1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 #include "AMDGPUGenCallingConv.inc" 32 33 static cl::opt<bool> AMDGPUBypassSlowDiv( 34 "amdgpu-bypass-slow-div", 35 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 36 cl::init(true)); 37 38 // Find a larger type to do a load / store of a vector with. 39 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 40 unsigned StoreSize = VT.getStoreSizeInBits(); 41 if (StoreSize <= 32) 42 return EVT::getIntegerVT(Ctx, StoreSize); 43 44 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 45 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 46 } 47 48 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 49 return DAG.computeKnownBits(Op).countMaxActiveBits(); 50 } 51 52 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 53 // In order for this to be a signed 24-bit value, bit 23, must 54 // be a sign bit. 55 return DAG.ComputeMaxSignificantBits(Op); 56 } 57 58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 59 const AMDGPUSubtarget &STI) 60 : TargetLowering(TM), Subtarget(&STI) { 61 // Lower floating point store/load to integer store/load to reduce the number 62 // of patterns in tablegen. 63 setOperationAction(ISD::LOAD, MVT::f32, Promote); 64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 65 66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 68 69 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 71 72 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 74 75 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 77 78 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 80 81 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 83 84 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 86 87 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 89 90 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 92 93 setOperationAction(ISD::LOAD, MVT::i64, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 95 96 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 98 99 setOperationAction(ISD::LOAD, MVT::f64, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 101 102 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 104 105 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 107 108 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 110 111 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 113 114 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 116 117 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 119 120 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 122 123 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 124 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 125 126 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 127 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 128 129 // There are no 64-bit extloads. These should be done as a 32-bit extload and 130 // an extension to 64-bit. 131 for (MVT VT : MVT::integer_valuetypes()) { 132 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 134 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 135 } 136 137 for (MVT VT : MVT::integer_valuetypes()) { 138 if (VT == MVT::i64) 139 continue; 140 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 145 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 150 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 155 } 156 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 158 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 173 } 174 175 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 182 183 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 188 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 189 190 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 193 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 196 197 setOperationAction(ISD::STORE, MVT::f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 199 200 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 205 206 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 208 209 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 211 212 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 214 215 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 217 218 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 219 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 220 221 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 223 224 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 225 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 226 227 setOperationAction(ISD::STORE, MVT::i64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 229 230 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 232 233 setOperationAction(ISD::STORE, MVT::f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 235 236 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 238 239 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 241 242 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 244 245 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 247 248 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 250 251 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 253 254 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 256 257 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 259 260 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 262 263 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 264 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 265 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 266 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 267 268 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 269 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 270 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 271 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 272 273 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 274 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 275 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 276 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 277 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 278 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 279 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 280 281 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 282 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 283 284 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 285 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 286 287 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 288 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 289 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 290 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 291 292 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 293 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 295 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 296 297 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 298 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 299 300 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 301 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 302 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 303 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 304 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 306 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 307 308 setOperationAction(ISD::Constant, MVT::i32, Legal); 309 setOperationAction(ISD::Constant, MVT::i64, Legal); 310 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 311 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 312 313 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 314 setOperationAction(ISD::BRIND, MVT::Other, Expand); 315 316 // This is totally unsupported, just custom lower to produce an error. 317 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 318 319 // Library functions. These default to Expand, but we have instructions 320 // for them. 321 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 322 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 323 setOperationAction(ISD::FPOW, MVT::f32, Legal); 324 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 325 setOperationAction(ISD::FABS, MVT::f32, Legal); 326 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 327 setOperationAction(ISD::FRINT, MVT::f32, Legal); 328 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 329 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 330 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 331 332 setOperationAction(ISD::FROUND, MVT::f32, Custom); 333 setOperationAction(ISD::FROUND, MVT::f64, Custom); 334 335 setOperationAction(ISD::FLOG, MVT::f32, Custom); 336 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 337 setOperationAction(ISD::FEXP, MVT::f32, Custom); 338 339 340 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 341 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 342 343 setOperationAction(ISD::FREM, MVT::f16, Custom); 344 setOperationAction(ISD::FREM, MVT::f32, Custom); 345 setOperationAction(ISD::FREM, MVT::f64, Custom); 346 347 // Expand to fneg + fadd. 348 setOperationAction(ISD::FSUB, MVT::f64, Expand); 349 350 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 351 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 352 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 362 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 363 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 364 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f16, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i16, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 394 395 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 396 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 397 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 398 399 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 400 for (MVT VT : ScalarIntVTs) { 401 // These should use [SU]DIVREM, so set them to expand 402 setOperationAction(ISD::SDIV, VT, Expand); 403 setOperationAction(ISD::UDIV, VT, Expand); 404 setOperationAction(ISD::SREM, VT, Expand); 405 setOperationAction(ISD::UREM, VT, Expand); 406 407 // GPU does not have divrem function for signed or unsigned. 408 setOperationAction(ISD::SDIVREM, VT, Custom); 409 setOperationAction(ISD::UDIVREM, VT, Custom); 410 411 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 412 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 413 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 414 415 setOperationAction(ISD::BSWAP, VT, Expand); 416 setOperationAction(ISD::CTTZ, VT, Expand); 417 setOperationAction(ISD::CTLZ, VT, Expand); 418 419 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 420 setOperationAction(ISD::ADDC, VT, Legal); 421 setOperationAction(ISD::SUBC, VT, Legal); 422 setOperationAction(ISD::ADDE, VT, Legal); 423 setOperationAction(ISD::SUBE, VT, Legal); 424 } 425 426 // The hardware supports 32-bit FSHR, but not FSHL. 427 setOperationAction(ISD::FSHR, MVT::i32, Legal); 428 429 // The hardware supports 32-bit ROTR, but not ROTL. 430 setOperationAction(ISD::ROTL, MVT::i32, Expand); 431 setOperationAction(ISD::ROTL, MVT::i64, Expand); 432 setOperationAction(ISD::ROTR, MVT::i64, Expand); 433 434 setOperationAction(ISD::MULHU, MVT::i16, Expand); 435 setOperationAction(ISD::MULHS, MVT::i16, Expand); 436 437 setOperationAction(ISD::MUL, MVT::i64, Expand); 438 setOperationAction(ISD::MULHU, MVT::i64, Expand); 439 setOperationAction(ISD::MULHS, MVT::i64, Expand); 440 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 441 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 442 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 443 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 444 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 445 446 setOperationAction(ISD::SMIN, MVT::i32, Legal); 447 setOperationAction(ISD::UMIN, MVT::i32, Legal); 448 setOperationAction(ISD::SMAX, MVT::i32, Legal); 449 setOperationAction(ISD::UMAX, MVT::i32, Legal); 450 451 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 452 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 453 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 454 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 455 456 static const MVT::SimpleValueType VectorIntTypes[] = { 457 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 458 459 for (MVT VT : VectorIntTypes) { 460 // Expand the following operations for the current type by default. 461 setOperationAction(ISD::ADD, VT, Expand); 462 setOperationAction(ISD::AND, VT, Expand); 463 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 464 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 465 setOperationAction(ISD::MUL, VT, Expand); 466 setOperationAction(ISD::MULHU, VT, Expand); 467 setOperationAction(ISD::MULHS, VT, Expand); 468 setOperationAction(ISD::OR, VT, Expand); 469 setOperationAction(ISD::SHL, VT, Expand); 470 setOperationAction(ISD::SRA, VT, Expand); 471 setOperationAction(ISD::SRL, VT, Expand); 472 setOperationAction(ISD::ROTL, VT, Expand); 473 setOperationAction(ISD::ROTR, VT, Expand); 474 setOperationAction(ISD::SUB, VT, Expand); 475 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 476 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 477 setOperationAction(ISD::SDIV, VT, Expand); 478 setOperationAction(ISD::UDIV, VT, Expand); 479 setOperationAction(ISD::SREM, VT, Expand); 480 setOperationAction(ISD::UREM, VT, Expand); 481 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 482 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 483 setOperationAction(ISD::SDIVREM, VT, Expand); 484 setOperationAction(ISD::UDIVREM, VT, Expand); 485 setOperationAction(ISD::SELECT, VT, Expand); 486 setOperationAction(ISD::VSELECT, VT, Expand); 487 setOperationAction(ISD::SELECT_CC, VT, Expand); 488 setOperationAction(ISD::XOR, VT, Expand); 489 setOperationAction(ISD::BSWAP, VT, Expand); 490 setOperationAction(ISD::CTPOP, VT, Expand); 491 setOperationAction(ISD::CTTZ, VT, Expand); 492 setOperationAction(ISD::CTLZ, VT, Expand); 493 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 494 setOperationAction(ISD::SETCC, VT, Expand); 495 } 496 497 static const MVT::SimpleValueType FloatVectorTypes[] = { 498 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 499 500 for (MVT VT : FloatVectorTypes) { 501 setOperationAction(ISD::FABS, VT, Expand); 502 setOperationAction(ISD::FMINNUM, VT, Expand); 503 setOperationAction(ISD::FMAXNUM, VT, Expand); 504 setOperationAction(ISD::FADD, VT, Expand); 505 setOperationAction(ISD::FCEIL, VT, Expand); 506 setOperationAction(ISD::FCOS, VT, Expand); 507 setOperationAction(ISD::FDIV, VT, Expand); 508 setOperationAction(ISD::FEXP2, VT, Expand); 509 setOperationAction(ISD::FEXP, VT, Expand); 510 setOperationAction(ISD::FLOG2, VT, Expand); 511 setOperationAction(ISD::FREM, VT, Expand); 512 setOperationAction(ISD::FLOG, VT, Expand); 513 setOperationAction(ISD::FLOG10, VT, Expand); 514 setOperationAction(ISD::FPOW, VT, Expand); 515 setOperationAction(ISD::FFLOOR, VT, Expand); 516 setOperationAction(ISD::FTRUNC, VT, Expand); 517 setOperationAction(ISD::FMUL, VT, Expand); 518 setOperationAction(ISD::FMA, VT, Expand); 519 setOperationAction(ISD::FRINT, VT, Expand); 520 setOperationAction(ISD::FNEARBYINT, VT, Expand); 521 setOperationAction(ISD::FSQRT, VT, Expand); 522 setOperationAction(ISD::FSIN, VT, Expand); 523 setOperationAction(ISD::FSUB, VT, Expand); 524 setOperationAction(ISD::FNEG, VT, Expand); 525 setOperationAction(ISD::VSELECT, VT, Expand); 526 setOperationAction(ISD::SELECT_CC, VT, Expand); 527 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 528 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 529 setOperationAction(ISD::SETCC, VT, Expand); 530 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 531 } 532 533 // This causes using an unrolled select operation rather than expansion with 534 // bit operations. This is in general better, but the alternative using BFI 535 // instructions may be better if the select sources are SGPRs. 536 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 537 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 538 539 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 540 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 541 542 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 543 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 544 545 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 546 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 547 548 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 549 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 550 551 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 552 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 553 554 // There are no libcalls of any kind. 555 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 556 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 557 558 setSchedulingPreference(Sched::RegPressure); 559 setJumpIsExpensive(true); 560 561 // FIXME: This is only partially true. If we have to do vector compares, any 562 // SGPR pair can be a condition register. If we have a uniform condition, we 563 // are better off doing SALU operations, where there is only one SCC. For now, 564 // we don't have a way of knowing during instruction selection if a condition 565 // will be uniform and we always use vector compares. Assume we are using 566 // vector compares until that is fixed. 567 setHasMultipleConditionRegisters(true); 568 569 setMinCmpXchgSizeInBits(32); 570 setSupportsUnalignedAtomics(false); 571 572 PredictableSelectIsExpensive = false; 573 574 // We want to find all load dependencies for long chains of stores to enable 575 // merging into very wide vectors. The problem is with vectors with > 4 576 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 577 // vectors are a legal type, even though we have to split the loads 578 // usually. When we can more precisely specify load legality per address 579 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 580 // smarter so that they can figure out what to do in 2 iterations without all 581 // N > 4 stores on the same chain. 582 GatherAllAliasesMaxDepth = 16; 583 584 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 585 // about these during lowering. 586 MaxStoresPerMemcpy = 0xffffffff; 587 MaxStoresPerMemmove = 0xffffffff; 588 MaxStoresPerMemset = 0xffffffff; 589 590 // The expansion for 64-bit division is enormous. 591 if (AMDGPUBypassSlowDiv) 592 addBypassSlowDiv(64, 32); 593 594 setTargetDAGCombine({ISD::BITCAST, ISD::SHL, 595 ISD::SRA, ISD::SRL, 596 ISD::TRUNCATE, ISD::MUL, 597 ISD::SMUL_LOHI, ISD::UMUL_LOHI, 598 ISD::MULHU, ISD::MULHS, 599 ISD::SELECT, ISD::SELECT_CC, 600 ISD::STORE, ISD::FADD, 601 ISD::FSUB, ISD::FNEG, 602 ISD::FABS, ISD::AssertZext, 603 ISD::AssertSext, ISD::INTRINSIC_WO_CHAIN}); 604 } 605 606 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 607 if (getTargetMachine().Options.NoSignedZerosFPMath) 608 return true; 609 610 const auto Flags = Op.getNode()->getFlags(); 611 if (Flags.hasNoSignedZeros()) 612 return true; 613 614 return false; 615 } 616 617 //===----------------------------------------------------------------------===// 618 // Target Information 619 //===----------------------------------------------------------------------===// 620 621 LLVM_READNONE 622 static bool fnegFoldsIntoOp(unsigned Opc) { 623 switch (Opc) { 624 case ISD::FADD: 625 case ISD::FSUB: 626 case ISD::FMUL: 627 case ISD::FMA: 628 case ISD::FMAD: 629 case ISD::FMINNUM: 630 case ISD::FMAXNUM: 631 case ISD::FMINNUM_IEEE: 632 case ISD::FMAXNUM_IEEE: 633 case ISD::FSIN: 634 case ISD::FTRUNC: 635 case ISD::FRINT: 636 case ISD::FNEARBYINT: 637 case ISD::FCANONICALIZE: 638 case AMDGPUISD::RCP: 639 case AMDGPUISD::RCP_LEGACY: 640 case AMDGPUISD::RCP_IFLAG: 641 case AMDGPUISD::SIN_HW: 642 case AMDGPUISD::FMUL_LEGACY: 643 case AMDGPUISD::FMIN_LEGACY: 644 case AMDGPUISD::FMAX_LEGACY: 645 case AMDGPUISD::FMED3: 646 // TODO: handle llvm.amdgcn.fma.legacy 647 return true; 648 default: 649 return false; 650 } 651 } 652 653 /// \p returns true if the operation will definitely need to use a 64-bit 654 /// encoding, and thus will use a VOP3 encoding regardless of the source 655 /// modifiers. 656 LLVM_READONLY 657 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 658 return N->getNumOperands() > 2 || VT == MVT::f64; 659 } 660 661 // Most FP instructions support source modifiers, but this could be refined 662 // slightly. 663 LLVM_READONLY 664 static bool hasSourceMods(const SDNode *N) { 665 if (isa<MemSDNode>(N)) 666 return false; 667 668 switch (N->getOpcode()) { 669 case ISD::CopyToReg: 670 case ISD::SELECT: 671 case ISD::FDIV: 672 case ISD::FREM: 673 case ISD::INLINEASM: 674 case ISD::INLINEASM_BR: 675 case AMDGPUISD::DIV_SCALE: 676 case ISD::INTRINSIC_W_CHAIN: 677 678 // TODO: Should really be looking at the users of the bitcast. These are 679 // problematic because bitcasts are used to legalize all stores to integer 680 // types. 681 case ISD::BITCAST: 682 return false; 683 case ISD::INTRINSIC_WO_CHAIN: { 684 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 685 case Intrinsic::amdgcn_interp_p1: 686 case Intrinsic::amdgcn_interp_p2: 687 case Intrinsic::amdgcn_interp_mov: 688 case Intrinsic::amdgcn_interp_p1_f16: 689 case Intrinsic::amdgcn_interp_p2_f16: 690 return false; 691 default: 692 return true; 693 } 694 } 695 default: 696 return true; 697 } 698 } 699 700 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 701 unsigned CostThreshold) { 702 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 703 // it is truly free to use a source modifier in all cases. If there are 704 // multiple users but for each one will necessitate using VOP3, there will be 705 // a code size increase. Try to avoid increasing code size unless we know it 706 // will save on the instruction count. 707 unsigned NumMayIncreaseSize = 0; 708 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 709 710 // XXX - Should this limit number of uses to check? 711 for (const SDNode *U : N->uses()) { 712 if (!hasSourceMods(U)) 713 return false; 714 715 if (!opMustUseVOP3Encoding(U, VT)) { 716 if (++NumMayIncreaseSize > CostThreshold) 717 return false; 718 } 719 } 720 721 return true; 722 } 723 724 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 725 ISD::NodeType ExtendKind) const { 726 assert(!VT.isVector() && "only scalar expected"); 727 728 // Round to the next multiple of 32-bits. 729 unsigned Size = VT.getSizeInBits(); 730 if (Size <= 32) 731 return MVT::i32; 732 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 733 } 734 735 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 736 return MVT::i32; 737 } 738 739 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 740 return true; 741 } 742 743 // The backend supports 32 and 64 bit floating point immediates. 744 // FIXME: Why are we reporting vectors of FP immediates as legal? 745 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 746 bool ForCodeSize) const { 747 EVT ScalarVT = VT.getScalarType(); 748 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 749 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 750 } 751 752 // We don't want to shrink f64 / f32 constants. 753 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 754 EVT ScalarVT = VT.getScalarType(); 755 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 756 } 757 758 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 759 ISD::LoadExtType ExtTy, 760 EVT NewVT) const { 761 // TODO: This may be worth removing. Check regression tests for diffs. 762 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 763 return false; 764 765 unsigned NewSize = NewVT.getStoreSizeInBits(); 766 767 // If we are reducing to a 32-bit load or a smaller multi-dword load, 768 // this is always better. 769 if (NewSize >= 32) 770 return true; 771 772 EVT OldVT = N->getValueType(0); 773 unsigned OldSize = OldVT.getStoreSizeInBits(); 774 775 MemSDNode *MN = cast<MemSDNode>(N); 776 unsigned AS = MN->getAddressSpace(); 777 // Do not shrink an aligned scalar load to sub-dword. 778 // Scalar engine cannot do sub-dword loads. 779 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 780 (AS == AMDGPUAS::CONSTANT_ADDRESS || 781 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 782 (isa<LoadSDNode>(N) && 783 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 784 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 785 return false; 786 787 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 788 // extloads, so doing one requires using a buffer_load. In cases where we 789 // still couldn't use a scalar load, using the wider load shouldn't really 790 // hurt anything. 791 792 // If the old size already had to be an extload, there's no harm in continuing 793 // to reduce the width. 794 return (OldSize < 32); 795 } 796 797 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 798 const SelectionDAG &DAG, 799 const MachineMemOperand &MMO) const { 800 801 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 802 803 if (LoadTy.getScalarType() == MVT::i32) 804 return false; 805 806 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 807 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 808 809 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 810 return false; 811 812 bool Fast = false; 813 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 814 CastTy, MMO, &Fast) && 815 Fast; 816 } 817 818 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 819 // profitable with the expansion for 64-bit since it's generally good to 820 // speculate things. 821 // FIXME: These should really have the size as a parameter. 822 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 823 return true; 824 } 825 826 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 827 return true; 828 } 829 830 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 831 switch (N->getOpcode()) { 832 case ISD::EntryToken: 833 case ISD::TokenFactor: 834 return true; 835 case ISD::INTRINSIC_WO_CHAIN: { 836 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 837 switch (IntrID) { 838 case Intrinsic::amdgcn_readfirstlane: 839 case Intrinsic::amdgcn_readlane: 840 return true; 841 } 842 return false; 843 } 844 case ISD::LOAD: 845 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 846 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 847 return true; 848 return false; 849 } 850 return false; 851 } 852 853 SDValue AMDGPUTargetLowering::getNegatedExpression( 854 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 855 NegatibleCost &Cost, unsigned Depth) const { 856 857 switch (Op.getOpcode()) { 858 case ISD::FMA: 859 case ISD::FMAD: { 860 // Negating a fma is not free if it has users without source mods. 861 if (!allUsesHaveSourceMods(Op.getNode())) 862 return SDValue(); 863 break; 864 } 865 default: 866 break; 867 } 868 869 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 870 ForCodeSize, Cost, Depth); 871 } 872 873 //===---------------------------------------------------------------------===// 874 // Target Properties 875 //===---------------------------------------------------------------------===// 876 877 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 878 assert(VT.isFloatingPoint()); 879 880 // Packed operations do not have a fabs modifier. 881 return VT == MVT::f32 || VT == MVT::f64 || 882 (Subtarget->has16BitInsts() && VT == MVT::f16); 883 } 884 885 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 886 assert(VT.isFloatingPoint()); 887 // Report this based on the end legalized type. 888 VT = VT.getScalarType(); 889 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 890 } 891 892 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 893 unsigned NumElem, 894 unsigned AS) const { 895 return true; 896 } 897 898 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 899 // There are few operations which truly have vector input operands. Any vector 900 // operation is going to involve operations on each component, and a 901 // build_vector will be a copy per element, so it always makes sense to use a 902 // build_vector input in place of the extracted element to avoid a copy into a 903 // super register. 904 // 905 // We should probably only do this if all users are extracts only, but this 906 // should be the common case. 907 return true; 908 } 909 910 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 911 // Truncate is just accessing a subregister. 912 913 unsigned SrcSize = Source.getSizeInBits(); 914 unsigned DestSize = Dest.getSizeInBits(); 915 916 return DestSize < SrcSize && DestSize % 32 == 0 ; 917 } 918 919 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 920 // Truncate is just accessing a subregister. 921 922 unsigned SrcSize = Source->getScalarSizeInBits(); 923 unsigned DestSize = Dest->getScalarSizeInBits(); 924 925 if (DestSize== 16 && Subtarget->has16BitInsts()) 926 return SrcSize >= 32; 927 928 return DestSize < SrcSize && DestSize % 32 == 0; 929 } 930 931 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 932 unsigned SrcSize = Src->getScalarSizeInBits(); 933 unsigned DestSize = Dest->getScalarSizeInBits(); 934 935 if (SrcSize == 16 && Subtarget->has16BitInsts()) 936 return DestSize >= 32; 937 938 return SrcSize == 32 && DestSize == 64; 939 } 940 941 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 942 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 943 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 944 // this will enable reducing 64-bit operations the 32-bit, which is always 945 // good. 946 947 if (Src == MVT::i16) 948 return Dest == MVT::i32 ||Dest == MVT::i64 ; 949 950 return Src == MVT::i32 && Dest == MVT::i64; 951 } 952 953 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 954 return isZExtFree(Val.getValueType(), VT2); 955 } 956 957 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 958 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 959 // limited number of native 64-bit operations. Shrinking an operation to fit 960 // in a single 32-bit register should always be helpful. As currently used, 961 // this is much less general than the name suggests, and is only used in 962 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 963 // not profitable, and may actually be harmful. 964 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 965 } 966 967 //===---------------------------------------------------------------------===// 968 // TargetLowering Callbacks 969 //===---------------------------------------------------------------------===// 970 971 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 972 bool IsVarArg) { 973 switch (CC) { 974 case CallingConv::AMDGPU_VS: 975 case CallingConv::AMDGPU_GS: 976 case CallingConv::AMDGPU_PS: 977 case CallingConv::AMDGPU_CS: 978 case CallingConv::AMDGPU_HS: 979 case CallingConv::AMDGPU_ES: 980 case CallingConv::AMDGPU_LS: 981 return CC_AMDGPU; 982 case CallingConv::C: 983 case CallingConv::Fast: 984 case CallingConv::Cold: 985 return CC_AMDGPU_Func; 986 case CallingConv::AMDGPU_Gfx: 987 return CC_SI_Gfx; 988 case CallingConv::AMDGPU_KERNEL: 989 case CallingConv::SPIR_KERNEL: 990 default: 991 report_fatal_error("Unsupported calling convention for call"); 992 } 993 } 994 995 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 996 bool IsVarArg) { 997 switch (CC) { 998 case CallingConv::AMDGPU_KERNEL: 999 case CallingConv::SPIR_KERNEL: 1000 llvm_unreachable("kernels should not be handled here"); 1001 case CallingConv::AMDGPU_VS: 1002 case CallingConv::AMDGPU_GS: 1003 case CallingConv::AMDGPU_PS: 1004 case CallingConv::AMDGPU_CS: 1005 case CallingConv::AMDGPU_HS: 1006 case CallingConv::AMDGPU_ES: 1007 case CallingConv::AMDGPU_LS: 1008 return RetCC_SI_Shader; 1009 case CallingConv::AMDGPU_Gfx: 1010 return RetCC_SI_Gfx; 1011 case CallingConv::C: 1012 case CallingConv::Fast: 1013 case CallingConv::Cold: 1014 return RetCC_AMDGPU_Func; 1015 default: 1016 report_fatal_error("Unsupported calling convention."); 1017 } 1018 } 1019 1020 /// The SelectionDAGBuilder will automatically promote function arguments 1021 /// with illegal types. However, this does not work for the AMDGPU targets 1022 /// since the function arguments are stored in memory as these illegal types. 1023 /// In order to handle this properly we need to get the original types sizes 1024 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1025 /// passing them to AnalyzeFormalArguments() 1026 1027 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1028 /// input values across multiple registers. Each item in the Ins array 1029 /// represents a single value that will be stored in registers. Ins[x].VT is 1030 /// the value type of the value that will be stored in the register, so 1031 /// whatever SDNode we lower the argument to needs to be this type. 1032 /// 1033 /// In order to correctly lower the arguments we need to know the size of each 1034 /// argument. Since Ins[x].VT gives us the size of the register that will 1035 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1036 /// for the original function argument so that we can deduce the correct memory 1037 /// type to use for Ins[x]. In most cases the correct memory type will be 1038 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1039 /// we have a kernel argument of type v8i8, this argument will be split into 1040 /// 8 parts and each part will be represented by its own item in the Ins array. 1041 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1042 /// the argument before it was split. From this, we deduce that the memory type 1043 /// for each individual part is i8. We pass the memory type as LocVT to the 1044 /// calling convention analysis function and the register type (Ins[x].VT) as 1045 /// the ValVT. 1046 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1047 CCState &State, 1048 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1049 const MachineFunction &MF = State.getMachineFunction(); 1050 const Function &Fn = MF.getFunction(); 1051 LLVMContext &Ctx = Fn.getParent()->getContext(); 1052 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1053 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1054 CallingConv::ID CC = Fn.getCallingConv(); 1055 1056 Align MaxAlign = Align(1); 1057 uint64_t ExplicitArgOffset = 0; 1058 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1059 1060 unsigned InIndex = 0; 1061 1062 for (const Argument &Arg : Fn.args()) { 1063 const bool IsByRef = Arg.hasByRefAttr(); 1064 Type *BaseArgTy = Arg.getType(); 1065 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1066 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1067 if (!Alignment) 1068 Alignment = DL.getABITypeAlign(MemArgTy); 1069 MaxAlign = max(Alignment, MaxAlign); 1070 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1071 1072 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1073 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1074 1075 // We're basically throwing away everything passed into us and starting over 1076 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1077 // to us as computed in Ins. 1078 // 1079 // We also need to figure out what type legalization is trying to do to get 1080 // the correct memory offsets. 1081 1082 SmallVector<EVT, 16> ValueVTs; 1083 SmallVector<uint64_t, 16> Offsets; 1084 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1085 1086 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1087 Value != NumValues; ++Value) { 1088 uint64_t BasePartOffset = Offsets[Value]; 1089 1090 EVT ArgVT = ValueVTs[Value]; 1091 EVT MemVT = ArgVT; 1092 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1093 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1094 1095 if (NumRegs == 1) { 1096 // This argument is not split, so the IR type is the memory type. 1097 if (ArgVT.isExtended()) { 1098 // We have an extended type, like i24, so we should just use the 1099 // register type. 1100 MemVT = RegisterVT; 1101 } else { 1102 MemVT = ArgVT; 1103 } 1104 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1105 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1106 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1107 // We have a vector value which has been split into a vector with 1108 // the same scalar type, but fewer elements. This should handle 1109 // all the floating-point vector types. 1110 MemVT = RegisterVT; 1111 } else if (ArgVT.isVector() && 1112 ArgVT.getVectorNumElements() == NumRegs) { 1113 // This arg has been split so that each element is stored in a separate 1114 // register. 1115 MemVT = ArgVT.getScalarType(); 1116 } else if (ArgVT.isExtended()) { 1117 // We have an extended type, like i65. 1118 MemVT = RegisterVT; 1119 } else { 1120 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1121 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1122 if (RegisterVT.isInteger()) { 1123 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1124 } else if (RegisterVT.isVector()) { 1125 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1126 unsigned NumElements = RegisterVT.getVectorNumElements(); 1127 assert(MemoryBits % NumElements == 0); 1128 // This vector type has been split into another vector type with 1129 // a different elements size. 1130 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1131 MemoryBits / NumElements); 1132 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1133 } else { 1134 llvm_unreachable("cannot deduce memory type."); 1135 } 1136 } 1137 1138 // Convert one element vectors to scalar. 1139 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1140 MemVT = MemVT.getScalarType(); 1141 1142 // Round up vec3/vec5 argument. 1143 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1144 assert(MemVT.getVectorNumElements() == 3 || 1145 MemVT.getVectorNumElements() == 5); 1146 MemVT = MemVT.getPow2VectorType(State.getContext()); 1147 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1148 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1149 } 1150 1151 unsigned PartOffset = 0; 1152 for (unsigned i = 0; i != NumRegs; ++i) { 1153 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1154 BasePartOffset + PartOffset, 1155 MemVT.getSimpleVT(), 1156 CCValAssign::Full)); 1157 PartOffset += MemVT.getStoreSize(); 1158 } 1159 } 1160 } 1161 } 1162 1163 SDValue AMDGPUTargetLowering::LowerReturn( 1164 SDValue Chain, CallingConv::ID CallConv, 1165 bool isVarArg, 1166 const SmallVectorImpl<ISD::OutputArg> &Outs, 1167 const SmallVectorImpl<SDValue> &OutVals, 1168 const SDLoc &DL, SelectionDAG &DAG) const { 1169 // FIXME: Fails for r600 tests 1170 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1171 // "wave terminate should not have return values"); 1172 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1173 } 1174 1175 //===---------------------------------------------------------------------===// 1176 // Target specific lowering 1177 //===---------------------------------------------------------------------===// 1178 1179 /// Selects the correct CCAssignFn for a given CallingConvention value. 1180 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1181 bool IsVarArg) { 1182 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1183 } 1184 1185 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1186 bool IsVarArg) { 1187 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1188 } 1189 1190 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1191 SelectionDAG &DAG, 1192 MachineFrameInfo &MFI, 1193 int ClobberedFI) const { 1194 SmallVector<SDValue, 8> ArgChains; 1195 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1196 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1197 1198 // Include the original chain at the beginning of the list. When this is 1199 // used by target LowerCall hooks, this helps legalize find the 1200 // CALLSEQ_BEGIN node. 1201 ArgChains.push_back(Chain); 1202 1203 // Add a chain value for each stack argument corresponding 1204 for (SDNode *U : DAG.getEntryNode().getNode()->uses()) { 1205 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) { 1206 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1207 if (FI->getIndex() < 0) { 1208 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1209 int64_t InLastByte = InFirstByte; 1210 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1211 1212 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1213 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1214 ArgChains.push_back(SDValue(L, 1)); 1215 } 1216 } 1217 } 1218 } 1219 1220 // Build a tokenfactor for all the chains. 1221 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1222 } 1223 1224 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1225 SmallVectorImpl<SDValue> &InVals, 1226 StringRef Reason) const { 1227 SDValue Callee = CLI.Callee; 1228 SelectionDAG &DAG = CLI.DAG; 1229 1230 const Function &Fn = DAG.getMachineFunction().getFunction(); 1231 1232 StringRef FuncName("<unknown>"); 1233 1234 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1235 FuncName = G->getSymbol(); 1236 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1237 FuncName = G->getGlobal()->getName(); 1238 1239 DiagnosticInfoUnsupported NoCalls( 1240 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1241 DAG.getContext()->diagnose(NoCalls); 1242 1243 if (!CLI.IsTailCall) { 1244 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1245 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1246 } 1247 1248 return DAG.getEntryNode(); 1249 } 1250 1251 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1252 SmallVectorImpl<SDValue> &InVals) const { 1253 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1254 } 1255 1256 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1257 SelectionDAG &DAG) const { 1258 const Function &Fn = DAG.getMachineFunction().getFunction(); 1259 1260 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1261 SDLoc(Op).getDebugLoc()); 1262 DAG.getContext()->diagnose(NoDynamicAlloca); 1263 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1264 return DAG.getMergeValues(Ops, SDLoc()); 1265 } 1266 1267 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1268 SelectionDAG &DAG) const { 1269 switch (Op.getOpcode()) { 1270 default: 1271 Op->print(errs(), &DAG); 1272 llvm_unreachable("Custom lowering code for this " 1273 "instruction is not implemented yet!"); 1274 break; 1275 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1276 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1277 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1278 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1279 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1280 case ISD::FREM: return LowerFREM(Op, DAG); 1281 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1282 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1283 case ISD::FRINT: return LowerFRINT(Op, DAG); 1284 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1285 case ISD::FROUND: return LowerFROUND(Op, DAG); 1286 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1287 case ISD::FLOG: 1288 return LowerFLOG(Op, DAG, numbers::ln2f); 1289 case ISD::FLOG10: 1290 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1291 case ISD::FEXP: 1292 return lowerFEXP(Op, DAG); 1293 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1294 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1295 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1296 case ISD::FP_TO_SINT: 1297 case ISD::FP_TO_UINT: 1298 return LowerFP_TO_INT(Op, DAG); 1299 case ISD::CTTZ: 1300 case ISD::CTTZ_ZERO_UNDEF: 1301 case ISD::CTLZ: 1302 case ISD::CTLZ_ZERO_UNDEF: 1303 return LowerCTLZ_CTTZ(Op, DAG); 1304 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1305 } 1306 return Op; 1307 } 1308 1309 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1310 SmallVectorImpl<SDValue> &Results, 1311 SelectionDAG &DAG) const { 1312 switch (N->getOpcode()) { 1313 case ISD::SIGN_EXTEND_INREG: 1314 // Different parts of legalization seem to interpret which type of 1315 // sign_extend_inreg is the one to check for custom lowering. The extended 1316 // from type is what really matters, but some places check for custom 1317 // lowering of the result type. This results in trying to use 1318 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1319 // nothing here and let the illegal result integer be handled normally. 1320 return; 1321 default: 1322 return; 1323 } 1324 } 1325 1326 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1327 SDValue Op, 1328 SelectionDAG &DAG) const { 1329 1330 const DataLayout &DL = DAG.getDataLayout(); 1331 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1332 const GlobalValue *GV = G->getGlobal(); 1333 1334 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1335 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1336 if (!MFI->isModuleEntryFunction() && 1337 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1338 SDLoc DL(Op); 1339 const Function &Fn = DAG.getMachineFunction().getFunction(); 1340 DiagnosticInfoUnsupported BadLDSDecl( 1341 Fn, "local memory global used by non-kernel function", 1342 DL.getDebugLoc(), DS_Warning); 1343 DAG.getContext()->diagnose(BadLDSDecl); 1344 1345 // We currently don't have a way to correctly allocate LDS objects that 1346 // aren't directly associated with a kernel. We do force inlining of 1347 // functions that use local objects. However, if these dead functions are 1348 // not eliminated, we don't want a compile time error. Just emit a warning 1349 // and a trap, since there should be no callable path here. 1350 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1351 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1352 Trap, DAG.getRoot()); 1353 DAG.setRoot(OutputChain); 1354 return DAG.getUNDEF(Op.getValueType()); 1355 } 1356 1357 // XXX: What does the value of G->getOffset() mean? 1358 assert(G->getOffset() == 0 && 1359 "Do not know what to do with an non-zero offset"); 1360 1361 // TODO: We could emit code to handle the initialization somewhere. 1362 // We ignore the initializer for now and legalize it to allow selection. 1363 // The initializer will anyway get errored out during assembly emission. 1364 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1365 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1366 } 1367 return SDValue(); 1368 } 1369 1370 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1371 SelectionDAG &DAG) const { 1372 SmallVector<SDValue, 8> Args; 1373 1374 EVT VT = Op.getValueType(); 1375 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1376 SDLoc SL(Op); 1377 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1378 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1379 1380 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1381 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1382 } 1383 1384 for (const SDUse &U : Op->ops()) 1385 DAG.ExtractVectorElements(U.get(), Args); 1386 1387 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1388 } 1389 1390 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1391 SelectionDAG &DAG) const { 1392 1393 SmallVector<SDValue, 8> Args; 1394 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1395 EVT VT = Op.getValueType(); 1396 EVT SrcVT = Op.getOperand(0).getValueType(); 1397 1398 // For these types, we have some TableGen patterns except if the index is 1 1399 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1400 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1401 Start != 1) 1402 return Op; 1403 1404 if (((SrcVT == MVT::v8f16 && VT == MVT::v4f16) || 1405 (SrcVT == MVT::v8i16 && VT == MVT::v4i16)) && 1406 (Start == 0 || Start == 4)) 1407 return Op; 1408 1409 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1410 VT.getVectorNumElements()); 1411 1412 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1413 } 1414 1415 /// Generate Min/Max node 1416 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1417 SDValue LHS, SDValue RHS, 1418 SDValue True, SDValue False, 1419 SDValue CC, 1420 DAGCombinerInfo &DCI) const { 1421 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1422 return SDValue(); 1423 1424 SelectionDAG &DAG = DCI.DAG; 1425 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1426 switch (CCOpcode) { 1427 case ISD::SETOEQ: 1428 case ISD::SETONE: 1429 case ISD::SETUNE: 1430 case ISD::SETNE: 1431 case ISD::SETUEQ: 1432 case ISD::SETEQ: 1433 case ISD::SETFALSE: 1434 case ISD::SETFALSE2: 1435 case ISD::SETTRUE: 1436 case ISD::SETTRUE2: 1437 case ISD::SETUO: 1438 case ISD::SETO: 1439 break; 1440 case ISD::SETULE: 1441 case ISD::SETULT: { 1442 if (LHS == True) 1443 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1444 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1445 } 1446 case ISD::SETOLE: 1447 case ISD::SETOLT: 1448 case ISD::SETLE: 1449 case ISD::SETLT: { 1450 // Ordered. Assume ordered for undefined. 1451 1452 // Only do this after legalization to avoid interfering with other combines 1453 // which might occur. 1454 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1455 !DCI.isCalledByLegalizer()) 1456 return SDValue(); 1457 1458 // We need to permute the operands to get the correct NaN behavior. The 1459 // selected operand is the second one based on the failing compare with NaN, 1460 // so permute it based on the compare type the hardware uses. 1461 if (LHS == True) 1462 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1463 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1464 } 1465 case ISD::SETUGE: 1466 case ISD::SETUGT: { 1467 if (LHS == True) 1468 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1469 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1470 } 1471 case ISD::SETGT: 1472 case ISD::SETGE: 1473 case ISD::SETOGE: 1474 case ISD::SETOGT: { 1475 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1476 !DCI.isCalledByLegalizer()) 1477 return SDValue(); 1478 1479 if (LHS == True) 1480 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1481 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1482 } 1483 case ISD::SETCC_INVALID: 1484 llvm_unreachable("Invalid setcc condcode!"); 1485 } 1486 return SDValue(); 1487 } 1488 1489 std::pair<SDValue, SDValue> 1490 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1491 SDLoc SL(Op); 1492 1493 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1494 1495 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1496 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1497 1498 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1499 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1500 1501 return std::make_pair(Lo, Hi); 1502 } 1503 1504 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1505 SDLoc SL(Op); 1506 1507 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1508 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1509 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1510 } 1511 1512 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1513 SDLoc SL(Op); 1514 1515 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1516 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1517 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1518 } 1519 1520 // Split a vector type into two parts. The first part is a power of two vector. 1521 // The second part is whatever is left over, and is a scalar if it would 1522 // otherwise be a 1-vector. 1523 std::pair<EVT, EVT> 1524 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1525 EVT LoVT, HiVT; 1526 EVT EltVT = VT.getVectorElementType(); 1527 unsigned NumElts = VT.getVectorNumElements(); 1528 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1529 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1530 HiVT = NumElts - LoNumElts == 1 1531 ? EltVT 1532 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1533 return std::make_pair(LoVT, HiVT); 1534 } 1535 1536 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1537 // scalar. 1538 std::pair<SDValue, SDValue> 1539 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1540 const EVT &LoVT, const EVT &HiVT, 1541 SelectionDAG &DAG) const { 1542 assert(LoVT.getVectorNumElements() + 1543 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1544 N.getValueType().getVectorNumElements() && 1545 "More vector elements requested than available!"); 1546 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1547 DAG.getVectorIdxConstant(0, DL)); 1548 SDValue Hi = DAG.getNode( 1549 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1550 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1551 return std::make_pair(Lo, Hi); 1552 } 1553 1554 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1555 SelectionDAG &DAG) const { 1556 LoadSDNode *Load = cast<LoadSDNode>(Op); 1557 EVT VT = Op.getValueType(); 1558 SDLoc SL(Op); 1559 1560 1561 // If this is a 2 element vector, we really want to scalarize and not create 1562 // weird 1 element vectors. 1563 if (VT.getVectorNumElements() == 2) { 1564 SDValue Ops[2]; 1565 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1566 return DAG.getMergeValues(Ops, SL); 1567 } 1568 1569 SDValue BasePtr = Load->getBasePtr(); 1570 EVT MemVT = Load->getMemoryVT(); 1571 1572 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1573 1574 EVT LoVT, HiVT; 1575 EVT LoMemVT, HiMemVT; 1576 SDValue Lo, Hi; 1577 1578 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1579 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1580 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1581 1582 unsigned Size = LoMemVT.getStoreSize(); 1583 unsigned BaseAlign = Load->getAlignment(); 1584 unsigned HiAlign = MinAlign(BaseAlign, Size); 1585 1586 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1587 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1588 BaseAlign, Load->getMemOperand()->getFlags()); 1589 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1590 SDValue HiLoad = 1591 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1592 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1593 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1594 1595 SDValue Join; 1596 if (LoVT == HiVT) { 1597 // This is the case that the vector is power of two so was evenly split. 1598 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1599 } else { 1600 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1601 DAG.getVectorIdxConstant(0, SL)); 1602 Join = DAG.getNode( 1603 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1604 VT, Join, HiLoad, 1605 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1606 } 1607 1608 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1609 LoLoad.getValue(1), HiLoad.getValue(1))}; 1610 1611 return DAG.getMergeValues(Ops, SL); 1612 } 1613 1614 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1615 SelectionDAG &DAG) const { 1616 LoadSDNode *Load = cast<LoadSDNode>(Op); 1617 EVT VT = Op.getValueType(); 1618 SDValue BasePtr = Load->getBasePtr(); 1619 EVT MemVT = Load->getMemoryVT(); 1620 SDLoc SL(Op); 1621 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1622 unsigned BaseAlign = Load->getAlignment(); 1623 unsigned NumElements = MemVT.getVectorNumElements(); 1624 1625 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1626 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1627 if (NumElements != 3 || 1628 (BaseAlign < 8 && 1629 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1630 return SplitVectorLoad(Op, DAG); 1631 1632 assert(NumElements == 3); 1633 1634 EVT WideVT = 1635 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1636 EVT WideMemVT = 1637 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1638 SDValue WideLoad = DAG.getExtLoad( 1639 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1640 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1641 return DAG.getMergeValues( 1642 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1643 DAG.getVectorIdxConstant(0, SL)), 1644 WideLoad.getValue(1)}, 1645 SL); 1646 } 1647 1648 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1649 SelectionDAG &DAG) const { 1650 StoreSDNode *Store = cast<StoreSDNode>(Op); 1651 SDValue Val = Store->getValue(); 1652 EVT VT = Val.getValueType(); 1653 1654 // If this is a 2 element vector, we really want to scalarize and not create 1655 // weird 1 element vectors. 1656 if (VT.getVectorNumElements() == 2) 1657 return scalarizeVectorStore(Store, DAG); 1658 1659 EVT MemVT = Store->getMemoryVT(); 1660 SDValue Chain = Store->getChain(); 1661 SDValue BasePtr = Store->getBasePtr(); 1662 SDLoc SL(Op); 1663 1664 EVT LoVT, HiVT; 1665 EVT LoMemVT, HiMemVT; 1666 SDValue Lo, Hi; 1667 1668 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1669 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1670 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1671 1672 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1673 1674 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1675 unsigned BaseAlign = Store->getAlignment(); 1676 unsigned Size = LoMemVT.getStoreSize(); 1677 unsigned HiAlign = MinAlign(BaseAlign, Size); 1678 1679 SDValue LoStore = 1680 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1681 Store->getMemOperand()->getFlags()); 1682 SDValue HiStore = 1683 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1684 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1685 1686 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1687 } 1688 1689 // This is a shortcut for integer division because we have fast i32<->f32 1690 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1691 // float is enough to accurately represent up to a 24-bit signed integer. 1692 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1693 bool Sign) const { 1694 SDLoc DL(Op); 1695 EVT VT = Op.getValueType(); 1696 SDValue LHS = Op.getOperand(0); 1697 SDValue RHS = Op.getOperand(1); 1698 MVT IntVT = MVT::i32; 1699 MVT FltVT = MVT::f32; 1700 1701 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1702 if (LHSSignBits < 9) 1703 return SDValue(); 1704 1705 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1706 if (RHSSignBits < 9) 1707 return SDValue(); 1708 1709 unsigned BitSize = VT.getSizeInBits(); 1710 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1711 unsigned DivBits = BitSize - SignBits; 1712 if (Sign) 1713 ++DivBits; 1714 1715 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1716 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1717 1718 SDValue jq = DAG.getConstant(1, DL, IntVT); 1719 1720 if (Sign) { 1721 // char|short jq = ia ^ ib; 1722 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1723 1724 // jq = jq >> (bitsize - 2) 1725 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1726 DAG.getConstant(BitSize - 2, DL, VT)); 1727 1728 // jq = jq | 0x1 1729 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1730 } 1731 1732 // int ia = (int)LHS; 1733 SDValue ia = LHS; 1734 1735 // int ib, (int)RHS; 1736 SDValue ib = RHS; 1737 1738 // float fa = (float)ia; 1739 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1740 1741 // float fb = (float)ib; 1742 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1743 1744 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1745 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1746 1747 // fq = trunc(fq); 1748 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1749 1750 // float fqneg = -fq; 1751 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1752 1753 MachineFunction &MF = DAG.getMachineFunction(); 1754 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1755 1756 // float fr = mad(fqneg, fb, fa); 1757 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1758 (unsigned)ISD::FMA : 1759 !MFI->getMode().allFP32Denormals() ? 1760 (unsigned)ISD::FMAD : 1761 (unsigned)AMDGPUISD::FMAD_FTZ; 1762 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1763 1764 // int iq = (int)fq; 1765 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1766 1767 // fr = fabs(fr); 1768 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1769 1770 // fb = fabs(fb); 1771 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1772 1773 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1774 1775 // int cv = fr >= fb; 1776 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1777 1778 // jq = (cv ? jq : 0); 1779 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1780 1781 // dst = iq + jq; 1782 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1783 1784 // Rem needs compensation, it's easier to recompute it 1785 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1786 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1787 1788 // Truncate to number of bits this divide really is. 1789 if (Sign) { 1790 SDValue InRegSize 1791 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1792 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1793 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1794 } else { 1795 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1796 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1797 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1798 } 1799 1800 return DAG.getMergeValues({ Div, Rem }, DL); 1801 } 1802 1803 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1804 SelectionDAG &DAG, 1805 SmallVectorImpl<SDValue> &Results) const { 1806 SDLoc DL(Op); 1807 EVT VT = Op.getValueType(); 1808 1809 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1810 1811 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1812 1813 SDValue One = DAG.getConstant(1, DL, HalfVT); 1814 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1815 1816 //HiLo split 1817 SDValue LHS = Op.getOperand(0); 1818 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1819 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1820 1821 SDValue RHS = Op.getOperand(1); 1822 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1823 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1824 1825 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1826 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1827 1828 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1829 LHS_Lo, RHS_Lo); 1830 1831 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1832 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1833 1834 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1835 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1836 return; 1837 } 1838 1839 if (isTypeLegal(MVT::i64)) { 1840 // The algorithm here is based on ideas from "Software Integer Division", 1841 // Tom Rodeheffer, August 2008. 1842 1843 MachineFunction &MF = DAG.getMachineFunction(); 1844 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1845 1846 // Compute denominator reciprocal. 1847 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1848 (unsigned)ISD::FMA : 1849 !MFI->getMode().allFP32Denormals() ? 1850 (unsigned)ISD::FMAD : 1851 (unsigned)AMDGPUISD::FMAD_FTZ; 1852 1853 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1854 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1855 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1856 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1857 Cvt_Lo); 1858 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1859 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1860 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1861 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1862 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1863 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1864 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1865 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1866 Mul1); 1867 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1868 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1869 SDValue Rcp64 = DAG.getBitcast(VT, 1870 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1871 1872 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1873 SDValue One64 = DAG.getConstant(1, DL, VT); 1874 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1875 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1876 1877 // First round of UNR (Unsigned integer Newton-Raphson). 1878 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1879 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1880 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1881 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1882 Zero); 1883 SDValue Mulhi1_Hi = 1884 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One); 1885 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1886 Mulhi1_Lo, Zero1); 1887 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1888 Mulhi1_Hi, Add1_Lo.getValue(1)); 1889 SDValue Add1 = DAG.getBitcast(VT, 1890 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1891 1892 // Second round of UNR. 1893 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1894 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1895 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1896 Zero); 1897 SDValue Mulhi2_Hi = 1898 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One); 1899 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1900 Mulhi2_Lo, Zero1); 1901 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi, 1902 Mulhi2_Hi, Add2_Lo.getValue(1)); 1903 SDValue Add2 = DAG.getBitcast(VT, 1904 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1905 1906 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1907 1908 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1909 1910 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1911 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1912 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1913 Mul3_Lo, Zero1); 1914 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1915 Mul3_Hi, Sub1_Lo.getValue(1)); 1916 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1917 SDValue Sub1 = DAG.getBitcast(VT, 1918 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1919 1920 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1921 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1922 ISD::SETUGE); 1923 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1924 ISD::SETUGE); 1925 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1926 1927 // TODO: Here and below portions of the code can be enclosed into if/endif. 1928 // Currently control flow is unconditional and we have 4 selects after 1929 // potential endif to substitute PHIs. 1930 1931 // if C3 != 0 ... 1932 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1933 RHS_Lo, Zero1); 1934 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1935 RHS_Hi, Sub1_Lo.getValue(1)); 1936 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1937 Zero, Sub2_Lo.getValue(1)); 1938 SDValue Sub2 = DAG.getBitcast(VT, 1939 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1940 1941 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1942 1943 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1944 ISD::SETUGE); 1945 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1946 ISD::SETUGE); 1947 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1948 1949 // if (C6 != 0) 1950 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1951 1952 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1953 RHS_Lo, Zero1); 1954 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1955 RHS_Hi, Sub2_Lo.getValue(1)); 1956 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1957 Zero, Sub3_Lo.getValue(1)); 1958 SDValue Sub3 = DAG.getBitcast(VT, 1959 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1960 1961 // endif C6 1962 // endif C3 1963 1964 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1965 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1966 1967 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1968 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1969 1970 Results.push_back(Div); 1971 Results.push_back(Rem); 1972 1973 return; 1974 } 1975 1976 // r600 expandion. 1977 // Get Speculative values 1978 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1979 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1980 1981 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1982 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1983 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1984 1985 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1986 SDValue DIV_Lo = Zero; 1987 1988 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1989 1990 for (unsigned i = 0; i < halfBitWidth; ++i) { 1991 const unsigned bitPos = halfBitWidth - i - 1; 1992 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1993 // Get value of high bit 1994 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1995 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1996 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1997 1998 // Shift 1999 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2000 // Add LHS high bit 2001 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2002 2003 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2004 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2005 2006 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2007 2008 // Update REM 2009 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2010 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2011 } 2012 2013 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2014 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2015 Results.push_back(DIV); 2016 Results.push_back(REM); 2017 } 2018 2019 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2020 SelectionDAG &DAG) const { 2021 SDLoc DL(Op); 2022 EVT VT = Op.getValueType(); 2023 2024 if (VT == MVT::i64) { 2025 SmallVector<SDValue, 2> Results; 2026 LowerUDIVREM64(Op, DAG, Results); 2027 return DAG.getMergeValues(Results, DL); 2028 } 2029 2030 if (VT == MVT::i32) { 2031 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2032 return Res; 2033 } 2034 2035 SDValue X = Op.getOperand(0); 2036 SDValue Y = Op.getOperand(1); 2037 2038 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2039 // algorithm used here. 2040 2041 // Initial estimate of inv(y). 2042 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2043 2044 // One round of UNR. 2045 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2046 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2047 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2048 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2049 2050 // Quotient/remainder estimate. 2051 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2052 SDValue R = 2053 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2054 2055 // First quotient/remainder refinement. 2056 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2057 SDValue One = DAG.getConstant(1, DL, VT); 2058 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2059 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2060 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2061 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2062 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2063 2064 // Second quotient/remainder refinement. 2065 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2066 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2067 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2068 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2069 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2070 2071 return DAG.getMergeValues({Q, R}, DL); 2072 } 2073 2074 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2075 SelectionDAG &DAG) const { 2076 SDLoc DL(Op); 2077 EVT VT = Op.getValueType(); 2078 2079 SDValue LHS = Op.getOperand(0); 2080 SDValue RHS = Op.getOperand(1); 2081 2082 SDValue Zero = DAG.getConstant(0, DL, VT); 2083 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2084 2085 if (VT == MVT::i32) { 2086 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2087 return Res; 2088 } 2089 2090 if (VT == MVT::i64 && 2091 DAG.ComputeNumSignBits(LHS) > 32 && 2092 DAG.ComputeNumSignBits(RHS) > 32) { 2093 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2094 2095 //HiLo split 2096 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2097 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2098 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2099 LHS_Lo, RHS_Lo); 2100 SDValue Res[2] = { 2101 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2102 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2103 }; 2104 return DAG.getMergeValues(Res, DL); 2105 } 2106 2107 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2108 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2109 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2110 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2111 2112 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2113 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2114 2115 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2116 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2117 2118 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2119 SDValue Rem = Div.getValue(1); 2120 2121 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2122 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2123 2124 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2125 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2126 2127 SDValue Res[2] = { 2128 Div, 2129 Rem 2130 }; 2131 return DAG.getMergeValues(Res, DL); 2132 } 2133 2134 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2135 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2136 SDLoc SL(Op); 2137 EVT VT = Op.getValueType(); 2138 auto Flags = Op->getFlags(); 2139 SDValue X = Op.getOperand(0); 2140 SDValue Y = Op.getOperand(1); 2141 2142 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2143 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2144 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2145 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2146 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2147 } 2148 2149 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2150 SDLoc SL(Op); 2151 SDValue Src = Op.getOperand(0); 2152 2153 // result = trunc(src) 2154 // if (src > 0.0 && src != result) 2155 // result += 1.0 2156 2157 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2158 2159 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2160 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2161 2162 EVT SetCCVT = 2163 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2164 2165 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2166 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2167 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2168 2169 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2170 // TODO: Should this propagate fast-math-flags? 2171 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2172 } 2173 2174 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2175 SelectionDAG &DAG) { 2176 const unsigned FractBits = 52; 2177 const unsigned ExpBits = 11; 2178 2179 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2180 Hi, 2181 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2182 DAG.getConstant(ExpBits, SL, MVT::i32)); 2183 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2184 DAG.getConstant(1023, SL, MVT::i32)); 2185 2186 return Exp; 2187 } 2188 2189 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2190 SDLoc SL(Op); 2191 SDValue Src = Op.getOperand(0); 2192 2193 assert(Op.getValueType() == MVT::f64); 2194 2195 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2196 2197 // Extract the upper half, since this is where we will find the sign and 2198 // exponent. 2199 SDValue Hi = getHiHalf64(Src, DAG); 2200 2201 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2202 2203 const unsigned FractBits = 52; 2204 2205 // Extract the sign bit. 2206 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2207 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2208 2209 // Extend back to 64-bits. 2210 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2211 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2212 2213 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2214 const SDValue FractMask 2215 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2216 2217 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2218 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2219 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2220 2221 EVT SetCCVT = 2222 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2223 2224 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2225 2226 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2227 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2228 2229 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2230 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2231 2232 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2233 } 2234 2235 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2236 SDLoc SL(Op); 2237 SDValue Src = Op.getOperand(0); 2238 2239 assert(Op.getValueType() == MVT::f64); 2240 2241 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2242 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2243 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2244 2245 // TODO: Should this propagate fast-math-flags? 2246 2247 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2248 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2249 2250 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2251 2252 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2253 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2254 2255 EVT SetCCVT = 2256 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2257 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2258 2259 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2260 } 2261 2262 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2263 // FNEARBYINT and FRINT are the same, except in their handling of FP 2264 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2265 // rint, so just treat them as equivalent. 2266 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2267 } 2268 2269 // XXX - May require not supporting f32 denormals? 2270 2271 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2272 // compare and vselect end up producing worse code than scalarizing the whole 2273 // operation. 2274 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2275 SDLoc SL(Op); 2276 SDValue X = Op.getOperand(0); 2277 EVT VT = Op.getValueType(); 2278 2279 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2280 2281 // TODO: Should this propagate fast-math-flags? 2282 2283 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2284 2285 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2286 2287 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2288 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2289 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2290 2291 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2292 2293 EVT SetCCVT = 2294 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2295 2296 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2297 2298 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2299 2300 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2301 } 2302 2303 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2304 SDLoc SL(Op); 2305 SDValue Src = Op.getOperand(0); 2306 2307 // result = trunc(src); 2308 // if (src < 0.0 && src != result) 2309 // result += -1.0. 2310 2311 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2312 2313 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2314 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2315 2316 EVT SetCCVT = 2317 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2318 2319 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2320 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2321 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2322 2323 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2324 // TODO: Should this propagate fast-math-flags? 2325 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2326 } 2327 2328 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2329 double Log2BaseInverted) const { 2330 EVT VT = Op.getValueType(); 2331 2332 SDLoc SL(Op); 2333 SDValue Operand = Op.getOperand(0); 2334 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2335 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2336 2337 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2338 } 2339 2340 // exp2(M_LOG2E_F * f); 2341 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2342 EVT VT = Op.getValueType(); 2343 SDLoc SL(Op); 2344 SDValue Src = Op.getOperand(0); 2345 2346 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2347 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2348 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2349 } 2350 2351 static bool isCtlzOpc(unsigned Opc) { 2352 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2353 } 2354 2355 static bool isCttzOpc(unsigned Opc) { 2356 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2357 } 2358 2359 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2360 SDLoc SL(Op); 2361 SDValue Src = Op.getOperand(0); 2362 2363 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2364 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2365 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2366 2367 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2368 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2369 2370 if (Src.getValueType() == MVT::i32) { 2371 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2372 // (cttz hi:lo) -> (umin (ffbl src), 32) 2373 // (ctlz_zero_undef src) -> (ffbh src) 2374 // (cttz_zero_undef src) -> (ffbl src) 2375 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2376 if (!ZeroUndef) { 2377 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2378 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2379 } 2380 return NewOpr; 2381 } 2382 2383 SDValue Lo, Hi; 2384 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2385 2386 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2387 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2388 2389 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2390 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2391 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2392 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2393 2394 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2395 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2396 if (Ctlz) 2397 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2398 else 2399 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2400 2401 SDValue NewOpr; 2402 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2403 if (!ZeroUndef) { 2404 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2405 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2406 } 2407 2408 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2409 } 2410 2411 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2412 bool Signed) const { 2413 // The regular method converting a 64-bit integer to float roughly consists of 2414 // 2 steps: normalization and rounding. In fact, after normalization, the 2415 // conversion from a 64-bit integer to a float is essentially the same as the 2416 // one from a 32-bit integer. The only difference is that it has more 2417 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2418 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2419 // converted into the correct float number. The basic steps for the unsigned 2420 // conversion are illustrated in the following pseudo code: 2421 // 2422 // f32 uitofp(i64 u) { 2423 // i32 hi, lo = split(u); 2424 // // Only count the leading zeros in hi as we have native support of the 2425 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2426 // // reduced to a 32-bit one automatically. 2427 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2428 // u <<= shamt; 2429 // hi, lo = split(u); 2430 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2431 // // convert it as a 32-bit integer and scale the result back. 2432 // return uitofp(hi) * 2^(32 - shamt); 2433 // } 2434 // 2435 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2436 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2437 // converted instead followed by negation based its sign bit. 2438 2439 SDLoc SL(Op); 2440 SDValue Src = Op.getOperand(0); 2441 2442 SDValue Lo, Hi; 2443 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2444 SDValue Sign; 2445 SDValue ShAmt; 2446 if (Signed && Subtarget->isGCN()) { 2447 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2448 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2449 // account. That is, the maximal shift is 2450 // - 32 if Lo and Hi have opposite signs; 2451 // - 33 if Lo and Hi have the same sign. 2452 // 2453 // Or, MaxShAmt = 33 + OppositeSign, where 2454 // 2455 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2456 // - -1 if Lo and Hi have opposite signs; and 2457 // - 0 otherwise. 2458 // 2459 // All in all, ShAmt is calculated as 2460 // 2461 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2462 // 2463 // or 2464 // 2465 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2466 // 2467 // to reduce the critical path. 2468 SDValue OppositeSign = DAG.getNode( 2469 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2470 DAG.getConstant(31, SL, MVT::i32)); 2471 SDValue MaxShAmt = 2472 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2473 OppositeSign); 2474 // Count the leading sign bits. 2475 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2476 // Different from unsigned conversion, the shift should be one bit less to 2477 // preserve the sign bit. 2478 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2479 DAG.getConstant(1, SL, MVT::i32)); 2480 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2481 } else { 2482 if (Signed) { 2483 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2484 // absolute value first. 2485 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2486 DAG.getConstant(63, SL, MVT::i64)); 2487 SDValue Abs = 2488 DAG.getNode(ISD::XOR, SL, MVT::i64, 2489 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2490 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2491 } 2492 // Count the leading zeros. 2493 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2494 // The shift amount for signed integers is [0, 32]. 2495 } 2496 // Normalize the given 64-bit integer. 2497 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2498 // Split it again. 2499 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2500 // Calculate the adjust bit for rounding. 2501 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2502 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2503 DAG.getConstant(1, SL, MVT::i32), Lo); 2504 // Get the 32-bit normalized integer. 2505 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2506 // Convert the normalized 32-bit integer into f32. 2507 unsigned Opc = 2508 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2509 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2510 2511 // Finally, need to scale back the converted floating number as the original 2512 // 64-bit integer is converted as a 32-bit one. 2513 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2514 ShAmt); 2515 // On GCN, use LDEXP directly. 2516 if (Subtarget->isGCN()) 2517 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2518 2519 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2520 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2521 // exponent is enough to avoid overflowing into the sign bit. 2522 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2523 DAG.getConstant(23, SL, MVT::i32)); 2524 SDValue IVal = 2525 DAG.getNode(ISD::ADD, SL, MVT::i32, 2526 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2527 if (Signed) { 2528 // Set the sign bit. 2529 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2530 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2531 DAG.getConstant(31, SL, MVT::i32)); 2532 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2533 } 2534 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2535 } 2536 2537 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2538 bool Signed) const { 2539 SDLoc SL(Op); 2540 SDValue Src = Op.getOperand(0); 2541 2542 SDValue Lo, Hi; 2543 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2544 2545 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2546 SL, MVT::f64, Hi); 2547 2548 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2549 2550 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2551 DAG.getConstant(32, SL, MVT::i32)); 2552 // TODO: Should this propagate fast-math-flags? 2553 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2554 } 2555 2556 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2557 SelectionDAG &DAG) const { 2558 // TODO: Factor out code common with LowerSINT_TO_FP. 2559 EVT DestVT = Op.getValueType(); 2560 SDValue Src = Op.getOperand(0); 2561 EVT SrcVT = Src.getValueType(); 2562 2563 if (SrcVT == MVT::i16) { 2564 if (DestVT == MVT::f16) 2565 return Op; 2566 SDLoc DL(Op); 2567 2568 // Promote src to i32 2569 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2570 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2571 } 2572 2573 assert(SrcVT == MVT::i64 && "operation should be legal"); 2574 2575 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2576 SDLoc DL(Op); 2577 2578 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2579 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2580 SDValue FPRound = 2581 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2582 2583 return FPRound; 2584 } 2585 2586 if (DestVT == MVT::f32) 2587 return LowerINT_TO_FP32(Op, DAG, false); 2588 2589 assert(DestVT == MVT::f64); 2590 return LowerINT_TO_FP64(Op, DAG, false); 2591 } 2592 2593 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2594 SelectionDAG &DAG) const { 2595 EVT DestVT = Op.getValueType(); 2596 2597 SDValue Src = Op.getOperand(0); 2598 EVT SrcVT = Src.getValueType(); 2599 2600 if (SrcVT == MVT::i16) { 2601 if (DestVT == MVT::f16) 2602 return Op; 2603 2604 SDLoc DL(Op); 2605 // Promote src to i32 2606 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2607 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2608 } 2609 2610 assert(SrcVT == MVT::i64 && "operation should be legal"); 2611 2612 // TODO: Factor out code common with LowerUINT_TO_FP. 2613 2614 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2615 SDLoc DL(Op); 2616 SDValue Src = Op.getOperand(0); 2617 2618 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2619 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2620 SDValue FPRound = 2621 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2622 2623 return FPRound; 2624 } 2625 2626 if (DestVT == MVT::f32) 2627 return LowerINT_TO_FP32(Op, DAG, true); 2628 2629 assert(DestVT == MVT::f64); 2630 return LowerINT_TO_FP64(Op, DAG, true); 2631 } 2632 2633 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2634 bool Signed) const { 2635 SDLoc SL(Op); 2636 2637 SDValue Src = Op.getOperand(0); 2638 EVT SrcVT = Src.getValueType(); 2639 2640 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2641 2642 // The basic idea of converting a floating point number into a pair of 32-bit 2643 // integers is illustrated as follows: 2644 // 2645 // tf := trunc(val); 2646 // hif := floor(tf * 2^-32); 2647 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2648 // hi := fptoi(hif); 2649 // lo := fptoi(lof); 2650 // 2651 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2652 SDValue Sign; 2653 if (Signed && SrcVT == MVT::f32) { 2654 // However, a 32-bit floating point number has only 23 bits mantissa and 2655 // it's not enough to hold all the significant bits of `lof` if val is 2656 // negative. To avoid the loss of precision, We need to take the absolute 2657 // value after truncating and flip the result back based on the original 2658 // signedness. 2659 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2660 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2661 DAG.getConstant(31, SL, MVT::i32)); 2662 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2663 } 2664 2665 SDValue K0, K1; 2666 if (SrcVT == MVT::f64) { 2667 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2668 SL, SrcVT); 2669 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2670 SL, SrcVT); 2671 } else { 2672 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2673 SrcVT); 2674 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2675 SrcVT); 2676 } 2677 // TODO: Should this propagate fast-math-flags? 2678 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2679 2680 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2681 2682 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2683 2684 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2685 : ISD::FP_TO_UINT, 2686 SL, MVT::i32, FloorMul); 2687 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2688 2689 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2690 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2691 2692 if (Signed && SrcVT == MVT::f32) { 2693 assert(Sign); 2694 // Flip the result based on the signedness, which is either all 0s or 1s. 2695 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2696 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2697 // r := xor(r, sign) - sign; 2698 Result = 2699 DAG.getNode(ISD::SUB, SL, MVT::i64, 2700 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2701 } 2702 2703 return Result; 2704 } 2705 2706 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2707 SDLoc DL(Op); 2708 SDValue N0 = Op.getOperand(0); 2709 2710 // Convert to target node to get known bits 2711 if (N0.getValueType() == MVT::f32) 2712 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2713 2714 if (getTargetMachine().Options.UnsafeFPMath) { 2715 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2716 return SDValue(); 2717 } 2718 2719 assert(N0.getSimpleValueType() == MVT::f64); 2720 2721 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2722 const unsigned ExpMask = 0x7ff; 2723 const unsigned ExpBiasf64 = 1023; 2724 const unsigned ExpBiasf16 = 15; 2725 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2726 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2727 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2728 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2729 DAG.getConstant(32, DL, MVT::i64)); 2730 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2731 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2732 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2733 DAG.getConstant(20, DL, MVT::i64)); 2734 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2735 DAG.getConstant(ExpMask, DL, MVT::i32)); 2736 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2737 // add the f16 bias (15) to get the biased exponent for the f16 format. 2738 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2739 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2740 2741 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2742 DAG.getConstant(8, DL, MVT::i32)); 2743 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2744 DAG.getConstant(0xffe, DL, MVT::i32)); 2745 2746 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2747 DAG.getConstant(0x1ff, DL, MVT::i32)); 2748 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2749 2750 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2751 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2752 2753 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2754 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2755 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2756 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2757 2758 // N = M | (E << 12); 2759 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2760 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2761 DAG.getConstant(12, DL, MVT::i32))); 2762 2763 // B = clamp(1-E, 0, 13); 2764 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2765 One, E); 2766 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2767 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2768 DAG.getConstant(13, DL, MVT::i32)); 2769 2770 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2771 DAG.getConstant(0x1000, DL, MVT::i32)); 2772 2773 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2774 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2775 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2776 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2777 2778 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2779 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2780 DAG.getConstant(0x7, DL, MVT::i32)); 2781 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2782 DAG.getConstant(2, DL, MVT::i32)); 2783 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2784 One, Zero, ISD::SETEQ); 2785 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2786 One, Zero, ISD::SETGT); 2787 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2788 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2789 2790 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2791 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2792 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2793 I, V, ISD::SETEQ); 2794 2795 // Extract the sign bit. 2796 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2797 DAG.getConstant(16, DL, MVT::i32)); 2798 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2799 DAG.getConstant(0x8000, DL, MVT::i32)); 2800 2801 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2802 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2803 } 2804 2805 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2806 SelectionDAG &DAG) const { 2807 SDValue Src = Op.getOperand(0); 2808 unsigned OpOpcode = Op.getOpcode(); 2809 EVT SrcVT = Src.getValueType(); 2810 EVT DestVT = Op.getValueType(); 2811 2812 // Will be selected natively 2813 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2814 return Op; 2815 2816 // Promote i16 to i32 2817 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2818 SDLoc DL(Op); 2819 2820 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2821 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2822 } 2823 2824 if (SrcVT == MVT::f16 || 2825 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2826 SDLoc DL(Op); 2827 2828 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2829 unsigned Ext = 2830 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2831 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2832 } 2833 2834 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2835 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2836 2837 return SDValue(); 2838 } 2839 2840 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2841 SelectionDAG &DAG) const { 2842 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2843 MVT VT = Op.getSimpleValueType(); 2844 MVT ScalarVT = VT.getScalarType(); 2845 2846 assert(VT.isVector()); 2847 2848 SDValue Src = Op.getOperand(0); 2849 SDLoc DL(Op); 2850 2851 // TODO: Don't scalarize on Evergreen? 2852 unsigned NElts = VT.getVectorNumElements(); 2853 SmallVector<SDValue, 8> Args; 2854 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2855 2856 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2857 for (unsigned I = 0; I < NElts; ++I) 2858 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2859 2860 return DAG.getBuildVector(VT, DL, Args); 2861 } 2862 2863 //===----------------------------------------------------------------------===// 2864 // Custom DAG optimizations 2865 //===----------------------------------------------------------------------===// 2866 2867 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2868 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2869 } 2870 2871 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2872 EVT VT = Op.getValueType(); 2873 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2874 // as unsigned 24-bit values. 2875 AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; 2876 } 2877 2878 static SDValue simplifyMul24(SDNode *Node24, 2879 TargetLowering::DAGCombinerInfo &DCI) { 2880 SelectionDAG &DAG = DCI.DAG; 2881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2882 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2883 2884 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2885 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2886 unsigned NewOpcode = Node24->getOpcode(); 2887 if (IsIntrin) { 2888 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2889 switch (IID) { 2890 case Intrinsic::amdgcn_mul_i24: 2891 NewOpcode = AMDGPUISD::MUL_I24; 2892 break; 2893 case Intrinsic::amdgcn_mul_u24: 2894 NewOpcode = AMDGPUISD::MUL_U24; 2895 break; 2896 case Intrinsic::amdgcn_mulhi_i24: 2897 NewOpcode = AMDGPUISD::MULHI_I24; 2898 break; 2899 case Intrinsic::amdgcn_mulhi_u24: 2900 NewOpcode = AMDGPUISD::MULHI_U24; 2901 break; 2902 default: 2903 llvm_unreachable("Expected 24-bit mul intrinsic"); 2904 } 2905 } 2906 2907 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2908 2909 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2910 // the operands to have other uses, but will only perform simplifications that 2911 // involve bypassing some nodes for this user. 2912 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2913 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2914 if (DemandedLHS || DemandedRHS) 2915 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2916 DemandedLHS ? DemandedLHS : LHS, 2917 DemandedRHS ? DemandedRHS : RHS); 2918 2919 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2920 // operands if this node is the only user. 2921 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2922 return SDValue(Node24, 0); 2923 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2924 return SDValue(Node24, 0); 2925 2926 return SDValue(); 2927 } 2928 2929 template <typename IntTy> 2930 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2931 uint32_t Width, const SDLoc &DL) { 2932 if (Width + Offset < 32) { 2933 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2934 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2935 return DAG.getConstant(Result, DL, MVT::i32); 2936 } 2937 2938 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2939 } 2940 2941 static bool hasVolatileUser(SDNode *Val) { 2942 for (SDNode *U : Val->uses()) { 2943 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2944 if (M->isVolatile()) 2945 return true; 2946 } 2947 } 2948 2949 return false; 2950 } 2951 2952 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2953 // i32 vectors are the canonical memory type. 2954 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2955 return false; 2956 2957 if (!VT.isByteSized()) 2958 return false; 2959 2960 unsigned Size = VT.getStoreSize(); 2961 2962 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2963 return false; 2964 2965 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2966 return false; 2967 2968 return true; 2969 } 2970 2971 // Replace load of an illegal type with a store of a bitcast to a friendlier 2972 // type. 2973 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2974 DAGCombinerInfo &DCI) const { 2975 if (!DCI.isBeforeLegalize()) 2976 return SDValue(); 2977 2978 LoadSDNode *LN = cast<LoadSDNode>(N); 2979 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2980 return SDValue(); 2981 2982 SDLoc SL(N); 2983 SelectionDAG &DAG = DCI.DAG; 2984 EVT VT = LN->getMemoryVT(); 2985 2986 unsigned Size = VT.getStoreSize(); 2987 Align Alignment = LN->getAlign(); 2988 if (Alignment < Size && isTypeLegal(VT)) { 2989 bool IsFast; 2990 unsigned AS = LN->getAddressSpace(); 2991 2992 // Expand unaligned loads earlier than legalization. Due to visitation order 2993 // problems during legalization, the emitted instructions to pack and unpack 2994 // the bytes again are not eliminated in the case of an unaligned copy. 2995 if (!allowsMisalignedMemoryAccesses( 2996 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 2997 if (VT.isVector()) 2998 return SplitVectorLoad(SDValue(LN, 0), DAG); 2999 3000 SDValue Ops[2]; 3001 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3002 3003 return DAG.getMergeValues(Ops, SDLoc(N)); 3004 } 3005 3006 if (!IsFast) 3007 return SDValue(); 3008 } 3009 3010 if (!shouldCombineMemoryType(VT)) 3011 return SDValue(); 3012 3013 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3014 3015 SDValue NewLoad 3016 = DAG.getLoad(NewVT, SL, LN->getChain(), 3017 LN->getBasePtr(), LN->getMemOperand()); 3018 3019 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3020 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3021 return SDValue(N, 0); 3022 } 3023 3024 // Replace store of an illegal type with a store of a bitcast to a friendlier 3025 // type. 3026 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3027 DAGCombinerInfo &DCI) const { 3028 if (!DCI.isBeforeLegalize()) 3029 return SDValue(); 3030 3031 StoreSDNode *SN = cast<StoreSDNode>(N); 3032 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3033 return SDValue(); 3034 3035 EVT VT = SN->getMemoryVT(); 3036 unsigned Size = VT.getStoreSize(); 3037 3038 SDLoc SL(N); 3039 SelectionDAG &DAG = DCI.DAG; 3040 Align Alignment = SN->getAlign(); 3041 if (Alignment < Size && isTypeLegal(VT)) { 3042 bool IsFast; 3043 unsigned AS = SN->getAddressSpace(); 3044 3045 // Expand unaligned stores earlier than legalization. Due to visitation 3046 // order problems during legalization, the emitted instructions to pack and 3047 // unpack the bytes again are not eliminated in the case of an unaligned 3048 // copy. 3049 if (!allowsMisalignedMemoryAccesses( 3050 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3051 if (VT.isVector()) 3052 return SplitVectorStore(SDValue(SN, 0), DAG); 3053 3054 return expandUnalignedStore(SN, DAG); 3055 } 3056 3057 if (!IsFast) 3058 return SDValue(); 3059 } 3060 3061 if (!shouldCombineMemoryType(VT)) 3062 return SDValue(); 3063 3064 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3065 SDValue Val = SN->getValue(); 3066 3067 //DCI.AddToWorklist(Val.getNode()); 3068 3069 bool OtherUses = !Val.hasOneUse(); 3070 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3071 if (OtherUses) { 3072 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3073 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3074 } 3075 3076 return DAG.getStore(SN->getChain(), SL, CastVal, 3077 SN->getBasePtr(), SN->getMemOperand()); 3078 } 3079 3080 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3081 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3082 // issues. 3083 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3084 DAGCombinerInfo &DCI) const { 3085 SelectionDAG &DAG = DCI.DAG; 3086 SDValue N0 = N->getOperand(0); 3087 3088 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3089 // (vt2 (truncate (assertzext vt0:x, vt1))) 3090 if (N0.getOpcode() == ISD::TRUNCATE) { 3091 SDValue N1 = N->getOperand(1); 3092 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3093 SDLoc SL(N); 3094 3095 SDValue Src = N0.getOperand(0); 3096 EVT SrcVT = Src.getValueType(); 3097 if (SrcVT.bitsGE(ExtVT)) { 3098 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3099 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3100 } 3101 } 3102 3103 return SDValue(); 3104 } 3105 3106 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3107 SDNode *N, DAGCombinerInfo &DCI) const { 3108 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3109 switch (IID) { 3110 case Intrinsic::amdgcn_mul_i24: 3111 case Intrinsic::amdgcn_mul_u24: 3112 case Intrinsic::amdgcn_mulhi_i24: 3113 case Intrinsic::amdgcn_mulhi_u24: 3114 return simplifyMul24(N, DCI); 3115 case Intrinsic::amdgcn_fract: 3116 case Intrinsic::amdgcn_rsq: 3117 case Intrinsic::amdgcn_rcp_legacy: 3118 case Intrinsic::amdgcn_rsq_legacy: 3119 case Intrinsic::amdgcn_rsq_clamp: 3120 case Intrinsic::amdgcn_ldexp: { 3121 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3122 SDValue Src = N->getOperand(1); 3123 return Src.isUndef() ? Src : SDValue(); 3124 } 3125 default: 3126 return SDValue(); 3127 } 3128 } 3129 3130 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3131 /// binary operation \p Opc to it with the corresponding constant operands. 3132 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3133 DAGCombinerInfo &DCI, const SDLoc &SL, 3134 unsigned Opc, SDValue LHS, 3135 uint32_t ValLo, uint32_t ValHi) const { 3136 SelectionDAG &DAG = DCI.DAG; 3137 SDValue Lo, Hi; 3138 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3139 3140 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3141 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3142 3143 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3144 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3145 3146 // Re-visit the ands. It's possible we eliminated one of them and it could 3147 // simplify the vector. 3148 DCI.AddToWorklist(Lo.getNode()); 3149 DCI.AddToWorklist(Hi.getNode()); 3150 3151 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3152 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3153 } 3154 3155 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3156 DAGCombinerInfo &DCI) const { 3157 EVT VT = N->getValueType(0); 3158 3159 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3160 if (!RHS) 3161 return SDValue(); 3162 3163 SDValue LHS = N->getOperand(0); 3164 unsigned RHSVal = RHS->getZExtValue(); 3165 if (!RHSVal) 3166 return LHS; 3167 3168 SDLoc SL(N); 3169 SelectionDAG &DAG = DCI.DAG; 3170 3171 switch (LHS->getOpcode()) { 3172 default: 3173 break; 3174 case ISD::ZERO_EXTEND: 3175 case ISD::SIGN_EXTEND: 3176 case ISD::ANY_EXTEND: { 3177 SDValue X = LHS->getOperand(0); 3178 3179 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3180 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3181 // Prefer build_vector as the canonical form if packed types are legal. 3182 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3183 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3184 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3185 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3186 } 3187 3188 // shl (ext x) => zext (shl x), if shift does not overflow int 3189 if (VT != MVT::i64) 3190 break; 3191 KnownBits Known = DAG.computeKnownBits(X); 3192 unsigned LZ = Known.countMinLeadingZeros(); 3193 if (LZ < RHSVal) 3194 break; 3195 EVT XVT = X.getValueType(); 3196 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3197 return DAG.getZExtOrTrunc(Shl, SL, VT); 3198 } 3199 } 3200 3201 if (VT != MVT::i64) 3202 return SDValue(); 3203 3204 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3205 3206 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3207 // common case, splitting this into a move and a 32-bit shift is faster and 3208 // the same code size. 3209 if (RHSVal < 32) 3210 return SDValue(); 3211 3212 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3213 3214 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3215 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3216 3217 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3218 3219 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3220 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3221 } 3222 3223 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3224 DAGCombinerInfo &DCI) const { 3225 if (N->getValueType(0) != MVT::i64) 3226 return SDValue(); 3227 3228 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3229 if (!RHS) 3230 return SDValue(); 3231 3232 SelectionDAG &DAG = DCI.DAG; 3233 SDLoc SL(N); 3234 unsigned RHSVal = RHS->getZExtValue(); 3235 3236 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3237 if (RHSVal == 32) { 3238 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3239 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3240 DAG.getConstant(31, SL, MVT::i32)); 3241 3242 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3243 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3244 } 3245 3246 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3247 if (RHSVal == 63) { 3248 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3249 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3250 DAG.getConstant(31, SL, MVT::i32)); 3251 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3252 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3253 } 3254 3255 return SDValue(); 3256 } 3257 3258 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3259 DAGCombinerInfo &DCI) const { 3260 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3261 if (!RHS) 3262 return SDValue(); 3263 3264 EVT VT = N->getValueType(0); 3265 SDValue LHS = N->getOperand(0); 3266 unsigned ShiftAmt = RHS->getZExtValue(); 3267 SelectionDAG &DAG = DCI.DAG; 3268 SDLoc SL(N); 3269 3270 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3271 // this improves the ability to match BFE patterns in isel. 3272 if (LHS.getOpcode() == ISD::AND) { 3273 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3274 unsigned MaskIdx, MaskLen; 3275 if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) && 3276 MaskIdx == ShiftAmt) { 3277 return DAG.getNode( 3278 ISD::AND, SL, VT, 3279 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3280 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3281 } 3282 } 3283 } 3284 3285 if (VT != MVT::i64) 3286 return SDValue(); 3287 3288 if (ShiftAmt < 32) 3289 return SDValue(); 3290 3291 // srl i64:x, C for C >= 32 3292 // => 3293 // build_pair (srl hi_32(x), C - 32), 0 3294 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3295 3296 SDValue Hi = getHiHalf64(LHS, DAG); 3297 3298 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3299 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3300 3301 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3302 3303 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3304 } 3305 3306 SDValue AMDGPUTargetLowering::performTruncateCombine( 3307 SDNode *N, DAGCombinerInfo &DCI) const { 3308 SDLoc SL(N); 3309 SelectionDAG &DAG = DCI.DAG; 3310 EVT VT = N->getValueType(0); 3311 SDValue Src = N->getOperand(0); 3312 3313 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3314 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3315 SDValue Vec = Src.getOperand(0); 3316 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3317 SDValue Elt0 = Vec.getOperand(0); 3318 EVT EltVT = Elt0.getValueType(); 3319 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3320 if (EltVT.isFloatingPoint()) { 3321 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3322 EltVT.changeTypeToInteger(), Elt0); 3323 } 3324 3325 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3326 } 3327 } 3328 } 3329 3330 // Equivalent of above for accessing the high element of a vector as an 3331 // integer operation. 3332 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3333 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3334 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3335 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3336 SDValue BV = stripBitcast(Src.getOperand(0)); 3337 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3338 BV.getValueType().getVectorNumElements() == 2) { 3339 SDValue SrcElt = BV.getOperand(1); 3340 EVT SrcEltVT = SrcElt.getValueType(); 3341 if (SrcEltVT.isFloatingPoint()) { 3342 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3343 SrcEltVT.changeTypeToInteger(), SrcElt); 3344 } 3345 3346 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3347 } 3348 } 3349 } 3350 } 3351 3352 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3353 // 3354 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3355 // i16 (trunc (srl (i32 (trunc x), K))) 3356 if (VT.getScalarSizeInBits() < 32) { 3357 EVT SrcVT = Src.getValueType(); 3358 if (SrcVT.getScalarSizeInBits() > 32 && 3359 (Src.getOpcode() == ISD::SRL || 3360 Src.getOpcode() == ISD::SRA || 3361 Src.getOpcode() == ISD::SHL)) { 3362 SDValue Amt = Src.getOperand(1); 3363 KnownBits Known = DAG.computeKnownBits(Amt); 3364 unsigned Size = VT.getScalarSizeInBits(); 3365 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3366 (Known.countMaxActiveBits() <= Log2_32(Size))) { 3367 EVT MidVT = VT.isVector() ? 3368 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3369 VT.getVectorNumElements()) : MVT::i32; 3370 3371 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3372 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3373 Src.getOperand(0)); 3374 DCI.AddToWorklist(Trunc.getNode()); 3375 3376 if (Amt.getValueType() != NewShiftVT) { 3377 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3378 DCI.AddToWorklist(Amt.getNode()); 3379 } 3380 3381 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3382 Trunc, Amt); 3383 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3384 } 3385 } 3386 } 3387 3388 return SDValue(); 3389 } 3390 3391 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3392 // instructions. If we only match on the legalized i64 mul expansion, 3393 // SimplifyDemandedBits will be unable to remove them because there will be 3394 // multiple uses due to the separate mul + mulh[su]. 3395 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3396 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3397 if (Size <= 32) { 3398 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3399 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3400 } 3401 3402 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3403 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3404 3405 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3406 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3407 3408 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3409 } 3410 3411 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3412 DAGCombinerInfo &DCI) const { 3413 EVT VT = N->getValueType(0); 3414 3415 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3416 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3417 // unnecessarily). isDivergent() is used as an approximation of whether the 3418 // value is in an SGPR. 3419 if (!N->isDivergent()) 3420 return SDValue(); 3421 3422 unsigned Size = VT.getSizeInBits(); 3423 if (VT.isVector() || Size > 64) 3424 return SDValue(); 3425 3426 // There are i16 integer mul/mad. 3427 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3428 return SDValue(); 3429 3430 SelectionDAG &DAG = DCI.DAG; 3431 SDLoc DL(N); 3432 3433 SDValue N0 = N->getOperand(0); 3434 SDValue N1 = N->getOperand(1); 3435 3436 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3437 // in the source into any_extends if the result of the mul is truncated. Since 3438 // we can assume the high bits are whatever we want, use the underlying value 3439 // to avoid the unknown high bits from interfering. 3440 if (N0.getOpcode() == ISD::ANY_EXTEND) 3441 N0 = N0.getOperand(0); 3442 3443 if (N1.getOpcode() == ISD::ANY_EXTEND) 3444 N1 = N1.getOperand(0); 3445 3446 SDValue Mul; 3447 3448 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3449 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3450 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3451 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3452 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3453 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3454 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3455 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3456 } else { 3457 return SDValue(); 3458 } 3459 3460 // We need to use sext even for MUL_U24, because MUL_U24 is used 3461 // for signed multiply of 8 and 16-bit types. 3462 return DAG.getSExtOrTrunc(Mul, DL, VT); 3463 } 3464 3465 SDValue 3466 AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N, 3467 DAGCombinerInfo &DCI) const { 3468 if (N->getValueType(0) != MVT::i32) 3469 return SDValue(); 3470 3471 SelectionDAG &DAG = DCI.DAG; 3472 SDLoc DL(N); 3473 3474 SDValue N0 = N->getOperand(0); 3475 SDValue N1 = N->getOperand(1); 3476 3477 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3478 // in the source into any_extends if the result of the mul is truncated. Since 3479 // we can assume the high bits are whatever we want, use the underlying value 3480 // to avoid the unknown high bits from interfering. 3481 if (N0.getOpcode() == ISD::ANY_EXTEND) 3482 N0 = N0.getOperand(0); 3483 if (N1.getOpcode() == ISD::ANY_EXTEND) 3484 N1 = N1.getOperand(0); 3485 3486 // Try to use two fast 24-bit multiplies (one for each half of the result) 3487 // instead of one slow extending multiply. 3488 unsigned LoOpcode, HiOpcode; 3489 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3490 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3491 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3492 LoOpcode = AMDGPUISD::MUL_U24; 3493 HiOpcode = AMDGPUISD::MULHI_U24; 3494 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3495 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3496 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3497 LoOpcode = AMDGPUISD::MUL_I24; 3498 HiOpcode = AMDGPUISD::MULHI_I24; 3499 } else { 3500 return SDValue(); 3501 } 3502 3503 SDValue Lo = DAG.getNode(LoOpcode, DL, MVT::i32, N0, N1); 3504 SDValue Hi = DAG.getNode(HiOpcode, DL, MVT::i32, N0, N1); 3505 DCI.CombineTo(N, Lo, Hi); 3506 return SDValue(N, 0); 3507 } 3508 3509 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3510 DAGCombinerInfo &DCI) const { 3511 EVT VT = N->getValueType(0); 3512 3513 if (!Subtarget->hasMulI24() || VT.isVector()) 3514 return SDValue(); 3515 3516 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3517 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3518 // unnecessarily). isDivergent() is used as an approximation of whether the 3519 // value is in an SGPR. 3520 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3521 // valu op anyway) 3522 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3523 return SDValue(); 3524 3525 SelectionDAG &DAG = DCI.DAG; 3526 SDLoc DL(N); 3527 3528 SDValue N0 = N->getOperand(0); 3529 SDValue N1 = N->getOperand(1); 3530 3531 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3532 return SDValue(); 3533 3534 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3535 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3536 3537 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3538 DCI.AddToWorklist(Mulhi.getNode()); 3539 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3540 } 3541 3542 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3543 DAGCombinerInfo &DCI) const { 3544 EVT VT = N->getValueType(0); 3545 3546 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3547 return SDValue(); 3548 3549 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3550 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3551 // unnecessarily). isDivergent() is used as an approximation of whether the 3552 // value is in an SGPR. 3553 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3554 // valu op anyway) 3555 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3556 return SDValue(); 3557 3558 SelectionDAG &DAG = DCI.DAG; 3559 SDLoc DL(N); 3560 3561 SDValue N0 = N->getOperand(0); 3562 SDValue N1 = N->getOperand(1); 3563 3564 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3565 return SDValue(); 3566 3567 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3568 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3569 3570 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3571 DCI.AddToWorklist(Mulhi.getNode()); 3572 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3573 } 3574 3575 static bool isNegativeOne(SDValue Val) { 3576 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3577 return C->isAllOnes(); 3578 return false; 3579 } 3580 3581 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3582 SDValue Op, 3583 const SDLoc &DL, 3584 unsigned Opc) const { 3585 EVT VT = Op.getValueType(); 3586 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3587 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3588 LegalVT != MVT::i16)) 3589 return SDValue(); 3590 3591 if (VT != MVT::i32) 3592 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3593 3594 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3595 if (VT != MVT::i32) 3596 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3597 3598 return FFBX; 3599 } 3600 3601 // The native instructions return -1 on 0 input. Optimize out a select that 3602 // produces -1 on 0. 3603 // 3604 // TODO: If zero is not undef, we could also do this if the output is compared 3605 // against the bitwidth. 3606 // 3607 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3608 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3609 SDValue LHS, SDValue RHS, 3610 DAGCombinerInfo &DCI) const { 3611 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3612 if (!CmpRhs || !CmpRhs->isZero()) 3613 return SDValue(); 3614 3615 SelectionDAG &DAG = DCI.DAG; 3616 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3617 SDValue CmpLHS = Cond.getOperand(0); 3618 3619 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3620 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3621 if (CCOpcode == ISD::SETEQ && 3622 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3623 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3624 unsigned Opc = 3625 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3626 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3627 } 3628 3629 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3630 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3631 if (CCOpcode == ISD::SETNE && 3632 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3633 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3634 unsigned Opc = 3635 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3636 3637 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3638 } 3639 3640 return SDValue(); 3641 } 3642 3643 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3644 unsigned Op, 3645 const SDLoc &SL, 3646 SDValue Cond, 3647 SDValue N1, 3648 SDValue N2) { 3649 SelectionDAG &DAG = DCI.DAG; 3650 EVT VT = N1.getValueType(); 3651 3652 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3653 N1.getOperand(0), N2.getOperand(0)); 3654 DCI.AddToWorklist(NewSelect.getNode()); 3655 return DAG.getNode(Op, SL, VT, NewSelect); 3656 } 3657 3658 // Pull a free FP operation out of a select so it may fold into uses. 3659 // 3660 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3661 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3662 // 3663 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3664 // select c, (fabs x), +k -> fabs (select c, x, k) 3665 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3666 SDValue N) { 3667 SelectionDAG &DAG = DCI.DAG; 3668 SDValue Cond = N.getOperand(0); 3669 SDValue LHS = N.getOperand(1); 3670 SDValue RHS = N.getOperand(2); 3671 3672 EVT VT = N.getValueType(); 3673 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3674 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3675 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3676 SDLoc(N), Cond, LHS, RHS); 3677 } 3678 3679 bool Inv = false; 3680 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3681 std::swap(LHS, RHS); 3682 Inv = true; 3683 } 3684 3685 // TODO: Support vector constants. 3686 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3687 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3688 SDLoc SL(N); 3689 // If one side is an fneg/fabs and the other is a constant, we can push the 3690 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3691 SDValue NewLHS = LHS.getOperand(0); 3692 SDValue NewRHS = RHS; 3693 3694 // Careful: if the neg can be folded up, don't try to pull it back down. 3695 bool ShouldFoldNeg = true; 3696 3697 if (NewLHS.hasOneUse()) { 3698 unsigned Opc = NewLHS.getOpcode(); 3699 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3700 ShouldFoldNeg = false; 3701 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3702 ShouldFoldNeg = false; 3703 } 3704 3705 if (ShouldFoldNeg) { 3706 if (LHS.getOpcode() == ISD::FNEG) 3707 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3708 else if (CRHS->isNegative()) 3709 return SDValue(); 3710 3711 if (Inv) 3712 std::swap(NewLHS, NewRHS); 3713 3714 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3715 Cond, NewLHS, NewRHS); 3716 DCI.AddToWorklist(NewSelect.getNode()); 3717 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3718 } 3719 } 3720 3721 return SDValue(); 3722 } 3723 3724 3725 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3726 DAGCombinerInfo &DCI) const { 3727 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3728 return Folded; 3729 3730 SDValue Cond = N->getOperand(0); 3731 if (Cond.getOpcode() != ISD::SETCC) 3732 return SDValue(); 3733 3734 EVT VT = N->getValueType(0); 3735 SDValue LHS = Cond.getOperand(0); 3736 SDValue RHS = Cond.getOperand(1); 3737 SDValue CC = Cond.getOperand(2); 3738 3739 SDValue True = N->getOperand(1); 3740 SDValue False = N->getOperand(2); 3741 3742 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3743 SelectionDAG &DAG = DCI.DAG; 3744 if (DAG.isConstantValueOfAnyType(True) && 3745 !DAG.isConstantValueOfAnyType(False)) { 3746 // Swap cmp + select pair to move constant to false input. 3747 // This will allow using VOPC cndmasks more often. 3748 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3749 3750 SDLoc SL(N); 3751 ISD::CondCode NewCC = 3752 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3753 3754 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3755 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3756 } 3757 3758 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3759 SDValue MinMax 3760 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3761 // Revisit this node so we can catch min3/max3/med3 patterns. 3762 //DCI.AddToWorklist(MinMax.getNode()); 3763 return MinMax; 3764 } 3765 } 3766 3767 // There's no reason to not do this if the condition has other uses. 3768 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3769 } 3770 3771 static bool isInv2Pi(const APFloat &APF) { 3772 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3773 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3774 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3775 3776 return APF.bitwiseIsEqual(KF16) || 3777 APF.bitwiseIsEqual(KF32) || 3778 APF.bitwiseIsEqual(KF64); 3779 } 3780 3781 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3782 // additional cost to negate them. 3783 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3784 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3785 if (C->isZero() && !C->isNegative()) 3786 return true; 3787 3788 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3789 return true; 3790 } 3791 3792 return false; 3793 } 3794 3795 static unsigned inverseMinMax(unsigned Opc) { 3796 switch (Opc) { 3797 case ISD::FMAXNUM: 3798 return ISD::FMINNUM; 3799 case ISD::FMINNUM: 3800 return ISD::FMAXNUM; 3801 case ISD::FMAXNUM_IEEE: 3802 return ISD::FMINNUM_IEEE; 3803 case ISD::FMINNUM_IEEE: 3804 return ISD::FMAXNUM_IEEE; 3805 case AMDGPUISD::FMAX_LEGACY: 3806 return AMDGPUISD::FMIN_LEGACY; 3807 case AMDGPUISD::FMIN_LEGACY: 3808 return AMDGPUISD::FMAX_LEGACY; 3809 default: 3810 llvm_unreachable("invalid min/max opcode"); 3811 } 3812 } 3813 3814 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3815 DAGCombinerInfo &DCI) const { 3816 SelectionDAG &DAG = DCI.DAG; 3817 SDValue N0 = N->getOperand(0); 3818 EVT VT = N->getValueType(0); 3819 3820 unsigned Opc = N0.getOpcode(); 3821 3822 // If the input has multiple uses and we can either fold the negate down, or 3823 // the other uses cannot, give up. This both prevents unprofitable 3824 // transformations and infinite loops: we won't repeatedly try to fold around 3825 // a negate that has no 'good' form. 3826 if (N0.hasOneUse()) { 3827 // This may be able to fold into the source, but at a code size cost. Don't 3828 // fold if the fold into the user is free. 3829 if (allUsesHaveSourceMods(N, 0)) 3830 return SDValue(); 3831 } else { 3832 if (fnegFoldsIntoOp(Opc) && 3833 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3834 return SDValue(); 3835 } 3836 3837 SDLoc SL(N); 3838 switch (Opc) { 3839 case ISD::FADD: { 3840 if (!mayIgnoreSignedZero(N0)) 3841 return SDValue(); 3842 3843 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3844 SDValue LHS = N0.getOperand(0); 3845 SDValue RHS = N0.getOperand(1); 3846 3847 if (LHS.getOpcode() != ISD::FNEG) 3848 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3849 else 3850 LHS = LHS.getOperand(0); 3851 3852 if (RHS.getOpcode() != ISD::FNEG) 3853 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3854 else 3855 RHS = RHS.getOperand(0); 3856 3857 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3858 if (Res.getOpcode() != ISD::FADD) 3859 return SDValue(); // Op got folded away. 3860 if (!N0.hasOneUse()) 3861 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3862 return Res; 3863 } 3864 case ISD::FMUL: 3865 case AMDGPUISD::FMUL_LEGACY: { 3866 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3867 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3868 SDValue LHS = N0.getOperand(0); 3869 SDValue RHS = N0.getOperand(1); 3870 3871 if (LHS.getOpcode() == ISD::FNEG) 3872 LHS = LHS.getOperand(0); 3873 else if (RHS.getOpcode() == ISD::FNEG) 3874 RHS = RHS.getOperand(0); 3875 else 3876 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3877 3878 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3879 if (Res.getOpcode() != Opc) 3880 return SDValue(); // Op got folded away. 3881 if (!N0.hasOneUse()) 3882 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3883 return Res; 3884 } 3885 case ISD::FMA: 3886 case ISD::FMAD: { 3887 // TODO: handle llvm.amdgcn.fma.legacy 3888 if (!mayIgnoreSignedZero(N0)) 3889 return SDValue(); 3890 3891 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3892 SDValue LHS = N0.getOperand(0); 3893 SDValue MHS = N0.getOperand(1); 3894 SDValue RHS = N0.getOperand(2); 3895 3896 if (LHS.getOpcode() == ISD::FNEG) 3897 LHS = LHS.getOperand(0); 3898 else if (MHS.getOpcode() == ISD::FNEG) 3899 MHS = MHS.getOperand(0); 3900 else 3901 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3902 3903 if (RHS.getOpcode() != ISD::FNEG) 3904 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3905 else 3906 RHS = RHS.getOperand(0); 3907 3908 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3909 if (Res.getOpcode() != Opc) 3910 return SDValue(); // Op got folded away. 3911 if (!N0.hasOneUse()) 3912 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3913 return Res; 3914 } 3915 case ISD::FMAXNUM: 3916 case ISD::FMINNUM: 3917 case ISD::FMAXNUM_IEEE: 3918 case ISD::FMINNUM_IEEE: 3919 case AMDGPUISD::FMAX_LEGACY: 3920 case AMDGPUISD::FMIN_LEGACY: { 3921 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3922 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3923 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3924 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3925 3926 SDValue LHS = N0.getOperand(0); 3927 SDValue RHS = N0.getOperand(1); 3928 3929 // 0 doesn't have a negated inline immediate. 3930 // TODO: This constant check should be generalized to other operations. 3931 if (isConstantCostlierToNegate(RHS)) 3932 return SDValue(); 3933 3934 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3935 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3936 unsigned Opposite = inverseMinMax(Opc); 3937 3938 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3939 if (Res.getOpcode() != Opposite) 3940 return SDValue(); // Op got folded away. 3941 if (!N0.hasOneUse()) 3942 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3943 return Res; 3944 } 3945 case AMDGPUISD::FMED3: { 3946 SDValue Ops[3]; 3947 for (unsigned I = 0; I < 3; ++I) 3948 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3949 3950 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3951 if (Res.getOpcode() != AMDGPUISD::FMED3) 3952 return SDValue(); // Op got folded away. 3953 3954 if (!N0.hasOneUse()) { 3955 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3956 DAG.ReplaceAllUsesWith(N0, Neg); 3957 3958 for (SDNode *U : Neg->uses()) 3959 DCI.AddToWorklist(U); 3960 } 3961 3962 return Res; 3963 } 3964 case ISD::FP_EXTEND: 3965 case ISD::FTRUNC: 3966 case ISD::FRINT: 3967 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3968 case ISD::FSIN: 3969 case ISD::FCANONICALIZE: 3970 case AMDGPUISD::RCP: 3971 case AMDGPUISD::RCP_LEGACY: 3972 case AMDGPUISD::RCP_IFLAG: 3973 case AMDGPUISD::SIN_HW: { 3974 SDValue CvtSrc = N0.getOperand(0); 3975 if (CvtSrc.getOpcode() == ISD::FNEG) { 3976 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3977 // (fneg (rcp (fneg x))) -> (rcp x) 3978 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3979 } 3980 3981 if (!N0.hasOneUse()) 3982 return SDValue(); 3983 3984 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3985 // (fneg (rcp x)) -> (rcp (fneg x)) 3986 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3987 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3988 } 3989 case ISD::FP_ROUND: { 3990 SDValue CvtSrc = N0.getOperand(0); 3991 3992 if (CvtSrc.getOpcode() == ISD::FNEG) { 3993 // (fneg (fp_round (fneg x))) -> (fp_round x) 3994 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3995 CvtSrc.getOperand(0), N0.getOperand(1)); 3996 } 3997 3998 if (!N0.hasOneUse()) 3999 return SDValue(); 4000 4001 // (fneg (fp_round x)) -> (fp_round (fneg x)) 4002 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 4003 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 4004 } 4005 case ISD::FP16_TO_FP: { 4006 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 4007 // f16, but legalization of f16 fneg ends up pulling it out of the source. 4008 // Put the fneg back as a legal source operation that can be matched later. 4009 SDLoc SL(N); 4010 4011 SDValue Src = N0.getOperand(0); 4012 EVT SrcVT = Src.getValueType(); 4013 4014 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 4015 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 4016 DAG.getConstant(0x8000, SL, SrcVT)); 4017 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 4018 } 4019 default: 4020 return SDValue(); 4021 } 4022 } 4023 4024 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 4025 DAGCombinerInfo &DCI) const { 4026 SelectionDAG &DAG = DCI.DAG; 4027 SDValue N0 = N->getOperand(0); 4028 4029 if (!N0.hasOneUse()) 4030 return SDValue(); 4031 4032 switch (N0.getOpcode()) { 4033 case ISD::FP16_TO_FP: { 4034 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 4035 SDLoc SL(N); 4036 SDValue Src = N0.getOperand(0); 4037 EVT SrcVT = Src.getValueType(); 4038 4039 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 4040 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 4041 DAG.getConstant(0x7fff, SL, SrcVT)); 4042 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 4043 } 4044 default: 4045 return SDValue(); 4046 } 4047 } 4048 4049 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4050 DAGCombinerInfo &DCI) const { 4051 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4052 if (!CFP) 4053 return SDValue(); 4054 4055 // XXX - Should this flush denormals? 4056 const APFloat &Val = CFP->getValueAPF(); 4057 APFloat One(Val.getSemantics(), "1.0"); 4058 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4059 } 4060 4061 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4062 DAGCombinerInfo &DCI) const { 4063 SelectionDAG &DAG = DCI.DAG; 4064 SDLoc DL(N); 4065 4066 switch(N->getOpcode()) { 4067 default: 4068 break; 4069 case ISD::BITCAST: { 4070 EVT DestVT = N->getValueType(0); 4071 4072 // Push casts through vector builds. This helps avoid emitting a large 4073 // number of copies when materializing floating point vector constants. 4074 // 4075 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4076 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4077 if (DestVT.isVector()) { 4078 SDValue Src = N->getOperand(0); 4079 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4080 EVT SrcVT = Src.getValueType(); 4081 unsigned NElts = DestVT.getVectorNumElements(); 4082 4083 if (SrcVT.getVectorNumElements() == NElts) { 4084 EVT DestEltVT = DestVT.getVectorElementType(); 4085 4086 SmallVector<SDValue, 8> CastedElts; 4087 SDLoc SL(N); 4088 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4089 SDValue Elt = Src.getOperand(I); 4090 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4091 } 4092 4093 return DAG.getBuildVector(DestVT, SL, CastedElts); 4094 } 4095 } 4096 } 4097 4098 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4099 break; 4100 4101 // Fold bitcasts of constants. 4102 // 4103 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4104 // TODO: Generalize and move to DAGCombiner 4105 SDValue Src = N->getOperand(0); 4106 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4107 SDLoc SL(N); 4108 uint64_t CVal = C->getZExtValue(); 4109 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4110 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4111 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4112 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4113 } 4114 4115 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4116 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4117 SDLoc SL(N); 4118 uint64_t CVal = Val.getZExtValue(); 4119 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4120 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4121 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4122 4123 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4124 } 4125 4126 break; 4127 } 4128 case ISD::SHL: { 4129 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4130 break; 4131 4132 return performShlCombine(N, DCI); 4133 } 4134 case ISD::SRL: { 4135 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4136 break; 4137 4138 return performSrlCombine(N, DCI); 4139 } 4140 case ISD::SRA: { 4141 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4142 break; 4143 4144 return performSraCombine(N, DCI); 4145 } 4146 case ISD::TRUNCATE: 4147 return performTruncateCombine(N, DCI); 4148 case ISD::MUL: 4149 return performMulCombine(N, DCI); 4150 case ISD::SMUL_LOHI: 4151 case ISD::UMUL_LOHI: 4152 return performMulLoHiCombine(N, DCI); 4153 case ISD::MULHS: 4154 return performMulhsCombine(N, DCI); 4155 case ISD::MULHU: 4156 return performMulhuCombine(N, DCI); 4157 case AMDGPUISD::MUL_I24: 4158 case AMDGPUISD::MUL_U24: 4159 case AMDGPUISD::MULHI_I24: 4160 case AMDGPUISD::MULHI_U24: 4161 return simplifyMul24(N, DCI); 4162 case ISD::SELECT: 4163 return performSelectCombine(N, DCI); 4164 case ISD::FNEG: 4165 return performFNegCombine(N, DCI); 4166 case ISD::FABS: 4167 return performFAbsCombine(N, DCI); 4168 case AMDGPUISD::BFE_I32: 4169 case AMDGPUISD::BFE_U32: { 4170 assert(!N->getValueType(0).isVector() && 4171 "Vector handling of BFE not implemented"); 4172 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4173 if (!Width) 4174 break; 4175 4176 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4177 if (WidthVal == 0) 4178 return DAG.getConstant(0, DL, MVT::i32); 4179 4180 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4181 if (!Offset) 4182 break; 4183 4184 SDValue BitsFrom = N->getOperand(0); 4185 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4186 4187 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4188 4189 if (OffsetVal == 0) { 4190 // This is already sign / zero extended, so try to fold away extra BFEs. 4191 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4192 4193 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4194 if (OpSignBits >= SignBits) 4195 return BitsFrom; 4196 4197 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4198 if (Signed) { 4199 // This is a sign_extend_inreg. Replace it to take advantage of existing 4200 // DAG Combines. If not eliminated, we will match back to BFE during 4201 // selection. 4202 4203 // TODO: The sext_inreg of extended types ends, although we can could 4204 // handle them in a single BFE. 4205 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4206 DAG.getValueType(SmallVT)); 4207 } 4208 4209 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4210 } 4211 4212 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4213 if (Signed) { 4214 return constantFoldBFE<int32_t>(DAG, 4215 CVal->getSExtValue(), 4216 OffsetVal, 4217 WidthVal, 4218 DL); 4219 } 4220 4221 return constantFoldBFE<uint32_t>(DAG, 4222 CVal->getZExtValue(), 4223 OffsetVal, 4224 WidthVal, 4225 DL); 4226 } 4227 4228 if ((OffsetVal + WidthVal) >= 32 && 4229 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4230 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4231 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4232 BitsFrom, ShiftVal); 4233 } 4234 4235 if (BitsFrom.hasOneUse()) { 4236 APInt Demanded = APInt::getBitsSet(32, 4237 OffsetVal, 4238 OffsetVal + WidthVal); 4239 4240 KnownBits Known; 4241 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4242 !DCI.isBeforeLegalizeOps()); 4243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4244 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4245 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4246 DCI.CommitTargetLoweringOpt(TLO); 4247 } 4248 } 4249 4250 break; 4251 } 4252 case ISD::LOAD: 4253 return performLoadCombine(N, DCI); 4254 case ISD::STORE: 4255 return performStoreCombine(N, DCI); 4256 case AMDGPUISD::RCP: 4257 case AMDGPUISD::RCP_IFLAG: 4258 return performRcpCombine(N, DCI); 4259 case ISD::AssertZext: 4260 case ISD::AssertSext: 4261 return performAssertSZExtCombine(N, DCI); 4262 case ISD::INTRINSIC_WO_CHAIN: 4263 return performIntrinsicWOChainCombine(N, DCI); 4264 } 4265 return SDValue(); 4266 } 4267 4268 //===----------------------------------------------------------------------===// 4269 // Helper functions 4270 //===----------------------------------------------------------------------===// 4271 4272 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4273 const TargetRegisterClass *RC, 4274 Register Reg, EVT VT, 4275 const SDLoc &SL, 4276 bool RawReg) const { 4277 MachineFunction &MF = DAG.getMachineFunction(); 4278 MachineRegisterInfo &MRI = MF.getRegInfo(); 4279 Register VReg; 4280 4281 if (!MRI.isLiveIn(Reg)) { 4282 VReg = MRI.createVirtualRegister(RC); 4283 MRI.addLiveIn(Reg, VReg); 4284 } else { 4285 VReg = MRI.getLiveInVirtReg(Reg); 4286 } 4287 4288 if (RawReg) 4289 return DAG.getRegister(VReg, VT); 4290 4291 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4292 } 4293 4294 // This may be called multiple times, and nothing prevents creating multiple 4295 // objects at the same offset. See if we already defined this object. 4296 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4297 int64_t Offset) { 4298 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4299 if (MFI.getObjectOffset(I) == Offset) { 4300 assert(MFI.getObjectSize(I) == Size); 4301 return I; 4302 } 4303 } 4304 4305 return MFI.CreateFixedObject(Size, Offset, true); 4306 } 4307 4308 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4309 EVT VT, 4310 const SDLoc &SL, 4311 int64_t Offset) const { 4312 MachineFunction &MF = DAG.getMachineFunction(); 4313 MachineFrameInfo &MFI = MF.getFrameInfo(); 4314 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4315 4316 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4317 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4318 4319 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4320 MachineMemOperand::MODereferenceable | 4321 MachineMemOperand::MOInvariant); 4322 } 4323 4324 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4325 const SDLoc &SL, 4326 SDValue Chain, 4327 SDValue ArgVal, 4328 int64_t Offset) const { 4329 MachineFunction &MF = DAG.getMachineFunction(); 4330 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4331 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4332 4333 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4334 // Stores to the argument stack area are relative to the stack pointer. 4335 SDValue SP = 4336 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4337 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4338 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4339 MachineMemOperand::MODereferenceable); 4340 return Store; 4341 } 4342 4343 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4344 const TargetRegisterClass *RC, 4345 EVT VT, const SDLoc &SL, 4346 const ArgDescriptor &Arg) const { 4347 assert(Arg && "Attempting to load missing argument"); 4348 4349 SDValue V = Arg.isRegister() ? 4350 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4351 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4352 4353 if (!Arg.isMasked()) 4354 return V; 4355 4356 unsigned Mask = Arg.getMask(); 4357 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4358 V = DAG.getNode(ISD::SRL, SL, VT, V, 4359 DAG.getShiftAmountConstant(Shift, VT, SL)); 4360 return DAG.getNode(ISD::AND, SL, VT, V, 4361 DAG.getConstant(Mask >> Shift, SL, VT)); 4362 } 4363 4364 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4365 const MachineFunction &MF, const ImplicitParameter Param) const { 4366 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4367 const AMDGPUSubtarget &ST = 4368 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4369 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4370 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4371 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4372 ExplicitArgOffset; 4373 switch (Param) { 4374 case FIRST_IMPLICIT: 4375 return ArgOffset; 4376 case PRIVATE_BASE: 4377 return ArgOffset + AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET; 4378 case SHARED_BASE: 4379 return ArgOffset + AMDGPU::ImplicitArg::SHARED_BASE_OFFSET; 4380 case QUEUE_PTR: 4381 return ArgOffset + AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET; 4382 } 4383 llvm_unreachable("unexpected implicit parameter type"); 4384 } 4385 4386 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4387 4388 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4389 switch ((AMDGPUISD::NodeType)Opcode) { 4390 case AMDGPUISD::FIRST_NUMBER: break; 4391 // AMDIL DAG nodes 4392 NODE_NAME_CASE(UMUL); 4393 NODE_NAME_CASE(BRANCH_COND); 4394 4395 // AMDGPU DAG nodes 4396 NODE_NAME_CASE(IF) 4397 NODE_NAME_CASE(ELSE) 4398 NODE_NAME_CASE(LOOP) 4399 NODE_NAME_CASE(CALL) 4400 NODE_NAME_CASE(TC_RETURN) 4401 NODE_NAME_CASE(TRAP) 4402 NODE_NAME_CASE(RET_FLAG) 4403 NODE_NAME_CASE(RETURN_TO_EPILOG) 4404 NODE_NAME_CASE(ENDPGM) 4405 NODE_NAME_CASE(DWORDADDR) 4406 NODE_NAME_CASE(FRACT) 4407 NODE_NAME_CASE(SETCC) 4408 NODE_NAME_CASE(SETREG) 4409 NODE_NAME_CASE(DENORM_MODE) 4410 NODE_NAME_CASE(FMA_W_CHAIN) 4411 NODE_NAME_CASE(FMUL_W_CHAIN) 4412 NODE_NAME_CASE(CLAMP) 4413 NODE_NAME_CASE(COS_HW) 4414 NODE_NAME_CASE(SIN_HW) 4415 NODE_NAME_CASE(FMAX_LEGACY) 4416 NODE_NAME_CASE(FMIN_LEGACY) 4417 NODE_NAME_CASE(FMAX3) 4418 NODE_NAME_CASE(SMAX3) 4419 NODE_NAME_CASE(UMAX3) 4420 NODE_NAME_CASE(FMIN3) 4421 NODE_NAME_CASE(SMIN3) 4422 NODE_NAME_CASE(UMIN3) 4423 NODE_NAME_CASE(FMED3) 4424 NODE_NAME_CASE(SMED3) 4425 NODE_NAME_CASE(UMED3) 4426 NODE_NAME_CASE(FDOT2) 4427 NODE_NAME_CASE(URECIP) 4428 NODE_NAME_CASE(DIV_SCALE) 4429 NODE_NAME_CASE(DIV_FMAS) 4430 NODE_NAME_CASE(DIV_FIXUP) 4431 NODE_NAME_CASE(FMAD_FTZ) 4432 NODE_NAME_CASE(RCP) 4433 NODE_NAME_CASE(RSQ) 4434 NODE_NAME_CASE(RCP_LEGACY) 4435 NODE_NAME_CASE(RCP_IFLAG) 4436 NODE_NAME_CASE(FMUL_LEGACY) 4437 NODE_NAME_CASE(RSQ_CLAMP) 4438 NODE_NAME_CASE(LDEXP) 4439 NODE_NAME_CASE(FP_CLASS) 4440 NODE_NAME_CASE(DOT4) 4441 NODE_NAME_CASE(CARRY) 4442 NODE_NAME_CASE(BORROW) 4443 NODE_NAME_CASE(BFE_U32) 4444 NODE_NAME_CASE(BFE_I32) 4445 NODE_NAME_CASE(BFI) 4446 NODE_NAME_CASE(BFM) 4447 NODE_NAME_CASE(FFBH_U32) 4448 NODE_NAME_CASE(FFBH_I32) 4449 NODE_NAME_CASE(FFBL_B32) 4450 NODE_NAME_CASE(MUL_U24) 4451 NODE_NAME_CASE(MUL_I24) 4452 NODE_NAME_CASE(MULHI_U24) 4453 NODE_NAME_CASE(MULHI_I24) 4454 NODE_NAME_CASE(MAD_U24) 4455 NODE_NAME_CASE(MAD_I24) 4456 NODE_NAME_CASE(MAD_I64_I32) 4457 NODE_NAME_CASE(MAD_U64_U32) 4458 NODE_NAME_CASE(PERM) 4459 NODE_NAME_CASE(TEXTURE_FETCH) 4460 NODE_NAME_CASE(R600_EXPORT) 4461 NODE_NAME_CASE(CONST_ADDRESS) 4462 NODE_NAME_CASE(REGISTER_LOAD) 4463 NODE_NAME_CASE(REGISTER_STORE) 4464 NODE_NAME_CASE(SAMPLE) 4465 NODE_NAME_CASE(SAMPLEB) 4466 NODE_NAME_CASE(SAMPLED) 4467 NODE_NAME_CASE(SAMPLEL) 4468 NODE_NAME_CASE(CVT_F32_UBYTE0) 4469 NODE_NAME_CASE(CVT_F32_UBYTE1) 4470 NODE_NAME_CASE(CVT_F32_UBYTE2) 4471 NODE_NAME_CASE(CVT_F32_UBYTE3) 4472 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4473 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4474 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4475 NODE_NAME_CASE(CVT_PK_I16_I32) 4476 NODE_NAME_CASE(CVT_PK_U16_U32) 4477 NODE_NAME_CASE(FP_TO_FP16) 4478 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4479 NODE_NAME_CASE(CONST_DATA_PTR) 4480 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4481 NODE_NAME_CASE(LDS) 4482 NODE_NAME_CASE(FPTRUNC_ROUND_UPWARD) 4483 NODE_NAME_CASE(FPTRUNC_ROUND_DOWNWARD) 4484 NODE_NAME_CASE(DUMMY_CHAIN) 4485 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4486 NODE_NAME_CASE(LOAD_D16_HI) 4487 NODE_NAME_CASE(LOAD_D16_LO) 4488 NODE_NAME_CASE(LOAD_D16_HI_I8) 4489 NODE_NAME_CASE(LOAD_D16_HI_U8) 4490 NODE_NAME_CASE(LOAD_D16_LO_I8) 4491 NODE_NAME_CASE(LOAD_D16_LO_U8) 4492 NODE_NAME_CASE(STORE_MSKOR) 4493 NODE_NAME_CASE(LOAD_CONSTANT) 4494 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4495 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4496 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4497 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4498 NODE_NAME_CASE(DS_ORDERED_COUNT) 4499 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4500 NODE_NAME_CASE(ATOMIC_INC) 4501 NODE_NAME_CASE(ATOMIC_DEC) 4502 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4503 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4504 NODE_NAME_CASE(BUFFER_LOAD) 4505 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4506 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4507 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4508 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4509 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4510 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4511 NODE_NAME_CASE(SBUFFER_LOAD) 4512 NODE_NAME_CASE(BUFFER_STORE) 4513 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4514 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4515 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4516 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4517 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4518 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4519 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4520 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4521 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4522 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4523 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4524 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4525 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4526 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4527 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4528 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4529 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4530 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4531 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4532 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4533 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4534 4535 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4536 } 4537 return nullptr; 4538 } 4539 4540 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4541 SelectionDAG &DAG, int Enabled, 4542 int &RefinementSteps, 4543 bool &UseOneConstNR, 4544 bool Reciprocal) const { 4545 EVT VT = Operand.getValueType(); 4546 4547 if (VT == MVT::f32) { 4548 RefinementSteps = 0; 4549 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4550 } 4551 4552 // TODO: There is also f64 rsq instruction, but the documentation is less 4553 // clear on its precision. 4554 4555 return SDValue(); 4556 } 4557 4558 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4559 SelectionDAG &DAG, int Enabled, 4560 int &RefinementSteps) const { 4561 EVT VT = Operand.getValueType(); 4562 4563 if (VT == MVT::f32) { 4564 // Reciprocal, < 1 ulp error. 4565 // 4566 // This reciprocal approximation converges to < 0.5 ulp error with one 4567 // newton rhapson performed with two fused multiple adds (FMAs). 4568 4569 RefinementSteps = 0; 4570 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4571 } 4572 4573 // TODO: There is also f64 rcp instruction, but the documentation is less 4574 // clear on its precision. 4575 4576 return SDValue(); 4577 } 4578 4579 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4580 const SDValue Op, KnownBits &Known, 4581 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4582 4583 Known.resetAll(); // Don't know anything. 4584 4585 unsigned Opc = Op.getOpcode(); 4586 4587 switch (Opc) { 4588 default: 4589 break; 4590 case AMDGPUISD::CARRY: 4591 case AMDGPUISD::BORROW: { 4592 Known.Zero = APInt::getHighBitsSet(32, 31); 4593 break; 4594 } 4595 4596 case AMDGPUISD::BFE_I32: 4597 case AMDGPUISD::BFE_U32: { 4598 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4599 if (!CWidth) 4600 return; 4601 4602 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4603 4604 if (Opc == AMDGPUISD::BFE_U32) 4605 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4606 4607 break; 4608 } 4609 case AMDGPUISD::FP_TO_FP16: { 4610 unsigned BitWidth = Known.getBitWidth(); 4611 4612 // High bits are zero. 4613 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4614 break; 4615 } 4616 case AMDGPUISD::MUL_U24: 4617 case AMDGPUISD::MUL_I24: { 4618 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4619 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4620 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4621 RHSKnown.countMinTrailingZeros(); 4622 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4623 // Skip extra check if all bits are known zeros. 4624 if (TrailZ >= 32) 4625 break; 4626 4627 // Truncate to 24 bits. 4628 LHSKnown = LHSKnown.trunc(24); 4629 RHSKnown = RHSKnown.trunc(24); 4630 4631 if (Opc == AMDGPUISD::MUL_I24) { 4632 unsigned LHSValBits = LHSKnown.countMaxSignificantBits(); 4633 unsigned RHSValBits = RHSKnown.countMaxSignificantBits(); 4634 unsigned MaxValBits = LHSValBits + RHSValBits; 4635 if (MaxValBits > 32) 4636 break; 4637 unsigned SignBits = 32 - MaxValBits + 1; 4638 bool LHSNegative = LHSKnown.isNegative(); 4639 bool LHSNonNegative = LHSKnown.isNonNegative(); 4640 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4641 bool RHSNegative = RHSKnown.isNegative(); 4642 bool RHSNonNegative = RHSKnown.isNonNegative(); 4643 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4644 4645 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4646 Known.Zero.setHighBits(SignBits); 4647 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4648 Known.One.setHighBits(SignBits); 4649 } else { 4650 unsigned LHSValBits = LHSKnown.countMaxActiveBits(); 4651 unsigned RHSValBits = RHSKnown.countMaxActiveBits(); 4652 unsigned MaxValBits = LHSValBits + RHSValBits; 4653 if (MaxValBits >= 32) 4654 break; 4655 Known.Zero.setBitsFrom(MaxValBits); 4656 } 4657 break; 4658 } 4659 case AMDGPUISD::PERM: { 4660 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4661 if (!CMask) 4662 return; 4663 4664 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4665 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4666 unsigned Sel = CMask->getZExtValue(); 4667 4668 for (unsigned I = 0; I < 32; I += 8) { 4669 unsigned SelBits = Sel & 0xff; 4670 if (SelBits < 4) { 4671 SelBits *= 8; 4672 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4673 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4674 } else if (SelBits < 7) { 4675 SelBits = (SelBits & 3) * 8; 4676 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4677 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4678 } else if (SelBits == 0x0c) { 4679 Known.Zero |= 0xFFull << I; 4680 } else if (SelBits > 0x0c) { 4681 Known.One |= 0xFFull << I; 4682 } 4683 Sel >>= 8; 4684 } 4685 break; 4686 } 4687 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4688 Known.Zero.setHighBits(24); 4689 break; 4690 } 4691 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4692 Known.Zero.setHighBits(16); 4693 break; 4694 } 4695 case AMDGPUISD::LDS: { 4696 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4697 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4698 4699 Known.Zero.setHighBits(16); 4700 Known.Zero.setLowBits(Log2(Alignment)); 4701 break; 4702 } 4703 case ISD::INTRINSIC_WO_CHAIN: { 4704 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4705 switch (IID) { 4706 case Intrinsic::amdgcn_mbcnt_lo: 4707 case Intrinsic::amdgcn_mbcnt_hi: { 4708 const GCNSubtarget &ST = 4709 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4710 // These return at most the wavefront size - 1. 4711 unsigned Size = Op.getValueType().getSizeInBits(); 4712 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4713 break; 4714 } 4715 default: 4716 break; 4717 } 4718 } 4719 } 4720 } 4721 4722 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4723 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4724 unsigned Depth) const { 4725 switch (Op.getOpcode()) { 4726 case AMDGPUISD::BFE_I32: { 4727 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4728 if (!Width) 4729 return 1; 4730 4731 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4732 if (!isNullConstant(Op.getOperand(1))) 4733 return SignBits; 4734 4735 // TODO: Could probably figure something out with non-0 offsets. 4736 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4737 return std::max(SignBits, Op0SignBits); 4738 } 4739 4740 case AMDGPUISD::BFE_U32: { 4741 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4742 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4743 } 4744 4745 case AMDGPUISD::CARRY: 4746 case AMDGPUISD::BORROW: 4747 return 31; 4748 case AMDGPUISD::BUFFER_LOAD_BYTE: 4749 return 25; 4750 case AMDGPUISD::BUFFER_LOAD_SHORT: 4751 return 17; 4752 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4753 return 24; 4754 case AMDGPUISD::BUFFER_LOAD_USHORT: 4755 return 16; 4756 case AMDGPUISD::FP_TO_FP16: 4757 return 16; 4758 default: 4759 return 1; 4760 } 4761 } 4762 4763 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4764 GISelKnownBits &Analysis, Register R, 4765 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4766 unsigned Depth) const { 4767 const MachineInstr *MI = MRI.getVRegDef(R); 4768 if (!MI) 4769 return 1; 4770 4771 // TODO: Check range metadata on MMO. 4772 switch (MI->getOpcode()) { 4773 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4774 return 25; 4775 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4776 return 17; 4777 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4778 return 24; 4779 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4780 return 16; 4781 default: 4782 return 1; 4783 } 4784 } 4785 4786 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4787 const SelectionDAG &DAG, 4788 bool SNaN, 4789 unsigned Depth) const { 4790 unsigned Opcode = Op.getOpcode(); 4791 switch (Opcode) { 4792 case AMDGPUISD::FMIN_LEGACY: 4793 case AMDGPUISD::FMAX_LEGACY: { 4794 if (SNaN) 4795 return true; 4796 4797 // TODO: Can check no nans on one of the operands for each one, but which 4798 // one? 4799 return false; 4800 } 4801 case AMDGPUISD::FMUL_LEGACY: 4802 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4803 if (SNaN) 4804 return true; 4805 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4806 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4807 } 4808 case AMDGPUISD::FMED3: 4809 case AMDGPUISD::FMIN3: 4810 case AMDGPUISD::FMAX3: 4811 case AMDGPUISD::FMAD_FTZ: { 4812 if (SNaN) 4813 return true; 4814 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4815 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4816 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4817 } 4818 case AMDGPUISD::CVT_F32_UBYTE0: 4819 case AMDGPUISD::CVT_F32_UBYTE1: 4820 case AMDGPUISD::CVT_F32_UBYTE2: 4821 case AMDGPUISD::CVT_F32_UBYTE3: 4822 return true; 4823 4824 case AMDGPUISD::RCP: 4825 case AMDGPUISD::RSQ: 4826 case AMDGPUISD::RCP_LEGACY: 4827 case AMDGPUISD::RSQ_CLAMP: { 4828 if (SNaN) 4829 return true; 4830 4831 // TODO: Need is known positive check. 4832 return false; 4833 } 4834 case AMDGPUISD::LDEXP: 4835 case AMDGPUISD::FRACT: { 4836 if (SNaN) 4837 return true; 4838 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4839 } 4840 case AMDGPUISD::DIV_SCALE: 4841 case AMDGPUISD::DIV_FMAS: 4842 case AMDGPUISD::DIV_FIXUP: 4843 // TODO: Refine on operands. 4844 return SNaN; 4845 case AMDGPUISD::SIN_HW: 4846 case AMDGPUISD::COS_HW: { 4847 // TODO: Need check for infinity 4848 return SNaN; 4849 } 4850 case ISD::INTRINSIC_WO_CHAIN: { 4851 unsigned IntrinsicID 4852 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4853 // TODO: Handle more intrinsics 4854 switch (IntrinsicID) { 4855 case Intrinsic::amdgcn_cubeid: 4856 return true; 4857 4858 case Intrinsic::amdgcn_frexp_mant: { 4859 if (SNaN) 4860 return true; 4861 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4862 } 4863 case Intrinsic::amdgcn_cvt_pkrtz: { 4864 if (SNaN) 4865 return true; 4866 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4867 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4868 } 4869 case Intrinsic::amdgcn_rcp: 4870 case Intrinsic::amdgcn_rsq: 4871 case Intrinsic::amdgcn_rcp_legacy: 4872 case Intrinsic::amdgcn_rsq_legacy: 4873 case Intrinsic::amdgcn_rsq_clamp: { 4874 if (SNaN) 4875 return true; 4876 4877 // TODO: Need is known positive check. 4878 return false; 4879 } 4880 case Intrinsic::amdgcn_trig_preop: 4881 case Intrinsic::amdgcn_fdot2: 4882 // TODO: Refine on operand 4883 return SNaN; 4884 case Intrinsic::amdgcn_fma_legacy: 4885 if (SNaN) 4886 return true; 4887 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4888 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4889 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4890 default: 4891 return false; 4892 } 4893 } 4894 default: 4895 return false; 4896 } 4897 } 4898 4899 TargetLowering::AtomicExpansionKind 4900 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4901 switch (RMW->getOperation()) { 4902 case AtomicRMWInst::Nand: 4903 case AtomicRMWInst::FAdd: 4904 case AtomicRMWInst::FSub: 4905 return AtomicExpansionKind::CmpXChg; 4906 default: 4907 return AtomicExpansionKind::None; 4908 } 4909 } 4910 4911 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal( 4912 unsigned Opc, LLT Ty1, LLT Ty2) const { 4913 return (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)) && 4914 Ty2 == LLT::scalar(32); 4915 } 4916