1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "AMDGPUTargetMachine.h" 24 #include "R600MachineFunctionInfo.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 using namespace llvm; 36 37 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 38 CCValAssign::LocInfo LocInfo, 39 ISD::ArgFlagsTy ArgFlags, CCState &State) { 40 MachineFunction &MF = State.getMachineFunction(); 41 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 42 43 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 44 ArgFlags.getOrigAlign()); 45 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 46 return true; 47 } 48 49 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 50 CCValAssign::LocInfo LocInfo, 51 ISD::ArgFlagsTy ArgFlags, CCState &State, 52 const TargetRegisterClass *RC, 53 unsigned NumRegs) { 54 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 55 unsigned RegResult = State.AllocateReg(RegList); 56 if (RegResult == AMDGPU::NoRegister) 57 return false; 58 59 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 60 return true; 61 } 62 63 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 64 CCValAssign::LocInfo LocInfo, 65 ISD::ArgFlagsTy ArgFlags, CCState &State) { 66 switch (LocVT.SimpleTy) { 67 case MVT::i64: 68 case MVT::f64: 69 case MVT::v2i32: 70 case MVT::v2f32: { 71 // Up to SGPR0-SGPR39 72 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 73 &AMDGPU::SGPR_64RegClass, 20); 74 } 75 default: 76 return false; 77 } 78 } 79 80 // Allocate up to VGPR31. 81 // 82 // TODO: Since there are no VGPR alignent requirements would it be better to 83 // split into individual scalar registers? 84 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 85 CCValAssign::LocInfo LocInfo, 86 ISD::ArgFlagsTy ArgFlags, CCState &State) { 87 switch (LocVT.SimpleTy) { 88 case MVT::i64: 89 case MVT::f64: 90 case MVT::v2i32: 91 case MVT::v2f32: { 92 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 93 &AMDGPU::VReg_64RegClass, 31); 94 } 95 case MVT::v4i32: 96 case MVT::v4f32: 97 case MVT::v2i64: 98 case MVT::v2f64: { 99 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 100 &AMDGPU::VReg_128RegClass, 29); 101 } 102 case MVT::v8i32: 103 case MVT::v8f32: { 104 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 105 &AMDGPU::VReg_256RegClass, 25); 106 107 } 108 case MVT::v16i32: 109 case MVT::v16f32: { 110 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 111 &AMDGPU::VReg_512RegClass, 17); 112 113 } 114 default: 115 return false; 116 } 117 } 118 119 #include "AMDGPUGenCallingConv.inc" 120 121 // Find a larger type to do a load / store of a vector with. 122 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 123 unsigned StoreSize = VT.getStoreSizeInBits(); 124 if (StoreSize <= 32) 125 return EVT::getIntegerVT(Ctx, StoreSize); 126 127 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 128 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 129 } 130 131 bool AMDGPUTargetLowering::isOrEquivalentToAdd(SelectionDAG &DAG, SDValue Op) 132 { 133 assert(Op.getOpcode() == ISD::OR); 134 135 SDValue N0 = Op->getOperand(0); 136 SDValue N1 = Op->getOperand(1); 137 EVT VT = N0.getValueType(); 138 139 if (VT.isInteger() && !VT.isVector()) { 140 KnownBits LHSKnown, RHSKnown; 141 DAG.computeKnownBits(N0, LHSKnown); 142 143 if (LHSKnown.Zero.getBoolValue()) { 144 DAG.computeKnownBits(N1, RHSKnown); 145 146 if (!(~RHSKnown.Zero & ~LHSKnown.Zero)) 147 return true; 148 } 149 } 150 151 return false; 152 } 153 154 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 155 const AMDGPUSubtarget &STI) 156 : TargetLowering(TM), Subtarget(&STI) { 157 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 158 // Lower floating point store/load to integer store/load to reduce the number 159 // of patterns in tablegen. 160 setOperationAction(ISD::LOAD, MVT::f32, Promote); 161 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 162 163 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 164 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 165 166 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 167 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 168 169 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 170 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 171 172 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 173 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 174 175 setOperationAction(ISD::LOAD, MVT::i64, Promote); 176 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 177 178 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 179 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 180 181 setOperationAction(ISD::LOAD, MVT::f64, Promote); 182 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 183 184 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 185 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 186 187 // There are no 64-bit extloads. These should be done as a 32-bit extload and 188 // an extension to 64-bit. 189 for (MVT VT : MVT::integer_valuetypes()) { 190 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 191 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 192 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 193 } 194 195 for (MVT VT : MVT::integer_valuetypes()) { 196 if (VT == MVT::i64) 197 continue; 198 199 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 200 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 202 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 203 204 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 206 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 207 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 208 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 210 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 211 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 213 } 214 215 for (MVT VT : MVT::integer_vector_valuetypes()) { 216 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 217 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 218 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 219 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 220 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 221 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 222 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 226 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 227 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 228 } 229 230 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 232 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 233 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 234 235 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 237 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 238 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 239 240 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 241 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 242 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 243 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 244 245 setOperationAction(ISD::STORE, MVT::f32, Promote); 246 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 247 248 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 250 251 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 253 254 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 256 257 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 259 260 setOperationAction(ISD::STORE, MVT::i64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 262 263 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 264 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 265 266 setOperationAction(ISD::STORE, MVT::f64, Promote); 267 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 268 269 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 270 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 271 272 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 275 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 276 277 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 280 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 281 282 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 283 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 284 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 285 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 286 287 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 288 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 289 290 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 291 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 292 293 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 295 296 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 297 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 298 299 300 setOperationAction(ISD::Constant, MVT::i32, Legal); 301 setOperationAction(ISD::Constant, MVT::i64, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 303 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 304 305 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 306 setOperationAction(ISD::BRIND, MVT::Other, Expand); 307 308 // This is totally unsupported, just custom lower to produce an error. 309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 310 311 // Library functions. These default to Expand, but we have instructions 312 // for them. 313 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 314 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 315 setOperationAction(ISD::FPOW, MVT::f32, Legal); 316 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 317 setOperationAction(ISD::FABS, MVT::f32, Legal); 318 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 319 setOperationAction(ISD::FRINT, MVT::f32, Legal); 320 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 321 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 322 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 323 324 setOperationAction(ISD::FROUND, MVT::f32, Custom); 325 setOperationAction(ISD::FROUND, MVT::f64, Custom); 326 327 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 328 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 329 330 setOperationAction(ISD::FREM, MVT::f32, Custom); 331 setOperationAction(ISD::FREM, MVT::f64, Custom); 332 333 // v_mad_f32 does not support denormals according to some sources. 334 if (!Subtarget->hasFP32Denormals()) 335 setOperationAction(ISD::FMAD, MVT::f32, Legal); 336 337 // Expand to fneg + fadd. 338 setOperationAction(ISD::FSUB, MVT::f64, Expand); 339 340 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 341 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 342 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 343 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 350 351 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 352 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 353 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 354 setOperationAction(ISD::FRINT, MVT::f64, Custom); 355 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 356 } 357 358 if (!Subtarget->hasBFI()) { 359 // fcopysign can be done in a single instruction with BFI. 360 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 361 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 362 } 363 364 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 365 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 366 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 367 368 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 369 for (MVT VT : ScalarIntVTs) { 370 // These should use [SU]DIVREM, so set them to expand 371 setOperationAction(ISD::SDIV, VT, Expand); 372 setOperationAction(ISD::UDIV, VT, Expand); 373 setOperationAction(ISD::SREM, VT, Expand); 374 setOperationAction(ISD::UREM, VT, Expand); 375 376 // GPU does not have divrem function for signed or unsigned. 377 setOperationAction(ISD::SDIVREM, VT, Custom); 378 setOperationAction(ISD::UDIVREM, VT, Custom); 379 380 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 381 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 382 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 383 384 setOperationAction(ISD::BSWAP, VT, Expand); 385 setOperationAction(ISD::CTTZ, VT, Expand); 386 setOperationAction(ISD::CTLZ, VT, Expand); 387 } 388 389 if (!Subtarget->hasBCNT(32)) 390 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 391 392 if (!Subtarget->hasBCNT(64)) 393 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MUL, MVT::i64, Expand); 401 setOperationAction(ISD::MULHU, MVT::i64, Expand); 402 setOperationAction(ISD::MULHS, MVT::i64, Expand); 403 setOperationAction(ISD::UDIV, MVT::i32, Expand); 404 setOperationAction(ISD::UREM, MVT::i32, Expand); 405 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 406 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 407 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 408 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 409 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 410 411 setOperationAction(ISD::SMIN, MVT::i32, Legal); 412 setOperationAction(ISD::UMIN, MVT::i32, Legal); 413 setOperationAction(ISD::SMAX, MVT::i32, Legal); 414 setOperationAction(ISD::UMAX, MVT::i32, Legal); 415 416 if (Subtarget->hasFFBH()) 417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 418 419 if (Subtarget->hasFFBL()) 420 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 421 422 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 423 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 424 425 // We only really have 32-bit BFE instructions (and 16-bit on VI). 426 // 427 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 428 // effort to match them now. We want this to be false for i64 cases when the 429 // extraction isn't restricted to the upper or lower half. Ideally we would 430 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 431 // span the midpoint are probably relatively rare, so don't worry about them 432 // for now. 433 if (Subtarget->hasBFE()) 434 setHasExtractBitsInsn(true); 435 436 static const MVT::SimpleValueType VectorIntTypes[] = { 437 MVT::v2i32, MVT::v4i32 438 }; 439 440 for (MVT VT : VectorIntTypes) { 441 // Expand the following operations for the current type by default. 442 setOperationAction(ISD::ADD, VT, Expand); 443 setOperationAction(ISD::AND, VT, Expand); 444 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 445 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 446 setOperationAction(ISD::MUL, VT, Expand); 447 setOperationAction(ISD::MULHU, VT, Expand); 448 setOperationAction(ISD::MULHS, VT, Expand); 449 setOperationAction(ISD::OR, VT, Expand); 450 setOperationAction(ISD::SHL, VT, Expand); 451 setOperationAction(ISD::SRA, VT, Expand); 452 setOperationAction(ISD::SRL, VT, Expand); 453 setOperationAction(ISD::ROTL, VT, Expand); 454 setOperationAction(ISD::ROTR, VT, Expand); 455 setOperationAction(ISD::SUB, VT, Expand); 456 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 457 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 458 setOperationAction(ISD::SDIV, VT, Expand); 459 setOperationAction(ISD::UDIV, VT, Expand); 460 setOperationAction(ISD::SREM, VT, Expand); 461 setOperationAction(ISD::UREM, VT, Expand); 462 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 463 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 464 setOperationAction(ISD::SDIVREM, VT, Custom); 465 setOperationAction(ISD::UDIVREM, VT, Expand); 466 setOperationAction(ISD::ADDC, VT, Expand); 467 setOperationAction(ISD::SUBC, VT, Expand); 468 setOperationAction(ISD::ADDE, VT, Expand); 469 setOperationAction(ISD::SUBE, VT, Expand); 470 setOperationAction(ISD::SELECT, VT, Expand); 471 setOperationAction(ISD::VSELECT, VT, Expand); 472 setOperationAction(ISD::SELECT_CC, VT, Expand); 473 setOperationAction(ISD::XOR, VT, Expand); 474 setOperationAction(ISD::BSWAP, VT, Expand); 475 setOperationAction(ISD::CTPOP, VT, Expand); 476 setOperationAction(ISD::CTTZ, VT, Expand); 477 setOperationAction(ISD::CTLZ, VT, Expand); 478 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 479 } 480 481 static const MVT::SimpleValueType FloatVectorTypes[] = { 482 MVT::v2f32, MVT::v4f32 483 }; 484 485 for (MVT VT : FloatVectorTypes) { 486 setOperationAction(ISD::FABS, VT, Expand); 487 setOperationAction(ISD::FMINNUM, VT, Expand); 488 setOperationAction(ISD::FMAXNUM, VT, Expand); 489 setOperationAction(ISD::FADD, VT, Expand); 490 setOperationAction(ISD::FCEIL, VT, Expand); 491 setOperationAction(ISD::FCOS, VT, Expand); 492 setOperationAction(ISD::FDIV, VT, Expand); 493 setOperationAction(ISD::FEXP2, VT, Expand); 494 setOperationAction(ISD::FLOG2, VT, Expand); 495 setOperationAction(ISD::FREM, VT, Expand); 496 setOperationAction(ISD::FPOW, VT, Expand); 497 setOperationAction(ISD::FFLOOR, VT, Expand); 498 setOperationAction(ISD::FTRUNC, VT, Expand); 499 setOperationAction(ISD::FMUL, VT, Expand); 500 setOperationAction(ISD::FMA, VT, Expand); 501 setOperationAction(ISD::FRINT, VT, Expand); 502 setOperationAction(ISD::FNEARBYINT, VT, Expand); 503 setOperationAction(ISD::FSQRT, VT, Expand); 504 setOperationAction(ISD::FSIN, VT, Expand); 505 setOperationAction(ISD::FSUB, VT, Expand); 506 setOperationAction(ISD::FNEG, VT, Expand); 507 setOperationAction(ISD::VSELECT, VT, Expand); 508 setOperationAction(ISD::SELECT_CC, VT, Expand); 509 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 510 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 511 } 512 513 // This causes using an unrolled select operation rather than expansion with 514 // bit operations. This is in general better, but the alternative using BFI 515 // instructions may be better if the select sources are SGPRs. 516 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 517 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 518 519 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 520 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 521 522 // There are no libcalls of any kind. 523 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 524 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 525 526 setBooleanContents(ZeroOrNegativeOneBooleanContent); 527 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 528 529 setSchedulingPreference(Sched::RegPressure); 530 setJumpIsExpensive(true); 531 532 // FIXME: This is only partially true. If we have to do vector compares, any 533 // SGPR pair can be a condition register. If we have a uniform condition, we 534 // are better off doing SALU operations, where there is only one SCC. For now, 535 // we don't have a way of knowing during instruction selection if a condition 536 // will be uniform and we always use vector compares. Assume we are using 537 // vector compares until that is fixed. 538 setHasMultipleConditionRegisters(true); 539 540 // SI at least has hardware support for floating point exceptions, but no way 541 // of using or handling them is implemented. They are also optional in OpenCL 542 // (Section 7.3) 543 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 544 545 PredictableSelectIsExpensive = false; 546 547 // We want to find all load dependencies for long chains of stores to enable 548 // merging into very wide vectors. The problem is with vectors with > 4 549 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 550 // vectors are a legal type, even though we have to split the loads 551 // usually. When we can more precisely specify load legality per address 552 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 553 // smarter so that they can figure out what to do in 2 iterations without all 554 // N > 4 stores on the same chain. 555 GatherAllAliasesMaxDepth = 16; 556 557 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 558 // about these during lowering. 559 MaxStoresPerMemcpy = 0xffffffff; 560 MaxStoresPerMemmove = 0xffffffff; 561 MaxStoresPerMemset = 0xffffffff; 562 563 setTargetDAGCombine(ISD::BITCAST); 564 setTargetDAGCombine(ISD::SHL); 565 setTargetDAGCombine(ISD::SRA); 566 setTargetDAGCombine(ISD::SRL); 567 setTargetDAGCombine(ISD::MUL); 568 setTargetDAGCombine(ISD::MULHU); 569 setTargetDAGCombine(ISD::MULHS); 570 setTargetDAGCombine(ISD::SELECT); 571 setTargetDAGCombine(ISD::SELECT_CC); 572 setTargetDAGCombine(ISD::STORE); 573 setTargetDAGCombine(ISD::FADD); 574 setTargetDAGCombine(ISD::FSUB); 575 setTargetDAGCombine(ISD::FNEG); 576 setTargetDAGCombine(ISD::FABS); 577 setTargetDAGCombine(ISD::AssertZext); 578 setTargetDAGCombine(ISD::AssertSext); 579 } 580 581 //===----------------------------------------------------------------------===// 582 // Target Information 583 //===----------------------------------------------------------------------===// 584 585 LLVM_READNONE 586 static bool fnegFoldsIntoOp(unsigned Opc) { 587 switch (Opc) { 588 case ISD::FADD: 589 case ISD::FSUB: 590 case ISD::FMUL: 591 case ISD::FMA: 592 case ISD::FMAD: 593 case ISD::FMINNUM: 594 case ISD::FMAXNUM: 595 case ISD::FSIN: 596 case ISD::FTRUNC: 597 case ISD::FRINT: 598 case ISD::FNEARBYINT: 599 case AMDGPUISD::RCP: 600 case AMDGPUISD::RCP_LEGACY: 601 case AMDGPUISD::SIN_HW: 602 case AMDGPUISD::FMUL_LEGACY: 603 case AMDGPUISD::FMIN_LEGACY: 604 case AMDGPUISD::FMAX_LEGACY: 605 return true; 606 default: 607 return false; 608 } 609 } 610 611 /// \p returns true if the operation will definitely need to use a 64-bit 612 /// encoding, and thus will use a VOP3 encoding regardless of the source 613 /// modifiers. 614 LLVM_READONLY 615 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 616 return N->getNumOperands() > 2 || VT == MVT::f64; 617 } 618 619 // Most FP instructions support source modifiers, but this could be refined 620 // slightly. 621 LLVM_READONLY 622 static bool hasSourceMods(const SDNode *N) { 623 if (isa<MemSDNode>(N)) 624 return false; 625 626 switch (N->getOpcode()) { 627 case ISD::CopyToReg: 628 case ISD::SELECT: 629 case ISD::FDIV: 630 case ISD::FREM: 631 case ISD::INLINEASM: 632 case AMDGPUISD::INTERP_P1: 633 case AMDGPUISD::INTERP_P2: 634 case AMDGPUISD::DIV_SCALE: 635 636 // TODO: Should really be looking at the users of the bitcast. These are 637 // problematic because bitcasts are used to legalize all stores to integer 638 // types. 639 case ISD::BITCAST: 640 return false; 641 default: 642 return true; 643 } 644 } 645 646 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 647 unsigned CostThreshold) { 648 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 649 // it is truly free to use a source modifier in all cases. If there are 650 // multiple users but for each one will necessitate using VOP3, there will be 651 // a code size increase. Try to avoid increasing code size unless we know it 652 // will save on the instruction count. 653 unsigned NumMayIncreaseSize = 0; 654 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 655 656 // XXX - Should this limit number of uses to check? 657 for (const SDNode *U : N->uses()) { 658 if (!hasSourceMods(U)) 659 return false; 660 661 if (!opMustUseVOP3Encoding(U, VT)) { 662 if (++NumMayIncreaseSize > CostThreshold) 663 return false; 664 } 665 } 666 667 return true; 668 } 669 670 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 671 return MVT::i32; 672 } 673 674 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 675 return true; 676 } 677 678 // The backend supports 32 and 64 bit floating point immediates. 679 // FIXME: Why are we reporting vectors of FP immediates as legal? 680 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 681 EVT ScalarVT = VT.getScalarType(); 682 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 683 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 684 } 685 686 // We don't want to shrink f64 / f32 constants. 687 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 688 EVT ScalarVT = VT.getScalarType(); 689 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 690 } 691 692 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 693 ISD::LoadExtType, 694 EVT NewVT) const { 695 696 unsigned NewSize = NewVT.getStoreSizeInBits(); 697 698 // If we are reducing to a 32-bit load, this is always better. 699 if (NewSize == 32) 700 return true; 701 702 EVT OldVT = N->getValueType(0); 703 unsigned OldSize = OldVT.getStoreSizeInBits(); 704 705 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 706 // extloads, so doing one requires using a buffer_load. In cases where we 707 // still couldn't use a scalar load, using the wider load shouldn't really 708 // hurt anything. 709 710 // If the old size already had to be an extload, there's no harm in continuing 711 // to reduce the width. 712 return (OldSize < 32); 713 } 714 715 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 716 EVT CastTy) const { 717 718 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 719 720 if (LoadTy.getScalarType() == MVT::i32) 721 return false; 722 723 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 724 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 725 726 return (LScalarSize < CastScalarSize) || 727 (CastScalarSize >= 32); 728 } 729 730 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 731 // profitable with the expansion for 64-bit since it's generally good to 732 // speculate things. 733 // FIXME: These should really have the size as a parameter. 734 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 735 return true; 736 } 737 738 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 739 return true; 740 } 741 742 //===---------------------------------------------------------------------===// 743 // Target Properties 744 //===---------------------------------------------------------------------===// 745 746 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 747 assert(VT.isFloatingPoint()); 748 749 // Packed operations do not have a fabs modifier. 750 return VT == MVT::f32 || VT == MVT::f64 || 751 (Subtarget->has16BitInsts() && VT == MVT::f16); 752 } 753 754 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 755 assert(VT.isFloatingPoint()); 756 return VT == MVT::f32 || VT == MVT::f64 || 757 (Subtarget->has16BitInsts() && VT == MVT::f16) || 758 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 759 } 760 761 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 762 unsigned NumElem, 763 unsigned AS) const { 764 return true; 765 } 766 767 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 768 // There are few operations which truly have vector input operands. Any vector 769 // operation is going to involve operations on each component, and a 770 // build_vector will be a copy per element, so it always makes sense to use a 771 // build_vector input in place of the extracted element to avoid a copy into a 772 // super register. 773 // 774 // We should probably only do this if all users are extracts only, but this 775 // should be the common case. 776 return true; 777 } 778 779 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 780 // Truncate is just accessing a subregister. 781 782 unsigned SrcSize = Source.getSizeInBits(); 783 unsigned DestSize = Dest.getSizeInBits(); 784 785 return DestSize < SrcSize && DestSize % 32 == 0 ; 786 } 787 788 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 789 // Truncate is just accessing a subregister. 790 791 unsigned SrcSize = Source->getScalarSizeInBits(); 792 unsigned DestSize = Dest->getScalarSizeInBits(); 793 794 if (DestSize== 16 && Subtarget->has16BitInsts()) 795 return SrcSize >= 32; 796 797 return DestSize < SrcSize && DestSize % 32 == 0; 798 } 799 800 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 801 unsigned SrcSize = Src->getScalarSizeInBits(); 802 unsigned DestSize = Dest->getScalarSizeInBits(); 803 804 if (SrcSize == 16 && Subtarget->has16BitInsts()) 805 return DestSize >= 32; 806 807 return SrcSize == 32 && DestSize == 64; 808 } 809 810 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 811 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 812 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 813 // this will enable reducing 64-bit operations the 32-bit, which is always 814 // good. 815 816 if (Src == MVT::i16) 817 return Dest == MVT::i32 ||Dest == MVT::i64 ; 818 819 return Src == MVT::i32 && Dest == MVT::i64; 820 } 821 822 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 823 return isZExtFree(Val.getValueType(), VT2); 824 } 825 826 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 827 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 828 // limited number of native 64-bit operations. Shrinking an operation to fit 829 // in a single 32-bit register should always be helpful. As currently used, 830 // this is much less general than the name suggests, and is only used in 831 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 832 // not profitable, and may actually be harmful. 833 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 834 } 835 836 //===---------------------------------------------------------------------===// 837 // TargetLowering Callbacks 838 //===---------------------------------------------------------------------===// 839 840 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 841 bool IsVarArg) { 842 switch (CC) { 843 case CallingConv::AMDGPU_KERNEL: 844 case CallingConv::SPIR_KERNEL: 845 return CC_AMDGPU_Kernel; 846 case CallingConv::AMDGPU_VS: 847 case CallingConv::AMDGPU_GS: 848 case CallingConv::AMDGPU_PS: 849 case CallingConv::AMDGPU_CS: 850 case CallingConv::AMDGPU_HS: 851 case CallingConv::AMDGPU_ES: 852 case CallingConv::AMDGPU_LS: 853 return CC_AMDGPU; 854 case CallingConv::C: 855 case CallingConv::Fast: 856 case CallingConv::Cold: 857 return CC_AMDGPU_Func; 858 default: 859 report_fatal_error("Unsupported calling convention."); 860 } 861 } 862 863 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 864 bool IsVarArg) { 865 switch (CC) { 866 case CallingConv::AMDGPU_KERNEL: 867 case CallingConv::SPIR_KERNEL: 868 return CC_AMDGPU_Kernel; 869 case CallingConv::AMDGPU_VS: 870 case CallingConv::AMDGPU_GS: 871 case CallingConv::AMDGPU_PS: 872 case CallingConv::AMDGPU_CS: 873 case CallingConv::AMDGPU_HS: 874 case CallingConv::AMDGPU_ES: 875 case CallingConv::AMDGPU_LS: 876 return RetCC_SI_Shader; 877 case CallingConv::C: 878 case CallingConv::Fast: 879 case CallingConv::Cold: 880 return RetCC_AMDGPU_Func; 881 default: 882 report_fatal_error("Unsupported calling convention."); 883 } 884 } 885 886 /// The SelectionDAGBuilder will automatically promote function arguments 887 /// with illegal types. However, this does not work for the AMDGPU targets 888 /// since the function arguments are stored in memory as these illegal types. 889 /// In order to handle this properly we need to get the original types sizes 890 /// from the LLVM IR Function and fixup the ISD:InputArg values before 891 /// passing them to AnalyzeFormalArguments() 892 893 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 894 /// input values across multiple registers. Each item in the Ins array 895 /// represents a single value that will be stored in registers. Ins[x].VT is 896 /// the value type of the value that will be stored in the register, so 897 /// whatever SDNode we lower the argument to needs to be this type. 898 /// 899 /// In order to correctly lower the arguments we need to know the size of each 900 /// argument. Since Ins[x].VT gives us the size of the register that will 901 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 902 /// for the orignal function argument so that we can deduce the correct memory 903 /// type to use for Ins[x]. In most cases the correct memory type will be 904 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 905 /// we have a kernel argument of type v8i8, this argument will be split into 906 /// 8 parts and each part will be represented by its own item in the Ins array. 907 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 908 /// the argument before it was split. From this, we deduce that the memory type 909 /// for each individual part is i8. We pass the memory type as LocVT to the 910 /// calling convention analysis function and the register type (Ins[x].VT) as 911 /// the ValVT. 912 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 913 const SmallVectorImpl<ISD::InputArg> &Ins) const { 914 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 915 const ISD::InputArg &In = Ins[i]; 916 EVT MemVT; 917 918 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 919 920 if (!Subtarget->isAmdHsaOS() && 921 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 922 // The ABI says the caller will extend these values to 32-bits. 923 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 924 } else if (NumRegs == 1) { 925 // This argument is not split, so the IR type is the memory type. 926 assert(!In.Flags.isSplit()); 927 if (In.ArgVT.isExtended()) { 928 // We have an extended type, like i24, so we should just use the register type 929 MemVT = In.VT; 930 } else { 931 MemVT = In.ArgVT; 932 } 933 } else if (In.ArgVT.isVector() && In.VT.isVector() && 934 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 935 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 936 // We have a vector value which has been split into a vector with 937 // the same scalar type, but fewer elements. This should handle 938 // all the floating-point vector types. 939 MemVT = In.VT; 940 } else if (In.ArgVT.isVector() && 941 In.ArgVT.getVectorNumElements() == NumRegs) { 942 // This arg has been split so that each element is stored in a separate 943 // register. 944 MemVT = In.ArgVT.getScalarType(); 945 } else if (In.ArgVT.isExtended()) { 946 // We have an extended type, like i65. 947 MemVT = In.VT; 948 } else { 949 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 950 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 951 if (In.VT.isInteger()) { 952 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 953 } else if (In.VT.isVector()) { 954 assert(!In.VT.getScalarType().isFloatingPoint()); 955 unsigned NumElements = In.VT.getVectorNumElements(); 956 assert(MemoryBits % NumElements == 0); 957 // This vector type has been split into another vector type with 958 // a different elements size. 959 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 960 MemoryBits / NumElements); 961 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 962 } else { 963 llvm_unreachable("cannot deduce memory type."); 964 } 965 } 966 967 // Convert one element vectors to scalar. 968 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 969 MemVT = MemVT.getScalarType(); 970 971 if (MemVT.isExtended()) { 972 // This should really only happen if we have vec3 arguments 973 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 974 MemVT = MemVT.getPow2VectorType(State.getContext()); 975 } 976 977 assert(MemVT.isSimple()); 978 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 979 State); 980 } 981 } 982 983 SDValue AMDGPUTargetLowering::LowerReturn( 984 SDValue Chain, CallingConv::ID CallConv, 985 bool isVarArg, 986 const SmallVectorImpl<ISD::OutputArg> &Outs, 987 const SmallVectorImpl<SDValue> &OutVals, 988 const SDLoc &DL, SelectionDAG &DAG) const { 989 // FIXME: Fails for r600 tests 990 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 991 // "wave terminate should not have return values"); 992 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 993 } 994 995 //===---------------------------------------------------------------------===// 996 // Target specific lowering 997 //===---------------------------------------------------------------------===// 998 999 /// Selects the correct CCAssignFn for a given CallingConvention value. 1000 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1001 bool IsVarArg) { 1002 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1003 } 1004 1005 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1006 bool IsVarArg) { 1007 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1008 } 1009 1010 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1011 SelectionDAG &DAG, 1012 MachineFrameInfo &MFI, 1013 int ClobberedFI) const { 1014 SmallVector<SDValue, 8> ArgChains; 1015 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1016 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1017 1018 // Include the original chain at the beginning of the list. When this is 1019 // used by target LowerCall hooks, this helps legalize find the 1020 // CALLSEQ_BEGIN node. 1021 ArgChains.push_back(Chain); 1022 1023 // Add a chain value for each stack argument corresponding 1024 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1025 UE = DAG.getEntryNode().getNode()->use_end(); 1026 U != UE; ++U) { 1027 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1028 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1029 if (FI->getIndex() < 0) { 1030 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1031 int64_t InLastByte = InFirstByte; 1032 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1033 1034 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1035 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1036 ArgChains.push_back(SDValue(L, 1)); 1037 } 1038 } 1039 } 1040 } 1041 1042 // Build a tokenfactor for all the chains. 1043 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1044 } 1045 1046 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1047 SmallVectorImpl<SDValue> &InVals, 1048 StringRef Reason) const { 1049 SDValue Callee = CLI.Callee; 1050 SelectionDAG &DAG = CLI.DAG; 1051 1052 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1053 1054 StringRef FuncName("<unknown>"); 1055 1056 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1057 FuncName = G->getSymbol(); 1058 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1059 FuncName = G->getGlobal()->getName(); 1060 1061 DiagnosticInfoUnsupported NoCalls( 1062 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1063 DAG.getContext()->diagnose(NoCalls); 1064 1065 if (!CLI.IsTailCall) { 1066 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1067 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1068 } 1069 1070 return DAG.getEntryNode(); 1071 } 1072 1073 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1074 SmallVectorImpl<SDValue> &InVals) const { 1075 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1076 } 1077 1078 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1079 SelectionDAG &DAG) const { 1080 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1081 1082 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1083 SDLoc(Op).getDebugLoc()); 1084 DAG.getContext()->diagnose(NoDynamicAlloca); 1085 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1086 return DAG.getMergeValues(Ops, SDLoc()); 1087 } 1088 1089 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1090 SelectionDAG &DAG) const { 1091 switch (Op.getOpcode()) { 1092 default: 1093 Op->print(errs(), &DAG); 1094 llvm_unreachable("Custom lowering code for this" 1095 "instruction is not implemented yet!"); 1096 break; 1097 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1098 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1099 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1100 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1101 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1102 case ISD::FREM: return LowerFREM(Op, DAG); 1103 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1104 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1105 case ISD::FRINT: return LowerFRINT(Op, DAG); 1106 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1107 case ISD::FROUND: return LowerFROUND(Op, DAG); 1108 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1109 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1110 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1111 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1112 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1113 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1114 case ISD::CTLZ: 1115 case ISD::CTLZ_ZERO_UNDEF: 1116 return LowerCTLZ(Op, DAG); 1117 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1118 } 1119 return Op; 1120 } 1121 1122 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1123 SmallVectorImpl<SDValue> &Results, 1124 SelectionDAG &DAG) const { 1125 switch (N->getOpcode()) { 1126 case ISD::SIGN_EXTEND_INREG: 1127 // Different parts of legalization seem to interpret which type of 1128 // sign_extend_inreg is the one to check for custom lowering. The extended 1129 // from type is what really matters, but some places check for custom 1130 // lowering of the result type. This results in trying to use 1131 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1132 // nothing here and let the illegal result integer be handled normally. 1133 return; 1134 default: 1135 return; 1136 } 1137 } 1138 1139 static bool hasDefinedInitializer(const GlobalValue *GV) { 1140 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1141 if (!GVar || !GVar->hasInitializer()) 1142 return false; 1143 1144 return !isa<UndefValue>(GVar->getInitializer()); 1145 } 1146 1147 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1148 SDValue Op, 1149 SelectionDAG &DAG) const { 1150 1151 const DataLayout &DL = DAG.getDataLayout(); 1152 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1153 const GlobalValue *GV = G->getGlobal(); 1154 1155 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1156 // XXX: What does the value of G->getOffset() mean? 1157 assert(G->getOffset() == 0 && 1158 "Do not know what to do with an non-zero offset"); 1159 1160 // TODO: We could emit code to handle the initialization somewhere. 1161 if (!hasDefinedInitializer(GV)) { 1162 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1163 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1164 } 1165 } 1166 1167 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1168 DiagnosticInfoUnsupported BadInit( 1169 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1170 DAG.getContext()->diagnose(BadInit); 1171 return SDValue(); 1172 } 1173 1174 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1175 SelectionDAG &DAG) const { 1176 SmallVector<SDValue, 8> Args; 1177 1178 for (const SDUse &U : Op->ops()) 1179 DAG.ExtractVectorElements(U.get(), Args); 1180 1181 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1182 } 1183 1184 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1185 SelectionDAG &DAG) const { 1186 1187 SmallVector<SDValue, 8> Args; 1188 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1189 EVT VT = Op.getValueType(); 1190 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1191 VT.getVectorNumElements()); 1192 1193 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1194 } 1195 1196 /// \brief Generate Min/Max node 1197 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1198 SDValue LHS, SDValue RHS, 1199 SDValue True, SDValue False, 1200 SDValue CC, 1201 DAGCombinerInfo &DCI) const { 1202 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1203 return SDValue(); 1204 1205 SelectionDAG &DAG = DCI.DAG; 1206 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1207 switch (CCOpcode) { 1208 case ISD::SETOEQ: 1209 case ISD::SETONE: 1210 case ISD::SETUNE: 1211 case ISD::SETNE: 1212 case ISD::SETUEQ: 1213 case ISD::SETEQ: 1214 case ISD::SETFALSE: 1215 case ISD::SETFALSE2: 1216 case ISD::SETTRUE: 1217 case ISD::SETTRUE2: 1218 case ISD::SETUO: 1219 case ISD::SETO: 1220 break; 1221 case ISD::SETULE: 1222 case ISD::SETULT: { 1223 if (LHS == True) 1224 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1225 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1226 } 1227 case ISD::SETOLE: 1228 case ISD::SETOLT: 1229 case ISD::SETLE: 1230 case ISD::SETLT: { 1231 // Ordered. Assume ordered for undefined. 1232 1233 // Only do this after legalization to avoid interfering with other combines 1234 // which might occur. 1235 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1236 !DCI.isCalledByLegalizer()) 1237 return SDValue(); 1238 1239 // We need to permute the operands to get the correct NaN behavior. The 1240 // selected operand is the second one based on the failing compare with NaN, 1241 // so permute it based on the compare type the hardware uses. 1242 if (LHS == True) 1243 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1244 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1245 } 1246 case ISD::SETUGE: 1247 case ISD::SETUGT: { 1248 if (LHS == True) 1249 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1250 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1251 } 1252 case ISD::SETGT: 1253 case ISD::SETGE: 1254 case ISD::SETOGE: 1255 case ISD::SETOGT: { 1256 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1257 !DCI.isCalledByLegalizer()) 1258 return SDValue(); 1259 1260 if (LHS == True) 1261 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1262 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1263 } 1264 case ISD::SETCC_INVALID: 1265 llvm_unreachable("Invalid setcc condcode!"); 1266 } 1267 return SDValue(); 1268 } 1269 1270 std::pair<SDValue, SDValue> 1271 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1272 SDLoc SL(Op); 1273 1274 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1275 1276 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1277 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1278 1279 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1280 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1281 1282 return std::make_pair(Lo, Hi); 1283 } 1284 1285 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1286 SDLoc SL(Op); 1287 1288 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1289 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1290 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1291 } 1292 1293 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1294 SDLoc SL(Op); 1295 1296 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1297 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1298 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1299 } 1300 1301 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1302 SelectionDAG &DAG) const { 1303 LoadSDNode *Load = cast<LoadSDNode>(Op); 1304 EVT VT = Op.getValueType(); 1305 1306 1307 // If this is a 2 element vector, we really want to scalarize and not create 1308 // weird 1 element vectors. 1309 if (VT.getVectorNumElements() == 2) 1310 return scalarizeVectorLoad(Load, DAG); 1311 1312 SDValue BasePtr = Load->getBasePtr(); 1313 EVT PtrVT = BasePtr.getValueType(); 1314 EVT MemVT = Load->getMemoryVT(); 1315 SDLoc SL(Op); 1316 1317 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1318 1319 EVT LoVT, HiVT; 1320 EVT LoMemVT, HiMemVT; 1321 SDValue Lo, Hi; 1322 1323 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1324 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1325 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1326 1327 unsigned Size = LoMemVT.getStoreSize(); 1328 unsigned BaseAlign = Load->getAlignment(); 1329 unsigned HiAlign = MinAlign(BaseAlign, Size); 1330 1331 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1332 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1333 BaseAlign, Load->getMemOperand()->getFlags()); 1334 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1335 DAG.getConstant(Size, SL, PtrVT)); 1336 SDValue HiLoad = 1337 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1338 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1339 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1340 1341 SDValue Ops[] = { 1342 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1343 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1344 LoLoad.getValue(1), HiLoad.getValue(1)) 1345 }; 1346 1347 return DAG.getMergeValues(Ops, SL); 1348 } 1349 1350 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1351 SelectionDAG &DAG) const { 1352 StoreSDNode *Store = cast<StoreSDNode>(Op); 1353 SDValue Val = Store->getValue(); 1354 EVT VT = Val.getValueType(); 1355 1356 // If this is a 2 element vector, we really want to scalarize and not create 1357 // weird 1 element vectors. 1358 if (VT.getVectorNumElements() == 2) 1359 return scalarizeVectorStore(Store, DAG); 1360 1361 EVT MemVT = Store->getMemoryVT(); 1362 SDValue Chain = Store->getChain(); 1363 SDValue BasePtr = Store->getBasePtr(); 1364 SDLoc SL(Op); 1365 1366 EVT LoVT, HiVT; 1367 EVT LoMemVT, HiMemVT; 1368 SDValue Lo, Hi; 1369 1370 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1371 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1372 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1373 1374 EVT PtrVT = BasePtr.getValueType(); 1375 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1376 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1377 PtrVT)); 1378 1379 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1380 unsigned BaseAlign = Store->getAlignment(); 1381 unsigned Size = LoMemVT.getStoreSize(); 1382 unsigned HiAlign = MinAlign(BaseAlign, Size); 1383 1384 SDValue LoStore = 1385 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1386 Store->getMemOperand()->getFlags()); 1387 SDValue HiStore = 1388 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1389 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1390 1391 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1392 } 1393 1394 // This is a shortcut for integer division because we have fast i32<->f32 1395 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1396 // float is enough to accurately represent up to a 24-bit signed integer. 1397 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1398 bool Sign) const { 1399 SDLoc DL(Op); 1400 EVT VT = Op.getValueType(); 1401 SDValue LHS = Op.getOperand(0); 1402 SDValue RHS = Op.getOperand(1); 1403 MVT IntVT = MVT::i32; 1404 MVT FltVT = MVT::f32; 1405 1406 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1407 if (LHSSignBits < 9) 1408 return SDValue(); 1409 1410 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1411 if (RHSSignBits < 9) 1412 return SDValue(); 1413 1414 unsigned BitSize = VT.getSizeInBits(); 1415 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1416 unsigned DivBits = BitSize - SignBits; 1417 if (Sign) 1418 ++DivBits; 1419 1420 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1421 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1422 1423 SDValue jq = DAG.getConstant(1, DL, IntVT); 1424 1425 if (Sign) { 1426 // char|short jq = ia ^ ib; 1427 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1428 1429 // jq = jq >> (bitsize - 2) 1430 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1431 DAG.getConstant(BitSize - 2, DL, VT)); 1432 1433 // jq = jq | 0x1 1434 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1435 } 1436 1437 // int ia = (int)LHS; 1438 SDValue ia = LHS; 1439 1440 // int ib, (int)RHS; 1441 SDValue ib = RHS; 1442 1443 // float fa = (float)ia; 1444 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1445 1446 // float fb = (float)ib; 1447 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1448 1449 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1450 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1451 1452 // fq = trunc(fq); 1453 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1454 1455 // float fqneg = -fq; 1456 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1457 1458 // float fr = mad(fqneg, fb, fa); 1459 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1460 (unsigned)AMDGPUISD::FMAD_FTZ : 1461 (unsigned)ISD::FMAD; 1462 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1463 1464 // int iq = (int)fq; 1465 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1466 1467 // fr = fabs(fr); 1468 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1469 1470 // fb = fabs(fb); 1471 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1472 1473 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1474 1475 // int cv = fr >= fb; 1476 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1477 1478 // jq = (cv ? jq : 0); 1479 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1480 1481 // dst = iq + jq; 1482 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1483 1484 // Rem needs compensation, it's easier to recompute it 1485 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1486 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1487 1488 // Truncate to number of bits this divide really is. 1489 if (Sign) { 1490 SDValue InRegSize 1491 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1492 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1493 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1494 } else { 1495 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1496 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1497 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1498 } 1499 1500 return DAG.getMergeValues({ Div, Rem }, DL); 1501 } 1502 1503 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1504 SelectionDAG &DAG, 1505 SmallVectorImpl<SDValue> &Results) const { 1506 assert(Op.getValueType() == MVT::i64); 1507 1508 SDLoc DL(Op); 1509 EVT VT = Op.getValueType(); 1510 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1511 1512 SDValue one = DAG.getConstant(1, DL, HalfVT); 1513 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1514 1515 //HiLo split 1516 SDValue LHS = Op.getOperand(0); 1517 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1518 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1519 1520 SDValue RHS = Op.getOperand(1); 1521 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1522 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1523 1524 if (VT == MVT::i64 && 1525 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1526 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1527 1528 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1529 LHS_Lo, RHS_Lo); 1530 1531 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1532 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1533 1534 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1535 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1536 return; 1537 } 1538 1539 // Get Speculative values 1540 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1541 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1542 1543 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1544 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1545 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1546 1547 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1548 SDValue DIV_Lo = zero; 1549 1550 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1551 1552 for (unsigned i = 0; i < halfBitWidth; ++i) { 1553 const unsigned bitPos = halfBitWidth - i - 1; 1554 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1555 // Get value of high bit 1556 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1557 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1558 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1559 1560 // Shift 1561 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1562 // Add LHS high bit 1563 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1564 1565 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1566 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1567 1568 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1569 1570 // Update REM 1571 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1572 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1573 } 1574 1575 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1576 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1577 Results.push_back(DIV); 1578 Results.push_back(REM); 1579 } 1580 1581 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1582 SelectionDAG &DAG) const { 1583 SDLoc DL(Op); 1584 EVT VT = Op.getValueType(); 1585 1586 if (VT == MVT::i64) { 1587 SmallVector<SDValue, 2> Results; 1588 LowerUDIVREM64(Op, DAG, Results); 1589 return DAG.getMergeValues(Results, DL); 1590 } 1591 1592 if (VT == MVT::i32) { 1593 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1594 return Res; 1595 } 1596 1597 SDValue Num = Op.getOperand(0); 1598 SDValue Den = Op.getOperand(1); 1599 1600 // RCP = URECIP(Den) = 2^32 / Den + e 1601 // e is rounding error. 1602 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1603 1604 // RCP_LO = mul(RCP, Den) */ 1605 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1606 1607 // RCP_HI = mulhu (RCP, Den) */ 1608 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1609 1610 // NEG_RCP_LO = -RCP_LO 1611 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1612 RCP_LO); 1613 1614 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1615 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1616 NEG_RCP_LO, RCP_LO, 1617 ISD::SETEQ); 1618 // Calculate the rounding error from the URECIP instruction 1619 // E = mulhu(ABS_RCP_LO, RCP) 1620 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1621 1622 // RCP_A_E = RCP + E 1623 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1624 1625 // RCP_S_E = RCP - E 1626 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1627 1628 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1629 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1630 RCP_A_E, RCP_S_E, 1631 ISD::SETEQ); 1632 // Quotient = mulhu(Tmp0, Num) 1633 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1634 1635 // Num_S_Remainder = Quotient * Den 1636 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1637 1638 // Remainder = Num - Num_S_Remainder 1639 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1640 1641 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1642 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1643 DAG.getConstant(-1, DL, VT), 1644 DAG.getConstant(0, DL, VT), 1645 ISD::SETUGE); 1646 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1647 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1648 Num_S_Remainder, 1649 DAG.getConstant(-1, DL, VT), 1650 DAG.getConstant(0, DL, VT), 1651 ISD::SETUGE); 1652 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1653 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1654 Remainder_GE_Zero); 1655 1656 // Calculate Division result: 1657 1658 // Quotient_A_One = Quotient + 1 1659 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1660 DAG.getConstant(1, DL, VT)); 1661 1662 // Quotient_S_One = Quotient - 1 1663 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1664 DAG.getConstant(1, DL, VT)); 1665 1666 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1667 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1668 Quotient, Quotient_A_One, ISD::SETEQ); 1669 1670 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1671 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1672 Quotient_S_One, Div, ISD::SETEQ); 1673 1674 // Calculate Rem result: 1675 1676 // Remainder_S_Den = Remainder - Den 1677 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1678 1679 // Remainder_A_Den = Remainder + Den 1680 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1681 1682 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1683 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1684 Remainder, Remainder_S_Den, ISD::SETEQ); 1685 1686 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1687 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1688 Remainder_A_Den, Rem, ISD::SETEQ); 1689 SDValue Ops[2] = { 1690 Div, 1691 Rem 1692 }; 1693 return DAG.getMergeValues(Ops, DL); 1694 } 1695 1696 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1697 SelectionDAG &DAG) const { 1698 SDLoc DL(Op); 1699 EVT VT = Op.getValueType(); 1700 1701 SDValue LHS = Op.getOperand(0); 1702 SDValue RHS = Op.getOperand(1); 1703 1704 SDValue Zero = DAG.getConstant(0, DL, VT); 1705 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1706 1707 if (VT == MVT::i32) { 1708 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1709 return Res; 1710 } 1711 1712 if (VT == MVT::i64 && 1713 DAG.ComputeNumSignBits(LHS) > 32 && 1714 DAG.ComputeNumSignBits(RHS) > 32) { 1715 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1716 1717 //HiLo split 1718 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1719 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1720 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1721 LHS_Lo, RHS_Lo); 1722 SDValue Res[2] = { 1723 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1724 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1725 }; 1726 return DAG.getMergeValues(Res, DL); 1727 } 1728 1729 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1730 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1731 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1732 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1733 1734 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1735 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1736 1737 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1738 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1739 1740 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1741 SDValue Rem = Div.getValue(1); 1742 1743 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1744 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1745 1746 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1747 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1748 1749 SDValue Res[2] = { 1750 Div, 1751 Rem 1752 }; 1753 return DAG.getMergeValues(Res, DL); 1754 } 1755 1756 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1757 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1758 SDLoc SL(Op); 1759 EVT VT = Op.getValueType(); 1760 SDValue X = Op.getOperand(0); 1761 SDValue Y = Op.getOperand(1); 1762 1763 // TODO: Should this propagate fast-math-flags? 1764 1765 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1766 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1767 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1768 1769 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1770 } 1771 1772 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1773 SDLoc SL(Op); 1774 SDValue Src = Op.getOperand(0); 1775 1776 // result = trunc(src) 1777 // if (src > 0.0 && src != result) 1778 // result += 1.0 1779 1780 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1781 1782 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1783 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1784 1785 EVT SetCCVT = 1786 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1787 1788 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1789 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1790 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1791 1792 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1793 // TODO: Should this propagate fast-math-flags? 1794 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1795 } 1796 1797 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1798 SelectionDAG &DAG) { 1799 const unsigned FractBits = 52; 1800 const unsigned ExpBits = 11; 1801 1802 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1803 Hi, 1804 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1805 DAG.getConstant(ExpBits, SL, MVT::i32)); 1806 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1807 DAG.getConstant(1023, SL, MVT::i32)); 1808 1809 return Exp; 1810 } 1811 1812 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1813 SDLoc SL(Op); 1814 SDValue Src = Op.getOperand(0); 1815 1816 assert(Op.getValueType() == MVT::f64); 1817 1818 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1819 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1820 1821 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1822 1823 // Extract the upper half, since this is where we will find the sign and 1824 // exponent. 1825 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1826 1827 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1828 1829 const unsigned FractBits = 52; 1830 1831 // Extract the sign bit. 1832 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1833 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1834 1835 // Extend back to to 64-bits. 1836 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1837 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1838 1839 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1840 const SDValue FractMask 1841 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1842 1843 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1844 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1845 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1846 1847 EVT SetCCVT = 1848 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1849 1850 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1851 1852 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1853 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1854 1855 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1856 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1857 1858 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1859 } 1860 1861 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1862 SDLoc SL(Op); 1863 SDValue Src = Op.getOperand(0); 1864 1865 assert(Op.getValueType() == MVT::f64); 1866 1867 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1868 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1869 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1870 1871 // TODO: Should this propagate fast-math-flags? 1872 1873 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1874 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1875 1876 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1877 1878 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1879 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1880 1881 EVT SetCCVT = 1882 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1883 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1884 1885 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1886 } 1887 1888 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1889 // FNEARBYINT and FRINT are the same, except in their handling of FP 1890 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1891 // rint, so just treat them as equivalent. 1892 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1893 } 1894 1895 // XXX - May require not supporting f32 denormals? 1896 1897 // Don't handle v2f16. The extra instructions to scalarize and repack around the 1898 // compare and vselect end up producing worse code than scalarizing the whole 1899 // operation. 1900 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 1901 SDLoc SL(Op); 1902 SDValue X = Op.getOperand(0); 1903 EVT VT = Op.getValueType(); 1904 1905 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 1906 1907 // TODO: Should this propagate fast-math-flags? 1908 1909 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 1910 1911 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 1912 1913 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 1914 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 1915 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 1916 1917 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 1918 1919 EVT SetCCVT = 1920 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1921 1922 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1923 1924 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 1925 1926 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 1927 } 1928 1929 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1930 SDLoc SL(Op); 1931 SDValue X = Op.getOperand(0); 1932 1933 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1934 1935 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1936 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1937 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1938 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1939 EVT SetCCVT = 1940 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1941 1942 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1943 1944 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1945 1946 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1947 1948 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1949 MVT::i64); 1950 1951 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1952 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1953 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1954 MVT::i64), 1955 Exp); 1956 1957 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1958 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1959 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1960 ISD::SETNE); 1961 1962 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1963 D, DAG.getConstant(0, SL, MVT::i64)); 1964 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1965 1966 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1967 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1968 1969 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1970 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1971 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1972 1973 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1974 ExpEqNegOne, 1975 DAG.getConstantFP(1.0, SL, MVT::f64), 1976 DAG.getConstantFP(0.0, SL, MVT::f64)); 1977 1978 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1979 1980 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1981 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1982 1983 return K; 1984 } 1985 1986 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1987 EVT VT = Op.getValueType(); 1988 1989 if (VT == MVT::f32 || VT == MVT::f16) 1990 return LowerFROUND32_16(Op, DAG); 1991 1992 if (VT == MVT::f64) 1993 return LowerFROUND64(Op, DAG); 1994 1995 llvm_unreachable("unhandled type"); 1996 } 1997 1998 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1999 SDLoc SL(Op); 2000 SDValue Src = Op.getOperand(0); 2001 2002 // result = trunc(src); 2003 // if (src < 0.0 && src != result) 2004 // result += -1.0. 2005 2006 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2007 2008 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2009 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2010 2011 EVT SetCCVT = 2012 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2013 2014 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2015 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2016 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2017 2018 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2019 // TODO: Should this propagate fast-math-flags? 2020 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2021 } 2022 2023 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 2024 SDLoc SL(Op); 2025 SDValue Src = Op.getOperand(0); 2026 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2027 2028 if (ZeroUndef && Src.getValueType() == MVT::i32) 2029 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 2030 2031 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2032 2033 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2034 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2035 2036 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2037 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2038 2039 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2040 *DAG.getContext(), MVT::i32); 2041 2042 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 2043 2044 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 2045 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 2046 2047 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2048 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 2049 2050 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2051 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 2052 2053 if (!ZeroUndef) { 2054 // Test if the full 64-bit input is zero. 2055 2056 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2057 // which we probably don't want. 2058 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 2059 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 2060 2061 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2062 // with the same cycles, otherwise it is slower. 2063 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2064 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2065 2066 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2067 2068 // The instruction returns -1 for 0 input, but the defined intrinsic 2069 // behavior is to return the number of bits. 2070 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2071 SrcIsZero, Bits32, NewCtlz); 2072 } 2073 2074 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 2075 } 2076 2077 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2078 bool Signed) const { 2079 // Unsigned 2080 // cul2f(ulong u) 2081 //{ 2082 // uint lz = clz(u); 2083 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2084 // u = (u << lz) & 0x7fffffffffffffffUL; 2085 // ulong t = u & 0xffffffffffUL; 2086 // uint v = (e << 23) | (uint)(u >> 40); 2087 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2088 // return as_float(v + r); 2089 //} 2090 // Signed 2091 // cl2f(long l) 2092 //{ 2093 // long s = l >> 63; 2094 // float r = cul2f((l + s) ^ s); 2095 // return s ? -r : r; 2096 //} 2097 2098 SDLoc SL(Op); 2099 SDValue Src = Op.getOperand(0); 2100 SDValue L = Src; 2101 2102 SDValue S; 2103 if (Signed) { 2104 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2105 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2106 2107 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2108 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2109 } 2110 2111 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2112 *DAG.getContext(), MVT::f32); 2113 2114 2115 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2116 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2117 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2118 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2119 2120 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2121 SDValue E = DAG.getSelect(SL, MVT::i32, 2122 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2123 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2124 ZeroI32); 2125 2126 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2127 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2128 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2129 2130 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2131 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2132 2133 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2134 U, DAG.getConstant(40, SL, MVT::i64)); 2135 2136 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2137 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2138 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2139 2140 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2141 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2142 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2143 2144 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2145 2146 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2147 2148 SDValue R = DAG.getSelect(SL, MVT::i32, 2149 RCmp, 2150 One, 2151 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2152 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2153 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2154 2155 if (!Signed) 2156 return R; 2157 2158 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2159 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2160 } 2161 2162 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2163 bool Signed) const { 2164 SDLoc SL(Op); 2165 SDValue Src = Op.getOperand(0); 2166 2167 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2168 2169 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2170 DAG.getConstant(0, SL, MVT::i32)); 2171 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2172 DAG.getConstant(1, SL, MVT::i32)); 2173 2174 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2175 SL, MVT::f64, Hi); 2176 2177 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2178 2179 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2180 DAG.getConstant(32, SL, MVT::i32)); 2181 // TODO: Should this propagate fast-math-flags? 2182 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2183 } 2184 2185 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2186 SelectionDAG &DAG) const { 2187 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2188 "operation should be legal"); 2189 2190 // TODO: Factor out code common with LowerSINT_TO_FP. 2191 2192 EVT DestVT = Op.getValueType(); 2193 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2194 SDLoc DL(Op); 2195 SDValue Src = Op.getOperand(0); 2196 2197 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2198 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2199 SDValue FPRound = 2200 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2201 2202 return FPRound; 2203 } 2204 2205 if (DestVT == MVT::f32) 2206 return LowerINT_TO_FP32(Op, DAG, false); 2207 2208 assert(DestVT == MVT::f64); 2209 return LowerINT_TO_FP64(Op, DAG, false); 2210 } 2211 2212 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2213 SelectionDAG &DAG) const { 2214 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2215 "operation should be legal"); 2216 2217 // TODO: Factor out code common with LowerUINT_TO_FP. 2218 2219 EVT DestVT = Op.getValueType(); 2220 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2221 SDLoc DL(Op); 2222 SDValue Src = Op.getOperand(0); 2223 2224 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2225 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2226 SDValue FPRound = 2227 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2228 2229 return FPRound; 2230 } 2231 2232 if (DestVT == MVT::f32) 2233 return LowerINT_TO_FP32(Op, DAG, true); 2234 2235 assert(DestVT == MVT::f64); 2236 return LowerINT_TO_FP64(Op, DAG, true); 2237 } 2238 2239 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2240 bool Signed) const { 2241 SDLoc SL(Op); 2242 2243 SDValue Src = Op.getOperand(0); 2244 2245 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2246 2247 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2248 MVT::f64); 2249 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2250 MVT::f64); 2251 // TODO: Should this propagate fast-math-flags? 2252 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2253 2254 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2255 2256 2257 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2258 2259 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2260 MVT::i32, FloorMul); 2261 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2262 2263 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2264 2265 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2266 } 2267 2268 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2269 SDLoc DL(Op); 2270 SDValue N0 = Op.getOperand(0); 2271 2272 // Convert to target node to get known bits 2273 if (N0.getValueType() == MVT::f32) 2274 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2275 2276 if (getTargetMachine().Options.UnsafeFPMath) { 2277 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2278 return SDValue(); 2279 } 2280 2281 assert(N0.getSimpleValueType() == MVT::f64); 2282 2283 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2284 const unsigned ExpMask = 0x7ff; 2285 const unsigned ExpBiasf64 = 1023; 2286 const unsigned ExpBiasf16 = 15; 2287 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2288 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2289 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2290 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2291 DAG.getConstant(32, DL, MVT::i64)); 2292 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2293 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2294 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2295 DAG.getConstant(20, DL, MVT::i64)); 2296 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2297 DAG.getConstant(ExpMask, DL, MVT::i32)); 2298 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2299 // add the f16 bias (15) to get the biased exponent for the f16 format. 2300 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2301 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2302 2303 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2304 DAG.getConstant(8, DL, MVT::i32)); 2305 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2306 DAG.getConstant(0xffe, DL, MVT::i32)); 2307 2308 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2309 DAG.getConstant(0x1ff, DL, MVT::i32)); 2310 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2311 2312 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2313 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2314 2315 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2316 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2317 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2318 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2319 2320 // N = M | (E << 12); 2321 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2322 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2323 DAG.getConstant(12, DL, MVT::i32))); 2324 2325 // B = clamp(1-E, 0, 13); 2326 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2327 One, E); 2328 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2329 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2330 DAG.getConstant(13, DL, MVT::i32)); 2331 2332 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2333 DAG.getConstant(0x1000, DL, MVT::i32)); 2334 2335 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2336 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2337 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2338 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2339 2340 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2341 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2342 DAG.getConstant(0x7, DL, MVT::i32)); 2343 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2344 DAG.getConstant(2, DL, MVT::i32)); 2345 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2346 One, Zero, ISD::SETEQ); 2347 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2348 One, Zero, ISD::SETGT); 2349 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2350 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2351 2352 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2353 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2354 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2355 I, V, ISD::SETEQ); 2356 2357 // Extract the sign bit. 2358 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2359 DAG.getConstant(16, DL, MVT::i32)); 2360 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2361 DAG.getConstant(0x8000, DL, MVT::i32)); 2362 2363 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2364 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2365 } 2366 2367 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2368 SelectionDAG &DAG) const { 2369 SDValue Src = Op.getOperand(0); 2370 2371 // TODO: Factor out code common with LowerFP_TO_UINT. 2372 2373 EVT SrcVT = Src.getValueType(); 2374 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2375 SDLoc DL(Op); 2376 2377 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2378 SDValue FpToInt32 = 2379 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2380 2381 return FpToInt32; 2382 } 2383 2384 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2385 return LowerFP64_TO_INT(Op, DAG, true); 2386 2387 return SDValue(); 2388 } 2389 2390 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2391 SelectionDAG &DAG) const { 2392 SDValue Src = Op.getOperand(0); 2393 2394 // TODO: Factor out code common with LowerFP_TO_SINT. 2395 2396 EVT SrcVT = Src.getValueType(); 2397 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2398 SDLoc DL(Op); 2399 2400 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2401 SDValue FpToInt32 = 2402 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2403 2404 return FpToInt32; 2405 } 2406 2407 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2408 return LowerFP64_TO_INT(Op, DAG, false); 2409 2410 return SDValue(); 2411 } 2412 2413 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2414 SelectionDAG &DAG) const { 2415 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2416 MVT VT = Op.getSimpleValueType(); 2417 MVT ScalarVT = VT.getScalarType(); 2418 2419 assert(VT.isVector()); 2420 2421 SDValue Src = Op.getOperand(0); 2422 SDLoc DL(Op); 2423 2424 // TODO: Don't scalarize on Evergreen? 2425 unsigned NElts = VT.getVectorNumElements(); 2426 SmallVector<SDValue, 8> Args; 2427 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2428 2429 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2430 for (unsigned I = 0; I < NElts; ++I) 2431 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2432 2433 return DAG.getBuildVector(VT, DL, Args); 2434 } 2435 2436 //===----------------------------------------------------------------------===// 2437 // Custom DAG optimizations 2438 //===----------------------------------------------------------------------===// 2439 2440 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2441 KnownBits Known; 2442 EVT VT = Op.getValueType(); 2443 DAG.computeKnownBits(Op, Known); 2444 2445 return (VT.getSizeInBits() - Known.countMinLeadingZeros()) <= 24; 2446 } 2447 2448 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2449 EVT VT = Op.getValueType(); 2450 2451 // In order for this to be a signed 24-bit value, bit 23, must 2452 // be a sign bit. 2453 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2454 // as unsigned 24-bit values. 2455 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2456 } 2457 2458 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2459 TargetLowering::DAGCombinerInfo &DCI) { 2460 2461 SelectionDAG &DAG = DCI.DAG; 2462 SDValue Op = Node24->getOperand(OpIdx); 2463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2464 EVT VT = Op.getValueType(); 2465 2466 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2467 APInt KnownZero, KnownOne; 2468 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2469 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2470 return true; 2471 2472 return false; 2473 } 2474 2475 template <typename IntTy> 2476 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2477 uint32_t Width, const SDLoc &DL) { 2478 if (Width + Offset < 32) { 2479 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2480 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2481 return DAG.getConstant(Result, DL, MVT::i32); 2482 } 2483 2484 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2485 } 2486 2487 static bool hasVolatileUser(SDNode *Val) { 2488 for (SDNode *U : Val->uses()) { 2489 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2490 if (M->isVolatile()) 2491 return true; 2492 } 2493 } 2494 2495 return false; 2496 } 2497 2498 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2499 // i32 vectors are the canonical memory type. 2500 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2501 return false; 2502 2503 if (!VT.isByteSized()) 2504 return false; 2505 2506 unsigned Size = VT.getStoreSize(); 2507 2508 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2509 return false; 2510 2511 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2512 return false; 2513 2514 return true; 2515 } 2516 2517 // Replace load of an illegal type with a store of a bitcast to a friendlier 2518 // type. 2519 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2520 DAGCombinerInfo &DCI) const { 2521 if (!DCI.isBeforeLegalize()) 2522 return SDValue(); 2523 2524 LoadSDNode *LN = cast<LoadSDNode>(N); 2525 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2526 return SDValue(); 2527 2528 SDLoc SL(N); 2529 SelectionDAG &DAG = DCI.DAG; 2530 EVT VT = LN->getMemoryVT(); 2531 2532 unsigned Size = VT.getStoreSize(); 2533 unsigned Align = LN->getAlignment(); 2534 if (Align < Size && isTypeLegal(VT)) { 2535 bool IsFast; 2536 unsigned AS = LN->getAddressSpace(); 2537 2538 // Expand unaligned loads earlier than legalization. Due to visitation order 2539 // problems during legalization, the emitted instructions to pack and unpack 2540 // the bytes again are not eliminated in the case of an unaligned copy. 2541 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2542 if (VT.isVector()) 2543 return scalarizeVectorLoad(LN, DAG); 2544 2545 SDValue Ops[2]; 2546 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2547 return DAG.getMergeValues(Ops, SDLoc(N)); 2548 } 2549 2550 if (!IsFast) 2551 return SDValue(); 2552 } 2553 2554 if (!shouldCombineMemoryType(VT)) 2555 return SDValue(); 2556 2557 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2558 2559 SDValue NewLoad 2560 = DAG.getLoad(NewVT, SL, LN->getChain(), 2561 LN->getBasePtr(), LN->getMemOperand()); 2562 2563 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2564 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2565 return SDValue(N, 0); 2566 } 2567 2568 // Replace store of an illegal type with a store of a bitcast to a friendlier 2569 // type. 2570 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2571 DAGCombinerInfo &DCI) const { 2572 if (!DCI.isBeforeLegalize()) 2573 return SDValue(); 2574 2575 StoreSDNode *SN = cast<StoreSDNode>(N); 2576 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2577 return SDValue(); 2578 2579 EVT VT = SN->getMemoryVT(); 2580 unsigned Size = VT.getStoreSize(); 2581 2582 SDLoc SL(N); 2583 SelectionDAG &DAG = DCI.DAG; 2584 unsigned Align = SN->getAlignment(); 2585 if (Align < Size && isTypeLegal(VT)) { 2586 bool IsFast; 2587 unsigned AS = SN->getAddressSpace(); 2588 2589 // Expand unaligned stores earlier than legalization. Due to visitation 2590 // order problems during legalization, the emitted instructions to pack and 2591 // unpack the bytes again are not eliminated in the case of an unaligned 2592 // copy. 2593 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2594 if (VT.isVector()) 2595 return scalarizeVectorStore(SN, DAG); 2596 2597 return expandUnalignedStore(SN, DAG); 2598 } 2599 2600 if (!IsFast) 2601 return SDValue(); 2602 } 2603 2604 if (!shouldCombineMemoryType(VT)) 2605 return SDValue(); 2606 2607 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2608 SDValue Val = SN->getValue(); 2609 2610 //DCI.AddToWorklist(Val.getNode()); 2611 2612 bool OtherUses = !Val.hasOneUse(); 2613 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2614 if (OtherUses) { 2615 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2616 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2617 } 2618 2619 return DAG.getStore(SN->getChain(), SL, CastVal, 2620 SN->getBasePtr(), SN->getMemOperand()); 2621 } 2622 2623 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2624 DAGCombinerInfo &DCI) const { 2625 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2626 if (!CSrc) 2627 return SDValue(); 2628 2629 const APFloat &F = CSrc->getValueAPF(); 2630 APFloat Zero = APFloat::getZero(F.getSemantics()); 2631 APFloat::cmpResult Cmp0 = F.compare(Zero); 2632 if (Cmp0 == APFloat::cmpLessThan || 2633 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2634 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2635 } 2636 2637 APFloat One(F.getSemantics(), "1.0"); 2638 APFloat::cmpResult Cmp1 = F.compare(One); 2639 if (Cmp1 == APFloat::cmpGreaterThan) 2640 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2641 2642 return SDValue(CSrc, 0); 2643 } 2644 2645 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2646 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2647 // issues. 2648 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2649 DAGCombinerInfo &DCI) const { 2650 SelectionDAG &DAG = DCI.DAG; 2651 SDValue N0 = N->getOperand(0); 2652 2653 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2654 // (vt2 (truncate (assertzext vt0:x, vt1))) 2655 if (N0.getOpcode() == ISD::TRUNCATE) { 2656 SDValue N1 = N->getOperand(1); 2657 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2658 SDLoc SL(N); 2659 2660 SDValue Src = N0.getOperand(0); 2661 EVT SrcVT = Src.getValueType(); 2662 if (SrcVT.bitsGE(ExtVT)) { 2663 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2664 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2665 } 2666 } 2667 2668 return SDValue(); 2669 } 2670 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2671 /// binary operation \p Opc to it with the corresponding constant operands. 2672 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2673 DAGCombinerInfo &DCI, const SDLoc &SL, 2674 unsigned Opc, SDValue LHS, 2675 uint32_t ValLo, uint32_t ValHi) const { 2676 SelectionDAG &DAG = DCI.DAG; 2677 SDValue Lo, Hi; 2678 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2679 2680 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2681 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2682 2683 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2684 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2685 2686 // Re-visit the ands. It's possible we eliminated one of them and it could 2687 // simplify the vector. 2688 DCI.AddToWorklist(Lo.getNode()); 2689 DCI.AddToWorklist(Hi.getNode()); 2690 2691 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2692 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2693 } 2694 2695 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2696 DAGCombinerInfo &DCI) const { 2697 EVT VT = N->getValueType(0); 2698 2699 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2700 if (!RHS) 2701 return SDValue(); 2702 2703 SDValue LHS = N->getOperand(0); 2704 unsigned RHSVal = RHS->getZExtValue(); 2705 if (!RHSVal) 2706 return LHS; 2707 2708 SDLoc SL(N); 2709 SelectionDAG &DAG = DCI.DAG; 2710 2711 switch (LHS->getOpcode()) { 2712 default: 2713 break; 2714 case ISD::ZERO_EXTEND: 2715 case ISD::SIGN_EXTEND: 2716 case ISD::ANY_EXTEND: { 2717 SDValue X = LHS->getOperand(0); 2718 2719 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2720 isTypeLegal(MVT::v2i16)) { 2721 // Prefer build_vector as the canonical form if packed types are legal. 2722 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2723 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2724 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2725 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2726 } 2727 2728 // shl (ext x) => zext (shl x), if shift does not overflow int 2729 if (VT != MVT::i64) 2730 break; 2731 KnownBits Known; 2732 DAG.computeKnownBits(X, Known); 2733 unsigned LZ = Known.countMinLeadingZeros(); 2734 if (LZ < RHSVal) 2735 break; 2736 EVT XVT = X.getValueType(); 2737 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2738 return DAG.getZExtOrTrunc(Shl, SL, VT); 2739 } 2740 case ISD::OR: 2741 if (!isOrEquivalentToAdd(DAG, LHS)) 2742 break; 2743 LLVM_FALLTHROUGH; 2744 case ISD::ADD: { 2745 // shl (or|add x, c2), c1 => or|add (shl x, c1), (c2 << c1) 2746 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 2747 SDValue Shl = DAG.getNode(ISD::SHL, SL, VT, LHS->getOperand(0), 2748 SDValue(RHS, 0)); 2749 SDValue C2V = DAG.getConstant(C2->getAPIntValue() << RHSVal, 2750 SDLoc(C2), VT); 2751 return DAG.getNode(LHS->getOpcode(), SL, VT, Shl, C2V); 2752 } 2753 break; 2754 } 2755 } 2756 2757 if (VT != MVT::i64) 2758 return SDValue(); 2759 2760 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2761 2762 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2763 // common case, splitting this into a move and a 32-bit shift is faster and 2764 // the same code size. 2765 if (RHSVal < 32) 2766 return SDValue(); 2767 2768 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2769 2770 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2771 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2772 2773 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2774 2775 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2776 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2777 } 2778 2779 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2780 DAGCombinerInfo &DCI) const { 2781 if (N->getValueType(0) != MVT::i64) 2782 return SDValue(); 2783 2784 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2785 if (!RHS) 2786 return SDValue(); 2787 2788 SelectionDAG &DAG = DCI.DAG; 2789 SDLoc SL(N); 2790 unsigned RHSVal = RHS->getZExtValue(); 2791 2792 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2793 if (RHSVal == 32) { 2794 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2795 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2796 DAG.getConstant(31, SL, MVT::i32)); 2797 2798 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2799 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2800 } 2801 2802 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2803 if (RHSVal == 63) { 2804 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2805 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2806 DAG.getConstant(31, SL, MVT::i32)); 2807 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2808 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2809 } 2810 2811 return SDValue(); 2812 } 2813 2814 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2815 DAGCombinerInfo &DCI) const { 2816 if (N->getValueType(0) != MVT::i64) 2817 return SDValue(); 2818 2819 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2820 if (!RHS) 2821 return SDValue(); 2822 2823 unsigned ShiftAmt = RHS->getZExtValue(); 2824 if (ShiftAmt < 32) 2825 return SDValue(); 2826 2827 // srl i64:x, C for C >= 32 2828 // => 2829 // build_pair (srl hi_32(x), C - 32), 0 2830 2831 SelectionDAG &DAG = DCI.DAG; 2832 SDLoc SL(N); 2833 2834 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2835 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2836 2837 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2838 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2839 VecOp, One); 2840 2841 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2842 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2843 2844 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2845 2846 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2847 } 2848 2849 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2850 // instructions. If we only match on the legalized i64 mul expansion, 2851 // SimplifyDemandedBits will be unable to remove them because there will be 2852 // multiple uses due to the separate mul + mulh[su]. 2853 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2854 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2855 if (Size <= 32) { 2856 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2857 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2858 } 2859 2860 // Because we want to eliminate extension instructions before the 2861 // operation, we need to create a single user here (i.e. not the separate 2862 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2863 2864 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2865 2866 SDValue Mul = DAG.getNode(MulOpc, SL, 2867 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2868 2869 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2870 Mul.getValue(0), Mul.getValue(1)); 2871 } 2872 2873 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2874 DAGCombinerInfo &DCI) const { 2875 EVT VT = N->getValueType(0); 2876 2877 unsigned Size = VT.getSizeInBits(); 2878 if (VT.isVector() || Size > 64) 2879 return SDValue(); 2880 2881 // There are i16 integer mul/mad. 2882 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2883 return SDValue(); 2884 2885 SelectionDAG &DAG = DCI.DAG; 2886 SDLoc DL(N); 2887 2888 SDValue N0 = N->getOperand(0); 2889 SDValue N1 = N->getOperand(1); 2890 SDValue Mul; 2891 2892 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2893 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2894 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2895 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2896 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2897 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2898 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2899 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2900 } else { 2901 return SDValue(); 2902 } 2903 2904 // We need to use sext even for MUL_U24, because MUL_U24 is used 2905 // for signed multiply of 8 and 16-bit types. 2906 return DAG.getSExtOrTrunc(Mul, DL, VT); 2907 } 2908 2909 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2910 DAGCombinerInfo &DCI) const { 2911 EVT VT = N->getValueType(0); 2912 2913 if (!Subtarget->hasMulI24() || VT.isVector()) 2914 return SDValue(); 2915 2916 SelectionDAG &DAG = DCI.DAG; 2917 SDLoc DL(N); 2918 2919 SDValue N0 = N->getOperand(0); 2920 SDValue N1 = N->getOperand(1); 2921 2922 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2923 return SDValue(); 2924 2925 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2926 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2927 2928 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2929 DCI.AddToWorklist(Mulhi.getNode()); 2930 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2931 } 2932 2933 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2934 DAGCombinerInfo &DCI) const { 2935 EVT VT = N->getValueType(0); 2936 2937 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2938 return SDValue(); 2939 2940 SelectionDAG &DAG = DCI.DAG; 2941 SDLoc DL(N); 2942 2943 SDValue N0 = N->getOperand(0); 2944 SDValue N1 = N->getOperand(1); 2945 2946 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2947 return SDValue(); 2948 2949 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2950 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2951 2952 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2953 DCI.AddToWorklist(Mulhi.getNode()); 2954 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2955 } 2956 2957 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2958 SDNode *N, DAGCombinerInfo &DCI) const { 2959 SelectionDAG &DAG = DCI.DAG; 2960 2961 // Simplify demanded bits before splitting into multiple users. 2962 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2963 return SDValue(); 2964 2965 SDValue N0 = N->getOperand(0); 2966 SDValue N1 = N->getOperand(1); 2967 2968 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2969 2970 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2971 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2972 2973 SDLoc SL(N); 2974 2975 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2976 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2977 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2978 } 2979 2980 static bool isNegativeOne(SDValue Val) { 2981 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2982 return C->isAllOnesValue(); 2983 return false; 2984 } 2985 2986 static bool isCtlzOpc(unsigned Opc) { 2987 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2988 } 2989 2990 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2991 SDValue Op, 2992 const SDLoc &DL) const { 2993 EVT VT = Op.getValueType(); 2994 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2995 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2996 LegalVT != MVT::i16)) 2997 return SDValue(); 2998 2999 if (VT != MVT::i32) 3000 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3001 3002 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 3003 if (VT != MVT::i32) 3004 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 3005 3006 return FFBH; 3007 } 3008 3009 // The native instructions return -1 on 0 input. Optimize out a select that 3010 // produces -1 on 0. 3011 // 3012 // TODO: If zero is not undef, we could also do this if the output is compared 3013 // against the bitwidth. 3014 // 3015 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3016 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 3017 SDValue LHS, SDValue RHS, 3018 DAGCombinerInfo &DCI) const { 3019 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3020 if (!CmpRhs || !CmpRhs->isNullValue()) 3021 return SDValue(); 3022 3023 SelectionDAG &DAG = DCI.DAG; 3024 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3025 SDValue CmpLHS = Cond.getOperand(0); 3026 3027 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3028 if (CCOpcode == ISD::SETEQ && 3029 isCtlzOpc(RHS.getOpcode()) && 3030 RHS.getOperand(0) == CmpLHS && 3031 isNegativeOne(LHS)) { 3032 return getFFBH_U32(DAG, CmpLHS, SL); 3033 } 3034 3035 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3036 if (CCOpcode == ISD::SETNE && 3037 isCtlzOpc(LHS.getOpcode()) && 3038 LHS.getOperand(0) == CmpLHS && 3039 isNegativeOne(RHS)) { 3040 return getFFBH_U32(DAG, CmpLHS, SL); 3041 } 3042 3043 return SDValue(); 3044 } 3045 3046 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3047 unsigned Op, 3048 const SDLoc &SL, 3049 SDValue Cond, 3050 SDValue N1, 3051 SDValue N2) { 3052 SelectionDAG &DAG = DCI.DAG; 3053 EVT VT = N1.getValueType(); 3054 3055 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3056 N1.getOperand(0), N2.getOperand(0)); 3057 DCI.AddToWorklist(NewSelect.getNode()); 3058 return DAG.getNode(Op, SL, VT, NewSelect); 3059 } 3060 3061 // Pull a free FP operation out of a select so it may fold into uses. 3062 // 3063 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3064 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3065 // 3066 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3067 // select c, (fabs x), +k -> fabs (select c, x, k) 3068 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3069 SDValue N) { 3070 SelectionDAG &DAG = DCI.DAG; 3071 SDValue Cond = N.getOperand(0); 3072 SDValue LHS = N.getOperand(1); 3073 SDValue RHS = N.getOperand(2); 3074 3075 EVT VT = N.getValueType(); 3076 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3077 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3078 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3079 SDLoc(N), Cond, LHS, RHS); 3080 } 3081 3082 bool Inv = false; 3083 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3084 std::swap(LHS, RHS); 3085 Inv = true; 3086 } 3087 3088 // TODO: Support vector constants. 3089 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3090 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3091 SDLoc SL(N); 3092 // If one side is an fneg/fabs and the other is a constant, we can push the 3093 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3094 SDValue NewLHS = LHS.getOperand(0); 3095 SDValue NewRHS = RHS; 3096 3097 // Careful: if the neg can be folded up, don't try to pull it back down. 3098 bool ShouldFoldNeg = true; 3099 3100 if (NewLHS.hasOneUse()) { 3101 unsigned Opc = NewLHS.getOpcode(); 3102 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3103 ShouldFoldNeg = false; 3104 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3105 ShouldFoldNeg = false; 3106 } 3107 3108 if (ShouldFoldNeg) { 3109 if (LHS.getOpcode() == ISD::FNEG) 3110 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3111 else if (CRHS->isNegative()) 3112 return SDValue(); 3113 3114 if (Inv) 3115 std::swap(NewLHS, NewRHS); 3116 3117 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3118 Cond, NewLHS, NewRHS); 3119 DCI.AddToWorklist(NewSelect.getNode()); 3120 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3121 } 3122 } 3123 3124 return SDValue(); 3125 } 3126 3127 3128 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3129 DAGCombinerInfo &DCI) const { 3130 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3131 return Folded; 3132 3133 SDValue Cond = N->getOperand(0); 3134 if (Cond.getOpcode() != ISD::SETCC) 3135 return SDValue(); 3136 3137 EVT VT = N->getValueType(0); 3138 SDValue LHS = Cond.getOperand(0); 3139 SDValue RHS = Cond.getOperand(1); 3140 SDValue CC = Cond.getOperand(2); 3141 3142 SDValue True = N->getOperand(1); 3143 SDValue False = N->getOperand(2); 3144 3145 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3146 SelectionDAG &DAG = DCI.DAG; 3147 if ((DAG.isConstantValueOfAnyType(True) || 3148 DAG.isConstantValueOfAnyType(True)) && 3149 (!DAG.isConstantValueOfAnyType(False) && 3150 !DAG.isConstantValueOfAnyType(False))) { 3151 // Swap cmp + select pair to move constant to false input. 3152 // This will allow using VOPC cndmasks more often. 3153 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3154 3155 SDLoc SL(N); 3156 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3157 LHS.getValueType().isInteger()); 3158 3159 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3160 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3161 } 3162 3163 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3164 SDValue MinMax 3165 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3166 // Revisit this node so we can catch min3/max3/med3 patterns. 3167 //DCI.AddToWorklist(MinMax.getNode()); 3168 return MinMax; 3169 } 3170 } 3171 3172 // There's no reason to not do this if the condition has other uses. 3173 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 3174 } 3175 3176 static bool isConstantFPZero(SDValue N) { 3177 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3178 return C->isZero() && !C->isNegative(); 3179 return false; 3180 } 3181 3182 static unsigned inverseMinMax(unsigned Opc) { 3183 switch (Opc) { 3184 case ISD::FMAXNUM: 3185 return ISD::FMINNUM; 3186 case ISD::FMINNUM: 3187 return ISD::FMAXNUM; 3188 case AMDGPUISD::FMAX_LEGACY: 3189 return AMDGPUISD::FMIN_LEGACY; 3190 case AMDGPUISD::FMIN_LEGACY: 3191 return AMDGPUISD::FMAX_LEGACY; 3192 default: 3193 llvm_unreachable("invalid min/max opcode"); 3194 } 3195 } 3196 3197 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3198 DAGCombinerInfo &DCI) const { 3199 SelectionDAG &DAG = DCI.DAG; 3200 SDValue N0 = N->getOperand(0); 3201 EVT VT = N->getValueType(0); 3202 3203 unsigned Opc = N0.getOpcode(); 3204 3205 // If the input has multiple uses and we can either fold the negate down, or 3206 // the other uses cannot, give up. This both prevents unprofitable 3207 // transformations and infinite loops: we won't repeatedly try to fold around 3208 // a negate that has no 'good' form. 3209 if (N0.hasOneUse()) { 3210 // This may be able to fold into the source, but at a code size cost. Don't 3211 // fold if the fold into the user is free. 3212 if (allUsesHaveSourceMods(N, 0)) 3213 return SDValue(); 3214 } else { 3215 if (fnegFoldsIntoOp(Opc) && 3216 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3217 return SDValue(); 3218 } 3219 3220 SDLoc SL(N); 3221 switch (Opc) { 3222 case ISD::FADD: { 3223 if (!mayIgnoreSignedZero(N0)) 3224 return SDValue(); 3225 3226 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3227 SDValue LHS = N0.getOperand(0); 3228 SDValue RHS = N0.getOperand(1); 3229 3230 if (LHS.getOpcode() != ISD::FNEG) 3231 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3232 else 3233 LHS = LHS.getOperand(0); 3234 3235 if (RHS.getOpcode() != ISD::FNEG) 3236 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3237 else 3238 RHS = RHS.getOperand(0); 3239 3240 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3241 if (!N0.hasOneUse()) 3242 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3243 return Res; 3244 } 3245 case ISD::FMUL: 3246 case AMDGPUISD::FMUL_LEGACY: { 3247 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3248 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3249 SDValue LHS = N0.getOperand(0); 3250 SDValue RHS = N0.getOperand(1); 3251 3252 if (LHS.getOpcode() == ISD::FNEG) 3253 LHS = LHS.getOperand(0); 3254 else if (RHS.getOpcode() == ISD::FNEG) 3255 RHS = RHS.getOperand(0); 3256 else 3257 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3258 3259 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3260 if (!N0.hasOneUse()) 3261 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3262 return Res; 3263 } 3264 case ISD::FMA: 3265 case ISD::FMAD: { 3266 if (!mayIgnoreSignedZero(N0)) 3267 return SDValue(); 3268 3269 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3270 SDValue LHS = N0.getOperand(0); 3271 SDValue MHS = N0.getOperand(1); 3272 SDValue RHS = N0.getOperand(2); 3273 3274 if (LHS.getOpcode() == ISD::FNEG) 3275 LHS = LHS.getOperand(0); 3276 else if (MHS.getOpcode() == ISD::FNEG) 3277 MHS = MHS.getOperand(0); 3278 else 3279 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3280 3281 if (RHS.getOpcode() != ISD::FNEG) 3282 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3283 else 3284 RHS = RHS.getOperand(0); 3285 3286 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3287 if (!N0.hasOneUse()) 3288 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3289 return Res; 3290 } 3291 case ISD::FMAXNUM: 3292 case ISD::FMINNUM: 3293 case AMDGPUISD::FMAX_LEGACY: 3294 case AMDGPUISD::FMIN_LEGACY: { 3295 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3296 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3297 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3298 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3299 3300 SDValue LHS = N0.getOperand(0); 3301 SDValue RHS = N0.getOperand(1); 3302 3303 // 0 doesn't have a negated inline immediate. 3304 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3305 // operations. 3306 if (isConstantFPZero(RHS)) 3307 return SDValue(); 3308 3309 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3310 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3311 unsigned Opposite = inverseMinMax(Opc); 3312 3313 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3314 if (!N0.hasOneUse()) 3315 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3316 return Res; 3317 } 3318 case ISD::FP_EXTEND: 3319 case ISD::FTRUNC: 3320 case ISD::FRINT: 3321 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3322 case ISD::FSIN: 3323 case AMDGPUISD::RCP: 3324 case AMDGPUISD::RCP_LEGACY: 3325 case AMDGPUISD::SIN_HW: { 3326 SDValue CvtSrc = N0.getOperand(0); 3327 if (CvtSrc.getOpcode() == ISD::FNEG) { 3328 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3329 // (fneg (rcp (fneg x))) -> (rcp x) 3330 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3331 } 3332 3333 if (!N0.hasOneUse()) 3334 return SDValue(); 3335 3336 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3337 // (fneg (rcp x)) -> (rcp (fneg x)) 3338 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3339 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3340 } 3341 case ISD::FP_ROUND: { 3342 SDValue CvtSrc = N0.getOperand(0); 3343 3344 if (CvtSrc.getOpcode() == ISD::FNEG) { 3345 // (fneg (fp_round (fneg x))) -> (fp_round x) 3346 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3347 CvtSrc.getOperand(0), N0.getOperand(1)); 3348 } 3349 3350 if (!N0.hasOneUse()) 3351 return SDValue(); 3352 3353 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3354 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3355 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3356 } 3357 case ISD::FP16_TO_FP: { 3358 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3359 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3360 // Put the fneg back as a legal source operation that can be matched later. 3361 SDLoc SL(N); 3362 3363 SDValue Src = N0.getOperand(0); 3364 EVT SrcVT = Src.getValueType(); 3365 3366 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3367 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3368 DAG.getConstant(0x8000, SL, SrcVT)); 3369 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3370 } 3371 default: 3372 return SDValue(); 3373 } 3374 } 3375 3376 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3377 DAGCombinerInfo &DCI) const { 3378 SelectionDAG &DAG = DCI.DAG; 3379 SDValue N0 = N->getOperand(0); 3380 3381 if (!N0.hasOneUse()) 3382 return SDValue(); 3383 3384 switch (N0.getOpcode()) { 3385 case ISD::FP16_TO_FP: { 3386 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3387 SDLoc SL(N); 3388 SDValue Src = N0.getOperand(0); 3389 EVT SrcVT = Src.getValueType(); 3390 3391 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3392 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3393 DAG.getConstant(0x7fff, SL, SrcVT)); 3394 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3395 } 3396 default: 3397 return SDValue(); 3398 } 3399 } 3400 3401 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3402 DAGCombinerInfo &DCI) const { 3403 SelectionDAG &DAG = DCI.DAG; 3404 SDLoc DL(N); 3405 3406 switch(N->getOpcode()) { 3407 default: 3408 break; 3409 case ISD::BITCAST: { 3410 EVT DestVT = N->getValueType(0); 3411 3412 // Push casts through vector builds. This helps avoid emitting a large 3413 // number of copies when materializing floating point vector constants. 3414 // 3415 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3416 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3417 if (DestVT.isVector()) { 3418 SDValue Src = N->getOperand(0); 3419 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3420 EVT SrcVT = Src.getValueType(); 3421 unsigned NElts = DestVT.getVectorNumElements(); 3422 3423 if (SrcVT.getVectorNumElements() == NElts) { 3424 EVT DestEltVT = DestVT.getVectorElementType(); 3425 3426 SmallVector<SDValue, 8> CastedElts; 3427 SDLoc SL(N); 3428 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3429 SDValue Elt = Src.getOperand(I); 3430 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3431 } 3432 3433 return DAG.getBuildVector(DestVT, SL, CastedElts); 3434 } 3435 } 3436 } 3437 3438 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3439 break; 3440 3441 // Fold bitcasts of constants. 3442 // 3443 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3444 // TODO: Generalize and move to DAGCombiner 3445 SDValue Src = N->getOperand(0); 3446 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3447 assert(Src.getValueType() == MVT::i64); 3448 SDLoc SL(N); 3449 uint64_t CVal = C->getZExtValue(); 3450 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3451 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3452 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3453 } 3454 3455 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3456 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3457 SDLoc SL(N); 3458 uint64_t CVal = Val.getZExtValue(); 3459 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3460 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3461 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3462 3463 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3464 } 3465 3466 break; 3467 } 3468 case ISD::SHL: { 3469 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3470 break; 3471 3472 return performShlCombine(N, DCI); 3473 } 3474 case ISD::SRL: { 3475 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3476 break; 3477 3478 return performSrlCombine(N, DCI); 3479 } 3480 case ISD::SRA: { 3481 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3482 break; 3483 3484 return performSraCombine(N, DCI); 3485 } 3486 case ISD::MUL: 3487 return performMulCombine(N, DCI); 3488 case ISD::MULHS: 3489 return performMulhsCombine(N, DCI); 3490 case ISD::MULHU: 3491 return performMulhuCombine(N, DCI); 3492 case AMDGPUISD::MUL_I24: 3493 case AMDGPUISD::MUL_U24: 3494 case AMDGPUISD::MULHI_I24: 3495 case AMDGPUISD::MULHI_U24: { 3496 // If the first call to simplify is successfull, then N may end up being 3497 // deleted, so we shouldn't call simplifyI24 again. 3498 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3499 return SDValue(); 3500 } 3501 case AMDGPUISD::MUL_LOHI_I24: 3502 case AMDGPUISD::MUL_LOHI_U24: 3503 return performMulLoHi24Combine(N, DCI); 3504 case ISD::SELECT: 3505 return performSelectCombine(N, DCI); 3506 case ISD::FNEG: 3507 return performFNegCombine(N, DCI); 3508 case ISD::FABS: 3509 return performFAbsCombine(N, DCI); 3510 case AMDGPUISD::BFE_I32: 3511 case AMDGPUISD::BFE_U32: { 3512 assert(!N->getValueType(0).isVector() && 3513 "Vector handling of BFE not implemented"); 3514 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3515 if (!Width) 3516 break; 3517 3518 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3519 if (WidthVal == 0) 3520 return DAG.getConstant(0, DL, MVT::i32); 3521 3522 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3523 if (!Offset) 3524 break; 3525 3526 SDValue BitsFrom = N->getOperand(0); 3527 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3528 3529 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3530 3531 if (OffsetVal == 0) { 3532 // This is already sign / zero extended, so try to fold away extra BFEs. 3533 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3534 3535 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3536 if (OpSignBits >= SignBits) 3537 return BitsFrom; 3538 3539 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3540 if (Signed) { 3541 // This is a sign_extend_inreg. Replace it to take advantage of existing 3542 // DAG Combines. If not eliminated, we will match back to BFE during 3543 // selection. 3544 3545 // TODO: The sext_inreg of extended types ends, although we can could 3546 // handle them in a single BFE. 3547 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3548 DAG.getValueType(SmallVT)); 3549 } 3550 3551 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3552 } 3553 3554 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3555 if (Signed) { 3556 return constantFoldBFE<int32_t>(DAG, 3557 CVal->getSExtValue(), 3558 OffsetVal, 3559 WidthVal, 3560 DL); 3561 } 3562 3563 return constantFoldBFE<uint32_t>(DAG, 3564 CVal->getZExtValue(), 3565 OffsetVal, 3566 WidthVal, 3567 DL); 3568 } 3569 3570 if ((OffsetVal + WidthVal) >= 32 && 3571 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3572 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3573 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3574 BitsFrom, ShiftVal); 3575 } 3576 3577 if (BitsFrom.hasOneUse()) { 3578 APInt Demanded = APInt::getBitsSet(32, 3579 OffsetVal, 3580 OffsetVal + WidthVal); 3581 3582 KnownBits Known; 3583 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3584 !DCI.isBeforeLegalizeOps()); 3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3586 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3587 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3588 DCI.CommitTargetLoweringOpt(TLO); 3589 } 3590 } 3591 3592 break; 3593 } 3594 case ISD::LOAD: 3595 return performLoadCombine(N, DCI); 3596 case ISD::STORE: 3597 return performStoreCombine(N, DCI); 3598 case AMDGPUISD::CLAMP: 3599 return performClampCombine(N, DCI); 3600 case AMDGPUISD::RCP: { 3601 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3602 // XXX - Should this flush denormals? 3603 const APFloat &Val = CFP->getValueAPF(); 3604 APFloat One(Val.getSemantics(), "1.0"); 3605 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3606 } 3607 3608 break; 3609 } 3610 case ISD::AssertZext: 3611 case ISD::AssertSext: 3612 return performAssertSZExtCombine(N, DCI); 3613 } 3614 return SDValue(); 3615 } 3616 3617 //===----------------------------------------------------------------------===// 3618 // Helper functions 3619 //===----------------------------------------------------------------------===// 3620 3621 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3622 const TargetRegisterClass *RC, 3623 unsigned Reg, EVT VT, 3624 const SDLoc &SL, 3625 bool RawReg) const { 3626 MachineFunction &MF = DAG.getMachineFunction(); 3627 MachineRegisterInfo &MRI = MF.getRegInfo(); 3628 unsigned VReg; 3629 3630 if (!MRI.isLiveIn(Reg)) { 3631 VReg = MRI.createVirtualRegister(RC); 3632 MRI.addLiveIn(Reg, VReg); 3633 } else { 3634 VReg = MRI.getLiveInVirtReg(Reg); 3635 } 3636 3637 if (RawReg) 3638 return DAG.getRegister(VReg, VT); 3639 3640 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3641 } 3642 3643 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3644 EVT VT, 3645 const SDLoc &SL, 3646 int64_t Offset) const { 3647 MachineFunction &MF = DAG.getMachineFunction(); 3648 MachineFrameInfo &MFI = MF.getFrameInfo(); 3649 3650 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 3651 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 3652 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 3653 3654 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 3655 MachineMemOperand::MODereferenceable | 3656 MachineMemOperand::MOInvariant); 3657 } 3658 3659 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 3660 const SDLoc &SL, 3661 SDValue Chain, 3662 SDValue StackPtr, 3663 SDValue ArgVal, 3664 int64_t Offset) const { 3665 MachineFunction &MF = DAG.getMachineFunction(); 3666 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 3667 SDValue PtrOffset = DAG.getConstant(Offset, SL, MVT::i32); 3668 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, StackPtr, PtrOffset); 3669 3670 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 3671 MachineMemOperand::MODereferenceable); 3672 return Store; 3673 } 3674 3675 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 3676 const TargetRegisterClass *RC, 3677 EVT VT, const SDLoc &SL, 3678 const ArgDescriptor &Arg) const { 3679 assert(Arg && "Attempting to load missing argument"); 3680 3681 if (Arg.isRegister()) 3682 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 3683 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 3684 } 3685 3686 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3687 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3688 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3689 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3690 switch (Param) { 3691 case GRID_DIM: 3692 return ArgOffset; 3693 case GRID_OFFSET: 3694 return ArgOffset + 4; 3695 } 3696 llvm_unreachable("unexpected implicit parameter type"); 3697 } 3698 3699 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3700 3701 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3702 switch ((AMDGPUISD::NodeType)Opcode) { 3703 case AMDGPUISD::FIRST_NUMBER: break; 3704 // AMDIL DAG nodes 3705 NODE_NAME_CASE(UMUL); 3706 NODE_NAME_CASE(BRANCH_COND); 3707 3708 // AMDGPU DAG nodes 3709 NODE_NAME_CASE(IF) 3710 NODE_NAME_CASE(ELSE) 3711 NODE_NAME_CASE(LOOP) 3712 NODE_NAME_CASE(CALL) 3713 NODE_NAME_CASE(TC_RETURN) 3714 NODE_NAME_CASE(TRAP) 3715 NODE_NAME_CASE(RET_FLAG) 3716 NODE_NAME_CASE(RETURN_TO_EPILOG) 3717 NODE_NAME_CASE(ENDPGM) 3718 NODE_NAME_CASE(DWORDADDR) 3719 NODE_NAME_CASE(FRACT) 3720 NODE_NAME_CASE(SETCC) 3721 NODE_NAME_CASE(SETREG) 3722 NODE_NAME_CASE(FMA_W_CHAIN) 3723 NODE_NAME_CASE(FMUL_W_CHAIN) 3724 NODE_NAME_CASE(CLAMP) 3725 NODE_NAME_CASE(COS_HW) 3726 NODE_NAME_CASE(SIN_HW) 3727 NODE_NAME_CASE(FMAX_LEGACY) 3728 NODE_NAME_CASE(FMIN_LEGACY) 3729 NODE_NAME_CASE(FMAX3) 3730 NODE_NAME_CASE(SMAX3) 3731 NODE_NAME_CASE(UMAX3) 3732 NODE_NAME_CASE(FMIN3) 3733 NODE_NAME_CASE(SMIN3) 3734 NODE_NAME_CASE(UMIN3) 3735 NODE_NAME_CASE(FMED3) 3736 NODE_NAME_CASE(SMED3) 3737 NODE_NAME_CASE(UMED3) 3738 NODE_NAME_CASE(URECIP) 3739 NODE_NAME_CASE(DIV_SCALE) 3740 NODE_NAME_CASE(DIV_FMAS) 3741 NODE_NAME_CASE(DIV_FIXUP) 3742 NODE_NAME_CASE(FMAD_FTZ) 3743 NODE_NAME_CASE(TRIG_PREOP) 3744 NODE_NAME_CASE(RCP) 3745 NODE_NAME_CASE(RSQ) 3746 NODE_NAME_CASE(RCP_LEGACY) 3747 NODE_NAME_CASE(RSQ_LEGACY) 3748 NODE_NAME_CASE(FMUL_LEGACY) 3749 NODE_NAME_CASE(RSQ_CLAMP) 3750 NODE_NAME_CASE(LDEXP) 3751 NODE_NAME_CASE(FP_CLASS) 3752 NODE_NAME_CASE(DOT4) 3753 NODE_NAME_CASE(CARRY) 3754 NODE_NAME_CASE(BORROW) 3755 NODE_NAME_CASE(BFE_U32) 3756 NODE_NAME_CASE(BFE_I32) 3757 NODE_NAME_CASE(BFI) 3758 NODE_NAME_CASE(BFM) 3759 NODE_NAME_CASE(FFBH_U32) 3760 NODE_NAME_CASE(FFBH_I32) 3761 NODE_NAME_CASE(MUL_U24) 3762 NODE_NAME_CASE(MUL_I24) 3763 NODE_NAME_CASE(MULHI_U24) 3764 NODE_NAME_CASE(MULHI_I24) 3765 NODE_NAME_CASE(MUL_LOHI_U24) 3766 NODE_NAME_CASE(MUL_LOHI_I24) 3767 NODE_NAME_CASE(MAD_U24) 3768 NODE_NAME_CASE(MAD_I24) 3769 NODE_NAME_CASE(TEXTURE_FETCH) 3770 NODE_NAME_CASE(EXPORT) 3771 NODE_NAME_CASE(EXPORT_DONE) 3772 NODE_NAME_CASE(R600_EXPORT) 3773 NODE_NAME_CASE(CONST_ADDRESS) 3774 NODE_NAME_CASE(REGISTER_LOAD) 3775 NODE_NAME_CASE(REGISTER_STORE) 3776 NODE_NAME_CASE(SAMPLE) 3777 NODE_NAME_CASE(SAMPLEB) 3778 NODE_NAME_CASE(SAMPLED) 3779 NODE_NAME_CASE(SAMPLEL) 3780 NODE_NAME_CASE(CVT_F32_UBYTE0) 3781 NODE_NAME_CASE(CVT_F32_UBYTE1) 3782 NODE_NAME_CASE(CVT_F32_UBYTE2) 3783 NODE_NAME_CASE(CVT_F32_UBYTE3) 3784 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3785 NODE_NAME_CASE(FP_TO_FP16) 3786 NODE_NAME_CASE(FP16_ZEXT) 3787 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3788 NODE_NAME_CASE(CONST_DATA_PTR) 3789 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3790 NODE_NAME_CASE(KILL) 3791 NODE_NAME_CASE(DUMMY_CHAIN) 3792 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3793 NODE_NAME_CASE(INIT_EXEC) 3794 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 3795 NODE_NAME_CASE(SENDMSG) 3796 NODE_NAME_CASE(SENDMSGHALT) 3797 NODE_NAME_CASE(INTERP_MOV) 3798 NODE_NAME_CASE(INTERP_P1) 3799 NODE_NAME_CASE(INTERP_P2) 3800 NODE_NAME_CASE(STORE_MSKOR) 3801 NODE_NAME_CASE(LOAD_CONSTANT) 3802 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3803 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 3804 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 3805 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3806 NODE_NAME_CASE(ATOMIC_INC) 3807 NODE_NAME_CASE(ATOMIC_DEC) 3808 NODE_NAME_CASE(BUFFER_LOAD) 3809 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3810 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3811 } 3812 return nullptr; 3813 } 3814 3815 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3816 SelectionDAG &DAG, int Enabled, 3817 int &RefinementSteps, 3818 bool &UseOneConstNR, 3819 bool Reciprocal) const { 3820 EVT VT = Operand.getValueType(); 3821 3822 if (VT == MVT::f32) { 3823 RefinementSteps = 0; 3824 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3825 } 3826 3827 // TODO: There is also f64 rsq instruction, but the documentation is less 3828 // clear on its precision. 3829 3830 return SDValue(); 3831 } 3832 3833 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3834 SelectionDAG &DAG, int Enabled, 3835 int &RefinementSteps) const { 3836 EVT VT = Operand.getValueType(); 3837 3838 if (VT == MVT::f32) { 3839 // Reciprocal, < 1 ulp error. 3840 // 3841 // This reciprocal approximation converges to < 0.5 ulp error with one 3842 // newton rhapson performed with two fused multiple adds (FMAs). 3843 3844 RefinementSteps = 0; 3845 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3846 } 3847 3848 // TODO: There is also f64 rcp instruction, but the documentation is less 3849 // clear on its precision. 3850 3851 return SDValue(); 3852 } 3853 3854 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3855 const SDValue Op, KnownBits &Known, 3856 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 3857 3858 Known.resetAll(); // Don't know anything. 3859 3860 unsigned Opc = Op.getOpcode(); 3861 3862 switch (Opc) { 3863 default: 3864 break; 3865 case AMDGPUISD::CARRY: 3866 case AMDGPUISD::BORROW: { 3867 Known.Zero = APInt::getHighBitsSet(32, 31); 3868 break; 3869 } 3870 3871 case AMDGPUISD::BFE_I32: 3872 case AMDGPUISD::BFE_U32: { 3873 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3874 if (!CWidth) 3875 return; 3876 3877 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3878 3879 if (Opc == AMDGPUISD::BFE_U32) 3880 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 3881 3882 break; 3883 } 3884 case AMDGPUISD::FP_TO_FP16: 3885 case AMDGPUISD::FP16_ZEXT: { 3886 unsigned BitWidth = Known.getBitWidth(); 3887 3888 // High bits are zero. 3889 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 3890 break; 3891 } 3892 case AMDGPUISD::MUL_U24: 3893 case AMDGPUISD::MUL_I24: { 3894 KnownBits LHSKnown, RHSKnown; 3895 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 3896 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 3897 3898 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 3899 RHSKnown.countMinTrailingZeros(); 3900 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 3901 3902 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 3903 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 3904 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 3905 if (MaxValBits >= 32) 3906 break; 3907 bool Negative = false; 3908 if (Opc == AMDGPUISD::MUL_I24) { 3909 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 3910 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 3911 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 3912 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 3913 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 3914 break; 3915 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 3916 } 3917 if (Negative) 3918 Known.One.setHighBits(32 - MaxValBits); 3919 else 3920 Known.Zero.setHighBits(32 - MaxValBits); 3921 break; 3922 } 3923 } 3924 } 3925 3926 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3927 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3928 unsigned Depth) const { 3929 switch (Op.getOpcode()) { 3930 case AMDGPUISD::BFE_I32: { 3931 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3932 if (!Width) 3933 return 1; 3934 3935 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3936 if (!isNullConstant(Op.getOperand(1))) 3937 return SignBits; 3938 3939 // TODO: Could probably figure something out with non-0 offsets. 3940 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3941 return std::max(SignBits, Op0SignBits); 3942 } 3943 3944 case AMDGPUISD::BFE_U32: { 3945 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3946 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3947 } 3948 3949 case AMDGPUISD::CARRY: 3950 case AMDGPUISD::BORROW: 3951 return 31; 3952 case AMDGPUISD::FP_TO_FP16: 3953 case AMDGPUISD::FP16_ZEXT: 3954 return 16; 3955 default: 3956 return 1; 3957 } 3958 } 3959