFM) 4311 NODE_NAME_CASE(FFBH_U32) 4312 NODE_NAME_CASE(FFBH_I32) 4313 NODE_NAME_CASE(FFBL_B32) 4314 NODE_NAME_CASE(MUL_U24) 4315 NODE_NAME_CASE(MUL_I24) 4316 NODE_NAME_CASE(MULHI_U24) 4317 NODE_NAME_CASE(MULHI_I24) 4318 NODE_NAME_CASE(MUL_LOHI_U24) 4319 NODE_NAME_CASE(MUL_LOHI_I24) 4320 NODE_NAME_CASE(MAD_U24) 4321 NODE_NAME_CASE(MAD_I24) 4322 NODE_NAME_CASE(MAD_I64_I32) 4323 NODE_NAME_CASE(MAD_U64_U32) 4324 NODE_NAME_CASE(PERM) 4325 NODE_NAME_CASE(TEXTURE_FETCH) 4326 NODE_NAME_CASE(EXPORT) 4327 NODE_NAME_CASE(EXPORT_DONE) 4328 NODE_NAME_CASE(R600_EXPORT) 4329 NODE_NAME_CASE(CONST_ADDRESS) 4330 NODE_NAME_CASE(REGISTER_LOAD) 4331 NODE_NAME_CASE(REGISTER_STORE) 4332 NODE_NAME_CASE(SAMPLE) 4333 NODE_NAME_CASE(SAMPLEB) 4334 NODE_NAME_CASE(SAMPLED) 4335 NODE_NAME_CASE(SAMPLEL) 4336 NODE_NAME_CASE(CVT_F32_UBYTE0) 4337 NODE_NAME_CASE(CVT_F32_UBYTE1) 4338 NODE_NAME_CASE(CVT_F32_UBYTE2) 4339 NODE_NAME_CASE(CVT_F32_UBYTE3) 4340 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4341 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4342 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4343 NODE_NAME_CASE(CVT_PK_I16_I32) 4344 NODE_NAME_CASE(CVT_PK_U16_U32) 4345 NODE_NAME_CASE(FP_TO_FP16) 4346 NODE_NAME_CASE(FP16_ZEXT) 4347 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4348 NODE_NAME_CASE(CONST_DATA_PTR) 4349 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4350 NODE_NAME_CASE(LDS) 4351 NODE_NAME_CASE(KILL) 4352 NODE_NAME_CASE(DUMMY_CHAIN) 4353 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4354 NODE_NAME_CASE(INTERP_MOV) 4355 NODE_NAME_CASE(INTERP_P1) 4356 NODE_NAME_CASE(INTERP_P2) 4357 NODE_NAME_CASE(INTERP_P1LL_F16) 4358 NODE_NAME_CASE(INTERP_P1LV_F16) 4359 NODE_NAME_CASE(INTERP_P2_F16) 4360 NODE_NAME_CASE(LOAD_D16_HI) 4361 NODE_NAME_CASE(LOAD_D16_LO) 4362 NODE_NAME_CASE(LOAD_D16_HI_I8) 4363 NODE_NAME_CASE(LOAD_D16_HI_U8) 4364 NODE_NAME_CASE(LOAD_D16_LO_I8) 4365 NODE_NAME_CASE(LOAD_D16_LO_U8) 4366 NODE_NAME_CASE(STORE_MSKOR) 4367 NODE_NAME_CASE(LOAD_CONSTANT) 4368 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4369 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4370 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4371 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4372 NODE_NAME_CASE(DS_ORDERED_COUNT) 4373 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4374 NODE_NAME_CASE(ATOMIC_INC) 4375 NODE_NAME_CASE(ATOMIC_DEC) 4376 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4377 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4378 NODE_NAME_CASE(BUFFER_LOAD) 4379 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4380 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4381 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4382 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4383 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4384 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4385 NODE_NAME_CASE(SBUFFER_LOAD) 4386 NODE_NAME_CASE(BUFFER_STORE) 4387 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4388 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4389 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4390 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4391 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4392 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4393 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4394 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4395 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4396 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4397 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4398 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4399 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4400 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4401 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4402 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4403 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4404 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4405 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4406 NODE_NAME_CASE(ATOMIC_FADD) 4407 NODE_NAME_CASE(ATOMIC_PK_FADD) 4408 4409 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4410 } 4411 return nullptr; 4412 } 4413 4414 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4415 SelectionDAG &DAG, int Enabled, 4416 int &RefinementSteps, 4417 bool &UseOneConstNR, 4418 bool Reciprocal) const { 4419 EVT VT = Operand.getValueType(); 4420 4421 if (VT == MVT::f32) { 4422 RefinementSteps = 0; 4423 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4424 } 4425 4426 // TODO: There is also f64 rsq instruction, but the documentation is less 4427 // clear on its precision. 4428 4429 return SDValue(); 4430 } 4431 4432 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4433 SelectionDAG &DAG, int Enabled, 4434 int &RefinementSteps) const { 4435 EVT VT = Operand.getValueType(); 4436 4437 if (VT == MVT::f32) { 4438 // Reciprocal, < 1 ulp error. 4439 // 4440 // This reciprocal approximation converges to < 0.5 ulp error with one 4441 // newton rhapson performed with two fused multiple adds (FMAs). 4442 4443 RefinementSteps = 0; 4444 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4445 } 4446 4447 // TODO: There is also f64 rcp instruction, but the documentation is less 4448 // clear on its precision. 4449 4450 return SDValue(); 4451 } 4452 4453 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4454 const SDValue Op, KnownBits &Known, 4455 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4456 4457 Known.resetAll(); // Don't know anything. 4458 4459 unsigned Opc = Op.getOpcode(); 4460 4461 switch (Opc) { 4462 default: 4463 break; 4464 case AMDGPUISD::CARRY: 4465 case AMDGPUISD::BORROW: { 4466 Known.Zero = APInt::getHighBitsSet(32, 31); 4467 break; 4468 } 4469 4470 case AMDGPUISD::BFE_I32: 4471 case AMDGPUISD::BFE_U32: { 4472 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4473 if (!CWidth) 4474 return; 4475 4476 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4477 4478 if (Opc == AMDGPUISD::BFE_U32) 4479 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4480 4481 break; 4482 } 4483 case AMDGPUISD::FP_TO_FP16: 4484 case AMDGPUISD::FP16_ZEXT: { 4485 unsigned BitWidth = Known.getBitWidth(); 4486 4487 // High bits are zero. 4488 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4489 break; 4490 } 4491 case AMDGPUISD::MUL_U24: 4492 case AMDGPUISD::MUL_I24: { 4493 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4494 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4495 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4496 RHSKnown.countMinTrailingZeros(); 4497 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4498 4499 // Truncate to 24 bits. 4500 LHSKnown = LHSKnown.trunc(24); 4501 RHSKnown = RHSKnown.trunc(24); 4502 4503 bool Negative = false; 4504 if (Opc == AMDGPUISD::MUL_I24) { 4505 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4506 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4507 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4508 if (MaxValBits >= 32) 4509 break; 4510 bool LHSNegative = LHSKnown.isNegative(); 4511 bool LHSPositive = LHSKnown.isNonNegative(); 4512 bool RHSNegative = RHSKnown.isNegative(); 4513 bool RHSPositive = RHSKnown.isNonNegative(); 4514 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4515 break; 4516 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4517 if (Negative) 4518 Known.One.setHighBits(32 - MaxValBits); 4519 else 4520 Known.Zero.setHighBits(32 - MaxValBits); 4521 } else { 4522 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4523 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4524 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4525 if (MaxValBits >= 32) 4526 break; 4527 Known.Zero.setHighBits(32 - MaxValBits); 4528 } 4529 break; 4530 } 4531 case AMDGPUISD::PERM: { 4532 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4533 if (!CMask) 4534 return; 4535 4536 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4537 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4538 unsigned Sel = CMask->getZExtValue(); 4539 4540 for (unsigned I = 0; I < 32; I += 8) { 4541 unsigned SelBits = Sel & 0xff; 4542 if (SelBits < 4) { 4543 SelBits *= 8; 4544 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4545 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4546 } else if (SelBits < 7) { 4547 SelBits = (SelBits & 3) * 8; 4548 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4549 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4550 } else if (SelBits == 0x0c) { 4551 Known.Zero |= 0xFFull << I; 4552 } else if (SelBits > 0x0c) { 4553 Known.One |= 0xFFull << I; 4554 } 4555 Sel >>= 8; 4556 } 4557 break; 4558 } 4559 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4560 Known.Zero.setHighBits(24); 4561 break; 4562 } 4563 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4564 Known.Zero.setHighBits(16); 4565 break; 4566 } 4567 case AMDGPUISD::LDS: { 4568 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4569 unsigned Align = GA->getGlobal()->getAlignment(); 4570 4571 Known.Zero.setHighBits(16); 4572 if (Align) 4573 Known.Zero.setLowBits(Log2_32(Align)); 4574 break; 4575 } 4576 case ISD::INTRINSIC_WO_CHAIN: { 4577 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4578 switch (IID) { 4579 case Intrinsic::amdgcn_mbcnt_lo: 4580 case Intrinsic::amdgcn_mbcnt_hi: { 4581 const GCNSubtarget &ST = 4582 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4583 // These return at most the wavefront size - 1. 4584 unsigned Size = Op.getValueType().getSizeInBits(); 4585 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4586 break; 4587 } 4588 default: 4589 break; 4590 } 4591 } 4592 } 4593 } 4594 4595 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4596 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4597 unsigned Depth) const { 4598 switch (Op.getOpcode()) { 4599 case AMDGPUISD::BFE_I32: { 4600 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4601 if (!Width) 4602 return 1; 4603 4604 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4605 if (!isNullConstant(Op.getOperand(1))) 4606 return SignBits; 4607 4608 // TODO: Could probably figure something out with non-0 offsets. 4609 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4610 return std::max(SignBits, Op0SignBits); 4611 } 4612 4613 case AMDGPUISD::BFE_U32: { 4614 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4615 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4616 } 4617 4618 case AMDGPUISD::CARRY: 4619 case AMDGPUISD::BORROW: 4620 return 31; 4621 case AMDGPUISD::BUFFER_LOAD_BYTE: 4622 return 25; 4623 case AMDGPUISD::BUFFER_LOAD_SHORT: 4624 return 17; 4625 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4626 return 24; 4627 case AMDGPUISD::BUFFER_LOAD_USHORT: 4628 return 16; 4629 case AMDGPUISD::FP_TO_FP16: 4630 case AMDGPUISD::FP16_ZEXT: 4631 return 16; 4632 default: 4633 return 1; 4634 } 4635 } 4636 4637 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4638 const SelectionDAG &DAG, 4639 bool SNaN, 4640 unsigned Depth) const { 4641 unsigned Opcode = Op.getOpcode(); 4642 switch (Opcode) { 4643 case AMDGPUISD::FMIN_LEGACY: 4644 case AMDGPUISD::FMAX_LEGACY: { 4645 if (SNaN) 4646 return true; 4647 4648 // TODO: Can check no nans on one of the operands for each one, but which 4649 // one? 4650 return false; 4651 } 4652 case AMDGPUISD::FMUL_LEGACY: 4653 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4654 if (SNaN) 4655 return true; 4656 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4657 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4658 } 4659 case AMDGPUISD::FMED3: 4660 case AMDGPUISD::FMIN3: 4661 case AMDGPUISD::FMAX3: 4662 case AMDGPUISD::FMAD_FTZ: { 4663 if (SNaN) 4664 return true; 4665 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4666 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4667 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4668 } 4669 case AMDGPUISD::CVT_F32_UBYTE0: 4670 case AMDGPUISD::CVT_F32_UBYTE1: 4671 case AMDGPUISD::CVT_F32_UBYTE2: 4672 case AMDGPUISD::CVT_F32_UBYTE3: 4673 return true; 4674 4675 case AMDGPUISD::RCP: 4676 case AMDGPUISD::RSQ: 4677 case AMDGPUISD::RCP_LEGACY: 4678 case AMDGPUISD::RSQ_LEGACY: 4679 case AMDGPUISD::RSQ_CLAMP: { 4680 if (SNaN) 4681 return true; 4682 4683 // TODO: Need is known positive check. 4684 return false; 4685 } 4686 case AMDGPUISD::LDEXP: 4687 case AMDGPUISD::FRACT: { 4688 if (SNaN) 4689 return true; 4690 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4691 } 4692 case AMDGPUISD::DIV_SCALE: 4693 case AMDGPUISD::DIV_FMAS: 4694 case AMDGPUISD::DIV_FIXUP: 4695 case AMDGPUISD::TRIG_PREOP: 4696 // TODO: Refine on operands. 4697 return SNaN; 4698 case AMDGPUISD::SIN_HW: 4699 case AMDGPUISD::COS_HW: { 4700 // TODO: Need check for infinity 4701 return SNaN; 4702 } 4703 case ISD::INTRINSIC_WO_CHAIN: { 4704 unsigned IntrinsicID 4705 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4706 // TODO: Handle more intrinsics 4707 switch (IntrinsicID) { 4708 case Intrinsic::amdgcn_cubeid: 4709 return true; 4710 4711 case Intrinsic::amdgcn_frexp_mant: { 4712 if (SNaN) 4713 return true; 4714 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4715 } 4716 case Intrinsic::amdgcn_cvt_pkrtz: { 4717 if (SNaN) 4718 return true; 4719 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4720 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4721 } 4722 case Intrinsic::amdgcn_fdot2: 4723 // TODO: Refine on operand 4724 return SNaN; 4725 default: 4726 return false; 4727 } 4728 } 4729 default: 4730 return false; 4731 } 4732 } 4733 4734 TargetLowering::AtomicExpansionKind 4735 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4736 switch (RMW->getOperation()) { 4737 case AtomicRMWInst::Nand: 4738 case AtomicRMWInst::FAdd: 4739 case AtomicRMWInst::FSub: 4740 return AtomicExpansionKind::CmpXChg; 4741 default: 4742 return AtomicExpansionKind::None; 4743 } 4744 } 4745