1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 287 else 288 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 289 290 if (!Subtarget->hasFFBL()) 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 292 293 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 294 295 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 296 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 297 298 static const MVT::SimpleValueType VectorIntTypes[] = { 299 MVT::v2i32, MVT::v4i32 300 }; 301 302 for (MVT VT : VectorIntTypes) { 303 // Expand the following operations for the current type by default. 304 setOperationAction(ISD::ADD, VT, Expand); 305 setOperationAction(ISD::AND, VT, Expand); 306 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 307 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 308 setOperationAction(ISD::MUL, VT, Expand); 309 setOperationAction(ISD::OR, VT, Expand); 310 setOperationAction(ISD::SHL, VT, Expand); 311 setOperationAction(ISD::SRA, VT, Expand); 312 setOperationAction(ISD::SRL, VT, Expand); 313 setOperationAction(ISD::ROTL, VT, Expand); 314 setOperationAction(ISD::ROTR, VT, Expand); 315 setOperationAction(ISD::SUB, VT, Expand); 316 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 317 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 318 setOperationAction(ISD::SDIV, VT, Expand); 319 setOperationAction(ISD::UDIV, VT, Expand); 320 setOperationAction(ISD::SREM, VT, Expand); 321 setOperationAction(ISD::UREM, VT, Expand); 322 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 323 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 324 setOperationAction(ISD::SDIVREM, VT, Custom); 325 setOperationAction(ISD::UDIVREM, VT, Expand); 326 setOperationAction(ISD::ADDC, VT, Expand); 327 setOperationAction(ISD::SUBC, VT, Expand); 328 setOperationAction(ISD::ADDE, VT, Expand); 329 setOperationAction(ISD::SUBE, VT, Expand); 330 setOperationAction(ISD::SELECT, VT, Expand); 331 setOperationAction(ISD::VSELECT, VT, Expand); 332 setOperationAction(ISD::SELECT_CC, VT, Expand); 333 setOperationAction(ISD::XOR, VT, Expand); 334 setOperationAction(ISD::BSWAP, VT, Expand); 335 setOperationAction(ISD::CTPOP, VT, Expand); 336 setOperationAction(ISD::CTTZ, VT, Expand); 337 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 338 setOperationAction(ISD::CTLZ, VT, Expand); 339 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 340 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 341 } 342 343 static const MVT::SimpleValueType FloatVectorTypes[] = { 344 MVT::v2f32, MVT::v4f32 345 }; 346 347 for (MVT VT : FloatVectorTypes) { 348 setOperationAction(ISD::FABS, VT, Expand); 349 setOperationAction(ISD::FMINNUM, VT, Expand); 350 setOperationAction(ISD::FMAXNUM, VT, Expand); 351 setOperationAction(ISD::FADD, VT, Expand); 352 setOperationAction(ISD::FCEIL, VT, Expand); 353 setOperationAction(ISD::FCOS, VT, Expand); 354 setOperationAction(ISD::FDIV, VT, Expand); 355 setOperationAction(ISD::FEXP2, VT, Expand); 356 setOperationAction(ISD::FLOG2, VT, Expand); 357 setOperationAction(ISD::FREM, VT, Expand); 358 setOperationAction(ISD::FPOW, VT, Expand); 359 setOperationAction(ISD::FFLOOR, VT, Expand); 360 setOperationAction(ISD::FTRUNC, VT, Expand); 361 setOperationAction(ISD::FMUL, VT, Expand); 362 setOperationAction(ISD::FMA, VT, Expand); 363 setOperationAction(ISD::FRINT, VT, Expand); 364 setOperationAction(ISD::FNEARBYINT, VT, Expand); 365 setOperationAction(ISD::FSQRT, VT, Expand); 366 setOperationAction(ISD::FSIN, VT, Expand); 367 setOperationAction(ISD::FSUB, VT, Expand); 368 setOperationAction(ISD::FNEG, VT, Expand); 369 setOperationAction(ISD::SELECT, VT, Expand); 370 setOperationAction(ISD::VSELECT, VT, Expand); 371 setOperationAction(ISD::SELECT_CC, VT, Expand); 372 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 373 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 374 } 375 376 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 377 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 378 379 setTargetDAGCombine(ISD::AND); 380 setTargetDAGCombine(ISD::SHL); 381 setTargetDAGCombine(ISD::SRA); 382 setTargetDAGCombine(ISD::SRL); 383 setTargetDAGCombine(ISD::MUL); 384 setTargetDAGCombine(ISD::SELECT); 385 setTargetDAGCombine(ISD::SELECT_CC); 386 setTargetDAGCombine(ISD::STORE); 387 388 setTargetDAGCombine(ISD::FADD); 389 setTargetDAGCombine(ISD::FSUB); 390 391 setBooleanContents(ZeroOrNegativeOneBooleanContent); 392 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 393 394 setSchedulingPreference(Sched::RegPressure); 395 setJumpIsExpensive(true); 396 397 // SI at least has hardware support for floating point exceptions, but no way 398 // of using or handling them is implemented. They are also optional in OpenCL 399 // (Section 7.3) 400 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 401 402 setSelectIsExpensive(false); 403 PredictableSelectIsExpensive = false; 404 405 setFsqrtIsCheap(true); 406 407 // We want to find all load dependencies for long chains of stores to enable 408 // merging into very wide vectors. The problem is with vectors with > 4 409 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 410 // vectors are a legal type, even though we have to split the loads 411 // usually. When we can more precisely specify load legality per address 412 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 413 // smarter so that they can figure out what to do in 2 iterations without all 414 // N > 4 stores on the same chain. 415 GatherAllAliasesMaxDepth = 16; 416 417 // FIXME: Need to really handle these. 418 MaxStoresPerMemcpy = 4096; 419 MaxStoresPerMemmove = 4096; 420 MaxStoresPerMemset = 4096; 421 } 422 423 //===----------------------------------------------------------------------===// 424 // Target Information 425 //===----------------------------------------------------------------------===// 426 427 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 428 return MVT::i32; 429 } 430 431 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 432 return true; 433 } 434 435 // The backend supports 32 and 64 bit floating point immediates. 436 // FIXME: Why are we reporting vectors of FP immediates as legal? 437 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 438 EVT ScalarVT = VT.getScalarType(); 439 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 440 } 441 442 // We don't want to shrink f64 / f32 constants. 443 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 444 EVT ScalarVT = VT.getScalarType(); 445 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 446 } 447 448 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 449 ISD::LoadExtType, 450 EVT NewVT) const { 451 452 unsigned NewSize = NewVT.getStoreSizeInBits(); 453 454 // If we are reducing to a 32-bit load, this is always better. 455 if (NewSize == 32) 456 return true; 457 458 EVT OldVT = N->getValueType(0); 459 unsigned OldSize = OldVT.getStoreSizeInBits(); 460 461 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 462 // extloads, so doing one requires using a buffer_load. In cases where we 463 // still couldn't use a scalar load, using the wider load shouldn't really 464 // hurt anything. 465 466 // If the old size already had to be an extload, there's no harm in continuing 467 // to reduce the width. 468 return (OldSize < 32); 469 } 470 471 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 472 EVT CastTy) const { 473 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 474 return true; 475 476 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 477 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 478 479 return ((LScalarSize <= CastScalarSize) || 480 (CastScalarSize >= 32) || 481 (LScalarSize < 32)); 482 } 483 484 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 485 // profitable with the expansion for 64-bit since it's generally good to 486 // speculate things. 487 // FIXME: These should really have the size as a parameter. 488 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 489 return true; 490 } 491 492 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 493 return true; 494 } 495 496 //===---------------------------------------------------------------------===// 497 // Target Properties 498 //===---------------------------------------------------------------------===// 499 500 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 501 assert(VT.isFloatingPoint()); 502 return VT == MVT::f32 || VT == MVT::f64; 503 } 504 505 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 506 assert(VT.isFloatingPoint()); 507 return VT == MVT::f32 || VT == MVT::f64; 508 } 509 510 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 511 unsigned NumElem, 512 unsigned AS) const { 513 return true; 514 } 515 516 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 517 // There are few operations which truly have vector input operands. Any vector 518 // operation is going to involve operations on each component, and a 519 // build_vector will be a copy per element, so it always makes sense to use a 520 // build_vector input in place of the extracted element to avoid a copy into a 521 // super register. 522 // 523 // We should probably only do this if all users are extracts only, but this 524 // should be the common case. 525 return true; 526 } 527 528 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 529 // Truncate is just accessing a subregister. 530 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 531 } 532 533 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 534 // Truncate is just accessing a subregister. 535 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 536 (Dest->getPrimitiveSizeInBits() % 32 == 0); 537 } 538 539 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 540 unsigned SrcSize = Src->getScalarSizeInBits(); 541 unsigned DestSize = Dest->getScalarSizeInBits(); 542 543 return SrcSize == 32 && DestSize == 64; 544 } 545 546 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 547 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 548 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 549 // this will enable reducing 64-bit operations the 32-bit, which is always 550 // good. 551 return Src == MVT::i32 && Dest == MVT::i64; 552 } 553 554 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 555 return isZExtFree(Val.getValueType(), VT2); 556 } 557 558 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 559 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 560 // limited number of native 64-bit operations. Shrinking an operation to fit 561 // in a single 32-bit register should always be helpful. As currently used, 562 // this is much less general than the name suggests, and is only used in 563 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 564 // not profitable, and may actually be harmful. 565 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 566 } 567 568 //===---------------------------------------------------------------------===// 569 // TargetLowering Callbacks 570 //===---------------------------------------------------------------------===// 571 572 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 573 const SmallVectorImpl<ISD::InputArg> &Ins) const { 574 575 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 576 } 577 578 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 579 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 580 581 State.AnalyzeReturn(Outs, RetCC_SI); 582 } 583 584 SDValue AMDGPUTargetLowering::LowerReturn( 585 SDValue Chain, 586 CallingConv::ID CallConv, 587 bool isVarArg, 588 const SmallVectorImpl<ISD::OutputArg> &Outs, 589 const SmallVectorImpl<SDValue> &OutVals, 590 SDLoc DL, SelectionDAG &DAG) const { 591 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 592 } 593 594 //===---------------------------------------------------------------------===// 595 // Target specific lowering 596 //===---------------------------------------------------------------------===// 597 598 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 599 SmallVectorImpl<SDValue> &InVals) const { 600 SDValue Callee = CLI.Callee; 601 SelectionDAG &DAG = CLI.DAG; 602 603 const Function &Fn = *DAG.getMachineFunction().getFunction(); 604 605 StringRef FuncName("<unknown>"); 606 607 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 608 FuncName = G->getSymbol(); 609 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 610 FuncName = G->getGlobal()->getName(); 611 612 DiagnosticInfoUnsupported NoCalls( 613 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 614 DAG.getContext()->diagnose(NoCalls); 615 return SDValue(); 616 } 617 618 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 619 SelectionDAG &DAG) const { 620 const Function &Fn = *DAG.getMachineFunction().getFunction(); 621 622 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 623 SDLoc(Op).getDebugLoc()); 624 DAG.getContext()->diagnose(NoDynamicAlloca); 625 return SDValue(); 626 } 627 628 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 629 SelectionDAG &DAG) const { 630 switch (Op.getOpcode()) { 631 default: 632 Op.getNode()->dump(); 633 llvm_unreachable("Custom lowering code for this" 634 "instruction is not implemented yet!"); 635 break; 636 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 637 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 638 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 639 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 640 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 641 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 642 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 643 case ISD::FREM: return LowerFREM(Op, DAG); 644 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 645 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 646 case ISD::FRINT: return LowerFRINT(Op, DAG); 647 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 648 case ISD::FROUND: return LowerFROUND(Op, DAG); 649 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 650 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 651 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 652 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 653 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 654 case ISD::CTLZ: 655 case ISD::CTLZ_ZERO_UNDEF: 656 return LowerCTLZ(Op, DAG); 657 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 658 } 659 return Op; 660 } 661 662 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 663 SmallVectorImpl<SDValue> &Results, 664 SelectionDAG &DAG) const { 665 switch (N->getOpcode()) { 666 case ISD::SIGN_EXTEND_INREG: 667 // Different parts of legalization seem to interpret which type of 668 // sign_extend_inreg is the one to check for custom lowering. The extended 669 // from type is what really matters, but some places check for custom 670 // lowering of the result type. This results in trying to use 671 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 672 // nothing here and let the illegal result integer be handled normally. 673 return; 674 default: 675 return; 676 } 677 } 678 679 // FIXME: This implements accesses to initialized globals in the constant 680 // address space by copying them to private and accessing that. It does not 681 // properly handle illegal types or vectors. The private vector loads are not 682 // scalarized, and the illegal scalars hit an assertion. This technique will not 683 // work well with large initializers, and this should eventually be 684 // removed. Initialized globals should be placed into a data section that the 685 // runtime will load into a buffer before the kernel is executed. Uses of the 686 // global need to be replaced with a pointer loaded from an implicit kernel 687 // argument into this buffer holding the copy of the data, which will remove the 688 // need for any of this. 689 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 690 const GlobalValue *GV, 691 const SDValue &InitPtr, 692 SDValue Chain, 693 SelectionDAG &DAG) const { 694 const DataLayout &TD = DAG.getDataLayout(); 695 SDLoc DL(InitPtr); 696 Type *InitTy = Init->getType(); 697 698 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 699 EVT VT = EVT::getEVT(InitTy); 700 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 701 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 702 MachinePointerInfo(UndefValue::get(PtrTy)), false, 703 false, TD.getPrefTypeAlignment(InitTy)); 704 } 705 706 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 707 EVT VT = EVT::getEVT(CFP->getType()); 708 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 709 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 710 MachinePointerInfo(UndefValue::get(PtrTy)), false, 711 false, TD.getPrefTypeAlignment(CFP->getType())); 712 } 713 714 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 715 const StructLayout *SL = TD.getStructLayout(ST); 716 717 EVT PtrVT = InitPtr.getValueType(); 718 SmallVector<SDValue, 8> Chains; 719 720 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 721 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 722 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 723 724 Constant *Elt = Init->getAggregateElement(I); 725 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 726 } 727 728 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 729 } 730 731 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 732 EVT PtrVT = InitPtr.getValueType(); 733 734 unsigned NumElements; 735 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 736 NumElements = AT->getNumElements(); 737 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 738 NumElements = VT->getNumElements(); 739 else 740 llvm_unreachable("Unexpected type"); 741 742 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 743 SmallVector<SDValue, 8> Chains; 744 for (unsigned i = 0; i < NumElements; ++i) { 745 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 746 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 747 748 Constant *Elt = Init->getAggregateElement(i); 749 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 750 } 751 752 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 753 } 754 755 if (isa<UndefValue>(Init)) { 756 EVT VT = EVT::getEVT(InitTy); 757 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 758 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 759 MachinePointerInfo(UndefValue::get(PtrTy)), false, 760 false, TD.getPrefTypeAlignment(InitTy)); 761 } 762 763 Init->dump(); 764 llvm_unreachable("Unhandled constant initializer"); 765 } 766 767 static bool hasDefinedInitializer(const GlobalValue *GV) { 768 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 769 if (!GVar || !GVar->hasInitializer()) 770 return false; 771 772 if (isa<UndefValue>(GVar->getInitializer())) 773 return false; 774 775 return true; 776 } 777 778 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 779 SDValue Op, 780 SelectionDAG &DAG) const { 781 782 const DataLayout &DL = DAG.getDataLayout(); 783 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 784 const GlobalValue *GV = G->getGlobal(); 785 786 switch (G->getAddressSpace()) { 787 case AMDGPUAS::LOCAL_ADDRESS: { 788 // XXX: What does the value of G->getOffset() mean? 789 assert(G->getOffset() == 0 && 790 "Do not know what to do with an non-zero offset"); 791 792 // TODO: We could emit code to handle the initialization somewhere. 793 if (hasDefinedInitializer(GV)) 794 break; 795 796 unsigned Offset; 797 if (MFI->LocalMemoryObjects.count(GV) == 0) { 798 unsigned Align = GV->getAlignment(); 799 if (Align == 0) 800 Align = DL.getABITypeAlignment(GV->getValueType()); 801 802 /// TODO: We should sort these to minimize wasted space due to alignment 803 /// padding. Currently the padding is decided by the first encountered use 804 /// during lowering. 805 Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align); 806 MFI->LocalMemoryObjects[GV] = Offset; 807 MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType()); 808 } else { 809 Offset = MFI->LocalMemoryObjects[GV]; 810 } 811 812 return DAG.getConstant(Offset, SDLoc(Op), 813 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 814 } 815 case AMDGPUAS::CONSTANT_ADDRESS: { 816 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 817 Type *EltType = GV->getValueType(); 818 unsigned Size = DL.getTypeAllocSize(EltType); 819 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 820 821 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 822 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 823 824 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 825 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 826 827 const GlobalVariable *Var = cast<GlobalVariable>(GV); 828 if (!Var->hasInitializer()) { 829 // This has no use, but bugpoint will hit it. 830 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 831 } 832 833 const Constant *Init = Var->getInitializer(); 834 SmallVector<SDNode*, 8> WorkList; 835 836 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 837 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 838 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 839 continue; 840 WorkList.push_back(*I); 841 } 842 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 843 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 844 E = WorkList.end(); I != E; ++I) { 845 SmallVector<SDValue, 8> Ops; 846 Ops.push_back(Chain); 847 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 848 Ops.push_back((*I)->getOperand(i)); 849 } 850 DAG.UpdateNodeOperands(*I, Ops); 851 } 852 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 853 } 854 } 855 856 const Function &Fn = *DAG.getMachineFunction().getFunction(); 857 DiagnosticInfoUnsupported BadInit( 858 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 859 DAG.getContext()->diagnose(BadInit); 860 return SDValue(); 861 } 862 863 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 864 SelectionDAG &DAG) const { 865 SmallVector<SDValue, 8> Args; 866 867 for (const SDUse &U : Op->ops()) 868 DAG.ExtractVectorElements(U.get(), Args); 869 870 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 871 } 872 873 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 874 SelectionDAG &DAG) const { 875 876 SmallVector<SDValue, 8> Args; 877 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 878 EVT VT = Op.getValueType(); 879 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 880 VT.getVectorNumElements()); 881 882 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 883 } 884 885 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 886 SelectionDAG &DAG) const { 887 888 MachineFunction &MF = DAG.getMachineFunction(); 889 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 890 891 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 892 893 unsigned FrameIndex = FIN->getIndex(); 894 unsigned IgnoredFrameReg; 895 unsigned Offset = 896 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 897 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 898 Op.getValueType()); 899 } 900 901 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 902 SelectionDAG &DAG) const { 903 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 904 SDLoc DL(Op); 905 EVT VT = Op.getValueType(); 906 907 switch (IntrinsicID) { 908 default: return Op; 909 case AMDGPUIntrinsic::AMDGPU_clamp: 910 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 911 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 912 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 913 914 case Intrinsic::AMDGPU_ldexp: // Legacy name 915 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 916 Op.getOperand(2)); 917 918 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 919 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 920 Op.getOperand(1), 921 Op.getOperand(2), 922 Op.getOperand(3)); 923 924 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 925 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 926 Op.getOperand(1), 927 Op.getOperand(2), 928 Op.getOperand(3)); 929 930 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 931 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 932 933 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 934 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 935 } 936 } 937 938 /// \brief Generate Min/Max node 939 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 940 EVT VT, 941 SDValue LHS, 942 SDValue RHS, 943 SDValue True, 944 SDValue False, 945 SDValue CC, 946 DAGCombinerInfo &DCI) const { 947 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 948 return SDValue(); 949 950 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 951 return SDValue(); 952 953 SelectionDAG &DAG = DCI.DAG; 954 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 955 switch (CCOpcode) { 956 case ISD::SETOEQ: 957 case ISD::SETONE: 958 case ISD::SETUNE: 959 case ISD::SETNE: 960 case ISD::SETUEQ: 961 case ISD::SETEQ: 962 case ISD::SETFALSE: 963 case ISD::SETFALSE2: 964 case ISD::SETTRUE: 965 case ISD::SETTRUE2: 966 case ISD::SETUO: 967 case ISD::SETO: 968 break; 969 case ISD::SETULE: 970 case ISD::SETULT: { 971 if (LHS == True) 972 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 973 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 974 } 975 case ISD::SETOLE: 976 case ISD::SETOLT: 977 case ISD::SETLE: 978 case ISD::SETLT: { 979 // Ordered. Assume ordered for undefined. 980 981 // Only do this after legalization to avoid interfering with other combines 982 // which might occur. 983 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 984 !DCI.isCalledByLegalizer()) 985 return SDValue(); 986 987 // We need to permute the operands to get the correct NaN behavior. The 988 // selected operand is the second one based on the failing compare with NaN, 989 // so permute it based on the compare type the hardware uses. 990 if (LHS == True) 991 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 992 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 993 } 994 case ISD::SETUGE: 995 case ISD::SETUGT: { 996 if (LHS == True) 997 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 998 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 999 } 1000 case ISD::SETGT: 1001 case ISD::SETGE: 1002 case ISD::SETOGE: 1003 case ISD::SETOGT: { 1004 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1005 !DCI.isCalledByLegalizer()) 1006 return SDValue(); 1007 1008 if (LHS == True) 1009 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1010 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1011 } 1012 case ISD::SETCC_INVALID: 1013 llvm_unreachable("Invalid setcc condcode!"); 1014 } 1015 return SDValue(); 1016 } 1017 1018 std::pair<SDValue, SDValue> 1019 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1020 SDLoc SL(Op); 1021 1022 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1023 1024 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1025 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1026 1027 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1028 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1029 1030 return std::make_pair(Lo, Hi); 1031 } 1032 1033 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1034 SDLoc SL(Op); 1035 1036 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1037 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1038 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1039 } 1040 1041 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1042 SDLoc SL(Op); 1043 1044 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1045 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1046 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1047 } 1048 1049 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1050 SelectionDAG &DAG) const { 1051 LoadSDNode *Load = cast<LoadSDNode>(Op); 1052 EVT MemVT = Load->getMemoryVT(); 1053 EVT MemEltVT = MemVT.getVectorElementType(); 1054 1055 EVT LoadVT = Op.getValueType(); 1056 EVT EltVT = LoadVT.getVectorElementType(); 1057 EVT PtrVT = Load->getBasePtr().getValueType(); 1058 1059 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1060 SmallVector<SDValue, 8> Loads; 1061 SmallVector<SDValue, 8> Chains; 1062 1063 SDLoc SL(Op); 1064 unsigned BaseAlign = Load->getAlignment(); 1065 unsigned MemEltSize = MemEltVT.getStoreSize(); 1066 1067 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1068 1069 for (unsigned i = 0; i < NumElts; ++i) { 1070 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1071 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1072 1073 SDValue NewLoad 1074 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1075 Load->getChain(), Ptr, 1076 SrcValue.getWithOffset(i * MemEltSize), 1077 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1078 Load->isInvariant(), MinAlign(BaseAlign, i * MemEltSize)); 1079 Loads.push_back(NewLoad.getValue(0)); 1080 Chains.push_back(NewLoad.getValue(1)); 1081 } 1082 1083 SDValue Ops[] = { 1084 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1085 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1086 }; 1087 1088 return DAG.getMergeValues(Ops, SL); 1089 } 1090 1091 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1092 SelectionDAG &DAG) const { 1093 EVT VT = Op.getValueType(); 1094 1095 // If this is a 2 element vector, we really want to scalarize and not create 1096 // weird 1 element vectors. 1097 if (VT.getVectorNumElements() == 2) 1098 return ScalarizeVectorLoad(Op, DAG); 1099 1100 LoadSDNode *Load = cast<LoadSDNode>(Op); 1101 SDValue BasePtr = Load->getBasePtr(); 1102 EVT PtrVT = BasePtr.getValueType(); 1103 EVT MemVT = Load->getMemoryVT(); 1104 SDLoc SL(Op); 1105 1106 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1107 1108 EVT LoVT, HiVT; 1109 EVT LoMemVT, HiMemVT; 1110 SDValue Lo, Hi; 1111 1112 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1113 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1114 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1115 1116 unsigned Size = LoMemVT.getStoreSize(); 1117 unsigned BaseAlign = Load->getAlignment(); 1118 unsigned HiAlign = MinAlign(BaseAlign, Size); 1119 1120 SDValue LoLoad 1121 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1122 Load->getChain(), BasePtr, 1123 SrcValue, 1124 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1125 Load->isInvariant(), BaseAlign); 1126 1127 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1128 DAG.getConstant(Size, SL, PtrVT)); 1129 1130 SDValue HiLoad 1131 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1132 Load->getChain(), HiPtr, 1133 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1134 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1135 Load->isInvariant(), HiAlign); 1136 1137 SDValue Ops[] = { 1138 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1139 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1140 LoLoad.getValue(1), HiLoad.getValue(1)) 1141 }; 1142 1143 return DAG.getMergeValues(Ops, SL); 1144 } 1145 1146 // FIXME: This isn't doing anything for SI. This should be used in a target 1147 // combine during type legalization. 1148 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1149 SelectionDAG &DAG) const { 1150 StoreSDNode *Store = cast<StoreSDNode>(Op); 1151 EVT MemVT = Store->getMemoryVT(); 1152 unsigned MemBits = MemVT.getSizeInBits(); 1153 1154 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1155 // truncating store into an i32 store. 1156 // XXX: We could also handle optimize other vector bitwidths. 1157 if (!MemVT.isVector() || MemBits > 32) { 1158 return SDValue(); 1159 } 1160 1161 SDLoc DL(Op); 1162 SDValue Value = Store->getValue(); 1163 EVT VT = Value.getValueType(); 1164 EVT ElemVT = VT.getVectorElementType(); 1165 SDValue Ptr = Store->getBasePtr(); 1166 EVT MemEltVT = MemVT.getVectorElementType(); 1167 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1168 unsigned MemNumElements = MemVT.getVectorNumElements(); 1169 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1170 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1171 1172 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1173 1174 SDValue PackedValue; 1175 for (unsigned i = 0; i < MemNumElements; ++i) { 1176 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1177 DAG.getConstant(i, DL, MVT::i32)); 1178 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1179 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1180 1181 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1182 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1183 1184 if (i == 0) { 1185 PackedValue = Elt; 1186 } else { 1187 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1188 } 1189 } 1190 1191 if (PackedSize < 32) { 1192 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1193 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1194 Store->getMemOperand()->getPointerInfo(), 1195 PackedVT, 1196 Store->isNonTemporal(), Store->isVolatile(), 1197 Store->getAlignment()); 1198 } 1199 1200 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1201 Store->getMemOperand()->getPointerInfo(), 1202 Store->isVolatile(), Store->isNonTemporal(), 1203 Store->getAlignment()); 1204 } 1205 1206 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1207 SelectionDAG &DAG) const { 1208 StoreSDNode *Store = cast<StoreSDNode>(Op); 1209 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1210 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1211 EVT PtrVT = Store->getBasePtr().getValueType(); 1212 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1213 SDLoc SL(Op); 1214 1215 SmallVector<SDValue, 8> Chains; 1216 1217 unsigned BaseAlign = Store->getAlignment(); 1218 unsigned EltSize = MemEltVT.getStoreSize(); 1219 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1220 1221 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1222 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1223 Store->getValue(), 1224 DAG.getConstant(i, SL, MVT::i32)); 1225 1226 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1227 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1228 SDValue NewStore = 1229 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1230 SrcValue.getWithOffset(i * EltSize), 1231 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1232 MinAlign(BaseAlign, i * EltSize)); 1233 Chains.push_back(NewStore); 1234 } 1235 1236 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1237 } 1238 1239 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1240 SelectionDAG &DAG) const { 1241 StoreSDNode *Store = cast<StoreSDNode>(Op); 1242 SDValue Val = Store->getValue(); 1243 EVT VT = Val.getValueType(); 1244 1245 // If this is a 2 element vector, we really want to scalarize and not create 1246 // weird 1 element vectors. 1247 if (VT.getVectorNumElements() == 2) 1248 return ScalarizeVectorStore(Op, DAG); 1249 1250 EVT MemVT = Store->getMemoryVT(); 1251 SDValue Chain = Store->getChain(); 1252 SDValue BasePtr = Store->getBasePtr(); 1253 SDLoc SL(Op); 1254 1255 EVT LoVT, HiVT; 1256 EVT LoMemVT, HiMemVT; 1257 SDValue Lo, Hi; 1258 1259 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1260 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1261 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1262 1263 EVT PtrVT = BasePtr.getValueType(); 1264 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1265 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1266 PtrVT)); 1267 1268 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1269 unsigned BaseAlign = Store->getAlignment(); 1270 unsigned Size = LoMemVT.getStoreSize(); 1271 unsigned HiAlign = MinAlign(BaseAlign, Size); 1272 1273 SDValue LoStore 1274 = DAG.getTruncStore(Chain, SL, Lo, 1275 BasePtr, 1276 SrcValue, 1277 LoMemVT, 1278 Store->isNonTemporal(), 1279 Store->isVolatile(), 1280 BaseAlign); 1281 SDValue HiStore 1282 = DAG.getTruncStore(Chain, SL, Hi, 1283 HiPtr, 1284 SrcValue.getWithOffset(Size), 1285 HiMemVT, 1286 Store->isNonTemporal(), 1287 Store->isVolatile(), 1288 HiAlign); 1289 1290 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1291 } 1292 1293 // This is a shortcut for integer division because we have fast i32<->f32 1294 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1295 // float is enough to accurately represent up to a 24-bit integer. 1296 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1297 SDLoc DL(Op); 1298 EVT VT = Op.getValueType(); 1299 SDValue LHS = Op.getOperand(0); 1300 SDValue RHS = Op.getOperand(1); 1301 MVT IntVT = MVT::i32; 1302 MVT FltVT = MVT::f32; 1303 1304 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1305 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1306 1307 if (VT.isVector()) { 1308 unsigned NElts = VT.getVectorNumElements(); 1309 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1310 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1311 } 1312 1313 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1314 1315 SDValue jq = DAG.getConstant(1, DL, IntVT); 1316 1317 if (sign) { 1318 // char|short jq = ia ^ ib; 1319 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1320 1321 // jq = jq >> (bitsize - 2) 1322 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1323 DAG.getConstant(BitSize - 2, DL, VT)); 1324 1325 // jq = jq | 0x1 1326 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1327 1328 // jq = (int)jq 1329 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1330 } 1331 1332 // int ia = (int)LHS; 1333 SDValue ia = sign ? 1334 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1335 1336 // int ib, (int)RHS; 1337 SDValue ib = sign ? 1338 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1339 1340 // float fa = (float)ia; 1341 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1342 1343 // float fb = (float)ib; 1344 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1345 1346 // TODO: Should this propagate fast-math-flags? 1347 // float fq = native_divide(fa, fb); 1348 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1349 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1350 1351 // fq = trunc(fq); 1352 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1353 1354 // float fqneg = -fq; 1355 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1356 1357 // float fr = mad(fqneg, fb, fa); 1358 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1359 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1360 1361 // int iq = (int)fq; 1362 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1363 1364 // fr = fabs(fr); 1365 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1366 1367 // fb = fabs(fb); 1368 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1369 1370 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1371 1372 // int cv = fr >= fb; 1373 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1374 1375 // jq = (cv ? jq : 0); 1376 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1377 1378 // dst = trunc/extend to legal type 1379 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1380 1381 // dst = iq + jq; 1382 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1383 1384 // Rem needs compensation, it's easier to recompute it 1385 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1386 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1387 1388 SDValue Res[2] = { 1389 Div, 1390 Rem 1391 }; 1392 return DAG.getMergeValues(Res, DL); 1393 } 1394 1395 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1396 SelectionDAG &DAG, 1397 SmallVectorImpl<SDValue> &Results) const { 1398 assert(Op.getValueType() == MVT::i64); 1399 1400 SDLoc DL(Op); 1401 EVT VT = Op.getValueType(); 1402 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1403 1404 SDValue one = DAG.getConstant(1, DL, HalfVT); 1405 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1406 1407 //HiLo split 1408 SDValue LHS = Op.getOperand(0); 1409 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1410 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1411 1412 SDValue RHS = Op.getOperand(1); 1413 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1414 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1415 1416 if (VT == MVT::i64 && 1417 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1418 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1419 1420 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1421 LHS_Lo, RHS_Lo); 1422 1423 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1424 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1425 Results.push_back(DIV); 1426 Results.push_back(REM); 1427 return; 1428 } 1429 1430 // Get Speculative values 1431 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1432 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1433 1434 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1435 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1436 1437 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1438 SDValue DIV_Lo = zero; 1439 1440 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1441 1442 for (unsigned i = 0; i < halfBitWidth; ++i) { 1443 const unsigned bitPos = halfBitWidth - i - 1; 1444 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1445 // Get value of high bit 1446 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1447 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1448 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1449 1450 // Shift 1451 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1452 // Add LHS high bit 1453 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1454 1455 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1456 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1457 1458 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1459 1460 // Update REM 1461 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1462 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1463 } 1464 1465 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1466 Results.push_back(DIV); 1467 Results.push_back(REM); 1468 } 1469 1470 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1471 SelectionDAG &DAG) const { 1472 SDLoc DL(Op); 1473 EVT VT = Op.getValueType(); 1474 1475 if (VT == MVT::i64) { 1476 SmallVector<SDValue, 2> Results; 1477 LowerUDIVREM64(Op, DAG, Results); 1478 return DAG.getMergeValues(Results, DL); 1479 } 1480 1481 SDValue Num = Op.getOperand(0); 1482 SDValue Den = Op.getOperand(1); 1483 1484 if (VT == MVT::i32) { 1485 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1486 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1487 // TODO: We technically could do this for i64, but shouldn't that just be 1488 // handled by something generally reducing 64-bit division on 32-bit 1489 // values to 32-bit? 1490 return LowerDIVREM24(Op, DAG, false); 1491 } 1492 } 1493 1494 // RCP = URECIP(Den) = 2^32 / Den + e 1495 // e is rounding error. 1496 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1497 1498 // RCP_LO = mul(RCP, Den) */ 1499 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1500 1501 // RCP_HI = mulhu (RCP, Den) */ 1502 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1503 1504 // NEG_RCP_LO = -RCP_LO 1505 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1506 RCP_LO); 1507 1508 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1509 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1510 NEG_RCP_LO, RCP_LO, 1511 ISD::SETEQ); 1512 // Calculate the rounding error from the URECIP instruction 1513 // E = mulhu(ABS_RCP_LO, RCP) 1514 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1515 1516 // RCP_A_E = RCP + E 1517 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1518 1519 // RCP_S_E = RCP - E 1520 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1521 1522 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1523 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1524 RCP_A_E, RCP_S_E, 1525 ISD::SETEQ); 1526 // Quotient = mulhu(Tmp0, Num) 1527 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1528 1529 // Num_S_Remainder = Quotient * Den 1530 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1531 1532 // Remainder = Num - Num_S_Remainder 1533 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1534 1535 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1536 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1537 DAG.getConstant(-1, DL, VT), 1538 DAG.getConstant(0, DL, VT), 1539 ISD::SETUGE); 1540 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1541 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1542 Num_S_Remainder, 1543 DAG.getConstant(-1, DL, VT), 1544 DAG.getConstant(0, DL, VT), 1545 ISD::SETUGE); 1546 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1547 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1548 Remainder_GE_Zero); 1549 1550 // Calculate Division result: 1551 1552 // Quotient_A_One = Quotient + 1 1553 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1554 DAG.getConstant(1, DL, VT)); 1555 1556 // Quotient_S_One = Quotient - 1 1557 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1558 DAG.getConstant(1, DL, VT)); 1559 1560 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1561 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1562 Quotient, Quotient_A_One, ISD::SETEQ); 1563 1564 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1565 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1566 Quotient_S_One, Div, ISD::SETEQ); 1567 1568 // Calculate Rem result: 1569 1570 // Remainder_S_Den = Remainder - Den 1571 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1572 1573 // Remainder_A_Den = Remainder + Den 1574 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1575 1576 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1577 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1578 Remainder, Remainder_S_Den, ISD::SETEQ); 1579 1580 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1581 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1582 Remainder_A_Den, Rem, ISD::SETEQ); 1583 SDValue Ops[2] = { 1584 Div, 1585 Rem 1586 }; 1587 return DAG.getMergeValues(Ops, DL); 1588 } 1589 1590 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1591 SelectionDAG &DAG) const { 1592 SDLoc DL(Op); 1593 EVT VT = Op.getValueType(); 1594 1595 SDValue LHS = Op.getOperand(0); 1596 SDValue RHS = Op.getOperand(1); 1597 1598 SDValue Zero = DAG.getConstant(0, DL, VT); 1599 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1600 1601 if (VT == MVT::i32 && 1602 DAG.ComputeNumSignBits(LHS) > 8 && 1603 DAG.ComputeNumSignBits(RHS) > 8) { 1604 return LowerDIVREM24(Op, DAG, true); 1605 } 1606 if (VT == MVT::i64 && 1607 DAG.ComputeNumSignBits(LHS) > 32 && 1608 DAG.ComputeNumSignBits(RHS) > 32) { 1609 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1610 1611 //HiLo split 1612 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1613 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1614 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1615 LHS_Lo, RHS_Lo); 1616 SDValue Res[2] = { 1617 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1618 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1619 }; 1620 return DAG.getMergeValues(Res, DL); 1621 } 1622 1623 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1624 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1625 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1626 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1627 1628 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1629 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1630 1631 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1632 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1633 1634 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1635 SDValue Rem = Div.getValue(1); 1636 1637 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1638 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1639 1640 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1641 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1642 1643 SDValue Res[2] = { 1644 Div, 1645 Rem 1646 }; 1647 return DAG.getMergeValues(Res, DL); 1648 } 1649 1650 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1651 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1652 SDLoc SL(Op); 1653 EVT VT = Op.getValueType(); 1654 SDValue X = Op.getOperand(0); 1655 SDValue Y = Op.getOperand(1); 1656 1657 // TODO: Should this propagate fast-math-flags? 1658 1659 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1660 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1661 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1662 1663 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1664 } 1665 1666 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1667 SDLoc SL(Op); 1668 SDValue Src = Op.getOperand(0); 1669 1670 // result = trunc(src) 1671 // if (src > 0.0 && src != result) 1672 // result += 1.0 1673 1674 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1675 1676 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1677 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1678 1679 EVT SetCCVT = 1680 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1681 1682 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1683 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1684 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1685 1686 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1687 // TODO: Should this propagate fast-math-flags? 1688 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1689 } 1690 1691 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1692 const unsigned FractBits = 52; 1693 const unsigned ExpBits = 11; 1694 1695 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1696 Hi, 1697 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1698 DAG.getConstant(ExpBits, SL, MVT::i32)); 1699 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1700 DAG.getConstant(1023, SL, MVT::i32)); 1701 1702 return Exp; 1703 } 1704 1705 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1706 SDLoc SL(Op); 1707 SDValue Src = Op.getOperand(0); 1708 1709 assert(Op.getValueType() == MVT::f64); 1710 1711 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1712 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1713 1714 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1715 1716 // Extract the upper half, since this is where we will find the sign and 1717 // exponent. 1718 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1719 1720 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1721 1722 const unsigned FractBits = 52; 1723 1724 // Extract the sign bit. 1725 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1726 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1727 1728 // Extend back to to 64-bits. 1729 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1730 Zero, SignBit); 1731 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1732 1733 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1734 const SDValue FractMask 1735 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1736 1737 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1738 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1739 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1740 1741 EVT SetCCVT = 1742 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1743 1744 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1745 1746 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1747 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1748 1749 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1750 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1751 1752 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1753 } 1754 1755 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1756 SDLoc SL(Op); 1757 SDValue Src = Op.getOperand(0); 1758 1759 assert(Op.getValueType() == MVT::f64); 1760 1761 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1762 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1763 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1764 1765 // TODO: Should this propagate fast-math-flags? 1766 1767 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1768 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1769 1770 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1771 1772 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1773 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1774 1775 EVT SetCCVT = 1776 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1777 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1778 1779 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1780 } 1781 1782 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1783 // FNEARBYINT and FRINT are the same, except in their handling of FP 1784 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1785 // rint, so just treat them as equivalent. 1786 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1787 } 1788 1789 // XXX - May require not supporting f32 denormals? 1790 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1791 SDLoc SL(Op); 1792 SDValue X = Op.getOperand(0); 1793 1794 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1795 1796 // TODO: Should this propagate fast-math-flags? 1797 1798 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1799 1800 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1801 1802 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1803 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1804 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1805 1806 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1807 1808 EVT SetCCVT = 1809 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1810 1811 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1812 1813 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1814 1815 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1816 } 1817 1818 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1819 SDLoc SL(Op); 1820 SDValue X = Op.getOperand(0); 1821 1822 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1823 1824 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1825 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1826 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1827 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1828 EVT SetCCVT = 1829 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1830 1831 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1832 1833 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1834 1835 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1836 1837 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1838 MVT::i64); 1839 1840 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1841 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1842 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1843 MVT::i64), 1844 Exp); 1845 1846 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1847 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1848 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1849 ISD::SETNE); 1850 1851 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1852 D, DAG.getConstant(0, SL, MVT::i64)); 1853 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1854 1855 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1856 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1857 1858 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1859 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1860 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1861 1862 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1863 ExpEqNegOne, 1864 DAG.getConstantFP(1.0, SL, MVT::f64), 1865 DAG.getConstantFP(0.0, SL, MVT::f64)); 1866 1867 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1868 1869 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1870 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1871 1872 return K; 1873 } 1874 1875 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1876 EVT VT = Op.getValueType(); 1877 1878 if (VT == MVT::f32) 1879 return LowerFROUND32(Op, DAG); 1880 1881 if (VT == MVT::f64) 1882 return LowerFROUND64(Op, DAG); 1883 1884 llvm_unreachable("unhandled type"); 1885 } 1886 1887 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1888 SDLoc SL(Op); 1889 SDValue Src = Op.getOperand(0); 1890 1891 // result = trunc(src); 1892 // if (src < 0.0 && src != result) 1893 // result += -1.0. 1894 1895 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1896 1897 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1898 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1899 1900 EVT SetCCVT = 1901 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1902 1903 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1904 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1905 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1906 1907 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1908 // TODO: Should this propagate fast-math-flags? 1909 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1910 } 1911 1912 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1913 SDLoc SL(Op); 1914 SDValue Src = Op.getOperand(0); 1915 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1916 1917 if (ZeroUndef && Src.getValueType() == MVT::i32) 1918 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1919 1920 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1921 1922 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1923 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1924 1925 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1926 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1927 1928 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1929 *DAG.getContext(), MVT::i32); 1930 1931 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1932 1933 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1934 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1935 1936 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1937 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1938 1939 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1940 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1941 1942 if (!ZeroUndef) { 1943 // Test if the full 64-bit input is zero. 1944 1945 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1946 // which we probably don't want. 1947 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1948 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1949 1950 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1951 // with the same cycles, otherwise it is slower. 1952 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1953 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1954 1955 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1956 1957 // The instruction returns -1 for 0 input, but the defined intrinsic 1958 // behavior is to return the number of bits. 1959 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1960 SrcIsZero, Bits32, NewCtlz); 1961 } 1962 1963 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1964 } 1965 1966 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1967 bool Signed) const { 1968 // Unsigned 1969 // cul2f(ulong u) 1970 //{ 1971 // uint lz = clz(u); 1972 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1973 // u = (u << lz) & 0x7fffffffffffffffUL; 1974 // ulong t = u & 0xffffffffffUL; 1975 // uint v = (e << 23) | (uint)(u >> 40); 1976 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1977 // return as_float(v + r); 1978 //} 1979 // Signed 1980 // cl2f(long l) 1981 //{ 1982 // long s = l >> 63; 1983 // float r = cul2f((l + s) ^ s); 1984 // return s ? -r : r; 1985 //} 1986 1987 SDLoc SL(Op); 1988 SDValue Src = Op.getOperand(0); 1989 SDValue L = Src; 1990 1991 SDValue S; 1992 if (Signed) { 1993 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1994 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1995 1996 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1997 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1998 } 1999 2000 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2001 *DAG.getContext(), MVT::f32); 2002 2003 2004 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2005 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2006 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2007 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2008 2009 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2010 SDValue E = DAG.getSelect(SL, MVT::i32, 2011 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2012 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2013 ZeroI32); 2014 2015 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2016 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2017 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2018 2019 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2020 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2021 2022 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2023 U, DAG.getConstant(40, SL, MVT::i64)); 2024 2025 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2026 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2027 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2028 2029 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2030 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2031 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2032 2033 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2034 2035 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2036 2037 SDValue R = DAG.getSelect(SL, MVT::i32, 2038 RCmp, 2039 One, 2040 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2041 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2042 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2043 2044 if (!Signed) 2045 return R; 2046 2047 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2048 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2049 } 2050 2051 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2052 bool Signed) const { 2053 SDLoc SL(Op); 2054 SDValue Src = Op.getOperand(0); 2055 2056 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2057 2058 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2059 DAG.getConstant(0, SL, MVT::i32)); 2060 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2061 DAG.getConstant(1, SL, MVT::i32)); 2062 2063 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2064 SL, MVT::f64, Hi); 2065 2066 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2067 2068 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2069 DAG.getConstant(32, SL, MVT::i32)); 2070 // TODO: Should this propagate fast-math-flags? 2071 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2072 } 2073 2074 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2075 SelectionDAG &DAG) const { 2076 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2077 "operation should be legal"); 2078 2079 EVT DestVT = Op.getValueType(); 2080 if (DestVT == MVT::f64) 2081 return LowerINT_TO_FP64(Op, DAG, false); 2082 2083 if (DestVT == MVT::f32) 2084 return LowerINT_TO_FP32(Op, DAG, false); 2085 2086 return SDValue(); 2087 } 2088 2089 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2090 SelectionDAG &DAG) const { 2091 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2092 "operation should be legal"); 2093 2094 EVT DestVT = Op.getValueType(); 2095 if (DestVT == MVT::f32) 2096 return LowerINT_TO_FP32(Op, DAG, true); 2097 2098 if (DestVT == MVT::f64) 2099 return LowerINT_TO_FP64(Op, DAG, true); 2100 2101 return SDValue(); 2102 } 2103 2104 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2105 bool Signed) const { 2106 SDLoc SL(Op); 2107 2108 SDValue Src = Op.getOperand(0); 2109 2110 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2111 2112 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2113 MVT::f64); 2114 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2115 MVT::f64); 2116 // TODO: Should this propagate fast-math-flags? 2117 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2118 2119 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2120 2121 2122 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2123 2124 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2125 MVT::i32, FloorMul); 2126 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2127 2128 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2129 2130 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2131 } 2132 2133 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2134 SelectionDAG &DAG) const { 2135 SDValue Src = Op.getOperand(0); 2136 2137 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2138 return LowerFP64_TO_INT(Op, DAG, true); 2139 2140 return SDValue(); 2141 } 2142 2143 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2144 SelectionDAG &DAG) const { 2145 SDValue Src = Op.getOperand(0); 2146 2147 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2148 return LowerFP64_TO_INT(Op, DAG, false); 2149 2150 return SDValue(); 2151 } 2152 2153 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2154 SelectionDAG &DAG) const { 2155 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2156 MVT VT = Op.getSimpleValueType(); 2157 MVT ScalarVT = VT.getScalarType(); 2158 2159 if (!VT.isVector()) 2160 return SDValue(); 2161 2162 SDValue Src = Op.getOperand(0); 2163 SDLoc DL(Op); 2164 2165 // TODO: Don't scalarize on Evergreen? 2166 unsigned NElts = VT.getVectorNumElements(); 2167 SmallVector<SDValue, 8> Args; 2168 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2169 2170 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2171 for (unsigned I = 0; I < NElts; ++I) 2172 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2173 2174 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2175 } 2176 2177 //===----------------------------------------------------------------------===// 2178 // Custom DAG optimizations 2179 //===----------------------------------------------------------------------===// 2180 2181 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2182 APInt KnownZero, KnownOne; 2183 EVT VT = Op.getValueType(); 2184 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2185 2186 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2187 } 2188 2189 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2190 EVT VT = Op.getValueType(); 2191 2192 // In order for this to be a signed 24-bit value, bit 23, must 2193 // be a sign bit. 2194 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2195 // as unsigned 24-bit values. 2196 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2197 } 2198 2199 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2200 2201 SelectionDAG &DAG = DCI.DAG; 2202 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2203 EVT VT = Op.getValueType(); 2204 2205 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2206 APInt KnownZero, KnownOne; 2207 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2208 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2209 DCI.CommitTargetLoweringOpt(TLO); 2210 } 2211 2212 template <typename IntTy> 2213 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2214 uint32_t Offset, uint32_t Width, SDLoc DL) { 2215 if (Width + Offset < 32) { 2216 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2217 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2218 return DAG.getConstant(Result, DL, MVT::i32); 2219 } 2220 2221 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2222 } 2223 2224 static bool usesAllNormalStores(SDNode *LoadVal) { 2225 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2226 if (!ISD::isNormalStore(*I)) 2227 return false; 2228 } 2229 2230 return true; 2231 } 2232 2233 // If we have a copy of an illegal type, replace it with a load / store of an 2234 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2235 // instructions emitted when handling extloads and truncstores. Ideally we could 2236 // recognize the pack / unpack pattern to eliminate it. 2237 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2238 DAGCombinerInfo &DCI) const { 2239 if (!DCI.isBeforeLegalize()) 2240 return SDValue(); 2241 2242 StoreSDNode *SN = cast<StoreSDNode>(N); 2243 SDValue Value = SN->getValue(); 2244 EVT VT = Value.getValueType(); 2245 2246 if (isTypeLegal(VT) || SN->isVolatile() || 2247 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2248 return SDValue(); 2249 2250 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2251 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2252 return SDValue(); 2253 2254 EVT MemVT = LoadVal->getMemoryVT(); 2255 2256 SDLoc SL(N); 2257 SelectionDAG &DAG = DCI.DAG; 2258 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2259 2260 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2261 LoadVT, SL, 2262 LoadVal->getChain(), 2263 LoadVal->getBasePtr(), 2264 LoadVal->getOffset(), 2265 LoadVT, 2266 LoadVal->getMemOperand()); 2267 2268 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2269 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2270 2271 return DAG.getStore(SN->getChain(), SL, NewLoad, 2272 SN->getBasePtr(), SN->getMemOperand()); 2273 } 2274 2275 // TODO: Should repeat for other bit ops. 2276 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2277 DAGCombinerInfo &DCI) const { 2278 if (N->getValueType(0) != MVT::i64) 2279 return SDValue(); 2280 2281 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2282 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2283 // combine opportunities since most 64-bit operations are decomposed this way. 2284 // TODO: We won't want this for SALU especially if it is an inline immediate. 2285 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2286 if (!RHS) 2287 return SDValue(); 2288 2289 uint64_t Val = RHS->getZExtValue(); 2290 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2291 // If either half of the constant is 0, this is really a 32-bit and, so 2292 // split it. If we can re-use the full materialized constant, keep it. 2293 return SDValue(); 2294 } 2295 2296 SDLoc SL(N); 2297 SelectionDAG &DAG = DCI.DAG; 2298 2299 SDValue Lo, Hi; 2300 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2301 2302 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2303 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2304 2305 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2306 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2307 2308 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LoAnd, HiAnd); 2309 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2310 } 2311 2312 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2313 DAGCombinerInfo &DCI) const { 2314 if (N->getValueType(0) != MVT::i64) 2315 return SDValue(); 2316 2317 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2318 2319 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2320 // common case, splitting this into a move and a 32-bit shift is faster and 2321 // the same code size. 2322 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2323 if (!RHS) 2324 return SDValue(); 2325 2326 unsigned RHSVal = RHS->getZExtValue(); 2327 if (RHSVal < 32) 2328 return SDValue(); 2329 2330 SDValue LHS = N->getOperand(0); 2331 2332 SDLoc SL(N); 2333 SelectionDAG &DAG = DCI.DAG; 2334 2335 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2336 2337 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2338 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2339 2340 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2341 2342 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Zero, NewShift); 2343 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2344 } 2345 2346 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2347 DAGCombinerInfo &DCI) const { 2348 if (N->getValueType(0) != MVT::i64) 2349 return SDValue(); 2350 2351 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2352 if (!RHS) 2353 return SDValue(); 2354 2355 SelectionDAG &DAG = DCI.DAG; 2356 SDLoc SL(N); 2357 unsigned RHSVal = RHS->getZExtValue(); 2358 2359 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2360 if (RHSVal == 32) { 2361 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2362 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2363 DAG.getConstant(31, SL, MVT::i32)); 2364 2365 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2366 Hi, NewShift); 2367 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2368 } 2369 2370 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2371 if (RHSVal == 63) { 2372 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2373 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2374 DAG.getConstant(31, SL, MVT::i32)); 2375 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2376 NewShift, NewShift); 2377 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2378 } 2379 2380 return SDValue(); 2381 } 2382 2383 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2384 DAGCombinerInfo &DCI) const { 2385 if (N->getValueType(0) != MVT::i64) 2386 return SDValue(); 2387 2388 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2389 if (!RHS) 2390 return SDValue(); 2391 2392 unsigned ShiftAmt = RHS->getZExtValue(); 2393 if (ShiftAmt < 32) 2394 return SDValue(); 2395 2396 // srl i64:x, C for C >= 32 2397 // => 2398 // build_pair (srl hi_32(x), C - 32), 0 2399 2400 SelectionDAG &DAG = DCI.DAG; 2401 SDLoc SL(N); 2402 2403 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2404 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2405 2406 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2407 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2408 VecOp, One); 2409 2410 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2411 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2412 2413 SDValue BuildPair = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2414 NewShift, Zero); 2415 2416 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2417 } 2418 2419 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2420 DAGCombinerInfo &DCI) const { 2421 EVT VT = N->getValueType(0); 2422 2423 if (VT.isVector() || VT.getSizeInBits() > 32) 2424 return SDValue(); 2425 2426 SelectionDAG &DAG = DCI.DAG; 2427 SDLoc DL(N); 2428 2429 SDValue N0 = N->getOperand(0); 2430 SDValue N1 = N->getOperand(1); 2431 SDValue Mul; 2432 2433 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2434 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2435 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2436 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2437 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2438 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2439 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2440 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2441 } else { 2442 return SDValue(); 2443 } 2444 2445 // We need to use sext even for MUL_U24, because MUL_U24 is used 2446 // for signed multiply of 8 and 16-bit types. 2447 return DAG.getSExtOrTrunc(Mul, DL, VT); 2448 } 2449 2450 static bool isNegativeOne(SDValue Val) { 2451 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2452 return C->isAllOnesValue(); 2453 return false; 2454 } 2455 2456 static bool isCtlzOpc(unsigned Opc) { 2457 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2458 } 2459 2460 // Get FFBH node if the incoming op may have been type legalized from a smaller 2461 // type VT. 2462 // Need to match pre-legalized type because the generic legalization inserts the 2463 // add/sub between the select and compare. 2464 static SDValue getFFBH_U32(const TargetLowering &TLI, 2465 SelectionDAG &DAG, SDLoc SL, SDValue Op) { 2466 EVT VT = Op.getValueType(); 2467 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2468 if (LegalVT != MVT::i32) 2469 return SDValue(); 2470 2471 if (VT != MVT::i32) 2472 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2473 2474 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2475 if (VT != MVT::i32) 2476 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2477 2478 return FFBH; 2479 } 2480 2481 // The native instructions return -1 on 0 input. Optimize out a select that 2482 // produces -1 on 0. 2483 // 2484 // TODO: If zero is not undef, we could also do this if the output is compared 2485 // against the bitwidth. 2486 // 2487 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2488 SDValue AMDGPUTargetLowering::performCtlzCombine(SDLoc SL, 2489 SDValue Cond, 2490 SDValue LHS, 2491 SDValue RHS, 2492 DAGCombinerInfo &DCI) const { 2493 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2494 if (!CmpRhs || !CmpRhs->isNullValue()) 2495 return SDValue(); 2496 2497 SelectionDAG &DAG = DCI.DAG; 2498 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2499 SDValue CmpLHS = Cond.getOperand(0); 2500 2501 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2502 if (CCOpcode == ISD::SETEQ && 2503 isCtlzOpc(RHS.getOpcode()) && 2504 RHS.getOperand(0) == CmpLHS && 2505 isNegativeOne(LHS)) { 2506 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2507 } 2508 2509 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2510 if (CCOpcode == ISD::SETNE && 2511 isCtlzOpc(LHS.getOpcode()) && 2512 LHS.getOperand(0) == CmpLHS && 2513 isNegativeOne(RHS)) { 2514 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2515 } 2516 2517 return SDValue(); 2518 } 2519 2520 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2521 DAGCombinerInfo &DCI) const { 2522 SDValue Cond = N->getOperand(0); 2523 if (Cond.getOpcode() != ISD::SETCC) 2524 return SDValue(); 2525 2526 EVT VT = N->getValueType(0); 2527 SDValue LHS = Cond.getOperand(0); 2528 SDValue RHS = Cond.getOperand(1); 2529 SDValue CC = Cond.getOperand(2); 2530 2531 SDValue True = N->getOperand(1); 2532 SDValue False = N->getOperand(2); 2533 2534 if (VT == MVT::f32 && Cond.hasOneUse()) { 2535 SDValue MinMax 2536 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2537 // Revisit this node so we can catch min3/max3/med3 patterns. 2538 //DCI.AddToWorklist(MinMax.getNode()); 2539 return MinMax; 2540 } 2541 2542 // There's no reason to not do this if the condition has other uses. 2543 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2544 } 2545 2546 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2547 DAGCombinerInfo &DCI) const { 2548 SelectionDAG &DAG = DCI.DAG; 2549 SDLoc DL(N); 2550 2551 switch(N->getOpcode()) { 2552 default: 2553 break; 2554 case ISD::SHL: { 2555 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2556 break; 2557 2558 return performShlCombine(N, DCI); 2559 } 2560 case ISD::SRL: { 2561 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2562 break; 2563 2564 return performSrlCombine(N, DCI); 2565 } 2566 case ISD::SRA: { 2567 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2568 break; 2569 2570 return performSraCombine(N, DCI); 2571 } 2572 case ISD::AND: { 2573 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2574 break; 2575 2576 return performAndCombine(N, DCI); 2577 } 2578 case ISD::MUL: 2579 return performMulCombine(N, DCI); 2580 case AMDGPUISD::MUL_I24: 2581 case AMDGPUISD::MUL_U24: { 2582 SDValue N0 = N->getOperand(0); 2583 SDValue N1 = N->getOperand(1); 2584 simplifyI24(N0, DCI); 2585 simplifyI24(N1, DCI); 2586 return SDValue(); 2587 } 2588 case ISD::SELECT: 2589 return performSelectCombine(N, DCI); 2590 case AMDGPUISD::BFE_I32: 2591 case AMDGPUISD::BFE_U32: { 2592 assert(!N->getValueType(0).isVector() && 2593 "Vector handling of BFE not implemented"); 2594 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2595 if (!Width) 2596 break; 2597 2598 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2599 if (WidthVal == 0) 2600 return DAG.getConstant(0, DL, MVT::i32); 2601 2602 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2603 if (!Offset) 2604 break; 2605 2606 SDValue BitsFrom = N->getOperand(0); 2607 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2608 2609 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2610 2611 if (OffsetVal == 0) { 2612 // This is already sign / zero extended, so try to fold away extra BFEs. 2613 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2614 2615 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2616 if (OpSignBits >= SignBits) 2617 return BitsFrom; 2618 2619 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2620 if (Signed) { 2621 // This is a sign_extend_inreg. Replace it to take advantage of existing 2622 // DAG Combines. If not eliminated, we will match back to BFE during 2623 // selection. 2624 2625 // TODO: The sext_inreg of extended types ends, although we can could 2626 // handle them in a single BFE. 2627 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2628 DAG.getValueType(SmallVT)); 2629 } 2630 2631 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2632 } 2633 2634 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2635 if (Signed) { 2636 return constantFoldBFE<int32_t>(DAG, 2637 CVal->getSExtValue(), 2638 OffsetVal, 2639 WidthVal, 2640 DL); 2641 } 2642 2643 return constantFoldBFE<uint32_t>(DAG, 2644 CVal->getZExtValue(), 2645 OffsetVal, 2646 WidthVal, 2647 DL); 2648 } 2649 2650 if ((OffsetVal + WidthVal) >= 32) { 2651 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2652 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2653 BitsFrom, ShiftVal); 2654 } 2655 2656 if (BitsFrom.hasOneUse()) { 2657 APInt Demanded = APInt::getBitsSet(32, 2658 OffsetVal, 2659 OffsetVal + WidthVal); 2660 2661 APInt KnownZero, KnownOne; 2662 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2663 !DCI.isBeforeLegalizeOps()); 2664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2665 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2666 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2667 KnownZero, KnownOne, TLO)) { 2668 DCI.CommitTargetLoweringOpt(TLO); 2669 } 2670 } 2671 2672 break; 2673 } 2674 2675 case ISD::STORE: 2676 return performStoreCombine(N, DCI); 2677 } 2678 return SDValue(); 2679 } 2680 2681 //===----------------------------------------------------------------------===// 2682 // Helper functions 2683 //===----------------------------------------------------------------------===// 2684 2685 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2686 SelectionDAG &DAG, 2687 const Function *F, 2688 const SmallVectorImpl<ISD::InputArg> &Ins, 2689 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2690 2691 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2692 if (Ins[i].ArgVT == Ins[i].VT) { 2693 OrigIns.push_back(Ins[i]); 2694 continue; 2695 } 2696 2697 EVT VT; 2698 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2699 // Vector has been split into scalars. 2700 VT = Ins[i].ArgVT.getVectorElementType(); 2701 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2702 Ins[i].ArgVT.getVectorElementType() != 2703 Ins[i].VT.getVectorElementType()) { 2704 // Vector elements have been promoted 2705 VT = Ins[i].ArgVT; 2706 } else { 2707 // Vector has been spilt into smaller vectors. 2708 VT = Ins[i].VT; 2709 } 2710 2711 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2712 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2713 OrigIns.push_back(Arg); 2714 } 2715 } 2716 2717 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2718 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2719 return CFP->isExactlyValue(1.0); 2720 } 2721 return isAllOnesConstant(Op); 2722 } 2723 2724 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2725 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2726 return CFP->getValueAPF().isZero(); 2727 } 2728 return isNullConstant(Op); 2729 } 2730 2731 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2732 const TargetRegisterClass *RC, 2733 unsigned Reg, EVT VT) const { 2734 MachineFunction &MF = DAG.getMachineFunction(); 2735 MachineRegisterInfo &MRI = MF.getRegInfo(); 2736 unsigned VirtualRegister; 2737 if (!MRI.isLiveIn(Reg)) { 2738 VirtualRegister = MRI.createVirtualRegister(RC); 2739 MRI.addLiveIn(Reg, VirtualRegister); 2740 } else { 2741 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2742 } 2743 return DAG.getRegister(VirtualRegister, VT); 2744 } 2745 2746 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2747 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2748 uint64_t ArgOffset = MFI->ABIArgOffset; 2749 switch (Param) { 2750 case GRID_DIM: 2751 return ArgOffset; 2752 case GRID_OFFSET: 2753 return ArgOffset + 4; 2754 } 2755 llvm_unreachable("unexpected implicit parameter type"); 2756 } 2757 2758 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2759 2760 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2761 switch ((AMDGPUISD::NodeType)Opcode) { 2762 case AMDGPUISD::FIRST_NUMBER: break; 2763 // AMDIL DAG nodes 2764 NODE_NAME_CASE(CALL); 2765 NODE_NAME_CASE(UMUL); 2766 NODE_NAME_CASE(RET_FLAG); 2767 NODE_NAME_CASE(BRANCH_COND); 2768 2769 // AMDGPU DAG nodes 2770 NODE_NAME_CASE(DWORDADDR) 2771 NODE_NAME_CASE(FRACT) 2772 NODE_NAME_CASE(CLAMP) 2773 NODE_NAME_CASE(COS_HW) 2774 NODE_NAME_CASE(SIN_HW) 2775 NODE_NAME_CASE(FMAX_LEGACY) 2776 NODE_NAME_CASE(FMIN_LEGACY) 2777 NODE_NAME_CASE(FMAX3) 2778 NODE_NAME_CASE(SMAX3) 2779 NODE_NAME_CASE(UMAX3) 2780 NODE_NAME_CASE(FMIN3) 2781 NODE_NAME_CASE(SMIN3) 2782 NODE_NAME_CASE(UMIN3) 2783 NODE_NAME_CASE(FMED3) 2784 NODE_NAME_CASE(SMED3) 2785 NODE_NAME_CASE(UMED3) 2786 NODE_NAME_CASE(URECIP) 2787 NODE_NAME_CASE(DIV_SCALE) 2788 NODE_NAME_CASE(DIV_FMAS) 2789 NODE_NAME_CASE(DIV_FIXUP) 2790 NODE_NAME_CASE(TRIG_PREOP) 2791 NODE_NAME_CASE(RCP) 2792 NODE_NAME_CASE(RSQ) 2793 NODE_NAME_CASE(RSQ_LEGACY) 2794 NODE_NAME_CASE(RSQ_CLAMP) 2795 NODE_NAME_CASE(LDEXP) 2796 NODE_NAME_CASE(FP_CLASS) 2797 NODE_NAME_CASE(DOT4) 2798 NODE_NAME_CASE(CARRY) 2799 NODE_NAME_CASE(BORROW) 2800 NODE_NAME_CASE(BFE_U32) 2801 NODE_NAME_CASE(BFE_I32) 2802 NODE_NAME_CASE(BFI) 2803 NODE_NAME_CASE(BFM) 2804 NODE_NAME_CASE(FFBH_U32) 2805 NODE_NAME_CASE(MUL_U24) 2806 NODE_NAME_CASE(MUL_I24) 2807 NODE_NAME_CASE(MAD_U24) 2808 NODE_NAME_CASE(MAD_I24) 2809 NODE_NAME_CASE(TEXTURE_FETCH) 2810 NODE_NAME_CASE(EXPORT) 2811 NODE_NAME_CASE(CONST_ADDRESS) 2812 NODE_NAME_CASE(REGISTER_LOAD) 2813 NODE_NAME_CASE(REGISTER_STORE) 2814 NODE_NAME_CASE(LOAD_CONSTANT) 2815 NODE_NAME_CASE(LOAD_INPUT) 2816 NODE_NAME_CASE(SAMPLE) 2817 NODE_NAME_CASE(SAMPLEB) 2818 NODE_NAME_CASE(SAMPLED) 2819 NODE_NAME_CASE(SAMPLEL) 2820 NODE_NAME_CASE(CVT_F32_UBYTE0) 2821 NODE_NAME_CASE(CVT_F32_UBYTE1) 2822 NODE_NAME_CASE(CVT_F32_UBYTE2) 2823 NODE_NAME_CASE(CVT_F32_UBYTE3) 2824 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2825 NODE_NAME_CASE(CONST_DATA_PTR) 2826 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2827 NODE_NAME_CASE(SENDMSG) 2828 NODE_NAME_CASE(INTERP_MOV) 2829 NODE_NAME_CASE(INTERP_P1) 2830 NODE_NAME_CASE(INTERP_P2) 2831 NODE_NAME_CASE(STORE_MSKOR) 2832 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2833 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2834 } 2835 return nullptr; 2836 } 2837 2838 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2839 DAGCombinerInfo &DCI, 2840 unsigned &RefinementSteps, 2841 bool &UseOneConstNR) const { 2842 SelectionDAG &DAG = DCI.DAG; 2843 EVT VT = Operand.getValueType(); 2844 2845 if (VT == MVT::f32) { 2846 RefinementSteps = 0; 2847 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2848 } 2849 2850 // TODO: There is also f64 rsq instruction, but the documentation is less 2851 // clear on its precision. 2852 2853 return SDValue(); 2854 } 2855 2856 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2857 DAGCombinerInfo &DCI, 2858 unsigned &RefinementSteps) const { 2859 SelectionDAG &DAG = DCI.DAG; 2860 EVT VT = Operand.getValueType(); 2861 2862 if (VT == MVT::f32) { 2863 // Reciprocal, < 1 ulp error. 2864 // 2865 // This reciprocal approximation converges to < 0.5 ulp error with one 2866 // newton rhapson performed with two fused multiple adds (FMAs). 2867 2868 RefinementSteps = 0; 2869 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2870 } 2871 2872 // TODO: There is also f64 rcp instruction, but the documentation is less 2873 // clear on its precision. 2874 2875 return SDValue(); 2876 } 2877 2878 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2879 const SDValue Op, 2880 APInt &KnownZero, 2881 APInt &KnownOne, 2882 const SelectionDAG &DAG, 2883 unsigned Depth) const { 2884 2885 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2886 2887 APInt KnownZero2; 2888 APInt KnownOne2; 2889 unsigned Opc = Op.getOpcode(); 2890 2891 switch (Opc) { 2892 default: 2893 break; 2894 case AMDGPUISD::CARRY: 2895 case AMDGPUISD::BORROW: { 2896 KnownZero = APInt::getHighBitsSet(32, 31); 2897 break; 2898 } 2899 2900 case AMDGPUISD::BFE_I32: 2901 case AMDGPUISD::BFE_U32: { 2902 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2903 if (!CWidth) 2904 return; 2905 2906 unsigned BitWidth = 32; 2907 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2908 2909 if (Opc == AMDGPUISD::BFE_U32) 2910 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2911 2912 break; 2913 } 2914 } 2915 } 2916 2917 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2918 SDValue Op, 2919 const SelectionDAG &DAG, 2920 unsigned Depth) const { 2921 switch (Op.getOpcode()) { 2922 case AMDGPUISD::BFE_I32: { 2923 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2924 if (!Width) 2925 return 1; 2926 2927 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2928 if (!isNullConstant(Op.getOperand(1))) 2929 return SignBits; 2930 2931 // TODO: Could probably figure something out with non-0 offsets. 2932 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2933 return std::max(SignBits, Op0SignBits); 2934 } 2935 2936 case AMDGPUISD::BFE_U32: { 2937 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2938 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2939 } 2940 2941 case AMDGPUISD::CARRY: 2942 case AMDGPUISD::BORROW: 2943 return 31; 2944 2945 default: 2946 return 1; 2947 } 2948 } 2949