1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
18 
19 #include "AMDGPUISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
41 
42 #include "AMDGPUGenCallingConv.inc"
43 
44 // Find a larger type to do a load / store of a vector with.
45 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
46   unsigned StoreSize = VT.getStoreSizeInBits();
47   if (StoreSize <= 32)
48     return EVT::getIntegerVT(Ctx, StoreSize);
49 
50   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
51   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
52 }
53 
54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
55   EVT VT = Op.getValueType();
56   KnownBits Known = DAG.computeKnownBits(Op);
57   return VT.getSizeInBits() - Known.countMinLeadingZeros();
58 }
59 
60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
61   EVT VT = Op.getValueType();
62 
63   // In order for this to be a signed 24-bit value, bit 23, must
64   // be a sign bit.
65   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
66 }
67 
68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
69                                            const AMDGPUSubtarget &STI)
70     : TargetLowering(TM), Subtarget(&STI) {
71   // Lower floating point store/load to integer store/load to reduce the number
72   // of patterns in tablegen.
73   setOperationAction(ISD::LOAD, MVT::f32, Promote);
74   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
75 
76   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
77   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
78 
79   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
80   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
81 
82   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
83   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
84 
85   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
86   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
87 
88   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
89   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
90 
91   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
92   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
93 
94   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
95   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
96 
97   setOperationAction(ISD::LOAD, MVT::i64, Promote);
98   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
99 
100   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
101   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
102 
103   setOperationAction(ISD::LOAD, MVT::f64, Promote);
104   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
105 
106   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
107   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
108 
109   // There are no 64-bit extloads. These should be done as a 32-bit extload and
110   // an extension to 64-bit.
111   for (MVT VT : MVT::integer_valuetypes()) {
112     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
113     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
114     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
115   }
116 
117   for (MVT VT : MVT::integer_valuetypes()) {
118     if (VT == MVT::i64)
119       continue;
120 
121     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
122     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
124     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
125 
126     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
129     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
130 
131     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
132     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
133     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
134     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
135   }
136 
137   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
138     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
139     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
140     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
141     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
143     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
144     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
147     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
148     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
149     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
150     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
151     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
152     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
153   }
154 
155   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
156   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
157   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
158   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
159   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
160   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
161   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
162 
163   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
164   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
165   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
166   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
167 
168   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
169   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
170   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
171   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
172 
173   setOperationAction(ISD::STORE, MVT::f32, Promote);
174   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
175 
176   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
177   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
178 
179   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
180   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
181 
182   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
183   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
184 
185   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
186   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
187 
188   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
189   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
190 
191   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
192   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
193 
194   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
195   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
196 
197   setOperationAction(ISD::STORE, MVT::i64, Promote);
198   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
199 
200   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
201   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
202 
203   setOperationAction(ISD::STORE, MVT::f64, Promote);
204   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
205 
206   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
207   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
208 
209   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
210   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
211   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
212   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
213 
214   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
215   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
216   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
217   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
218 
219   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
220   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
221   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
222   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
223   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
224   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
225   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
226 
227   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
228   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
229 
230   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
231   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
232 
233   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
234   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
235 
236   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
237   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
238 
239 
240   setOperationAction(ISD::Constant, MVT::i32, Legal);
241   setOperationAction(ISD::Constant, MVT::i64, Legal);
242   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
243   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
244 
245   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
246   setOperationAction(ISD::BRIND, MVT::Other, Expand);
247 
248   // This is totally unsupported, just custom lower to produce an error.
249   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
250 
251   // Library functions.  These default to Expand, but we have instructions
252   // for them.
253   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
254   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
255   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
256   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
257   setOperationAction(ISD::FABS,   MVT::f32, Legal);
258   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
259   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
260   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
261   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
262   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
263 
264   setOperationAction(ISD::FROUND, MVT::f32, Custom);
265   setOperationAction(ISD::FROUND, MVT::f64, Custom);
266 
267   setOperationAction(ISD::FLOG, MVT::f32, Custom);
268   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
269   setOperationAction(ISD::FEXP, MVT::f32, Custom);
270 
271 
272   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
273   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
274 
275   setOperationAction(ISD::FREM, MVT::f32, Custom);
276   setOperationAction(ISD::FREM, MVT::f64, Custom);
277 
278   // Expand to fneg + fadd.
279   setOperationAction(ISD::FSUB, MVT::f64, Expand);
280 
281   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
282   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
283   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
284   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
285   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
286   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
287   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
288   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
289   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
290   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
291   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
292   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
293   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
294   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
295   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
296   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
297   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
298   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
299   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
300   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
301   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
302   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
303 
304   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
305   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
306   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
307 
308   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
309   for (MVT VT : ScalarIntVTs) {
310     // These should use [SU]DIVREM, so set them to expand
311     setOperationAction(ISD::SDIV, VT, Expand);
312     setOperationAction(ISD::UDIV, VT, Expand);
313     setOperationAction(ISD::SREM, VT, Expand);
314     setOperationAction(ISD::UREM, VT, Expand);
315 
316     // GPU does not have divrem function for signed or unsigned.
317     setOperationAction(ISD::SDIVREM, VT, Custom);
318     setOperationAction(ISD::UDIVREM, VT, Custom);
319 
320     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
321     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
322     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
323 
324     setOperationAction(ISD::BSWAP, VT, Expand);
325     setOperationAction(ISD::CTTZ, VT, Expand);
326     setOperationAction(ISD::CTLZ, VT, Expand);
327 
328     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
329     setOperationAction(ISD::ADDC, VT, Legal);
330     setOperationAction(ISD::SUBC, VT, Legal);
331     setOperationAction(ISD::ADDE, VT, Legal);
332     setOperationAction(ISD::SUBE, VT, Legal);
333   }
334 
335   // The hardware supports 32-bit ROTR, but not ROTL.
336   setOperationAction(ISD::ROTL, MVT::i32, Expand);
337   setOperationAction(ISD::ROTL, MVT::i64, Expand);
338   setOperationAction(ISD::ROTR, MVT::i64, Expand);
339 
340   setOperationAction(ISD::MUL, MVT::i64, Expand);
341   setOperationAction(ISD::MULHU, MVT::i64, Expand);
342   setOperationAction(ISD::MULHS, MVT::i64, Expand);
343   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
344   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
345   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
346   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
347   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
348 
349   setOperationAction(ISD::SMIN, MVT::i32, Legal);
350   setOperationAction(ISD::UMIN, MVT::i32, Legal);
351   setOperationAction(ISD::SMAX, MVT::i32, Legal);
352   setOperationAction(ISD::UMAX, MVT::i32, Legal);
353 
354   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
355   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
356   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
357   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
358 
359   static const MVT::SimpleValueType VectorIntTypes[] = {
360     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
361   };
362 
363   for (MVT VT : VectorIntTypes) {
364     // Expand the following operations for the current type by default.
365     setOperationAction(ISD::ADD,  VT, Expand);
366     setOperationAction(ISD::AND,  VT, Expand);
367     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
368     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
369     setOperationAction(ISD::MUL,  VT, Expand);
370     setOperationAction(ISD::MULHU, VT, Expand);
371     setOperationAction(ISD::MULHS, VT, Expand);
372     setOperationAction(ISD::OR,   VT, Expand);
373     setOperationAction(ISD::SHL,  VT, Expand);
374     setOperationAction(ISD::SRA,  VT, Expand);
375     setOperationAction(ISD::SRL,  VT, Expand);
376     setOperationAction(ISD::ROTL, VT, Expand);
377     setOperationAction(ISD::ROTR, VT, Expand);
378     setOperationAction(ISD::SUB,  VT, Expand);
379     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
380     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
381     setOperationAction(ISD::SDIV, VT, Expand);
382     setOperationAction(ISD::UDIV, VT, Expand);
383     setOperationAction(ISD::SREM, VT, Expand);
384     setOperationAction(ISD::UREM, VT, Expand);
385     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
386     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
387     setOperationAction(ISD::SDIVREM, VT, Custom);
388     setOperationAction(ISD::UDIVREM, VT, Expand);
389     setOperationAction(ISD::SELECT, VT, Expand);
390     setOperationAction(ISD::VSELECT, VT, Expand);
391     setOperationAction(ISD::SELECT_CC, VT, Expand);
392     setOperationAction(ISD::XOR,  VT, Expand);
393     setOperationAction(ISD::BSWAP, VT, Expand);
394     setOperationAction(ISD::CTPOP, VT, Expand);
395     setOperationAction(ISD::CTTZ, VT, Expand);
396     setOperationAction(ISD::CTLZ, VT, Expand);
397     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
398     setOperationAction(ISD::SETCC, VT, Expand);
399   }
400 
401   static const MVT::SimpleValueType FloatVectorTypes[] = {
402      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
403   };
404 
405   for (MVT VT : FloatVectorTypes) {
406     setOperationAction(ISD::FABS, VT, Expand);
407     setOperationAction(ISD::FMINNUM, VT, Expand);
408     setOperationAction(ISD::FMAXNUM, VT, Expand);
409     setOperationAction(ISD::FADD, VT, Expand);
410     setOperationAction(ISD::FCEIL, VT, Expand);
411     setOperationAction(ISD::FCOS, VT, Expand);
412     setOperationAction(ISD::FDIV, VT, Expand);
413     setOperationAction(ISD::FEXP2, VT, Expand);
414     setOperationAction(ISD::FEXP, VT, Expand);
415     setOperationAction(ISD::FLOG2, VT, Expand);
416     setOperationAction(ISD::FREM, VT, Expand);
417     setOperationAction(ISD::FLOG, VT, Expand);
418     setOperationAction(ISD::FLOG10, VT, Expand);
419     setOperationAction(ISD::FPOW, VT, Expand);
420     setOperationAction(ISD::FFLOOR, VT, Expand);
421     setOperationAction(ISD::FTRUNC, VT, Expand);
422     setOperationAction(ISD::FMUL, VT, Expand);
423     setOperationAction(ISD::FMA, VT, Expand);
424     setOperationAction(ISD::FRINT, VT, Expand);
425     setOperationAction(ISD::FNEARBYINT, VT, Expand);
426     setOperationAction(ISD::FSQRT, VT, Expand);
427     setOperationAction(ISD::FSIN, VT, Expand);
428     setOperationAction(ISD::FSUB, VT, Expand);
429     setOperationAction(ISD::FNEG, VT, Expand);
430     setOperationAction(ISD::VSELECT, VT, Expand);
431     setOperationAction(ISD::SELECT_CC, VT, Expand);
432     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
433     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
434     setOperationAction(ISD::SETCC, VT, Expand);
435     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
436   }
437 
438   // This causes using an unrolled select operation rather than expansion with
439   // bit operations. This is in general better, but the alternative using BFI
440   // instructions may be better if the select sources are SGPRs.
441   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
442   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
443 
444   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
445   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
446 
447   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
448   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
449 
450   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
451   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
452 
453   // There are no libcalls of any kind.
454   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
455     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
456 
457   setBooleanContents(ZeroOrNegativeOneBooleanContent);
458   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
459 
460   setSchedulingPreference(Sched::RegPressure);
461   setJumpIsExpensive(true);
462 
463   // FIXME: This is only partially true. If we have to do vector compares, any
464   // SGPR pair can be a condition register. If we have a uniform condition, we
465   // are better off doing SALU operations, where there is only one SCC. For now,
466   // we don't have a way of knowing during instruction selection if a condition
467   // will be uniform and we always use vector compares. Assume we are using
468   // vector compares until that is fixed.
469   setHasMultipleConditionRegisters(true);
470 
471   setMinCmpXchgSizeInBits(32);
472   setSupportsUnalignedAtomics(false);
473 
474   PredictableSelectIsExpensive = false;
475 
476   // We want to find all load dependencies for long chains of stores to enable
477   // merging into very wide vectors. The problem is with vectors with > 4
478   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
479   // vectors are a legal type, even though we have to split the loads
480   // usually. When we can more precisely specify load legality per address
481   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
482   // smarter so that they can figure out what to do in 2 iterations without all
483   // N > 4 stores on the same chain.
484   GatherAllAliasesMaxDepth = 16;
485 
486   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
487   // about these during lowering.
488   MaxStoresPerMemcpy  = 0xffffffff;
489   MaxStoresPerMemmove = 0xffffffff;
490   MaxStoresPerMemset  = 0xffffffff;
491 
492   setTargetDAGCombine(ISD::BITCAST);
493   setTargetDAGCombine(ISD::SHL);
494   setTargetDAGCombine(ISD::SRA);
495   setTargetDAGCombine(ISD::SRL);
496   setTargetDAGCombine(ISD::TRUNCATE);
497   setTargetDAGCombine(ISD::MUL);
498   setTargetDAGCombine(ISD::MULHU);
499   setTargetDAGCombine(ISD::MULHS);
500   setTargetDAGCombine(ISD::SELECT);
501   setTargetDAGCombine(ISD::SELECT_CC);
502   setTargetDAGCombine(ISD::STORE);
503   setTargetDAGCombine(ISD::FADD);
504   setTargetDAGCombine(ISD::FSUB);
505   setTargetDAGCombine(ISD::FNEG);
506   setTargetDAGCombine(ISD::FABS);
507   setTargetDAGCombine(ISD::AssertZext);
508   setTargetDAGCombine(ISD::AssertSext);
509   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
510 }
511 
512 //===----------------------------------------------------------------------===//
513 // Target Information
514 //===----------------------------------------------------------------------===//
515 
516 LLVM_READNONE
517 static bool fnegFoldsIntoOp(unsigned Opc) {
518   switch (Opc) {
519   case ISD::FADD:
520   case ISD::FSUB:
521   case ISD::FMUL:
522   case ISD::FMA:
523   case ISD::FMAD:
524   case ISD::FMINNUM:
525   case ISD::FMAXNUM:
526   case ISD::FMINNUM_IEEE:
527   case ISD::FMAXNUM_IEEE:
528   case ISD::FSIN:
529   case ISD::FTRUNC:
530   case ISD::FRINT:
531   case ISD::FNEARBYINT:
532   case ISD::FCANONICALIZE:
533   case AMDGPUISD::RCP:
534   case AMDGPUISD::RCP_LEGACY:
535   case AMDGPUISD::RCP_IFLAG:
536   case AMDGPUISD::SIN_HW:
537   case AMDGPUISD::FMUL_LEGACY:
538   case AMDGPUISD::FMIN_LEGACY:
539   case AMDGPUISD::FMAX_LEGACY:
540   case AMDGPUISD::FMED3:
541     return true;
542   default:
543     return false;
544   }
545 }
546 
547 /// \p returns true if the operation will definitely need to use a 64-bit
548 /// encoding, and thus will use a VOP3 encoding regardless of the source
549 /// modifiers.
550 LLVM_READONLY
551 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
552   return N->getNumOperands() > 2 || VT == MVT::f64;
553 }
554 
555 // Most FP instructions support source modifiers, but this could be refined
556 // slightly.
557 LLVM_READONLY
558 static bool hasSourceMods(const SDNode *N) {
559   if (isa<MemSDNode>(N))
560     return false;
561 
562   switch (N->getOpcode()) {
563   case ISD::CopyToReg:
564   case ISD::SELECT:
565   case ISD::FDIV:
566   case ISD::FREM:
567   case ISD::INLINEASM:
568   case ISD::INLINEASM_BR:
569   case AMDGPUISD::INTERP_P1:
570   case AMDGPUISD::INTERP_P2:
571   case AMDGPUISD::DIV_SCALE:
572 
573   // TODO: Should really be looking at the users of the bitcast. These are
574   // problematic because bitcasts are used to legalize all stores to integer
575   // types.
576   case ISD::BITCAST:
577     return false;
578   default:
579     return true;
580   }
581 }
582 
583 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
584                                                  unsigned CostThreshold) {
585   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
586   // it is truly free to use a source modifier in all cases. If there are
587   // multiple users but for each one will necessitate using VOP3, there will be
588   // a code size increase. Try to avoid increasing code size unless we know it
589   // will save on the instruction count.
590   unsigned NumMayIncreaseSize = 0;
591   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
592 
593   // XXX - Should this limit number of uses to check?
594   for (const SDNode *U : N->uses()) {
595     if (!hasSourceMods(U))
596       return false;
597 
598     if (!opMustUseVOP3Encoding(U, VT)) {
599       if (++NumMayIncreaseSize > CostThreshold)
600         return false;
601     }
602   }
603 
604   return true;
605 }
606 
607 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
608   return MVT::i32;
609 }
610 
611 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
612   return true;
613 }
614 
615 // The backend supports 32 and 64 bit floating point immediates.
616 // FIXME: Why are we reporting vectors of FP immediates as legal?
617 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
618                                         bool ForCodeSize) const {
619   EVT ScalarVT = VT.getScalarType();
620   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
621          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
622 }
623 
624 // We don't want to shrink f64 / f32 constants.
625 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
626   EVT ScalarVT = VT.getScalarType();
627   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
628 }
629 
630 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
631                                                  ISD::LoadExtType ExtTy,
632                                                  EVT NewVT) const {
633   // TODO: This may be worth removing. Check regression tests for diffs.
634   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
635     return false;
636 
637   unsigned NewSize = NewVT.getStoreSizeInBits();
638 
639   // If we are reducing to a 32-bit load, this is always better.
640   if (NewSize == 32)
641     return true;
642 
643   EVT OldVT = N->getValueType(0);
644   unsigned OldSize = OldVT.getStoreSizeInBits();
645 
646   MemSDNode *MN = cast<MemSDNode>(N);
647   unsigned AS = MN->getAddressSpace();
648   // Do not shrink an aligned scalar load to sub-dword.
649   // Scalar engine cannot do sub-dword loads.
650   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
651       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
652        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
653        (isa<LoadSDNode>(N) &&
654         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
655       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
656     return false;
657 
658   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
659   // extloads, so doing one requires using a buffer_load. In cases where we
660   // still couldn't use a scalar load, using the wider load shouldn't really
661   // hurt anything.
662 
663   // If the old size already had to be an extload, there's no harm in continuing
664   // to reduce the width.
665   return (OldSize < 32);
666 }
667 
668 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
669                                                    const SelectionDAG &DAG,
670                                                    const MachineMemOperand &MMO) const {
671 
672   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
673 
674   if (LoadTy.getScalarType() == MVT::i32)
675     return false;
676 
677   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
678   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
679 
680   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
681     return false;
682 
683   bool Fast = false;
684   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), CastTy,
685                             MMO, &Fast) && Fast;
686 }
687 
688 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
689 // profitable with the expansion for 64-bit since it's generally good to
690 // speculate things.
691 // FIXME: These should really have the size as a parameter.
692 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
693   return true;
694 }
695 
696 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
697   return true;
698 }
699 
700 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
701   switch (N->getOpcode()) {
702     default:
703     return false;
704     case ISD::EntryToken:
705     case ISD::TokenFactor:
706       return true;
707     case ISD::INTRINSIC_WO_CHAIN:
708     {
709       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
710       switch (IntrID) {
711         default:
712         return false;
713         case Intrinsic::amdgcn_readfirstlane:
714         case Intrinsic::amdgcn_readlane:
715           return true;
716       }
717     }
718     break;
719     case ISD::LOAD:
720     {
721       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
722       if (L->getMemOperand()->getAddrSpace()
723       == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
724         return true;
725       return false;
726     }
727     break;
728   }
729 }
730 
731 //===---------------------------------------------------------------------===//
732 // Target Properties
733 //===---------------------------------------------------------------------===//
734 
735 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
736   assert(VT.isFloatingPoint());
737 
738   // Packed operations do not have a fabs modifier.
739   return VT == MVT::f32 || VT == MVT::f64 ||
740          (Subtarget->has16BitInsts() && VT == MVT::f16);
741 }
742 
743 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
744   assert(VT.isFloatingPoint());
745   return VT == MVT::f32 || VT == MVT::f64 ||
746          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
747          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
748 }
749 
750 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
751                                                          unsigned NumElem,
752                                                          unsigned AS) const {
753   return true;
754 }
755 
756 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
757   // There are few operations which truly have vector input operands. Any vector
758   // operation is going to involve operations on each component, and a
759   // build_vector will be a copy per element, so it always makes sense to use a
760   // build_vector input in place of the extracted element to avoid a copy into a
761   // super register.
762   //
763   // We should probably only do this if all users are extracts only, but this
764   // should be the common case.
765   return true;
766 }
767 
768 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
769   // Truncate is just accessing a subregister.
770 
771   unsigned SrcSize = Source.getSizeInBits();
772   unsigned DestSize = Dest.getSizeInBits();
773 
774   return DestSize < SrcSize && DestSize % 32 == 0 ;
775 }
776 
777 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
778   // Truncate is just accessing a subregister.
779 
780   unsigned SrcSize = Source->getScalarSizeInBits();
781   unsigned DestSize = Dest->getScalarSizeInBits();
782 
783   if (DestSize== 16 && Subtarget->has16BitInsts())
784     return SrcSize >= 32;
785 
786   return DestSize < SrcSize && DestSize % 32 == 0;
787 }
788 
789 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
790   unsigned SrcSize = Src->getScalarSizeInBits();
791   unsigned DestSize = Dest->getScalarSizeInBits();
792 
793   if (SrcSize == 16 && Subtarget->has16BitInsts())
794     return DestSize >= 32;
795 
796   return SrcSize == 32 && DestSize == 64;
797 }
798 
799 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
800   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
801   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
802   // this will enable reducing 64-bit operations the 32-bit, which is always
803   // good.
804 
805   if (Src == MVT::i16)
806     return Dest == MVT::i32 ||Dest == MVT::i64 ;
807 
808   return Src == MVT::i32 && Dest == MVT::i64;
809 }
810 
811 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
812   return isZExtFree(Val.getValueType(), VT2);
813 }
814 
815 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
816   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
817   // limited number of native 64-bit operations. Shrinking an operation to fit
818   // in a single 32-bit register should always be helpful. As currently used,
819   // this is much less general than the name suggests, and is only used in
820   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
821   // not profitable, and may actually be harmful.
822   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
823 }
824 
825 //===---------------------------------------------------------------------===//
826 // TargetLowering Callbacks
827 //===---------------------------------------------------------------------===//
828 
829 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
830                                                   bool IsVarArg) {
831   switch (CC) {
832   case CallingConv::AMDGPU_VS:
833   case CallingConv::AMDGPU_GS:
834   case CallingConv::AMDGPU_PS:
835   case CallingConv::AMDGPU_CS:
836   case CallingConv::AMDGPU_HS:
837   case CallingConv::AMDGPU_ES:
838   case CallingConv::AMDGPU_LS:
839     return CC_AMDGPU;
840   case CallingConv::C:
841   case CallingConv::Fast:
842   case CallingConv::Cold:
843     return CC_AMDGPU_Func;
844   case CallingConv::AMDGPU_KERNEL:
845   case CallingConv::SPIR_KERNEL:
846   default:
847     report_fatal_error("Unsupported calling convention for call");
848   }
849 }
850 
851 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
852                                                     bool IsVarArg) {
853   switch (CC) {
854   case CallingConv::AMDGPU_KERNEL:
855   case CallingConv::SPIR_KERNEL:
856     llvm_unreachable("kernels should not be handled here");
857   case CallingConv::AMDGPU_VS:
858   case CallingConv::AMDGPU_GS:
859   case CallingConv::AMDGPU_PS:
860   case CallingConv::AMDGPU_CS:
861   case CallingConv::AMDGPU_HS:
862   case CallingConv::AMDGPU_ES:
863   case CallingConv::AMDGPU_LS:
864     return RetCC_SI_Shader;
865   case CallingConv::C:
866   case CallingConv::Fast:
867   case CallingConv::Cold:
868     return RetCC_AMDGPU_Func;
869   default:
870     report_fatal_error("Unsupported calling convention.");
871   }
872 }
873 
874 /// The SelectionDAGBuilder will automatically promote function arguments
875 /// with illegal types.  However, this does not work for the AMDGPU targets
876 /// since the function arguments are stored in memory as these illegal types.
877 /// In order to handle this properly we need to get the original types sizes
878 /// from the LLVM IR Function and fixup the ISD:InputArg values before
879 /// passing them to AnalyzeFormalArguments()
880 
881 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
882 /// input values across multiple registers.  Each item in the Ins array
883 /// represents a single value that will be stored in registers.  Ins[x].VT is
884 /// the value type of the value that will be stored in the register, so
885 /// whatever SDNode we lower the argument to needs to be this type.
886 ///
887 /// In order to correctly lower the arguments we need to know the size of each
888 /// argument.  Since Ins[x].VT gives us the size of the register that will
889 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
890 /// for the orignal function argument so that we can deduce the correct memory
891 /// type to use for Ins[x].  In most cases the correct memory type will be
892 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
893 /// we have a kernel argument of type v8i8, this argument will be split into
894 /// 8 parts and each part will be represented by its own item in the Ins array.
895 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
896 /// the argument before it was split.  From this, we deduce that the memory type
897 /// for each individual part is i8.  We pass the memory type as LocVT to the
898 /// calling convention analysis function and the register type (Ins[x].VT) as
899 /// the ValVT.
900 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
901   CCState &State,
902   const SmallVectorImpl<ISD::InputArg> &Ins) const {
903   const MachineFunction &MF = State.getMachineFunction();
904   const Function &Fn = MF.getFunction();
905   LLVMContext &Ctx = Fn.getParent()->getContext();
906   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
907   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
908   CallingConv::ID CC = Fn.getCallingConv();
909 
910   unsigned MaxAlign = 1;
911   uint64_t ExplicitArgOffset = 0;
912   const DataLayout &DL = Fn.getParent()->getDataLayout();
913 
914   unsigned InIndex = 0;
915 
916   for (const Argument &Arg : Fn.args()) {
917     Type *BaseArgTy = Arg.getType();
918     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
919     MaxAlign = std::max(Align, MaxAlign);
920     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
921 
922     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
923     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
924 
925     // We're basically throwing away everything passed into us and starting over
926     // to get accurate in-memory offsets. The "PartOffset" is completely useless
927     // to us as computed in Ins.
928     //
929     // We also need to figure out what type legalization is trying to do to get
930     // the correct memory offsets.
931 
932     SmallVector<EVT, 16> ValueVTs;
933     SmallVector<uint64_t, 16> Offsets;
934     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
935 
936     for (unsigned Value = 0, NumValues = ValueVTs.size();
937          Value != NumValues; ++Value) {
938       uint64_t BasePartOffset = Offsets[Value];
939 
940       EVT ArgVT = ValueVTs[Value];
941       EVT MemVT = ArgVT;
942       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
943       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
944 
945       if (NumRegs == 1) {
946         // This argument is not split, so the IR type is the memory type.
947         if (ArgVT.isExtended()) {
948           // We have an extended type, like i24, so we should just use the
949           // register type.
950           MemVT = RegisterVT;
951         } else {
952           MemVT = ArgVT;
953         }
954       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
955                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
956         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
957         // We have a vector value which has been split into a vector with
958         // the same scalar type, but fewer elements.  This should handle
959         // all the floating-point vector types.
960         MemVT = RegisterVT;
961       } else if (ArgVT.isVector() &&
962                  ArgVT.getVectorNumElements() == NumRegs) {
963         // This arg has been split so that each element is stored in a separate
964         // register.
965         MemVT = ArgVT.getScalarType();
966       } else if (ArgVT.isExtended()) {
967         // We have an extended type, like i65.
968         MemVT = RegisterVT;
969       } else {
970         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
971         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
972         if (RegisterVT.isInteger()) {
973           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
974         } else if (RegisterVT.isVector()) {
975           assert(!RegisterVT.getScalarType().isFloatingPoint());
976           unsigned NumElements = RegisterVT.getVectorNumElements();
977           assert(MemoryBits % NumElements == 0);
978           // This vector type has been split into another vector type with
979           // a different elements size.
980           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
981                                            MemoryBits / NumElements);
982           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
983         } else {
984           llvm_unreachable("cannot deduce memory type.");
985         }
986       }
987 
988       // Convert one element vectors to scalar.
989       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
990         MemVT = MemVT.getScalarType();
991 
992       // Round up vec3/vec5 argument.
993       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
994         assert(MemVT.getVectorNumElements() == 3 ||
995                MemVT.getVectorNumElements() == 5);
996         MemVT = MemVT.getPow2VectorType(State.getContext());
997       }
998 
999       unsigned PartOffset = 0;
1000       for (unsigned i = 0; i != NumRegs; ++i) {
1001         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1002                                                BasePartOffset + PartOffset,
1003                                                MemVT.getSimpleVT(),
1004                                                CCValAssign::Full));
1005         PartOffset += MemVT.getStoreSize();
1006       }
1007     }
1008   }
1009 }
1010 
1011 SDValue AMDGPUTargetLowering::LowerReturn(
1012   SDValue Chain, CallingConv::ID CallConv,
1013   bool isVarArg,
1014   const SmallVectorImpl<ISD::OutputArg> &Outs,
1015   const SmallVectorImpl<SDValue> &OutVals,
1016   const SDLoc &DL, SelectionDAG &DAG) const {
1017   // FIXME: Fails for r600 tests
1018   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1019   // "wave terminate should not have return values");
1020   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1021 }
1022 
1023 //===---------------------------------------------------------------------===//
1024 // Target specific lowering
1025 //===---------------------------------------------------------------------===//
1026 
1027 /// Selects the correct CCAssignFn for a given CallingConvention value.
1028 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1029                                                     bool IsVarArg) {
1030   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1031 }
1032 
1033 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1034                                                       bool IsVarArg) {
1035   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1036 }
1037 
1038 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1039                                                   SelectionDAG &DAG,
1040                                                   MachineFrameInfo &MFI,
1041                                                   int ClobberedFI) const {
1042   SmallVector<SDValue, 8> ArgChains;
1043   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1044   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1045 
1046   // Include the original chain at the beginning of the list. When this is
1047   // used by target LowerCall hooks, this helps legalize find the
1048   // CALLSEQ_BEGIN node.
1049   ArgChains.push_back(Chain);
1050 
1051   // Add a chain value for each stack argument corresponding
1052   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1053                             UE = DAG.getEntryNode().getNode()->use_end();
1054        U != UE; ++U) {
1055     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1056       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1057         if (FI->getIndex() < 0) {
1058           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1059           int64_t InLastByte = InFirstByte;
1060           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1061 
1062           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1063               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1064             ArgChains.push_back(SDValue(L, 1));
1065         }
1066       }
1067     }
1068   }
1069 
1070   // Build a tokenfactor for all the chains.
1071   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1072 }
1073 
1074 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1075                                                  SmallVectorImpl<SDValue> &InVals,
1076                                                  StringRef Reason) const {
1077   SDValue Callee = CLI.Callee;
1078   SelectionDAG &DAG = CLI.DAG;
1079 
1080   const Function &Fn = DAG.getMachineFunction().getFunction();
1081 
1082   StringRef FuncName("<unknown>");
1083 
1084   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1085     FuncName = G->getSymbol();
1086   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1087     FuncName = G->getGlobal()->getName();
1088 
1089   DiagnosticInfoUnsupported NoCalls(
1090     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1091   DAG.getContext()->diagnose(NoCalls);
1092 
1093   if (!CLI.IsTailCall) {
1094     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1095       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1096   }
1097 
1098   return DAG.getEntryNode();
1099 }
1100 
1101 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1102                                         SmallVectorImpl<SDValue> &InVals) const {
1103   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1104 }
1105 
1106 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1107                                                       SelectionDAG &DAG) const {
1108   const Function &Fn = DAG.getMachineFunction().getFunction();
1109 
1110   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1111                                             SDLoc(Op).getDebugLoc());
1112   DAG.getContext()->diagnose(NoDynamicAlloca);
1113   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1114   return DAG.getMergeValues(Ops, SDLoc());
1115 }
1116 
1117 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1118                                              SelectionDAG &DAG) const {
1119   switch (Op.getOpcode()) {
1120   default:
1121     Op->print(errs(), &DAG);
1122     llvm_unreachable("Custom lowering code for this"
1123                      "instruction is not implemented yet!");
1124     break;
1125   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1126   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1127   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1128   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1129   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1130   case ISD::FREM: return LowerFREM(Op, DAG);
1131   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1132   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1133   case ISD::FRINT: return LowerFRINT(Op, DAG);
1134   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1135   case ISD::FROUND: return LowerFROUND(Op, DAG);
1136   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1137   case ISD::FLOG:
1138     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1139   case ISD::FLOG10:
1140     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1141   case ISD::FEXP:
1142     return lowerFEXP(Op, DAG);
1143   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1144   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1145   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1146   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1147   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1148   case ISD::CTTZ:
1149   case ISD::CTTZ_ZERO_UNDEF:
1150   case ISD::CTLZ:
1151   case ISD::CTLZ_ZERO_UNDEF:
1152     return LowerCTLZ_CTTZ(Op, DAG);
1153   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1154   }
1155   return Op;
1156 }
1157 
1158 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1159                                               SmallVectorImpl<SDValue> &Results,
1160                                               SelectionDAG &DAG) const {
1161   switch (N->getOpcode()) {
1162   case ISD::SIGN_EXTEND_INREG:
1163     // Different parts of legalization seem to interpret which type of
1164     // sign_extend_inreg is the one to check for custom lowering. The extended
1165     // from type is what really matters, but some places check for custom
1166     // lowering of the result type. This results in trying to use
1167     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1168     // nothing here and let the illegal result integer be handled normally.
1169     return;
1170   default:
1171     return;
1172   }
1173 }
1174 
1175 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1176   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1177   if (!GVar || !GVar->hasInitializer())
1178     return false;
1179 
1180   return !isa<UndefValue>(GVar->getInitializer());
1181 }
1182 
1183 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1184                                                  SDValue Op,
1185                                                  SelectionDAG &DAG) const {
1186 
1187   const DataLayout &DL = DAG.getDataLayout();
1188   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1189   const GlobalValue *GV = G->getGlobal();
1190 
1191   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1192       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1193     if (!MFI->isEntryFunction()) {
1194       const Function &Fn = DAG.getMachineFunction().getFunction();
1195       DiagnosticInfoUnsupported BadLDSDecl(
1196         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1197       DAG.getContext()->diagnose(BadLDSDecl);
1198     }
1199 
1200     // XXX: What does the value of G->getOffset() mean?
1201     assert(G->getOffset() == 0 &&
1202          "Do not know what to do with an non-zero offset");
1203 
1204     // TODO: We could emit code to handle the initialization somewhere.
1205     if (!hasDefinedInitializer(GV)) {
1206       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1207       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1208     }
1209   }
1210 
1211   const Function &Fn = DAG.getMachineFunction().getFunction();
1212   DiagnosticInfoUnsupported BadInit(
1213       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1214   DAG.getContext()->diagnose(BadInit);
1215   return SDValue();
1216 }
1217 
1218 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1219                                                   SelectionDAG &DAG) const {
1220   SmallVector<SDValue, 8> Args;
1221 
1222   EVT VT = Op.getValueType();
1223   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1224     SDLoc SL(Op);
1225     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1226     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1227 
1228     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1229     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1230   }
1231 
1232   for (const SDUse &U : Op->ops())
1233     DAG.ExtractVectorElements(U.get(), Args);
1234 
1235   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1236 }
1237 
1238 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1239                                                      SelectionDAG &DAG) const {
1240 
1241   SmallVector<SDValue, 8> Args;
1242   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1243   EVT VT = Op.getValueType();
1244   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1245                             VT.getVectorNumElements());
1246 
1247   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1248 }
1249 
1250 /// Generate Min/Max node
1251 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1252                                                    SDValue LHS, SDValue RHS,
1253                                                    SDValue True, SDValue False,
1254                                                    SDValue CC,
1255                                                    DAGCombinerInfo &DCI) const {
1256   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1257     return SDValue();
1258 
1259   SelectionDAG &DAG = DCI.DAG;
1260   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1261   switch (CCOpcode) {
1262   case ISD::SETOEQ:
1263   case ISD::SETONE:
1264   case ISD::SETUNE:
1265   case ISD::SETNE:
1266   case ISD::SETUEQ:
1267   case ISD::SETEQ:
1268   case ISD::SETFALSE:
1269   case ISD::SETFALSE2:
1270   case ISD::SETTRUE:
1271   case ISD::SETTRUE2:
1272   case ISD::SETUO:
1273   case ISD::SETO:
1274     break;
1275   case ISD::SETULE:
1276   case ISD::SETULT: {
1277     if (LHS == True)
1278       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1279     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1280   }
1281   case ISD::SETOLE:
1282   case ISD::SETOLT:
1283   case ISD::SETLE:
1284   case ISD::SETLT: {
1285     // Ordered. Assume ordered for undefined.
1286 
1287     // Only do this after legalization to avoid interfering with other combines
1288     // which might occur.
1289     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1290         !DCI.isCalledByLegalizer())
1291       return SDValue();
1292 
1293     // We need to permute the operands to get the correct NaN behavior. The
1294     // selected operand is the second one based on the failing compare with NaN,
1295     // so permute it based on the compare type the hardware uses.
1296     if (LHS == True)
1297       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1298     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1299   }
1300   case ISD::SETUGE:
1301   case ISD::SETUGT: {
1302     if (LHS == True)
1303       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1304     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1305   }
1306   case ISD::SETGT:
1307   case ISD::SETGE:
1308   case ISD::SETOGE:
1309   case ISD::SETOGT: {
1310     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1311         !DCI.isCalledByLegalizer())
1312       return SDValue();
1313 
1314     if (LHS == True)
1315       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1316     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1317   }
1318   case ISD::SETCC_INVALID:
1319     llvm_unreachable("Invalid setcc condcode!");
1320   }
1321   return SDValue();
1322 }
1323 
1324 std::pair<SDValue, SDValue>
1325 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1326   SDLoc SL(Op);
1327 
1328   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1329 
1330   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1331   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1332 
1333   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1334   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1335 
1336   return std::make_pair(Lo, Hi);
1337 }
1338 
1339 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1340   SDLoc SL(Op);
1341 
1342   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1343   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1344   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1345 }
1346 
1347 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1348   SDLoc SL(Op);
1349 
1350   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1351   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1352   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1353 }
1354 
1355 // Split a vector type into two parts. The first part is a power of two vector.
1356 // The second part is whatever is left over, and is a scalar if it would
1357 // otherwise be a 1-vector.
1358 std::pair<EVT, EVT>
1359 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1360   EVT LoVT, HiVT;
1361   EVT EltVT = VT.getVectorElementType();
1362   unsigned NumElts = VT.getVectorNumElements();
1363   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1364   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1365   HiVT = NumElts - LoNumElts == 1
1366              ? EltVT
1367              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1368   return std::make_pair(LoVT, HiVT);
1369 }
1370 
1371 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1372 // scalar.
1373 std::pair<SDValue, SDValue>
1374 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1375                                   const EVT &LoVT, const EVT &HiVT,
1376                                   SelectionDAG &DAG) const {
1377   assert(LoVT.getVectorNumElements() +
1378                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1379              N.getValueType().getVectorNumElements() &&
1380          "More vector elements requested than available!");
1381   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1382   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1383                            DAG.getConstant(0, DL, IdxTy));
1384   SDValue Hi = DAG.getNode(
1385       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1386       HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1387   return std::make_pair(Lo, Hi);
1388 }
1389 
1390 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1391                                               SelectionDAG &DAG) const {
1392   LoadSDNode *Load = cast<LoadSDNode>(Op);
1393   EVT VT = Op.getValueType();
1394 
1395 
1396   // If this is a 2 element vector, we really want to scalarize and not create
1397   // weird 1 element vectors.
1398   if (VT.getVectorNumElements() == 2)
1399     return scalarizeVectorLoad(Load, DAG);
1400 
1401   SDValue BasePtr = Load->getBasePtr();
1402   EVT MemVT = Load->getMemoryVT();
1403   SDLoc SL(Op);
1404 
1405   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1406 
1407   EVT LoVT, HiVT;
1408   EVT LoMemVT, HiMemVT;
1409   SDValue Lo, Hi;
1410 
1411   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1412   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1413   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1414 
1415   unsigned Size = LoMemVT.getStoreSize();
1416   unsigned BaseAlign = Load->getAlignment();
1417   unsigned HiAlign = MinAlign(BaseAlign, Size);
1418 
1419   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1420                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1421                                   BaseAlign, Load->getMemOperand()->getFlags());
1422   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1423   SDValue HiLoad =
1424       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1425                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1426                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1427 
1428   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1429   SDValue Join;
1430   if (LoVT == HiVT) {
1431     // This is the case that the vector is power of two so was evenly split.
1432     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1433   } else {
1434     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1435                        DAG.getConstant(0, SL, IdxTy));
1436     Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1437                                        : ISD::INSERT_VECTOR_ELT,
1438                        SL, VT, Join, HiLoad,
1439                        DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1440   }
1441 
1442   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1443                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1444 
1445   return DAG.getMergeValues(Ops, SL);
1446 }
1447 
1448 // Widen a vector load from vec3 to vec4.
1449 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1450                                               SelectionDAG &DAG) const {
1451   LoadSDNode *Load = cast<LoadSDNode>(Op);
1452   EVT VT = Op.getValueType();
1453   assert(VT.getVectorNumElements() == 3);
1454   SDValue BasePtr = Load->getBasePtr();
1455   EVT MemVT = Load->getMemoryVT();
1456   SDLoc SL(Op);
1457   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1458   unsigned BaseAlign = Load->getAlignment();
1459 
1460   EVT WideVT =
1461       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1462   EVT WideMemVT =
1463       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1464   SDValue WideLoad = DAG.getExtLoad(
1465       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1466       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1467   return DAG.getMergeValues(
1468       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1469                    DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1470        WideLoad.getValue(1)},
1471       SL);
1472 }
1473 
1474 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1475                                                SelectionDAG &DAG) const {
1476   StoreSDNode *Store = cast<StoreSDNode>(Op);
1477   SDValue Val = Store->getValue();
1478   EVT VT = Val.getValueType();
1479 
1480   // If this is a 2 element vector, we really want to scalarize and not create
1481   // weird 1 element vectors.
1482   if (VT.getVectorNumElements() == 2)
1483     return scalarizeVectorStore(Store, DAG);
1484 
1485   EVT MemVT = Store->getMemoryVT();
1486   SDValue Chain = Store->getChain();
1487   SDValue BasePtr = Store->getBasePtr();
1488   SDLoc SL(Op);
1489 
1490   EVT LoVT, HiVT;
1491   EVT LoMemVT, HiMemVT;
1492   SDValue Lo, Hi;
1493 
1494   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1495   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1496   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1497 
1498   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1499 
1500   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1501   unsigned BaseAlign = Store->getAlignment();
1502   unsigned Size = LoMemVT.getStoreSize();
1503   unsigned HiAlign = MinAlign(BaseAlign, Size);
1504 
1505   SDValue LoStore =
1506       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1507                         Store->getMemOperand()->getFlags());
1508   SDValue HiStore =
1509       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1510                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1511 
1512   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1513 }
1514 
1515 // This is a shortcut for integer division because we have fast i32<->f32
1516 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1517 // float is enough to accurately represent up to a 24-bit signed integer.
1518 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1519                                             bool Sign) const {
1520   SDLoc DL(Op);
1521   EVT VT = Op.getValueType();
1522   SDValue LHS = Op.getOperand(0);
1523   SDValue RHS = Op.getOperand(1);
1524   MVT IntVT = MVT::i32;
1525   MVT FltVT = MVT::f32;
1526 
1527   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1528   if (LHSSignBits < 9)
1529     return SDValue();
1530 
1531   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1532   if (RHSSignBits < 9)
1533     return SDValue();
1534 
1535   unsigned BitSize = VT.getSizeInBits();
1536   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1537   unsigned DivBits = BitSize - SignBits;
1538   if (Sign)
1539     ++DivBits;
1540 
1541   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1542   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1543 
1544   SDValue jq = DAG.getConstant(1, DL, IntVT);
1545 
1546   if (Sign) {
1547     // char|short jq = ia ^ ib;
1548     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1549 
1550     // jq = jq >> (bitsize - 2)
1551     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1552                      DAG.getConstant(BitSize - 2, DL, VT));
1553 
1554     // jq = jq | 0x1
1555     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1556   }
1557 
1558   // int ia = (int)LHS;
1559   SDValue ia = LHS;
1560 
1561   // int ib, (int)RHS;
1562   SDValue ib = RHS;
1563 
1564   // float fa = (float)ia;
1565   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1566 
1567   // float fb = (float)ib;
1568   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1569 
1570   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1571                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1572 
1573   // fq = trunc(fq);
1574   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1575 
1576   // float fqneg = -fq;
1577   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1578 
1579   // float fr = mad(fqneg, fb, fa);
1580   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1581                     (unsigned)AMDGPUISD::FMAD_FTZ :
1582                     (unsigned)ISD::FMAD;
1583   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1584 
1585   // int iq = (int)fq;
1586   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1587 
1588   // fr = fabs(fr);
1589   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1590 
1591   // fb = fabs(fb);
1592   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1593 
1594   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1595 
1596   // int cv = fr >= fb;
1597   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1598 
1599   // jq = (cv ? jq : 0);
1600   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1601 
1602   // dst = iq + jq;
1603   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1604 
1605   // Rem needs compensation, it's easier to recompute it
1606   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1607   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1608 
1609   // Truncate to number of bits this divide really is.
1610   if (Sign) {
1611     SDValue InRegSize
1612       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1613     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1614     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1615   } else {
1616     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1617     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1618     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1619   }
1620 
1621   return DAG.getMergeValues({ Div, Rem }, DL);
1622 }
1623 
1624 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1625                                       SelectionDAG &DAG,
1626                                       SmallVectorImpl<SDValue> &Results) const {
1627   SDLoc DL(Op);
1628   EVT VT = Op.getValueType();
1629 
1630   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1631 
1632   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1633 
1634   SDValue One = DAG.getConstant(1, DL, HalfVT);
1635   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1636 
1637   //HiLo split
1638   SDValue LHS = Op.getOperand(0);
1639   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1640   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1641 
1642   SDValue RHS = Op.getOperand(1);
1643   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1644   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1645 
1646   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1647       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1648 
1649     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1650                               LHS_Lo, RHS_Lo);
1651 
1652     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1653     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1654 
1655     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1656     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1657     return;
1658   }
1659 
1660   if (isTypeLegal(MVT::i64)) {
1661     // Compute denominator reciprocal.
1662     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1663                     (unsigned)AMDGPUISD::FMAD_FTZ :
1664                     (unsigned)ISD::FMAD;
1665 
1666     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1667     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1668     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1669       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1670       Cvt_Lo);
1671     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1672     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1673       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1674     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1675       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1676     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1677     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1678       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1679       Mul1);
1680     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1681     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1682     SDValue Rcp64 = DAG.getBitcast(VT,
1683                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1684 
1685     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1686     SDValue One64  = DAG.getConstant(1, DL, VT);
1687     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1688     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1689 
1690     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1691     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1692     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1693     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1694                                     Zero);
1695     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1696                                     One);
1697 
1698     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1699                                   Mulhi1_Lo, Zero1);
1700     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1701                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1702     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1703     SDValue Add1 = DAG.getBitcast(VT,
1704                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1705 
1706     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1707     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1708     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1709                                     Zero);
1710     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1711                                     One);
1712 
1713     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1714                                   Mulhi2_Lo, Zero1);
1715     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1716                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1717     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1718                                   Zero, Add2_Lo.getValue(1));
1719     SDValue Add2 = DAG.getBitcast(VT,
1720                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1721     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1722 
1723     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1724 
1725     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1726     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1727     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1728                                   Mul3_Lo, Zero1);
1729     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1730                                   Mul3_Hi, Sub1_Lo.getValue(1));
1731     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1732     SDValue Sub1 = DAG.getBitcast(VT,
1733                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1734 
1735     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1736     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1737                                  ISD::SETUGE);
1738     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1739                                  ISD::SETUGE);
1740     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1741 
1742     // TODO: Here and below portions of the code can be enclosed into if/endif.
1743     // Currently control flow is unconditional and we have 4 selects after
1744     // potential endif to substitute PHIs.
1745 
1746     // if C3 != 0 ...
1747     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1748                                   RHS_Lo, Zero1);
1749     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1750                                   RHS_Hi, Sub1_Lo.getValue(1));
1751     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1752                                   Zero, Sub2_Lo.getValue(1));
1753     SDValue Sub2 = DAG.getBitcast(VT,
1754                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1755 
1756     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1757 
1758     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1759                                  ISD::SETUGE);
1760     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1761                                  ISD::SETUGE);
1762     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1763 
1764     // if (C6 != 0)
1765     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1766 
1767     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1768                                   RHS_Lo, Zero1);
1769     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1770                                   RHS_Hi, Sub2_Lo.getValue(1));
1771     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1772                                   Zero, Sub3_Lo.getValue(1));
1773     SDValue Sub3 = DAG.getBitcast(VT,
1774                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1775 
1776     // endif C6
1777     // endif C3
1778 
1779     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1780     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1781 
1782     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1783     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1784 
1785     Results.push_back(Div);
1786     Results.push_back(Rem);
1787 
1788     return;
1789   }
1790 
1791   // r600 expandion.
1792   // Get Speculative values
1793   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1794   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1795 
1796   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1797   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1798   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1799 
1800   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1801   SDValue DIV_Lo = Zero;
1802 
1803   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1804 
1805   for (unsigned i = 0; i < halfBitWidth; ++i) {
1806     const unsigned bitPos = halfBitWidth - i - 1;
1807     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1808     // Get value of high bit
1809     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1810     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1811     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1812 
1813     // Shift
1814     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1815     // Add LHS high bit
1816     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1817 
1818     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1819     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1820 
1821     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1822 
1823     // Update REM
1824     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1825     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1826   }
1827 
1828   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1829   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1830   Results.push_back(DIV);
1831   Results.push_back(REM);
1832 }
1833 
1834 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1835                                            SelectionDAG &DAG) const {
1836   SDLoc DL(Op);
1837   EVT VT = Op.getValueType();
1838 
1839   if (VT == MVT::i64) {
1840     SmallVector<SDValue, 2> Results;
1841     LowerUDIVREM64(Op, DAG, Results);
1842     return DAG.getMergeValues(Results, DL);
1843   }
1844 
1845   if (VT == MVT::i32) {
1846     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1847       return Res;
1848   }
1849 
1850   SDValue Num = Op.getOperand(0);
1851   SDValue Den = Op.getOperand(1);
1852 
1853   // RCP =  URECIP(Den) = 2^32 / Den + e
1854   // e is rounding error.
1855   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1856 
1857   // RCP_LO = mul(RCP, Den) */
1858   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1859 
1860   // RCP_HI = mulhu (RCP, Den) */
1861   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1862 
1863   // NEG_RCP_LO = -RCP_LO
1864   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1865                                                      RCP_LO);
1866 
1867   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1868   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1869                                            NEG_RCP_LO, RCP_LO,
1870                                            ISD::SETEQ);
1871   // Calculate the rounding error from the URECIP instruction
1872   // E = mulhu(ABS_RCP_LO, RCP)
1873   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1874 
1875   // RCP_A_E = RCP + E
1876   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1877 
1878   // RCP_S_E = RCP - E
1879   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1880 
1881   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1882   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1883                                      RCP_A_E, RCP_S_E,
1884                                      ISD::SETEQ);
1885   // Quotient = mulhu(Tmp0, Num)
1886   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1887 
1888   // Num_S_Remainder = Quotient * Den
1889   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1890 
1891   // Remainder = Num - Num_S_Remainder
1892   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1893 
1894   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1895   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1896                                                  DAG.getConstant(-1, DL, VT),
1897                                                  DAG.getConstant(0, DL, VT),
1898                                                  ISD::SETUGE);
1899   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1900   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1901                                                   Num_S_Remainder,
1902                                                   DAG.getConstant(-1, DL, VT),
1903                                                   DAG.getConstant(0, DL, VT),
1904                                                   ISD::SETUGE);
1905   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1906   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1907                                                Remainder_GE_Zero);
1908 
1909   // Calculate Division result:
1910 
1911   // Quotient_A_One = Quotient + 1
1912   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1913                                        DAG.getConstant(1, DL, VT));
1914 
1915   // Quotient_S_One = Quotient - 1
1916   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1917                                        DAG.getConstant(1, DL, VT));
1918 
1919   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1920   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1921                                      Quotient, Quotient_A_One, ISD::SETEQ);
1922 
1923   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1924   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1925                             Quotient_S_One, Div, ISD::SETEQ);
1926 
1927   // Calculate Rem result:
1928 
1929   // Remainder_S_Den = Remainder - Den
1930   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1931 
1932   // Remainder_A_Den = Remainder + Den
1933   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1934 
1935   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1936   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1937                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1938 
1939   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1940   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1941                             Remainder_A_Den, Rem, ISD::SETEQ);
1942   SDValue Ops[2] = {
1943     Div,
1944     Rem
1945   };
1946   return DAG.getMergeValues(Ops, DL);
1947 }
1948 
1949 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1950                                            SelectionDAG &DAG) const {
1951   SDLoc DL(Op);
1952   EVT VT = Op.getValueType();
1953 
1954   SDValue LHS = Op.getOperand(0);
1955   SDValue RHS = Op.getOperand(1);
1956 
1957   SDValue Zero = DAG.getConstant(0, DL, VT);
1958   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1959 
1960   if (VT == MVT::i32) {
1961     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1962       return Res;
1963   }
1964 
1965   if (VT == MVT::i64 &&
1966       DAG.ComputeNumSignBits(LHS) > 32 &&
1967       DAG.ComputeNumSignBits(RHS) > 32) {
1968     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1969 
1970     //HiLo split
1971     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1972     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1973     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1974                                  LHS_Lo, RHS_Lo);
1975     SDValue Res[2] = {
1976       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1977       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1978     };
1979     return DAG.getMergeValues(Res, DL);
1980   }
1981 
1982   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1983   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1984   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1985   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1986 
1987   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1988   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1989 
1990   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1991   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1992 
1993   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1994   SDValue Rem = Div.getValue(1);
1995 
1996   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1997   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1998 
1999   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2000   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2001 
2002   SDValue Res[2] = {
2003     Div,
2004     Rem
2005   };
2006   return DAG.getMergeValues(Res, DL);
2007 }
2008 
2009 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2010 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2011   SDLoc SL(Op);
2012   EVT VT = Op.getValueType();
2013   SDValue X = Op.getOperand(0);
2014   SDValue Y = Op.getOperand(1);
2015 
2016   // TODO: Should this propagate fast-math-flags?
2017 
2018   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2019   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2020   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2021 
2022   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2023 }
2024 
2025 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2026   SDLoc SL(Op);
2027   SDValue Src = Op.getOperand(0);
2028 
2029   // result = trunc(src)
2030   // if (src > 0.0 && src != result)
2031   //   result += 1.0
2032 
2033   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2034 
2035   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2036   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2037 
2038   EVT SetCCVT =
2039       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2040 
2041   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2042   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2043   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2044 
2045   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2046   // TODO: Should this propagate fast-math-flags?
2047   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2048 }
2049 
2050 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2051                                   SelectionDAG &DAG) {
2052   const unsigned FractBits = 52;
2053   const unsigned ExpBits = 11;
2054 
2055   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2056                                 Hi,
2057                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2058                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2059   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2060                             DAG.getConstant(1023, SL, MVT::i32));
2061 
2062   return Exp;
2063 }
2064 
2065 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2066   SDLoc SL(Op);
2067   SDValue Src = Op.getOperand(0);
2068 
2069   assert(Op.getValueType() == MVT::f64);
2070 
2071   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2072   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2073 
2074   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2075 
2076   // Extract the upper half, since this is where we will find the sign and
2077   // exponent.
2078   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2079 
2080   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2081 
2082   const unsigned FractBits = 52;
2083 
2084   // Extract the sign bit.
2085   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2086   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2087 
2088   // Extend back to 64-bits.
2089   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2090   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2091 
2092   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2093   const SDValue FractMask
2094     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2095 
2096   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2097   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2098   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2099 
2100   EVT SetCCVT =
2101       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2102 
2103   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2104 
2105   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2106   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2107 
2108   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2109   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2110 
2111   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2112 }
2113 
2114 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2115   SDLoc SL(Op);
2116   SDValue Src = Op.getOperand(0);
2117 
2118   assert(Op.getValueType() == MVT::f64);
2119 
2120   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2121   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2122   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2123 
2124   // TODO: Should this propagate fast-math-flags?
2125 
2126   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2127   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2128 
2129   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2130 
2131   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2132   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2133 
2134   EVT SetCCVT =
2135       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2136   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2137 
2138   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2139 }
2140 
2141 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2142   // FNEARBYINT and FRINT are the same, except in their handling of FP
2143   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2144   // rint, so just treat them as equivalent.
2145   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2146 }
2147 
2148 // XXX - May require not supporting f32 denormals?
2149 
2150 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2151 // compare and vselect end up producing worse code than scalarizing the whole
2152 // operation.
2153 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2154   SDLoc SL(Op);
2155   SDValue X = Op.getOperand(0);
2156   EVT VT = Op.getValueType();
2157 
2158   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2159 
2160   // TODO: Should this propagate fast-math-flags?
2161 
2162   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2163 
2164   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2165 
2166   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2167   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2168   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2169 
2170   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2171 
2172   EVT SetCCVT =
2173       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2174 
2175   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2176 
2177   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2178 
2179   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2180 }
2181 
2182 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2183   SDLoc SL(Op);
2184   SDValue X = Op.getOperand(0);
2185 
2186   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2187 
2188   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2189   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2190   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2191   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2192   EVT SetCCVT =
2193       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2194 
2195   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2196 
2197   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2198 
2199   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2200 
2201   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2202                                        MVT::i64);
2203 
2204   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2205   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2206                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2207                                           MVT::i64),
2208                           Exp);
2209 
2210   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2211   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2212                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2213                               ISD::SETNE);
2214 
2215   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2216                              D, DAG.getConstant(0, SL, MVT::i64));
2217   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2218 
2219   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2220   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2221 
2222   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2223   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2224   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2225 
2226   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2227                             ExpEqNegOne,
2228                             DAG.getConstantFP(1.0, SL, MVT::f64),
2229                             DAG.getConstantFP(0.0, SL, MVT::f64));
2230 
2231   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2232 
2233   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2234   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2235 
2236   return K;
2237 }
2238 
2239 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2240   EVT VT = Op.getValueType();
2241 
2242   if (VT == MVT::f32 || VT == MVT::f16)
2243     return LowerFROUND32_16(Op, DAG);
2244 
2245   if (VT == MVT::f64)
2246     return LowerFROUND64(Op, DAG);
2247 
2248   llvm_unreachable("unhandled type");
2249 }
2250 
2251 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2252   SDLoc SL(Op);
2253   SDValue Src = Op.getOperand(0);
2254 
2255   // result = trunc(src);
2256   // if (src < 0.0 && src != result)
2257   //   result += -1.0.
2258 
2259   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2260 
2261   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2262   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2263 
2264   EVT SetCCVT =
2265       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2266 
2267   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2268   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2269   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2270 
2271   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2272   // TODO: Should this propagate fast-math-flags?
2273   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2274 }
2275 
2276 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2277                                         double Log2BaseInverted) const {
2278   EVT VT = Op.getValueType();
2279 
2280   SDLoc SL(Op);
2281   SDValue Operand = Op.getOperand(0);
2282   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2283   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2284 
2285   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2286 }
2287 
2288 // Return M_LOG2E of appropriate type
2289 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2290   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2291   case MVT::f32:
2292     return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2293   case MVT::f16:
2294     return DAG.getConstantFP(
2295       APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2296       SL, VT);
2297   case MVT::f64:
2298     return DAG.getConstantFP(
2299       APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2300   default:
2301     llvm_unreachable("unsupported fp type");
2302   }
2303 }
2304 
2305 // exp2(M_LOG2E_F * f);
2306 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2307   EVT VT = Op.getValueType();
2308   SDLoc SL(Op);
2309   SDValue Src = Op.getOperand(0);
2310 
2311   const SDValue K = getLog2EVal(DAG, SL, VT);
2312   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2313   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2314 }
2315 
2316 static bool isCtlzOpc(unsigned Opc) {
2317   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2318 }
2319 
2320 static bool isCttzOpc(unsigned Opc) {
2321   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2322 }
2323 
2324 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2325   SDLoc SL(Op);
2326   SDValue Src = Op.getOperand(0);
2327   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2328                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2329 
2330   unsigned ISDOpc, NewOpc;
2331   if (isCtlzOpc(Op.getOpcode())) {
2332     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2333     NewOpc = AMDGPUISD::FFBH_U32;
2334   } else if (isCttzOpc(Op.getOpcode())) {
2335     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2336     NewOpc = AMDGPUISD::FFBL_B32;
2337   } else
2338     llvm_unreachable("Unexpected OPCode!!!");
2339 
2340 
2341   if (ZeroUndef && Src.getValueType() == MVT::i32)
2342     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2343 
2344   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2345 
2346   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2347   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2348 
2349   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2350   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2351 
2352   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2353                                    *DAG.getContext(), MVT::i32);
2354 
2355   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2356   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2357 
2358   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2359   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2360 
2361   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2362   SDValue Add, NewOpr;
2363   if (isCtlzOpc(Op.getOpcode())) {
2364     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2365     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2366     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2367   } else {
2368     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2369     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2370     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2371   }
2372 
2373   if (!ZeroUndef) {
2374     // Test if the full 64-bit input is zero.
2375 
2376     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2377     // which we probably don't want.
2378     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2379     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2380     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2381 
2382     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2383     // with the same cycles, otherwise it is slower.
2384     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2385     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2386 
2387     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2388 
2389     // The instruction returns -1 for 0 input, but the defined intrinsic
2390     // behavior is to return the number of bits.
2391     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2392                          SrcIsZero, Bits32, NewOpr);
2393   }
2394 
2395   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2396 }
2397 
2398 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2399                                                bool Signed) const {
2400   // Unsigned
2401   // cul2f(ulong u)
2402   //{
2403   //  uint lz = clz(u);
2404   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2405   //  u = (u << lz) & 0x7fffffffffffffffUL;
2406   //  ulong t = u & 0xffffffffffUL;
2407   //  uint v = (e << 23) | (uint)(u >> 40);
2408   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2409   //  return as_float(v + r);
2410   //}
2411   // Signed
2412   // cl2f(long l)
2413   //{
2414   //  long s = l >> 63;
2415   //  float r = cul2f((l + s) ^ s);
2416   //  return s ? -r : r;
2417   //}
2418 
2419   SDLoc SL(Op);
2420   SDValue Src = Op.getOperand(0);
2421   SDValue L = Src;
2422 
2423   SDValue S;
2424   if (Signed) {
2425     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2426     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2427 
2428     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2429     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2430   }
2431 
2432   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2433                                    *DAG.getContext(), MVT::f32);
2434 
2435 
2436   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2437   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2438   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2439   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2440 
2441   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2442   SDValue E = DAG.getSelect(SL, MVT::i32,
2443     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2444     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2445     ZeroI32);
2446 
2447   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2448     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2449     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2450 
2451   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2452                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2453 
2454   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2455                              U, DAG.getConstant(40, SL, MVT::i64));
2456 
2457   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2458     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2459     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2460 
2461   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2462   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2463   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2464 
2465   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2466 
2467   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2468 
2469   SDValue R = DAG.getSelect(SL, MVT::i32,
2470     RCmp,
2471     One,
2472     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2473   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2474   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2475 
2476   if (!Signed)
2477     return R;
2478 
2479   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2480   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2481 }
2482 
2483 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2484                                                bool Signed) const {
2485   SDLoc SL(Op);
2486   SDValue Src = Op.getOperand(0);
2487 
2488   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2489 
2490   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2491                            DAG.getConstant(0, SL, MVT::i32));
2492   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2493                            DAG.getConstant(1, SL, MVT::i32));
2494 
2495   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2496                               SL, MVT::f64, Hi);
2497 
2498   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2499 
2500   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2501                               DAG.getConstant(32, SL, MVT::i32));
2502   // TODO: Should this propagate fast-math-flags?
2503   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2504 }
2505 
2506 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2507                                                SelectionDAG &DAG) const {
2508   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2509          "operation should be legal");
2510 
2511   // TODO: Factor out code common with LowerSINT_TO_FP.
2512 
2513   EVT DestVT = Op.getValueType();
2514   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2515     SDLoc DL(Op);
2516     SDValue Src = Op.getOperand(0);
2517 
2518     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2519     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2520     SDValue FPRound =
2521         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2522 
2523     return FPRound;
2524   }
2525 
2526   if (DestVT == MVT::f32)
2527     return LowerINT_TO_FP32(Op, DAG, false);
2528 
2529   assert(DestVT == MVT::f64);
2530   return LowerINT_TO_FP64(Op, DAG, false);
2531 }
2532 
2533 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2534                                               SelectionDAG &DAG) const {
2535   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2536          "operation should be legal");
2537 
2538   // TODO: Factor out code common with LowerUINT_TO_FP.
2539 
2540   EVT DestVT = Op.getValueType();
2541   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2542     SDLoc DL(Op);
2543     SDValue Src = Op.getOperand(0);
2544 
2545     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2546     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2547     SDValue FPRound =
2548         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2549 
2550     return FPRound;
2551   }
2552 
2553   if (DestVT == MVT::f32)
2554     return LowerINT_TO_FP32(Op, DAG, true);
2555 
2556   assert(DestVT == MVT::f64);
2557   return LowerINT_TO_FP64(Op, DAG, true);
2558 }
2559 
2560 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2561                                                bool Signed) const {
2562   SDLoc SL(Op);
2563 
2564   SDValue Src = Op.getOperand(0);
2565 
2566   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2567 
2568   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2569                                  MVT::f64);
2570   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2571                                  MVT::f64);
2572   // TODO: Should this propagate fast-math-flags?
2573   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2574 
2575   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2576 
2577 
2578   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2579 
2580   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2581                            MVT::i32, FloorMul);
2582   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2583 
2584   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2585 
2586   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2587 }
2588 
2589 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2590   SDLoc DL(Op);
2591   SDValue N0 = Op.getOperand(0);
2592 
2593   // Convert to target node to get known bits
2594   if (N0.getValueType() == MVT::f32)
2595     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2596 
2597   if (getTargetMachine().Options.UnsafeFPMath) {
2598     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2599     return SDValue();
2600   }
2601 
2602   assert(N0.getSimpleValueType() == MVT::f64);
2603 
2604   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2605   const unsigned ExpMask = 0x7ff;
2606   const unsigned ExpBiasf64 = 1023;
2607   const unsigned ExpBiasf16 = 15;
2608   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2609   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2610   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2611   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2612                            DAG.getConstant(32, DL, MVT::i64));
2613   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2614   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2615   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2616                           DAG.getConstant(20, DL, MVT::i64));
2617   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2618                   DAG.getConstant(ExpMask, DL, MVT::i32));
2619   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2620   // add the f16 bias (15) to get the biased exponent for the f16 format.
2621   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2622                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2623 
2624   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2625                           DAG.getConstant(8, DL, MVT::i32));
2626   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2627                   DAG.getConstant(0xffe, DL, MVT::i32));
2628 
2629   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2630                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2631   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2632 
2633   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2634   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2635 
2636   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2637   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2638       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2639                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2640 
2641   // N = M | (E << 12);
2642   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2643       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2644                   DAG.getConstant(12, DL, MVT::i32)));
2645 
2646   // B = clamp(1-E, 0, 13);
2647   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2648                                   One, E);
2649   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2650   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2651                   DAG.getConstant(13, DL, MVT::i32));
2652 
2653   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2654                                    DAG.getConstant(0x1000, DL, MVT::i32));
2655 
2656   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2657   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2658   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2659   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2660 
2661   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2662   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2663                               DAG.getConstant(0x7, DL, MVT::i32));
2664   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2665                   DAG.getConstant(2, DL, MVT::i32));
2666   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2667                                One, Zero, ISD::SETEQ);
2668   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2669                                One, Zero, ISD::SETGT);
2670   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2671   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2672 
2673   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2674                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2675   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2676                       I, V, ISD::SETEQ);
2677 
2678   // Extract the sign bit.
2679   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2680                             DAG.getConstant(16, DL, MVT::i32));
2681   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2682                      DAG.getConstant(0x8000, DL, MVT::i32));
2683 
2684   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2685   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2686 }
2687 
2688 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2689                                               SelectionDAG &DAG) const {
2690   SDValue Src = Op.getOperand(0);
2691 
2692   // TODO: Factor out code common with LowerFP_TO_UINT.
2693 
2694   EVT SrcVT = Src.getValueType();
2695   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2696     SDLoc DL(Op);
2697 
2698     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2699     SDValue FpToInt32 =
2700         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2701 
2702     return FpToInt32;
2703   }
2704 
2705   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2706     return LowerFP64_TO_INT(Op, DAG, true);
2707 
2708   return SDValue();
2709 }
2710 
2711 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2712                                               SelectionDAG &DAG) const {
2713   SDValue Src = Op.getOperand(0);
2714 
2715   // TODO: Factor out code common with LowerFP_TO_SINT.
2716 
2717   EVT SrcVT = Src.getValueType();
2718   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2719     SDLoc DL(Op);
2720 
2721     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2722     SDValue FpToInt32 =
2723         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2724 
2725     return FpToInt32;
2726   }
2727 
2728   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2729     return LowerFP64_TO_INT(Op, DAG, false);
2730 
2731   return SDValue();
2732 }
2733 
2734 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2735                                                      SelectionDAG &DAG) const {
2736   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2737   MVT VT = Op.getSimpleValueType();
2738   MVT ScalarVT = VT.getScalarType();
2739 
2740   assert(VT.isVector());
2741 
2742   SDValue Src = Op.getOperand(0);
2743   SDLoc DL(Op);
2744 
2745   // TODO: Don't scalarize on Evergreen?
2746   unsigned NElts = VT.getVectorNumElements();
2747   SmallVector<SDValue, 8> Args;
2748   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2749 
2750   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2751   for (unsigned I = 0; I < NElts; ++I)
2752     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2753 
2754   return DAG.getBuildVector(VT, DL, Args);
2755 }
2756 
2757 //===----------------------------------------------------------------------===//
2758 // Custom DAG optimizations
2759 //===----------------------------------------------------------------------===//
2760 
2761 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2762   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2763 }
2764 
2765 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2766   EVT VT = Op.getValueType();
2767   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2768                                      // as unsigned 24-bit values.
2769     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2770 }
2771 
2772 static SDValue simplifyI24(SDNode *Node24,
2773                            TargetLowering::DAGCombinerInfo &DCI) {
2774   SelectionDAG &DAG = DCI.DAG;
2775   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2776 
2777   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2778   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2779   unsigned NewOpcode = Node24->getOpcode();
2780   if (IsIntrin) {
2781     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2782     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2783       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2784   }
2785 
2786   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2787 
2788   // First try to simplify using GetDemandedBits which allows the operands to
2789   // have other uses, but will only perform simplifications that involve
2790   // bypassing some nodes for this user.
2791   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2792   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2793   if (DemandedLHS || DemandedRHS)
2794     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2795                        DemandedLHS ? DemandedLHS : LHS,
2796                        DemandedRHS ? DemandedRHS : RHS);
2797 
2798   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2799   // operands if this node is the only user.
2800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2801   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2802     return SDValue(Node24, 0);
2803   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2804     return SDValue(Node24, 0);
2805 
2806   return SDValue();
2807 }
2808 
2809 template <typename IntTy>
2810 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2811                                uint32_t Width, const SDLoc &DL) {
2812   if (Width + Offset < 32) {
2813     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2814     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2815     return DAG.getConstant(Result, DL, MVT::i32);
2816   }
2817 
2818   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2819 }
2820 
2821 static bool hasVolatileUser(SDNode *Val) {
2822   for (SDNode *U : Val->uses()) {
2823     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2824       if (M->isVolatile())
2825         return true;
2826     }
2827   }
2828 
2829   return false;
2830 }
2831 
2832 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2833   // i32 vectors are the canonical memory type.
2834   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2835     return false;
2836 
2837   if (!VT.isByteSized())
2838     return false;
2839 
2840   unsigned Size = VT.getStoreSize();
2841 
2842   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2843     return false;
2844 
2845   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2846     return false;
2847 
2848   return true;
2849 }
2850 
2851 // Find a load or store from corresponding pattern root.
2852 // Roots may be build_vector, bitconvert or their combinations.
2853 static MemSDNode* findMemSDNode(SDNode *N) {
2854   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
2855   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
2856     return MN;
2857   assert(isa<BuildVectorSDNode>(N));
2858   for (SDValue V : N->op_values())
2859     if (MemSDNode *MN =
2860           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
2861       return MN;
2862   llvm_unreachable("cannot find MemSDNode in the pattern!");
2863 }
2864 
2865 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned,
2866                                             SelectionDAG &DAG,
2867                                             SDNode *N,
2868                                             SDValue Addr,
2869                                             SDValue &VAddr,
2870                                             SDValue &Offset,
2871                                             SDValue &SLC) const {
2872   const GCNSubtarget &ST =
2873         DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
2874   int64_t OffsetVal = 0;
2875 
2876   if (ST.hasFlatInstOffsets() &&
2877       (!ST.hasFlatSegmentOffsetBug() ||
2878        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
2879       DAG.isBaseWithConstantOffset(Addr)) {
2880     SDValue N0 = Addr.getOperand(0);
2881     SDValue N1 = Addr.getOperand(1);
2882     int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
2883 
2884     const SIInstrInfo *TII = ST.getInstrInfo();
2885     if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(),
2886                                IsSigned)) {
2887       Addr = N0;
2888       OffsetVal = COffsetVal;
2889     }
2890   }
2891 
2892   VAddr = Addr;
2893   Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
2894   SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1);
2895 
2896   return true;
2897 }
2898 
2899 // Replace load of an illegal type with a store of a bitcast to a friendlier
2900 // type.
2901 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2902                                                  DAGCombinerInfo &DCI) const {
2903   if (!DCI.isBeforeLegalize())
2904     return SDValue();
2905 
2906   LoadSDNode *LN = cast<LoadSDNode>(N);
2907   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2908     return SDValue();
2909 
2910   SDLoc SL(N);
2911   SelectionDAG &DAG = DCI.DAG;
2912   EVT VT = LN->getMemoryVT();
2913 
2914   unsigned Size = VT.getStoreSize();
2915   unsigned Align = LN->getAlignment();
2916   if (Align < Size && isTypeLegal(VT)) {
2917     bool IsFast;
2918     unsigned AS = LN->getAddressSpace();
2919 
2920     // Expand unaligned loads earlier than legalization. Due to visitation order
2921     // problems during legalization, the emitted instructions to pack and unpack
2922     // the bytes again are not eliminated in the case of an unaligned copy.
2923     if (!allowsMisalignedMemoryAccesses(
2924             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2925       if (VT.isVector())
2926         return scalarizeVectorLoad(LN, DAG);
2927 
2928       SDValue Ops[2];
2929       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2930       return DAG.getMergeValues(Ops, SDLoc(N));
2931     }
2932 
2933     if (!IsFast)
2934       return SDValue();
2935   }
2936 
2937   if (!shouldCombineMemoryType(VT))
2938     return SDValue();
2939 
2940   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2941 
2942   SDValue NewLoad
2943     = DAG.getLoad(NewVT, SL, LN->getChain(),
2944                   LN->getBasePtr(), LN->getMemOperand());
2945 
2946   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2947   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2948   return SDValue(N, 0);
2949 }
2950 
2951 // Replace store of an illegal type with a store of a bitcast to a friendlier
2952 // type.
2953 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2954                                                   DAGCombinerInfo &DCI) const {
2955   if (!DCI.isBeforeLegalize())
2956     return SDValue();
2957 
2958   StoreSDNode *SN = cast<StoreSDNode>(N);
2959   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2960     return SDValue();
2961 
2962   EVT VT = SN->getMemoryVT();
2963   unsigned Size = VT.getStoreSize();
2964 
2965   SDLoc SL(N);
2966   SelectionDAG &DAG = DCI.DAG;
2967   unsigned Align = SN->getAlignment();
2968   if (Align < Size && isTypeLegal(VT)) {
2969     bool IsFast;
2970     unsigned AS = SN->getAddressSpace();
2971 
2972     // Expand unaligned stores earlier than legalization. Due to visitation
2973     // order problems during legalization, the emitted instructions to pack and
2974     // unpack the bytes again are not eliminated in the case of an unaligned
2975     // copy.
2976     if (!allowsMisalignedMemoryAccesses(
2977             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2978       if (VT.isVector())
2979         return scalarizeVectorStore(SN, DAG);
2980 
2981       return expandUnalignedStore(SN, DAG);
2982     }
2983 
2984     if (!IsFast)
2985       return SDValue();
2986   }
2987 
2988   if (!shouldCombineMemoryType(VT))
2989     return SDValue();
2990 
2991   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2992   SDValue Val = SN->getValue();
2993 
2994   //DCI.AddToWorklist(Val.getNode());
2995 
2996   bool OtherUses = !Val.hasOneUse();
2997   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2998   if (OtherUses) {
2999     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3000     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3001   }
3002 
3003   return DAG.getStore(SN->getChain(), SL, CastVal,
3004                       SN->getBasePtr(), SN->getMemOperand());
3005 }
3006 
3007 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3008 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3009 // issues.
3010 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3011                                                         DAGCombinerInfo &DCI) const {
3012   SelectionDAG &DAG = DCI.DAG;
3013   SDValue N0 = N->getOperand(0);
3014 
3015   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3016   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3017   if (N0.getOpcode() == ISD::TRUNCATE) {
3018     SDValue N1 = N->getOperand(1);
3019     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3020     SDLoc SL(N);
3021 
3022     SDValue Src = N0.getOperand(0);
3023     EVT SrcVT = Src.getValueType();
3024     if (SrcVT.bitsGE(ExtVT)) {
3025       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3026       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3027     }
3028   }
3029 
3030   return SDValue();
3031 }
3032 
3033 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3034   SDNode *N, DAGCombinerInfo &DCI) const {
3035   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3036   switch (IID) {
3037   case Intrinsic::amdgcn_mul_i24:
3038   case Intrinsic::amdgcn_mul_u24:
3039     return simplifyI24(N, DCI);
3040   default:
3041     return SDValue();
3042   }
3043 }
3044 
3045 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3046 /// binary operation \p Opc to it with the corresponding constant operands.
3047 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3048   DAGCombinerInfo &DCI, const SDLoc &SL,
3049   unsigned Opc, SDValue LHS,
3050   uint32_t ValLo, uint32_t ValHi) const {
3051   SelectionDAG &DAG = DCI.DAG;
3052   SDValue Lo, Hi;
3053   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3054 
3055   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3056   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3057 
3058   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3059   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3060 
3061   // Re-visit the ands. It's possible we eliminated one of them and it could
3062   // simplify the vector.
3063   DCI.AddToWorklist(Lo.getNode());
3064   DCI.AddToWorklist(Hi.getNode());
3065 
3066   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3067   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3068 }
3069 
3070 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3071                                                 DAGCombinerInfo &DCI) const {
3072   EVT VT = N->getValueType(0);
3073 
3074   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3075   if (!RHS)
3076     return SDValue();
3077 
3078   SDValue LHS = N->getOperand(0);
3079   unsigned RHSVal = RHS->getZExtValue();
3080   if (!RHSVal)
3081     return LHS;
3082 
3083   SDLoc SL(N);
3084   SelectionDAG &DAG = DCI.DAG;
3085 
3086   switch (LHS->getOpcode()) {
3087   default:
3088     break;
3089   case ISD::ZERO_EXTEND:
3090   case ISD::SIGN_EXTEND:
3091   case ISD::ANY_EXTEND: {
3092     SDValue X = LHS->getOperand(0);
3093 
3094     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3095         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3096       // Prefer build_vector as the canonical form if packed types are legal.
3097       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3098       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3099        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3100       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3101     }
3102 
3103     // shl (ext x) => zext (shl x), if shift does not overflow int
3104     if (VT != MVT::i64)
3105       break;
3106     KnownBits Known = DAG.computeKnownBits(X);
3107     unsigned LZ = Known.countMinLeadingZeros();
3108     if (LZ < RHSVal)
3109       break;
3110     EVT XVT = X.getValueType();
3111     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3112     return DAG.getZExtOrTrunc(Shl, SL, VT);
3113   }
3114   }
3115 
3116   if (VT != MVT::i64)
3117     return SDValue();
3118 
3119   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3120 
3121   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3122   // common case, splitting this into a move and a 32-bit shift is faster and
3123   // the same code size.
3124   if (RHSVal < 32)
3125     return SDValue();
3126 
3127   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3128 
3129   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3130   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3131 
3132   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3133 
3134   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3135   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3136 }
3137 
3138 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3139                                                 DAGCombinerInfo &DCI) const {
3140   if (N->getValueType(0) != MVT::i64)
3141     return SDValue();
3142 
3143   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3144   if (!RHS)
3145     return SDValue();
3146 
3147   SelectionDAG &DAG = DCI.DAG;
3148   SDLoc SL(N);
3149   unsigned RHSVal = RHS->getZExtValue();
3150 
3151   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3152   if (RHSVal == 32) {
3153     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3154     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3155                                    DAG.getConstant(31, SL, MVT::i32));
3156 
3157     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3158     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3159   }
3160 
3161   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3162   if (RHSVal == 63) {
3163     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3164     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3165                                    DAG.getConstant(31, SL, MVT::i32));
3166     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3167     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3168   }
3169 
3170   return SDValue();
3171 }
3172 
3173 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3174                                                 DAGCombinerInfo &DCI) const {
3175   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3176   if (!RHS)
3177     return SDValue();
3178 
3179   EVT VT = N->getValueType(0);
3180   SDValue LHS = N->getOperand(0);
3181   unsigned ShiftAmt = RHS->getZExtValue();
3182   SelectionDAG &DAG = DCI.DAG;
3183   SDLoc SL(N);
3184 
3185   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3186   // this improves the ability to match BFE patterns in isel.
3187   if (LHS.getOpcode() == ISD::AND) {
3188     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3189       if (Mask->getAPIntValue().isShiftedMask() &&
3190           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3191         return DAG.getNode(
3192             ISD::AND, SL, VT,
3193             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3194             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3195       }
3196     }
3197   }
3198 
3199   if (VT != MVT::i64)
3200     return SDValue();
3201 
3202   if (ShiftAmt < 32)
3203     return SDValue();
3204 
3205   // srl i64:x, C for C >= 32
3206   // =>
3207   //   build_pair (srl hi_32(x), C - 32), 0
3208   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3209   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3210 
3211   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3212   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3213 
3214   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3215   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3216 
3217   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3218 
3219   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3220 }
3221 
3222 SDValue AMDGPUTargetLowering::performTruncateCombine(
3223   SDNode *N, DAGCombinerInfo &DCI) const {
3224   SDLoc SL(N);
3225   SelectionDAG &DAG = DCI.DAG;
3226   EVT VT = N->getValueType(0);
3227   SDValue Src = N->getOperand(0);
3228 
3229   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3230   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3231     SDValue Vec = Src.getOperand(0);
3232     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3233       SDValue Elt0 = Vec.getOperand(0);
3234       EVT EltVT = Elt0.getValueType();
3235       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3236         if (EltVT.isFloatingPoint()) {
3237           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3238                              EltVT.changeTypeToInteger(), Elt0);
3239         }
3240 
3241         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3242       }
3243     }
3244   }
3245 
3246   // Equivalent of above for accessing the high element of a vector as an
3247   // integer operation.
3248   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3249   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3250     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3251       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3252         SDValue BV = stripBitcast(Src.getOperand(0));
3253         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3254             BV.getValueType().getVectorNumElements() == 2) {
3255           SDValue SrcElt = BV.getOperand(1);
3256           EVT SrcEltVT = SrcElt.getValueType();
3257           if (SrcEltVT.isFloatingPoint()) {
3258             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3259                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3260           }
3261 
3262           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3263         }
3264       }
3265     }
3266   }
3267 
3268   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3269   //
3270   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3271   //     i16 (trunc (srl (i32 (trunc x), K)))
3272   if (VT.getScalarSizeInBits() < 32) {
3273     EVT SrcVT = Src.getValueType();
3274     if (SrcVT.getScalarSizeInBits() > 32 &&
3275         (Src.getOpcode() == ISD::SRL ||
3276          Src.getOpcode() == ISD::SRA ||
3277          Src.getOpcode() == ISD::SHL)) {
3278       SDValue Amt = Src.getOperand(1);
3279       KnownBits Known = DAG.computeKnownBits(Amt);
3280       unsigned Size = VT.getScalarSizeInBits();
3281       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3282           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3283         EVT MidVT = VT.isVector() ?
3284           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3285                            VT.getVectorNumElements()) : MVT::i32;
3286 
3287         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3288         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3289                                     Src.getOperand(0));
3290         DCI.AddToWorklist(Trunc.getNode());
3291 
3292         if (Amt.getValueType() != NewShiftVT) {
3293           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3294           DCI.AddToWorklist(Amt.getNode());
3295         }
3296 
3297         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3298                                           Trunc, Amt);
3299         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3300       }
3301     }
3302   }
3303 
3304   return SDValue();
3305 }
3306 
3307 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3308 // instructions. If we only match on the legalized i64 mul expansion,
3309 // SimplifyDemandedBits will be unable to remove them because there will be
3310 // multiple uses due to the separate mul + mulh[su].
3311 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3312                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3313   if (Size <= 32) {
3314     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3315     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3316   }
3317 
3318   // Because we want to eliminate extension instructions before the
3319   // operation, we need to create a single user here (i.e. not the separate
3320   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3321 
3322   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3323 
3324   SDValue Mul = DAG.getNode(MulOpc, SL,
3325                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3326 
3327   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3328                      Mul.getValue(0), Mul.getValue(1));
3329 }
3330 
3331 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3332                                                 DAGCombinerInfo &DCI) const {
3333   EVT VT = N->getValueType(0);
3334 
3335   unsigned Size = VT.getSizeInBits();
3336   if (VT.isVector() || Size > 64)
3337     return SDValue();
3338 
3339   // There are i16 integer mul/mad.
3340   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3341     return SDValue();
3342 
3343   SelectionDAG &DAG = DCI.DAG;
3344   SDLoc DL(N);
3345 
3346   SDValue N0 = N->getOperand(0);
3347   SDValue N1 = N->getOperand(1);
3348 
3349   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3350   // in the source into any_extends if the result of the mul is truncated. Since
3351   // we can assume the high bits are whatever we want, use the underlying value
3352   // to avoid the unknown high bits from interfering.
3353   if (N0.getOpcode() == ISD::ANY_EXTEND)
3354     N0 = N0.getOperand(0);
3355 
3356   if (N1.getOpcode() == ISD::ANY_EXTEND)
3357     N1 = N1.getOperand(0);
3358 
3359   SDValue Mul;
3360 
3361   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3362     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3363     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3364     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3365   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3366     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3367     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3368     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3369   } else {
3370     return SDValue();
3371   }
3372 
3373   // We need to use sext even for MUL_U24, because MUL_U24 is used
3374   // for signed multiply of 8 and 16-bit types.
3375   return DAG.getSExtOrTrunc(Mul, DL, VT);
3376 }
3377 
3378 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3379                                                   DAGCombinerInfo &DCI) const {
3380   EVT VT = N->getValueType(0);
3381 
3382   if (!Subtarget->hasMulI24() || VT.isVector())
3383     return SDValue();
3384 
3385   SelectionDAG &DAG = DCI.DAG;
3386   SDLoc DL(N);
3387 
3388   SDValue N0 = N->getOperand(0);
3389   SDValue N1 = N->getOperand(1);
3390 
3391   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3392     return SDValue();
3393 
3394   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3395   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3396 
3397   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3398   DCI.AddToWorklist(Mulhi.getNode());
3399   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3400 }
3401 
3402 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3403                                                   DAGCombinerInfo &DCI) const {
3404   EVT VT = N->getValueType(0);
3405 
3406   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3407     return SDValue();
3408 
3409   SelectionDAG &DAG = DCI.DAG;
3410   SDLoc DL(N);
3411 
3412   SDValue N0 = N->getOperand(0);
3413   SDValue N1 = N->getOperand(1);
3414 
3415   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3416     return SDValue();
3417 
3418   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3419   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3420 
3421   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3422   DCI.AddToWorklist(Mulhi.getNode());
3423   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3424 }
3425 
3426 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3427   SDNode *N, DAGCombinerInfo &DCI) const {
3428   SelectionDAG &DAG = DCI.DAG;
3429 
3430   // Simplify demanded bits before splitting into multiple users.
3431   if (SDValue V = simplifyI24(N, DCI))
3432     return V;
3433 
3434   SDValue N0 = N->getOperand(0);
3435   SDValue N1 = N->getOperand(1);
3436 
3437   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3438 
3439   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3440   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3441 
3442   SDLoc SL(N);
3443 
3444   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3445   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3446   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3447 }
3448 
3449 static bool isNegativeOne(SDValue Val) {
3450   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3451     return C->isAllOnesValue();
3452   return false;
3453 }
3454 
3455 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3456                                           SDValue Op,
3457                                           const SDLoc &DL,
3458                                           unsigned Opc) const {
3459   EVT VT = Op.getValueType();
3460   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3461   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3462                               LegalVT != MVT::i16))
3463     return SDValue();
3464 
3465   if (VT != MVT::i32)
3466     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3467 
3468   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3469   if (VT != MVT::i32)
3470     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3471 
3472   return FFBX;
3473 }
3474 
3475 // The native instructions return -1 on 0 input. Optimize out a select that
3476 // produces -1 on 0.
3477 //
3478 // TODO: If zero is not undef, we could also do this if the output is compared
3479 // against the bitwidth.
3480 //
3481 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3482 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3483                                                  SDValue LHS, SDValue RHS,
3484                                                  DAGCombinerInfo &DCI) const {
3485   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3486   if (!CmpRhs || !CmpRhs->isNullValue())
3487     return SDValue();
3488 
3489   SelectionDAG &DAG = DCI.DAG;
3490   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3491   SDValue CmpLHS = Cond.getOperand(0);
3492 
3493   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3494                                            AMDGPUISD::FFBH_U32;
3495 
3496   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3497   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3498   if (CCOpcode == ISD::SETEQ &&
3499       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3500       RHS.getOperand(0) == CmpLHS &&
3501       isNegativeOne(LHS)) {
3502     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3503   }
3504 
3505   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3506   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3507   if (CCOpcode == ISD::SETNE &&
3508       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3509       LHS.getOperand(0) == CmpLHS &&
3510       isNegativeOne(RHS)) {
3511     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3512   }
3513 
3514   return SDValue();
3515 }
3516 
3517 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3518                                          unsigned Op,
3519                                          const SDLoc &SL,
3520                                          SDValue Cond,
3521                                          SDValue N1,
3522                                          SDValue N2) {
3523   SelectionDAG &DAG = DCI.DAG;
3524   EVT VT = N1.getValueType();
3525 
3526   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3527                                   N1.getOperand(0), N2.getOperand(0));
3528   DCI.AddToWorklist(NewSelect.getNode());
3529   return DAG.getNode(Op, SL, VT, NewSelect);
3530 }
3531 
3532 // Pull a free FP operation out of a select so it may fold into uses.
3533 //
3534 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3535 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3536 //
3537 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3538 // select c, (fabs x), +k -> fabs (select c, x, k)
3539 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3540                                     SDValue N) {
3541   SelectionDAG &DAG = DCI.DAG;
3542   SDValue Cond = N.getOperand(0);
3543   SDValue LHS = N.getOperand(1);
3544   SDValue RHS = N.getOperand(2);
3545 
3546   EVT VT = N.getValueType();
3547   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3548       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3549     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3550                                      SDLoc(N), Cond, LHS, RHS);
3551   }
3552 
3553   bool Inv = false;
3554   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3555     std::swap(LHS, RHS);
3556     Inv = true;
3557   }
3558 
3559   // TODO: Support vector constants.
3560   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3561   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3562     SDLoc SL(N);
3563     // If one side is an fneg/fabs and the other is a constant, we can push the
3564     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3565     SDValue NewLHS = LHS.getOperand(0);
3566     SDValue NewRHS = RHS;
3567 
3568     // Careful: if the neg can be folded up, don't try to pull it back down.
3569     bool ShouldFoldNeg = true;
3570 
3571     if (NewLHS.hasOneUse()) {
3572       unsigned Opc = NewLHS.getOpcode();
3573       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3574         ShouldFoldNeg = false;
3575       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3576         ShouldFoldNeg = false;
3577     }
3578 
3579     if (ShouldFoldNeg) {
3580       if (LHS.getOpcode() == ISD::FNEG)
3581         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3582       else if (CRHS->isNegative())
3583         return SDValue();
3584 
3585       if (Inv)
3586         std::swap(NewLHS, NewRHS);
3587 
3588       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3589                                       Cond, NewLHS, NewRHS);
3590       DCI.AddToWorklist(NewSelect.getNode());
3591       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3592     }
3593   }
3594 
3595   return SDValue();
3596 }
3597 
3598 
3599 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3600                                                    DAGCombinerInfo &DCI) const {
3601   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3602     return Folded;
3603 
3604   SDValue Cond = N->getOperand(0);
3605   if (Cond.getOpcode() != ISD::SETCC)
3606     return SDValue();
3607 
3608   EVT VT = N->getValueType(0);
3609   SDValue LHS = Cond.getOperand(0);
3610   SDValue RHS = Cond.getOperand(1);
3611   SDValue CC = Cond.getOperand(2);
3612 
3613   SDValue True = N->getOperand(1);
3614   SDValue False = N->getOperand(2);
3615 
3616   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3617     SelectionDAG &DAG = DCI.DAG;
3618     if (DAG.isConstantValueOfAnyType(True) &&
3619         !DAG.isConstantValueOfAnyType(False)) {
3620       // Swap cmp + select pair to move constant to false input.
3621       // This will allow using VOPC cndmasks more often.
3622       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3623 
3624       SDLoc SL(N);
3625       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3626                                             LHS.getValueType().isInteger());
3627 
3628       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3629       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3630     }
3631 
3632     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3633       SDValue MinMax
3634         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3635       // Revisit this node so we can catch min3/max3/med3 patterns.
3636       //DCI.AddToWorklist(MinMax.getNode());
3637       return MinMax;
3638     }
3639   }
3640 
3641   // There's no reason to not do this if the condition has other uses.
3642   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3643 }
3644 
3645 static bool isInv2Pi(const APFloat &APF) {
3646   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3647   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3648   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3649 
3650   return APF.bitwiseIsEqual(KF16) ||
3651          APF.bitwiseIsEqual(KF32) ||
3652          APF.bitwiseIsEqual(KF64);
3653 }
3654 
3655 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3656 // additional cost to negate them.
3657 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3658   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3659     if (C->isZero() && !C->isNegative())
3660       return true;
3661 
3662     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3663       return true;
3664   }
3665 
3666   return false;
3667 }
3668 
3669 static unsigned inverseMinMax(unsigned Opc) {
3670   switch (Opc) {
3671   case ISD::FMAXNUM:
3672     return ISD::FMINNUM;
3673   case ISD::FMINNUM:
3674     return ISD::FMAXNUM;
3675   case ISD::FMAXNUM_IEEE:
3676     return ISD::FMINNUM_IEEE;
3677   case ISD::FMINNUM_IEEE:
3678     return ISD::FMAXNUM_IEEE;
3679   case AMDGPUISD::FMAX_LEGACY:
3680     return AMDGPUISD::FMIN_LEGACY;
3681   case AMDGPUISD::FMIN_LEGACY:
3682     return  AMDGPUISD::FMAX_LEGACY;
3683   default:
3684     llvm_unreachable("invalid min/max opcode");
3685   }
3686 }
3687 
3688 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3689                                                  DAGCombinerInfo &DCI) const {
3690   SelectionDAG &DAG = DCI.DAG;
3691   SDValue N0 = N->getOperand(0);
3692   EVT VT = N->getValueType(0);
3693 
3694   unsigned Opc = N0.getOpcode();
3695 
3696   // If the input has multiple uses and we can either fold the negate down, or
3697   // the other uses cannot, give up. This both prevents unprofitable
3698   // transformations and infinite loops: we won't repeatedly try to fold around
3699   // a negate that has no 'good' form.
3700   if (N0.hasOneUse()) {
3701     // This may be able to fold into the source, but at a code size cost. Don't
3702     // fold if the fold into the user is free.
3703     if (allUsesHaveSourceMods(N, 0))
3704       return SDValue();
3705   } else {
3706     if (fnegFoldsIntoOp(Opc) &&
3707         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3708       return SDValue();
3709   }
3710 
3711   SDLoc SL(N);
3712   switch (Opc) {
3713   case ISD::FADD: {
3714     if (!mayIgnoreSignedZero(N0))
3715       return SDValue();
3716 
3717     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3718     SDValue LHS = N0.getOperand(0);
3719     SDValue RHS = N0.getOperand(1);
3720 
3721     if (LHS.getOpcode() != ISD::FNEG)
3722       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3723     else
3724       LHS = LHS.getOperand(0);
3725 
3726     if (RHS.getOpcode() != ISD::FNEG)
3727       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3728     else
3729       RHS = RHS.getOperand(0);
3730 
3731     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3732     if (Res.getOpcode() != ISD::FADD)
3733       return SDValue(); // Op got folded away.
3734     if (!N0.hasOneUse())
3735       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3736     return Res;
3737   }
3738   case ISD::FMUL:
3739   case AMDGPUISD::FMUL_LEGACY: {
3740     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3741     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3742     SDValue LHS = N0.getOperand(0);
3743     SDValue RHS = N0.getOperand(1);
3744 
3745     if (LHS.getOpcode() == ISD::FNEG)
3746       LHS = LHS.getOperand(0);
3747     else if (RHS.getOpcode() == ISD::FNEG)
3748       RHS = RHS.getOperand(0);
3749     else
3750       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3751 
3752     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3753     if (Res.getOpcode() != Opc)
3754       return SDValue(); // Op got folded away.
3755     if (!N0.hasOneUse())
3756       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3757     return Res;
3758   }
3759   case ISD::FMA:
3760   case ISD::FMAD: {
3761     if (!mayIgnoreSignedZero(N0))
3762       return SDValue();
3763 
3764     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3765     SDValue LHS = N0.getOperand(0);
3766     SDValue MHS = N0.getOperand(1);
3767     SDValue RHS = N0.getOperand(2);
3768 
3769     if (LHS.getOpcode() == ISD::FNEG)
3770       LHS = LHS.getOperand(0);
3771     else if (MHS.getOpcode() == ISD::FNEG)
3772       MHS = MHS.getOperand(0);
3773     else
3774       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3775 
3776     if (RHS.getOpcode() != ISD::FNEG)
3777       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3778     else
3779       RHS = RHS.getOperand(0);
3780 
3781     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3782     if (Res.getOpcode() != Opc)
3783       return SDValue(); // Op got folded away.
3784     if (!N0.hasOneUse())
3785       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3786     return Res;
3787   }
3788   case ISD::FMAXNUM:
3789   case ISD::FMINNUM:
3790   case ISD::FMAXNUM_IEEE:
3791   case ISD::FMINNUM_IEEE:
3792   case AMDGPUISD::FMAX_LEGACY:
3793   case AMDGPUISD::FMIN_LEGACY: {
3794     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3795     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3796     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3797     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3798 
3799     SDValue LHS = N0.getOperand(0);
3800     SDValue RHS = N0.getOperand(1);
3801 
3802     // 0 doesn't have a negated inline immediate.
3803     // TODO: This constant check should be generalized to other operations.
3804     if (isConstantCostlierToNegate(RHS))
3805       return SDValue();
3806 
3807     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3808     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3809     unsigned Opposite = inverseMinMax(Opc);
3810 
3811     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3812     if (Res.getOpcode() != Opposite)
3813       return SDValue(); // Op got folded away.
3814     if (!N0.hasOneUse())
3815       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3816     return Res;
3817   }
3818   case AMDGPUISD::FMED3: {
3819     SDValue Ops[3];
3820     for (unsigned I = 0; I < 3; ++I)
3821       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3822 
3823     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3824     if (Res.getOpcode() != AMDGPUISD::FMED3)
3825       return SDValue(); // Op got folded away.
3826     if (!N0.hasOneUse())
3827       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3828     return Res;
3829   }
3830   case ISD::FP_EXTEND:
3831   case ISD::FTRUNC:
3832   case ISD::FRINT:
3833   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3834   case ISD::FSIN:
3835   case ISD::FCANONICALIZE:
3836   case AMDGPUISD::RCP:
3837   case AMDGPUISD::RCP_LEGACY:
3838   case AMDGPUISD::RCP_IFLAG:
3839   case AMDGPUISD::SIN_HW: {
3840     SDValue CvtSrc = N0.getOperand(0);
3841     if (CvtSrc.getOpcode() == ISD::FNEG) {
3842       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3843       // (fneg (rcp (fneg x))) -> (rcp x)
3844       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3845     }
3846 
3847     if (!N0.hasOneUse())
3848       return SDValue();
3849 
3850     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3851     // (fneg (rcp x)) -> (rcp (fneg x))
3852     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3853     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3854   }
3855   case ISD::FP_ROUND: {
3856     SDValue CvtSrc = N0.getOperand(0);
3857 
3858     if (CvtSrc.getOpcode() == ISD::FNEG) {
3859       // (fneg (fp_round (fneg x))) -> (fp_round x)
3860       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3861                          CvtSrc.getOperand(0), N0.getOperand(1));
3862     }
3863 
3864     if (!N0.hasOneUse())
3865       return SDValue();
3866 
3867     // (fneg (fp_round x)) -> (fp_round (fneg x))
3868     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3869     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3870   }
3871   case ISD::FP16_TO_FP: {
3872     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3873     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3874     // Put the fneg back as a legal source operation that can be matched later.
3875     SDLoc SL(N);
3876 
3877     SDValue Src = N0.getOperand(0);
3878     EVT SrcVT = Src.getValueType();
3879 
3880     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3881     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3882                                   DAG.getConstant(0x8000, SL, SrcVT));
3883     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3884   }
3885   default:
3886     return SDValue();
3887   }
3888 }
3889 
3890 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3891                                                  DAGCombinerInfo &DCI) const {
3892   SelectionDAG &DAG = DCI.DAG;
3893   SDValue N0 = N->getOperand(0);
3894 
3895   if (!N0.hasOneUse())
3896     return SDValue();
3897 
3898   switch (N0.getOpcode()) {
3899   case ISD::FP16_TO_FP: {
3900     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3901     SDLoc SL(N);
3902     SDValue Src = N0.getOperand(0);
3903     EVT SrcVT = Src.getValueType();
3904 
3905     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3906     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3907                                   DAG.getConstant(0x7fff, SL, SrcVT));
3908     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3909   }
3910   default:
3911     return SDValue();
3912   }
3913 }
3914 
3915 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3916                                                 DAGCombinerInfo &DCI) const {
3917   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3918   if (!CFP)
3919     return SDValue();
3920 
3921   // XXX - Should this flush denormals?
3922   const APFloat &Val = CFP->getValueAPF();
3923   APFloat One(Val.getSemantics(), "1.0");
3924   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3925 }
3926 
3927 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3928                                                 DAGCombinerInfo &DCI) const {
3929   SelectionDAG &DAG = DCI.DAG;
3930   SDLoc DL(N);
3931 
3932   switch(N->getOpcode()) {
3933   default:
3934     break;
3935   case ISD::BITCAST: {
3936     EVT DestVT = N->getValueType(0);
3937 
3938     // Push casts through vector builds. This helps avoid emitting a large
3939     // number of copies when materializing floating point vector constants.
3940     //
3941     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3942     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3943     if (DestVT.isVector()) {
3944       SDValue Src = N->getOperand(0);
3945       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3946         EVT SrcVT = Src.getValueType();
3947         unsigned NElts = DestVT.getVectorNumElements();
3948 
3949         if (SrcVT.getVectorNumElements() == NElts) {
3950           EVT DestEltVT = DestVT.getVectorElementType();
3951 
3952           SmallVector<SDValue, 8> CastedElts;
3953           SDLoc SL(N);
3954           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3955             SDValue Elt = Src.getOperand(I);
3956             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3957           }
3958 
3959           return DAG.getBuildVector(DestVT, SL, CastedElts);
3960         }
3961       }
3962     }
3963 
3964     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3965       break;
3966 
3967     // Fold bitcasts of constants.
3968     //
3969     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3970     // TODO: Generalize and move to DAGCombiner
3971     SDValue Src = N->getOperand(0);
3972     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3973       if (Src.getValueType() == MVT::i64) {
3974         SDLoc SL(N);
3975         uint64_t CVal = C->getZExtValue();
3976         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3977                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3978                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3979         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3980       }
3981     }
3982 
3983     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3984       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3985       SDLoc SL(N);
3986       uint64_t CVal = Val.getZExtValue();
3987       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3988                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3989                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3990 
3991       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3992     }
3993 
3994     break;
3995   }
3996   case ISD::SHL: {
3997     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3998       break;
3999 
4000     return performShlCombine(N, DCI);
4001   }
4002   case ISD::SRL: {
4003     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4004       break;
4005 
4006     return performSrlCombine(N, DCI);
4007   }
4008   case ISD::SRA: {
4009     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4010       break;
4011 
4012     return performSraCombine(N, DCI);
4013   }
4014   case ISD::TRUNCATE:
4015     return performTruncateCombine(N, DCI);
4016   case ISD::MUL:
4017     return performMulCombine(N, DCI);
4018   case ISD::MULHS:
4019     return performMulhsCombine(N, DCI);
4020   case ISD::MULHU:
4021     return performMulhuCombine(N, DCI);
4022   case AMDGPUISD::MUL_I24:
4023   case AMDGPUISD::MUL_U24:
4024   case AMDGPUISD::MULHI_I24:
4025   case AMDGPUISD::MULHI_U24: {
4026     if (SDValue V = simplifyI24(N, DCI))
4027       return V;
4028     return SDValue();
4029   }
4030   case AMDGPUISD::MUL_LOHI_I24:
4031   case AMDGPUISD::MUL_LOHI_U24:
4032     return performMulLoHi24Combine(N, DCI);
4033   case ISD::SELECT:
4034     return performSelectCombine(N, DCI);
4035   case ISD::FNEG:
4036     return performFNegCombine(N, DCI);
4037   case ISD::FABS:
4038     return performFAbsCombine(N, DCI);
4039   case AMDGPUISD::BFE_I32:
4040   case AMDGPUISD::BFE_U32: {
4041     assert(!N->getValueType(0).isVector() &&
4042            "Vector handling of BFE not implemented");
4043     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4044     if (!Width)
4045       break;
4046 
4047     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4048     if (WidthVal == 0)
4049       return DAG.getConstant(0, DL, MVT::i32);
4050 
4051     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4052     if (!Offset)
4053       break;
4054 
4055     SDValue BitsFrom = N->getOperand(0);
4056     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4057 
4058     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4059 
4060     if (OffsetVal == 0) {
4061       // This is already sign / zero extended, so try to fold away extra BFEs.
4062       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4063 
4064       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4065       if (OpSignBits >= SignBits)
4066         return BitsFrom;
4067 
4068       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4069       if (Signed) {
4070         // This is a sign_extend_inreg. Replace it to take advantage of existing
4071         // DAG Combines. If not eliminated, we will match back to BFE during
4072         // selection.
4073 
4074         // TODO: The sext_inreg of extended types ends, although we can could
4075         // handle them in a single BFE.
4076         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4077                            DAG.getValueType(SmallVT));
4078       }
4079 
4080       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4081     }
4082 
4083     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4084       if (Signed) {
4085         return constantFoldBFE<int32_t>(DAG,
4086                                         CVal->getSExtValue(),
4087                                         OffsetVal,
4088                                         WidthVal,
4089                                         DL);
4090       }
4091 
4092       return constantFoldBFE<uint32_t>(DAG,
4093                                        CVal->getZExtValue(),
4094                                        OffsetVal,
4095                                        WidthVal,
4096                                        DL);
4097     }
4098 
4099     if ((OffsetVal + WidthVal) >= 32 &&
4100         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4101       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4102       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4103                          BitsFrom, ShiftVal);
4104     }
4105 
4106     if (BitsFrom.hasOneUse()) {
4107       APInt Demanded = APInt::getBitsSet(32,
4108                                          OffsetVal,
4109                                          OffsetVal + WidthVal);
4110 
4111       KnownBits Known;
4112       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4113                                             !DCI.isBeforeLegalizeOps());
4114       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4115       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4116           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4117         DCI.CommitTargetLoweringOpt(TLO);
4118       }
4119     }
4120 
4121     break;
4122   }
4123   case ISD::LOAD:
4124     return performLoadCombine(N, DCI);
4125   case ISD::STORE:
4126     return performStoreCombine(N, DCI);
4127   case AMDGPUISD::RCP:
4128   case AMDGPUISD::RCP_IFLAG:
4129     return performRcpCombine(N, DCI);
4130   case ISD::AssertZext:
4131   case ISD::AssertSext:
4132     return performAssertSZExtCombine(N, DCI);
4133   case ISD::INTRINSIC_WO_CHAIN:
4134     return performIntrinsicWOChainCombine(N, DCI);
4135   }
4136   return SDValue();
4137 }
4138 
4139 //===----------------------------------------------------------------------===//
4140 // Helper functions
4141 //===----------------------------------------------------------------------===//
4142 
4143 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4144                                                    const TargetRegisterClass *RC,
4145                                                    unsigned Reg, EVT VT,
4146                                                    const SDLoc &SL,
4147                                                    bool RawReg) const {
4148   MachineFunction &MF = DAG.getMachineFunction();
4149   MachineRegisterInfo &MRI = MF.getRegInfo();
4150   unsigned VReg;
4151 
4152   if (!MRI.isLiveIn(Reg)) {
4153     VReg = MRI.createVirtualRegister(RC);
4154     MRI.addLiveIn(Reg, VReg);
4155   } else {
4156     VReg = MRI.getLiveInVirtReg(Reg);
4157   }
4158 
4159   if (RawReg)
4160     return DAG.getRegister(VReg, VT);
4161 
4162   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4163 }
4164 
4165 // This may be called multiple times, and nothing prevents creating multiple
4166 // objects at the same offset. See if we already defined this object.
4167 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4168                                        int64_t Offset) {
4169   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4170     if (MFI.getObjectOffset(I) == Offset) {
4171       assert(MFI.getObjectSize(I) == Size);
4172       return I;
4173     }
4174   }
4175 
4176   return MFI.CreateFixedObject(Size, Offset, true);
4177 }
4178 
4179 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4180                                                   EVT VT,
4181                                                   const SDLoc &SL,
4182                                                   int64_t Offset) const {
4183   MachineFunction &MF = DAG.getMachineFunction();
4184   MachineFrameInfo &MFI = MF.getFrameInfo();
4185   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4186 
4187   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4188   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4189 
4190   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4191                      MachineMemOperand::MODereferenceable |
4192                      MachineMemOperand::MOInvariant);
4193 }
4194 
4195 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4196                                                    const SDLoc &SL,
4197                                                    SDValue Chain,
4198                                                    SDValue ArgVal,
4199                                                    int64_t Offset) const {
4200   MachineFunction &MF = DAG.getMachineFunction();
4201   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4202 
4203   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4204   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4205                                MachineMemOperand::MODereferenceable);
4206   return Store;
4207 }
4208 
4209 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4210                                              const TargetRegisterClass *RC,
4211                                              EVT VT, const SDLoc &SL,
4212                                              const ArgDescriptor &Arg) const {
4213   assert(Arg && "Attempting to load missing argument");
4214 
4215   SDValue V = Arg.isRegister() ?
4216     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4217     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4218 
4219   if (!Arg.isMasked())
4220     return V;
4221 
4222   unsigned Mask = Arg.getMask();
4223   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4224   V = DAG.getNode(ISD::SRL, SL, VT, V,
4225                   DAG.getShiftAmountConstant(Shift, VT, SL));
4226   return DAG.getNode(ISD::AND, SL, VT, V,
4227                      DAG.getConstant(Mask >> Shift, SL, VT));
4228 }
4229 
4230 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4231     const MachineFunction &MF, const ImplicitParameter Param) const {
4232   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4233   const AMDGPUSubtarget &ST =
4234       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4235   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4236   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4237   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4238                        ExplicitArgOffset;
4239   switch (Param) {
4240   case GRID_DIM:
4241     return ArgOffset;
4242   case GRID_OFFSET:
4243     return ArgOffset + 4;
4244   }
4245   llvm_unreachable("unexpected implicit parameter type");
4246 }
4247 
4248 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4249 
4250 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4251   switch ((AMDGPUISD::NodeType)Opcode) {
4252   case AMDGPUISD::FIRST_NUMBER: break;
4253   // AMDIL DAG nodes
4254   NODE_NAME_CASE(UMUL);
4255   NODE_NAME_CASE(BRANCH_COND);
4256 
4257   // AMDGPU DAG nodes
4258   NODE_NAME_CASE(IF)
4259   NODE_NAME_CASE(ELSE)
4260   NODE_NAME_CASE(LOOP)
4261   NODE_NAME_CASE(CALL)
4262   NODE_NAME_CASE(TC_RETURN)
4263   NODE_NAME_CASE(TRAP)
4264   NODE_NAME_CASE(RET_FLAG)
4265   NODE_NAME_CASE(RETURN_TO_EPILOG)
4266   NODE_NAME_CASE(ENDPGM)
4267   NODE_NAME_CASE(DWORDADDR)
4268   NODE_NAME_CASE(FRACT)
4269   NODE_NAME_CASE(SETCC)
4270   NODE_NAME_CASE(SETREG)
4271   NODE_NAME_CASE(DENORM_MODE)
4272   NODE_NAME_CASE(FMA_W_CHAIN)
4273   NODE_NAME_CASE(FMUL_W_CHAIN)
4274   NODE_NAME_CASE(CLAMP)
4275   NODE_NAME_CASE(COS_HW)
4276   NODE_NAME_CASE(SIN_HW)
4277   NODE_NAME_CASE(FMAX_LEGACY)
4278   NODE_NAME_CASE(FMIN_LEGACY)
4279   NODE_NAME_CASE(FMAX3)
4280   NODE_NAME_CASE(SMAX3)
4281   NODE_NAME_CASE(UMAX3)
4282   NODE_NAME_CASE(FMIN3)
4283   NODE_NAME_CASE(SMIN3)
4284   NODE_NAME_CASE(UMIN3)
4285   NODE_NAME_CASE(FMED3)
4286   NODE_NAME_CASE(SMED3)
4287   NODE_NAME_CASE(UMED3)
4288   NODE_NAME_CASE(FDOT2)
4289   NODE_NAME_CASE(URECIP)
4290   NODE_NAME_CASE(DIV_SCALE)
4291   NODE_NAME_CASE(DIV_FMAS)
4292   NODE_NAME_CASE(DIV_FIXUP)
4293   NODE_NAME_CASE(FMAD_FTZ)
4294   NODE_NAME_CASE(TRIG_PREOP)
4295   NODE_NAME_CASE(RCP)
4296   NODE_NAME_CASE(RSQ)
4297   NODE_NAME_CASE(RCP_LEGACY)
4298   NODE_NAME_CASE(RSQ_LEGACY)
4299   NODE_NAME_CASE(RCP_IFLAG)
4300   NODE_NAME_CASE(FMUL_LEGACY)
4301   NODE_NAME_CASE(RSQ_CLAMP)
4302   NODE_NAME_CASE(LDEXP)
4303   NODE_NAME_CASE(FP_CLASS)
4304   NODE_NAME_CASE(DOT4)
4305   NODE_NAME_CASE(CARRY)
4306   NODE_NAME_CASE(BORROW)
4307   NODE_NAME_CASE(BFE_U32)
4308   NODE_NAME_CASE(BFE_I32)
4309   NODE_NAME_CASE(BFI)
4310   NODE_NAME_CASE(BFM)
4311   NODE_NAME_CASE(FFBH_U32)
4312   NODE_NAME_CASE(FFBH_I32)
4313   NODE_NAME_CASE(FFBL_B32)
4314   NODE_NAME_CASE(MUL_U24)
4315   NODE_NAME_CASE(MUL_I24)
4316   NODE_NAME_CASE(MULHI_U24)
4317   NODE_NAME_CASE(MULHI_I24)
4318   NODE_NAME_CASE(MUL_LOHI_U24)
4319   NODE_NAME_CASE(MUL_LOHI_I24)
4320   NODE_NAME_CASE(MAD_U24)
4321   NODE_NAME_CASE(MAD_I24)
4322   NODE_NAME_CASE(MAD_I64_I32)
4323   NODE_NAME_CASE(MAD_U64_U32)
4324   NODE_NAME_CASE(PERM)
4325   NODE_NAME_CASE(TEXTURE_FETCH)
4326   NODE_NAME_CASE(EXPORT)
4327   NODE_NAME_CASE(EXPORT_DONE)
4328   NODE_NAME_CASE(R600_EXPORT)
4329   NODE_NAME_CASE(CONST_ADDRESS)
4330   NODE_NAME_CASE(REGISTER_LOAD)
4331   NODE_NAME_CASE(REGISTER_STORE)
4332   NODE_NAME_CASE(SAMPLE)
4333   NODE_NAME_CASE(SAMPLEB)
4334   NODE_NAME_CASE(SAMPLED)
4335   NODE_NAME_CASE(SAMPLEL)
4336   NODE_NAME_CASE(CVT_F32_UBYTE0)
4337   NODE_NAME_CASE(CVT_F32_UBYTE1)
4338   NODE_NAME_CASE(CVT_F32_UBYTE2)
4339   NODE_NAME_CASE(CVT_F32_UBYTE3)
4340   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4341   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4342   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4343   NODE_NAME_CASE(CVT_PK_I16_I32)
4344   NODE_NAME_CASE(CVT_PK_U16_U32)
4345   NODE_NAME_CASE(FP_TO_FP16)
4346   NODE_NAME_CASE(FP16_ZEXT)
4347   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4348   NODE_NAME_CASE(CONST_DATA_PTR)
4349   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4350   NODE_NAME_CASE(LDS)
4351   NODE_NAME_CASE(KILL)
4352   NODE_NAME_CASE(DUMMY_CHAIN)
4353   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4354   NODE_NAME_CASE(INTERP_MOV)
4355   NODE_NAME_CASE(INTERP_P1)
4356   NODE_NAME_CASE(INTERP_P2)
4357   NODE_NAME_CASE(INTERP_P1LL_F16)
4358   NODE_NAME_CASE(INTERP_P1LV_F16)
4359   NODE_NAME_CASE(INTERP_P2_F16)
4360   NODE_NAME_CASE(LOAD_D16_HI)
4361   NODE_NAME_CASE(LOAD_D16_LO)
4362   NODE_NAME_CASE(LOAD_D16_HI_I8)
4363   NODE_NAME_CASE(LOAD_D16_HI_U8)
4364   NODE_NAME_CASE(LOAD_D16_LO_I8)
4365   NODE_NAME_CASE(LOAD_D16_LO_U8)
4366   NODE_NAME_CASE(STORE_MSKOR)
4367   NODE_NAME_CASE(LOAD_CONSTANT)
4368   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4369   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4370   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4371   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4372   NODE_NAME_CASE(DS_ORDERED_COUNT)
4373   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4374   NODE_NAME_CASE(ATOMIC_INC)
4375   NODE_NAME_CASE(ATOMIC_DEC)
4376   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4377   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4378   NODE_NAME_CASE(BUFFER_LOAD)
4379   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4380   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4381   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4382   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4383   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4384   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4385   NODE_NAME_CASE(SBUFFER_LOAD)
4386   NODE_NAME_CASE(BUFFER_STORE)
4387   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4388   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4389   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4390   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4391   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4392   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4393   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4394   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4395   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4396   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4397   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4398   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4399   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4400   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4401   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4402   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4403   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4404   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4405   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4406   NODE_NAME_CASE(ATOMIC_FADD)
4407   NODE_NAME_CASE(ATOMIC_PK_FADD)
4408 
4409   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4410   }
4411   return nullptr;
4412 }
4413 
4414 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4415                                               SelectionDAG &DAG, int Enabled,
4416                                               int &RefinementSteps,
4417                                               bool &UseOneConstNR,
4418                                               bool Reciprocal) const {
4419   EVT VT = Operand.getValueType();
4420 
4421   if (VT == MVT::f32) {
4422     RefinementSteps = 0;
4423     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4424   }
4425 
4426   // TODO: There is also f64 rsq instruction, but the documentation is less
4427   // clear on its precision.
4428 
4429   return SDValue();
4430 }
4431 
4432 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4433                                                SelectionDAG &DAG, int Enabled,
4434                                                int &RefinementSteps) const {
4435   EVT VT = Operand.getValueType();
4436 
4437   if (VT == MVT::f32) {
4438     // Reciprocal, < 1 ulp error.
4439     //
4440     // This reciprocal approximation converges to < 0.5 ulp error with one
4441     // newton rhapson performed with two fused multiple adds (FMAs).
4442 
4443     RefinementSteps = 0;
4444     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4445   }
4446 
4447   // TODO: There is also f64 rcp instruction, but the documentation is less
4448   // clear on its precision.
4449 
4450   return SDValue();
4451 }
4452 
4453 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4454     const SDValue Op, KnownBits &Known,
4455     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4456 
4457   Known.resetAll(); // Don't know anything.
4458 
4459   unsigned Opc = Op.getOpcode();
4460 
4461   switch (Opc) {
4462   default:
4463     break;
4464   case AMDGPUISD::CARRY:
4465   case AMDGPUISD::BORROW: {
4466     Known.Zero = APInt::getHighBitsSet(32, 31);
4467     break;
4468   }
4469 
4470   case AMDGPUISD::BFE_I32:
4471   case AMDGPUISD::BFE_U32: {
4472     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4473     if (!CWidth)
4474       return;
4475 
4476     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4477 
4478     if (Opc == AMDGPUISD::BFE_U32)
4479       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4480 
4481     break;
4482   }
4483   case AMDGPUISD::FP_TO_FP16:
4484   case AMDGPUISD::FP16_ZEXT: {
4485     unsigned BitWidth = Known.getBitWidth();
4486 
4487     // High bits are zero.
4488     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4489     break;
4490   }
4491   case AMDGPUISD::MUL_U24:
4492   case AMDGPUISD::MUL_I24: {
4493     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4494     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4495     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4496                       RHSKnown.countMinTrailingZeros();
4497     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4498 
4499     // Truncate to 24 bits.
4500     LHSKnown = LHSKnown.trunc(24);
4501     RHSKnown = RHSKnown.trunc(24);
4502 
4503     bool Negative = false;
4504     if (Opc == AMDGPUISD::MUL_I24) {
4505       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4506       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4507       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4508       if (MaxValBits >= 32)
4509         break;
4510       bool LHSNegative = LHSKnown.isNegative();
4511       bool LHSPositive = LHSKnown.isNonNegative();
4512       bool RHSNegative = RHSKnown.isNegative();
4513       bool RHSPositive = RHSKnown.isNonNegative();
4514       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4515         break;
4516       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4517       if (Negative)
4518         Known.One.setHighBits(32 - MaxValBits);
4519       else
4520         Known.Zero.setHighBits(32 - MaxValBits);
4521     } else {
4522       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4523       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4524       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4525       if (MaxValBits >= 32)
4526         break;
4527       Known.Zero.setHighBits(32 - MaxValBits);
4528     }
4529     break;
4530   }
4531   case AMDGPUISD::PERM: {
4532     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4533     if (!CMask)
4534       return;
4535 
4536     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4537     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4538     unsigned Sel = CMask->getZExtValue();
4539 
4540     for (unsigned I = 0; I < 32; I += 8) {
4541       unsigned SelBits = Sel & 0xff;
4542       if (SelBits < 4) {
4543         SelBits *= 8;
4544         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4545         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4546       } else if (SelBits < 7) {
4547         SelBits = (SelBits & 3) * 8;
4548         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4549         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4550       } else if (SelBits == 0x0c) {
4551         Known.Zero |= 0xFFull << I;
4552       } else if (SelBits > 0x0c) {
4553         Known.One |= 0xFFull << I;
4554       }
4555       Sel >>= 8;
4556     }
4557     break;
4558   }
4559   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4560     Known.Zero.setHighBits(24);
4561     break;
4562   }
4563   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4564     Known.Zero.setHighBits(16);
4565     break;
4566   }
4567   case AMDGPUISD::LDS: {
4568     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4569     unsigned Align = GA->getGlobal()->getAlignment();
4570 
4571     Known.Zero.setHighBits(16);
4572     if (Align)
4573       Known.Zero.setLowBits(Log2_32(Align));
4574     break;
4575   }
4576   case ISD::INTRINSIC_WO_CHAIN: {
4577     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4578     switch (IID) {
4579     case Intrinsic::amdgcn_mbcnt_lo:
4580     case Intrinsic::amdgcn_mbcnt_hi: {
4581       const GCNSubtarget &ST =
4582           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4583       // These return at most the wavefront size - 1.
4584       unsigned Size = Op.getValueType().getSizeInBits();
4585       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4586       break;
4587     }
4588     default:
4589       break;
4590     }
4591   }
4592   }
4593 }
4594 
4595 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4596     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4597     unsigned Depth) const {
4598   switch (Op.getOpcode()) {
4599   case AMDGPUISD::BFE_I32: {
4600     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4601     if (!Width)
4602       return 1;
4603 
4604     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4605     if (!isNullConstant(Op.getOperand(1)))
4606       return SignBits;
4607 
4608     // TODO: Could probably figure something out with non-0 offsets.
4609     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4610     return std::max(SignBits, Op0SignBits);
4611   }
4612 
4613   case AMDGPUISD::BFE_U32: {
4614     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4615     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4616   }
4617 
4618   case AMDGPUISD::CARRY:
4619   case AMDGPUISD::BORROW:
4620     return 31;
4621   case AMDGPUISD::BUFFER_LOAD_BYTE:
4622     return 25;
4623   case AMDGPUISD::BUFFER_LOAD_SHORT:
4624     return 17;
4625   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4626     return 24;
4627   case AMDGPUISD::BUFFER_LOAD_USHORT:
4628     return 16;
4629   case AMDGPUISD::FP_TO_FP16:
4630   case AMDGPUISD::FP16_ZEXT:
4631     return 16;
4632   default:
4633     return 1;
4634   }
4635 }
4636 
4637 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4638                                                         const SelectionDAG &DAG,
4639                                                         bool SNaN,
4640                                                         unsigned Depth) const {
4641   unsigned Opcode = Op.getOpcode();
4642   switch (Opcode) {
4643   case AMDGPUISD::FMIN_LEGACY:
4644   case AMDGPUISD::FMAX_LEGACY: {
4645     if (SNaN)
4646       return true;
4647 
4648     // TODO: Can check no nans on one of the operands for each one, but which
4649     // one?
4650     return false;
4651   }
4652   case AMDGPUISD::FMUL_LEGACY:
4653   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4654     if (SNaN)
4655       return true;
4656     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4657            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4658   }
4659   case AMDGPUISD::FMED3:
4660   case AMDGPUISD::FMIN3:
4661   case AMDGPUISD::FMAX3:
4662   case AMDGPUISD::FMAD_FTZ: {
4663     if (SNaN)
4664       return true;
4665     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4666            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4667            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4668   }
4669   case AMDGPUISD::CVT_F32_UBYTE0:
4670   case AMDGPUISD::CVT_F32_UBYTE1:
4671   case AMDGPUISD::CVT_F32_UBYTE2:
4672   case AMDGPUISD::CVT_F32_UBYTE3:
4673     return true;
4674 
4675   case AMDGPUISD::RCP:
4676   case AMDGPUISD::RSQ:
4677   case AMDGPUISD::RCP_LEGACY:
4678   case AMDGPUISD::RSQ_LEGACY:
4679   case AMDGPUISD::RSQ_CLAMP: {
4680     if (SNaN)
4681       return true;
4682 
4683     // TODO: Need is known positive check.
4684     return false;
4685   }
4686   case AMDGPUISD::LDEXP:
4687   case AMDGPUISD::FRACT: {
4688     if (SNaN)
4689       return true;
4690     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4691   }
4692   case AMDGPUISD::DIV_SCALE:
4693   case AMDGPUISD::DIV_FMAS:
4694   case AMDGPUISD::DIV_FIXUP:
4695   case AMDGPUISD::TRIG_PREOP:
4696     // TODO: Refine on operands.
4697     return SNaN;
4698   case AMDGPUISD::SIN_HW:
4699   case AMDGPUISD::COS_HW: {
4700     // TODO: Need check for infinity
4701     return SNaN;
4702   }
4703   case ISD::INTRINSIC_WO_CHAIN: {
4704     unsigned IntrinsicID
4705       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4706     // TODO: Handle more intrinsics
4707     switch (IntrinsicID) {
4708     case Intrinsic::amdgcn_cubeid:
4709       return true;
4710 
4711     case Intrinsic::amdgcn_frexp_mant: {
4712       if (SNaN)
4713         return true;
4714       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4715     }
4716     case Intrinsic::amdgcn_cvt_pkrtz: {
4717       if (SNaN)
4718         return true;
4719       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4720              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4721     }
4722     case Intrinsic::amdgcn_fdot2:
4723       // TODO: Refine on operand
4724       return SNaN;
4725     default:
4726       return false;
4727     }
4728   }
4729   default:
4730     return false;
4731   }
4732 }
4733 
4734 TargetLowering::AtomicExpansionKind
4735 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4736   switch (RMW->getOperation()) {
4737   case AtomicRMWInst::Nand:
4738   case AtomicRMWInst::FAdd:
4739   case AtomicRMWInst::FSub:
4740     return AtomicExpansionKind::CmpXChg;
4741   default:
4742     return AtomicExpansionKind::None;
4743   }
4744 }
4745