1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 18 19 #include "AMDGPUISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUCallLowering.h" 22 #include "AMDGPUFrameLowering.h" 23 #include "AMDGPURegisterInfo.h" 24 #include "AMDGPUSubtarget.h" 25 #include "AMDGPUTargetMachine.h" 26 #include "Utils/AMDGPUBaseInfo.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "SIInstrInfo.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/CallingConvLower.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/Support/KnownBits.h" 40 using namespace llvm; 41 42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 43 CCValAssign::LocInfo LocInfo, 44 ISD::ArgFlagsTy ArgFlags, CCState &State, 45 const TargetRegisterClass *RC, 46 unsigned NumRegs) { 47 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 48 unsigned RegResult = State.AllocateReg(RegList); 49 if (RegResult == AMDGPU::NoRegister) 50 return false; 51 52 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 53 return true; 54 } 55 56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 57 CCValAssign::LocInfo LocInfo, 58 ISD::ArgFlagsTy ArgFlags, CCState &State) { 59 switch (LocVT.SimpleTy) { 60 case MVT::i64: 61 case MVT::f64: 62 case MVT::v2i32: 63 case MVT::v2f32: 64 case MVT::v4i16: 65 case MVT::v4f16: { 66 // Up to SGPR0-SGPR39 67 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 68 &AMDGPU::SGPR_64RegClass, 20); 69 } 70 default: 71 return false; 72 } 73 } 74 75 // Allocate up to VGPR31. 76 // 77 // TODO: Since there are no VGPR alignent requirements would it be better to 78 // split into individual scalar registers? 79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 80 CCValAssign::LocInfo LocInfo, 81 ISD::ArgFlagsTy ArgFlags, CCState &State) { 82 switch (LocVT.SimpleTy) { 83 case MVT::i64: 84 case MVT::f64: 85 case MVT::v2i32: 86 case MVT::v2f32: 87 case MVT::v4i16: 88 case MVT::v4f16: { 89 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 90 &AMDGPU::VReg_64RegClass, 31); 91 } 92 case MVT::v4i32: 93 case MVT::v4f32: 94 case MVT::v2i64: 95 case MVT::v2f64: { 96 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 97 &AMDGPU::VReg_128RegClass, 29); 98 } 99 case MVT::v8i32: 100 case MVT::v8f32: { 101 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 102 &AMDGPU::VReg_256RegClass, 25); 103 104 } 105 case MVT::v16i32: 106 case MVT::v16f32: { 107 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 108 &AMDGPU::VReg_512RegClass, 17); 109 110 } 111 default: 112 return false; 113 } 114 } 115 116 #include "AMDGPUGenCallingConv.inc" 117 118 // Find a larger type to do a load / store of a vector with. 119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 120 unsigned StoreSize = VT.getStoreSizeInBits(); 121 if (StoreSize <= 32) 122 return EVT::getIntegerVT(Ctx, StoreSize); 123 124 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 125 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 126 } 127 128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 129 EVT VT = Op.getValueType(); 130 KnownBits Known = DAG.computeKnownBits(Op); 131 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 132 } 133 134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 135 EVT VT = Op.getValueType(); 136 137 // In order for this to be a signed 24-bit value, bit 23, must 138 // be a sign bit. 139 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 140 } 141 142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 143 const AMDGPUSubtarget &STI) 144 : TargetLowering(TM), Subtarget(&STI) { 145 // Lower floating point store/load to integer store/load to reduce the number 146 // of patterns in tablegen. 147 setOperationAction(ISD::LOAD, MVT::f32, Promote); 148 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 149 150 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 152 153 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 161 162 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 164 165 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 167 168 setOperationAction(ISD::LOAD, MVT::i64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 170 171 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 173 174 setOperationAction(ISD::LOAD, MVT::f64, Promote); 175 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 176 177 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 178 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 179 180 // There are no 64-bit extloads. These should be done as a 32-bit extload and 181 // an extension to 64-bit. 182 for (MVT VT : MVT::integer_valuetypes()) { 183 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 184 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 185 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 186 } 187 188 for (MVT VT : MVT::integer_valuetypes()) { 189 if (VT == MVT::i64) 190 continue; 191 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 193 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 194 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 196 197 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 198 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 200 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 201 202 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 204 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 205 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 206 } 207 208 for (MVT VT : MVT::integer_vector_valuetypes()) { 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 211 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 213 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 214 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 215 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 218 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 219 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 220 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 221 } 222 223 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 226 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 227 228 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 232 233 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 237 238 setOperationAction(ISD::STORE, MVT::f32, Promote); 239 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 240 241 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 243 244 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 246 247 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 249 250 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 252 253 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 254 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 255 256 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 258 259 setOperationAction(ISD::STORE, MVT::i64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 261 262 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 263 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 264 265 setOperationAction(ISD::STORE, MVT::f64, Promote); 266 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 267 268 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 269 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 270 271 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 272 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 275 276 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 277 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 280 281 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 282 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 283 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 284 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 285 286 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 287 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 288 289 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 290 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 291 292 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 293 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 294 295 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 296 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 297 298 299 setOperationAction(ISD::Constant, MVT::i32, Legal); 300 setOperationAction(ISD::Constant, MVT::i64, Legal); 301 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 303 304 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 305 setOperationAction(ISD::BRIND, MVT::Other, Expand); 306 307 // This is totally unsupported, just custom lower to produce an error. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 309 310 // Library functions. These default to Expand, but we have instructions 311 // for them. 312 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 314 setOperationAction(ISD::FPOW, MVT::f32, Legal); 315 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 316 setOperationAction(ISD::FABS, MVT::f32, Legal); 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FRINT, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 321 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 322 323 setOperationAction(ISD::FROUND, MVT::f32, Custom); 324 setOperationAction(ISD::FROUND, MVT::f64, Custom); 325 326 setOperationAction(ISD::FLOG, MVT::f32, Custom); 327 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 328 setOperationAction(ISD::FEXP, MVT::f32, Custom); 329 330 331 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 332 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 333 334 setOperationAction(ISD::FREM, MVT::f32, Custom); 335 setOperationAction(ISD::FREM, MVT::f64, Custom); 336 337 // Expand to fneg + fadd. 338 setOperationAction(ISD::FSUB, MVT::f64, Expand); 339 340 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 341 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 342 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 343 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 344 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 345 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 346 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 347 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 358 359 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 360 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 361 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 362 363 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 364 for (MVT VT : ScalarIntVTs) { 365 // These should use [SU]DIVREM, so set them to expand 366 setOperationAction(ISD::SDIV, VT, Expand); 367 setOperationAction(ISD::UDIV, VT, Expand); 368 setOperationAction(ISD::SREM, VT, Expand); 369 setOperationAction(ISD::UREM, VT, Expand); 370 371 // GPU does not have divrem function for signed or unsigned. 372 setOperationAction(ISD::SDIVREM, VT, Custom); 373 setOperationAction(ISD::UDIVREM, VT, Custom); 374 375 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 376 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 377 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 378 379 setOperationAction(ISD::BSWAP, VT, Expand); 380 setOperationAction(ISD::CTTZ, VT, Expand); 381 setOperationAction(ISD::CTLZ, VT, Expand); 382 383 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 384 setOperationAction(ISD::ADDC, VT, Legal); 385 setOperationAction(ISD::SUBC, VT, Legal); 386 setOperationAction(ISD::ADDE, VT, Legal); 387 setOperationAction(ISD::SUBE, VT, Legal); 388 } 389 390 // The hardware supports 32-bit ROTR, but not ROTL. 391 setOperationAction(ISD::ROTL, MVT::i32, Expand); 392 setOperationAction(ISD::ROTL, MVT::i64, Expand); 393 setOperationAction(ISD::ROTR, MVT::i64, Expand); 394 395 setOperationAction(ISD::MUL, MVT::i64, Expand); 396 setOperationAction(ISD::MULHU, MVT::i64, Expand); 397 setOperationAction(ISD::MULHS, MVT::i64, Expand); 398 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 399 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 400 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 401 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 402 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 403 404 setOperationAction(ISD::SMIN, MVT::i32, Legal); 405 setOperationAction(ISD::UMIN, MVT::i32, Legal); 406 setOperationAction(ISD::SMAX, MVT::i32, Legal); 407 setOperationAction(ISD::UMAX, MVT::i32, Legal); 408 409 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 410 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 411 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 412 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 413 414 static const MVT::SimpleValueType VectorIntTypes[] = { 415 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 416 }; 417 418 for (MVT VT : VectorIntTypes) { 419 // Expand the following operations for the current type by default. 420 setOperationAction(ISD::ADD, VT, Expand); 421 setOperationAction(ISD::AND, VT, Expand); 422 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 423 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 424 setOperationAction(ISD::MUL, VT, Expand); 425 setOperationAction(ISD::MULHU, VT, Expand); 426 setOperationAction(ISD::MULHS, VT, Expand); 427 setOperationAction(ISD::OR, VT, Expand); 428 setOperationAction(ISD::SHL, VT, Expand); 429 setOperationAction(ISD::SRA, VT, Expand); 430 setOperationAction(ISD::SRL, VT, Expand); 431 setOperationAction(ISD::ROTL, VT, Expand); 432 setOperationAction(ISD::ROTR, VT, Expand); 433 setOperationAction(ISD::SUB, VT, Expand); 434 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 435 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 436 setOperationAction(ISD::SDIV, VT, Expand); 437 setOperationAction(ISD::UDIV, VT, Expand); 438 setOperationAction(ISD::SREM, VT, Expand); 439 setOperationAction(ISD::UREM, VT, Expand); 440 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 441 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 442 setOperationAction(ISD::SDIVREM, VT, Custom); 443 setOperationAction(ISD::UDIVREM, VT, Expand); 444 setOperationAction(ISD::SELECT, VT, Expand); 445 setOperationAction(ISD::VSELECT, VT, Expand); 446 setOperationAction(ISD::SELECT_CC, VT, Expand); 447 setOperationAction(ISD::XOR, VT, Expand); 448 setOperationAction(ISD::BSWAP, VT, Expand); 449 setOperationAction(ISD::CTPOP, VT, Expand); 450 setOperationAction(ISD::CTTZ, VT, Expand); 451 setOperationAction(ISD::CTLZ, VT, Expand); 452 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 453 setOperationAction(ISD::SETCC, VT, Expand); 454 } 455 456 static const MVT::SimpleValueType FloatVectorTypes[] = { 457 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 458 }; 459 460 for (MVT VT : FloatVectorTypes) { 461 setOperationAction(ISD::FABS, VT, Expand); 462 setOperationAction(ISD::FMINNUM, VT, Expand); 463 setOperationAction(ISD::FMAXNUM, VT, Expand); 464 setOperationAction(ISD::FADD, VT, Expand); 465 setOperationAction(ISD::FCEIL, VT, Expand); 466 setOperationAction(ISD::FCOS, VT, Expand); 467 setOperationAction(ISD::FDIV, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FEXP, VT, Expand); 470 setOperationAction(ISD::FLOG2, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FLOG, VT, Expand); 473 setOperationAction(ISD::FLOG10, VT, Expand); 474 setOperationAction(ISD::FPOW, VT, Expand); 475 setOperationAction(ISD::FFLOOR, VT, Expand); 476 setOperationAction(ISD::FTRUNC, VT, Expand); 477 setOperationAction(ISD::FMUL, VT, Expand); 478 setOperationAction(ISD::FMA, VT, Expand); 479 setOperationAction(ISD::FRINT, VT, Expand); 480 setOperationAction(ISD::FNEARBYINT, VT, Expand); 481 setOperationAction(ISD::FSQRT, VT, Expand); 482 setOperationAction(ISD::FSIN, VT, Expand); 483 setOperationAction(ISD::FSUB, VT, Expand); 484 setOperationAction(ISD::FNEG, VT, Expand); 485 setOperationAction(ISD::VSELECT, VT, Expand); 486 setOperationAction(ISD::SELECT_CC, VT, Expand); 487 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 488 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 489 setOperationAction(ISD::SETCC, VT, Expand); 490 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 491 } 492 493 // This causes using an unrolled select operation rather than expansion with 494 // bit operations. This is in general better, but the alternative using BFI 495 // instructions may be better if the select sources are SGPRs. 496 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 497 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 498 499 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 500 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 501 502 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 503 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 504 505 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 506 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 507 508 // There are no libcalls of any kind. 509 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 510 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 511 512 setBooleanContents(ZeroOrNegativeOneBooleanContent); 513 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 514 515 setSchedulingPreference(Sched::RegPressure); 516 setJumpIsExpensive(true); 517 518 // FIXME: This is only partially true. If we have to do vector compares, any 519 // SGPR pair can be a condition register. If we have a uniform condition, we 520 // are better off doing SALU operations, where there is only one SCC. For now, 521 // we don't have a way of knowing during instruction selection if a condition 522 // will be uniform and we always use vector compares. Assume we are using 523 // vector compares until that is fixed. 524 setHasMultipleConditionRegisters(true); 525 526 PredictableSelectIsExpensive = false; 527 528 // We want to find all load dependencies for long chains of stores to enable 529 // merging into very wide vectors. The problem is with vectors with > 4 530 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 531 // vectors are a legal type, even though we have to split the loads 532 // usually. When we can more precisely specify load legality per address 533 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 534 // smarter so that they can figure out what to do in 2 iterations without all 535 // N > 4 stores on the same chain. 536 GatherAllAliasesMaxDepth = 16; 537 538 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 539 // about these during lowering. 540 MaxStoresPerMemcpy = 0xffffffff; 541 MaxStoresPerMemmove = 0xffffffff; 542 MaxStoresPerMemset = 0xffffffff; 543 544 setTargetDAGCombine(ISD::BITCAST); 545 setTargetDAGCombine(ISD::SHL); 546 setTargetDAGCombine(ISD::SRA); 547 setTargetDAGCombine(ISD::SRL); 548 setTargetDAGCombine(ISD::TRUNCATE); 549 setTargetDAGCombine(ISD::MUL); 550 setTargetDAGCombine(ISD::MULHU); 551 setTargetDAGCombine(ISD::MULHS); 552 setTargetDAGCombine(ISD::SELECT); 553 setTargetDAGCombine(ISD::SELECT_CC); 554 setTargetDAGCombine(ISD::STORE); 555 setTargetDAGCombine(ISD::FADD); 556 setTargetDAGCombine(ISD::FSUB); 557 setTargetDAGCombine(ISD::FNEG); 558 setTargetDAGCombine(ISD::FABS); 559 setTargetDAGCombine(ISD::AssertZext); 560 setTargetDAGCombine(ISD::AssertSext); 561 } 562 563 //===----------------------------------------------------------------------===// 564 // Target Information 565 //===----------------------------------------------------------------------===// 566 567 LLVM_READNONE 568 static bool fnegFoldsIntoOp(unsigned Opc) { 569 switch (Opc) { 570 case ISD::FADD: 571 case ISD::FSUB: 572 case ISD::FMUL: 573 case ISD::FMA: 574 case ISD::FMAD: 575 case ISD::FMINNUM: 576 case ISD::FMAXNUM: 577 case ISD::FMINNUM_IEEE: 578 case ISD::FMAXNUM_IEEE: 579 case ISD::FSIN: 580 case ISD::FTRUNC: 581 case ISD::FRINT: 582 case ISD::FNEARBYINT: 583 case ISD::FCANONICALIZE: 584 case AMDGPUISD::RCP: 585 case AMDGPUISD::RCP_LEGACY: 586 case AMDGPUISD::RCP_IFLAG: 587 case AMDGPUISD::SIN_HW: 588 case AMDGPUISD::FMUL_LEGACY: 589 case AMDGPUISD::FMIN_LEGACY: 590 case AMDGPUISD::FMAX_LEGACY: 591 case AMDGPUISD::FMED3: 592 return true; 593 default: 594 return false; 595 } 596 } 597 598 /// \p returns true if the operation will definitely need to use a 64-bit 599 /// encoding, and thus will use a VOP3 encoding regardless of the source 600 /// modifiers. 601 LLVM_READONLY 602 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 603 return N->getNumOperands() > 2 || VT == MVT::f64; 604 } 605 606 // Most FP instructions support source modifiers, but this could be refined 607 // slightly. 608 LLVM_READONLY 609 static bool hasSourceMods(const SDNode *N) { 610 if (isa<MemSDNode>(N)) 611 return false; 612 613 switch (N->getOpcode()) { 614 case ISD::CopyToReg: 615 case ISD::SELECT: 616 case ISD::FDIV: 617 case ISD::FREM: 618 case ISD::INLINEASM: 619 case ISD::INLINEASM_BR: 620 case AMDGPUISD::INTERP_P1: 621 case AMDGPUISD::INTERP_P2: 622 case AMDGPUISD::DIV_SCALE: 623 624 // TODO: Should really be looking at the users of the bitcast. These are 625 // problematic because bitcasts are used to legalize all stores to integer 626 // types. 627 case ISD::BITCAST: 628 return false; 629 default: 630 return true; 631 } 632 } 633 634 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 635 unsigned CostThreshold) { 636 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 637 // it is truly free to use a source modifier in all cases. If there are 638 // multiple users but for each one will necessitate using VOP3, there will be 639 // a code size increase. Try to avoid increasing code size unless we know it 640 // will save on the instruction count. 641 unsigned NumMayIncreaseSize = 0; 642 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 643 644 // XXX - Should this limit number of uses to check? 645 for (const SDNode *U : N->uses()) { 646 if (!hasSourceMods(U)) 647 return false; 648 649 if (!opMustUseVOP3Encoding(U, VT)) { 650 if (++NumMayIncreaseSize > CostThreshold) 651 return false; 652 } 653 } 654 655 return true; 656 } 657 658 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 659 return MVT::i32; 660 } 661 662 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 663 return true; 664 } 665 666 // The backend supports 32 and 64 bit floating point immediates. 667 // FIXME: Why are we reporting vectors of FP immediates as legal? 668 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 669 bool ForCodeSize) const { 670 EVT ScalarVT = VT.getScalarType(); 671 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 672 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 673 } 674 675 // We don't want to shrink f64 / f32 constants. 676 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 677 EVT ScalarVT = VT.getScalarType(); 678 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 679 } 680 681 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 682 ISD::LoadExtType ExtTy, 683 EVT NewVT) const { 684 // TODO: This may be worth removing. Check regression tests for diffs. 685 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 686 return false; 687 688 unsigned NewSize = NewVT.getStoreSizeInBits(); 689 690 // If we are reducing to a 32-bit load, this is always better. 691 if (NewSize == 32) 692 return true; 693 694 EVT OldVT = N->getValueType(0); 695 unsigned OldSize = OldVT.getStoreSizeInBits(); 696 697 MemSDNode *MN = cast<MemSDNode>(N); 698 unsigned AS = MN->getAddressSpace(); 699 // Do not shrink an aligned scalar load to sub-dword. 700 // Scalar engine cannot do sub-dword loads. 701 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 702 (AS == AMDGPUAS::CONSTANT_ADDRESS || 703 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 704 (isa<LoadSDNode>(N) && 705 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 706 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 707 return false; 708 709 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 710 // extloads, so doing one requires using a buffer_load. In cases where we 711 // still couldn't use a scalar load, using the wider load shouldn't really 712 // hurt anything. 713 714 // If the old size already had to be an extload, there's no harm in continuing 715 // to reduce the width. 716 return (OldSize < 32); 717 } 718 719 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 720 EVT CastTy) const { 721 722 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 723 724 if (LoadTy.getScalarType() == MVT::i32) 725 return false; 726 727 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 728 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 729 730 return (LScalarSize < CastScalarSize) || 731 (CastScalarSize >= 32); 732 } 733 734 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 735 // profitable with the expansion for 64-bit since it's generally good to 736 // speculate things. 737 // FIXME: These should really have the size as a parameter. 738 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 739 return true; 740 } 741 742 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 743 return true; 744 } 745 746 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 747 switch (N->getOpcode()) { 748 default: 749 return false; 750 case ISD::EntryToken: 751 case ISD::TokenFactor: 752 return true; 753 case ISD::INTRINSIC_WO_CHAIN: 754 { 755 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 756 switch (IntrID) { 757 default: 758 return false; 759 case Intrinsic::amdgcn_readfirstlane: 760 case Intrinsic::amdgcn_readlane: 761 return true; 762 } 763 } 764 break; 765 case ISD::LOAD: 766 { 767 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 768 if (L->getMemOperand()->getAddrSpace() 769 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 770 return true; 771 return false; 772 } 773 break; 774 } 775 } 776 777 //===---------------------------------------------------------------------===// 778 // Target Properties 779 //===---------------------------------------------------------------------===// 780 781 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 782 assert(VT.isFloatingPoint()); 783 784 // Packed operations do not have a fabs modifier. 785 return VT == MVT::f32 || VT == MVT::f64 || 786 (Subtarget->has16BitInsts() && VT == MVT::f16); 787 } 788 789 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 790 assert(VT.isFloatingPoint()); 791 return VT == MVT::f32 || VT == MVT::f64 || 792 (Subtarget->has16BitInsts() && VT == MVT::f16) || 793 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 794 } 795 796 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 797 unsigned NumElem, 798 unsigned AS) const { 799 return true; 800 } 801 802 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 803 // There are few operations which truly have vector input operands. Any vector 804 // operation is going to involve operations on each component, and a 805 // build_vector will be a copy per element, so it always makes sense to use a 806 // build_vector input in place of the extracted element to avoid a copy into a 807 // super register. 808 // 809 // We should probably only do this if all users are extracts only, but this 810 // should be the common case. 811 return true; 812 } 813 814 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 815 // Truncate is just accessing a subregister. 816 817 unsigned SrcSize = Source.getSizeInBits(); 818 unsigned DestSize = Dest.getSizeInBits(); 819 820 return DestSize < SrcSize && DestSize % 32 == 0 ; 821 } 822 823 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 824 // Truncate is just accessing a subregister. 825 826 unsigned SrcSize = Source->getScalarSizeInBits(); 827 unsigned DestSize = Dest->getScalarSizeInBits(); 828 829 if (DestSize== 16 && Subtarget->has16BitInsts()) 830 return SrcSize >= 32; 831 832 return DestSize < SrcSize && DestSize % 32 == 0; 833 } 834 835 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 836 unsigned SrcSize = Src->getScalarSizeInBits(); 837 unsigned DestSize = Dest->getScalarSizeInBits(); 838 839 if (SrcSize == 16 && Subtarget->has16BitInsts()) 840 return DestSize >= 32; 841 842 return SrcSize == 32 && DestSize == 64; 843 } 844 845 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 846 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 847 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 848 // this will enable reducing 64-bit operations the 32-bit, which is always 849 // good. 850 851 if (Src == MVT::i16) 852 return Dest == MVT::i32 ||Dest == MVT::i64 ; 853 854 return Src == MVT::i32 && Dest == MVT::i64; 855 } 856 857 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 858 return isZExtFree(Val.getValueType(), VT2); 859 } 860 861 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 862 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 863 // limited number of native 64-bit operations. Shrinking an operation to fit 864 // in a single 32-bit register should always be helpful. As currently used, 865 // this is much less general than the name suggests, and is only used in 866 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 867 // not profitable, and may actually be harmful. 868 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 869 } 870 871 //===---------------------------------------------------------------------===// 872 // TargetLowering Callbacks 873 //===---------------------------------------------------------------------===// 874 875 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 876 bool IsVarArg) { 877 switch (CC) { 878 case CallingConv::AMDGPU_VS: 879 case CallingConv::AMDGPU_GS: 880 case CallingConv::AMDGPU_PS: 881 case CallingConv::AMDGPU_CS: 882 case CallingConv::AMDGPU_HS: 883 case CallingConv::AMDGPU_ES: 884 case CallingConv::AMDGPU_LS: 885 return CC_AMDGPU; 886 case CallingConv::C: 887 case CallingConv::Fast: 888 case CallingConv::Cold: 889 return CC_AMDGPU_Func; 890 case CallingConv::AMDGPU_KERNEL: 891 case CallingConv::SPIR_KERNEL: 892 default: 893 report_fatal_error("Unsupported calling convention for call"); 894 } 895 } 896 897 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 898 bool IsVarArg) { 899 switch (CC) { 900 case CallingConv::AMDGPU_KERNEL: 901 case CallingConv::SPIR_KERNEL: 902 llvm_unreachable("kernels should not be handled here"); 903 case CallingConv::AMDGPU_VS: 904 case CallingConv::AMDGPU_GS: 905 case CallingConv::AMDGPU_PS: 906 case CallingConv::AMDGPU_CS: 907 case CallingConv::AMDGPU_HS: 908 case CallingConv::AMDGPU_ES: 909 case CallingConv::AMDGPU_LS: 910 return RetCC_SI_Shader; 911 case CallingConv::C: 912 case CallingConv::Fast: 913 case CallingConv::Cold: 914 return RetCC_AMDGPU_Func; 915 default: 916 report_fatal_error("Unsupported calling convention."); 917 } 918 } 919 920 /// The SelectionDAGBuilder will automatically promote function arguments 921 /// with illegal types. However, this does not work for the AMDGPU targets 922 /// since the function arguments are stored in memory as these illegal types. 923 /// In order to handle this properly we need to get the original types sizes 924 /// from the LLVM IR Function and fixup the ISD:InputArg values before 925 /// passing them to AnalyzeFormalArguments() 926 927 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 928 /// input values across multiple registers. Each item in the Ins array 929 /// represents a single value that will be stored in registers. Ins[x].VT is 930 /// the value type of the value that will be stored in the register, so 931 /// whatever SDNode we lower the argument to needs to be this type. 932 /// 933 /// In order to correctly lower the arguments we need to know the size of each 934 /// argument. Since Ins[x].VT gives us the size of the register that will 935 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 936 /// for the orignal function argument so that we can deduce the correct memory 937 /// type to use for Ins[x]. In most cases the correct memory type will be 938 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 939 /// we have a kernel argument of type v8i8, this argument will be split into 940 /// 8 parts and each part will be represented by its own item in the Ins array. 941 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 942 /// the argument before it was split. From this, we deduce that the memory type 943 /// for each individual part is i8. We pass the memory type as LocVT to the 944 /// calling convention analysis function and the register type (Ins[x].VT) as 945 /// the ValVT. 946 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 947 CCState &State, 948 const SmallVectorImpl<ISD::InputArg> &Ins) const { 949 const MachineFunction &MF = State.getMachineFunction(); 950 const Function &Fn = MF.getFunction(); 951 LLVMContext &Ctx = Fn.getParent()->getContext(); 952 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 953 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 954 CallingConv::ID CC = Fn.getCallingConv(); 955 956 unsigned MaxAlign = 1; 957 uint64_t ExplicitArgOffset = 0; 958 const DataLayout &DL = Fn.getParent()->getDataLayout(); 959 960 unsigned InIndex = 0; 961 962 for (const Argument &Arg : Fn.args()) { 963 Type *BaseArgTy = Arg.getType(); 964 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 965 MaxAlign = std::max(Align, MaxAlign); 966 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 967 968 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 969 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 970 971 // We're basically throwing away everything passed into us and starting over 972 // to get accurate in-memory offsets. The "PartOffset" is completely useless 973 // to us as computed in Ins. 974 // 975 // We also need to figure out what type legalization is trying to do to get 976 // the correct memory offsets. 977 978 SmallVector<EVT, 16> ValueVTs; 979 SmallVector<uint64_t, 16> Offsets; 980 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 981 982 for (unsigned Value = 0, NumValues = ValueVTs.size(); 983 Value != NumValues; ++Value) { 984 uint64_t BasePartOffset = Offsets[Value]; 985 986 EVT ArgVT = ValueVTs[Value]; 987 EVT MemVT = ArgVT; 988 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 989 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 990 991 if (NumRegs == 1) { 992 // This argument is not split, so the IR type is the memory type. 993 if (ArgVT.isExtended()) { 994 // We have an extended type, like i24, so we should just use the 995 // register type. 996 MemVT = RegisterVT; 997 } else { 998 MemVT = ArgVT; 999 } 1000 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1001 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1002 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1003 // We have a vector value which has been split into a vector with 1004 // the same scalar type, but fewer elements. This should handle 1005 // all the floating-point vector types. 1006 MemVT = RegisterVT; 1007 } else if (ArgVT.isVector() && 1008 ArgVT.getVectorNumElements() == NumRegs) { 1009 // This arg has been split so that each element is stored in a separate 1010 // register. 1011 MemVT = ArgVT.getScalarType(); 1012 } else if (ArgVT.isExtended()) { 1013 // We have an extended type, like i65. 1014 MemVT = RegisterVT; 1015 } else { 1016 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1017 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1018 if (RegisterVT.isInteger()) { 1019 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1020 } else if (RegisterVT.isVector()) { 1021 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1022 unsigned NumElements = RegisterVT.getVectorNumElements(); 1023 assert(MemoryBits % NumElements == 0); 1024 // This vector type has been split into another vector type with 1025 // a different elements size. 1026 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1027 MemoryBits / NumElements); 1028 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1029 } else { 1030 llvm_unreachable("cannot deduce memory type."); 1031 } 1032 } 1033 1034 // Convert one element vectors to scalar. 1035 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1036 MemVT = MemVT.getScalarType(); 1037 1038 // Round up vec3/vec5 argument. 1039 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1040 assert(MemVT.getVectorNumElements() == 3 || 1041 MemVT.getVectorNumElements() == 5); 1042 MemVT = MemVT.getPow2VectorType(State.getContext()); 1043 } 1044 1045 unsigned PartOffset = 0; 1046 for (unsigned i = 0; i != NumRegs; ++i) { 1047 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1048 BasePartOffset + PartOffset, 1049 MemVT.getSimpleVT(), 1050 CCValAssign::Full)); 1051 PartOffset += MemVT.getStoreSize(); 1052 } 1053 } 1054 } 1055 } 1056 1057 SDValue AMDGPUTargetLowering::LowerReturn( 1058 SDValue Chain, CallingConv::ID CallConv, 1059 bool isVarArg, 1060 const SmallVectorImpl<ISD::OutputArg> &Outs, 1061 const SmallVectorImpl<SDValue> &OutVals, 1062 const SDLoc &DL, SelectionDAG &DAG) const { 1063 // FIXME: Fails for r600 tests 1064 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1065 // "wave terminate should not have return values"); 1066 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1067 } 1068 1069 //===---------------------------------------------------------------------===// 1070 // Target specific lowering 1071 //===---------------------------------------------------------------------===// 1072 1073 /// Selects the correct CCAssignFn for a given CallingConvention value. 1074 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1075 bool IsVarArg) { 1076 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1077 } 1078 1079 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1080 bool IsVarArg) { 1081 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1082 } 1083 1084 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1085 SelectionDAG &DAG, 1086 MachineFrameInfo &MFI, 1087 int ClobberedFI) const { 1088 SmallVector<SDValue, 8> ArgChains; 1089 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1090 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1091 1092 // Include the original chain at the beginning of the list. When this is 1093 // used by target LowerCall hooks, this helps legalize find the 1094 // CALLSEQ_BEGIN node. 1095 ArgChains.push_back(Chain); 1096 1097 // Add a chain value for each stack argument corresponding 1098 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1099 UE = DAG.getEntryNode().getNode()->use_end(); 1100 U != UE; ++U) { 1101 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1102 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1103 if (FI->getIndex() < 0) { 1104 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1105 int64_t InLastByte = InFirstByte; 1106 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1107 1108 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1109 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1110 ArgChains.push_back(SDValue(L, 1)); 1111 } 1112 } 1113 } 1114 } 1115 1116 // Build a tokenfactor for all the chains. 1117 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1118 } 1119 1120 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1121 SmallVectorImpl<SDValue> &InVals, 1122 StringRef Reason) const { 1123 SDValue Callee = CLI.Callee; 1124 SelectionDAG &DAG = CLI.DAG; 1125 1126 const Function &Fn = DAG.getMachineFunction().getFunction(); 1127 1128 StringRef FuncName("<unknown>"); 1129 1130 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1131 FuncName = G->getSymbol(); 1132 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1133 FuncName = G->getGlobal()->getName(); 1134 1135 DiagnosticInfoUnsupported NoCalls( 1136 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1137 DAG.getContext()->diagnose(NoCalls); 1138 1139 if (!CLI.IsTailCall) { 1140 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1141 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1142 } 1143 1144 return DAG.getEntryNode(); 1145 } 1146 1147 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1148 SmallVectorImpl<SDValue> &InVals) const { 1149 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1150 } 1151 1152 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1153 SelectionDAG &DAG) const { 1154 const Function &Fn = DAG.getMachineFunction().getFunction(); 1155 1156 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1157 SDLoc(Op).getDebugLoc()); 1158 DAG.getContext()->diagnose(NoDynamicAlloca); 1159 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1160 return DAG.getMergeValues(Ops, SDLoc()); 1161 } 1162 1163 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1164 SelectionDAG &DAG) const { 1165 switch (Op.getOpcode()) { 1166 default: 1167 Op->print(errs(), &DAG); 1168 llvm_unreachable("Custom lowering code for this" 1169 "instruction is not implemented yet!"); 1170 break; 1171 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1172 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1173 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1174 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1175 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1176 case ISD::FREM: return LowerFREM(Op, DAG); 1177 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1178 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1179 case ISD::FRINT: return LowerFRINT(Op, DAG); 1180 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1181 case ISD::FROUND: return LowerFROUND(Op, DAG); 1182 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1183 case ISD::FLOG: 1184 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1185 case ISD::FLOG10: 1186 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1187 case ISD::FEXP: 1188 return lowerFEXP(Op, DAG); 1189 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1190 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1191 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1192 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1193 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1194 case ISD::CTTZ: 1195 case ISD::CTTZ_ZERO_UNDEF: 1196 case ISD::CTLZ: 1197 case ISD::CTLZ_ZERO_UNDEF: 1198 return LowerCTLZ_CTTZ(Op, DAG); 1199 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1200 } 1201 return Op; 1202 } 1203 1204 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1205 SmallVectorImpl<SDValue> &Results, 1206 SelectionDAG &DAG) const { 1207 switch (N->getOpcode()) { 1208 case ISD::SIGN_EXTEND_INREG: 1209 // Different parts of legalization seem to interpret which type of 1210 // sign_extend_inreg is the one to check for custom lowering. The extended 1211 // from type is what really matters, but some places check for custom 1212 // lowering of the result type. This results in trying to use 1213 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1214 // nothing here and let the illegal result integer be handled normally. 1215 return; 1216 default: 1217 return; 1218 } 1219 } 1220 1221 static bool hasDefinedInitializer(const GlobalValue *GV) { 1222 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1223 if (!GVar || !GVar->hasInitializer()) 1224 return false; 1225 1226 return !isa<UndefValue>(GVar->getInitializer()); 1227 } 1228 1229 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1230 SDValue Op, 1231 SelectionDAG &DAG) const { 1232 1233 const DataLayout &DL = DAG.getDataLayout(); 1234 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1235 const GlobalValue *GV = G->getGlobal(); 1236 1237 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1238 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1239 if (!MFI->isEntryFunction()) { 1240 const Function &Fn = DAG.getMachineFunction().getFunction(); 1241 DiagnosticInfoUnsupported BadLDSDecl( 1242 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1243 DAG.getContext()->diagnose(BadLDSDecl); 1244 } 1245 1246 // XXX: What does the value of G->getOffset() mean? 1247 assert(G->getOffset() == 0 && 1248 "Do not know what to do with an non-zero offset"); 1249 1250 // TODO: We could emit code to handle the initialization somewhere. 1251 if (!hasDefinedInitializer(GV)) { 1252 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1253 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1254 } 1255 } 1256 1257 const Function &Fn = DAG.getMachineFunction().getFunction(); 1258 DiagnosticInfoUnsupported BadInit( 1259 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1260 DAG.getContext()->diagnose(BadInit); 1261 return SDValue(); 1262 } 1263 1264 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1265 SelectionDAG &DAG) const { 1266 SmallVector<SDValue, 8> Args; 1267 1268 EVT VT = Op.getValueType(); 1269 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1270 SDLoc SL(Op); 1271 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1272 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1273 1274 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1275 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1276 } 1277 1278 for (const SDUse &U : Op->ops()) 1279 DAG.ExtractVectorElements(U.get(), Args); 1280 1281 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1282 } 1283 1284 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1285 SelectionDAG &DAG) const { 1286 1287 SmallVector<SDValue, 8> Args; 1288 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1289 EVT VT = Op.getValueType(); 1290 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1291 VT.getVectorNumElements()); 1292 1293 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1294 } 1295 1296 /// Generate Min/Max node 1297 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1298 SDValue LHS, SDValue RHS, 1299 SDValue True, SDValue False, 1300 SDValue CC, 1301 DAGCombinerInfo &DCI) const { 1302 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1303 return SDValue(); 1304 1305 SelectionDAG &DAG = DCI.DAG; 1306 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1307 switch (CCOpcode) { 1308 case ISD::SETOEQ: 1309 case ISD::SETONE: 1310 case ISD::SETUNE: 1311 case ISD::SETNE: 1312 case ISD::SETUEQ: 1313 case ISD::SETEQ: 1314 case ISD::SETFALSE: 1315 case ISD::SETFALSE2: 1316 case ISD::SETTRUE: 1317 case ISD::SETTRUE2: 1318 case ISD::SETUO: 1319 case ISD::SETO: 1320 break; 1321 case ISD::SETULE: 1322 case ISD::SETULT: { 1323 if (LHS == True) 1324 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1325 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1326 } 1327 case ISD::SETOLE: 1328 case ISD::SETOLT: 1329 case ISD::SETLE: 1330 case ISD::SETLT: { 1331 // Ordered. Assume ordered for undefined. 1332 1333 // Only do this after legalization to avoid interfering with other combines 1334 // which might occur. 1335 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1336 !DCI.isCalledByLegalizer()) 1337 return SDValue(); 1338 1339 // We need to permute the operands to get the correct NaN behavior. The 1340 // selected operand is the second one based on the failing compare with NaN, 1341 // so permute it based on the compare type the hardware uses. 1342 if (LHS == True) 1343 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1344 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1345 } 1346 case ISD::SETUGE: 1347 case ISD::SETUGT: { 1348 if (LHS == True) 1349 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1350 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1351 } 1352 case ISD::SETGT: 1353 case ISD::SETGE: 1354 case ISD::SETOGE: 1355 case ISD::SETOGT: { 1356 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1357 !DCI.isCalledByLegalizer()) 1358 return SDValue(); 1359 1360 if (LHS == True) 1361 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1362 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1363 } 1364 case ISD::SETCC_INVALID: 1365 llvm_unreachable("Invalid setcc condcode!"); 1366 } 1367 return SDValue(); 1368 } 1369 1370 std::pair<SDValue, SDValue> 1371 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1372 SDLoc SL(Op); 1373 1374 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1375 1376 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1377 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1378 1379 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1380 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1381 1382 return std::make_pair(Lo, Hi); 1383 } 1384 1385 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1386 SDLoc SL(Op); 1387 1388 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1389 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1390 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1391 } 1392 1393 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1394 SDLoc SL(Op); 1395 1396 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1397 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1398 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1399 } 1400 1401 // Split a vector type into two parts. The first part is a power of two vector. 1402 // The second part is whatever is left over, and is a scalar if it would 1403 // otherwise be a 1-vector. 1404 std::pair<EVT, EVT> 1405 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1406 EVT LoVT, HiVT; 1407 EVT EltVT = VT.getVectorElementType(); 1408 unsigned NumElts = VT.getVectorNumElements(); 1409 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1410 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1411 HiVT = NumElts - LoNumElts == 1 1412 ? EltVT 1413 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1414 return std::make_pair(LoVT, HiVT); 1415 } 1416 1417 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1418 // scalar. 1419 std::pair<SDValue, SDValue> 1420 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1421 const EVT &LoVT, const EVT &HiVT, 1422 SelectionDAG &DAG) const { 1423 assert(LoVT.getVectorNumElements() + 1424 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1425 N.getValueType().getVectorNumElements() && 1426 "More vector elements requested than available!"); 1427 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1428 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1429 DAG.getConstant(0, DL, IdxTy)); 1430 SDValue Hi = DAG.getNode( 1431 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1432 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1433 return std::make_pair(Lo, Hi); 1434 } 1435 1436 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1437 SelectionDAG &DAG) const { 1438 LoadSDNode *Load = cast<LoadSDNode>(Op); 1439 EVT VT = Op.getValueType(); 1440 1441 1442 // If this is a 2 element vector, we really want to scalarize and not create 1443 // weird 1 element vectors. 1444 if (VT.getVectorNumElements() == 2) 1445 return scalarizeVectorLoad(Load, DAG); 1446 1447 SDValue BasePtr = Load->getBasePtr(); 1448 EVT MemVT = Load->getMemoryVT(); 1449 SDLoc SL(Op); 1450 1451 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1452 1453 EVT LoVT, HiVT; 1454 EVT LoMemVT, HiMemVT; 1455 SDValue Lo, Hi; 1456 1457 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1458 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1459 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1460 1461 unsigned Size = LoMemVT.getStoreSize(); 1462 unsigned BaseAlign = Load->getAlignment(); 1463 unsigned HiAlign = MinAlign(BaseAlign, Size); 1464 1465 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1466 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1467 BaseAlign, Load->getMemOperand()->getFlags()); 1468 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1469 SDValue HiLoad = 1470 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1471 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1472 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1473 1474 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1475 SDValue Join; 1476 if (LoVT == HiVT) { 1477 // This is the case that the vector is power of two so was evenly split. 1478 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1479 } else { 1480 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1481 DAG.getConstant(0, SL, IdxTy)); 1482 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1483 : ISD::INSERT_VECTOR_ELT, 1484 SL, VT, Join, HiLoad, 1485 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1486 } 1487 1488 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1489 LoLoad.getValue(1), HiLoad.getValue(1))}; 1490 1491 return DAG.getMergeValues(Ops, SL); 1492 } 1493 1494 // Widen a vector load from vec3 to vec4. 1495 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1496 SelectionDAG &DAG) const { 1497 LoadSDNode *Load = cast<LoadSDNode>(Op); 1498 EVT VT = Op.getValueType(); 1499 assert(VT.getVectorNumElements() == 3); 1500 SDValue BasePtr = Load->getBasePtr(); 1501 EVT MemVT = Load->getMemoryVT(); 1502 SDLoc SL(Op); 1503 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1504 unsigned BaseAlign = Load->getAlignment(); 1505 1506 EVT WideVT = 1507 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1508 EVT WideMemVT = 1509 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1510 SDValue WideLoad = DAG.getExtLoad( 1511 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1512 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1513 return DAG.getMergeValues( 1514 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1515 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1516 WideLoad.getValue(1)}, 1517 SL); 1518 } 1519 1520 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1521 SelectionDAG &DAG) const { 1522 StoreSDNode *Store = cast<StoreSDNode>(Op); 1523 SDValue Val = Store->getValue(); 1524 EVT VT = Val.getValueType(); 1525 1526 // If this is a 2 element vector, we really want to scalarize and not create 1527 // weird 1 element vectors. 1528 if (VT.getVectorNumElements() == 2) 1529 return scalarizeVectorStore(Store, DAG); 1530 1531 EVT MemVT = Store->getMemoryVT(); 1532 SDValue Chain = Store->getChain(); 1533 SDValue BasePtr = Store->getBasePtr(); 1534 SDLoc SL(Op); 1535 1536 EVT LoVT, HiVT; 1537 EVT LoMemVT, HiMemVT; 1538 SDValue Lo, Hi; 1539 1540 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1541 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1542 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1543 1544 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1545 1546 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1547 unsigned BaseAlign = Store->getAlignment(); 1548 unsigned Size = LoMemVT.getStoreSize(); 1549 unsigned HiAlign = MinAlign(BaseAlign, Size); 1550 1551 SDValue LoStore = 1552 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1553 Store->getMemOperand()->getFlags()); 1554 SDValue HiStore = 1555 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1556 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1557 1558 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1559 } 1560 1561 // This is a shortcut for integer division because we have fast i32<->f32 1562 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1563 // float is enough to accurately represent up to a 24-bit signed integer. 1564 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1565 bool Sign) const { 1566 SDLoc DL(Op); 1567 EVT VT = Op.getValueType(); 1568 SDValue LHS = Op.getOperand(0); 1569 SDValue RHS = Op.getOperand(1); 1570 MVT IntVT = MVT::i32; 1571 MVT FltVT = MVT::f32; 1572 1573 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1574 if (LHSSignBits < 9) 1575 return SDValue(); 1576 1577 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1578 if (RHSSignBits < 9) 1579 return SDValue(); 1580 1581 unsigned BitSize = VT.getSizeInBits(); 1582 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1583 unsigned DivBits = BitSize - SignBits; 1584 if (Sign) 1585 ++DivBits; 1586 1587 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1588 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1589 1590 SDValue jq = DAG.getConstant(1, DL, IntVT); 1591 1592 if (Sign) { 1593 // char|short jq = ia ^ ib; 1594 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1595 1596 // jq = jq >> (bitsize - 2) 1597 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1598 DAG.getConstant(BitSize - 2, DL, VT)); 1599 1600 // jq = jq | 0x1 1601 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1602 } 1603 1604 // int ia = (int)LHS; 1605 SDValue ia = LHS; 1606 1607 // int ib, (int)RHS; 1608 SDValue ib = RHS; 1609 1610 // float fa = (float)ia; 1611 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1612 1613 // float fb = (float)ib; 1614 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1615 1616 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1617 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1618 1619 // fq = trunc(fq); 1620 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1621 1622 // float fqneg = -fq; 1623 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1624 1625 // float fr = mad(fqneg, fb, fa); 1626 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1627 (unsigned)AMDGPUISD::FMAD_FTZ : 1628 (unsigned)ISD::FMAD; 1629 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1630 1631 // int iq = (int)fq; 1632 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1633 1634 // fr = fabs(fr); 1635 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1636 1637 // fb = fabs(fb); 1638 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1639 1640 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1641 1642 // int cv = fr >= fb; 1643 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1644 1645 // jq = (cv ? jq : 0); 1646 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1647 1648 // dst = iq + jq; 1649 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1650 1651 // Rem needs compensation, it's easier to recompute it 1652 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1653 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1654 1655 // Truncate to number of bits this divide really is. 1656 if (Sign) { 1657 SDValue InRegSize 1658 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1659 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1660 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1661 } else { 1662 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1663 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1664 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1665 } 1666 1667 return DAG.getMergeValues({ Div, Rem }, DL); 1668 } 1669 1670 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1671 SelectionDAG &DAG, 1672 SmallVectorImpl<SDValue> &Results) const { 1673 SDLoc DL(Op); 1674 EVT VT = Op.getValueType(); 1675 1676 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1677 1678 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1679 1680 SDValue One = DAG.getConstant(1, DL, HalfVT); 1681 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1682 1683 //HiLo split 1684 SDValue LHS = Op.getOperand(0); 1685 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1686 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1687 1688 SDValue RHS = Op.getOperand(1); 1689 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1690 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1691 1692 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1693 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1694 1695 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1696 LHS_Lo, RHS_Lo); 1697 1698 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1699 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1700 1701 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1702 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1703 return; 1704 } 1705 1706 if (isTypeLegal(MVT::i64)) { 1707 // Compute denominator reciprocal. 1708 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1709 (unsigned)AMDGPUISD::FMAD_FTZ : 1710 (unsigned)ISD::FMAD; 1711 1712 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1713 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1714 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1715 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1716 Cvt_Lo); 1717 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1718 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1719 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1720 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1721 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1722 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1723 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1724 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1725 Mul1); 1726 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1727 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1728 SDValue Rcp64 = DAG.getBitcast(VT, 1729 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1730 1731 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1732 SDValue One64 = DAG.getConstant(1, DL, VT); 1733 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1734 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1735 1736 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1737 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1738 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1739 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1740 Zero); 1741 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1742 One); 1743 1744 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1745 Mulhi1_Lo, Zero1); 1746 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1747 Mulhi1_Hi, Add1_Lo.getValue(1)); 1748 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1749 SDValue Add1 = DAG.getBitcast(VT, 1750 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1751 1752 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1753 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1754 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1755 Zero); 1756 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1757 One); 1758 1759 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1760 Mulhi2_Lo, Zero1); 1761 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1762 Mulhi2_Hi, Add1_Lo.getValue(1)); 1763 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1764 Zero, Add2_Lo.getValue(1)); 1765 SDValue Add2 = DAG.getBitcast(VT, 1766 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1767 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1768 1769 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1770 1771 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1772 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1773 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1774 Mul3_Lo, Zero1); 1775 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1776 Mul3_Hi, Sub1_Lo.getValue(1)); 1777 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1778 SDValue Sub1 = DAG.getBitcast(VT, 1779 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1780 1781 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1782 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1783 ISD::SETUGE); 1784 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1785 ISD::SETUGE); 1786 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1787 1788 // TODO: Here and below portions of the code can be enclosed into if/endif. 1789 // Currently control flow is unconditional and we have 4 selects after 1790 // potential endif to substitute PHIs. 1791 1792 // if C3 != 0 ... 1793 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1794 RHS_Lo, Zero1); 1795 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1796 RHS_Hi, Sub1_Lo.getValue(1)); 1797 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1798 Zero, Sub2_Lo.getValue(1)); 1799 SDValue Sub2 = DAG.getBitcast(VT, 1800 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1801 1802 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1803 1804 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1805 ISD::SETUGE); 1806 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1807 ISD::SETUGE); 1808 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1809 1810 // if (C6 != 0) 1811 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1812 1813 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1814 RHS_Lo, Zero1); 1815 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1816 RHS_Hi, Sub2_Lo.getValue(1)); 1817 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1818 Zero, Sub3_Lo.getValue(1)); 1819 SDValue Sub3 = DAG.getBitcast(VT, 1820 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1821 1822 // endif C6 1823 // endif C3 1824 1825 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1826 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1827 1828 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1829 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1830 1831 Results.push_back(Div); 1832 Results.push_back(Rem); 1833 1834 return; 1835 } 1836 1837 // r600 expandion. 1838 // Get Speculative values 1839 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1840 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1841 1842 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1843 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1844 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1845 1846 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1847 SDValue DIV_Lo = Zero; 1848 1849 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1850 1851 for (unsigned i = 0; i < halfBitWidth; ++i) { 1852 const unsigned bitPos = halfBitWidth - i - 1; 1853 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1854 // Get value of high bit 1855 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1856 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1857 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1858 1859 // Shift 1860 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1861 // Add LHS high bit 1862 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1863 1864 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1865 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1866 1867 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1868 1869 // Update REM 1870 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1871 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1872 } 1873 1874 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1875 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1876 Results.push_back(DIV); 1877 Results.push_back(REM); 1878 } 1879 1880 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1881 SelectionDAG &DAG) const { 1882 SDLoc DL(Op); 1883 EVT VT = Op.getValueType(); 1884 1885 if (VT == MVT::i64) { 1886 SmallVector<SDValue, 2> Results; 1887 LowerUDIVREM64(Op, DAG, Results); 1888 return DAG.getMergeValues(Results, DL); 1889 } 1890 1891 if (VT == MVT::i32) { 1892 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1893 return Res; 1894 } 1895 1896 SDValue Num = Op.getOperand(0); 1897 SDValue Den = Op.getOperand(1); 1898 1899 // RCP = URECIP(Den) = 2^32 / Den + e 1900 // e is rounding error. 1901 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1902 1903 // RCP_LO = mul(RCP, Den) */ 1904 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1905 1906 // RCP_HI = mulhu (RCP, Den) */ 1907 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1908 1909 // NEG_RCP_LO = -RCP_LO 1910 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1911 RCP_LO); 1912 1913 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1914 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1915 NEG_RCP_LO, RCP_LO, 1916 ISD::SETEQ); 1917 // Calculate the rounding error from the URECIP instruction 1918 // E = mulhu(ABS_RCP_LO, RCP) 1919 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1920 1921 // RCP_A_E = RCP + E 1922 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1923 1924 // RCP_S_E = RCP - E 1925 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1926 1927 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1928 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1929 RCP_A_E, RCP_S_E, 1930 ISD::SETEQ); 1931 // Quotient = mulhu(Tmp0, Num) 1932 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1933 1934 // Num_S_Remainder = Quotient * Den 1935 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1936 1937 // Remainder = Num - Num_S_Remainder 1938 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1939 1940 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1941 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1942 DAG.getConstant(-1, DL, VT), 1943 DAG.getConstant(0, DL, VT), 1944 ISD::SETUGE); 1945 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1946 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1947 Num_S_Remainder, 1948 DAG.getConstant(-1, DL, VT), 1949 DAG.getConstant(0, DL, VT), 1950 ISD::SETUGE); 1951 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1952 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1953 Remainder_GE_Zero); 1954 1955 // Calculate Division result: 1956 1957 // Quotient_A_One = Quotient + 1 1958 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1959 DAG.getConstant(1, DL, VT)); 1960 1961 // Quotient_S_One = Quotient - 1 1962 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1963 DAG.getConstant(1, DL, VT)); 1964 1965 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1966 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1967 Quotient, Quotient_A_One, ISD::SETEQ); 1968 1969 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1970 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1971 Quotient_S_One, Div, ISD::SETEQ); 1972 1973 // Calculate Rem result: 1974 1975 // Remainder_S_Den = Remainder - Den 1976 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1977 1978 // Remainder_A_Den = Remainder + Den 1979 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1980 1981 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1982 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1983 Remainder, Remainder_S_Den, ISD::SETEQ); 1984 1985 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1986 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1987 Remainder_A_Den, Rem, ISD::SETEQ); 1988 SDValue Ops[2] = { 1989 Div, 1990 Rem 1991 }; 1992 return DAG.getMergeValues(Ops, DL); 1993 } 1994 1995 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1996 SelectionDAG &DAG) const { 1997 SDLoc DL(Op); 1998 EVT VT = Op.getValueType(); 1999 2000 SDValue LHS = Op.getOperand(0); 2001 SDValue RHS = Op.getOperand(1); 2002 2003 SDValue Zero = DAG.getConstant(0, DL, VT); 2004 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2005 2006 if (VT == MVT::i32) { 2007 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2008 return Res; 2009 } 2010 2011 if (VT == MVT::i64 && 2012 DAG.ComputeNumSignBits(LHS) > 32 && 2013 DAG.ComputeNumSignBits(RHS) > 32) { 2014 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2015 2016 //HiLo split 2017 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2018 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2019 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2020 LHS_Lo, RHS_Lo); 2021 SDValue Res[2] = { 2022 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2023 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2024 }; 2025 return DAG.getMergeValues(Res, DL); 2026 } 2027 2028 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2029 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2030 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2031 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2032 2033 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2034 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2035 2036 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2037 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2038 2039 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2040 SDValue Rem = Div.getValue(1); 2041 2042 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2043 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2044 2045 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2046 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2047 2048 SDValue Res[2] = { 2049 Div, 2050 Rem 2051 }; 2052 return DAG.getMergeValues(Res, DL); 2053 } 2054 2055 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2056 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2057 SDLoc SL(Op); 2058 EVT VT = Op.getValueType(); 2059 SDValue X = Op.getOperand(0); 2060 SDValue Y = Op.getOperand(1); 2061 2062 // TODO: Should this propagate fast-math-flags? 2063 2064 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2065 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2066 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2067 2068 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2069 } 2070 2071 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2072 SDLoc SL(Op); 2073 SDValue Src = Op.getOperand(0); 2074 2075 // result = trunc(src) 2076 // if (src > 0.0 && src != result) 2077 // result += 1.0 2078 2079 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2080 2081 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2082 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2083 2084 EVT SetCCVT = 2085 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2086 2087 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2088 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2089 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2090 2091 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2092 // TODO: Should this propagate fast-math-flags? 2093 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2094 } 2095 2096 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2097 SelectionDAG &DAG) { 2098 const unsigned FractBits = 52; 2099 const unsigned ExpBits = 11; 2100 2101 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2102 Hi, 2103 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2104 DAG.getConstant(ExpBits, SL, MVT::i32)); 2105 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2106 DAG.getConstant(1023, SL, MVT::i32)); 2107 2108 return Exp; 2109 } 2110 2111 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2112 SDLoc SL(Op); 2113 SDValue Src = Op.getOperand(0); 2114 2115 assert(Op.getValueType() == MVT::f64); 2116 2117 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2118 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2119 2120 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2121 2122 // Extract the upper half, since this is where we will find the sign and 2123 // exponent. 2124 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2125 2126 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2127 2128 const unsigned FractBits = 52; 2129 2130 // Extract the sign bit. 2131 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2132 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2133 2134 // Extend back to 64-bits. 2135 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2136 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2137 2138 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2139 const SDValue FractMask 2140 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2141 2142 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2143 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2144 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2145 2146 EVT SetCCVT = 2147 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2148 2149 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2150 2151 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2152 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2153 2154 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2155 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2156 2157 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2158 } 2159 2160 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2161 SDLoc SL(Op); 2162 SDValue Src = Op.getOperand(0); 2163 2164 assert(Op.getValueType() == MVT::f64); 2165 2166 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2167 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2168 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2169 2170 // TODO: Should this propagate fast-math-flags? 2171 2172 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2173 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2174 2175 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2176 2177 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2178 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2179 2180 EVT SetCCVT = 2181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2182 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2183 2184 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2185 } 2186 2187 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2188 // FNEARBYINT and FRINT are the same, except in their handling of FP 2189 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2190 // rint, so just treat them as equivalent. 2191 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2192 } 2193 2194 // XXX - May require not supporting f32 denormals? 2195 2196 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2197 // compare and vselect end up producing worse code than scalarizing the whole 2198 // operation. 2199 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2200 SDLoc SL(Op); 2201 SDValue X = Op.getOperand(0); 2202 EVT VT = Op.getValueType(); 2203 2204 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2205 2206 // TODO: Should this propagate fast-math-flags? 2207 2208 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2209 2210 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2211 2212 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2213 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2214 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2215 2216 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2217 2218 EVT SetCCVT = 2219 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2220 2221 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2222 2223 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2224 2225 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2226 } 2227 2228 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2229 SDLoc SL(Op); 2230 SDValue X = Op.getOperand(0); 2231 2232 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2233 2234 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2235 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2236 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2237 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2238 EVT SetCCVT = 2239 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2240 2241 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2242 2243 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2244 2245 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2246 2247 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2248 MVT::i64); 2249 2250 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2251 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2252 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2253 MVT::i64), 2254 Exp); 2255 2256 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2257 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2258 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2259 ISD::SETNE); 2260 2261 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2262 D, DAG.getConstant(0, SL, MVT::i64)); 2263 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2264 2265 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2266 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2267 2268 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2269 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2270 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2271 2272 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2273 ExpEqNegOne, 2274 DAG.getConstantFP(1.0, SL, MVT::f64), 2275 DAG.getConstantFP(0.0, SL, MVT::f64)); 2276 2277 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2278 2279 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2280 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2281 2282 return K; 2283 } 2284 2285 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2286 EVT VT = Op.getValueType(); 2287 2288 if (VT == MVT::f32 || VT == MVT::f16) 2289 return LowerFROUND32_16(Op, DAG); 2290 2291 if (VT == MVT::f64) 2292 return LowerFROUND64(Op, DAG); 2293 2294 llvm_unreachable("unhandled type"); 2295 } 2296 2297 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2298 SDLoc SL(Op); 2299 SDValue Src = Op.getOperand(0); 2300 2301 // result = trunc(src); 2302 // if (src < 0.0 && src != result) 2303 // result += -1.0. 2304 2305 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2306 2307 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2308 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2309 2310 EVT SetCCVT = 2311 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2312 2313 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2314 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2315 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2316 2317 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2318 // TODO: Should this propagate fast-math-flags? 2319 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2320 } 2321 2322 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2323 double Log2BaseInverted) const { 2324 EVT VT = Op.getValueType(); 2325 2326 SDLoc SL(Op); 2327 SDValue Operand = Op.getOperand(0); 2328 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2329 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2330 2331 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2332 } 2333 2334 // Return M_LOG2E of appropriate type 2335 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2336 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2337 case MVT::f32: 2338 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2339 case MVT::f16: 2340 return DAG.getConstantFP( 2341 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2342 SL, VT); 2343 case MVT::f64: 2344 return DAG.getConstantFP( 2345 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2346 default: 2347 llvm_unreachable("unsupported fp type"); 2348 } 2349 } 2350 2351 // exp2(M_LOG2E_F * f); 2352 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2353 EVT VT = Op.getValueType(); 2354 SDLoc SL(Op); 2355 SDValue Src = Op.getOperand(0); 2356 2357 const SDValue K = getLog2EVal(DAG, SL, VT); 2358 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2359 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2360 } 2361 2362 static bool isCtlzOpc(unsigned Opc) { 2363 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2364 } 2365 2366 static bool isCttzOpc(unsigned Opc) { 2367 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2368 } 2369 2370 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2371 SDLoc SL(Op); 2372 SDValue Src = Op.getOperand(0); 2373 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2374 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2375 2376 unsigned ISDOpc, NewOpc; 2377 if (isCtlzOpc(Op.getOpcode())) { 2378 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2379 NewOpc = AMDGPUISD::FFBH_U32; 2380 } else if (isCttzOpc(Op.getOpcode())) { 2381 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2382 NewOpc = AMDGPUISD::FFBL_B32; 2383 } else 2384 llvm_unreachable("Unexpected OPCode!!!"); 2385 2386 2387 if (ZeroUndef && Src.getValueType() == MVT::i32) 2388 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2389 2390 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2391 2392 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2393 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2394 2395 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2396 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2397 2398 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2399 *DAG.getContext(), MVT::i32); 2400 2401 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2402 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2403 2404 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2405 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2406 2407 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2408 SDValue Add, NewOpr; 2409 if (isCtlzOpc(Op.getOpcode())) { 2410 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2411 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2412 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2413 } else { 2414 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2415 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2416 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2417 } 2418 2419 if (!ZeroUndef) { 2420 // Test if the full 64-bit input is zero. 2421 2422 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2423 // which we probably don't want. 2424 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2425 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2426 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2427 2428 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2429 // with the same cycles, otherwise it is slower. 2430 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2431 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2432 2433 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2434 2435 // The instruction returns -1 for 0 input, but the defined intrinsic 2436 // behavior is to return the number of bits. 2437 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2438 SrcIsZero, Bits32, NewOpr); 2439 } 2440 2441 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2442 } 2443 2444 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2445 bool Signed) const { 2446 // Unsigned 2447 // cul2f(ulong u) 2448 //{ 2449 // uint lz = clz(u); 2450 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2451 // u = (u << lz) & 0x7fffffffffffffffUL; 2452 // ulong t = u & 0xffffffffffUL; 2453 // uint v = (e << 23) | (uint)(u >> 40); 2454 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2455 // return as_float(v + r); 2456 //} 2457 // Signed 2458 // cl2f(long l) 2459 //{ 2460 // long s = l >> 63; 2461 // float r = cul2f((l + s) ^ s); 2462 // return s ? -r : r; 2463 //} 2464 2465 SDLoc SL(Op); 2466 SDValue Src = Op.getOperand(0); 2467 SDValue L = Src; 2468 2469 SDValue S; 2470 if (Signed) { 2471 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2472 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2473 2474 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2475 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2476 } 2477 2478 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2479 *DAG.getContext(), MVT::f32); 2480 2481 2482 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2483 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2484 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2485 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2486 2487 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2488 SDValue E = DAG.getSelect(SL, MVT::i32, 2489 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2490 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2491 ZeroI32); 2492 2493 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2494 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2495 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2496 2497 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2498 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2499 2500 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2501 U, DAG.getConstant(40, SL, MVT::i64)); 2502 2503 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2504 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2505 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2506 2507 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2508 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2509 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2510 2511 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2512 2513 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2514 2515 SDValue R = DAG.getSelect(SL, MVT::i32, 2516 RCmp, 2517 One, 2518 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2519 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2520 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2521 2522 if (!Signed) 2523 return R; 2524 2525 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2526 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2527 } 2528 2529 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2530 bool Signed) const { 2531 SDLoc SL(Op); 2532 SDValue Src = Op.getOperand(0); 2533 2534 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2535 2536 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2537 DAG.getConstant(0, SL, MVT::i32)); 2538 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2539 DAG.getConstant(1, SL, MVT::i32)); 2540 2541 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2542 SL, MVT::f64, Hi); 2543 2544 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2545 2546 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2547 DAG.getConstant(32, SL, MVT::i32)); 2548 // TODO: Should this propagate fast-math-flags? 2549 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2550 } 2551 2552 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2553 SelectionDAG &DAG) const { 2554 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2555 "operation should be legal"); 2556 2557 // TODO: Factor out code common with LowerSINT_TO_FP. 2558 2559 EVT DestVT = Op.getValueType(); 2560 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2561 SDLoc DL(Op); 2562 SDValue Src = Op.getOperand(0); 2563 2564 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2565 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2566 SDValue FPRound = 2567 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2568 2569 return FPRound; 2570 } 2571 2572 if (DestVT == MVT::f32) 2573 return LowerINT_TO_FP32(Op, DAG, false); 2574 2575 assert(DestVT == MVT::f64); 2576 return LowerINT_TO_FP64(Op, DAG, false); 2577 } 2578 2579 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2580 SelectionDAG &DAG) const { 2581 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2582 "operation should be legal"); 2583 2584 // TODO: Factor out code common with LowerUINT_TO_FP. 2585 2586 EVT DestVT = Op.getValueType(); 2587 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2588 SDLoc DL(Op); 2589 SDValue Src = Op.getOperand(0); 2590 2591 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2592 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2593 SDValue FPRound = 2594 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2595 2596 return FPRound; 2597 } 2598 2599 if (DestVT == MVT::f32) 2600 return LowerINT_TO_FP32(Op, DAG, true); 2601 2602 assert(DestVT == MVT::f64); 2603 return LowerINT_TO_FP64(Op, DAG, true); 2604 } 2605 2606 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2607 bool Signed) const { 2608 SDLoc SL(Op); 2609 2610 SDValue Src = Op.getOperand(0); 2611 2612 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2613 2614 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2615 MVT::f64); 2616 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2617 MVT::f64); 2618 // TODO: Should this propagate fast-math-flags? 2619 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2620 2621 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2622 2623 2624 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2625 2626 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2627 MVT::i32, FloorMul); 2628 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2629 2630 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2631 2632 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2633 } 2634 2635 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2636 SDLoc DL(Op); 2637 SDValue N0 = Op.getOperand(0); 2638 2639 // Convert to target node to get known bits 2640 if (N0.getValueType() == MVT::f32) 2641 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2642 2643 if (getTargetMachine().Options.UnsafeFPMath) { 2644 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2645 return SDValue(); 2646 } 2647 2648 assert(N0.getSimpleValueType() == MVT::f64); 2649 2650 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2651 const unsigned ExpMask = 0x7ff; 2652 const unsigned ExpBiasf64 = 1023; 2653 const unsigned ExpBiasf16 = 15; 2654 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2655 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2656 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2657 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2658 DAG.getConstant(32, DL, MVT::i64)); 2659 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2660 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2661 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2662 DAG.getConstant(20, DL, MVT::i64)); 2663 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2664 DAG.getConstant(ExpMask, DL, MVT::i32)); 2665 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2666 // add the f16 bias (15) to get the biased exponent for the f16 format. 2667 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2668 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2669 2670 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2671 DAG.getConstant(8, DL, MVT::i32)); 2672 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2673 DAG.getConstant(0xffe, DL, MVT::i32)); 2674 2675 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2676 DAG.getConstant(0x1ff, DL, MVT::i32)); 2677 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2678 2679 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2680 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2681 2682 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2683 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2684 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2685 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2686 2687 // N = M | (E << 12); 2688 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2689 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2690 DAG.getConstant(12, DL, MVT::i32))); 2691 2692 // B = clamp(1-E, 0, 13); 2693 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2694 One, E); 2695 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2696 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2697 DAG.getConstant(13, DL, MVT::i32)); 2698 2699 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2700 DAG.getConstant(0x1000, DL, MVT::i32)); 2701 2702 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2703 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2704 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2705 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2706 2707 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2708 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2709 DAG.getConstant(0x7, DL, MVT::i32)); 2710 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2711 DAG.getConstant(2, DL, MVT::i32)); 2712 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2713 One, Zero, ISD::SETEQ); 2714 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2715 One, Zero, ISD::SETGT); 2716 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2717 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2718 2719 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2720 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2721 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2722 I, V, ISD::SETEQ); 2723 2724 // Extract the sign bit. 2725 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2726 DAG.getConstant(16, DL, MVT::i32)); 2727 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2728 DAG.getConstant(0x8000, DL, MVT::i32)); 2729 2730 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2731 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2732 } 2733 2734 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2735 SelectionDAG &DAG) const { 2736 SDValue Src = Op.getOperand(0); 2737 2738 // TODO: Factor out code common with LowerFP_TO_UINT. 2739 2740 EVT SrcVT = Src.getValueType(); 2741 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2742 SDLoc DL(Op); 2743 2744 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2745 SDValue FpToInt32 = 2746 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2747 2748 return FpToInt32; 2749 } 2750 2751 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2752 return LowerFP64_TO_INT(Op, DAG, true); 2753 2754 return SDValue(); 2755 } 2756 2757 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2758 SelectionDAG &DAG) const { 2759 SDValue Src = Op.getOperand(0); 2760 2761 // TODO: Factor out code common with LowerFP_TO_SINT. 2762 2763 EVT SrcVT = Src.getValueType(); 2764 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2765 SDLoc DL(Op); 2766 2767 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2768 SDValue FpToInt32 = 2769 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2770 2771 return FpToInt32; 2772 } 2773 2774 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2775 return LowerFP64_TO_INT(Op, DAG, false); 2776 2777 return SDValue(); 2778 } 2779 2780 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2781 SelectionDAG &DAG) const { 2782 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2783 MVT VT = Op.getSimpleValueType(); 2784 MVT ScalarVT = VT.getScalarType(); 2785 2786 assert(VT.isVector()); 2787 2788 SDValue Src = Op.getOperand(0); 2789 SDLoc DL(Op); 2790 2791 // TODO: Don't scalarize on Evergreen? 2792 unsigned NElts = VT.getVectorNumElements(); 2793 SmallVector<SDValue, 8> Args; 2794 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2795 2796 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2797 for (unsigned I = 0; I < NElts; ++I) 2798 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2799 2800 return DAG.getBuildVector(VT, DL, Args); 2801 } 2802 2803 //===----------------------------------------------------------------------===// 2804 // Custom DAG optimizations 2805 //===----------------------------------------------------------------------===// 2806 2807 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2808 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2809 } 2810 2811 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2812 EVT VT = Op.getValueType(); 2813 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2814 // as unsigned 24-bit values. 2815 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2816 } 2817 2818 static SDValue simplifyI24(SDNode *Node24, 2819 TargetLowering::DAGCombinerInfo &DCI) { 2820 SelectionDAG &DAG = DCI.DAG; 2821 SDValue LHS = Node24->getOperand(0); 2822 SDValue RHS = Node24->getOperand(1); 2823 2824 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2825 2826 // First try to simplify using GetDemandedBits which allows the operands to 2827 // have other uses, but will only perform simplifications that involve 2828 // bypassing some nodes for this user. 2829 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2830 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2831 if (DemandedLHS || DemandedRHS) 2832 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(), 2833 DemandedLHS ? DemandedLHS : LHS, 2834 DemandedRHS ? DemandedRHS : RHS); 2835 2836 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2837 // operands if this node is the only user. 2838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2839 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2840 return SDValue(Node24, 0); 2841 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2842 return SDValue(Node24, 0); 2843 2844 return SDValue(); 2845 } 2846 2847 template <typename IntTy> 2848 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2849 uint32_t Width, const SDLoc &DL) { 2850 if (Width + Offset < 32) { 2851 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2852 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2853 return DAG.getConstant(Result, DL, MVT::i32); 2854 } 2855 2856 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2857 } 2858 2859 static bool hasVolatileUser(SDNode *Val) { 2860 for (SDNode *U : Val->uses()) { 2861 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2862 if (M->isVolatile()) 2863 return true; 2864 } 2865 } 2866 2867 return false; 2868 } 2869 2870 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2871 // i32 vectors are the canonical memory type. 2872 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2873 return false; 2874 2875 if (!VT.isByteSized()) 2876 return false; 2877 2878 unsigned Size = VT.getStoreSize(); 2879 2880 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2881 return false; 2882 2883 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2884 return false; 2885 2886 return true; 2887 } 2888 2889 // Replace load of an illegal type with a store of a bitcast to a friendlier 2890 // type. 2891 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2892 DAGCombinerInfo &DCI) const { 2893 if (!DCI.isBeforeLegalize()) 2894 return SDValue(); 2895 2896 LoadSDNode *LN = cast<LoadSDNode>(N); 2897 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2898 return SDValue(); 2899 2900 SDLoc SL(N); 2901 SelectionDAG &DAG = DCI.DAG; 2902 EVT VT = LN->getMemoryVT(); 2903 2904 unsigned Size = VT.getStoreSize(); 2905 unsigned Align = LN->getAlignment(); 2906 if (Align < Size && isTypeLegal(VT)) { 2907 bool IsFast; 2908 unsigned AS = LN->getAddressSpace(); 2909 2910 // Expand unaligned loads earlier than legalization. Due to visitation order 2911 // problems during legalization, the emitted instructions to pack and unpack 2912 // the bytes again are not eliminated in the case of an unaligned copy. 2913 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2914 if (VT.isVector()) 2915 return scalarizeVectorLoad(LN, DAG); 2916 2917 SDValue Ops[2]; 2918 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2919 return DAG.getMergeValues(Ops, SDLoc(N)); 2920 } 2921 2922 if (!IsFast) 2923 return SDValue(); 2924 } 2925 2926 if (!shouldCombineMemoryType(VT)) 2927 return SDValue(); 2928 2929 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2930 2931 SDValue NewLoad 2932 = DAG.getLoad(NewVT, SL, LN->getChain(), 2933 LN->getBasePtr(), LN->getMemOperand()); 2934 2935 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2936 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2937 return SDValue(N, 0); 2938 } 2939 2940 // Replace store of an illegal type with a store of a bitcast to a friendlier 2941 // type. 2942 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2943 DAGCombinerInfo &DCI) const { 2944 if (!DCI.isBeforeLegalize()) 2945 return SDValue(); 2946 2947 StoreSDNode *SN = cast<StoreSDNode>(N); 2948 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2949 return SDValue(); 2950 2951 EVT VT = SN->getMemoryVT(); 2952 unsigned Size = VT.getStoreSize(); 2953 2954 SDLoc SL(N); 2955 SelectionDAG &DAG = DCI.DAG; 2956 unsigned Align = SN->getAlignment(); 2957 if (Align < Size && isTypeLegal(VT)) { 2958 bool IsFast; 2959 unsigned AS = SN->getAddressSpace(); 2960 2961 // Expand unaligned stores earlier than legalization. Due to visitation 2962 // order problems during legalization, the emitted instructions to pack and 2963 // unpack the bytes again are not eliminated in the case of an unaligned 2964 // copy. 2965 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2966 if (VT.isVector()) 2967 return scalarizeVectorStore(SN, DAG); 2968 2969 return expandUnalignedStore(SN, DAG); 2970 } 2971 2972 if (!IsFast) 2973 return SDValue(); 2974 } 2975 2976 if (!shouldCombineMemoryType(VT)) 2977 return SDValue(); 2978 2979 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2980 SDValue Val = SN->getValue(); 2981 2982 //DCI.AddToWorklist(Val.getNode()); 2983 2984 bool OtherUses = !Val.hasOneUse(); 2985 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2986 if (OtherUses) { 2987 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2988 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2989 } 2990 2991 return DAG.getStore(SN->getChain(), SL, CastVal, 2992 SN->getBasePtr(), SN->getMemOperand()); 2993 } 2994 2995 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2996 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2997 // issues. 2998 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2999 DAGCombinerInfo &DCI) const { 3000 SelectionDAG &DAG = DCI.DAG; 3001 SDValue N0 = N->getOperand(0); 3002 3003 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3004 // (vt2 (truncate (assertzext vt0:x, vt1))) 3005 if (N0.getOpcode() == ISD::TRUNCATE) { 3006 SDValue N1 = N->getOperand(1); 3007 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3008 SDLoc SL(N); 3009 3010 SDValue Src = N0.getOperand(0); 3011 EVT SrcVT = Src.getValueType(); 3012 if (SrcVT.bitsGE(ExtVT)) { 3013 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3014 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3015 } 3016 } 3017 3018 return SDValue(); 3019 } 3020 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3021 /// binary operation \p Opc to it with the corresponding constant operands. 3022 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3023 DAGCombinerInfo &DCI, const SDLoc &SL, 3024 unsigned Opc, SDValue LHS, 3025 uint32_t ValLo, uint32_t ValHi) const { 3026 SelectionDAG &DAG = DCI.DAG; 3027 SDValue Lo, Hi; 3028 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3029 3030 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3031 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3032 3033 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3034 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3035 3036 // Re-visit the ands. It's possible we eliminated one of them and it could 3037 // simplify the vector. 3038 DCI.AddToWorklist(Lo.getNode()); 3039 DCI.AddToWorklist(Hi.getNode()); 3040 3041 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3042 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3043 } 3044 3045 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3046 DAGCombinerInfo &DCI) const { 3047 EVT VT = N->getValueType(0); 3048 3049 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3050 if (!RHS) 3051 return SDValue(); 3052 3053 SDValue LHS = N->getOperand(0); 3054 unsigned RHSVal = RHS->getZExtValue(); 3055 if (!RHSVal) 3056 return LHS; 3057 3058 SDLoc SL(N); 3059 SelectionDAG &DAG = DCI.DAG; 3060 3061 switch (LHS->getOpcode()) { 3062 default: 3063 break; 3064 case ISD::ZERO_EXTEND: 3065 case ISD::SIGN_EXTEND: 3066 case ISD::ANY_EXTEND: { 3067 SDValue X = LHS->getOperand(0); 3068 3069 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3070 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3071 // Prefer build_vector as the canonical form if packed types are legal. 3072 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3073 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3074 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3075 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3076 } 3077 3078 // shl (ext x) => zext (shl x), if shift does not overflow int 3079 if (VT != MVT::i64) 3080 break; 3081 KnownBits Known = DAG.computeKnownBits(X); 3082 unsigned LZ = Known.countMinLeadingZeros(); 3083 if (LZ < RHSVal) 3084 break; 3085 EVT XVT = X.getValueType(); 3086 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3087 return DAG.getZExtOrTrunc(Shl, SL, VT); 3088 } 3089 } 3090 3091 if (VT != MVT::i64) 3092 return SDValue(); 3093 3094 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3095 3096 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3097 // common case, splitting this into a move and a 32-bit shift is faster and 3098 // the same code size. 3099 if (RHSVal < 32) 3100 return SDValue(); 3101 3102 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3103 3104 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3105 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3106 3107 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3108 3109 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3110 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3111 } 3112 3113 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3114 DAGCombinerInfo &DCI) const { 3115 if (N->getValueType(0) != MVT::i64) 3116 return SDValue(); 3117 3118 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3119 if (!RHS) 3120 return SDValue(); 3121 3122 SelectionDAG &DAG = DCI.DAG; 3123 SDLoc SL(N); 3124 unsigned RHSVal = RHS->getZExtValue(); 3125 3126 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3127 if (RHSVal == 32) { 3128 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3129 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3130 DAG.getConstant(31, SL, MVT::i32)); 3131 3132 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3133 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3134 } 3135 3136 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3137 if (RHSVal == 63) { 3138 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3139 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3140 DAG.getConstant(31, SL, MVT::i32)); 3141 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3142 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3143 } 3144 3145 return SDValue(); 3146 } 3147 3148 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3149 DAGCombinerInfo &DCI) const { 3150 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3151 if (!RHS) 3152 return SDValue(); 3153 3154 EVT VT = N->getValueType(0); 3155 SDValue LHS = N->getOperand(0); 3156 unsigned ShiftAmt = RHS->getZExtValue(); 3157 SelectionDAG &DAG = DCI.DAG; 3158 SDLoc SL(N); 3159 3160 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3161 // this improves the ability to match BFE patterns in isel. 3162 if (LHS.getOpcode() == ISD::AND) { 3163 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3164 if (Mask->getAPIntValue().isShiftedMask() && 3165 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3166 return DAG.getNode( 3167 ISD::AND, SL, VT, 3168 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3169 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3170 } 3171 } 3172 } 3173 3174 if (VT != MVT::i64) 3175 return SDValue(); 3176 3177 if (ShiftAmt < 32) 3178 return SDValue(); 3179 3180 // srl i64:x, C for C >= 32 3181 // => 3182 // build_pair (srl hi_32(x), C - 32), 0 3183 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3184 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3185 3186 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3187 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3188 3189 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3190 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3191 3192 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3193 3194 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3195 } 3196 3197 SDValue AMDGPUTargetLowering::performTruncateCombine( 3198 SDNode *N, DAGCombinerInfo &DCI) const { 3199 SDLoc SL(N); 3200 SelectionDAG &DAG = DCI.DAG; 3201 EVT VT = N->getValueType(0); 3202 SDValue Src = N->getOperand(0); 3203 3204 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3205 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3206 SDValue Vec = Src.getOperand(0); 3207 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3208 SDValue Elt0 = Vec.getOperand(0); 3209 EVT EltVT = Elt0.getValueType(); 3210 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3211 if (EltVT.isFloatingPoint()) { 3212 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3213 EltVT.changeTypeToInteger(), Elt0); 3214 } 3215 3216 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3217 } 3218 } 3219 } 3220 3221 // Equivalent of above for accessing the high element of a vector as an 3222 // integer operation. 3223 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3224 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3225 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3226 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3227 SDValue BV = stripBitcast(Src.getOperand(0)); 3228 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3229 BV.getValueType().getVectorNumElements() == 2) { 3230 SDValue SrcElt = BV.getOperand(1); 3231 EVT SrcEltVT = SrcElt.getValueType(); 3232 if (SrcEltVT.isFloatingPoint()) { 3233 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3234 SrcEltVT.changeTypeToInteger(), SrcElt); 3235 } 3236 3237 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3238 } 3239 } 3240 } 3241 } 3242 3243 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3244 // 3245 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3246 // i16 (trunc (srl (i32 (trunc x), K))) 3247 if (VT.getScalarSizeInBits() < 32) { 3248 EVT SrcVT = Src.getValueType(); 3249 if (SrcVT.getScalarSizeInBits() > 32 && 3250 (Src.getOpcode() == ISD::SRL || 3251 Src.getOpcode() == ISD::SRA || 3252 Src.getOpcode() == ISD::SHL)) { 3253 SDValue Amt = Src.getOperand(1); 3254 KnownBits Known = DAG.computeKnownBits(Amt); 3255 unsigned Size = VT.getScalarSizeInBits(); 3256 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3257 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3258 EVT MidVT = VT.isVector() ? 3259 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3260 VT.getVectorNumElements()) : MVT::i32; 3261 3262 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3263 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3264 Src.getOperand(0)); 3265 DCI.AddToWorklist(Trunc.getNode()); 3266 3267 if (Amt.getValueType() != NewShiftVT) { 3268 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3269 DCI.AddToWorklist(Amt.getNode()); 3270 } 3271 3272 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3273 Trunc, Amt); 3274 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3275 } 3276 } 3277 } 3278 3279 return SDValue(); 3280 } 3281 3282 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3283 // instructions. If we only match on the legalized i64 mul expansion, 3284 // SimplifyDemandedBits will be unable to remove them because there will be 3285 // multiple uses due to the separate mul + mulh[su]. 3286 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3287 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3288 if (Size <= 32) { 3289 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3290 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3291 } 3292 3293 // Because we want to eliminate extension instructions before the 3294 // operation, we need to create a single user here (i.e. not the separate 3295 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3296 3297 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3298 3299 SDValue Mul = DAG.getNode(MulOpc, SL, 3300 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3301 3302 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3303 Mul.getValue(0), Mul.getValue(1)); 3304 } 3305 3306 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3307 DAGCombinerInfo &DCI) const { 3308 EVT VT = N->getValueType(0); 3309 3310 unsigned Size = VT.getSizeInBits(); 3311 if (VT.isVector() || Size > 64) 3312 return SDValue(); 3313 3314 // There are i16 integer mul/mad. 3315 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3316 return SDValue(); 3317 3318 SelectionDAG &DAG = DCI.DAG; 3319 SDLoc DL(N); 3320 3321 SDValue N0 = N->getOperand(0); 3322 SDValue N1 = N->getOperand(1); 3323 3324 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3325 // in the source into any_extends if the result of the mul is truncated. Since 3326 // we can assume the high bits are whatever we want, use the underlying value 3327 // to avoid the unknown high bits from interfering. 3328 if (N0.getOpcode() == ISD::ANY_EXTEND) 3329 N0 = N0.getOperand(0); 3330 3331 if (N1.getOpcode() == ISD::ANY_EXTEND) 3332 N1 = N1.getOperand(0); 3333 3334 SDValue Mul; 3335 3336 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3337 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3338 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3339 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3340 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3341 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3342 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3343 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3344 } else { 3345 return SDValue(); 3346 } 3347 3348 // We need to use sext even for MUL_U24, because MUL_U24 is used 3349 // for signed multiply of 8 and 16-bit types. 3350 return DAG.getSExtOrTrunc(Mul, DL, VT); 3351 } 3352 3353 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3354 DAGCombinerInfo &DCI) const { 3355 EVT VT = N->getValueType(0); 3356 3357 if (!Subtarget->hasMulI24() || VT.isVector()) 3358 return SDValue(); 3359 3360 SelectionDAG &DAG = DCI.DAG; 3361 SDLoc DL(N); 3362 3363 SDValue N0 = N->getOperand(0); 3364 SDValue N1 = N->getOperand(1); 3365 3366 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3367 return SDValue(); 3368 3369 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3370 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3371 3372 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3373 DCI.AddToWorklist(Mulhi.getNode()); 3374 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3375 } 3376 3377 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3378 DAGCombinerInfo &DCI) const { 3379 EVT VT = N->getValueType(0); 3380 3381 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3382 return SDValue(); 3383 3384 SelectionDAG &DAG = DCI.DAG; 3385 SDLoc DL(N); 3386 3387 SDValue N0 = N->getOperand(0); 3388 SDValue N1 = N->getOperand(1); 3389 3390 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3391 return SDValue(); 3392 3393 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3394 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3395 3396 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3397 DCI.AddToWorklist(Mulhi.getNode()); 3398 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3399 } 3400 3401 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3402 SDNode *N, DAGCombinerInfo &DCI) const { 3403 SelectionDAG &DAG = DCI.DAG; 3404 3405 // Simplify demanded bits before splitting into multiple users. 3406 if (SDValue V = simplifyI24(N, DCI)) 3407 return V; 3408 3409 SDValue N0 = N->getOperand(0); 3410 SDValue N1 = N->getOperand(1); 3411 3412 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3413 3414 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3415 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3416 3417 SDLoc SL(N); 3418 3419 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3420 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3421 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3422 } 3423 3424 static bool isNegativeOne(SDValue Val) { 3425 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3426 return C->isAllOnesValue(); 3427 return false; 3428 } 3429 3430 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3431 SDValue Op, 3432 const SDLoc &DL, 3433 unsigned Opc) const { 3434 EVT VT = Op.getValueType(); 3435 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3436 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3437 LegalVT != MVT::i16)) 3438 return SDValue(); 3439 3440 if (VT != MVT::i32) 3441 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3442 3443 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3444 if (VT != MVT::i32) 3445 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3446 3447 return FFBX; 3448 } 3449 3450 // The native instructions return -1 on 0 input. Optimize out a select that 3451 // produces -1 on 0. 3452 // 3453 // TODO: If zero is not undef, we could also do this if the output is compared 3454 // against the bitwidth. 3455 // 3456 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3457 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3458 SDValue LHS, SDValue RHS, 3459 DAGCombinerInfo &DCI) const { 3460 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3461 if (!CmpRhs || !CmpRhs->isNullValue()) 3462 return SDValue(); 3463 3464 SelectionDAG &DAG = DCI.DAG; 3465 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3466 SDValue CmpLHS = Cond.getOperand(0); 3467 3468 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3469 AMDGPUISD::FFBH_U32; 3470 3471 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3472 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3473 if (CCOpcode == ISD::SETEQ && 3474 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3475 RHS.getOperand(0) == CmpLHS && 3476 isNegativeOne(LHS)) { 3477 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3478 } 3479 3480 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3481 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3482 if (CCOpcode == ISD::SETNE && 3483 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3484 LHS.getOperand(0) == CmpLHS && 3485 isNegativeOne(RHS)) { 3486 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3487 } 3488 3489 return SDValue(); 3490 } 3491 3492 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3493 unsigned Op, 3494 const SDLoc &SL, 3495 SDValue Cond, 3496 SDValue N1, 3497 SDValue N2) { 3498 SelectionDAG &DAG = DCI.DAG; 3499 EVT VT = N1.getValueType(); 3500 3501 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3502 N1.getOperand(0), N2.getOperand(0)); 3503 DCI.AddToWorklist(NewSelect.getNode()); 3504 return DAG.getNode(Op, SL, VT, NewSelect); 3505 } 3506 3507 // Pull a free FP operation out of a select so it may fold into uses. 3508 // 3509 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3510 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3511 // 3512 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3513 // select c, (fabs x), +k -> fabs (select c, x, k) 3514 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3515 SDValue N) { 3516 SelectionDAG &DAG = DCI.DAG; 3517 SDValue Cond = N.getOperand(0); 3518 SDValue LHS = N.getOperand(1); 3519 SDValue RHS = N.getOperand(2); 3520 3521 EVT VT = N.getValueType(); 3522 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3523 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3524 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3525 SDLoc(N), Cond, LHS, RHS); 3526 } 3527 3528 bool Inv = false; 3529 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3530 std::swap(LHS, RHS); 3531 Inv = true; 3532 } 3533 3534 // TODO: Support vector constants. 3535 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3536 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3537 SDLoc SL(N); 3538 // If one side is an fneg/fabs and the other is a constant, we can push the 3539 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3540 SDValue NewLHS = LHS.getOperand(0); 3541 SDValue NewRHS = RHS; 3542 3543 // Careful: if the neg can be folded up, don't try to pull it back down. 3544 bool ShouldFoldNeg = true; 3545 3546 if (NewLHS.hasOneUse()) { 3547 unsigned Opc = NewLHS.getOpcode(); 3548 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3549 ShouldFoldNeg = false; 3550 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3551 ShouldFoldNeg = false; 3552 } 3553 3554 if (ShouldFoldNeg) { 3555 if (LHS.getOpcode() == ISD::FNEG) 3556 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3557 else if (CRHS->isNegative()) 3558 return SDValue(); 3559 3560 if (Inv) 3561 std::swap(NewLHS, NewRHS); 3562 3563 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3564 Cond, NewLHS, NewRHS); 3565 DCI.AddToWorklist(NewSelect.getNode()); 3566 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3567 } 3568 } 3569 3570 return SDValue(); 3571 } 3572 3573 3574 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3575 DAGCombinerInfo &DCI) const { 3576 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3577 return Folded; 3578 3579 SDValue Cond = N->getOperand(0); 3580 if (Cond.getOpcode() != ISD::SETCC) 3581 return SDValue(); 3582 3583 EVT VT = N->getValueType(0); 3584 SDValue LHS = Cond.getOperand(0); 3585 SDValue RHS = Cond.getOperand(1); 3586 SDValue CC = Cond.getOperand(2); 3587 3588 SDValue True = N->getOperand(1); 3589 SDValue False = N->getOperand(2); 3590 3591 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3592 SelectionDAG &DAG = DCI.DAG; 3593 if ((DAG.isConstantValueOfAnyType(True) || 3594 DAG.isConstantValueOfAnyType(True)) && 3595 (!DAG.isConstantValueOfAnyType(False) && 3596 !DAG.isConstantValueOfAnyType(False))) { 3597 // Swap cmp + select pair to move constant to false input. 3598 // This will allow using VOPC cndmasks more often. 3599 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3600 3601 SDLoc SL(N); 3602 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3603 LHS.getValueType().isInteger()); 3604 3605 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3606 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3607 } 3608 3609 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3610 SDValue MinMax 3611 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3612 // Revisit this node so we can catch min3/max3/med3 patterns. 3613 //DCI.AddToWorklist(MinMax.getNode()); 3614 return MinMax; 3615 } 3616 } 3617 3618 // There's no reason to not do this if the condition has other uses. 3619 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3620 } 3621 3622 static bool isInv2Pi(const APFloat &APF) { 3623 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3624 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3625 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3626 3627 return APF.bitwiseIsEqual(KF16) || 3628 APF.bitwiseIsEqual(KF32) || 3629 APF.bitwiseIsEqual(KF64); 3630 } 3631 3632 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3633 // additional cost to negate them. 3634 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3635 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3636 if (C->isZero() && !C->isNegative()) 3637 return true; 3638 3639 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3640 return true; 3641 } 3642 3643 return false; 3644 } 3645 3646 static unsigned inverseMinMax(unsigned Opc) { 3647 switch (Opc) { 3648 case ISD::FMAXNUM: 3649 return ISD::FMINNUM; 3650 case ISD::FMINNUM: 3651 return ISD::FMAXNUM; 3652 case ISD::FMAXNUM_IEEE: 3653 return ISD::FMINNUM_IEEE; 3654 case ISD::FMINNUM_IEEE: 3655 return ISD::FMAXNUM_IEEE; 3656 case AMDGPUISD::FMAX_LEGACY: 3657 return AMDGPUISD::FMIN_LEGACY; 3658 case AMDGPUISD::FMIN_LEGACY: 3659 return AMDGPUISD::FMAX_LEGACY; 3660 default: 3661 llvm_unreachable("invalid min/max opcode"); 3662 } 3663 } 3664 3665 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3666 DAGCombinerInfo &DCI) const { 3667 SelectionDAG &DAG = DCI.DAG; 3668 SDValue N0 = N->getOperand(0); 3669 EVT VT = N->getValueType(0); 3670 3671 unsigned Opc = N0.getOpcode(); 3672 3673 // If the input has multiple uses and we can either fold the negate down, or 3674 // the other uses cannot, give up. This both prevents unprofitable 3675 // transformations and infinite loops: we won't repeatedly try to fold around 3676 // a negate that has no 'good' form. 3677 if (N0.hasOneUse()) { 3678 // This may be able to fold into the source, but at a code size cost. Don't 3679 // fold if the fold into the user is free. 3680 if (allUsesHaveSourceMods(N, 0)) 3681 return SDValue(); 3682 } else { 3683 if (fnegFoldsIntoOp(Opc) && 3684 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3685 return SDValue(); 3686 } 3687 3688 SDLoc SL(N); 3689 switch (Opc) { 3690 case ISD::FADD: { 3691 if (!mayIgnoreSignedZero(N0)) 3692 return SDValue(); 3693 3694 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3695 SDValue LHS = N0.getOperand(0); 3696 SDValue RHS = N0.getOperand(1); 3697 3698 if (LHS.getOpcode() != ISD::FNEG) 3699 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3700 else 3701 LHS = LHS.getOperand(0); 3702 3703 if (RHS.getOpcode() != ISD::FNEG) 3704 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3705 else 3706 RHS = RHS.getOperand(0); 3707 3708 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3709 if (Res.getOpcode() != ISD::FADD) 3710 return SDValue(); // Op got folded away. 3711 if (!N0.hasOneUse()) 3712 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3713 return Res; 3714 } 3715 case ISD::FMUL: 3716 case AMDGPUISD::FMUL_LEGACY: { 3717 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3718 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3719 SDValue LHS = N0.getOperand(0); 3720 SDValue RHS = N0.getOperand(1); 3721 3722 if (LHS.getOpcode() == ISD::FNEG) 3723 LHS = LHS.getOperand(0); 3724 else if (RHS.getOpcode() == ISD::FNEG) 3725 RHS = RHS.getOperand(0); 3726 else 3727 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3728 3729 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3730 if (Res.getOpcode() != Opc) 3731 return SDValue(); // Op got folded away. 3732 if (!N0.hasOneUse()) 3733 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3734 return Res; 3735 } 3736 case ISD::FMA: 3737 case ISD::FMAD: { 3738 if (!mayIgnoreSignedZero(N0)) 3739 return SDValue(); 3740 3741 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3742 SDValue LHS = N0.getOperand(0); 3743 SDValue MHS = N0.getOperand(1); 3744 SDValue RHS = N0.getOperand(2); 3745 3746 if (LHS.getOpcode() == ISD::FNEG) 3747 LHS = LHS.getOperand(0); 3748 else if (MHS.getOpcode() == ISD::FNEG) 3749 MHS = MHS.getOperand(0); 3750 else 3751 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3752 3753 if (RHS.getOpcode() != ISD::FNEG) 3754 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3755 else 3756 RHS = RHS.getOperand(0); 3757 3758 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3759 if (Res.getOpcode() != Opc) 3760 return SDValue(); // Op got folded away. 3761 if (!N0.hasOneUse()) 3762 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3763 return Res; 3764 } 3765 case ISD::FMAXNUM: 3766 case ISD::FMINNUM: 3767 case ISD::FMAXNUM_IEEE: 3768 case ISD::FMINNUM_IEEE: 3769 case AMDGPUISD::FMAX_LEGACY: 3770 case AMDGPUISD::FMIN_LEGACY: { 3771 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3772 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3773 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3774 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3775 3776 SDValue LHS = N0.getOperand(0); 3777 SDValue RHS = N0.getOperand(1); 3778 3779 // 0 doesn't have a negated inline immediate. 3780 // TODO: This constant check should be generalized to other operations. 3781 if (isConstantCostlierToNegate(RHS)) 3782 return SDValue(); 3783 3784 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3785 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3786 unsigned Opposite = inverseMinMax(Opc); 3787 3788 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3789 if (Res.getOpcode() != Opposite) 3790 return SDValue(); // Op got folded away. 3791 if (!N0.hasOneUse()) 3792 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3793 return Res; 3794 } 3795 case AMDGPUISD::FMED3: { 3796 SDValue Ops[3]; 3797 for (unsigned I = 0; I < 3; ++I) 3798 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3799 3800 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3801 if (Res.getOpcode() != AMDGPUISD::FMED3) 3802 return SDValue(); // Op got folded away. 3803 if (!N0.hasOneUse()) 3804 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3805 return Res; 3806 } 3807 case ISD::FP_EXTEND: 3808 case ISD::FTRUNC: 3809 case ISD::FRINT: 3810 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3811 case ISD::FSIN: 3812 case ISD::FCANONICALIZE: 3813 case AMDGPUISD::RCP: 3814 case AMDGPUISD::RCP_LEGACY: 3815 case AMDGPUISD::RCP_IFLAG: 3816 case AMDGPUISD::SIN_HW: { 3817 SDValue CvtSrc = N0.getOperand(0); 3818 if (CvtSrc.getOpcode() == ISD::FNEG) { 3819 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3820 // (fneg (rcp (fneg x))) -> (rcp x) 3821 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3822 } 3823 3824 if (!N0.hasOneUse()) 3825 return SDValue(); 3826 3827 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3828 // (fneg (rcp x)) -> (rcp (fneg x)) 3829 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3830 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3831 } 3832 case ISD::FP_ROUND: { 3833 SDValue CvtSrc = N0.getOperand(0); 3834 3835 if (CvtSrc.getOpcode() == ISD::FNEG) { 3836 // (fneg (fp_round (fneg x))) -> (fp_round x) 3837 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3838 CvtSrc.getOperand(0), N0.getOperand(1)); 3839 } 3840 3841 if (!N0.hasOneUse()) 3842 return SDValue(); 3843 3844 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3845 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3846 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3847 } 3848 case ISD::FP16_TO_FP: { 3849 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3850 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3851 // Put the fneg back as a legal source operation that can be matched later. 3852 SDLoc SL(N); 3853 3854 SDValue Src = N0.getOperand(0); 3855 EVT SrcVT = Src.getValueType(); 3856 3857 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3858 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3859 DAG.getConstant(0x8000, SL, SrcVT)); 3860 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3861 } 3862 default: 3863 return SDValue(); 3864 } 3865 } 3866 3867 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3868 DAGCombinerInfo &DCI) const { 3869 SelectionDAG &DAG = DCI.DAG; 3870 SDValue N0 = N->getOperand(0); 3871 3872 if (!N0.hasOneUse()) 3873 return SDValue(); 3874 3875 switch (N0.getOpcode()) { 3876 case ISD::FP16_TO_FP: { 3877 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3878 SDLoc SL(N); 3879 SDValue Src = N0.getOperand(0); 3880 EVT SrcVT = Src.getValueType(); 3881 3882 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3883 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3884 DAG.getConstant(0x7fff, SL, SrcVT)); 3885 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3886 } 3887 default: 3888 return SDValue(); 3889 } 3890 } 3891 3892 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3893 DAGCombinerInfo &DCI) const { 3894 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3895 if (!CFP) 3896 return SDValue(); 3897 3898 // XXX - Should this flush denormals? 3899 const APFloat &Val = CFP->getValueAPF(); 3900 APFloat One(Val.getSemantics(), "1.0"); 3901 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3902 } 3903 3904 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3905 DAGCombinerInfo &DCI) const { 3906 SelectionDAG &DAG = DCI.DAG; 3907 SDLoc DL(N); 3908 3909 switch(N->getOpcode()) { 3910 default: 3911 break; 3912 case ISD::BITCAST: { 3913 EVT DestVT = N->getValueType(0); 3914 3915 // Push casts through vector builds. This helps avoid emitting a large 3916 // number of copies when materializing floating point vector constants. 3917 // 3918 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3919 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3920 if (DestVT.isVector()) { 3921 SDValue Src = N->getOperand(0); 3922 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3923 EVT SrcVT = Src.getValueType(); 3924 unsigned NElts = DestVT.getVectorNumElements(); 3925 3926 if (SrcVT.getVectorNumElements() == NElts) { 3927 EVT DestEltVT = DestVT.getVectorElementType(); 3928 3929 SmallVector<SDValue, 8> CastedElts; 3930 SDLoc SL(N); 3931 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3932 SDValue Elt = Src.getOperand(I); 3933 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3934 } 3935 3936 return DAG.getBuildVector(DestVT, SL, CastedElts); 3937 } 3938 } 3939 } 3940 3941 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3942 break; 3943 3944 // Fold bitcasts of constants. 3945 // 3946 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3947 // TODO: Generalize and move to DAGCombiner 3948 SDValue Src = N->getOperand(0); 3949 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3950 if (Src.getValueType() == MVT::i64) { 3951 SDLoc SL(N); 3952 uint64_t CVal = C->getZExtValue(); 3953 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3954 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3955 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3956 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3957 } 3958 } 3959 3960 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3961 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3962 SDLoc SL(N); 3963 uint64_t CVal = Val.getZExtValue(); 3964 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3965 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3966 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3967 3968 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3969 } 3970 3971 break; 3972 } 3973 case ISD::SHL: { 3974 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3975 break; 3976 3977 return performShlCombine(N, DCI); 3978 } 3979 case ISD::SRL: { 3980 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3981 break; 3982 3983 return performSrlCombine(N, DCI); 3984 } 3985 case ISD::SRA: { 3986 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3987 break; 3988 3989 return performSraCombine(N, DCI); 3990 } 3991 case ISD::TRUNCATE: 3992 return performTruncateCombine(N, DCI); 3993 case ISD::MUL: 3994 return performMulCombine(N, DCI); 3995 case ISD::MULHS: 3996 return performMulhsCombine(N, DCI); 3997 case ISD::MULHU: 3998 return performMulhuCombine(N, DCI); 3999 case AMDGPUISD::MUL_I24: 4000 case AMDGPUISD::MUL_U24: 4001 case AMDGPUISD::MULHI_I24: 4002 case AMDGPUISD::MULHI_U24: { 4003 if (SDValue V = simplifyI24(N, DCI)) 4004 return V; 4005 return SDValue(); 4006 } 4007 case AMDGPUISD::MUL_LOHI_I24: 4008 case AMDGPUISD::MUL_LOHI_U24: 4009 return performMulLoHi24Combine(N, DCI); 4010 case ISD::SELECT: 4011 return performSelectCombine(N, DCI); 4012 case ISD::FNEG: 4013 return performFNegCombine(N, DCI); 4014 case ISD::FABS: 4015 return performFAbsCombine(N, DCI); 4016 case AMDGPUISD::BFE_I32: 4017 case AMDGPUISD::BFE_U32: { 4018 assert(!N->getValueType(0).isVector() && 4019 "Vector handling of BFE not implemented"); 4020 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4021 if (!Width) 4022 break; 4023 4024 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4025 if (WidthVal == 0) 4026 return DAG.getConstant(0, DL, MVT::i32); 4027 4028 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4029 if (!Offset) 4030 break; 4031 4032 SDValue BitsFrom = N->getOperand(0); 4033 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4034 4035 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4036 4037 if (OffsetVal == 0) { 4038 // This is already sign / zero extended, so try to fold away extra BFEs. 4039 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4040 4041 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4042 if (OpSignBits >= SignBits) 4043 return BitsFrom; 4044 4045 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4046 if (Signed) { 4047 // This is a sign_extend_inreg. Replace it to take advantage of existing 4048 // DAG Combines. If not eliminated, we will match back to BFE during 4049 // selection. 4050 4051 // TODO: The sext_inreg of extended types ends, although we can could 4052 // handle them in a single BFE. 4053 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4054 DAG.getValueType(SmallVT)); 4055 } 4056 4057 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4058 } 4059 4060 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4061 if (Signed) { 4062 return constantFoldBFE<int32_t>(DAG, 4063 CVal->getSExtValue(), 4064 OffsetVal, 4065 WidthVal, 4066 DL); 4067 } 4068 4069 return constantFoldBFE<uint32_t>(DAG, 4070 CVal->getZExtValue(), 4071 OffsetVal, 4072 WidthVal, 4073 DL); 4074 } 4075 4076 if ((OffsetVal + WidthVal) >= 32 && 4077 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4078 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4079 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4080 BitsFrom, ShiftVal); 4081 } 4082 4083 if (BitsFrom.hasOneUse()) { 4084 APInt Demanded = APInt::getBitsSet(32, 4085 OffsetVal, 4086 OffsetVal + WidthVal); 4087 4088 KnownBits Known; 4089 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4090 !DCI.isBeforeLegalizeOps()); 4091 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4092 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4093 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4094 DCI.CommitTargetLoweringOpt(TLO); 4095 } 4096 } 4097 4098 break; 4099 } 4100 case ISD::LOAD: 4101 return performLoadCombine(N, DCI); 4102 case ISD::STORE: 4103 return performStoreCombine(N, DCI); 4104 case AMDGPUISD::RCP: 4105 case AMDGPUISD::RCP_IFLAG: 4106 return performRcpCombine(N, DCI); 4107 case ISD::AssertZext: 4108 case ISD::AssertSext: 4109 return performAssertSZExtCombine(N, DCI); 4110 } 4111 return SDValue(); 4112 } 4113 4114 //===----------------------------------------------------------------------===// 4115 // Helper functions 4116 //===----------------------------------------------------------------------===// 4117 4118 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4119 const TargetRegisterClass *RC, 4120 unsigned Reg, EVT VT, 4121 const SDLoc &SL, 4122 bool RawReg) const { 4123 MachineFunction &MF = DAG.getMachineFunction(); 4124 MachineRegisterInfo &MRI = MF.getRegInfo(); 4125 unsigned VReg; 4126 4127 if (!MRI.isLiveIn(Reg)) { 4128 VReg = MRI.createVirtualRegister(RC); 4129 MRI.addLiveIn(Reg, VReg); 4130 } else { 4131 VReg = MRI.getLiveInVirtReg(Reg); 4132 } 4133 4134 if (RawReg) 4135 return DAG.getRegister(VReg, VT); 4136 4137 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4138 } 4139 4140 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4141 EVT VT, 4142 const SDLoc &SL, 4143 int64_t Offset) const { 4144 MachineFunction &MF = DAG.getMachineFunction(); 4145 MachineFrameInfo &MFI = MF.getFrameInfo(); 4146 4147 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 4148 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4149 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4150 4151 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4152 MachineMemOperand::MODereferenceable | 4153 MachineMemOperand::MOInvariant); 4154 } 4155 4156 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4157 const SDLoc &SL, 4158 SDValue Chain, 4159 SDValue ArgVal, 4160 int64_t Offset) const { 4161 MachineFunction &MF = DAG.getMachineFunction(); 4162 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4163 4164 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4165 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4166 MachineMemOperand::MODereferenceable); 4167 return Store; 4168 } 4169 4170 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4171 const TargetRegisterClass *RC, 4172 EVT VT, const SDLoc &SL, 4173 const ArgDescriptor &Arg) const { 4174 assert(Arg && "Attempting to load missing argument"); 4175 4176 if (Arg.isRegister()) 4177 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4178 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4179 } 4180 4181 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4182 const MachineFunction &MF, const ImplicitParameter Param) const { 4183 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4184 const AMDGPUSubtarget &ST = 4185 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4186 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4187 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4188 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4189 ExplicitArgOffset; 4190 switch (Param) { 4191 case GRID_DIM: 4192 return ArgOffset; 4193 case GRID_OFFSET: 4194 return ArgOffset + 4; 4195 } 4196 llvm_unreachable("unexpected implicit parameter type"); 4197 } 4198 4199 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4200 4201 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4202 switch ((AMDGPUISD::NodeType)Opcode) { 4203 case AMDGPUISD::FIRST_NUMBER: break; 4204 // AMDIL DAG nodes 4205 NODE_NAME_CASE(UMUL); 4206 NODE_NAME_CASE(BRANCH_COND); 4207 4208 // AMDGPU DAG nodes 4209 NODE_NAME_CASE(IF) 4210 NODE_NAME_CASE(ELSE) 4211 NODE_NAME_CASE(LOOP) 4212 NODE_NAME_CASE(CALL) 4213 NODE_NAME_CASE(TC_RETURN) 4214 NODE_NAME_CASE(TRAP) 4215 NODE_NAME_CASE(RET_FLAG) 4216 NODE_NAME_CASE(RETURN_TO_EPILOG) 4217 NODE_NAME_CASE(ENDPGM) 4218 NODE_NAME_CASE(DWORDADDR) 4219 NODE_NAME_CASE(FRACT) 4220 NODE_NAME_CASE(SETCC) 4221 NODE_NAME_CASE(SETREG) 4222 NODE_NAME_CASE(FMA_W_CHAIN) 4223 NODE_NAME_CASE(FMUL_W_CHAIN) 4224 NODE_NAME_CASE(CLAMP) 4225 NODE_NAME_CASE(COS_HW) 4226 NODE_NAME_CASE(SIN_HW) 4227 NODE_NAME_CASE(FMAX_LEGACY) 4228 NODE_NAME_CASE(FMIN_LEGACY) 4229 NODE_NAME_CASE(FMAX3) 4230 NODE_NAME_CASE(SMAX3) 4231 NODE_NAME_CASE(UMAX3) 4232 NODE_NAME_CASE(FMIN3) 4233 NODE_NAME_CASE(SMIN3) 4234 NODE_NAME_CASE(UMIN3) 4235 NODE_NAME_CASE(FMED3) 4236 NODE_NAME_CASE(SMED3) 4237 NODE_NAME_CASE(UMED3) 4238 NODE_NAME_CASE(FDOT2) 4239 NODE_NAME_CASE(URECIP) 4240 NODE_NAME_CASE(DIV_SCALE) 4241 NODE_NAME_CASE(DIV_FMAS) 4242 NODE_NAME_CASE(DIV_FIXUP) 4243 NODE_NAME_CASE(FMAD_FTZ) 4244 NODE_NAME_CASE(TRIG_PREOP) 4245 NODE_NAME_CASE(RCP) 4246 NODE_NAME_CASE(RSQ) 4247 NODE_NAME_CASE(RCP_LEGACY) 4248 NODE_NAME_CASE(RSQ_LEGACY) 4249 NODE_NAME_CASE(RCP_IFLAG) 4250 NODE_NAME_CASE(FMUL_LEGACY) 4251 NODE_NAME_CASE(RSQ_CLAMP) 4252 NODE_NAME_CASE(LDEXP) 4253 NODE_NAME_CASE(FP_CLASS) 4254 NODE_NAME_CASE(DOT4) 4255 NODE_NAME_CASE(CARRY) 4256 NODE_NAME_CASE(BORROW) 4257 NODE_NAME_CASE(BFE_U32) 4258 NODE_NAME_CASE(BFE_I32) 4259 NODE_NAME_CASE(BFI) 4260 NODE_NAME_CASE(BFM) 4261 NODE_NAME_CASE(FFBH_U32) 4262 NODE_NAME_CASE(FFBH_I32) 4263 NODE_NAME_CASE(FFBL_B32) 4264 NODE_NAME_CASE(MUL_U24) 4265 NODE_NAME_CASE(MUL_I24) 4266 NODE_NAME_CASE(MULHI_U24) 4267 NODE_NAME_CASE(MULHI_I24) 4268 NODE_NAME_CASE(MUL_LOHI_U24) 4269 NODE_NAME_CASE(MUL_LOHI_I24) 4270 NODE_NAME_CASE(MAD_U24) 4271 NODE_NAME_CASE(MAD_I24) 4272 NODE_NAME_CASE(MAD_I64_I32) 4273 NODE_NAME_CASE(MAD_U64_U32) 4274 NODE_NAME_CASE(PERM) 4275 NODE_NAME_CASE(TEXTURE_FETCH) 4276 NODE_NAME_CASE(EXPORT) 4277 NODE_NAME_CASE(EXPORT_DONE) 4278 NODE_NAME_CASE(R600_EXPORT) 4279 NODE_NAME_CASE(CONST_ADDRESS) 4280 NODE_NAME_CASE(REGISTER_LOAD) 4281 NODE_NAME_CASE(REGISTER_STORE) 4282 NODE_NAME_CASE(SAMPLE) 4283 NODE_NAME_CASE(SAMPLEB) 4284 NODE_NAME_CASE(SAMPLED) 4285 NODE_NAME_CASE(SAMPLEL) 4286 NODE_NAME_CASE(CVT_F32_UBYTE0) 4287 NODE_NAME_CASE(CVT_F32_UBYTE1) 4288 NODE_NAME_CASE(CVT_F32_UBYTE2) 4289 NODE_NAME_CASE(CVT_F32_UBYTE3) 4290 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4291 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4292 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4293 NODE_NAME_CASE(CVT_PK_I16_I32) 4294 NODE_NAME_CASE(CVT_PK_U16_U32) 4295 NODE_NAME_CASE(FP_TO_FP16) 4296 NODE_NAME_CASE(FP16_ZEXT) 4297 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4298 NODE_NAME_CASE(CONST_DATA_PTR) 4299 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4300 NODE_NAME_CASE(KILL) 4301 NODE_NAME_CASE(DUMMY_CHAIN) 4302 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4303 NODE_NAME_CASE(INIT_EXEC) 4304 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4305 NODE_NAME_CASE(SENDMSG) 4306 NODE_NAME_CASE(SENDMSGHALT) 4307 NODE_NAME_CASE(INTERP_MOV) 4308 NODE_NAME_CASE(INTERP_P1) 4309 NODE_NAME_CASE(INTERP_P2) 4310 NODE_NAME_CASE(INTERP_P1LL_F16) 4311 NODE_NAME_CASE(INTERP_P1LV_F16) 4312 NODE_NAME_CASE(INTERP_P2_F16) 4313 NODE_NAME_CASE(LOAD_D16_HI) 4314 NODE_NAME_CASE(LOAD_D16_LO) 4315 NODE_NAME_CASE(LOAD_D16_HI_I8) 4316 NODE_NAME_CASE(LOAD_D16_HI_U8) 4317 NODE_NAME_CASE(LOAD_D16_LO_I8) 4318 NODE_NAME_CASE(LOAD_D16_LO_U8) 4319 NODE_NAME_CASE(STORE_MSKOR) 4320 NODE_NAME_CASE(LOAD_CONSTANT) 4321 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4322 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4323 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4324 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4325 NODE_NAME_CASE(DS_ORDERED_COUNT) 4326 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4327 NODE_NAME_CASE(ATOMIC_INC) 4328 NODE_NAME_CASE(ATOMIC_DEC) 4329 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4330 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4331 NODE_NAME_CASE(BUFFER_LOAD) 4332 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4333 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4334 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4335 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4336 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4337 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4338 NODE_NAME_CASE(SBUFFER_LOAD) 4339 NODE_NAME_CASE(BUFFER_STORE) 4340 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4341 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4342 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4343 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4344 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4345 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4346 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4347 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4348 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4349 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4350 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4351 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4352 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4353 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4354 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4355 4356 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4357 } 4358 return nullptr; 4359 } 4360 4361 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4362 SelectionDAG &DAG, int Enabled, 4363 int &RefinementSteps, 4364 bool &UseOneConstNR, 4365 bool Reciprocal) const { 4366 EVT VT = Operand.getValueType(); 4367 4368 if (VT == MVT::f32) { 4369 RefinementSteps = 0; 4370 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4371 } 4372 4373 // TODO: There is also f64 rsq instruction, but the documentation is less 4374 // clear on its precision. 4375 4376 return SDValue(); 4377 } 4378 4379 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4380 SelectionDAG &DAG, int Enabled, 4381 int &RefinementSteps) const { 4382 EVT VT = Operand.getValueType(); 4383 4384 if (VT == MVT::f32) { 4385 // Reciprocal, < 1 ulp error. 4386 // 4387 // This reciprocal approximation converges to < 0.5 ulp error with one 4388 // newton rhapson performed with two fused multiple adds (FMAs). 4389 4390 RefinementSteps = 0; 4391 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4392 } 4393 4394 // TODO: There is also f64 rcp instruction, but the documentation is less 4395 // clear on its precision. 4396 4397 return SDValue(); 4398 } 4399 4400 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4401 const SDValue Op, KnownBits &Known, 4402 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4403 4404 Known.resetAll(); // Don't know anything. 4405 4406 unsigned Opc = Op.getOpcode(); 4407 4408 switch (Opc) { 4409 default: 4410 break; 4411 case AMDGPUISD::CARRY: 4412 case AMDGPUISD::BORROW: { 4413 Known.Zero = APInt::getHighBitsSet(32, 31); 4414 break; 4415 } 4416 4417 case AMDGPUISD::BFE_I32: 4418 case AMDGPUISD::BFE_U32: { 4419 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4420 if (!CWidth) 4421 return; 4422 4423 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4424 4425 if (Opc == AMDGPUISD::BFE_U32) 4426 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4427 4428 break; 4429 } 4430 case AMDGPUISD::FP_TO_FP16: 4431 case AMDGPUISD::FP16_ZEXT: { 4432 unsigned BitWidth = Known.getBitWidth(); 4433 4434 // High bits are zero. 4435 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4436 break; 4437 } 4438 case AMDGPUISD::MUL_U24: 4439 case AMDGPUISD::MUL_I24: { 4440 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4441 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4442 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4443 RHSKnown.countMinTrailingZeros(); 4444 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4445 4446 // Truncate to 24 bits. 4447 LHSKnown = LHSKnown.trunc(24); 4448 RHSKnown = RHSKnown.trunc(24); 4449 4450 bool Negative = false; 4451 if (Opc == AMDGPUISD::MUL_I24) { 4452 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4453 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4454 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4455 if (MaxValBits >= 32) 4456 break; 4457 bool LHSNegative = LHSKnown.isNegative(); 4458 bool LHSPositive = LHSKnown.isNonNegative(); 4459 bool RHSNegative = RHSKnown.isNegative(); 4460 bool RHSPositive = RHSKnown.isNonNegative(); 4461 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4462 break; 4463 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4464 if (Negative) 4465 Known.One.setHighBits(32 - MaxValBits); 4466 else 4467 Known.Zero.setHighBits(32 - MaxValBits); 4468 } else { 4469 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4470 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4471 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4472 if (MaxValBits >= 32) 4473 break; 4474 Known.Zero.setHighBits(32 - MaxValBits); 4475 } 4476 break; 4477 } 4478 case AMDGPUISD::PERM: { 4479 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4480 if (!CMask) 4481 return; 4482 4483 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4484 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4485 unsigned Sel = CMask->getZExtValue(); 4486 4487 for (unsigned I = 0; I < 32; I += 8) { 4488 unsigned SelBits = Sel & 0xff; 4489 if (SelBits < 4) { 4490 SelBits *= 8; 4491 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4492 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4493 } else if (SelBits < 7) { 4494 SelBits = (SelBits & 3) * 8; 4495 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4496 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4497 } else if (SelBits == 0x0c) { 4498 Known.Zero |= 0xff << I; 4499 } else if (SelBits > 0x0c) { 4500 Known.One |= 0xff << I; 4501 } 4502 Sel >>= 8; 4503 } 4504 break; 4505 } 4506 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4507 Known.Zero.setHighBits(24); 4508 break; 4509 } 4510 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4511 Known.Zero.setHighBits(16); 4512 break; 4513 } 4514 case ISD::INTRINSIC_WO_CHAIN: { 4515 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4516 switch (IID) { 4517 case Intrinsic::amdgcn_mbcnt_lo: 4518 case Intrinsic::amdgcn_mbcnt_hi: { 4519 const GCNSubtarget &ST = 4520 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4521 // These return at most the wavefront size - 1. 4522 unsigned Size = Op.getValueType().getSizeInBits(); 4523 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4524 break; 4525 } 4526 default: 4527 break; 4528 } 4529 } 4530 } 4531 } 4532 4533 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4534 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4535 unsigned Depth) const { 4536 switch (Op.getOpcode()) { 4537 case AMDGPUISD::BFE_I32: { 4538 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4539 if (!Width) 4540 return 1; 4541 4542 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4543 if (!isNullConstant(Op.getOperand(1))) 4544 return SignBits; 4545 4546 // TODO: Could probably figure something out with non-0 offsets. 4547 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4548 return std::max(SignBits, Op0SignBits); 4549 } 4550 4551 case AMDGPUISD::BFE_U32: { 4552 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4553 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4554 } 4555 4556 case AMDGPUISD::CARRY: 4557 case AMDGPUISD::BORROW: 4558 return 31; 4559 case AMDGPUISD::BUFFER_LOAD_BYTE: 4560 return 25; 4561 case AMDGPUISD::BUFFER_LOAD_SHORT: 4562 return 17; 4563 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4564 return 24; 4565 case AMDGPUISD::BUFFER_LOAD_USHORT: 4566 return 16; 4567 case AMDGPUISD::FP_TO_FP16: 4568 case AMDGPUISD::FP16_ZEXT: 4569 return 16; 4570 default: 4571 return 1; 4572 } 4573 } 4574 4575 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4576 const SelectionDAG &DAG, 4577 bool SNaN, 4578 unsigned Depth) const { 4579 unsigned Opcode = Op.getOpcode(); 4580 switch (Opcode) { 4581 case AMDGPUISD::FMIN_LEGACY: 4582 case AMDGPUISD::FMAX_LEGACY: { 4583 if (SNaN) 4584 return true; 4585 4586 // TODO: Can check no nans on one of the operands for each one, but which 4587 // one? 4588 return false; 4589 } 4590 case AMDGPUISD::FMUL_LEGACY: 4591 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4592 if (SNaN) 4593 return true; 4594 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4595 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4596 } 4597 case AMDGPUISD::FMED3: 4598 case AMDGPUISD::FMIN3: 4599 case AMDGPUISD::FMAX3: 4600 case AMDGPUISD::FMAD_FTZ: { 4601 if (SNaN) 4602 return true; 4603 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4604 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4605 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4606 } 4607 case AMDGPUISD::CVT_F32_UBYTE0: 4608 case AMDGPUISD::CVT_F32_UBYTE1: 4609 case AMDGPUISD::CVT_F32_UBYTE2: 4610 case AMDGPUISD::CVT_F32_UBYTE3: 4611 return true; 4612 4613 case AMDGPUISD::RCP: 4614 case AMDGPUISD::RSQ: 4615 case AMDGPUISD::RCP_LEGACY: 4616 case AMDGPUISD::RSQ_LEGACY: 4617 case AMDGPUISD::RSQ_CLAMP: { 4618 if (SNaN) 4619 return true; 4620 4621 // TODO: Need is known positive check. 4622 return false; 4623 } 4624 case AMDGPUISD::LDEXP: 4625 case AMDGPUISD::FRACT: { 4626 if (SNaN) 4627 return true; 4628 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4629 } 4630 case AMDGPUISD::DIV_SCALE: 4631 case AMDGPUISD::DIV_FMAS: 4632 case AMDGPUISD::DIV_FIXUP: 4633 case AMDGPUISD::TRIG_PREOP: 4634 // TODO: Refine on operands. 4635 return SNaN; 4636 case AMDGPUISD::SIN_HW: 4637 case AMDGPUISD::COS_HW: { 4638 // TODO: Need check for infinity 4639 return SNaN; 4640 } 4641 case ISD::INTRINSIC_WO_CHAIN: { 4642 unsigned IntrinsicID 4643 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4644 // TODO: Handle more intrinsics 4645 switch (IntrinsicID) { 4646 case Intrinsic::amdgcn_cubeid: 4647 return true; 4648 4649 case Intrinsic::amdgcn_frexp_mant: { 4650 if (SNaN) 4651 return true; 4652 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4653 } 4654 case Intrinsic::amdgcn_cvt_pkrtz: { 4655 if (SNaN) 4656 return true; 4657 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4658 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4659 } 4660 case Intrinsic::amdgcn_fdot2: 4661 // TODO: Refine on operand 4662 return SNaN; 4663 default: 4664 return false; 4665 } 4666 } 4667 default: 4668 return false; 4669 } 4670 } 4671 4672 TargetLowering::AtomicExpansionKind 4673 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4674 switch (RMW->getOperation()) { 4675 case AtomicRMWInst::Nand: 4676 case AtomicRMWInst::FAdd: 4677 case AtomicRMWInst::FSub: 4678 return AtomicExpansionKind::CmpXChg; 4679 default: 4680 return AtomicExpansionKind::None; 4681 } 4682 } 4683