1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f16, Custom); 324 setOperationAction(ISD::FREM, MVT::f32, Custom); 325 setOperationAction(ISD::FREM, MVT::f64, Custom); 326 327 // Expand to fneg + fadd. 328 setOperationAction(ISD::FSUB, MVT::f64, Expand); 329 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 337 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 359 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 360 361 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 363 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 364 365 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 366 for (MVT VT : ScalarIntVTs) { 367 // These should use [SU]DIVREM, so set them to expand 368 setOperationAction(ISD::SDIV, VT, Expand); 369 setOperationAction(ISD::UDIV, VT, Expand); 370 setOperationAction(ISD::SREM, VT, Expand); 371 setOperationAction(ISD::UREM, VT, Expand); 372 373 // GPU does not have divrem function for signed or unsigned. 374 setOperationAction(ISD::SDIVREM, VT, Custom); 375 setOperationAction(ISD::UDIVREM, VT, Custom); 376 377 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 378 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 379 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 380 381 setOperationAction(ISD::BSWAP, VT, Expand); 382 setOperationAction(ISD::CTTZ, VT, Expand); 383 setOperationAction(ISD::CTLZ, VT, Expand); 384 385 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 386 setOperationAction(ISD::ADDC, VT, Legal); 387 setOperationAction(ISD::SUBC, VT, Legal); 388 setOperationAction(ISD::ADDE, VT, Legal); 389 setOperationAction(ISD::SUBE, VT, Legal); 390 } 391 392 // The hardware supports 32-bit FSHR, but not FSHL. 393 setOperationAction(ISD::FSHR, MVT::i32, Legal); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MULHU, MVT::i16, Expand); 401 setOperationAction(ISD::MULHS, MVT::i16, Expand); 402 403 setOperationAction(ISD::MUL, MVT::i64, Expand); 404 setOperationAction(ISD::MULHU, MVT::i64, Expand); 405 setOperationAction(ISD::MULHS, MVT::i64, Expand); 406 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 407 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 408 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 409 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 410 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 411 412 setOperationAction(ISD::SMIN, MVT::i32, Legal); 413 setOperationAction(ISD::UMIN, MVT::i32, Legal); 414 setOperationAction(ISD::SMAX, MVT::i32, Legal); 415 setOperationAction(ISD::UMAX, MVT::i32, Legal); 416 417 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 418 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 419 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 420 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 421 422 static const MVT::SimpleValueType VectorIntTypes[] = { 423 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 424 }; 425 426 for (MVT VT : VectorIntTypes) { 427 // Expand the following operations for the current type by default. 428 setOperationAction(ISD::ADD, VT, Expand); 429 setOperationAction(ISD::AND, VT, Expand); 430 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 431 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 432 setOperationAction(ISD::MUL, VT, Expand); 433 setOperationAction(ISD::MULHU, VT, Expand); 434 setOperationAction(ISD::MULHS, VT, Expand); 435 setOperationAction(ISD::OR, VT, Expand); 436 setOperationAction(ISD::SHL, VT, Expand); 437 setOperationAction(ISD::SRA, VT, Expand); 438 setOperationAction(ISD::SRL, VT, Expand); 439 setOperationAction(ISD::ROTL, VT, Expand); 440 setOperationAction(ISD::ROTR, VT, Expand); 441 setOperationAction(ISD::SUB, VT, Expand); 442 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 443 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 444 setOperationAction(ISD::SDIV, VT, Expand); 445 setOperationAction(ISD::UDIV, VT, Expand); 446 setOperationAction(ISD::SREM, VT, Expand); 447 setOperationAction(ISD::UREM, VT, Expand); 448 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 449 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 450 setOperationAction(ISD::SDIVREM, VT, Expand); 451 setOperationAction(ISD::UDIVREM, VT, Expand); 452 setOperationAction(ISD::SELECT, VT, Expand); 453 setOperationAction(ISD::VSELECT, VT, Expand); 454 setOperationAction(ISD::SELECT_CC, VT, Expand); 455 setOperationAction(ISD::XOR, VT, Expand); 456 setOperationAction(ISD::BSWAP, VT, Expand); 457 setOperationAction(ISD::CTPOP, VT, Expand); 458 setOperationAction(ISD::CTTZ, VT, Expand); 459 setOperationAction(ISD::CTLZ, VT, Expand); 460 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 461 setOperationAction(ISD::SETCC, VT, Expand); 462 } 463 464 static const MVT::SimpleValueType FloatVectorTypes[] = { 465 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 466 }; 467 468 for (MVT VT : FloatVectorTypes) { 469 setOperationAction(ISD::FABS, VT, Expand); 470 setOperationAction(ISD::FMINNUM, VT, Expand); 471 setOperationAction(ISD::FMAXNUM, VT, Expand); 472 setOperationAction(ISD::FADD, VT, Expand); 473 setOperationAction(ISD::FCEIL, VT, Expand); 474 setOperationAction(ISD::FCOS, VT, Expand); 475 setOperationAction(ISD::FDIV, VT, Expand); 476 setOperationAction(ISD::FEXP2, VT, Expand); 477 setOperationAction(ISD::FEXP, VT, Expand); 478 setOperationAction(ISD::FLOG2, VT, Expand); 479 setOperationAction(ISD::FREM, VT, Expand); 480 setOperationAction(ISD::FLOG, VT, Expand); 481 setOperationAction(ISD::FLOG10, VT, Expand); 482 setOperationAction(ISD::FPOW, VT, Expand); 483 setOperationAction(ISD::FFLOOR, VT, Expand); 484 setOperationAction(ISD::FTRUNC, VT, Expand); 485 setOperationAction(ISD::FMUL, VT, Expand); 486 setOperationAction(ISD::FMA, VT, Expand); 487 setOperationAction(ISD::FRINT, VT, Expand); 488 setOperationAction(ISD::FNEARBYINT, VT, Expand); 489 setOperationAction(ISD::FSQRT, VT, Expand); 490 setOperationAction(ISD::FSIN, VT, Expand); 491 setOperationAction(ISD::FSUB, VT, Expand); 492 setOperationAction(ISD::FNEG, VT, Expand); 493 setOperationAction(ISD::VSELECT, VT, Expand); 494 setOperationAction(ISD::SELECT_CC, VT, Expand); 495 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 496 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 497 setOperationAction(ISD::SETCC, VT, Expand); 498 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 499 } 500 501 // This causes using an unrolled select operation rather than expansion with 502 // bit operations. This is in general better, but the alternative using BFI 503 // instructions may be better if the select sources are SGPRs. 504 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 505 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 506 507 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 508 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 509 510 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 511 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 512 513 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 514 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 515 516 // There are no libcalls of any kind. 517 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 518 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 519 520 setSchedulingPreference(Sched::RegPressure); 521 setJumpIsExpensive(true); 522 523 // FIXME: This is only partially true. If we have to do vector compares, any 524 // SGPR pair can be a condition register. If we have a uniform condition, we 525 // are better off doing SALU operations, where there is only one SCC. For now, 526 // we don't have a way of knowing during instruction selection if a condition 527 // will be uniform and we always use vector compares. Assume we are using 528 // vector compares until that is fixed. 529 setHasMultipleConditionRegisters(true); 530 531 setMinCmpXchgSizeInBits(32); 532 setSupportsUnalignedAtomics(false); 533 534 PredictableSelectIsExpensive = false; 535 536 // We want to find all load dependencies for long chains of stores to enable 537 // merging into very wide vectors. The problem is with vectors with > 4 538 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 539 // vectors are a legal type, even though we have to split the loads 540 // usually. When we can more precisely specify load legality per address 541 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 542 // smarter so that they can figure out what to do in 2 iterations without all 543 // N > 4 stores on the same chain. 544 GatherAllAliasesMaxDepth = 16; 545 546 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 547 // about these during lowering. 548 MaxStoresPerMemcpy = 0xffffffff; 549 MaxStoresPerMemmove = 0xffffffff; 550 MaxStoresPerMemset = 0xffffffff; 551 552 // The expansion for 64-bit division is enormous. 553 if (AMDGPUBypassSlowDiv) 554 addBypassSlowDiv(64, 32); 555 556 setTargetDAGCombine(ISD::BITCAST); 557 setTargetDAGCombine(ISD::SHL); 558 setTargetDAGCombine(ISD::SRA); 559 setTargetDAGCombine(ISD::SRL); 560 setTargetDAGCombine(ISD::TRUNCATE); 561 setTargetDAGCombine(ISD::MUL); 562 setTargetDAGCombine(ISD::MULHU); 563 setTargetDAGCombine(ISD::MULHS); 564 setTargetDAGCombine(ISD::SELECT); 565 setTargetDAGCombine(ISD::SELECT_CC); 566 setTargetDAGCombine(ISD::STORE); 567 setTargetDAGCombine(ISD::FADD); 568 setTargetDAGCombine(ISD::FSUB); 569 setTargetDAGCombine(ISD::FNEG); 570 setTargetDAGCombine(ISD::FABS); 571 setTargetDAGCombine(ISD::AssertZext); 572 setTargetDAGCombine(ISD::AssertSext); 573 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 574 } 575 576 //===----------------------------------------------------------------------===// 577 // Target Information 578 //===----------------------------------------------------------------------===// 579 580 LLVM_READNONE 581 static bool fnegFoldsIntoOp(unsigned Opc) { 582 switch (Opc) { 583 case ISD::FADD: 584 case ISD::FSUB: 585 case ISD::FMUL: 586 case ISD::FMA: 587 case ISD::FMAD: 588 case ISD::FMINNUM: 589 case ISD::FMAXNUM: 590 case ISD::FMINNUM_IEEE: 591 case ISD::FMAXNUM_IEEE: 592 case ISD::FSIN: 593 case ISD::FTRUNC: 594 case ISD::FRINT: 595 case ISD::FNEARBYINT: 596 case ISD::FCANONICALIZE: 597 case AMDGPUISD::RCP: 598 case AMDGPUISD::RCP_LEGACY: 599 case AMDGPUISD::RCP_IFLAG: 600 case AMDGPUISD::SIN_HW: 601 case AMDGPUISD::FMUL_LEGACY: 602 case AMDGPUISD::FMIN_LEGACY: 603 case AMDGPUISD::FMAX_LEGACY: 604 case AMDGPUISD::FMED3: 605 // TODO: handle llvm.amdgcn.fma.legacy 606 return true; 607 default: 608 return false; 609 } 610 } 611 612 /// \p returns true if the operation will definitely need to use a 64-bit 613 /// encoding, and thus will use a VOP3 encoding regardless of the source 614 /// modifiers. 615 LLVM_READONLY 616 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 617 return N->getNumOperands() > 2 || VT == MVT::f64; 618 } 619 620 // Most FP instructions support source modifiers, but this could be refined 621 // slightly. 622 LLVM_READONLY 623 static bool hasSourceMods(const SDNode *N) { 624 if (isa<MemSDNode>(N)) 625 return false; 626 627 switch (N->getOpcode()) { 628 case ISD::CopyToReg: 629 case ISD::SELECT: 630 case ISD::FDIV: 631 case ISD::FREM: 632 case ISD::INLINEASM: 633 case ISD::INLINEASM_BR: 634 case AMDGPUISD::DIV_SCALE: 635 case ISD::INTRINSIC_W_CHAIN: 636 637 // TODO: Should really be looking at the users of the bitcast. These are 638 // problematic because bitcasts are used to legalize all stores to integer 639 // types. 640 case ISD::BITCAST: 641 return false; 642 case ISD::INTRINSIC_WO_CHAIN: { 643 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 644 case Intrinsic::amdgcn_interp_p1: 645 case Intrinsic::amdgcn_interp_p2: 646 case Intrinsic::amdgcn_interp_mov: 647 case Intrinsic::amdgcn_interp_p1_f16: 648 case Intrinsic::amdgcn_interp_p2_f16: 649 return false; 650 default: 651 return true; 652 } 653 } 654 default: 655 return true; 656 } 657 } 658 659 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 660 unsigned CostThreshold) { 661 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 662 // it is truly free to use a source modifier in all cases. If there are 663 // multiple users but for each one will necessitate using VOP3, there will be 664 // a code size increase. Try to avoid increasing code size unless we know it 665 // will save on the instruction count. 666 unsigned NumMayIncreaseSize = 0; 667 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 668 669 // XXX - Should this limit number of uses to check? 670 for (const SDNode *U : N->uses()) { 671 if (!hasSourceMods(U)) 672 return false; 673 674 if (!opMustUseVOP3Encoding(U, VT)) { 675 if (++NumMayIncreaseSize > CostThreshold) 676 return false; 677 } 678 } 679 680 return true; 681 } 682 683 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 684 ISD::NodeType ExtendKind) const { 685 assert(!VT.isVector() && "only scalar expected"); 686 687 // Round to the next multiple of 32-bits. 688 unsigned Size = VT.getSizeInBits(); 689 if (Size <= 32) 690 return MVT::i32; 691 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 692 } 693 694 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 695 return MVT::i32; 696 } 697 698 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 699 return true; 700 } 701 702 // The backend supports 32 and 64 bit floating point immediates. 703 // FIXME: Why are we reporting vectors of FP immediates as legal? 704 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 705 bool ForCodeSize) const { 706 EVT ScalarVT = VT.getScalarType(); 707 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 708 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 709 } 710 711 // We don't want to shrink f64 / f32 constants. 712 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 713 EVT ScalarVT = VT.getScalarType(); 714 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 715 } 716 717 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 718 ISD::LoadExtType ExtTy, 719 EVT NewVT) const { 720 // TODO: This may be worth removing. Check regression tests for diffs. 721 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 722 return false; 723 724 unsigned NewSize = NewVT.getStoreSizeInBits(); 725 726 // If we are reducing to a 32-bit load or a smaller multi-dword load, 727 // this is always better. 728 if (NewSize >= 32) 729 return true; 730 731 EVT OldVT = N->getValueType(0); 732 unsigned OldSize = OldVT.getStoreSizeInBits(); 733 734 MemSDNode *MN = cast<MemSDNode>(N); 735 unsigned AS = MN->getAddressSpace(); 736 // Do not shrink an aligned scalar load to sub-dword. 737 // Scalar engine cannot do sub-dword loads. 738 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 739 (AS == AMDGPUAS::CONSTANT_ADDRESS || 740 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 741 (isa<LoadSDNode>(N) && 742 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 743 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 744 return false; 745 746 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 747 // extloads, so doing one requires using a buffer_load. In cases where we 748 // still couldn't use a scalar load, using the wider load shouldn't really 749 // hurt anything. 750 751 // If the old size already had to be an extload, there's no harm in continuing 752 // to reduce the width. 753 return (OldSize < 32); 754 } 755 756 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 757 const SelectionDAG &DAG, 758 const MachineMemOperand &MMO) const { 759 760 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 761 762 if (LoadTy.getScalarType() == MVT::i32) 763 return false; 764 765 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 766 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 767 768 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 769 return false; 770 771 bool Fast = false; 772 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 773 CastTy, MMO, &Fast) && 774 Fast; 775 } 776 777 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 778 // profitable with the expansion for 64-bit since it's generally good to 779 // speculate things. 780 // FIXME: These should really have the size as a parameter. 781 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 782 return true; 783 } 784 785 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 786 return true; 787 } 788 789 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 790 switch (N->getOpcode()) { 791 case ISD::EntryToken: 792 case ISD::TokenFactor: 793 return true; 794 case ISD::INTRINSIC_WO_CHAIN: { 795 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 796 switch (IntrID) { 797 case Intrinsic::amdgcn_readfirstlane: 798 case Intrinsic::amdgcn_readlane: 799 return true; 800 } 801 return false; 802 } 803 case ISD::LOAD: 804 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 805 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 806 return true; 807 return false; 808 } 809 return false; 810 } 811 812 SDValue AMDGPUTargetLowering::getNegatedExpression( 813 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 814 NegatibleCost &Cost, unsigned Depth) const { 815 816 switch (Op.getOpcode()) { 817 case ISD::FMA: 818 case ISD::FMAD: { 819 // Negating a fma is not free if it has users without source mods. 820 if (!allUsesHaveSourceMods(Op.getNode())) 821 return SDValue(); 822 break; 823 } 824 default: 825 break; 826 } 827 828 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 829 ForCodeSize, Cost, Depth); 830 } 831 832 //===---------------------------------------------------------------------===// 833 // Target Properties 834 //===---------------------------------------------------------------------===// 835 836 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 837 assert(VT.isFloatingPoint()); 838 839 // Packed operations do not have a fabs modifier. 840 return VT == MVT::f32 || VT == MVT::f64 || 841 (Subtarget->has16BitInsts() && VT == MVT::f16); 842 } 843 844 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 845 assert(VT.isFloatingPoint()); 846 return VT == MVT::f32 || VT == MVT::f64 || 847 (Subtarget->has16BitInsts() && VT == MVT::f16) || 848 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 849 } 850 851 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 852 unsigned NumElem, 853 unsigned AS) const { 854 return true; 855 } 856 857 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 858 // There are few operations which truly have vector input operands. Any vector 859 // operation is going to involve operations on each component, and a 860 // build_vector will be a copy per element, so it always makes sense to use a 861 // build_vector input in place of the extracted element to avoid a copy into a 862 // super register. 863 // 864 // We should probably only do this if all users are extracts only, but this 865 // should be the common case. 866 return true; 867 } 868 869 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 870 // Truncate is just accessing a subregister. 871 872 unsigned SrcSize = Source.getSizeInBits(); 873 unsigned DestSize = Dest.getSizeInBits(); 874 875 return DestSize < SrcSize && DestSize % 32 == 0 ; 876 } 877 878 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 879 // Truncate is just accessing a subregister. 880 881 unsigned SrcSize = Source->getScalarSizeInBits(); 882 unsigned DestSize = Dest->getScalarSizeInBits(); 883 884 if (DestSize== 16 && Subtarget->has16BitInsts()) 885 return SrcSize >= 32; 886 887 return DestSize < SrcSize && DestSize % 32 == 0; 888 } 889 890 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 891 unsigned SrcSize = Src->getScalarSizeInBits(); 892 unsigned DestSize = Dest->getScalarSizeInBits(); 893 894 if (SrcSize == 16 && Subtarget->has16BitInsts()) 895 return DestSize >= 32; 896 897 return SrcSize == 32 && DestSize == 64; 898 } 899 900 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 901 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 902 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 903 // this will enable reducing 64-bit operations the 32-bit, which is always 904 // good. 905 906 if (Src == MVT::i16) 907 return Dest == MVT::i32 ||Dest == MVT::i64 ; 908 909 return Src == MVT::i32 && Dest == MVT::i64; 910 } 911 912 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 913 return isZExtFree(Val.getValueType(), VT2); 914 } 915 916 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 917 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 918 // limited number of native 64-bit operations. Shrinking an operation to fit 919 // in a single 32-bit register should always be helpful. As currently used, 920 // this is much less general than the name suggests, and is only used in 921 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 922 // not profitable, and may actually be harmful. 923 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 924 } 925 926 //===---------------------------------------------------------------------===// 927 // TargetLowering Callbacks 928 //===---------------------------------------------------------------------===// 929 930 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 931 bool IsVarArg) { 932 switch (CC) { 933 case CallingConv::AMDGPU_VS: 934 case CallingConv::AMDGPU_GS: 935 case CallingConv::AMDGPU_PS: 936 case CallingConv::AMDGPU_CS: 937 case CallingConv::AMDGPU_HS: 938 case CallingConv::AMDGPU_ES: 939 case CallingConv::AMDGPU_LS: 940 return CC_AMDGPU; 941 case CallingConv::C: 942 case CallingConv::Fast: 943 case CallingConv::Cold: 944 return CC_AMDGPU_Func; 945 case CallingConv::AMDGPU_Gfx: 946 return CC_SI_Gfx; 947 case CallingConv::AMDGPU_KERNEL: 948 case CallingConv::SPIR_KERNEL: 949 default: 950 report_fatal_error("Unsupported calling convention for call"); 951 } 952 } 953 954 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 955 bool IsVarArg) { 956 switch (CC) { 957 case CallingConv::AMDGPU_KERNEL: 958 case CallingConv::SPIR_KERNEL: 959 llvm_unreachable("kernels should not be handled here"); 960 case CallingConv::AMDGPU_VS: 961 case CallingConv::AMDGPU_GS: 962 case CallingConv::AMDGPU_PS: 963 case CallingConv::AMDGPU_CS: 964 case CallingConv::AMDGPU_HS: 965 case CallingConv::AMDGPU_ES: 966 case CallingConv::AMDGPU_LS: 967 return RetCC_SI_Shader; 968 case CallingConv::AMDGPU_Gfx: 969 return RetCC_SI_Gfx; 970 case CallingConv::C: 971 case CallingConv::Fast: 972 case CallingConv::Cold: 973 return RetCC_AMDGPU_Func; 974 default: 975 report_fatal_error("Unsupported calling convention."); 976 } 977 } 978 979 /// The SelectionDAGBuilder will automatically promote function arguments 980 /// with illegal types. However, this does not work for the AMDGPU targets 981 /// since the function arguments are stored in memory as these illegal types. 982 /// In order to handle this properly we need to get the original types sizes 983 /// from the LLVM IR Function and fixup the ISD:InputArg values before 984 /// passing them to AnalyzeFormalArguments() 985 986 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 987 /// input values across multiple registers. Each item in the Ins array 988 /// represents a single value that will be stored in registers. Ins[x].VT is 989 /// the value type of the value that will be stored in the register, so 990 /// whatever SDNode we lower the argument to needs to be this type. 991 /// 992 /// In order to correctly lower the arguments we need to know the size of each 993 /// argument. Since Ins[x].VT gives us the size of the register that will 994 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 995 /// for the orignal function argument so that we can deduce the correct memory 996 /// type to use for Ins[x]. In most cases the correct memory type will be 997 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 998 /// we have a kernel argument of type v8i8, this argument will be split into 999 /// 8 parts and each part will be represented by its own item in the Ins array. 1000 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1001 /// the argument before it was split. From this, we deduce that the memory type 1002 /// for each individual part is i8. We pass the memory type as LocVT to the 1003 /// calling convention analysis function and the register type (Ins[x].VT) as 1004 /// the ValVT. 1005 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1006 CCState &State, 1007 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1008 const MachineFunction &MF = State.getMachineFunction(); 1009 const Function &Fn = MF.getFunction(); 1010 LLVMContext &Ctx = Fn.getParent()->getContext(); 1011 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1012 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1013 CallingConv::ID CC = Fn.getCallingConv(); 1014 1015 Align MaxAlign = Align(1); 1016 uint64_t ExplicitArgOffset = 0; 1017 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1018 1019 unsigned InIndex = 0; 1020 1021 for (const Argument &Arg : Fn.args()) { 1022 const bool IsByRef = Arg.hasByRefAttr(); 1023 Type *BaseArgTy = Arg.getType(); 1024 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1025 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1026 if (!Alignment) 1027 Alignment = DL.getABITypeAlign(MemArgTy); 1028 MaxAlign = max(Alignment, MaxAlign); 1029 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1030 1031 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1032 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1033 1034 // We're basically throwing away everything passed into us and starting over 1035 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1036 // to us as computed in Ins. 1037 // 1038 // We also need to figure out what type legalization is trying to do to get 1039 // the correct memory offsets. 1040 1041 SmallVector<EVT, 16> ValueVTs; 1042 SmallVector<uint64_t, 16> Offsets; 1043 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1044 1045 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1046 Value != NumValues; ++Value) { 1047 uint64_t BasePartOffset = Offsets[Value]; 1048 1049 EVT ArgVT = ValueVTs[Value]; 1050 EVT MemVT = ArgVT; 1051 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1052 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1053 1054 if (NumRegs == 1) { 1055 // This argument is not split, so the IR type is the memory type. 1056 if (ArgVT.isExtended()) { 1057 // We have an extended type, like i24, so we should just use the 1058 // register type. 1059 MemVT = RegisterVT; 1060 } else { 1061 MemVT = ArgVT; 1062 } 1063 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1064 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1065 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1066 // We have a vector value which has been split into a vector with 1067 // the same scalar type, but fewer elements. This should handle 1068 // all the floating-point vector types. 1069 MemVT = RegisterVT; 1070 } else if (ArgVT.isVector() && 1071 ArgVT.getVectorNumElements() == NumRegs) { 1072 // This arg has been split so that each element is stored in a separate 1073 // register. 1074 MemVT = ArgVT.getScalarType(); 1075 } else if (ArgVT.isExtended()) { 1076 // We have an extended type, like i65. 1077 MemVT = RegisterVT; 1078 } else { 1079 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1080 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1081 if (RegisterVT.isInteger()) { 1082 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1083 } else if (RegisterVT.isVector()) { 1084 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1085 unsigned NumElements = RegisterVT.getVectorNumElements(); 1086 assert(MemoryBits % NumElements == 0); 1087 // This vector type has been split into another vector type with 1088 // a different elements size. 1089 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1090 MemoryBits / NumElements); 1091 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1092 } else { 1093 llvm_unreachable("cannot deduce memory type."); 1094 } 1095 } 1096 1097 // Convert one element vectors to scalar. 1098 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1099 MemVT = MemVT.getScalarType(); 1100 1101 // Round up vec3/vec5 argument. 1102 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1103 assert(MemVT.getVectorNumElements() == 3 || 1104 MemVT.getVectorNumElements() == 5); 1105 MemVT = MemVT.getPow2VectorType(State.getContext()); 1106 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1107 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1108 } 1109 1110 unsigned PartOffset = 0; 1111 for (unsigned i = 0; i != NumRegs; ++i) { 1112 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1113 BasePartOffset + PartOffset, 1114 MemVT.getSimpleVT(), 1115 CCValAssign::Full)); 1116 PartOffset += MemVT.getStoreSize(); 1117 } 1118 } 1119 } 1120 } 1121 1122 SDValue AMDGPUTargetLowering::LowerReturn( 1123 SDValue Chain, CallingConv::ID CallConv, 1124 bool isVarArg, 1125 const SmallVectorImpl<ISD::OutputArg> &Outs, 1126 const SmallVectorImpl<SDValue> &OutVals, 1127 const SDLoc &DL, SelectionDAG &DAG) const { 1128 // FIXME: Fails for r600 tests 1129 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1130 // "wave terminate should not have return values"); 1131 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1132 } 1133 1134 //===---------------------------------------------------------------------===// 1135 // Target specific lowering 1136 //===---------------------------------------------------------------------===// 1137 1138 /// Selects the correct CCAssignFn for a given CallingConvention value. 1139 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1140 bool IsVarArg) { 1141 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1142 } 1143 1144 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1145 bool IsVarArg) { 1146 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1147 } 1148 1149 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1150 SelectionDAG &DAG, 1151 MachineFrameInfo &MFI, 1152 int ClobberedFI) const { 1153 SmallVector<SDValue, 8> ArgChains; 1154 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1155 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1156 1157 // Include the original chain at the beginning of the list. When this is 1158 // used by target LowerCall hooks, this helps legalize find the 1159 // CALLSEQ_BEGIN node. 1160 ArgChains.push_back(Chain); 1161 1162 // Add a chain value for each stack argument corresponding 1163 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1164 UE = DAG.getEntryNode().getNode()->use_end(); 1165 U != UE; ++U) { 1166 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1167 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1168 if (FI->getIndex() < 0) { 1169 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1170 int64_t InLastByte = InFirstByte; 1171 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1172 1173 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1174 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1175 ArgChains.push_back(SDValue(L, 1)); 1176 } 1177 } 1178 } 1179 } 1180 1181 // Build a tokenfactor for all the chains. 1182 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1183 } 1184 1185 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1186 SmallVectorImpl<SDValue> &InVals, 1187 StringRef Reason) const { 1188 SDValue Callee = CLI.Callee; 1189 SelectionDAG &DAG = CLI.DAG; 1190 1191 const Function &Fn = DAG.getMachineFunction().getFunction(); 1192 1193 StringRef FuncName("<unknown>"); 1194 1195 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1196 FuncName = G->getSymbol(); 1197 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1198 FuncName = G->getGlobal()->getName(); 1199 1200 DiagnosticInfoUnsupported NoCalls( 1201 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1202 DAG.getContext()->diagnose(NoCalls); 1203 1204 if (!CLI.IsTailCall) { 1205 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1206 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1207 } 1208 1209 return DAG.getEntryNode(); 1210 } 1211 1212 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1213 SmallVectorImpl<SDValue> &InVals) const { 1214 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1215 } 1216 1217 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1218 SelectionDAG &DAG) const { 1219 const Function &Fn = DAG.getMachineFunction().getFunction(); 1220 1221 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1222 SDLoc(Op).getDebugLoc()); 1223 DAG.getContext()->diagnose(NoDynamicAlloca); 1224 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1225 return DAG.getMergeValues(Ops, SDLoc()); 1226 } 1227 1228 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1229 SelectionDAG &DAG) const { 1230 switch (Op.getOpcode()) { 1231 default: 1232 Op->print(errs(), &DAG); 1233 llvm_unreachable("Custom lowering code for this " 1234 "instruction is not implemented yet!"); 1235 break; 1236 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1237 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1238 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1239 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1240 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1241 case ISD::FREM: return LowerFREM(Op, DAG); 1242 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1243 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1244 case ISD::FRINT: return LowerFRINT(Op, DAG); 1245 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1246 case ISD::FROUND: return LowerFROUND(Op, DAG); 1247 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1248 case ISD::FLOG: 1249 return LowerFLOG(Op, DAG, numbers::ln2f); 1250 case ISD::FLOG10: 1251 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1252 case ISD::FEXP: 1253 return lowerFEXP(Op, DAG); 1254 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1255 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1256 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1257 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1258 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1259 case ISD::CTTZ: 1260 case ISD::CTTZ_ZERO_UNDEF: 1261 case ISD::CTLZ: 1262 case ISD::CTLZ_ZERO_UNDEF: 1263 return LowerCTLZ_CTTZ(Op, DAG); 1264 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1265 } 1266 return Op; 1267 } 1268 1269 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1270 SmallVectorImpl<SDValue> &Results, 1271 SelectionDAG &DAG) const { 1272 switch (N->getOpcode()) { 1273 case ISD::SIGN_EXTEND_INREG: 1274 // Different parts of legalization seem to interpret which type of 1275 // sign_extend_inreg is the one to check for custom lowering. The extended 1276 // from type is what really matters, but some places check for custom 1277 // lowering of the result type. This results in trying to use 1278 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1279 // nothing here and let the illegal result integer be handled normally. 1280 return; 1281 default: 1282 return; 1283 } 1284 } 1285 1286 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1287 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1288 if (!GVar || !GVar->hasInitializer()) 1289 return false; 1290 1291 return !isa<UndefValue>(GVar->getInitializer()); 1292 } 1293 1294 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1295 SDValue Op, 1296 SelectionDAG &DAG) const { 1297 1298 const DataLayout &DL = DAG.getDataLayout(); 1299 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1300 const GlobalValue *GV = G->getGlobal(); 1301 1302 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1303 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1304 if (!MFI->isModuleEntryFunction()) { 1305 SDLoc DL(Op); 1306 const Function &Fn = DAG.getMachineFunction().getFunction(); 1307 DiagnosticInfoUnsupported BadLDSDecl( 1308 Fn, "local memory global used by non-kernel function", 1309 DL.getDebugLoc(), DS_Warning); 1310 DAG.getContext()->diagnose(BadLDSDecl); 1311 1312 // We currently don't have a way to correctly allocate LDS objects that 1313 // aren't directly associated with a kernel. We do force inlining of 1314 // functions that use local objects. However, if these dead functions are 1315 // not eliminated, we don't want a compile time error. Just emit a warning 1316 // and a trap, since there should be no callable path here. 1317 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1318 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1319 Trap, DAG.getRoot()); 1320 DAG.setRoot(OutputChain); 1321 return DAG.getUNDEF(Op.getValueType()); 1322 } 1323 1324 // XXX: What does the value of G->getOffset() mean? 1325 assert(G->getOffset() == 0 && 1326 "Do not know what to do with an non-zero offset"); 1327 1328 // TODO: We could emit code to handle the initialization somewhere. 1329 if (!hasDefinedInitializer(GV)) { 1330 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1331 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1332 } 1333 } 1334 1335 const Function &Fn = DAG.getMachineFunction().getFunction(); 1336 DiagnosticInfoUnsupported BadInit( 1337 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1338 DAG.getContext()->diagnose(BadInit); 1339 return SDValue(); 1340 } 1341 1342 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1343 SelectionDAG &DAG) const { 1344 SmallVector<SDValue, 8> Args; 1345 1346 EVT VT = Op.getValueType(); 1347 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1348 SDLoc SL(Op); 1349 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1350 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1351 1352 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1353 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1354 } 1355 1356 for (const SDUse &U : Op->ops()) 1357 DAG.ExtractVectorElements(U.get(), Args); 1358 1359 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1360 } 1361 1362 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1363 SelectionDAG &DAG) const { 1364 1365 SmallVector<SDValue, 8> Args; 1366 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1367 EVT VT = Op.getValueType(); 1368 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1369 VT.getVectorNumElements()); 1370 1371 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1372 } 1373 1374 /// Generate Min/Max node 1375 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1376 SDValue LHS, SDValue RHS, 1377 SDValue True, SDValue False, 1378 SDValue CC, 1379 DAGCombinerInfo &DCI) const { 1380 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1381 return SDValue(); 1382 1383 SelectionDAG &DAG = DCI.DAG; 1384 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1385 switch (CCOpcode) { 1386 case ISD::SETOEQ: 1387 case ISD::SETONE: 1388 case ISD::SETUNE: 1389 case ISD::SETNE: 1390 case ISD::SETUEQ: 1391 case ISD::SETEQ: 1392 case ISD::SETFALSE: 1393 case ISD::SETFALSE2: 1394 case ISD::SETTRUE: 1395 case ISD::SETTRUE2: 1396 case ISD::SETUO: 1397 case ISD::SETO: 1398 break; 1399 case ISD::SETULE: 1400 case ISD::SETULT: { 1401 if (LHS == True) 1402 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1403 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1404 } 1405 case ISD::SETOLE: 1406 case ISD::SETOLT: 1407 case ISD::SETLE: 1408 case ISD::SETLT: { 1409 // Ordered. Assume ordered for undefined. 1410 1411 // Only do this after legalization to avoid interfering with other combines 1412 // which might occur. 1413 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1414 !DCI.isCalledByLegalizer()) 1415 return SDValue(); 1416 1417 // We need to permute the operands to get the correct NaN behavior. The 1418 // selected operand is the second one based on the failing compare with NaN, 1419 // so permute it based on the compare type the hardware uses. 1420 if (LHS == True) 1421 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1422 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1423 } 1424 case ISD::SETUGE: 1425 case ISD::SETUGT: { 1426 if (LHS == True) 1427 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1428 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1429 } 1430 case ISD::SETGT: 1431 case ISD::SETGE: 1432 case ISD::SETOGE: 1433 case ISD::SETOGT: { 1434 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1435 !DCI.isCalledByLegalizer()) 1436 return SDValue(); 1437 1438 if (LHS == True) 1439 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1440 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1441 } 1442 case ISD::SETCC_INVALID: 1443 llvm_unreachable("Invalid setcc condcode!"); 1444 } 1445 return SDValue(); 1446 } 1447 1448 std::pair<SDValue, SDValue> 1449 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1450 SDLoc SL(Op); 1451 1452 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1453 1454 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1455 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1456 1457 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1458 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1459 1460 return std::make_pair(Lo, Hi); 1461 } 1462 1463 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1464 SDLoc SL(Op); 1465 1466 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1467 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1468 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1469 } 1470 1471 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1472 SDLoc SL(Op); 1473 1474 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1475 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1476 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1477 } 1478 1479 // Split a vector type into two parts. The first part is a power of two vector. 1480 // The second part is whatever is left over, and is a scalar if it would 1481 // otherwise be a 1-vector. 1482 std::pair<EVT, EVT> 1483 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1484 EVT LoVT, HiVT; 1485 EVT EltVT = VT.getVectorElementType(); 1486 unsigned NumElts = VT.getVectorNumElements(); 1487 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1488 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1489 HiVT = NumElts - LoNumElts == 1 1490 ? EltVT 1491 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1492 return std::make_pair(LoVT, HiVT); 1493 } 1494 1495 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1496 // scalar. 1497 std::pair<SDValue, SDValue> 1498 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1499 const EVT &LoVT, const EVT &HiVT, 1500 SelectionDAG &DAG) const { 1501 assert(LoVT.getVectorNumElements() + 1502 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1503 N.getValueType().getVectorNumElements() && 1504 "More vector elements requested than available!"); 1505 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1506 DAG.getVectorIdxConstant(0, DL)); 1507 SDValue Hi = DAG.getNode( 1508 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1509 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1510 return std::make_pair(Lo, Hi); 1511 } 1512 1513 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1514 SelectionDAG &DAG) const { 1515 LoadSDNode *Load = cast<LoadSDNode>(Op); 1516 EVT VT = Op.getValueType(); 1517 SDLoc SL(Op); 1518 1519 1520 // If this is a 2 element vector, we really want to scalarize and not create 1521 // weird 1 element vectors. 1522 if (VT.getVectorNumElements() == 2) { 1523 SDValue Ops[2]; 1524 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1525 return DAG.getMergeValues(Ops, SL); 1526 } 1527 1528 SDValue BasePtr = Load->getBasePtr(); 1529 EVT MemVT = Load->getMemoryVT(); 1530 1531 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1532 1533 EVT LoVT, HiVT; 1534 EVT LoMemVT, HiMemVT; 1535 SDValue Lo, Hi; 1536 1537 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1538 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1539 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1540 1541 unsigned Size = LoMemVT.getStoreSize(); 1542 unsigned BaseAlign = Load->getAlignment(); 1543 unsigned HiAlign = MinAlign(BaseAlign, Size); 1544 1545 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1546 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1547 BaseAlign, Load->getMemOperand()->getFlags()); 1548 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1549 SDValue HiLoad = 1550 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1551 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1552 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1553 1554 SDValue Join; 1555 if (LoVT == HiVT) { 1556 // This is the case that the vector is power of two so was evenly split. 1557 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1558 } else { 1559 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1560 DAG.getVectorIdxConstant(0, SL)); 1561 Join = DAG.getNode( 1562 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1563 VT, Join, HiLoad, 1564 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1565 } 1566 1567 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1568 LoLoad.getValue(1), HiLoad.getValue(1))}; 1569 1570 return DAG.getMergeValues(Ops, SL); 1571 } 1572 1573 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1574 SelectionDAG &DAG) const { 1575 LoadSDNode *Load = cast<LoadSDNode>(Op); 1576 EVT VT = Op.getValueType(); 1577 SDValue BasePtr = Load->getBasePtr(); 1578 EVT MemVT = Load->getMemoryVT(); 1579 SDLoc SL(Op); 1580 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1581 unsigned BaseAlign = Load->getAlignment(); 1582 unsigned NumElements = MemVT.getVectorNumElements(); 1583 1584 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1585 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1586 if (NumElements != 3 || 1587 (BaseAlign < 8 && 1588 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1589 return SplitVectorLoad(Op, DAG); 1590 1591 assert(NumElements == 3); 1592 1593 EVT WideVT = 1594 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1595 EVT WideMemVT = 1596 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1597 SDValue WideLoad = DAG.getExtLoad( 1598 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1599 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1600 return DAG.getMergeValues( 1601 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1602 DAG.getVectorIdxConstant(0, SL)), 1603 WideLoad.getValue(1)}, 1604 SL); 1605 } 1606 1607 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1608 SelectionDAG &DAG) const { 1609 StoreSDNode *Store = cast<StoreSDNode>(Op); 1610 SDValue Val = Store->getValue(); 1611 EVT VT = Val.getValueType(); 1612 1613 // If this is a 2 element vector, we really want to scalarize and not create 1614 // weird 1 element vectors. 1615 if (VT.getVectorNumElements() == 2) 1616 return scalarizeVectorStore(Store, DAG); 1617 1618 EVT MemVT = Store->getMemoryVT(); 1619 SDValue Chain = Store->getChain(); 1620 SDValue BasePtr = Store->getBasePtr(); 1621 SDLoc SL(Op); 1622 1623 EVT LoVT, HiVT; 1624 EVT LoMemVT, HiMemVT; 1625 SDValue Lo, Hi; 1626 1627 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1628 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1629 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1630 1631 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1632 1633 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1634 unsigned BaseAlign = Store->getAlignment(); 1635 unsigned Size = LoMemVT.getStoreSize(); 1636 unsigned HiAlign = MinAlign(BaseAlign, Size); 1637 1638 SDValue LoStore = 1639 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1640 Store->getMemOperand()->getFlags()); 1641 SDValue HiStore = 1642 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1643 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1644 1645 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1646 } 1647 1648 // This is a shortcut for integer division because we have fast i32<->f32 1649 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1650 // float is enough to accurately represent up to a 24-bit signed integer. 1651 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1652 bool Sign) const { 1653 SDLoc DL(Op); 1654 EVT VT = Op.getValueType(); 1655 SDValue LHS = Op.getOperand(0); 1656 SDValue RHS = Op.getOperand(1); 1657 MVT IntVT = MVT::i32; 1658 MVT FltVT = MVT::f32; 1659 1660 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1661 if (LHSSignBits < 9) 1662 return SDValue(); 1663 1664 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1665 if (RHSSignBits < 9) 1666 return SDValue(); 1667 1668 unsigned BitSize = VT.getSizeInBits(); 1669 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1670 unsigned DivBits = BitSize - SignBits; 1671 if (Sign) 1672 ++DivBits; 1673 1674 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1675 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1676 1677 SDValue jq = DAG.getConstant(1, DL, IntVT); 1678 1679 if (Sign) { 1680 // char|short jq = ia ^ ib; 1681 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1682 1683 // jq = jq >> (bitsize - 2) 1684 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1685 DAG.getConstant(BitSize - 2, DL, VT)); 1686 1687 // jq = jq | 0x1 1688 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1689 } 1690 1691 // int ia = (int)LHS; 1692 SDValue ia = LHS; 1693 1694 // int ib, (int)RHS; 1695 SDValue ib = RHS; 1696 1697 // float fa = (float)ia; 1698 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1699 1700 // float fb = (float)ib; 1701 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1702 1703 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1704 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1705 1706 // fq = trunc(fq); 1707 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1708 1709 // float fqneg = -fq; 1710 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1711 1712 MachineFunction &MF = DAG.getMachineFunction(); 1713 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1714 1715 // float fr = mad(fqneg, fb, fa); 1716 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1717 (unsigned)ISD::FMA : 1718 !MFI->getMode().allFP32Denormals() ? 1719 (unsigned)ISD::FMAD : 1720 (unsigned)AMDGPUISD::FMAD_FTZ; 1721 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1722 1723 // int iq = (int)fq; 1724 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1725 1726 // fr = fabs(fr); 1727 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1728 1729 // fb = fabs(fb); 1730 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1731 1732 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1733 1734 // int cv = fr >= fb; 1735 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1736 1737 // jq = (cv ? jq : 0); 1738 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1739 1740 // dst = iq + jq; 1741 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1742 1743 // Rem needs compensation, it's easier to recompute it 1744 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1745 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1746 1747 // Truncate to number of bits this divide really is. 1748 if (Sign) { 1749 SDValue InRegSize 1750 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1751 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1752 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1753 } else { 1754 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1755 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1756 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1757 } 1758 1759 return DAG.getMergeValues({ Div, Rem }, DL); 1760 } 1761 1762 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1763 SelectionDAG &DAG, 1764 SmallVectorImpl<SDValue> &Results) const { 1765 SDLoc DL(Op); 1766 EVT VT = Op.getValueType(); 1767 1768 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1769 1770 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1771 1772 SDValue One = DAG.getConstant(1, DL, HalfVT); 1773 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1774 1775 //HiLo split 1776 SDValue LHS = Op.getOperand(0); 1777 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1778 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1779 1780 SDValue RHS = Op.getOperand(1); 1781 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1782 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1783 1784 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1785 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1786 1787 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1788 LHS_Lo, RHS_Lo); 1789 1790 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1791 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1792 1793 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1794 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1795 return; 1796 } 1797 1798 if (isTypeLegal(MVT::i64)) { 1799 MachineFunction &MF = DAG.getMachineFunction(); 1800 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1801 1802 // Compute denominator reciprocal. 1803 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1804 (unsigned)ISD::FMA : 1805 !MFI->getMode().allFP32Denormals() ? 1806 (unsigned)ISD::FMAD : 1807 (unsigned)AMDGPUISD::FMAD_FTZ; 1808 1809 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1810 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1811 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1812 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1813 Cvt_Lo); 1814 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1815 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1816 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1817 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1818 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1819 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1820 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1821 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1822 Mul1); 1823 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1824 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1825 SDValue Rcp64 = DAG.getBitcast(VT, 1826 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1827 1828 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1829 SDValue One64 = DAG.getConstant(1, DL, VT); 1830 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1831 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1832 1833 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1834 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1835 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1836 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1837 Zero); 1838 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1839 One); 1840 1841 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1842 Mulhi1_Lo, Zero1); 1843 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1844 Mulhi1_Hi, Add1_Lo.getValue(1)); 1845 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1846 SDValue Add1 = DAG.getBitcast(VT, 1847 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1848 1849 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1850 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1851 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1852 Zero); 1853 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1854 One); 1855 1856 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1857 Mulhi2_Lo, Zero1); 1858 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1859 Mulhi2_Hi, Add1_Lo.getValue(1)); 1860 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1861 Zero, Add2_Lo.getValue(1)); 1862 SDValue Add2 = DAG.getBitcast(VT, 1863 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1864 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1865 1866 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1867 1868 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1869 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1870 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1871 Mul3_Lo, Zero1); 1872 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1873 Mul3_Hi, Sub1_Lo.getValue(1)); 1874 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1875 SDValue Sub1 = DAG.getBitcast(VT, 1876 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1877 1878 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1879 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1880 ISD::SETUGE); 1881 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1882 ISD::SETUGE); 1883 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1884 1885 // TODO: Here and below portions of the code can be enclosed into if/endif. 1886 // Currently control flow is unconditional and we have 4 selects after 1887 // potential endif to substitute PHIs. 1888 1889 // if C3 != 0 ... 1890 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1891 RHS_Lo, Zero1); 1892 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1893 RHS_Hi, Sub1_Lo.getValue(1)); 1894 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1895 Zero, Sub2_Lo.getValue(1)); 1896 SDValue Sub2 = DAG.getBitcast(VT, 1897 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1898 1899 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1900 1901 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1902 ISD::SETUGE); 1903 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1904 ISD::SETUGE); 1905 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1906 1907 // if (C6 != 0) 1908 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1909 1910 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1911 RHS_Lo, Zero1); 1912 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1913 RHS_Hi, Sub2_Lo.getValue(1)); 1914 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1915 Zero, Sub3_Lo.getValue(1)); 1916 SDValue Sub3 = DAG.getBitcast(VT, 1917 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1918 1919 // endif C6 1920 // endif C3 1921 1922 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1923 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1924 1925 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1926 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1927 1928 Results.push_back(Div); 1929 Results.push_back(Rem); 1930 1931 return; 1932 } 1933 1934 // r600 expandion. 1935 // Get Speculative values 1936 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1937 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1938 1939 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1940 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1941 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1942 1943 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1944 SDValue DIV_Lo = Zero; 1945 1946 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1947 1948 for (unsigned i = 0; i < halfBitWidth; ++i) { 1949 const unsigned bitPos = halfBitWidth - i - 1; 1950 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1951 // Get value of high bit 1952 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1953 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1954 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1955 1956 // Shift 1957 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1958 // Add LHS high bit 1959 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1960 1961 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1962 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1963 1964 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1965 1966 // Update REM 1967 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1968 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1969 } 1970 1971 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1972 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1973 Results.push_back(DIV); 1974 Results.push_back(REM); 1975 } 1976 1977 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1978 SelectionDAG &DAG) const { 1979 SDLoc DL(Op); 1980 EVT VT = Op.getValueType(); 1981 1982 if (VT == MVT::i64) { 1983 SmallVector<SDValue, 2> Results; 1984 LowerUDIVREM64(Op, DAG, Results); 1985 return DAG.getMergeValues(Results, DL); 1986 } 1987 1988 if (VT == MVT::i32) { 1989 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1990 return Res; 1991 } 1992 1993 SDValue X = Op.getOperand(0); 1994 SDValue Y = Op.getOperand(1); 1995 1996 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 1997 // algorithm used here. 1998 1999 // Initial estimate of inv(y). 2000 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2001 2002 // One round of UNR. 2003 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2004 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2005 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2006 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2007 2008 // Quotient/remainder estimate. 2009 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2010 SDValue R = 2011 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2012 2013 // First quotient/remainder refinement. 2014 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2015 SDValue One = DAG.getConstant(1, DL, VT); 2016 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2017 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2018 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2019 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2020 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2021 2022 // Second quotient/remainder refinement. 2023 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2024 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2025 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2026 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2027 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2028 2029 return DAG.getMergeValues({Q, R}, DL); 2030 } 2031 2032 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2033 SelectionDAG &DAG) const { 2034 SDLoc DL(Op); 2035 EVT VT = Op.getValueType(); 2036 2037 SDValue LHS = Op.getOperand(0); 2038 SDValue RHS = Op.getOperand(1); 2039 2040 SDValue Zero = DAG.getConstant(0, DL, VT); 2041 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2042 2043 if (VT == MVT::i32) { 2044 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2045 return Res; 2046 } 2047 2048 if (VT == MVT::i64 && 2049 DAG.ComputeNumSignBits(LHS) > 32 && 2050 DAG.ComputeNumSignBits(RHS) > 32) { 2051 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2052 2053 //HiLo split 2054 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2055 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2056 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2057 LHS_Lo, RHS_Lo); 2058 SDValue Res[2] = { 2059 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2060 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2061 }; 2062 return DAG.getMergeValues(Res, DL); 2063 } 2064 2065 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2066 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2067 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2068 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2069 2070 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2071 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2072 2073 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2074 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2075 2076 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2077 SDValue Rem = Div.getValue(1); 2078 2079 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2080 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2081 2082 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2083 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2084 2085 SDValue Res[2] = { 2086 Div, 2087 Rem 2088 }; 2089 return DAG.getMergeValues(Res, DL); 2090 } 2091 2092 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2093 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2094 SDLoc SL(Op); 2095 EVT VT = Op.getValueType(); 2096 auto Flags = Op->getFlags(); 2097 SDValue X = Op.getOperand(0); 2098 SDValue Y = Op.getOperand(1); 2099 2100 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2101 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2102 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2103 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2104 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2105 } 2106 2107 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2108 SDLoc SL(Op); 2109 SDValue Src = Op.getOperand(0); 2110 2111 // result = trunc(src) 2112 // if (src > 0.0 && src != result) 2113 // result += 1.0 2114 2115 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2116 2117 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2118 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2119 2120 EVT SetCCVT = 2121 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2122 2123 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2124 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2125 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2126 2127 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2128 // TODO: Should this propagate fast-math-flags? 2129 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2130 } 2131 2132 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2133 SelectionDAG &DAG) { 2134 const unsigned FractBits = 52; 2135 const unsigned ExpBits = 11; 2136 2137 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2138 Hi, 2139 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2140 DAG.getConstant(ExpBits, SL, MVT::i32)); 2141 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2142 DAG.getConstant(1023, SL, MVT::i32)); 2143 2144 return Exp; 2145 } 2146 2147 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2148 SDLoc SL(Op); 2149 SDValue Src = Op.getOperand(0); 2150 2151 assert(Op.getValueType() == MVT::f64); 2152 2153 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2154 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2155 2156 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2157 2158 // Extract the upper half, since this is where we will find the sign and 2159 // exponent. 2160 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2161 2162 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2163 2164 const unsigned FractBits = 52; 2165 2166 // Extract the sign bit. 2167 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2168 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2169 2170 // Extend back to 64-bits. 2171 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2172 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2173 2174 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2175 const SDValue FractMask 2176 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2177 2178 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2179 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2180 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2181 2182 EVT SetCCVT = 2183 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2184 2185 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2186 2187 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2188 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2189 2190 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2191 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2192 2193 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2194 } 2195 2196 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2197 SDLoc SL(Op); 2198 SDValue Src = Op.getOperand(0); 2199 2200 assert(Op.getValueType() == MVT::f64); 2201 2202 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2203 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2204 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2205 2206 // TODO: Should this propagate fast-math-flags? 2207 2208 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2209 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2210 2211 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2212 2213 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2214 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2215 2216 EVT SetCCVT = 2217 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2218 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2219 2220 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2221 } 2222 2223 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2224 // FNEARBYINT and FRINT are the same, except in their handling of FP 2225 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2226 // rint, so just treat them as equivalent. 2227 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2228 } 2229 2230 // XXX - May require not supporting f32 denormals? 2231 2232 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2233 // compare and vselect end up producing worse code than scalarizing the whole 2234 // operation. 2235 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2236 SDLoc SL(Op); 2237 SDValue X = Op.getOperand(0); 2238 EVT VT = Op.getValueType(); 2239 2240 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2241 2242 // TODO: Should this propagate fast-math-flags? 2243 2244 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2245 2246 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2247 2248 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2249 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2250 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2251 2252 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2253 2254 EVT SetCCVT = 2255 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2256 2257 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2258 2259 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2260 2261 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2262 } 2263 2264 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2265 SDLoc SL(Op); 2266 SDValue Src = Op.getOperand(0); 2267 2268 // result = trunc(src); 2269 // if (src < 0.0 && src != result) 2270 // result += -1.0. 2271 2272 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2273 2274 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2275 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2276 2277 EVT SetCCVT = 2278 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2279 2280 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2281 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2282 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2283 2284 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2285 // TODO: Should this propagate fast-math-flags? 2286 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2287 } 2288 2289 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2290 double Log2BaseInverted) const { 2291 EVT VT = Op.getValueType(); 2292 2293 SDLoc SL(Op); 2294 SDValue Operand = Op.getOperand(0); 2295 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2296 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2297 2298 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2299 } 2300 2301 // exp2(M_LOG2E_F * f); 2302 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2303 EVT VT = Op.getValueType(); 2304 SDLoc SL(Op); 2305 SDValue Src = Op.getOperand(0); 2306 2307 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2308 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2309 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2310 } 2311 2312 static bool isCtlzOpc(unsigned Opc) { 2313 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2314 } 2315 2316 static bool isCttzOpc(unsigned Opc) { 2317 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2318 } 2319 2320 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2321 SDLoc SL(Op); 2322 SDValue Src = Op.getOperand(0); 2323 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2324 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2325 2326 unsigned ISDOpc, NewOpc; 2327 if (isCtlzOpc(Op.getOpcode())) { 2328 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2329 NewOpc = AMDGPUISD::FFBH_U32; 2330 } else if (isCttzOpc(Op.getOpcode())) { 2331 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2332 NewOpc = AMDGPUISD::FFBL_B32; 2333 } else 2334 llvm_unreachable("Unexpected OPCode!!!"); 2335 2336 2337 if (ZeroUndef && Src.getValueType() == MVT::i32) 2338 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2339 2340 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2341 2342 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2343 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2344 2345 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2346 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2347 2348 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2349 *DAG.getContext(), MVT::i32); 2350 2351 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2352 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2353 2354 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2355 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2356 2357 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2358 SDValue Add, NewOpr; 2359 if (isCtlzOpc(Op.getOpcode())) { 2360 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2361 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2362 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2363 } else { 2364 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2365 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2366 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2367 } 2368 2369 if (!ZeroUndef) { 2370 // Test if the full 64-bit input is zero. 2371 2372 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2373 // which we probably don't want. 2374 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2375 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2376 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2377 2378 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2379 // with the same cycles, otherwise it is slower. 2380 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2381 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2382 2383 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2384 2385 // The instruction returns -1 for 0 input, but the defined intrinsic 2386 // behavior is to return the number of bits. 2387 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2388 SrcIsZero, Bits32, NewOpr); 2389 } 2390 2391 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2392 } 2393 2394 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2395 bool Signed) const { 2396 // Unsigned 2397 // cul2f(ulong u) 2398 //{ 2399 // uint lz = clz(u); 2400 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2401 // u = (u << lz) & 0x7fffffffffffffffUL; 2402 // ulong t = u & 0xffffffffffUL; 2403 // uint v = (e << 23) | (uint)(u >> 40); 2404 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2405 // return as_float(v + r); 2406 //} 2407 // Signed 2408 // cl2f(long l) 2409 //{ 2410 // long s = l >> 63; 2411 // float r = cul2f((l + s) ^ s); 2412 // return s ? -r : r; 2413 //} 2414 2415 SDLoc SL(Op); 2416 SDValue Src = Op.getOperand(0); 2417 SDValue L = Src; 2418 2419 SDValue S; 2420 if (Signed) { 2421 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2422 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2423 2424 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2425 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2426 } 2427 2428 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2429 *DAG.getContext(), MVT::f32); 2430 2431 2432 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2433 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2434 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2435 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2436 2437 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2438 SDValue E = DAG.getSelect(SL, MVT::i32, 2439 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2440 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2441 ZeroI32); 2442 2443 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2444 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2445 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2446 2447 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2448 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2449 2450 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2451 U, DAG.getConstant(40, SL, MVT::i64)); 2452 2453 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2454 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2455 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2456 2457 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2458 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2459 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2460 2461 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2462 2463 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2464 2465 SDValue R = DAG.getSelect(SL, MVT::i32, 2466 RCmp, 2467 One, 2468 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2469 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2470 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2471 2472 if (!Signed) 2473 return R; 2474 2475 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2476 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2477 } 2478 2479 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2480 bool Signed) const { 2481 SDLoc SL(Op); 2482 SDValue Src = Op.getOperand(0); 2483 2484 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2485 2486 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2487 DAG.getConstant(0, SL, MVT::i32)); 2488 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2489 DAG.getConstant(1, SL, MVT::i32)); 2490 2491 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2492 SL, MVT::f64, Hi); 2493 2494 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2495 2496 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2497 DAG.getConstant(32, SL, MVT::i32)); 2498 // TODO: Should this propagate fast-math-flags? 2499 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2500 } 2501 2502 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2503 SelectionDAG &DAG) const { 2504 // TODO: Factor out code common with LowerSINT_TO_FP. 2505 EVT DestVT = Op.getValueType(); 2506 SDValue Src = Op.getOperand(0); 2507 EVT SrcVT = Src.getValueType(); 2508 2509 if (SrcVT == MVT::i16) { 2510 if (DestVT == MVT::f16) 2511 return Op; 2512 SDLoc DL(Op); 2513 2514 // Promote src to i32 2515 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2516 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2517 } 2518 2519 assert(SrcVT == MVT::i64 && "operation should be legal"); 2520 2521 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2522 SDLoc DL(Op); 2523 2524 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2525 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2526 SDValue FPRound = 2527 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2528 2529 return FPRound; 2530 } 2531 2532 if (DestVT == MVT::f32) 2533 return LowerINT_TO_FP32(Op, DAG, false); 2534 2535 assert(DestVT == MVT::f64); 2536 return LowerINT_TO_FP64(Op, DAG, false); 2537 } 2538 2539 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2540 SelectionDAG &DAG) const { 2541 EVT DestVT = Op.getValueType(); 2542 2543 SDValue Src = Op.getOperand(0); 2544 EVT SrcVT = Src.getValueType(); 2545 2546 if (SrcVT == MVT::i16) { 2547 if (DestVT == MVT::f16) 2548 return Op; 2549 2550 SDLoc DL(Op); 2551 // Promote src to i32 2552 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2553 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2554 } 2555 2556 assert(SrcVT == MVT::i64 && "operation should be legal"); 2557 2558 // TODO: Factor out code common with LowerUINT_TO_FP. 2559 2560 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2561 SDLoc DL(Op); 2562 SDValue Src = Op.getOperand(0); 2563 2564 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2565 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2566 SDValue FPRound = 2567 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2568 2569 return FPRound; 2570 } 2571 2572 if (DestVT == MVT::f32) 2573 return LowerINT_TO_FP32(Op, DAG, true); 2574 2575 assert(DestVT == MVT::f64); 2576 return LowerINT_TO_FP64(Op, DAG, true); 2577 } 2578 2579 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2580 bool Signed) const { 2581 SDLoc SL(Op); 2582 2583 SDValue Src = Op.getOperand(0); 2584 2585 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2586 2587 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2588 MVT::f64); 2589 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2590 MVT::f64); 2591 // TODO: Should this propagate fast-math-flags? 2592 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2593 2594 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2595 2596 2597 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2598 2599 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2600 MVT::i32, FloorMul); 2601 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2602 2603 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2604 2605 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2606 } 2607 2608 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2609 SDLoc DL(Op); 2610 SDValue N0 = Op.getOperand(0); 2611 2612 // Convert to target node to get known bits 2613 if (N0.getValueType() == MVT::f32) 2614 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2615 2616 if (getTargetMachine().Options.UnsafeFPMath) { 2617 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2618 return SDValue(); 2619 } 2620 2621 assert(N0.getSimpleValueType() == MVT::f64); 2622 2623 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2624 const unsigned ExpMask = 0x7ff; 2625 const unsigned ExpBiasf64 = 1023; 2626 const unsigned ExpBiasf16 = 15; 2627 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2628 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2629 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2630 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2631 DAG.getConstant(32, DL, MVT::i64)); 2632 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2633 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2634 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2635 DAG.getConstant(20, DL, MVT::i64)); 2636 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2637 DAG.getConstant(ExpMask, DL, MVT::i32)); 2638 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2639 // add the f16 bias (15) to get the biased exponent for the f16 format. 2640 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2641 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2642 2643 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2644 DAG.getConstant(8, DL, MVT::i32)); 2645 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2646 DAG.getConstant(0xffe, DL, MVT::i32)); 2647 2648 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2649 DAG.getConstant(0x1ff, DL, MVT::i32)); 2650 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2651 2652 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2653 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2654 2655 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2656 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2657 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2658 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2659 2660 // N = M | (E << 12); 2661 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2662 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2663 DAG.getConstant(12, DL, MVT::i32))); 2664 2665 // B = clamp(1-E, 0, 13); 2666 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2667 One, E); 2668 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2669 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2670 DAG.getConstant(13, DL, MVT::i32)); 2671 2672 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2673 DAG.getConstant(0x1000, DL, MVT::i32)); 2674 2675 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2676 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2677 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2678 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2679 2680 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2681 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2682 DAG.getConstant(0x7, DL, MVT::i32)); 2683 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2684 DAG.getConstant(2, DL, MVT::i32)); 2685 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2686 One, Zero, ISD::SETEQ); 2687 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2688 One, Zero, ISD::SETGT); 2689 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2690 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2691 2692 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2693 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2694 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2695 I, V, ISD::SETEQ); 2696 2697 // Extract the sign bit. 2698 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2699 DAG.getConstant(16, DL, MVT::i32)); 2700 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2701 DAG.getConstant(0x8000, DL, MVT::i32)); 2702 2703 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2704 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2705 } 2706 2707 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2708 SelectionDAG &DAG) const { 2709 SDValue Src = Op.getOperand(0); 2710 2711 // TODO: Factor out code common with LowerFP_TO_UINT. 2712 2713 EVT SrcVT = Src.getValueType(); 2714 if (SrcVT == MVT::f16 || 2715 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2716 SDLoc DL(Op); 2717 2718 SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2719 return DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, FpToInt32); 2720 } 2721 2722 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2723 return LowerFP64_TO_INT(Op, DAG, true); 2724 2725 return SDValue(); 2726 } 2727 2728 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2729 SelectionDAG &DAG) const { 2730 SDValue Src = Op.getOperand(0); 2731 2732 // TODO: Factor out code common with LowerFP_TO_SINT. 2733 2734 EVT SrcVT = Src.getValueType(); 2735 if (SrcVT == MVT::f16 || 2736 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2737 SDLoc DL(Op); 2738 2739 SDValue FpToUInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2740 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, FpToUInt32); 2741 } 2742 2743 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2744 return LowerFP64_TO_INT(Op, DAG, false); 2745 2746 return SDValue(); 2747 } 2748 2749 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2750 SelectionDAG &DAG) const { 2751 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2752 MVT VT = Op.getSimpleValueType(); 2753 MVT ScalarVT = VT.getScalarType(); 2754 2755 assert(VT.isVector()); 2756 2757 SDValue Src = Op.getOperand(0); 2758 SDLoc DL(Op); 2759 2760 // TODO: Don't scalarize on Evergreen? 2761 unsigned NElts = VT.getVectorNumElements(); 2762 SmallVector<SDValue, 8> Args; 2763 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2764 2765 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2766 for (unsigned I = 0; I < NElts; ++I) 2767 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2768 2769 return DAG.getBuildVector(VT, DL, Args); 2770 } 2771 2772 //===----------------------------------------------------------------------===// 2773 // Custom DAG optimizations 2774 //===----------------------------------------------------------------------===// 2775 2776 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2777 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2778 } 2779 2780 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2781 EVT VT = Op.getValueType(); 2782 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2783 // as unsigned 24-bit values. 2784 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2785 } 2786 2787 static SDValue simplifyI24(SDNode *Node24, 2788 TargetLowering::DAGCombinerInfo &DCI) { 2789 SelectionDAG &DAG = DCI.DAG; 2790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2791 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2792 2793 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2794 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2795 unsigned NewOpcode = Node24->getOpcode(); 2796 if (IsIntrin) { 2797 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2798 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2799 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2800 } 2801 2802 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2803 2804 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2805 // the operands to have other uses, but will only perform simplifications that 2806 // involve bypassing some nodes for this user. 2807 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2808 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2809 if (DemandedLHS || DemandedRHS) 2810 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2811 DemandedLHS ? DemandedLHS : LHS, 2812 DemandedRHS ? DemandedRHS : RHS); 2813 2814 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2815 // operands if this node is the only user. 2816 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2817 return SDValue(Node24, 0); 2818 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2819 return SDValue(Node24, 0); 2820 2821 return SDValue(); 2822 } 2823 2824 template <typename IntTy> 2825 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2826 uint32_t Width, const SDLoc &DL) { 2827 if (Width + Offset < 32) { 2828 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2829 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2830 return DAG.getConstant(Result, DL, MVT::i32); 2831 } 2832 2833 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2834 } 2835 2836 static bool hasVolatileUser(SDNode *Val) { 2837 for (SDNode *U : Val->uses()) { 2838 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2839 if (M->isVolatile()) 2840 return true; 2841 } 2842 } 2843 2844 return false; 2845 } 2846 2847 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2848 // i32 vectors are the canonical memory type. 2849 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2850 return false; 2851 2852 if (!VT.isByteSized()) 2853 return false; 2854 2855 unsigned Size = VT.getStoreSize(); 2856 2857 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2858 return false; 2859 2860 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2861 return false; 2862 2863 return true; 2864 } 2865 2866 // Replace load of an illegal type with a store of a bitcast to a friendlier 2867 // type. 2868 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2869 DAGCombinerInfo &DCI) const { 2870 if (!DCI.isBeforeLegalize()) 2871 return SDValue(); 2872 2873 LoadSDNode *LN = cast<LoadSDNode>(N); 2874 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2875 return SDValue(); 2876 2877 SDLoc SL(N); 2878 SelectionDAG &DAG = DCI.DAG; 2879 EVT VT = LN->getMemoryVT(); 2880 2881 unsigned Size = VT.getStoreSize(); 2882 Align Alignment = LN->getAlign(); 2883 if (Alignment < Size && isTypeLegal(VT)) { 2884 bool IsFast; 2885 unsigned AS = LN->getAddressSpace(); 2886 2887 // Expand unaligned loads earlier than legalization. Due to visitation order 2888 // problems during legalization, the emitted instructions to pack and unpack 2889 // the bytes again are not eliminated in the case of an unaligned copy. 2890 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2891 LN->getMemOperand()->getFlags(), 2892 &IsFast)) { 2893 SDValue Ops[2]; 2894 2895 if (VT.isVector()) 2896 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2897 else 2898 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2899 2900 return DAG.getMergeValues(Ops, SDLoc(N)); 2901 } 2902 2903 if (!IsFast) 2904 return SDValue(); 2905 } 2906 2907 if (!shouldCombineMemoryType(VT)) 2908 return SDValue(); 2909 2910 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2911 2912 SDValue NewLoad 2913 = DAG.getLoad(NewVT, SL, LN->getChain(), 2914 LN->getBasePtr(), LN->getMemOperand()); 2915 2916 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2917 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2918 return SDValue(N, 0); 2919 } 2920 2921 // Replace store of an illegal type with a store of a bitcast to a friendlier 2922 // type. 2923 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2924 DAGCombinerInfo &DCI) const { 2925 if (!DCI.isBeforeLegalize()) 2926 return SDValue(); 2927 2928 StoreSDNode *SN = cast<StoreSDNode>(N); 2929 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2930 return SDValue(); 2931 2932 EVT VT = SN->getMemoryVT(); 2933 unsigned Size = VT.getStoreSize(); 2934 2935 SDLoc SL(N); 2936 SelectionDAG &DAG = DCI.DAG; 2937 Align Alignment = SN->getAlign(); 2938 if (Alignment < Size && isTypeLegal(VT)) { 2939 bool IsFast; 2940 unsigned AS = SN->getAddressSpace(); 2941 2942 // Expand unaligned stores earlier than legalization. Due to visitation 2943 // order problems during legalization, the emitted instructions to pack and 2944 // unpack the bytes again are not eliminated in the case of an unaligned 2945 // copy. 2946 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2947 SN->getMemOperand()->getFlags(), 2948 &IsFast)) { 2949 if (VT.isVector()) 2950 return scalarizeVectorStore(SN, DAG); 2951 2952 return expandUnalignedStore(SN, DAG); 2953 } 2954 2955 if (!IsFast) 2956 return SDValue(); 2957 } 2958 2959 if (!shouldCombineMemoryType(VT)) 2960 return SDValue(); 2961 2962 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2963 SDValue Val = SN->getValue(); 2964 2965 //DCI.AddToWorklist(Val.getNode()); 2966 2967 bool OtherUses = !Val.hasOneUse(); 2968 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2969 if (OtherUses) { 2970 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2971 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2972 } 2973 2974 return DAG.getStore(SN->getChain(), SL, CastVal, 2975 SN->getBasePtr(), SN->getMemOperand()); 2976 } 2977 2978 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2979 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2980 // issues. 2981 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2982 DAGCombinerInfo &DCI) const { 2983 SelectionDAG &DAG = DCI.DAG; 2984 SDValue N0 = N->getOperand(0); 2985 2986 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2987 // (vt2 (truncate (assertzext vt0:x, vt1))) 2988 if (N0.getOpcode() == ISD::TRUNCATE) { 2989 SDValue N1 = N->getOperand(1); 2990 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2991 SDLoc SL(N); 2992 2993 SDValue Src = N0.getOperand(0); 2994 EVT SrcVT = Src.getValueType(); 2995 if (SrcVT.bitsGE(ExtVT)) { 2996 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2997 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2998 } 2999 } 3000 3001 return SDValue(); 3002 } 3003 3004 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3005 SDNode *N, DAGCombinerInfo &DCI) const { 3006 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3007 switch (IID) { 3008 case Intrinsic::amdgcn_mul_i24: 3009 case Intrinsic::amdgcn_mul_u24: 3010 return simplifyI24(N, DCI); 3011 case Intrinsic::amdgcn_fract: 3012 case Intrinsic::amdgcn_rsq: 3013 case Intrinsic::amdgcn_rcp_legacy: 3014 case Intrinsic::amdgcn_rsq_legacy: 3015 case Intrinsic::amdgcn_rsq_clamp: 3016 case Intrinsic::amdgcn_ldexp: { 3017 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3018 SDValue Src = N->getOperand(1); 3019 return Src.isUndef() ? Src : SDValue(); 3020 } 3021 default: 3022 return SDValue(); 3023 } 3024 } 3025 3026 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3027 /// binary operation \p Opc to it with the corresponding constant operands. 3028 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3029 DAGCombinerInfo &DCI, const SDLoc &SL, 3030 unsigned Opc, SDValue LHS, 3031 uint32_t ValLo, uint32_t ValHi) const { 3032 SelectionDAG &DAG = DCI.DAG; 3033 SDValue Lo, Hi; 3034 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3035 3036 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3037 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3038 3039 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3040 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3041 3042 // Re-visit the ands. It's possible we eliminated one of them and it could 3043 // simplify the vector. 3044 DCI.AddToWorklist(Lo.getNode()); 3045 DCI.AddToWorklist(Hi.getNode()); 3046 3047 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3048 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3049 } 3050 3051 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3052 DAGCombinerInfo &DCI) const { 3053 EVT VT = N->getValueType(0); 3054 3055 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3056 if (!RHS) 3057 return SDValue(); 3058 3059 SDValue LHS = N->getOperand(0); 3060 unsigned RHSVal = RHS->getZExtValue(); 3061 if (!RHSVal) 3062 return LHS; 3063 3064 SDLoc SL(N); 3065 SelectionDAG &DAG = DCI.DAG; 3066 3067 switch (LHS->getOpcode()) { 3068 default: 3069 break; 3070 case ISD::ZERO_EXTEND: 3071 case ISD::SIGN_EXTEND: 3072 case ISD::ANY_EXTEND: { 3073 SDValue X = LHS->getOperand(0); 3074 3075 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3076 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3077 // Prefer build_vector as the canonical form if packed types are legal. 3078 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3079 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3080 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3081 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3082 } 3083 3084 // shl (ext x) => zext (shl x), if shift does not overflow int 3085 if (VT != MVT::i64) 3086 break; 3087 KnownBits Known = DAG.computeKnownBits(X); 3088 unsigned LZ = Known.countMinLeadingZeros(); 3089 if (LZ < RHSVal) 3090 break; 3091 EVT XVT = X.getValueType(); 3092 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3093 return DAG.getZExtOrTrunc(Shl, SL, VT); 3094 } 3095 } 3096 3097 if (VT != MVT::i64) 3098 return SDValue(); 3099 3100 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3101 3102 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3103 // common case, splitting this into a move and a 32-bit shift is faster and 3104 // the same code size. 3105 if (RHSVal < 32) 3106 return SDValue(); 3107 3108 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3109 3110 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3111 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3112 3113 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3114 3115 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3116 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3117 } 3118 3119 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3120 DAGCombinerInfo &DCI) const { 3121 if (N->getValueType(0) != MVT::i64) 3122 return SDValue(); 3123 3124 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3125 if (!RHS) 3126 return SDValue(); 3127 3128 SelectionDAG &DAG = DCI.DAG; 3129 SDLoc SL(N); 3130 unsigned RHSVal = RHS->getZExtValue(); 3131 3132 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3133 if (RHSVal == 32) { 3134 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3135 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3136 DAG.getConstant(31, SL, MVT::i32)); 3137 3138 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3139 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3140 } 3141 3142 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3143 if (RHSVal == 63) { 3144 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3145 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3146 DAG.getConstant(31, SL, MVT::i32)); 3147 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3148 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3149 } 3150 3151 return SDValue(); 3152 } 3153 3154 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3155 DAGCombinerInfo &DCI) const { 3156 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3157 if (!RHS) 3158 return SDValue(); 3159 3160 EVT VT = N->getValueType(0); 3161 SDValue LHS = N->getOperand(0); 3162 unsigned ShiftAmt = RHS->getZExtValue(); 3163 SelectionDAG &DAG = DCI.DAG; 3164 SDLoc SL(N); 3165 3166 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3167 // this improves the ability to match BFE patterns in isel. 3168 if (LHS.getOpcode() == ISD::AND) { 3169 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3170 if (Mask->getAPIntValue().isShiftedMask() && 3171 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3172 return DAG.getNode( 3173 ISD::AND, SL, VT, 3174 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3175 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3176 } 3177 } 3178 } 3179 3180 if (VT != MVT::i64) 3181 return SDValue(); 3182 3183 if (ShiftAmt < 32) 3184 return SDValue(); 3185 3186 // srl i64:x, C for C >= 32 3187 // => 3188 // build_pair (srl hi_32(x), C - 32), 0 3189 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3190 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3191 3192 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3193 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3194 3195 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3196 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3197 3198 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3199 3200 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3201 } 3202 3203 SDValue AMDGPUTargetLowering::performTruncateCombine( 3204 SDNode *N, DAGCombinerInfo &DCI) const { 3205 SDLoc SL(N); 3206 SelectionDAG &DAG = DCI.DAG; 3207 EVT VT = N->getValueType(0); 3208 SDValue Src = N->getOperand(0); 3209 3210 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3211 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3212 SDValue Vec = Src.getOperand(0); 3213 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3214 SDValue Elt0 = Vec.getOperand(0); 3215 EVT EltVT = Elt0.getValueType(); 3216 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3217 if (EltVT.isFloatingPoint()) { 3218 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3219 EltVT.changeTypeToInteger(), Elt0); 3220 } 3221 3222 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3223 } 3224 } 3225 } 3226 3227 // Equivalent of above for accessing the high element of a vector as an 3228 // integer operation. 3229 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3230 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3231 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3232 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3233 SDValue BV = stripBitcast(Src.getOperand(0)); 3234 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3235 BV.getValueType().getVectorNumElements() == 2) { 3236 SDValue SrcElt = BV.getOperand(1); 3237 EVT SrcEltVT = SrcElt.getValueType(); 3238 if (SrcEltVT.isFloatingPoint()) { 3239 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3240 SrcEltVT.changeTypeToInteger(), SrcElt); 3241 } 3242 3243 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3244 } 3245 } 3246 } 3247 } 3248 3249 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3250 // 3251 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3252 // i16 (trunc (srl (i32 (trunc x), K))) 3253 if (VT.getScalarSizeInBits() < 32) { 3254 EVT SrcVT = Src.getValueType(); 3255 if (SrcVT.getScalarSizeInBits() > 32 && 3256 (Src.getOpcode() == ISD::SRL || 3257 Src.getOpcode() == ISD::SRA || 3258 Src.getOpcode() == ISD::SHL)) { 3259 SDValue Amt = Src.getOperand(1); 3260 KnownBits Known = DAG.computeKnownBits(Amt); 3261 unsigned Size = VT.getScalarSizeInBits(); 3262 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3263 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3264 EVT MidVT = VT.isVector() ? 3265 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3266 VT.getVectorNumElements()) : MVT::i32; 3267 3268 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3269 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3270 Src.getOperand(0)); 3271 DCI.AddToWorklist(Trunc.getNode()); 3272 3273 if (Amt.getValueType() != NewShiftVT) { 3274 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3275 DCI.AddToWorklist(Amt.getNode()); 3276 } 3277 3278 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3279 Trunc, Amt); 3280 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3281 } 3282 } 3283 } 3284 3285 return SDValue(); 3286 } 3287 3288 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3289 // instructions. If we only match on the legalized i64 mul expansion, 3290 // SimplifyDemandedBits will be unable to remove them because there will be 3291 // multiple uses due to the separate mul + mulh[su]. 3292 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3293 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3294 if (Size <= 32) { 3295 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3296 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3297 } 3298 3299 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3300 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3301 3302 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3303 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3304 3305 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3306 } 3307 3308 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3309 DAGCombinerInfo &DCI) const { 3310 EVT VT = N->getValueType(0); 3311 3312 unsigned Size = VT.getSizeInBits(); 3313 if (VT.isVector() || Size > 64) 3314 return SDValue(); 3315 3316 // There are i16 integer mul/mad. 3317 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3318 return SDValue(); 3319 3320 SelectionDAG &DAG = DCI.DAG; 3321 SDLoc DL(N); 3322 3323 SDValue N0 = N->getOperand(0); 3324 SDValue N1 = N->getOperand(1); 3325 3326 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3327 // in the source into any_extends if the result of the mul is truncated. Since 3328 // we can assume the high bits are whatever we want, use the underlying value 3329 // to avoid the unknown high bits from interfering. 3330 if (N0.getOpcode() == ISD::ANY_EXTEND) 3331 N0 = N0.getOperand(0); 3332 3333 if (N1.getOpcode() == ISD::ANY_EXTEND) 3334 N1 = N1.getOperand(0); 3335 3336 SDValue Mul; 3337 3338 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3339 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3340 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3341 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3342 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3343 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3344 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3345 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3346 } else { 3347 return SDValue(); 3348 } 3349 3350 // We need to use sext even for MUL_U24, because MUL_U24 is used 3351 // for signed multiply of 8 and 16-bit types. 3352 return DAG.getSExtOrTrunc(Mul, DL, VT); 3353 } 3354 3355 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3356 DAGCombinerInfo &DCI) const { 3357 EVT VT = N->getValueType(0); 3358 3359 if (!Subtarget->hasMulI24() || VT.isVector()) 3360 return SDValue(); 3361 3362 SelectionDAG &DAG = DCI.DAG; 3363 SDLoc DL(N); 3364 3365 SDValue N0 = N->getOperand(0); 3366 SDValue N1 = N->getOperand(1); 3367 3368 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3369 return SDValue(); 3370 3371 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3372 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3373 3374 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3375 DCI.AddToWorklist(Mulhi.getNode()); 3376 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3377 } 3378 3379 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3380 DAGCombinerInfo &DCI) const { 3381 EVT VT = N->getValueType(0); 3382 3383 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3384 return SDValue(); 3385 3386 SelectionDAG &DAG = DCI.DAG; 3387 SDLoc DL(N); 3388 3389 SDValue N0 = N->getOperand(0); 3390 SDValue N1 = N->getOperand(1); 3391 3392 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3393 return SDValue(); 3394 3395 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3396 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3397 3398 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3399 DCI.AddToWorklist(Mulhi.getNode()); 3400 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3401 } 3402 3403 static bool isNegativeOne(SDValue Val) { 3404 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3405 return C->isAllOnesValue(); 3406 return false; 3407 } 3408 3409 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3410 SDValue Op, 3411 const SDLoc &DL, 3412 unsigned Opc) const { 3413 EVT VT = Op.getValueType(); 3414 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3415 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3416 LegalVT != MVT::i16)) 3417 return SDValue(); 3418 3419 if (VT != MVT::i32) 3420 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3421 3422 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3423 if (VT != MVT::i32) 3424 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3425 3426 return FFBX; 3427 } 3428 3429 // The native instructions return -1 on 0 input. Optimize out a select that 3430 // produces -1 on 0. 3431 // 3432 // TODO: If zero is not undef, we could also do this if the output is compared 3433 // against the bitwidth. 3434 // 3435 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3436 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3437 SDValue LHS, SDValue RHS, 3438 DAGCombinerInfo &DCI) const { 3439 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3440 if (!CmpRhs || !CmpRhs->isNullValue()) 3441 return SDValue(); 3442 3443 SelectionDAG &DAG = DCI.DAG; 3444 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3445 SDValue CmpLHS = Cond.getOperand(0); 3446 3447 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3448 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3449 if (CCOpcode == ISD::SETEQ && 3450 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3451 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3452 unsigned Opc = 3453 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3454 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3455 } 3456 3457 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3458 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3459 if (CCOpcode == ISD::SETNE && 3460 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3461 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3462 unsigned Opc = 3463 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3464 3465 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3466 } 3467 3468 return SDValue(); 3469 } 3470 3471 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3472 unsigned Op, 3473 const SDLoc &SL, 3474 SDValue Cond, 3475 SDValue N1, 3476 SDValue N2) { 3477 SelectionDAG &DAG = DCI.DAG; 3478 EVT VT = N1.getValueType(); 3479 3480 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3481 N1.getOperand(0), N2.getOperand(0)); 3482 DCI.AddToWorklist(NewSelect.getNode()); 3483 return DAG.getNode(Op, SL, VT, NewSelect); 3484 } 3485 3486 // Pull a free FP operation out of a select so it may fold into uses. 3487 // 3488 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3489 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3490 // 3491 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3492 // select c, (fabs x), +k -> fabs (select c, x, k) 3493 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3494 SDValue N) { 3495 SelectionDAG &DAG = DCI.DAG; 3496 SDValue Cond = N.getOperand(0); 3497 SDValue LHS = N.getOperand(1); 3498 SDValue RHS = N.getOperand(2); 3499 3500 EVT VT = N.getValueType(); 3501 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3502 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3503 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3504 SDLoc(N), Cond, LHS, RHS); 3505 } 3506 3507 bool Inv = false; 3508 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3509 std::swap(LHS, RHS); 3510 Inv = true; 3511 } 3512 3513 // TODO: Support vector constants. 3514 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3515 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3516 SDLoc SL(N); 3517 // If one side is an fneg/fabs and the other is a constant, we can push the 3518 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3519 SDValue NewLHS = LHS.getOperand(0); 3520 SDValue NewRHS = RHS; 3521 3522 // Careful: if the neg can be folded up, don't try to pull it back down. 3523 bool ShouldFoldNeg = true; 3524 3525 if (NewLHS.hasOneUse()) { 3526 unsigned Opc = NewLHS.getOpcode(); 3527 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3528 ShouldFoldNeg = false; 3529 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3530 ShouldFoldNeg = false; 3531 } 3532 3533 if (ShouldFoldNeg) { 3534 if (LHS.getOpcode() == ISD::FNEG) 3535 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3536 else if (CRHS->isNegative()) 3537 return SDValue(); 3538 3539 if (Inv) 3540 std::swap(NewLHS, NewRHS); 3541 3542 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3543 Cond, NewLHS, NewRHS); 3544 DCI.AddToWorklist(NewSelect.getNode()); 3545 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3546 } 3547 } 3548 3549 return SDValue(); 3550 } 3551 3552 3553 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3554 DAGCombinerInfo &DCI) const { 3555 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3556 return Folded; 3557 3558 SDValue Cond = N->getOperand(0); 3559 if (Cond.getOpcode() != ISD::SETCC) 3560 return SDValue(); 3561 3562 EVT VT = N->getValueType(0); 3563 SDValue LHS = Cond.getOperand(0); 3564 SDValue RHS = Cond.getOperand(1); 3565 SDValue CC = Cond.getOperand(2); 3566 3567 SDValue True = N->getOperand(1); 3568 SDValue False = N->getOperand(2); 3569 3570 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3571 SelectionDAG &DAG = DCI.DAG; 3572 if (DAG.isConstantValueOfAnyType(True) && 3573 !DAG.isConstantValueOfAnyType(False)) { 3574 // Swap cmp + select pair to move constant to false input. 3575 // This will allow using VOPC cndmasks more often. 3576 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3577 3578 SDLoc SL(N); 3579 ISD::CondCode NewCC = 3580 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3581 3582 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3583 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3584 } 3585 3586 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3587 SDValue MinMax 3588 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3589 // Revisit this node so we can catch min3/max3/med3 patterns. 3590 //DCI.AddToWorklist(MinMax.getNode()); 3591 return MinMax; 3592 } 3593 } 3594 3595 // There's no reason to not do this if the condition has other uses. 3596 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3597 } 3598 3599 static bool isInv2Pi(const APFloat &APF) { 3600 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3601 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3602 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3603 3604 return APF.bitwiseIsEqual(KF16) || 3605 APF.bitwiseIsEqual(KF32) || 3606 APF.bitwiseIsEqual(KF64); 3607 } 3608 3609 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3610 // additional cost to negate them. 3611 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3612 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3613 if (C->isZero() && !C->isNegative()) 3614 return true; 3615 3616 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3617 return true; 3618 } 3619 3620 return false; 3621 } 3622 3623 static unsigned inverseMinMax(unsigned Opc) { 3624 switch (Opc) { 3625 case ISD::FMAXNUM: 3626 return ISD::FMINNUM; 3627 case ISD::FMINNUM: 3628 return ISD::FMAXNUM; 3629 case ISD::FMAXNUM_IEEE: 3630 return ISD::FMINNUM_IEEE; 3631 case ISD::FMINNUM_IEEE: 3632 return ISD::FMAXNUM_IEEE; 3633 case AMDGPUISD::FMAX_LEGACY: 3634 return AMDGPUISD::FMIN_LEGACY; 3635 case AMDGPUISD::FMIN_LEGACY: 3636 return AMDGPUISD::FMAX_LEGACY; 3637 default: 3638 llvm_unreachable("invalid min/max opcode"); 3639 } 3640 } 3641 3642 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3643 DAGCombinerInfo &DCI) const { 3644 SelectionDAG &DAG = DCI.DAG; 3645 SDValue N0 = N->getOperand(0); 3646 EVT VT = N->getValueType(0); 3647 3648 unsigned Opc = N0.getOpcode(); 3649 3650 // If the input has multiple uses and we can either fold the negate down, or 3651 // the other uses cannot, give up. This both prevents unprofitable 3652 // transformations and infinite loops: we won't repeatedly try to fold around 3653 // a negate that has no 'good' form. 3654 if (N0.hasOneUse()) { 3655 // This may be able to fold into the source, but at a code size cost. Don't 3656 // fold if the fold into the user is free. 3657 if (allUsesHaveSourceMods(N, 0)) 3658 return SDValue(); 3659 } else { 3660 if (fnegFoldsIntoOp(Opc) && 3661 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3662 return SDValue(); 3663 } 3664 3665 SDLoc SL(N); 3666 switch (Opc) { 3667 case ISD::FADD: { 3668 if (!mayIgnoreSignedZero(N0)) 3669 return SDValue(); 3670 3671 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3672 SDValue LHS = N0.getOperand(0); 3673 SDValue RHS = N0.getOperand(1); 3674 3675 if (LHS.getOpcode() != ISD::FNEG) 3676 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3677 else 3678 LHS = LHS.getOperand(0); 3679 3680 if (RHS.getOpcode() != ISD::FNEG) 3681 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3682 else 3683 RHS = RHS.getOperand(0); 3684 3685 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3686 if (Res.getOpcode() != ISD::FADD) 3687 return SDValue(); // Op got folded away. 3688 if (!N0.hasOneUse()) 3689 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3690 return Res; 3691 } 3692 case ISD::FMUL: 3693 case AMDGPUISD::FMUL_LEGACY: { 3694 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3695 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3696 SDValue LHS = N0.getOperand(0); 3697 SDValue RHS = N0.getOperand(1); 3698 3699 if (LHS.getOpcode() == ISD::FNEG) 3700 LHS = LHS.getOperand(0); 3701 else if (RHS.getOpcode() == ISD::FNEG) 3702 RHS = RHS.getOperand(0); 3703 else 3704 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3705 3706 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3707 if (Res.getOpcode() != Opc) 3708 return SDValue(); // Op got folded away. 3709 if (!N0.hasOneUse()) 3710 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3711 return Res; 3712 } 3713 case ISD::FMA: 3714 case ISD::FMAD: { 3715 // TODO: handle llvm.amdgcn.fma.legacy 3716 if (!mayIgnoreSignedZero(N0)) 3717 return SDValue(); 3718 3719 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3720 SDValue LHS = N0.getOperand(0); 3721 SDValue MHS = N0.getOperand(1); 3722 SDValue RHS = N0.getOperand(2); 3723 3724 if (LHS.getOpcode() == ISD::FNEG) 3725 LHS = LHS.getOperand(0); 3726 else if (MHS.getOpcode() == ISD::FNEG) 3727 MHS = MHS.getOperand(0); 3728 else 3729 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3730 3731 if (RHS.getOpcode() != ISD::FNEG) 3732 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3733 else 3734 RHS = RHS.getOperand(0); 3735 3736 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3737 if (Res.getOpcode() != Opc) 3738 return SDValue(); // Op got folded away. 3739 if (!N0.hasOneUse()) 3740 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3741 return Res; 3742 } 3743 case ISD::FMAXNUM: 3744 case ISD::FMINNUM: 3745 case ISD::FMAXNUM_IEEE: 3746 case ISD::FMINNUM_IEEE: 3747 case AMDGPUISD::FMAX_LEGACY: 3748 case AMDGPUISD::FMIN_LEGACY: { 3749 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3750 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3751 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3752 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3753 3754 SDValue LHS = N0.getOperand(0); 3755 SDValue RHS = N0.getOperand(1); 3756 3757 // 0 doesn't have a negated inline immediate. 3758 // TODO: This constant check should be generalized to other operations. 3759 if (isConstantCostlierToNegate(RHS)) 3760 return SDValue(); 3761 3762 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3763 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3764 unsigned Opposite = inverseMinMax(Opc); 3765 3766 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3767 if (Res.getOpcode() != Opposite) 3768 return SDValue(); // Op got folded away. 3769 if (!N0.hasOneUse()) 3770 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3771 return Res; 3772 } 3773 case AMDGPUISD::FMED3: { 3774 SDValue Ops[3]; 3775 for (unsigned I = 0; I < 3; ++I) 3776 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3777 3778 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3779 if (Res.getOpcode() != AMDGPUISD::FMED3) 3780 return SDValue(); // Op got folded away. 3781 3782 if (!N0.hasOneUse()) { 3783 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3784 DAG.ReplaceAllUsesWith(N0, Neg); 3785 3786 for (SDNode *U : Neg->uses()) 3787 DCI.AddToWorklist(U); 3788 } 3789 3790 return Res; 3791 } 3792 case ISD::FP_EXTEND: 3793 case ISD::FTRUNC: 3794 case ISD::FRINT: 3795 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3796 case ISD::FSIN: 3797 case ISD::FCANONICALIZE: 3798 case AMDGPUISD::RCP: 3799 case AMDGPUISD::RCP_LEGACY: 3800 case AMDGPUISD::RCP_IFLAG: 3801 case AMDGPUISD::SIN_HW: { 3802 SDValue CvtSrc = N0.getOperand(0); 3803 if (CvtSrc.getOpcode() == ISD::FNEG) { 3804 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3805 // (fneg (rcp (fneg x))) -> (rcp x) 3806 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3807 } 3808 3809 if (!N0.hasOneUse()) 3810 return SDValue(); 3811 3812 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3813 // (fneg (rcp x)) -> (rcp (fneg x)) 3814 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3815 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3816 } 3817 case ISD::FP_ROUND: { 3818 SDValue CvtSrc = N0.getOperand(0); 3819 3820 if (CvtSrc.getOpcode() == ISD::FNEG) { 3821 // (fneg (fp_round (fneg x))) -> (fp_round x) 3822 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3823 CvtSrc.getOperand(0), N0.getOperand(1)); 3824 } 3825 3826 if (!N0.hasOneUse()) 3827 return SDValue(); 3828 3829 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3830 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3831 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3832 } 3833 case ISD::FP16_TO_FP: { 3834 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3835 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3836 // Put the fneg back as a legal source operation that can be matched later. 3837 SDLoc SL(N); 3838 3839 SDValue Src = N0.getOperand(0); 3840 EVT SrcVT = Src.getValueType(); 3841 3842 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3843 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3844 DAG.getConstant(0x8000, SL, SrcVT)); 3845 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3846 } 3847 default: 3848 return SDValue(); 3849 } 3850 } 3851 3852 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3853 DAGCombinerInfo &DCI) const { 3854 SelectionDAG &DAG = DCI.DAG; 3855 SDValue N0 = N->getOperand(0); 3856 3857 if (!N0.hasOneUse()) 3858 return SDValue(); 3859 3860 switch (N0.getOpcode()) { 3861 case ISD::FP16_TO_FP: { 3862 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3863 SDLoc SL(N); 3864 SDValue Src = N0.getOperand(0); 3865 EVT SrcVT = Src.getValueType(); 3866 3867 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3868 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3869 DAG.getConstant(0x7fff, SL, SrcVT)); 3870 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3871 } 3872 default: 3873 return SDValue(); 3874 } 3875 } 3876 3877 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3878 DAGCombinerInfo &DCI) const { 3879 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3880 if (!CFP) 3881 return SDValue(); 3882 3883 // XXX - Should this flush denormals? 3884 const APFloat &Val = CFP->getValueAPF(); 3885 APFloat One(Val.getSemantics(), "1.0"); 3886 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3887 } 3888 3889 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3890 DAGCombinerInfo &DCI) const { 3891 SelectionDAG &DAG = DCI.DAG; 3892 SDLoc DL(N); 3893 3894 switch(N->getOpcode()) { 3895 default: 3896 break; 3897 case ISD::BITCAST: { 3898 EVT DestVT = N->getValueType(0); 3899 3900 // Push casts through vector builds. This helps avoid emitting a large 3901 // number of copies when materializing floating point vector constants. 3902 // 3903 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3904 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3905 if (DestVT.isVector()) { 3906 SDValue Src = N->getOperand(0); 3907 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3908 EVT SrcVT = Src.getValueType(); 3909 unsigned NElts = DestVT.getVectorNumElements(); 3910 3911 if (SrcVT.getVectorNumElements() == NElts) { 3912 EVT DestEltVT = DestVT.getVectorElementType(); 3913 3914 SmallVector<SDValue, 8> CastedElts; 3915 SDLoc SL(N); 3916 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3917 SDValue Elt = Src.getOperand(I); 3918 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3919 } 3920 3921 return DAG.getBuildVector(DestVT, SL, CastedElts); 3922 } 3923 } 3924 } 3925 3926 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 3927 break; 3928 3929 // Fold bitcasts of constants. 3930 // 3931 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3932 // TODO: Generalize and move to DAGCombiner 3933 SDValue Src = N->getOperand(0); 3934 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3935 SDLoc SL(N); 3936 uint64_t CVal = C->getZExtValue(); 3937 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3938 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3939 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3940 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3941 } 3942 3943 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3944 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3945 SDLoc SL(N); 3946 uint64_t CVal = Val.getZExtValue(); 3947 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3948 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3949 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3950 3951 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3952 } 3953 3954 break; 3955 } 3956 case ISD::SHL: { 3957 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3958 break; 3959 3960 return performShlCombine(N, DCI); 3961 } 3962 case ISD::SRL: { 3963 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3964 break; 3965 3966 return performSrlCombine(N, DCI); 3967 } 3968 case ISD::SRA: { 3969 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3970 break; 3971 3972 return performSraCombine(N, DCI); 3973 } 3974 case ISD::TRUNCATE: 3975 return performTruncateCombine(N, DCI); 3976 case ISD::MUL: 3977 return performMulCombine(N, DCI); 3978 case ISD::MULHS: 3979 return performMulhsCombine(N, DCI); 3980 case ISD::MULHU: 3981 return performMulhuCombine(N, DCI); 3982 case AMDGPUISD::MUL_I24: 3983 case AMDGPUISD::MUL_U24: 3984 case AMDGPUISD::MULHI_I24: 3985 case AMDGPUISD::MULHI_U24: { 3986 if (SDValue V = simplifyI24(N, DCI)) 3987 return V; 3988 return SDValue(); 3989 } 3990 case ISD::SELECT: 3991 return performSelectCombine(N, DCI); 3992 case ISD::FNEG: 3993 return performFNegCombine(N, DCI); 3994 case ISD::FABS: 3995 return performFAbsCombine(N, DCI); 3996 case AMDGPUISD::BFE_I32: 3997 case AMDGPUISD::BFE_U32: { 3998 assert(!N->getValueType(0).isVector() && 3999 "Vector handling of BFE not implemented"); 4000 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4001 if (!Width) 4002 break; 4003 4004 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4005 if (WidthVal == 0) 4006 return DAG.getConstant(0, DL, MVT::i32); 4007 4008 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4009 if (!Offset) 4010 break; 4011 4012 SDValue BitsFrom = N->getOperand(0); 4013 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4014 4015 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4016 4017 if (OffsetVal == 0) { 4018 // This is already sign / zero extended, so try to fold away extra BFEs. 4019 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4020 4021 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4022 if (OpSignBits >= SignBits) 4023 return BitsFrom; 4024 4025 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4026 if (Signed) { 4027 // This is a sign_extend_inreg. Replace it to take advantage of existing 4028 // DAG Combines. If not eliminated, we will match back to BFE during 4029 // selection. 4030 4031 // TODO: The sext_inreg of extended types ends, although we can could 4032 // handle them in a single BFE. 4033 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4034 DAG.getValueType(SmallVT)); 4035 } 4036 4037 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4038 } 4039 4040 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4041 if (Signed) { 4042 return constantFoldBFE<int32_t>(DAG, 4043 CVal->getSExtValue(), 4044 OffsetVal, 4045 WidthVal, 4046 DL); 4047 } 4048 4049 return constantFoldBFE<uint32_t>(DAG, 4050 CVal->getZExtValue(), 4051 OffsetVal, 4052 WidthVal, 4053 DL); 4054 } 4055 4056 if ((OffsetVal + WidthVal) >= 32 && 4057 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4058 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4059 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4060 BitsFrom, ShiftVal); 4061 } 4062 4063 if (BitsFrom.hasOneUse()) { 4064 APInt Demanded = APInt::getBitsSet(32, 4065 OffsetVal, 4066 OffsetVal + WidthVal); 4067 4068 KnownBits Known; 4069 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4070 !DCI.isBeforeLegalizeOps()); 4071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4072 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4073 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4074 DCI.CommitTargetLoweringOpt(TLO); 4075 } 4076 } 4077 4078 break; 4079 } 4080 case ISD::LOAD: 4081 return performLoadCombine(N, DCI); 4082 case ISD::STORE: 4083 return performStoreCombine(N, DCI); 4084 case AMDGPUISD::RCP: 4085 case AMDGPUISD::RCP_IFLAG: 4086 return performRcpCombine(N, DCI); 4087 case ISD::AssertZext: 4088 case ISD::AssertSext: 4089 return performAssertSZExtCombine(N, DCI); 4090 case ISD::INTRINSIC_WO_CHAIN: 4091 return performIntrinsicWOChainCombine(N, DCI); 4092 } 4093 return SDValue(); 4094 } 4095 4096 //===----------------------------------------------------------------------===// 4097 // Helper functions 4098 //===----------------------------------------------------------------------===// 4099 4100 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4101 const TargetRegisterClass *RC, 4102 Register Reg, EVT VT, 4103 const SDLoc &SL, 4104 bool RawReg) const { 4105 MachineFunction &MF = DAG.getMachineFunction(); 4106 MachineRegisterInfo &MRI = MF.getRegInfo(); 4107 Register VReg; 4108 4109 if (!MRI.isLiveIn(Reg)) { 4110 VReg = MRI.createVirtualRegister(RC); 4111 MRI.addLiveIn(Reg, VReg); 4112 } else { 4113 VReg = MRI.getLiveInVirtReg(Reg); 4114 } 4115 4116 if (RawReg) 4117 return DAG.getRegister(VReg, VT); 4118 4119 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4120 } 4121 4122 // This may be called multiple times, and nothing prevents creating multiple 4123 // objects at the same offset. See if we already defined this object. 4124 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4125 int64_t Offset) { 4126 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4127 if (MFI.getObjectOffset(I) == Offset) { 4128 assert(MFI.getObjectSize(I) == Size); 4129 return I; 4130 } 4131 } 4132 4133 return MFI.CreateFixedObject(Size, Offset, true); 4134 } 4135 4136 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4137 EVT VT, 4138 const SDLoc &SL, 4139 int64_t Offset) const { 4140 MachineFunction &MF = DAG.getMachineFunction(); 4141 MachineFrameInfo &MFI = MF.getFrameInfo(); 4142 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4143 4144 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4145 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4146 4147 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4148 MachineMemOperand::MODereferenceable | 4149 MachineMemOperand::MOInvariant); 4150 } 4151 4152 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4153 const SDLoc &SL, 4154 SDValue Chain, 4155 SDValue ArgVal, 4156 int64_t Offset) const { 4157 MachineFunction &MF = DAG.getMachineFunction(); 4158 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4159 4160 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4161 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4162 MachineMemOperand::MODereferenceable); 4163 return Store; 4164 } 4165 4166 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4167 const TargetRegisterClass *RC, 4168 EVT VT, const SDLoc &SL, 4169 const ArgDescriptor &Arg) const { 4170 assert(Arg && "Attempting to load missing argument"); 4171 4172 SDValue V = Arg.isRegister() ? 4173 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4174 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4175 4176 if (!Arg.isMasked()) 4177 return V; 4178 4179 unsigned Mask = Arg.getMask(); 4180 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4181 V = DAG.getNode(ISD::SRL, SL, VT, V, 4182 DAG.getShiftAmountConstant(Shift, VT, SL)); 4183 return DAG.getNode(ISD::AND, SL, VT, V, 4184 DAG.getConstant(Mask >> Shift, SL, VT)); 4185 } 4186 4187 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4188 const MachineFunction &MF, const ImplicitParameter Param) const { 4189 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4190 const AMDGPUSubtarget &ST = 4191 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4192 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4193 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4194 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4195 ExplicitArgOffset; 4196 switch (Param) { 4197 case GRID_DIM: 4198 return ArgOffset; 4199 case GRID_OFFSET: 4200 return ArgOffset + 4; 4201 } 4202 llvm_unreachable("unexpected implicit parameter type"); 4203 } 4204 4205 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4206 4207 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4208 switch ((AMDGPUISD::NodeType)Opcode) { 4209 case AMDGPUISD::FIRST_NUMBER: break; 4210 // AMDIL DAG nodes 4211 NODE_NAME_CASE(UMUL); 4212 NODE_NAME_CASE(BRANCH_COND); 4213 4214 // AMDGPU DAG nodes 4215 NODE_NAME_CASE(IF) 4216 NODE_NAME_CASE(ELSE) 4217 NODE_NAME_CASE(LOOP) 4218 NODE_NAME_CASE(CALL) 4219 NODE_NAME_CASE(TC_RETURN) 4220 NODE_NAME_CASE(TRAP) 4221 NODE_NAME_CASE(RET_FLAG) 4222 NODE_NAME_CASE(RETURN_TO_EPILOG) 4223 NODE_NAME_CASE(ENDPGM) 4224 NODE_NAME_CASE(DWORDADDR) 4225 NODE_NAME_CASE(FRACT) 4226 NODE_NAME_CASE(SETCC) 4227 NODE_NAME_CASE(SETREG) 4228 NODE_NAME_CASE(DENORM_MODE) 4229 NODE_NAME_CASE(FMA_W_CHAIN) 4230 NODE_NAME_CASE(FMUL_W_CHAIN) 4231 NODE_NAME_CASE(CLAMP) 4232 NODE_NAME_CASE(COS_HW) 4233 NODE_NAME_CASE(SIN_HW) 4234 NODE_NAME_CASE(FMAX_LEGACY) 4235 NODE_NAME_CASE(FMIN_LEGACY) 4236 NODE_NAME_CASE(FMAX3) 4237 NODE_NAME_CASE(SMAX3) 4238 NODE_NAME_CASE(UMAX3) 4239 NODE_NAME_CASE(FMIN3) 4240 NODE_NAME_CASE(SMIN3) 4241 NODE_NAME_CASE(UMIN3) 4242 NODE_NAME_CASE(FMED3) 4243 NODE_NAME_CASE(SMED3) 4244 NODE_NAME_CASE(UMED3) 4245 NODE_NAME_CASE(FDOT2) 4246 NODE_NAME_CASE(URECIP) 4247 NODE_NAME_CASE(DIV_SCALE) 4248 NODE_NAME_CASE(DIV_FMAS) 4249 NODE_NAME_CASE(DIV_FIXUP) 4250 NODE_NAME_CASE(FMAD_FTZ) 4251 NODE_NAME_CASE(RCP) 4252 NODE_NAME_CASE(RSQ) 4253 NODE_NAME_CASE(RCP_LEGACY) 4254 NODE_NAME_CASE(RCP_IFLAG) 4255 NODE_NAME_CASE(FMUL_LEGACY) 4256 NODE_NAME_CASE(RSQ_CLAMP) 4257 NODE_NAME_CASE(LDEXP) 4258 NODE_NAME_CASE(FP_CLASS) 4259 NODE_NAME_CASE(DOT4) 4260 NODE_NAME_CASE(CARRY) 4261 NODE_NAME_CASE(BORROW) 4262 NODE_NAME_CASE(BFE_U32) 4263 NODE_NAME_CASE(BFE_I32) 4264 NODE_NAME_CASE(BFI) 4265 NODE_NAME_CASE(BFM) 4266 NODE_NAME_CASE(FFBH_U32) 4267 NODE_NAME_CASE(FFBH_I32) 4268 NODE_NAME_CASE(FFBL_B32) 4269 NODE_NAME_CASE(MUL_U24) 4270 NODE_NAME_CASE(MUL_I24) 4271 NODE_NAME_CASE(MULHI_U24) 4272 NODE_NAME_CASE(MULHI_I24) 4273 NODE_NAME_CASE(MAD_U24) 4274 NODE_NAME_CASE(MAD_I24) 4275 NODE_NAME_CASE(MAD_I64_I32) 4276 NODE_NAME_CASE(MAD_U64_U32) 4277 NODE_NAME_CASE(PERM) 4278 NODE_NAME_CASE(TEXTURE_FETCH) 4279 NODE_NAME_CASE(R600_EXPORT) 4280 NODE_NAME_CASE(CONST_ADDRESS) 4281 NODE_NAME_CASE(REGISTER_LOAD) 4282 NODE_NAME_CASE(REGISTER_STORE) 4283 NODE_NAME_CASE(SAMPLE) 4284 NODE_NAME_CASE(SAMPLEB) 4285 NODE_NAME_CASE(SAMPLED) 4286 NODE_NAME_CASE(SAMPLEL) 4287 NODE_NAME_CASE(CVT_F32_UBYTE0) 4288 NODE_NAME_CASE(CVT_F32_UBYTE1) 4289 NODE_NAME_CASE(CVT_F32_UBYTE2) 4290 NODE_NAME_CASE(CVT_F32_UBYTE3) 4291 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4292 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4293 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4294 NODE_NAME_CASE(CVT_PK_I16_I32) 4295 NODE_NAME_CASE(CVT_PK_U16_U32) 4296 NODE_NAME_CASE(FP_TO_FP16) 4297 NODE_NAME_CASE(FP16_ZEXT) 4298 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4299 NODE_NAME_CASE(CONST_DATA_PTR) 4300 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4301 NODE_NAME_CASE(LDS) 4302 NODE_NAME_CASE(DUMMY_CHAIN) 4303 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4304 NODE_NAME_CASE(LOAD_D16_HI) 4305 NODE_NAME_CASE(LOAD_D16_LO) 4306 NODE_NAME_CASE(LOAD_D16_HI_I8) 4307 NODE_NAME_CASE(LOAD_D16_HI_U8) 4308 NODE_NAME_CASE(LOAD_D16_LO_I8) 4309 NODE_NAME_CASE(LOAD_D16_LO_U8) 4310 NODE_NAME_CASE(STORE_MSKOR) 4311 NODE_NAME_CASE(LOAD_CONSTANT) 4312 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4313 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4314 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4315 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4316 NODE_NAME_CASE(DS_ORDERED_COUNT) 4317 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4318 NODE_NAME_CASE(ATOMIC_INC) 4319 NODE_NAME_CASE(ATOMIC_DEC) 4320 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4321 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4322 NODE_NAME_CASE(BUFFER_LOAD) 4323 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4324 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4325 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4326 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4327 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4328 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4329 NODE_NAME_CASE(SBUFFER_LOAD) 4330 NODE_NAME_CASE(BUFFER_STORE) 4331 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4332 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4333 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4334 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4335 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4336 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4337 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4338 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4339 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4340 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4341 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4342 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4343 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4344 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4345 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4346 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4347 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4348 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4349 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4350 4351 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4352 } 4353 return nullptr; 4354 } 4355 4356 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4357 SelectionDAG &DAG, int Enabled, 4358 int &RefinementSteps, 4359 bool &UseOneConstNR, 4360 bool Reciprocal) const { 4361 EVT VT = Operand.getValueType(); 4362 4363 if (VT == MVT::f32) { 4364 RefinementSteps = 0; 4365 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4366 } 4367 4368 // TODO: There is also f64 rsq instruction, but the documentation is less 4369 // clear on its precision. 4370 4371 return SDValue(); 4372 } 4373 4374 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4375 SelectionDAG &DAG, int Enabled, 4376 int &RefinementSteps) const { 4377 EVT VT = Operand.getValueType(); 4378 4379 if (VT == MVT::f32) { 4380 // Reciprocal, < 1 ulp error. 4381 // 4382 // This reciprocal approximation converges to < 0.5 ulp error with one 4383 // newton rhapson performed with two fused multiple adds (FMAs). 4384 4385 RefinementSteps = 0; 4386 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4387 } 4388 4389 // TODO: There is also f64 rcp instruction, but the documentation is less 4390 // clear on its precision. 4391 4392 return SDValue(); 4393 } 4394 4395 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4396 const SDValue Op, KnownBits &Known, 4397 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4398 4399 Known.resetAll(); // Don't know anything. 4400 4401 unsigned Opc = Op.getOpcode(); 4402 4403 switch (Opc) { 4404 default: 4405 break; 4406 case AMDGPUISD::CARRY: 4407 case AMDGPUISD::BORROW: { 4408 Known.Zero = APInt::getHighBitsSet(32, 31); 4409 break; 4410 } 4411 4412 case AMDGPUISD::BFE_I32: 4413 case AMDGPUISD::BFE_U32: { 4414 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4415 if (!CWidth) 4416 return; 4417 4418 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4419 4420 if (Opc == AMDGPUISD::BFE_U32) 4421 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4422 4423 break; 4424 } 4425 case AMDGPUISD::FP_TO_FP16: 4426 case AMDGPUISD::FP16_ZEXT: { 4427 unsigned BitWidth = Known.getBitWidth(); 4428 4429 // High bits are zero. 4430 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4431 break; 4432 } 4433 case AMDGPUISD::MUL_U24: 4434 case AMDGPUISD::MUL_I24: { 4435 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4436 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4437 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4438 RHSKnown.countMinTrailingZeros(); 4439 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4440 // Skip extra check if all bits are known zeros. 4441 if (TrailZ >= 32) 4442 break; 4443 4444 // Truncate to 24 bits. 4445 LHSKnown = LHSKnown.trunc(24); 4446 RHSKnown = RHSKnown.trunc(24); 4447 4448 if (Opc == AMDGPUISD::MUL_I24) { 4449 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4450 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4451 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4452 if (MaxValBits >= 32) 4453 break; 4454 bool LHSNegative = LHSKnown.isNegative(); 4455 bool LHSNonNegative = LHSKnown.isNonNegative(); 4456 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4457 bool RHSNegative = RHSKnown.isNegative(); 4458 bool RHSNonNegative = RHSKnown.isNonNegative(); 4459 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4460 4461 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4462 Known.Zero.setHighBits(32 - MaxValBits); 4463 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4464 Known.One.setHighBits(32 - MaxValBits); 4465 } else { 4466 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4467 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4468 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4469 if (MaxValBits >= 32) 4470 break; 4471 Known.Zero.setHighBits(32 - MaxValBits); 4472 } 4473 break; 4474 } 4475 case AMDGPUISD::PERM: { 4476 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4477 if (!CMask) 4478 return; 4479 4480 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4481 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4482 unsigned Sel = CMask->getZExtValue(); 4483 4484 for (unsigned I = 0; I < 32; I += 8) { 4485 unsigned SelBits = Sel & 0xff; 4486 if (SelBits < 4) { 4487 SelBits *= 8; 4488 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4489 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4490 } else if (SelBits < 7) { 4491 SelBits = (SelBits & 3) * 8; 4492 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4493 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4494 } else if (SelBits == 0x0c) { 4495 Known.Zero |= 0xFFull << I; 4496 } else if (SelBits > 0x0c) { 4497 Known.One |= 0xFFull << I; 4498 } 4499 Sel >>= 8; 4500 } 4501 break; 4502 } 4503 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4504 Known.Zero.setHighBits(24); 4505 break; 4506 } 4507 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4508 Known.Zero.setHighBits(16); 4509 break; 4510 } 4511 case AMDGPUISD::LDS: { 4512 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4513 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4514 4515 Known.Zero.setHighBits(16); 4516 Known.Zero.setLowBits(Log2(Alignment)); 4517 break; 4518 } 4519 case ISD::INTRINSIC_WO_CHAIN: { 4520 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4521 switch (IID) { 4522 case Intrinsic::amdgcn_mbcnt_lo: 4523 case Intrinsic::amdgcn_mbcnt_hi: { 4524 const GCNSubtarget &ST = 4525 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4526 // These return at most the wavefront size - 1. 4527 unsigned Size = Op.getValueType().getSizeInBits(); 4528 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4529 break; 4530 } 4531 default: 4532 break; 4533 } 4534 } 4535 } 4536 } 4537 4538 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4539 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4540 unsigned Depth) const { 4541 switch (Op.getOpcode()) { 4542 case AMDGPUISD::BFE_I32: { 4543 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4544 if (!Width) 4545 return 1; 4546 4547 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4548 if (!isNullConstant(Op.getOperand(1))) 4549 return SignBits; 4550 4551 // TODO: Could probably figure something out with non-0 offsets. 4552 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4553 return std::max(SignBits, Op0SignBits); 4554 } 4555 4556 case AMDGPUISD::BFE_U32: { 4557 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4558 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4559 } 4560 4561 case AMDGPUISD::CARRY: 4562 case AMDGPUISD::BORROW: 4563 return 31; 4564 case AMDGPUISD::BUFFER_LOAD_BYTE: 4565 return 25; 4566 case AMDGPUISD::BUFFER_LOAD_SHORT: 4567 return 17; 4568 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4569 return 24; 4570 case AMDGPUISD::BUFFER_LOAD_USHORT: 4571 return 16; 4572 case AMDGPUISD::FP_TO_FP16: 4573 case AMDGPUISD::FP16_ZEXT: 4574 return 16; 4575 default: 4576 return 1; 4577 } 4578 } 4579 4580 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4581 GISelKnownBits &Analysis, Register R, 4582 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4583 unsigned Depth) const { 4584 const MachineInstr *MI = MRI.getVRegDef(R); 4585 if (!MI) 4586 return 1; 4587 4588 // TODO: Check range metadata on MMO. 4589 switch (MI->getOpcode()) { 4590 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4591 return 25; 4592 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4593 return 17; 4594 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4595 return 24; 4596 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4597 return 16; 4598 default: 4599 return 1; 4600 } 4601 } 4602 4603 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4604 const SelectionDAG &DAG, 4605 bool SNaN, 4606 unsigned Depth) const { 4607 unsigned Opcode = Op.getOpcode(); 4608 switch (Opcode) { 4609 case AMDGPUISD::FMIN_LEGACY: 4610 case AMDGPUISD::FMAX_LEGACY: { 4611 if (SNaN) 4612 return true; 4613 4614 // TODO: Can check no nans on one of the operands for each one, but which 4615 // one? 4616 return false; 4617 } 4618 case AMDGPUISD::FMUL_LEGACY: 4619 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4620 if (SNaN) 4621 return true; 4622 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4623 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4624 } 4625 case AMDGPUISD::FMED3: 4626 case AMDGPUISD::FMIN3: 4627 case AMDGPUISD::FMAX3: 4628 case AMDGPUISD::FMAD_FTZ: { 4629 if (SNaN) 4630 return true; 4631 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4632 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4633 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4634 } 4635 case AMDGPUISD::CVT_F32_UBYTE0: 4636 case AMDGPUISD::CVT_F32_UBYTE1: 4637 case AMDGPUISD::CVT_F32_UBYTE2: 4638 case AMDGPUISD::CVT_F32_UBYTE3: 4639 return true; 4640 4641 case AMDGPUISD::RCP: 4642 case AMDGPUISD::RSQ: 4643 case AMDGPUISD::RCP_LEGACY: 4644 case AMDGPUISD::RSQ_CLAMP: { 4645 if (SNaN) 4646 return true; 4647 4648 // TODO: Need is known positive check. 4649 return false; 4650 } 4651 case AMDGPUISD::LDEXP: 4652 case AMDGPUISD::FRACT: { 4653 if (SNaN) 4654 return true; 4655 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4656 } 4657 case AMDGPUISD::DIV_SCALE: 4658 case AMDGPUISD::DIV_FMAS: 4659 case AMDGPUISD::DIV_FIXUP: 4660 // TODO: Refine on operands. 4661 return SNaN; 4662 case AMDGPUISD::SIN_HW: 4663 case AMDGPUISD::COS_HW: { 4664 // TODO: Need check for infinity 4665 return SNaN; 4666 } 4667 case ISD::INTRINSIC_WO_CHAIN: { 4668 unsigned IntrinsicID 4669 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4670 // TODO: Handle more intrinsics 4671 switch (IntrinsicID) { 4672 case Intrinsic::amdgcn_cubeid: 4673 return true; 4674 4675 case Intrinsic::amdgcn_frexp_mant: { 4676 if (SNaN) 4677 return true; 4678 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4679 } 4680 case Intrinsic::amdgcn_cvt_pkrtz: { 4681 if (SNaN) 4682 return true; 4683 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4684 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4685 } 4686 case Intrinsic::amdgcn_rcp: 4687 case Intrinsic::amdgcn_rsq: 4688 case Intrinsic::amdgcn_rcp_legacy: 4689 case Intrinsic::amdgcn_rsq_legacy: 4690 case Intrinsic::amdgcn_rsq_clamp: { 4691 if (SNaN) 4692 return true; 4693 4694 // TODO: Need is known positive check. 4695 return false; 4696 } 4697 case Intrinsic::amdgcn_trig_preop: 4698 case Intrinsic::amdgcn_fdot2: 4699 // TODO: Refine on operand 4700 return SNaN; 4701 case Intrinsic::amdgcn_fma_legacy: 4702 if (SNaN) 4703 return true; 4704 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4705 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4706 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4707 default: 4708 return false; 4709 } 4710 } 4711 default: 4712 return false; 4713 } 4714 } 4715 4716 TargetLowering::AtomicExpansionKind 4717 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4718 switch (RMW->getOperation()) { 4719 case AtomicRMWInst::Nand: 4720 case AtomicRMWInst::FAdd: 4721 case AtomicRMWInst::FSub: 4722 return AtomicExpansionKind::CmpXChg; 4723 default: 4724 return AtomicExpansionKind::None; 4725 } 4726 } 4727