1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 33 using namespace llvm; 34 35 namespace { 36 37 /// Diagnostic information for unimplemented or unsupported feature reporting. 38 class DiagnosticInfoUnsupported : public DiagnosticInfo { 39 private: 40 const Twine &Description; 41 const Function &Fn; 42 43 static int KindID; 44 45 static int getKindID() { 46 if (KindID == 0) 47 KindID = llvm::getNextAvailablePluginDiagnosticKind(); 48 return KindID; 49 } 50 51 public: 52 DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc, 53 DiagnosticSeverity Severity = DS_Error) 54 : DiagnosticInfo(getKindID(), Severity), 55 Description(Desc), 56 Fn(Fn) { } 57 58 const Function &getFunction() const { return Fn; } 59 const Twine &getDescription() const { return Description; } 60 61 void print(DiagnosticPrinter &DP) const override { 62 DP << "unsupported " << getDescription() << " in " << Fn.getName(); 63 } 64 65 static bool classof(const DiagnosticInfo *DI) { 66 return DI->getKind() == getKindID(); 67 } 68 }; 69 70 int DiagnosticInfoUnsupported::KindID = 0; 71 } 72 73 74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 75 CCValAssign::LocInfo LocInfo, 76 ISD::ArgFlagsTy ArgFlags, CCState &State) { 77 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 78 ArgFlags.getOrigAlign()); 79 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 80 81 return true; 82 } 83 84 #include "AMDGPUGenCallingConv.inc" 85 86 // Find a larger type to do a load / store of a vector with. 87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 88 unsigned StoreSize = VT.getStoreSizeInBits(); 89 if (StoreSize <= 32) 90 return EVT::getIntegerVT(Ctx, StoreSize); 91 92 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 93 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 94 } 95 96 // Type for a vector that will be loaded to. 97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 98 unsigned StoreSize = VT.getStoreSizeInBits(); 99 if (StoreSize <= 32) 100 return EVT::getIntegerVT(Ctx, 32); 101 102 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 103 } 104 105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 106 const AMDGPUSubtarget &STI) 107 : TargetLowering(TM), Subtarget(&STI) { 108 setOperationAction(ISD::Constant, MVT::i32, Legal); 109 setOperationAction(ISD::Constant, MVT::i64, Legal); 110 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 111 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 112 113 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 114 setOperationAction(ISD::BRIND, MVT::Other, Expand); 115 116 // We need to custom lower some of the intrinsics 117 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 118 119 // Library functions. These default to Expand, but we have instructions 120 // for them. 121 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 122 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 123 setOperationAction(ISD::FPOW, MVT::f32, Legal); 124 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 125 setOperationAction(ISD::FABS, MVT::f32, Legal); 126 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 127 setOperationAction(ISD::FRINT, MVT::f32, Legal); 128 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 129 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 130 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 131 132 setOperationAction(ISD::FROUND, MVT::f32, Custom); 133 setOperationAction(ISD::FROUND, MVT::f64, Custom); 134 135 setOperationAction(ISD::FREM, MVT::f32, Custom); 136 setOperationAction(ISD::FREM, MVT::f64, Custom); 137 138 // v_mad_f32 does not support denormals according to some sources. 139 if (!Subtarget->hasFP32Denormals()) 140 setOperationAction(ISD::FMAD, MVT::f32, Legal); 141 142 // Expand to fneg + fadd. 143 setOperationAction(ISD::FSUB, MVT::f64, Expand); 144 145 // Lower floating point store/load to integer store/load to reduce the number 146 // of patterns in tablegen. 147 setOperationAction(ISD::STORE, MVT::f32, Promote); 148 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 149 150 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 151 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 152 153 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 154 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 155 156 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 157 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 158 159 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 160 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 161 162 setOperationAction(ISD::STORE, MVT::f64, Promote); 163 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 164 165 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 166 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 167 168 // Custom lowering of vector stores is required for local address space 169 // stores. 170 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 171 172 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 173 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 174 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 175 176 // XXX: This can be change to Custom, once ExpandVectorStores can 177 // handle 64-bit stores. 178 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 179 180 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 181 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 182 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 183 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 184 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 185 186 187 setOperationAction(ISD::LOAD, MVT::f32, Promote); 188 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 189 190 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 191 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 192 193 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 194 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 195 196 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 197 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 198 199 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 200 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 201 202 setOperationAction(ISD::LOAD, MVT::f64, Promote); 203 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 204 205 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 206 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 207 208 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 209 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 210 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 211 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 212 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 213 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 214 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 215 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 216 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 217 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 218 219 // There are no 64-bit extloads. These should be done as a 32-bit extload and 220 // an extension to 64-bit. 221 for (MVT VT : MVT::integer_valuetypes()) { 222 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 223 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 224 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 225 } 226 227 for (MVT VT : MVT::integer_vector_valuetypes()) { 228 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 229 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 230 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 231 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 232 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 233 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 234 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 235 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 236 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 237 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 240 } 241 242 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 243 244 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 245 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 246 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 247 setOperationAction(ISD::FRINT, MVT::f64, Custom); 248 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 249 } 250 251 if (!Subtarget->hasBFI()) { 252 // fcopysign can be done in a single instruction with BFI. 253 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 254 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 255 } 256 257 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 258 259 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 260 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 261 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 262 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 263 264 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 265 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 266 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 267 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 268 269 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 270 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 271 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 272 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 273 274 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 275 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 276 277 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 278 for (MVT VT : ScalarIntVTs) { 279 setOperationAction(ISD::SREM, VT, Expand); 280 setOperationAction(ISD::SDIV, VT, Expand); 281 282 // GPU does not have divrem function for signed or unsigned. 283 setOperationAction(ISD::SDIVREM, VT, Custom); 284 setOperationAction(ISD::UDIVREM, VT, Custom); 285 286 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 287 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 288 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 289 290 setOperationAction(ISD::BSWAP, VT, Expand); 291 setOperationAction(ISD::CTTZ, VT, Expand); 292 setOperationAction(ISD::CTLZ, VT, Expand); 293 } 294 295 if (!Subtarget->hasBCNT(32)) 296 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 297 298 if (!Subtarget->hasBCNT(64)) 299 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 300 301 // The hardware supports 32-bit ROTR, but not ROTL. 302 setOperationAction(ISD::ROTL, MVT::i32, Expand); 303 setOperationAction(ISD::ROTL, MVT::i64, Expand); 304 setOperationAction(ISD::ROTR, MVT::i64, Expand); 305 306 setOperationAction(ISD::MUL, MVT::i64, Expand); 307 setOperationAction(ISD::MULHU, MVT::i64, Expand); 308 setOperationAction(ISD::MULHS, MVT::i64, Expand); 309 setOperationAction(ISD::UDIV, MVT::i32, Expand); 310 setOperationAction(ISD::UREM, MVT::i32, Expand); 311 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 312 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 313 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 314 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 315 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 316 317 setOperationAction(ISD::SMIN, MVT::i32, Legal); 318 setOperationAction(ISD::UMIN, MVT::i32, Legal); 319 setOperationAction(ISD::SMAX, MVT::i32, Legal); 320 setOperationAction(ISD::UMAX, MVT::i32, Legal); 321 322 if (!Subtarget->hasFFBH()) 323 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 324 325 if (!Subtarget->hasFFBL()) 326 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 327 328 static const MVT::SimpleValueType VectorIntTypes[] = { 329 MVT::v2i32, MVT::v4i32 330 }; 331 332 for (MVT VT : VectorIntTypes) { 333 // Expand the following operations for the current type by default. 334 setOperationAction(ISD::ADD, VT, Expand); 335 setOperationAction(ISD::AND, VT, Expand); 336 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 337 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 338 setOperationAction(ISD::MUL, VT, Expand); 339 setOperationAction(ISD::OR, VT, Expand); 340 setOperationAction(ISD::SHL, VT, Expand); 341 setOperationAction(ISD::SRA, VT, Expand); 342 setOperationAction(ISD::SRL, VT, Expand); 343 setOperationAction(ISD::ROTL, VT, Expand); 344 setOperationAction(ISD::ROTR, VT, Expand); 345 setOperationAction(ISD::SUB, VT, Expand); 346 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 347 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 348 setOperationAction(ISD::SDIV, VT, Expand); 349 setOperationAction(ISD::UDIV, VT, Expand); 350 setOperationAction(ISD::SREM, VT, Expand); 351 setOperationAction(ISD::UREM, VT, Expand); 352 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 353 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 354 setOperationAction(ISD::SDIVREM, VT, Custom); 355 setOperationAction(ISD::UDIVREM, VT, Custom); 356 setOperationAction(ISD::ADDC, VT, Expand); 357 setOperationAction(ISD::SUBC, VT, Expand); 358 setOperationAction(ISD::ADDE, VT, Expand); 359 setOperationAction(ISD::SUBE, VT, Expand); 360 setOperationAction(ISD::SELECT, VT, Expand); 361 setOperationAction(ISD::VSELECT, VT, Expand); 362 setOperationAction(ISD::SELECT_CC, VT, Expand); 363 setOperationAction(ISD::XOR, VT, Expand); 364 setOperationAction(ISD::BSWAP, VT, Expand); 365 setOperationAction(ISD::CTPOP, VT, Expand); 366 setOperationAction(ISD::CTTZ, VT, Expand); 367 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 368 setOperationAction(ISD::CTLZ, VT, Expand); 369 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 370 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 371 } 372 373 static const MVT::SimpleValueType FloatVectorTypes[] = { 374 MVT::v2f32, MVT::v4f32 375 }; 376 377 for (MVT VT : FloatVectorTypes) { 378 setOperationAction(ISD::FABS, VT, Expand); 379 setOperationAction(ISD::FMINNUM, VT, Expand); 380 setOperationAction(ISD::FMAXNUM, VT, Expand); 381 setOperationAction(ISD::FADD, VT, Expand); 382 setOperationAction(ISD::FCEIL, VT, Expand); 383 setOperationAction(ISD::FCOS, VT, Expand); 384 setOperationAction(ISD::FDIV, VT, Expand); 385 setOperationAction(ISD::FEXP2, VT, Expand); 386 setOperationAction(ISD::FLOG2, VT, Expand); 387 setOperationAction(ISD::FREM, VT, Expand); 388 setOperationAction(ISD::FPOW, VT, Expand); 389 setOperationAction(ISD::FFLOOR, VT, Expand); 390 setOperationAction(ISD::FTRUNC, VT, Expand); 391 setOperationAction(ISD::FMUL, VT, Expand); 392 setOperationAction(ISD::FMA, VT, Expand); 393 setOperationAction(ISD::FRINT, VT, Expand); 394 setOperationAction(ISD::FNEARBYINT, VT, Expand); 395 setOperationAction(ISD::FSQRT, VT, Expand); 396 setOperationAction(ISD::FSIN, VT, Expand); 397 setOperationAction(ISD::FSUB, VT, Expand); 398 setOperationAction(ISD::FNEG, VT, Expand); 399 setOperationAction(ISD::SELECT, VT, Expand); 400 setOperationAction(ISD::VSELECT, VT, Expand); 401 setOperationAction(ISD::SELECT_CC, VT, Expand); 402 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 403 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 404 } 405 406 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 407 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 408 409 setTargetDAGCombine(ISD::SHL); 410 setTargetDAGCombine(ISD::MUL); 411 setTargetDAGCombine(ISD::SELECT); 412 setTargetDAGCombine(ISD::SELECT_CC); 413 setTargetDAGCombine(ISD::STORE); 414 415 setTargetDAGCombine(ISD::FADD); 416 setTargetDAGCombine(ISD::FSUB); 417 418 setBooleanContents(ZeroOrNegativeOneBooleanContent); 419 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 420 421 setSchedulingPreference(Sched::RegPressure); 422 setJumpIsExpensive(true); 423 424 // SI at least has hardware support for floating point exceptions, but no way 425 // of using or handling them is implemented. They are also optional in OpenCL 426 // (Section 7.3) 427 setHasFloatingPointExceptions(false); 428 429 setSelectIsExpensive(false); 430 PredictableSelectIsExpensive = false; 431 432 // There are no integer divide instructions, and these expand to a pretty 433 // large sequence of instructions. 434 setIntDivIsCheap(false); 435 setPow2SDivIsCheap(false); 436 setFsqrtIsCheap(true); 437 438 // FIXME: Need to really handle these. 439 MaxStoresPerMemcpy = 4096; 440 MaxStoresPerMemmove = 4096; 441 MaxStoresPerMemset = 4096; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // Target Information 446 //===----------------------------------------------------------------------===// 447 448 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 449 return MVT::i32; 450 } 451 452 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 453 return true; 454 } 455 456 // The backend supports 32 and 64 bit floating point immediates. 457 // FIXME: Why are we reporting vectors of FP immediates as legal? 458 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 459 EVT ScalarVT = VT.getScalarType(); 460 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 461 } 462 463 // We don't want to shrink f64 / f32 constants. 464 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 465 EVT ScalarVT = VT.getScalarType(); 466 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 467 } 468 469 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 470 ISD::LoadExtType, 471 EVT NewVT) const { 472 473 unsigned NewSize = NewVT.getStoreSizeInBits(); 474 475 // If we are reducing to a 32-bit load, this is always better. 476 if (NewSize == 32) 477 return true; 478 479 EVT OldVT = N->getValueType(0); 480 unsigned OldSize = OldVT.getStoreSizeInBits(); 481 482 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 483 // extloads, so doing one requires using a buffer_load. In cases where we 484 // still couldn't use a scalar load, using the wider load shouldn't really 485 // hurt anything. 486 487 // If the old size already had to be an extload, there's no harm in continuing 488 // to reduce the width. 489 return (OldSize < 32); 490 } 491 492 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 493 EVT CastTy) const { 494 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 495 return true; 496 497 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 498 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 499 500 return ((LScalarSize <= CastScalarSize) || 501 (CastScalarSize >= 32) || 502 (LScalarSize < 32)); 503 } 504 505 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 506 // profitable with the expansion for 64-bit since it's generally good to 507 // speculate things. 508 // FIXME: These should really have the size as a parameter. 509 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 510 return true; 511 } 512 513 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 514 return true; 515 } 516 517 //===---------------------------------------------------------------------===// 518 // Target Properties 519 //===---------------------------------------------------------------------===// 520 521 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 522 assert(VT.isFloatingPoint()); 523 return VT == MVT::f32 || VT == MVT::f64; 524 } 525 526 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 527 assert(VT.isFloatingPoint()); 528 return VT == MVT::f32 || VT == MVT::f64; 529 } 530 531 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 532 unsigned NumElem, 533 unsigned AS) const { 534 return true; 535 } 536 537 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 538 // Truncate is just accessing a subregister. 539 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 540 } 541 542 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 543 // Truncate is just accessing a subregister. 544 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 545 (Dest->getPrimitiveSizeInBits() % 32 == 0); 546 } 547 548 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 549 unsigned SrcSize = Src->getScalarSizeInBits(); 550 unsigned DestSize = Dest->getScalarSizeInBits(); 551 552 return SrcSize == 32 && DestSize == 64; 553 } 554 555 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 556 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 557 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 558 // this will enable reducing 64-bit operations the 32-bit, which is always 559 // good. 560 return Src == MVT::i32 && Dest == MVT::i64; 561 } 562 563 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 564 return isZExtFree(Val.getValueType(), VT2); 565 } 566 567 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 568 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 569 // limited number of native 64-bit operations. Shrinking an operation to fit 570 // in a single 32-bit register should always be helpful. As currently used, 571 // this is much less general than the name suggests, and is only used in 572 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 573 // not profitable, and may actually be harmful. 574 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 575 } 576 577 //===---------------------------------------------------------------------===// 578 // TargetLowering Callbacks 579 //===---------------------------------------------------------------------===// 580 581 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 582 const SmallVectorImpl<ISD::InputArg> &Ins) const { 583 584 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 585 } 586 587 SDValue AMDGPUTargetLowering::LowerReturn( 588 SDValue Chain, 589 CallingConv::ID CallConv, 590 bool isVarArg, 591 const SmallVectorImpl<ISD::OutputArg> &Outs, 592 const SmallVectorImpl<SDValue> &OutVals, 593 SDLoc DL, SelectionDAG &DAG) const { 594 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 595 } 596 597 //===---------------------------------------------------------------------===// 598 // Target specific lowering 599 //===---------------------------------------------------------------------===// 600 601 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 602 SmallVectorImpl<SDValue> &InVals) const { 603 SDValue Callee = CLI.Callee; 604 SelectionDAG &DAG = CLI.DAG; 605 606 const Function &Fn = *DAG.getMachineFunction().getFunction(); 607 608 StringRef FuncName("<unknown>"); 609 610 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 611 FuncName = G->getSymbol(); 612 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 613 FuncName = G->getGlobal()->getName(); 614 615 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 616 DAG.getContext()->diagnose(NoCalls); 617 return SDValue(); 618 } 619 620 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 621 SelectionDAG &DAG) const { 622 switch (Op.getOpcode()) { 623 default: 624 Op.getNode()->dump(); 625 llvm_unreachable("Custom lowering code for this" 626 "instruction is not implemented yet!"); 627 break; 628 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 629 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 630 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 631 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 632 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 633 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 634 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 635 case ISD::FREM: return LowerFREM(Op, DAG); 636 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 637 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 638 case ISD::FRINT: return LowerFRINT(Op, DAG); 639 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 640 case ISD::FROUND: return LowerFROUND(Op, DAG); 641 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 642 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 643 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 644 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 645 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 646 } 647 return Op; 648 } 649 650 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 651 SmallVectorImpl<SDValue> &Results, 652 SelectionDAG &DAG) const { 653 switch (N->getOpcode()) { 654 case ISD::SIGN_EXTEND_INREG: 655 // Different parts of legalization seem to interpret which type of 656 // sign_extend_inreg is the one to check for custom lowering. The extended 657 // from type is what really matters, but some places check for custom 658 // lowering of the result type. This results in trying to use 659 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 660 // nothing here and let the illegal result integer be handled normally. 661 return; 662 case ISD::LOAD: { 663 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 664 if (!Node) 665 return; 666 667 Results.push_back(SDValue(Node, 0)); 668 Results.push_back(SDValue(Node, 1)); 669 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 670 // function 671 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 672 return; 673 } 674 case ISD::STORE: { 675 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 676 if (Lowered.getNode()) 677 Results.push_back(Lowered); 678 return; 679 } 680 default: 681 return; 682 } 683 } 684 685 // FIXME: This implements accesses to initialized globals in the constant 686 // address space by copying them to private and accessing that. It does not 687 // properly handle illegal types or vectors. The private vector loads are not 688 // scalarized, and the illegal scalars hit an assertion. This technique will not 689 // work well with large initializers, and this should eventually be 690 // removed. Initialized globals should be placed into a data section that the 691 // runtime will load into a buffer before the kernel is executed. Uses of the 692 // global need to be replaced with a pointer loaded from an implicit kernel 693 // argument into this buffer holding the copy of the data, which will remove the 694 // need for any of this. 695 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 696 const GlobalValue *GV, 697 const SDValue &InitPtr, 698 SDValue Chain, 699 SelectionDAG &DAG) const { 700 const DataLayout &TD = DAG.getDataLayout(); 701 SDLoc DL(InitPtr); 702 Type *InitTy = Init->getType(); 703 704 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 705 EVT VT = EVT::getEVT(InitTy); 706 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 707 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 708 MachinePointerInfo(UndefValue::get(PtrTy)), false, 709 false, TD.getPrefTypeAlignment(InitTy)); 710 } 711 712 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 713 EVT VT = EVT::getEVT(CFP->getType()); 714 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 715 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 716 MachinePointerInfo(UndefValue::get(PtrTy)), false, 717 false, TD.getPrefTypeAlignment(CFP->getType())); 718 } 719 720 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 721 const StructLayout *SL = TD.getStructLayout(ST); 722 723 EVT PtrVT = InitPtr.getValueType(); 724 SmallVector<SDValue, 8> Chains; 725 726 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 727 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 728 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 729 730 Constant *Elt = Init->getAggregateElement(I); 731 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 732 } 733 734 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 735 } 736 737 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 738 EVT PtrVT = InitPtr.getValueType(); 739 740 unsigned NumElements; 741 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 742 NumElements = AT->getNumElements(); 743 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 744 NumElements = VT->getNumElements(); 745 else 746 llvm_unreachable("Unexpected type"); 747 748 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 749 SmallVector<SDValue, 8> Chains; 750 for (unsigned i = 0; i < NumElements; ++i) { 751 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 752 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 753 754 Constant *Elt = Init->getAggregateElement(i); 755 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 756 } 757 758 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 759 } 760 761 if (isa<UndefValue>(Init)) { 762 EVT VT = EVT::getEVT(InitTy); 763 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 764 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 765 MachinePointerInfo(UndefValue::get(PtrTy)), false, 766 false, TD.getPrefTypeAlignment(InitTy)); 767 } 768 769 Init->dump(); 770 llvm_unreachable("Unhandled constant initializer"); 771 } 772 773 static bool hasDefinedInitializer(const GlobalValue *GV) { 774 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 775 if (!GVar || !GVar->hasInitializer()) 776 return false; 777 778 if (isa<UndefValue>(GVar->getInitializer())) 779 return false; 780 781 return true; 782 } 783 784 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 785 SDValue Op, 786 SelectionDAG &DAG) const { 787 788 const DataLayout &DL = DAG.getDataLayout(); 789 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 790 const GlobalValue *GV = G->getGlobal(); 791 792 switch (G->getAddressSpace()) { 793 case AMDGPUAS::LOCAL_ADDRESS: { 794 // XXX: What does the value of G->getOffset() mean? 795 assert(G->getOffset() == 0 && 796 "Do not know what to do with an non-zero offset"); 797 798 // TODO: We could emit code to handle the initialization somewhere. 799 if (hasDefinedInitializer(GV)) 800 break; 801 802 unsigned Offset; 803 if (MFI->LocalMemoryObjects.count(GV) == 0) { 804 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 805 Offset = MFI->LDSSize; 806 MFI->LocalMemoryObjects[GV] = Offset; 807 // XXX: Account for alignment? 808 MFI->LDSSize += Size; 809 } else { 810 Offset = MFI->LocalMemoryObjects[GV]; 811 } 812 813 return DAG.getConstant(Offset, SDLoc(Op), 814 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 815 } 816 case AMDGPUAS::CONSTANT_ADDRESS: { 817 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 818 Type *EltType = GV->getType()->getElementType(); 819 unsigned Size = DL.getTypeAllocSize(EltType); 820 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 821 822 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 823 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 824 825 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 826 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 827 828 const GlobalVariable *Var = cast<GlobalVariable>(GV); 829 if (!Var->hasInitializer()) { 830 // This has no use, but bugpoint will hit it. 831 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 832 } 833 834 const Constant *Init = Var->getInitializer(); 835 SmallVector<SDNode*, 8> WorkList; 836 837 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 838 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 839 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 840 continue; 841 WorkList.push_back(*I); 842 } 843 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 844 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 845 E = WorkList.end(); I != E; ++I) { 846 SmallVector<SDValue, 8> Ops; 847 Ops.push_back(Chain); 848 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 849 Ops.push_back((*I)->getOperand(i)); 850 } 851 DAG.UpdateNodeOperands(*I, Ops); 852 } 853 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 854 } 855 } 856 857 const Function &Fn = *DAG.getMachineFunction().getFunction(); 858 DiagnosticInfoUnsupported BadInit(Fn, 859 "initializer for address space"); 860 DAG.getContext()->diagnose(BadInit); 861 return SDValue(); 862 } 863 864 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 865 SelectionDAG &DAG) const { 866 SmallVector<SDValue, 8> Args; 867 868 for (const SDUse &U : Op->ops()) 869 DAG.ExtractVectorElements(U.get(), Args); 870 871 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 872 } 873 874 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 875 SelectionDAG &DAG) const { 876 877 SmallVector<SDValue, 8> Args; 878 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 879 EVT VT = Op.getValueType(); 880 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 881 VT.getVectorNumElements()); 882 883 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 884 } 885 886 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 887 SelectionDAG &DAG) const { 888 889 MachineFunction &MF = DAG.getMachineFunction(); 890 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 891 892 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 893 894 unsigned FrameIndex = FIN->getIndex(); 895 unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex); 896 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 897 Op.getValueType()); 898 } 899 900 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 901 SelectionDAG &DAG) const { 902 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 903 SDLoc DL(Op); 904 EVT VT = Op.getValueType(); 905 906 switch (IntrinsicID) { 907 default: return Op; 908 case AMDGPUIntrinsic::AMDGPU_abs: 909 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. 910 return LowerIntrinsicIABS(Op, DAG); 911 case AMDGPUIntrinsic::AMDGPU_lrp: 912 return LowerIntrinsicLRP(Op, DAG); 913 914 case AMDGPUIntrinsic::AMDGPU_clamp: 915 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 916 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 917 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 918 919 case Intrinsic::AMDGPU_div_scale: { 920 // 3rd parameter required to be a constant. 921 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 922 if (!Param) 923 return DAG.getUNDEF(VT); 924 925 // Translate to the operands expected by the machine instruction. The 926 // first parameter must be the same as the first instruction. 927 SDValue Numerator = Op.getOperand(1); 928 SDValue Denominator = Op.getOperand(2); 929 930 // Note this order is opposite of the machine instruction's operations, 931 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 932 // intrinsic has the numerator as the first operand to match a normal 933 // division operation. 934 935 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 936 937 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 938 Denominator, Numerator); 939 } 940 941 case Intrinsic::AMDGPU_div_fmas: 942 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 943 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 944 Op.getOperand(4)); 945 946 case Intrinsic::AMDGPU_div_fixup: 947 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 948 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 949 950 case Intrinsic::AMDGPU_trig_preop: 951 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 952 Op.getOperand(1), Op.getOperand(2)); 953 954 case Intrinsic::AMDGPU_rcp: 955 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 956 957 case Intrinsic::AMDGPU_rsq: 958 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 959 960 case AMDGPUIntrinsic::AMDGPU_legacy_rsq: 961 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 962 963 case Intrinsic::AMDGPU_rsq_clamped: 964 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 965 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 966 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 967 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 968 969 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 970 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 971 DAG.getConstantFP(Max, DL, VT)); 972 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 973 DAG.getConstantFP(Min, DL, VT)); 974 } else { 975 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 976 } 977 978 case Intrinsic::AMDGPU_ldexp: 979 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 980 Op.getOperand(2)); 981 982 case AMDGPUIntrinsic::AMDGPU_imax: 983 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), 984 Op.getOperand(2)); 985 case AMDGPUIntrinsic::AMDGPU_umax: 986 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), 987 Op.getOperand(2)); 988 case AMDGPUIntrinsic::AMDGPU_imin: 989 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), 990 Op.getOperand(2)); 991 case AMDGPUIntrinsic::AMDGPU_umin: 992 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), 993 Op.getOperand(2)); 994 995 case AMDGPUIntrinsic::AMDGPU_umul24: 996 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 997 Op.getOperand(1), Op.getOperand(2)); 998 999 case AMDGPUIntrinsic::AMDGPU_imul24: 1000 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 1001 Op.getOperand(1), Op.getOperand(2)); 1002 1003 case AMDGPUIntrinsic::AMDGPU_umad24: 1004 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 1005 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1006 1007 case AMDGPUIntrinsic::AMDGPU_imad24: 1008 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 1009 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1010 1011 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: 1012 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); 1013 1014 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: 1015 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); 1016 1017 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: 1018 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); 1019 1020 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: 1021 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); 1022 1023 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1024 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1025 Op.getOperand(1), 1026 Op.getOperand(2), 1027 Op.getOperand(3)); 1028 1029 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1030 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1031 Op.getOperand(1), 1032 Op.getOperand(2), 1033 Op.getOperand(3)); 1034 1035 case AMDGPUIntrinsic::AMDGPU_bfi: 1036 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 1037 Op.getOperand(1), 1038 Op.getOperand(2), 1039 Op.getOperand(3)); 1040 1041 case AMDGPUIntrinsic::AMDGPU_bfm: 1042 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 1043 Op.getOperand(1), 1044 Op.getOperand(2)); 1045 1046 case AMDGPUIntrinsic::AMDGPU_brev: 1047 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1)); 1048 1049 case Intrinsic::AMDGPU_class: 1050 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 1051 Op.getOperand(1), Op.getOperand(2)); 1052 1053 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 1054 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 1055 1056 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. 1057 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); 1058 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. 1059 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); 1060 } 1061 } 1062 1063 ///IABS(a) = SMAX(sub(0, a), a) 1064 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, 1065 SelectionDAG &DAG) const { 1066 SDLoc DL(Op); 1067 EVT VT = Op.getValueType(); 1068 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1069 Op.getOperand(1)); 1070 1071 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); 1072 } 1073 1074 /// Linear Interpolation 1075 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c) 1076 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, 1077 SelectionDAG &DAG) const { 1078 SDLoc DL(Op); 1079 EVT VT = Op.getValueType(); 1080 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, 1081 DAG.getConstantFP(1.0f, DL, MVT::f32), 1082 Op.getOperand(1)); 1083 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, 1084 Op.getOperand(3)); 1085 return DAG.getNode(ISD::FADD, DL, VT, 1086 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), 1087 OneSubAC); 1088 } 1089 1090 /// \brief Generate Min/Max node 1091 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 1092 EVT VT, 1093 SDValue LHS, 1094 SDValue RHS, 1095 SDValue True, 1096 SDValue False, 1097 SDValue CC, 1098 DAGCombinerInfo &DCI) const { 1099 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1100 return SDValue(); 1101 1102 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1103 return SDValue(); 1104 1105 SelectionDAG &DAG = DCI.DAG; 1106 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1107 switch (CCOpcode) { 1108 case ISD::SETOEQ: 1109 case ISD::SETONE: 1110 case ISD::SETUNE: 1111 case ISD::SETNE: 1112 case ISD::SETUEQ: 1113 case ISD::SETEQ: 1114 case ISD::SETFALSE: 1115 case ISD::SETFALSE2: 1116 case ISD::SETTRUE: 1117 case ISD::SETTRUE2: 1118 case ISD::SETUO: 1119 case ISD::SETO: 1120 break; 1121 case ISD::SETULE: 1122 case ISD::SETULT: { 1123 if (LHS == True) 1124 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1125 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1126 } 1127 case ISD::SETOLE: 1128 case ISD::SETOLT: 1129 case ISD::SETLE: 1130 case ISD::SETLT: { 1131 // Ordered. Assume ordered for undefined. 1132 1133 // Only do this after legalization to avoid interfering with other combines 1134 // which might occur. 1135 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1136 !DCI.isCalledByLegalizer()) 1137 return SDValue(); 1138 1139 // We need to permute the operands to get the correct NaN behavior. The 1140 // selected operand is the second one based on the failing compare with NaN, 1141 // so permute it based on the compare type the hardware uses. 1142 if (LHS == True) 1143 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1144 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1145 } 1146 case ISD::SETUGE: 1147 case ISD::SETUGT: { 1148 if (LHS == True) 1149 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1150 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1151 } 1152 case ISD::SETGT: 1153 case ISD::SETGE: 1154 case ISD::SETOGE: 1155 case ISD::SETOGT: { 1156 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1157 !DCI.isCalledByLegalizer()) 1158 return SDValue(); 1159 1160 if (LHS == True) 1161 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1162 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1163 } 1164 case ISD::SETCC_INVALID: 1165 llvm_unreachable("Invalid setcc condcode!"); 1166 } 1167 return SDValue(); 1168 } 1169 1170 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1171 SelectionDAG &DAG) const { 1172 LoadSDNode *Load = cast<LoadSDNode>(Op); 1173 EVT MemVT = Load->getMemoryVT(); 1174 EVT MemEltVT = MemVT.getVectorElementType(); 1175 1176 EVT LoadVT = Op.getValueType(); 1177 EVT EltVT = LoadVT.getVectorElementType(); 1178 EVT PtrVT = Load->getBasePtr().getValueType(); 1179 1180 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1181 SmallVector<SDValue, 8> Loads; 1182 SmallVector<SDValue, 8> Chains; 1183 1184 SDLoc SL(Op); 1185 unsigned MemEltSize = MemEltVT.getStoreSize(); 1186 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1187 1188 for (unsigned i = 0; i < NumElts; ++i) { 1189 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1190 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1191 1192 SDValue NewLoad 1193 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1194 Load->getChain(), Ptr, 1195 SrcValue.getWithOffset(i * MemEltSize), 1196 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1197 Load->isInvariant(), Load->getAlignment()); 1198 Loads.push_back(NewLoad.getValue(0)); 1199 Chains.push_back(NewLoad.getValue(1)); 1200 } 1201 1202 SDValue Ops[] = { 1203 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1204 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1205 }; 1206 1207 return DAG.getMergeValues(Ops, SL); 1208 } 1209 1210 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1211 SelectionDAG &DAG) const { 1212 EVT VT = Op.getValueType(); 1213 1214 // If this is a 2 element vector, we really want to scalarize and not create 1215 // weird 1 element vectors. 1216 if (VT.getVectorNumElements() == 2) 1217 return ScalarizeVectorLoad(Op, DAG); 1218 1219 LoadSDNode *Load = cast<LoadSDNode>(Op); 1220 SDValue BasePtr = Load->getBasePtr(); 1221 EVT PtrVT = BasePtr.getValueType(); 1222 EVT MemVT = Load->getMemoryVT(); 1223 SDLoc SL(Op); 1224 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1225 1226 EVT LoVT, HiVT; 1227 EVT LoMemVT, HiMemVT; 1228 SDValue Lo, Hi; 1229 1230 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1231 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1232 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1233 SDValue LoLoad 1234 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1235 Load->getChain(), BasePtr, 1236 SrcValue, 1237 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1238 Load->isInvariant(), Load->getAlignment()); 1239 1240 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1241 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1242 PtrVT)); 1243 1244 SDValue HiLoad 1245 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1246 Load->getChain(), HiPtr, 1247 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1248 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1249 Load->isInvariant(), Load->getAlignment()); 1250 1251 SDValue Ops[] = { 1252 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1253 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1254 LoLoad.getValue(1), HiLoad.getValue(1)) 1255 }; 1256 1257 return DAG.getMergeValues(Ops, SL); 1258 } 1259 1260 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1261 SelectionDAG &DAG) const { 1262 StoreSDNode *Store = cast<StoreSDNode>(Op); 1263 EVT MemVT = Store->getMemoryVT(); 1264 unsigned MemBits = MemVT.getSizeInBits(); 1265 1266 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1267 // truncating store into an i32 store. 1268 // XXX: We could also handle optimize other vector bitwidths. 1269 if (!MemVT.isVector() || MemBits > 32) { 1270 return SDValue(); 1271 } 1272 1273 SDLoc DL(Op); 1274 SDValue Value = Store->getValue(); 1275 EVT VT = Value.getValueType(); 1276 EVT ElemVT = VT.getVectorElementType(); 1277 SDValue Ptr = Store->getBasePtr(); 1278 EVT MemEltVT = MemVT.getVectorElementType(); 1279 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1280 unsigned MemNumElements = MemVT.getVectorNumElements(); 1281 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1282 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1283 1284 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1285 1286 SDValue PackedValue; 1287 for (unsigned i = 0; i < MemNumElements; ++i) { 1288 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1289 DAG.getConstant(i, DL, MVT::i32)); 1290 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1291 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1292 1293 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1294 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1295 1296 if (i == 0) { 1297 PackedValue = Elt; 1298 } else { 1299 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1300 } 1301 } 1302 1303 if (PackedSize < 32) { 1304 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1305 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1306 Store->getMemOperand()->getPointerInfo(), 1307 PackedVT, 1308 Store->isNonTemporal(), Store->isVolatile(), 1309 Store->getAlignment()); 1310 } 1311 1312 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1313 Store->getMemOperand()->getPointerInfo(), 1314 Store->isVolatile(), Store->isNonTemporal(), 1315 Store->getAlignment()); 1316 } 1317 1318 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1319 SelectionDAG &DAG) const { 1320 StoreSDNode *Store = cast<StoreSDNode>(Op); 1321 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1322 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1323 EVT PtrVT = Store->getBasePtr().getValueType(); 1324 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1325 SDLoc SL(Op); 1326 1327 SmallVector<SDValue, 8> Chains; 1328 1329 unsigned EltSize = MemEltVT.getStoreSize(); 1330 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1331 1332 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1333 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1334 Store->getValue(), 1335 DAG.getConstant(i, SL, MVT::i32)); 1336 1337 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1338 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1339 SDValue NewStore = 1340 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1341 SrcValue.getWithOffset(i * EltSize), 1342 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1343 Store->getAlignment()); 1344 Chains.push_back(NewStore); 1345 } 1346 1347 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1348 } 1349 1350 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1351 SelectionDAG &DAG) const { 1352 StoreSDNode *Store = cast<StoreSDNode>(Op); 1353 SDValue Val = Store->getValue(); 1354 EVT VT = Val.getValueType(); 1355 1356 // If this is a 2 element vector, we really want to scalarize and not create 1357 // weird 1 element vectors. 1358 if (VT.getVectorNumElements() == 2) 1359 return ScalarizeVectorStore(Op, DAG); 1360 1361 EVT MemVT = Store->getMemoryVT(); 1362 SDValue Chain = Store->getChain(); 1363 SDValue BasePtr = Store->getBasePtr(); 1364 SDLoc SL(Op); 1365 1366 EVT LoVT, HiVT; 1367 EVT LoMemVT, HiMemVT; 1368 SDValue Lo, Hi; 1369 1370 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1371 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1372 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1373 1374 EVT PtrVT = BasePtr.getValueType(); 1375 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1376 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1377 PtrVT)); 1378 1379 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1380 SDValue LoStore 1381 = DAG.getTruncStore(Chain, SL, Lo, 1382 BasePtr, 1383 SrcValue, 1384 LoMemVT, 1385 Store->isNonTemporal(), 1386 Store->isVolatile(), 1387 Store->getAlignment()); 1388 SDValue HiStore 1389 = DAG.getTruncStore(Chain, SL, Hi, 1390 HiPtr, 1391 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1392 HiMemVT, 1393 Store->isNonTemporal(), 1394 Store->isVolatile(), 1395 Store->getAlignment()); 1396 1397 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1398 } 1399 1400 1401 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1402 SDLoc DL(Op); 1403 LoadSDNode *Load = cast<LoadSDNode>(Op); 1404 ISD::LoadExtType ExtType = Load->getExtensionType(); 1405 EVT VT = Op.getValueType(); 1406 EVT MemVT = Load->getMemoryVT(); 1407 1408 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1409 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1410 // FIXME: Copied from PPC 1411 // First, load into 32 bits, then truncate to 1 bit. 1412 1413 SDValue Chain = Load->getChain(); 1414 SDValue BasePtr = Load->getBasePtr(); 1415 MachineMemOperand *MMO = Load->getMemOperand(); 1416 1417 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1418 BasePtr, MVT::i8, MMO); 1419 1420 SDValue Ops[] = { 1421 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1422 NewLD.getValue(1) 1423 }; 1424 1425 return DAG.getMergeValues(Ops, DL); 1426 } 1427 1428 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1429 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1430 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1431 return SDValue(); 1432 1433 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1434 // register (2-)byte extract. 1435 1436 // Get Register holding the target. 1437 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1438 DAG.getConstant(2, DL, MVT::i32)); 1439 // Load the Register. 1440 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1441 Load->getChain(), Ptr, 1442 DAG.getTargetConstant(0, DL, MVT::i32), 1443 Op.getOperand(2)); 1444 1445 // Get offset within the register. 1446 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1447 Load->getBasePtr(), 1448 DAG.getConstant(0x3, DL, MVT::i32)); 1449 1450 // Bit offset of target byte (byteIdx * 8). 1451 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1452 DAG.getConstant(3, DL, MVT::i32)); 1453 1454 // Shift to the right. 1455 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1456 1457 // Eliminate the upper bits by setting them to ... 1458 EVT MemEltVT = MemVT.getScalarType(); 1459 1460 // ... ones. 1461 if (ExtType == ISD::SEXTLOAD) { 1462 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1463 1464 SDValue Ops[] = { 1465 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1466 Load->getChain() 1467 }; 1468 1469 return DAG.getMergeValues(Ops, DL); 1470 } 1471 1472 // ... or zeros. 1473 SDValue Ops[] = { 1474 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1475 Load->getChain() 1476 }; 1477 1478 return DAG.getMergeValues(Ops, DL); 1479 } 1480 1481 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1482 SDLoc DL(Op); 1483 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1484 if (Result.getNode()) { 1485 return Result; 1486 } 1487 1488 StoreSDNode *Store = cast<StoreSDNode>(Op); 1489 SDValue Chain = Store->getChain(); 1490 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1491 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1492 Store->getValue().getValueType().isVector()) { 1493 return ScalarizeVectorStore(Op, DAG); 1494 } 1495 1496 EVT MemVT = Store->getMemoryVT(); 1497 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1498 MemVT.bitsLT(MVT::i32)) { 1499 unsigned Mask = 0; 1500 if (Store->getMemoryVT() == MVT::i8) { 1501 Mask = 0xff; 1502 } else if (Store->getMemoryVT() == MVT::i16) { 1503 Mask = 0xffff; 1504 } 1505 SDValue BasePtr = Store->getBasePtr(); 1506 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1507 DAG.getConstant(2, DL, MVT::i32)); 1508 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1509 Chain, Ptr, 1510 DAG.getTargetConstant(0, DL, MVT::i32)); 1511 1512 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1513 DAG.getConstant(0x3, DL, MVT::i32)); 1514 1515 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1516 DAG.getConstant(3, DL, MVT::i32)); 1517 1518 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1519 Store->getValue()); 1520 1521 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1522 1523 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1524 MaskedValue, ShiftAmt); 1525 1526 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1527 DAG.getConstant(Mask, DL, MVT::i32), 1528 ShiftAmt); 1529 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1530 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1531 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1532 1533 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1534 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1535 Chain, Value, Ptr, 1536 DAG.getTargetConstant(0, DL, MVT::i32)); 1537 } 1538 return SDValue(); 1539 } 1540 1541 // This is a shortcut for integer division because we have fast i32<->f32 1542 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1543 // float is enough to accurately represent up to a 24-bit integer. 1544 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1545 SDLoc DL(Op); 1546 EVT VT = Op.getValueType(); 1547 SDValue LHS = Op.getOperand(0); 1548 SDValue RHS = Op.getOperand(1); 1549 MVT IntVT = MVT::i32; 1550 MVT FltVT = MVT::f32; 1551 1552 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1553 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1554 1555 if (VT.isVector()) { 1556 unsigned NElts = VT.getVectorNumElements(); 1557 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1558 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1559 } 1560 1561 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1562 1563 SDValue jq = DAG.getConstant(1, DL, IntVT); 1564 1565 if (sign) { 1566 // char|short jq = ia ^ ib; 1567 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1568 1569 // jq = jq >> (bitsize - 2) 1570 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1571 DAG.getConstant(BitSize - 2, DL, VT)); 1572 1573 // jq = jq | 0x1 1574 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1575 1576 // jq = (int)jq 1577 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1578 } 1579 1580 // int ia = (int)LHS; 1581 SDValue ia = sign ? 1582 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1583 1584 // int ib, (int)RHS; 1585 SDValue ib = sign ? 1586 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1587 1588 // float fa = (float)ia; 1589 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1590 1591 // float fb = (float)ib; 1592 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1593 1594 // float fq = native_divide(fa, fb); 1595 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1596 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1597 1598 // fq = trunc(fq); 1599 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1600 1601 // float fqneg = -fq; 1602 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1603 1604 // float fr = mad(fqneg, fb, fa); 1605 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1606 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1607 1608 // int iq = (int)fq; 1609 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1610 1611 // fr = fabs(fr); 1612 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1613 1614 // fb = fabs(fb); 1615 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1616 1617 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1618 1619 // int cv = fr >= fb; 1620 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1621 1622 // jq = (cv ? jq : 0); 1623 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1624 1625 // dst = trunc/extend to legal type 1626 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1627 1628 // dst = iq + jq; 1629 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1630 1631 // Rem needs compensation, it's easier to recompute it 1632 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1633 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1634 1635 SDValue Res[2] = { 1636 Div, 1637 Rem 1638 }; 1639 return DAG.getMergeValues(Res, DL); 1640 } 1641 1642 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1643 SelectionDAG &DAG, 1644 SmallVectorImpl<SDValue> &Results) const { 1645 assert(Op.getValueType() == MVT::i64); 1646 1647 SDLoc DL(Op); 1648 EVT VT = Op.getValueType(); 1649 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1650 1651 SDValue one = DAG.getConstant(1, DL, HalfVT); 1652 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1653 1654 //HiLo split 1655 SDValue LHS = Op.getOperand(0); 1656 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1657 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1658 1659 SDValue RHS = Op.getOperand(1); 1660 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1661 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1662 1663 if (VT == MVT::i64 && 1664 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1665 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1666 1667 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1668 LHS_Lo, RHS_Lo); 1669 1670 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1671 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1672 Results.push_back(DIV); 1673 Results.push_back(REM); 1674 return; 1675 } 1676 1677 // Get Speculative values 1678 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1679 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1680 1681 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1682 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1683 1684 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1685 SDValue DIV_Lo = zero; 1686 1687 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1688 1689 for (unsigned i = 0; i < halfBitWidth; ++i) { 1690 const unsigned bitPos = halfBitWidth - i - 1; 1691 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1692 // Get value of high bit 1693 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1694 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1695 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1696 1697 // Shift 1698 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1699 // Add LHS high bit 1700 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1701 1702 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1703 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1704 1705 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1706 1707 // Update REM 1708 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1709 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1710 } 1711 1712 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1713 Results.push_back(DIV); 1714 Results.push_back(REM); 1715 } 1716 1717 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1718 SelectionDAG &DAG) const { 1719 SDLoc DL(Op); 1720 EVT VT = Op.getValueType(); 1721 1722 if (VT == MVT::i64) { 1723 SmallVector<SDValue, 2> Results; 1724 LowerUDIVREM64(Op, DAG, Results); 1725 return DAG.getMergeValues(Results, DL); 1726 } 1727 1728 SDValue Num = Op.getOperand(0); 1729 SDValue Den = Op.getOperand(1); 1730 1731 if (VT == MVT::i32) { 1732 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1733 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1734 // TODO: We technically could do this for i64, but shouldn't that just be 1735 // handled by something generally reducing 64-bit division on 32-bit 1736 // values to 32-bit? 1737 return LowerDIVREM24(Op, DAG, false); 1738 } 1739 } 1740 1741 // RCP = URECIP(Den) = 2^32 / Den + e 1742 // e is rounding error. 1743 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1744 1745 // RCP_LO = mul(RCP, Den) */ 1746 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1747 1748 // RCP_HI = mulhu (RCP, Den) */ 1749 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1750 1751 // NEG_RCP_LO = -RCP_LO 1752 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1753 RCP_LO); 1754 1755 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1756 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1757 NEG_RCP_LO, RCP_LO, 1758 ISD::SETEQ); 1759 // Calculate the rounding error from the URECIP instruction 1760 // E = mulhu(ABS_RCP_LO, RCP) 1761 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1762 1763 // RCP_A_E = RCP + E 1764 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1765 1766 // RCP_S_E = RCP - E 1767 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1768 1769 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1770 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1771 RCP_A_E, RCP_S_E, 1772 ISD::SETEQ); 1773 // Quotient = mulhu(Tmp0, Num) 1774 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1775 1776 // Num_S_Remainder = Quotient * Den 1777 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1778 1779 // Remainder = Num - Num_S_Remainder 1780 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1781 1782 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1783 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1784 DAG.getConstant(-1, DL, VT), 1785 DAG.getConstant(0, DL, VT), 1786 ISD::SETUGE); 1787 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1788 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1789 Num_S_Remainder, 1790 DAG.getConstant(-1, DL, VT), 1791 DAG.getConstant(0, DL, VT), 1792 ISD::SETUGE); 1793 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1794 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1795 Remainder_GE_Zero); 1796 1797 // Calculate Division result: 1798 1799 // Quotient_A_One = Quotient + 1 1800 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1801 DAG.getConstant(1, DL, VT)); 1802 1803 // Quotient_S_One = Quotient - 1 1804 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1805 DAG.getConstant(1, DL, VT)); 1806 1807 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1808 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1809 Quotient, Quotient_A_One, ISD::SETEQ); 1810 1811 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1812 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1813 Quotient_S_One, Div, ISD::SETEQ); 1814 1815 // Calculate Rem result: 1816 1817 // Remainder_S_Den = Remainder - Den 1818 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1819 1820 // Remainder_A_Den = Remainder + Den 1821 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1822 1823 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1824 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1825 Remainder, Remainder_S_Den, ISD::SETEQ); 1826 1827 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1828 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1829 Remainder_A_Den, Rem, ISD::SETEQ); 1830 SDValue Ops[2] = { 1831 Div, 1832 Rem 1833 }; 1834 return DAG.getMergeValues(Ops, DL); 1835 } 1836 1837 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1838 SelectionDAG &DAG) const { 1839 SDLoc DL(Op); 1840 EVT VT = Op.getValueType(); 1841 1842 SDValue LHS = Op.getOperand(0); 1843 SDValue RHS = Op.getOperand(1); 1844 1845 SDValue Zero = DAG.getConstant(0, DL, VT); 1846 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1847 1848 if (VT == MVT::i32 && 1849 DAG.ComputeNumSignBits(LHS) > 8 && 1850 DAG.ComputeNumSignBits(RHS) > 8) { 1851 return LowerDIVREM24(Op, DAG, true); 1852 } 1853 if (VT == MVT::i64 && 1854 DAG.ComputeNumSignBits(LHS) > 32 && 1855 DAG.ComputeNumSignBits(RHS) > 32) { 1856 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1857 1858 //HiLo split 1859 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1860 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1861 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1862 LHS_Lo, RHS_Lo); 1863 SDValue Res[2] = { 1864 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1865 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1866 }; 1867 return DAG.getMergeValues(Res, DL); 1868 } 1869 1870 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1871 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1872 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1873 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1874 1875 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1876 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1877 1878 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1879 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1880 1881 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1882 SDValue Rem = Div.getValue(1); 1883 1884 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1885 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1886 1887 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1888 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1889 1890 SDValue Res[2] = { 1891 Div, 1892 Rem 1893 }; 1894 return DAG.getMergeValues(Res, DL); 1895 } 1896 1897 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1898 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1899 SDLoc SL(Op); 1900 EVT VT = Op.getValueType(); 1901 SDValue X = Op.getOperand(0); 1902 SDValue Y = Op.getOperand(1); 1903 1904 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1905 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1906 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1907 1908 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1909 } 1910 1911 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1912 SDLoc SL(Op); 1913 SDValue Src = Op.getOperand(0); 1914 1915 // result = trunc(src) 1916 // if (src > 0.0 && src != result) 1917 // result += 1.0 1918 1919 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1920 1921 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1922 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1923 1924 EVT SetCCVT = 1925 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1926 1927 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1928 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1929 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1930 1931 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1932 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1933 } 1934 1935 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1936 const unsigned FractBits = 52; 1937 const unsigned ExpBits = 11; 1938 1939 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1940 Hi, 1941 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1942 DAG.getConstant(ExpBits, SL, MVT::i32)); 1943 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1944 DAG.getConstant(1023, SL, MVT::i32)); 1945 1946 return Exp; 1947 } 1948 1949 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1950 SDLoc SL(Op); 1951 SDValue Src = Op.getOperand(0); 1952 1953 assert(Op.getValueType() == MVT::f64); 1954 1955 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1956 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1957 1958 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1959 1960 // Extract the upper half, since this is where we will find the sign and 1961 // exponent. 1962 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1963 1964 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1965 1966 const unsigned FractBits = 52; 1967 1968 // Extract the sign bit. 1969 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1970 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1971 1972 // Extend back to to 64-bits. 1973 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1974 Zero, SignBit); 1975 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1976 1977 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1978 const SDValue FractMask 1979 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1980 1981 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1982 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1983 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1984 1985 EVT SetCCVT = 1986 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1987 1988 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1989 1990 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1991 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1992 1993 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1994 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1995 1996 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1997 } 1998 1999 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2000 SDLoc SL(Op); 2001 SDValue Src = Op.getOperand(0); 2002 2003 assert(Op.getValueType() == MVT::f64); 2004 2005 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 2006 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2007 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2008 2009 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2010 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2011 2012 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2013 2014 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 2015 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2016 2017 EVT SetCCVT = 2018 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2019 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2020 2021 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2022 } 2023 2024 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2025 // FNEARBYINT and FRINT are the same, except in their handling of FP 2026 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2027 // rint, so just treat them as equivalent. 2028 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2029 } 2030 2031 // XXX - May require not supporting f32 denormals? 2032 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 2033 SDLoc SL(Op); 2034 SDValue X = Op.getOperand(0); 2035 2036 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 2037 2038 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 2039 2040 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 2041 2042 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 2043 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 2044 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 2045 2046 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 2047 2048 EVT SetCCVT = 2049 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 2050 2051 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2052 2053 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 2054 2055 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 2056 } 2057 2058 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2059 SDLoc SL(Op); 2060 SDValue X = Op.getOperand(0); 2061 2062 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2063 2064 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2065 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2066 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2067 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2068 EVT SetCCVT = 2069 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2070 2071 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2072 2073 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2074 2075 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2076 2077 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2078 MVT::i64); 2079 2080 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2081 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2082 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2083 MVT::i64), 2084 Exp); 2085 2086 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2087 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2088 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2089 ISD::SETNE); 2090 2091 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2092 D, DAG.getConstant(0, SL, MVT::i64)); 2093 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2094 2095 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2096 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2097 2098 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2099 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2100 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2101 2102 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2103 ExpEqNegOne, 2104 DAG.getConstantFP(1.0, SL, MVT::f64), 2105 DAG.getConstantFP(0.0, SL, MVT::f64)); 2106 2107 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2108 2109 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2110 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2111 2112 return K; 2113 } 2114 2115 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2116 EVT VT = Op.getValueType(); 2117 2118 if (VT == MVT::f32) 2119 return LowerFROUND32(Op, DAG); 2120 2121 if (VT == MVT::f64) 2122 return LowerFROUND64(Op, DAG); 2123 2124 llvm_unreachable("unhandled type"); 2125 } 2126 2127 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2128 SDLoc SL(Op); 2129 SDValue Src = Op.getOperand(0); 2130 2131 // result = trunc(src); 2132 // if (src < 0.0 && src != result) 2133 // result += -1.0. 2134 2135 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2136 2137 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2138 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2139 2140 EVT SetCCVT = 2141 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2142 2143 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2144 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2145 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2146 2147 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2148 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2149 } 2150 2151 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2152 bool Signed) const { 2153 SDLoc SL(Op); 2154 SDValue Src = Op.getOperand(0); 2155 2156 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2157 2158 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2159 DAG.getConstant(0, SL, MVT::i32)); 2160 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2161 DAG.getConstant(1, SL, MVT::i32)); 2162 2163 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2164 SL, MVT::f64, Hi); 2165 2166 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2167 2168 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2169 DAG.getConstant(32, SL, MVT::i32)); 2170 2171 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2172 } 2173 2174 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2175 SelectionDAG &DAG) const { 2176 SDValue S0 = Op.getOperand(0); 2177 if (S0.getValueType() != MVT::i64) 2178 return SDValue(); 2179 2180 EVT DestVT = Op.getValueType(); 2181 if (DestVT == MVT::f64) 2182 return LowerINT_TO_FP64(Op, DAG, false); 2183 2184 assert(DestVT == MVT::f32); 2185 2186 SDLoc DL(Op); 2187 2188 // f32 uint_to_fp i64 2189 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2190 DAG.getConstant(0, DL, MVT::i32)); 2191 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); 2192 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2193 DAG.getConstant(1, DL, MVT::i32)); 2194 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); 2195 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, 2196 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 2197 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); 2198 } 2199 2200 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2201 SelectionDAG &DAG) const { 2202 SDValue Src = Op.getOperand(0); 2203 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) 2204 return LowerINT_TO_FP64(Op, DAG, true); 2205 2206 return SDValue(); 2207 } 2208 2209 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2210 bool Signed) const { 2211 SDLoc SL(Op); 2212 2213 SDValue Src = Op.getOperand(0); 2214 2215 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2216 2217 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2218 MVT::f64); 2219 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2220 MVT::f64); 2221 2222 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2223 2224 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2225 2226 2227 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2228 2229 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2230 MVT::i32, FloorMul); 2231 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2232 2233 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2234 2235 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2236 } 2237 2238 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2239 SelectionDAG &DAG) const { 2240 SDValue Src = Op.getOperand(0); 2241 2242 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2243 return LowerFP64_TO_INT(Op, DAG, true); 2244 2245 return SDValue(); 2246 } 2247 2248 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2249 SelectionDAG &DAG) const { 2250 SDValue Src = Op.getOperand(0); 2251 2252 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2253 return LowerFP64_TO_INT(Op, DAG, false); 2254 2255 return SDValue(); 2256 } 2257 2258 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2259 SelectionDAG &DAG) const { 2260 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2261 MVT VT = Op.getSimpleValueType(); 2262 MVT ScalarVT = VT.getScalarType(); 2263 2264 if (!VT.isVector()) 2265 return SDValue(); 2266 2267 SDValue Src = Op.getOperand(0); 2268 SDLoc DL(Op); 2269 2270 // TODO: Don't scalarize on Evergreen? 2271 unsigned NElts = VT.getVectorNumElements(); 2272 SmallVector<SDValue, 8> Args; 2273 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2274 2275 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2276 for (unsigned I = 0; I < NElts; ++I) 2277 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2278 2279 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2280 } 2281 2282 //===----------------------------------------------------------------------===// 2283 // Custom DAG optimizations 2284 //===----------------------------------------------------------------------===// 2285 2286 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2287 APInt KnownZero, KnownOne; 2288 EVT VT = Op.getValueType(); 2289 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2290 2291 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2292 } 2293 2294 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2295 EVT VT = Op.getValueType(); 2296 2297 // In order for this to be a signed 24-bit value, bit 23, must 2298 // be a sign bit. 2299 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2300 // as unsigned 24-bit values. 2301 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2302 } 2303 2304 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2305 2306 SelectionDAG &DAG = DCI.DAG; 2307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2308 EVT VT = Op.getValueType(); 2309 2310 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2311 APInt KnownZero, KnownOne; 2312 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2313 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2314 DCI.CommitTargetLoweringOpt(TLO); 2315 } 2316 2317 template <typename IntTy> 2318 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2319 uint32_t Offset, uint32_t Width, SDLoc DL) { 2320 if (Width + Offset < 32) { 2321 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2322 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2323 return DAG.getConstant(Result, DL, MVT::i32); 2324 } 2325 2326 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2327 } 2328 2329 static bool usesAllNormalStores(SDNode *LoadVal) { 2330 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2331 if (!ISD::isNormalStore(*I)) 2332 return false; 2333 } 2334 2335 return true; 2336 } 2337 2338 // If we have a copy of an illegal type, replace it with a load / store of an 2339 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2340 // instructions emitted when handling extloads and truncstores. Ideally we could 2341 // recognize the pack / unpack pattern to eliminate it. 2342 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2343 DAGCombinerInfo &DCI) const { 2344 if (!DCI.isBeforeLegalize()) 2345 return SDValue(); 2346 2347 StoreSDNode *SN = cast<StoreSDNode>(N); 2348 SDValue Value = SN->getValue(); 2349 EVT VT = Value.getValueType(); 2350 2351 if (isTypeLegal(VT) || SN->isVolatile() || 2352 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2353 return SDValue(); 2354 2355 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2356 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2357 return SDValue(); 2358 2359 EVT MemVT = LoadVal->getMemoryVT(); 2360 2361 SDLoc SL(N); 2362 SelectionDAG &DAG = DCI.DAG; 2363 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2364 2365 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2366 LoadVT, SL, 2367 LoadVal->getChain(), 2368 LoadVal->getBasePtr(), 2369 LoadVal->getOffset(), 2370 LoadVT, 2371 LoadVal->getMemOperand()); 2372 2373 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2374 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2375 2376 return DAG.getStore(SN->getChain(), SL, NewLoad, 2377 SN->getBasePtr(), SN->getMemOperand()); 2378 } 2379 2380 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2381 DAGCombinerInfo &DCI) const { 2382 if (N->getValueType(0) != MVT::i64) 2383 return SDValue(); 2384 2385 // i64 (shl x, 32) -> (build_pair 0, x) 2386 2387 // Doing this with moves theoretically helps MI optimizations that understand 2388 // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as 2389 // v_lshl_b64. In the SALU case, I think this is slightly worse since it 2390 // doubles the code size and I'm unsure about cycle count. 2391 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2392 if (!RHS || RHS->getZExtValue() != 32) 2393 return SDValue(); 2394 2395 SDValue LHS = N->getOperand(0); 2396 2397 SDLoc SL(N); 2398 SelectionDAG &DAG = DCI.DAG; 2399 2400 // Extract low 32-bits. 2401 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2402 2403 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2404 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo); 2405 } 2406 2407 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2408 DAGCombinerInfo &DCI) const { 2409 EVT VT = N->getValueType(0); 2410 2411 if (VT.isVector() || VT.getSizeInBits() > 32) 2412 return SDValue(); 2413 2414 SelectionDAG &DAG = DCI.DAG; 2415 SDLoc DL(N); 2416 2417 SDValue N0 = N->getOperand(0); 2418 SDValue N1 = N->getOperand(1); 2419 SDValue Mul; 2420 2421 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2422 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2423 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2424 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2425 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2426 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2427 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2428 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2429 } else { 2430 return SDValue(); 2431 } 2432 2433 // We need to use sext even for MUL_U24, because MUL_U24 is used 2434 // for signed multiply of 8 and 16-bit types. 2435 return DAG.getSExtOrTrunc(Mul, DL, VT); 2436 } 2437 2438 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2439 DAGCombinerInfo &DCI) const { 2440 SelectionDAG &DAG = DCI.DAG; 2441 SDLoc DL(N); 2442 2443 switch(N->getOpcode()) { 2444 default: 2445 break; 2446 case ISD::SHL: { 2447 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2448 break; 2449 2450 return performShlCombine(N, DCI); 2451 } 2452 case ISD::MUL: 2453 return performMulCombine(N, DCI); 2454 case AMDGPUISD::MUL_I24: 2455 case AMDGPUISD::MUL_U24: { 2456 SDValue N0 = N->getOperand(0); 2457 SDValue N1 = N->getOperand(1); 2458 simplifyI24(N0, DCI); 2459 simplifyI24(N1, DCI); 2460 return SDValue(); 2461 } 2462 case ISD::SELECT: { 2463 SDValue Cond = N->getOperand(0); 2464 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { 2465 EVT VT = N->getValueType(0); 2466 SDValue LHS = Cond.getOperand(0); 2467 SDValue RHS = Cond.getOperand(1); 2468 SDValue CC = Cond.getOperand(2); 2469 2470 SDValue True = N->getOperand(1); 2471 SDValue False = N->getOperand(2); 2472 2473 if (VT == MVT::f32) 2474 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 2475 } 2476 2477 break; 2478 } 2479 case AMDGPUISD::BFE_I32: 2480 case AMDGPUISD::BFE_U32: { 2481 assert(!N->getValueType(0).isVector() && 2482 "Vector handling of BFE not implemented"); 2483 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2484 if (!Width) 2485 break; 2486 2487 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2488 if (WidthVal == 0) 2489 return DAG.getConstant(0, DL, MVT::i32); 2490 2491 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2492 if (!Offset) 2493 break; 2494 2495 SDValue BitsFrom = N->getOperand(0); 2496 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2497 2498 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2499 2500 if (OffsetVal == 0) { 2501 // This is already sign / zero extended, so try to fold away extra BFEs. 2502 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2503 2504 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2505 if (OpSignBits >= SignBits) 2506 return BitsFrom; 2507 2508 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2509 if (Signed) { 2510 // This is a sign_extend_inreg. Replace it to take advantage of existing 2511 // DAG Combines. If not eliminated, we will match back to BFE during 2512 // selection. 2513 2514 // TODO: The sext_inreg of extended types ends, although we can could 2515 // handle them in a single BFE. 2516 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2517 DAG.getValueType(SmallVT)); 2518 } 2519 2520 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2521 } 2522 2523 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2524 if (Signed) { 2525 return constantFoldBFE<int32_t>(DAG, 2526 CVal->getSExtValue(), 2527 OffsetVal, 2528 WidthVal, 2529 DL); 2530 } 2531 2532 return constantFoldBFE<uint32_t>(DAG, 2533 CVal->getZExtValue(), 2534 OffsetVal, 2535 WidthVal, 2536 DL); 2537 } 2538 2539 if ((OffsetVal + WidthVal) >= 32) { 2540 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2541 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2542 BitsFrom, ShiftVal); 2543 } 2544 2545 if (BitsFrom.hasOneUse()) { 2546 APInt Demanded = APInt::getBitsSet(32, 2547 OffsetVal, 2548 OffsetVal + WidthVal); 2549 2550 APInt KnownZero, KnownOne; 2551 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2552 !DCI.isBeforeLegalizeOps()); 2553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2554 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2555 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2556 KnownZero, KnownOne, TLO)) { 2557 DCI.CommitTargetLoweringOpt(TLO); 2558 } 2559 } 2560 2561 break; 2562 } 2563 2564 case ISD::STORE: 2565 return performStoreCombine(N, DCI); 2566 } 2567 return SDValue(); 2568 } 2569 2570 //===----------------------------------------------------------------------===// 2571 // Helper functions 2572 //===----------------------------------------------------------------------===// 2573 2574 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2575 SelectionDAG &DAG, 2576 const Function *F, 2577 const SmallVectorImpl<ISD::InputArg> &Ins, 2578 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2579 2580 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2581 if (Ins[i].ArgVT == Ins[i].VT) { 2582 OrigIns.push_back(Ins[i]); 2583 continue; 2584 } 2585 2586 EVT VT; 2587 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2588 // Vector has been split into scalars. 2589 VT = Ins[i].ArgVT.getVectorElementType(); 2590 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2591 Ins[i].ArgVT.getVectorElementType() != 2592 Ins[i].VT.getVectorElementType()) { 2593 // Vector elements have been promoted 2594 VT = Ins[i].ArgVT; 2595 } else { 2596 // Vector has been spilt into smaller vectors. 2597 VT = Ins[i].VT; 2598 } 2599 2600 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2601 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2602 OrigIns.push_back(Arg); 2603 } 2604 } 2605 2606 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2607 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2608 return CFP->isExactlyValue(1.0); 2609 } 2610 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2611 return C->isAllOnesValue(); 2612 } 2613 return false; 2614 } 2615 2616 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2617 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2618 return CFP->getValueAPF().isZero(); 2619 } 2620 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2621 return C->isNullValue(); 2622 } 2623 return false; 2624 } 2625 2626 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2627 const TargetRegisterClass *RC, 2628 unsigned Reg, EVT VT) const { 2629 MachineFunction &MF = DAG.getMachineFunction(); 2630 MachineRegisterInfo &MRI = MF.getRegInfo(); 2631 unsigned VirtualRegister; 2632 if (!MRI.isLiveIn(Reg)) { 2633 VirtualRegister = MRI.createVirtualRegister(RC); 2634 MRI.addLiveIn(Reg, VirtualRegister); 2635 } else { 2636 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2637 } 2638 return DAG.getRegister(VirtualRegister, VT); 2639 } 2640 2641 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2642 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2643 uint64_t ArgOffset = MFI->ABIArgOffset; 2644 switch (Param) { 2645 case GRID_DIM: 2646 return ArgOffset; 2647 case GRID_OFFSET: 2648 return ArgOffset + 4; 2649 } 2650 llvm_unreachable("unexpected implicit parameter type"); 2651 } 2652 2653 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2654 2655 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2656 switch ((AMDGPUISD::NodeType)Opcode) { 2657 case AMDGPUISD::FIRST_NUMBER: break; 2658 // AMDIL DAG nodes 2659 NODE_NAME_CASE(CALL); 2660 NODE_NAME_CASE(UMUL); 2661 NODE_NAME_CASE(RET_FLAG); 2662 NODE_NAME_CASE(BRANCH_COND); 2663 2664 // AMDGPU DAG nodes 2665 NODE_NAME_CASE(DWORDADDR) 2666 NODE_NAME_CASE(FRACT) 2667 NODE_NAME_CASE(CLAMP) 2668 NODE_NAME_CASE(COS_HW) 2669 NODE_NAME_CASE(SIN_HW) 2670 NODE_NAME_CASE(FMAX_LEGACY) 2671 NODE_NAME_CASE(FMIN_LEGACY) 2672 NODE_NAME_CASE(FMAX3) 2673 NODE_NAME_CASE(SMAX3) 2674 NODE_NAME_CASE(UMAX3) 2675 NODE_NAME_CASE(FMIN3) 2676 NODE_NAME_CASE(SMIN3) 2677 NODE_NAME_CASE(UMIN3) 2678 NODE_NAME_CASE(URECIP) 2679 NODE_NAME_CASE(DIV_SCALE) 2680 NODE_NAME_CASE(DIV_FMAS) 2681 NODE_NAME_CASE(DIV_FIXUP) 2682 NODE_NAME_CASE(TRIG_PREOP) 2683 NODE_NAME_CASE(RCP) 2684 NODE_NAME_CASE(RSQ) 2685 NODE_NAME_CASE(RSQ_LEGACY) 2686 NODE_NAME_CASE(RSQ_CLAMPED) 2687 NODE_NAME_CASE(LDEXP) 2688 NODE_NAME_CASE(FP_CLASS) 2689 NODE_NAME_CASE(DOT4) 2690 NODE_NAME_CASE(CARRY) 2691 NODE_NAME_CASE(BORROW) 2692 NODE_NAME_CASE(BFE_U32) 2693 NODE_NAME_CASE(BFE_I32) 2694 NODE_NAME_CASE(BFI) 2695 NODE_NAME_CASE(BFM) 2696 NODE_NAME_CASE(BREV) 2697 NODE_NAME_CASE(MUL_U24) 2698 NODE_NAME_CASE(MUL_I24) 2699 NODE_NAME_CASE(MAD_U24) 2700 NODE_NAME_CASE(MAD_I24) 2701 NODE_NAME_CASE(TEXTURE_FETCH) 2702 NODE_NAME_CASE(EXPORT) 2703 NODE_NAME_CASE(CONST_ADDRESS) 2704 NODE_NAME_CASE(REGISTER_LOAD) 2705 NODE_NAME_CASE(REGISTER_STORE) 2706 NODE_NAME_CASE(LOAD_CONSTANT) 2707 NODE_NAME_CASE(LOAD_INPUT) 2708 NODE_NAME_CASE(SAMPLE) 2709 NODE_NAME_CASE(SAMPLEB) 2710 NODE_NAME_CASE(SAMPLED) 2711 NODE_NAME_CASE(SAMPLEL) 2712 NODE_NAME_CASE(CVT_F32_UBYTE0) 2713 NODE_NAME_CASE(CVT_F32_UBYTE1) 2714 NODE_NAME_CASE(CVT_F32_UBYTE2) 2715 NODE_NAME_CASE(CVT_F32_UBYTE3) 2716 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2717 NODE_NAME_CASE(CONST_DATA_PTR) 2718 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2719 NODE_NAME_CASE(SENDMSG) 2720 NODE_NAME_CASE(INTERP_MOV) 2721 NODE_NAME_CASE(INTERP_P1) 2722 NODE_NAME_CASE(INTERP_P2) 2723 NODE_NAME_CASE(STORE_MSKOR) 2724 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2725 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2726 } 2727 return nullptr; 2728 } 2729 2730 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2731 DAGCombinerInfo &DCI, 2732 unsigned &RefinementSteps, 2733 bool &UseOneConstNR) const { 2734 SelectionDAG &DAG = DCI.DAG; 2735 EVT VT = Operand.getValueType(); 2736 2737 if (VT == MVT::f32) { 2738 RefinementSteps = 0; 2739 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2740 } 2741 2742 // TODO: There is also f64 rsq instruction, but the documentation is less 2743 // clear on its precision. 2744 2745 return SDValue(); 2746 } 2747 2748 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2749 DAGCombinerInfo &DCI, 2750 unsigned &RefinementSteps) const { 2751 SelectionDAG &DAG = DCI.DAG; 2752 EVT VT = Operand.getValueType(); 2753 2754 if (VT == MVT::f32) { 2755 // Reciprocal, < 1 ulp error. 2756 // 2757 // This reciprocal approximation converges to < 0.5 ulp error with one 2758 // newton rhapson performed with two fused multiple adds (FMAs). 2759 2760 RefinementSteps = 0; 2761 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2762 } 2763 2764 // TODO: There is also f64 rcp instruction, but the documentation is less 2765 // clear on its precision. 2766 2767 return SDValue(); 2768 } 2769 2770 static void computeKnownBitsForMinMax(const SDValue Op0, 2771 const SDValue Op1, 2772 APInt &KnownZero, 2773 APInt &KnownOne, 2774 const SelectionDAG &DAG, 2775 unsigned Depth) { 2776 APInt Op0Zero, Op0One; 2777 APInt Op1Zero, Op1One; 2778 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); 2779 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); 2780 2781 KnownZero = Op0Zero & Op1Zero; 2782 KnownOne = Op0One & Op1One; 2783 } 2784 2785 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2786 const SDValue Op, 2787 APInt &KnownZero, 2788 APInt &KnownOne, 2789 const SelectionDAG &DAG, 2790 unsigned Depth) const { 2791 2792 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2793 2794 APInt KnownZero2; 2795 APInt KnownOne2; 2796 unsigned Opc = Op.getOpcode(); 2797 2798 switch (Opc) { 2799 default: 2800 break; 2801 case ISD::INTRINSIC_WO_CHAIN: { 2802 // FIXME: The intrinsic should just use the node. 2803 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 2804 case AMDGPUIntrinsic::AMDGPU_imax: 2805 case AMDGPUIntrinsic::AMDGPU_umax: 2806 case AMDGPUIntrinsic::AMDGPU_imin: 2807 case AMDGPUIntrinsic::AMDGPU_umin: 2808 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), 2809 KnownZero, KnownOne, DAG, Depth); 2810 break; 2811 default: 2812 break; 2813 } 2814 2815 break; 2816 } 2817 case AMDGPUISD::CARRY: 2818 case AMDGPUISD::BORROW: { 2819 KnownZero = APInt::getHighBitsSet(32, 31); 2820 break; 2821 } 2822 2823 case AMDGPUISD::BFE_I32: 2824 case AMDGPUISD::BFE_U32: { 2825 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2826 if (!CWidth) 2827 return; 2828 2829 unsigned BitWidth = 32; 2830 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2831 2832 if (Opc == AMDGPUISD::BFE_U32) 2833 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2834 2835 break; 2836 } 2837 } 2838 } 2839 2840 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2841 SDValue Op, 2842 const SelectionDAG &DAG, 2843 unsigned Depth) const { 2844 switch (Op.getOpcode()) { 2845 case AMDGPUISD::BFE_I32: { 2846 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2847 if (!Width) 2848 return 1; 2849 2850 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2851 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2852 if (!Offset || !Offset->isNullValue()) 2853 return SignBits; 2854 2855 // TODO: Could probably figure something out with non-0 offsets. 2856 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2857 return std::max(SignBits, Op0SignBits); 2858 } 2859 2860 case AMDGPUISD::BFE_U32: { 2861 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2862 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2863 } 2864 2865 case AMDGPUISD::CARRY: 2866 case AMDGPUISD::BORROW: 2867 return 31; 2868 2869 default: 2870 return 1; 2871 } 2872 } 2873