1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 using namespace llvm; 38 39 #include "AMDGPUGenCallingConv.inc" 40 41 // Find a larger type to do a load / store of a vector with. 42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 43 unsigned StoreSize = VT.getStoreSizeInBits(); 44 if (StoreSize <= 32) 45 return EVT::getIntegerVT(Ctx, StoreSize); 46 47 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 48 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 KnownBits Known = DAG.computeKnownBits(Op); 54 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 55 } 56 57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 58 EVT VT = Op.getValueType(); 59 60 // In order for this to be a signed 24-bit value, bit 23, must 61 // be a sign bit. 62 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 78 79 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 81 82 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 // There are no 64-bit extloads. These should be done as a 32-bit extload and 107 // an extension to 64-bit. 108 for (MVT VT : MVT::integer_valuetypes()) { 109 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 110 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 111 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 112 } 113 114 for (MVT VT : MVT::integer_valuetypes()) { 115 if (VT == MVT::i64) 116 continue; 117 118 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 119 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 122 123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 127 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 132 } 133 134 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 159 160 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 162 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 164 165 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 169 170 setOperationAction(ISD::STORE, MVT::f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 175 176 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 178 179 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 181 182 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 184 185 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 187 188 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 190 191 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 193 194 setOperationAction(ISD::STORE, MVT::i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 196 197 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 199 200 setOperationAction(ISD::STORE, MVT::f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 205 206 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 207 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 208 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 210 211 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 212 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 215 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 218 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 219 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 220 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 221 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 222 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FLOG, MVT::f32, Custom); 265 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 266 setOperationAction(ISD::FEXP, MVT::f32, Custom); 267 268 269 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 270 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 271 272 setOperationAction(ISD::FREM, MVT::f32, Custom); 273 setOperationAction(ISD::FREM, MVT::f64, Custom); 274 275 // Expand to fneg + fadd. 276 setOperationAction(ISD::FSUB, MVT::f64, Expand); 277 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 326 setOperationAction(ISD::ADDC, VT, Legal); 327 setOperationAction(ISD::SUBC, VT, Legal); 328 setOperationAction(ISD::ADDE, VT, Legal); 329 setOperationAction(ISD::SUBE, VT, Legal); 330 } 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 344 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 345 346 setOperationAction(ISD::SMIN, MVT::i32, Legal); 347 setOperationAction(ISD::UMIN, MVT::i32, Legal); 348 setOperationAction(ISD::SMAX, MVT::i32, Legal); 349 setOperationAction(ISD::UMAX, MVT::i32, Legal); 350 351 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 352 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 353 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 355 356 static const MVT::SimpleValueType VectorIntTypes[] = { 357 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 358 }; 359 360 for (MVT VT : VectorIntTypes) { 361 // Expand the following operations for the current type by default. 362 setOperationAction(ISD::ADD, VT, Expand); 363 setOperationAction(ISD::AND, VT, Expand); 364 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 365 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 366 setOperationAction(ISD::MUL, VT, Expand); 367 setOperationAction(ISD::MULHU, VT, Expand); 368 setOperationAction(ISD::MULHS, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 setOperationAction(ISD::SETCC, VT, Expand); 396 } 397 398 static const MVT::SimpleValueType FloatVectorTypes[] = { 399 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 400 }; 401 402 for (MVT VT : FloatVectorTypes) { 403 setOperationAction(ISD::FABS, VT, Expand); 404 setOperationAction(ISD::FMINNUM, VT, Expand); 405 setOperationAction(ISD::FMAXNUM, VT, Expand); 406 setOperationAction(ISD::FADD, VT, Expand); 407 setOperationAction(ISD::FCEIL, VT, Expand); 408 setOperationAction(ISD::FCOS, VT, Expand); 409 setOperationAction(ISD::FDIV, VT, Expand); 410 setOperationAction(ISD::FEXP2, VT, Expand); 411 setOperationAction(ISD::FEXP, VT, Expand); 412 setOperationAction(ISD::FLOG2, VT, Expand); 413 setOperationAction(ISD::FREM, VT, Expand); 414 setOperationAction(ISD::FLOG, VT, Expand); 415 setOperationAction(ISD::FLOG10, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 setOperationAction(ISD::SETCC, VT, Expand); 432 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 443 444 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 446 447 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 449 450 // There are no libcalls of any kind. 451 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 452 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 453 454 setSchedulingPreference(Sched::RegPressure); 455 setJumpIsExpensive(true); 456 457 // FIXME: This is only partially true. If we have to do vector compares, any 458 // SGPR pair can be a condition register. If we have a uniform condition, we 459 // are better off doing SALU operations, where there is only one SCC. For now, 460 // we don't have a way of knowing during instruction selection if a condition 461 // will be uniform and we always use vector compares. Assume we are using 462 // vector compares until that is fixed. 463 setHasMultipleConditionRegisters(true); 464 465 setMinCmpXchgSizeInBits(32); 466 setSupportsUnalignedAtomics(false); 467 468 PredictableSelectIsExpensive = false; 469 470 // We want to find all load dependencies for long chains of stores to enable 471 // merging into very wide vectors. The problem is with vectors with > 4 472 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 473 // vectors are a legal type, even though we have to split the loads 474 // usually. When we can more precisely specify load legality per address 475 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 476 // smarter so that they can figure out what to do in 2 iterations without all 477 // N > 4 stores on the same chain. 478 GatherAllAliasesMaxDepth = 16; 479 480 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 481 // about these during lowering. 482 MaxStoresPerMemcpy = 0xffffffff; 483 MaxStoresPerMemmove = 0xffffffff; 484 MaxStoresPerMemset = 0xffffffff; 485 486 setTargetDAGCombine(ISD::BITCAST); 487 setTargetDAGCombine(ISD::SHL); 488 setTargetDAGCombine(ISD::SRA); 489 setTargetDAGCombine(ISD::SRL); 490 setTargetDAGCombine(ISD::TRUNCATE); 491 setTargetDAGCombine(ISD::MUL); 492 setTargetDAGCombine(ISD::MULHU); 493 setTargetDAGCombine(ISD::MULHS); 494 setTargetDAGCombine(ISD::SELECT); 495 setTargetDAGCombine(ISD::SELECT_CC); 496 setTargetDAGCombine(ISD::STORE); 497 setTargetDAGCombine(ISD::FADD); 498 setTargetDAGCombine(ISD::FSUB); 499 setTargetDAGCombine(ISD::FNEG); 500 setTargetDAGCombine(ISD::FABS); 501 setTargetDAGCombine(ISD::AssertZext); 502 setTargetDAGCombine(ISD::AssertSext); 503 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Target Information 508 //===----------------------------------------------------------------------===// 509 510 LLVM_READNONE 511 static bool fnegFoldsIntoOp(unsigned Opc) { 512 switch (Opc) { 513 case ISD::FADD: 514 case ISD::FSUB: 515 case ISD::FMUL: 516 case ISD::FMA: 517 case ISD::FMAD: 518 case ISD::FMINNUM: 519 case ISD::FMAXNUM: 520 case ISD::FMINNUM_IEEE: 521 case ISD::FMAXNUM_IEEE: 522 case ISD::FSIN: 523 case ISD::FTRUNC: 524 case ISD::FRINT: 525 case ISD::FNEARBYINT: 526 case ISD::FCANONICALIZE: 527 case AMDGPUISD::RCP: 528 case AMDGPUISD::RCP_LEGACY: 529 case AMDGPUISD::RCP_IFLAG: 530 case AMDGPUISD::SIN_HW: 531 case AMDGPUISD::FMUL_LEGACY: 532 case AMDGPUISD::FMIN_LEGACY: 533 case AMDGPUISD::FMAX_LEGACY: 534 case AMDGPUISD::FMED3: 535 return true; 536 default: 537 return false; 538 } 539 } 540 541 /// \p returns true if the operation will definitely need to use a 64-bit 542 /// encoding, and thus will use a VOP3 encoding regardless of the source 543 /// modifiers. 544 LLVM_READONLY 545 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 546 return N->getNumOperands() > 2 || VT == MVT::f64; 547 } 548 549 // Most FP instructions support source modifiers, but this could be refined 550 // slightly. 551 LLVM_READONLY 552 static bool hasSourceMods(const SDNode *N) { 553 if (isa<MemSDNode>(N)) 554 return false; 555 556 switch (N->getOpcode()) { 557 case ISD::CopyToReg: 558 case ISD::SELECT: 559 case ISD::FDIV: 560 case ISD::FREM: 561 case ISD::INLINEASM: 562 case ISD::INLINEASM_BR: 563 case AMDGPUISD::DIV_SCALE: 564 case ISD::INTRINSIC_W_CHAIN: 565 566 // TODO: Should really be looking at the users of the bitcast. These are 567 // problematic because bitcasts are used to legalize all stores to integer 568 // types. 569 case ISD::BITCAST: 570 return false; 571 case ISD::INTRINSIC_WO_CHAIN: { 572 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 573 case Intrinsic::amdgcn_interp_p1: 574 case Intrinsic::amdgcn_interp_p2: 575 case Intrinsic::amdgcn_interp_mov: 576 case Intrinsic::amdgcn_interp_p1_f16: 577 case Intrinsic::amdgcn_interp_p2_f16: 578 return false; 579 default: 580 return true; 581 } 582 } 583 default: 584 return true; 585 } 586 } 587 588 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 589 unsigned CostThreshold) { 590 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 591 // it is truly free to use a source modifier in all cases. If there are 592 // multiple users but for each one will necessitate using VOP3, there will be 593 // a code size increase. Try to avoid increasing code size unless we know it 594 // will save on the instruction count. 595 unsigned NumMayIncreaseSize = 0; 596 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 597 598 // XXX - Should this limit number of uses to check? 599 for (const SDNode *U : N->uses()) { 600 if (!hasSourceMods(U)) 601 return false; 602 603 if (!opMustUseVOP3Encoding(U, VT)) { 604 if (++NumMayIncreaseSize > CostThreshold) 605 return false; 606 } 607 } 608 609 return true; 610 } 611 612 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 613 return MVT::i32; 614 } 615 616 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 617 return true; 618 } 619 620 // The backend supports 32 and 64 bit floating point immediates. 621 // FIXME: Why are we reporting vectors of FP immediates as legal? 622 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 623 bool ForCodeSize) const { 624 EVT ScalarVT = VT.getScalarType(); 625 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 626 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 627 } 628 629 // We don't want to shrink f64 / f32 constants. 630 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 631 EVT ScalarVT = VT.getScalarType(); 632 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 633 } 634 635 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 636 ISD::LoadExtType ExtTy, 637 EVT NewVT) const { 638 // TODO: This may be worth removing. Check regression tests for diffs. 639 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 640 return false; 641 642 unsigned NewSize = NewVT.getStoreSizeInBits(); 643 644 // If we are reducing to a 32-bit load, this is always better. 645 if (NewSize == 32) 646 return true; 647 648 EVT OldVT = N->getValueType(0); 649 unsigned OldSize = OldVT.getStoreSizeInBits(); 650 651 MemSDNode *MN = cast<MemSDNode>(N); 652 unsigned AS = MN->getAddressSpace(); 653 // Do not shrink an aligned scalar load to sub-dword. 654 // Scalar engine cannot do sub-dword loads. 655 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 656 (AS == AMDGPUAS::CONSTANT_ADDRESS || 657 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 658 (isa<LoadSDNode>(N) && 659 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 660 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 661 return false; 662 663 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 664 // extloads, so doing one requires using a buffer_load. In cases where we 665 // still couldn't use a scalar load, using the wider load shouldn't really 666 // hurt anything. 667 668 // If the old size already had to be an extload, there's no harm in continuing 669 // to reduce the width. 670 return (OldSize < 32); 671 } 672 673 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 674 const SelectionDAG &DAG, 675 const MachineMemOperand &MMO) const { 676 677 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 678 679 if (LoadTy.getScalarType() == MVT::i32) 680 return false; 681 682 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 683 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 684 685 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 686 return false; 687 688 bool Fast = false; 689 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 690 CastTy, MMO, &Fast) && 691 Fast; 692 } 693 694 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 695 // profitable with the expansion for 64-bit since it's generally good to 696 // speculate things. 697 // FIXME: These should really have the size as a parameter. 698 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 699 return true; 700 } 701 702 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 703 return true; 704 } 705 706 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 707 switch (N->getOpcode()) { 708 default: 709 return false; 710 case ISD::EntryToken: 711 case ISD::TokenFactor: 712 return true; 713 case ISD::INTRINSIC_WO_CHAIN: 714 { 715 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 716 switch (IntrID) { 717 default: 718 return false; 719 case Intrinsic::amdgcn_readfirstlane: 720 case Intrinsic::amdgcn_readlane: 721 return true; 722 } 723 } 724 break; 725 case ISD::LOAD: 726 { 727 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 728 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 729 return true; 730 return false; 731 } 732 break; 733 } 734 } 735 736 //===---------------------------------------------------------------------===// 737 // Target Properties 738 //===---------------------------------------------------------------------===// 739 740 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 741 assert(VT.isFloatingPoint()); 742 743 // Packed operations do not have a fabs modifier. 744 return VT == MVT::f32 || VT == MVT::f64 || 745 (Subtarget->has16BitInsts() && VT == MVT::f16); 746 } 747 748 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 749 assert(VT.isFloatingPoint()); 750 return VT == MVT::f32 || VT == MVT::f64 || 751 (Subtarget->has16BitInsts() && VT == MVT::f16) || 752 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 753 } 754 755 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 756 unsigned NumElem, 757 unsigned AS) const { 758 return true; 759 } 760 761 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 762 // There are few operations which truly have vector input operands. Any vector 763 // operation is going to involve operations on each component, and a 764 // build_vector will be a copy per element, so it always makes sense to use a 765 // build_vector input in place of the extracted element to avoid a copy into a 766 // super register. 767 // 768 // We should probably only do this if all users are extracts only, but this 769 // should be the common case. 770 return true; 771 } 772 773 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 774 // Truncate is just accessing a subregister. 775 776 unsigned SrcSize = Source.getSizeInBits(); 777 unsigned DestSize = Dest.getSizeInBits(); 778 779 return DestSize < SrcSize && DestSize % 32 == 0 ; 780 } 781 782 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 783 // Truncate is just accessing a subregister. 784 785 unsigned SrcSize = Source->getScalarSizeInBits(); 786 unsigned DestSize = Dest->getScalarSizeInBits(); 787 788 if (DestSize== 16 && Subtarget->has16BitInsts()) 789 return SrcSize >= 32; 790 791 return DestSize < SrcSize && DestSize % 32 == 0; 792 } 793 794 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 795 unsigned SrcSize = Src->getScalarSizeInBits(); 796 unsigned DestSize = Dest->getScalarSizeInBits(); 797 798 if (SrcSize == 16 && Subtarget->has16BitInsts()) 799 return DestSize >= 32; 800 801 return SrcSize == 32 && DestSize == 64; 802 } 803 804 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 805 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 806 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 807 // this will enable reducing 64-bit operations the 32-bit, which is always 808 // good. 809 810 if (Src == MVT::i16) 811 return Dest == MVT::i32 ||Dest == MVT::i64 ; 812 813 return Src == MVT::i32 && Dest == MVT::i64; 814 } 815 816 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 817 return isZExtFree(Val.getValueType(), VT2); 818 } 819 820 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 821 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 822 // limited number of native 64-bit operations. Shrinking an operation to fit 823 // in a single 32-bit register should always be helpful. As currently used, 824 // this is much less general than the name suggests, and is only used in 825 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 826 // not profitable, and may actually be harmful. 827 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 828 } 829 830 //===---------------------------------------------------------------------===// 831 // TargetLowering Callbacks 832 //===---------------------------------------------------------------------===// 833 834 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 835 bool IsVarArg) { 836 switch (CC) { 837 case CallingConv::AMDGPU_VS: 838 case CallingConv::AMDGPU_GS: 839 case CallingConv::AMDGPU_PS: 840 case CallingConv::AMDGPU_CS: 841 case CallingConv::AMDGPU_HS: 842 case CallingConv::AMDGPU_ES: 843 case CallingConv::AMDGPU_LS: 844 return CC_AMDGPU; 845 case CallingConv::C: 846 case CallingConv::Fast: 847 case CallingConv::Cold: 848 return CC_AMDGPU_Func; 849 case CallingConv::AMDGPU_KERNEL: 850 case CallingConv::SPIR_KERNEL: 851 default: 852 report_fatal_error("Unsupported calling convention for call"); 853 } 854 } 855 856 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 857 bool IsVarArg) { 858 switch (CC) { 859 case CallingConv::AMDGPU_KERNEL: 860 case CallingConv::SPIR_KERNEL: 861 llvm_unreachable("kernels should not be handled here"); 862 case CallingConv::AMDGPU_VS: 863 case CallingConv::AMDGPU_GS: 864 case CallingConv::AMDGPU_PS: 865 case CallingConv::AMDGPU_CS: 866 case CallingConv::AMDGPU_HS: 867 case CallingConv::AMDGPU_ES: 868 case CallingConv::AMDGPU_LS: 869 return RetCC_SI_Shader; 870 case CallingConv::C: 871 case CallingConv::Fast: 872 case CallingConv::Cold: 873 return RetCC_AMDGPU_Func; 874 default: 875 report_fatal_error("Unsupported calling convention."); 876 } 877 } 878 879 /// The SelectionDAGBuilder will automatically promote function arguments 880 /// with illegal types. However, this does not work for the AMDGPU targets 881 /// since the function arguments are stored in memory as these illegal types. 882 /// In order to handle this properly we need to get the original types sizes 883 /// from the LLVM IR Function and fixup the ISD:InputArg values before 884 /// passing them to AnalyzeFormalArguments() 885 886 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 887 /// input values across multiple registers. Each item in the Ins array 888 /// represents a single value that will be stored in registers. Ins[x].VT is 889 /// the value type of the value that will be stored in the register, so 890 /// whatever SDNode we lower the argument to needs to be this type. 891 /// 892 /// In order to correctly lower the arguments we need to know the size of each 893 /// argument. Since Ins[x].VT gives us the size of the register that will 894 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 895 /// for the orignal function argument so that we can deduce the correct memory 896 /// type to use for Ins[x]. In most cases the correct memory type will be 897 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 898 /// we have a kernel argument of type v8i8, this argument will be split into 899 /// 8 parts and each part will be represented by its own item in the Ins array. 900 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 901 /// the argument before it was split. From this, we deduce that the memory type 902 /// for each individual part is i8. We pass the memory type as LocVT to the 903 /// calling convention analysis function and the register type (Ins[x].VT) as 904 /// the ValVT. 905 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 906 CCState &State, 907 const SmallVectorImpl<ISD::InputArg> &Ins) const { 908 const MachineFunction &MF = State.getMachineFunction(); 909 const Function &Fn = MF.getFunction(); 910 LLVMContext &Ctx = Fn.getParent()->getContext(); 911 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 912 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 913 CallingConv::ID CC = Fn.getCallingConv(); 914 915 unsigned MaxAlign = 1; 916 uint64_t ExplicitArgOffset = 0; 917 const DataLayout &DL = Fn.getParent()->getDataLayout(); 918 919 unsigned InIndex = 0; 920 921 for (const Argument &Arg : Fn.args()) { 922 Type *BaseArgTy = Arg.getType(); 923 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 924 MaxAlign = std::max(Align, MaxAlign); 925 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 926 927 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 928 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 929 930 // We're basically throwing away everything passed into us and starting over 931 // to get accurate in-memory offsets. The "PartOffset" is completely useless 932 // to us as computed in Ins. 933 // 934 // We also need to figure out what type legalization is trying to do to get 935 // the correct memory offsets. 936 937 SmallVector<EVT, 16> ValueVTs; 938 SmallVector<uint64_t, 16> Offsets; 939 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 940 941 for (unsigned Value = 0, NumValues = ValueVTs.size(); 942 Value != NumValues; ++Value) { 943 uint64_t BasePartOffset = Offsets[Value]; 944 945 EVT ArgVT = ValueVTs[Value]; 946 EVT MemVT = ArgVT; 947 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 948 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 949 950 if (NumRegs == 1) { 951 // This argument is not split, so the IR type is the memory type. 952 if (ArgVT.isExtended()) { 953 // We have an extended type, like i24, so we should just use the 954 // register type. 955 MemVT = RegisterVT; 956 } else { 957 MemVT = ArgVT; 958 } 959 } else if (ArgVT.isVector() && RegisterVT.isVector() && 960 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 961 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 962 // We have a vector value which has been split into a vector with 963 // the same scalar type, but fewer elements. This should handle 964 // all the floating-point vector types. 965 MemVT = RegisterVT; 966 } else if (ArgVT.isVector() && 967 ArgVT.getVectorNumElements() == NumRegs) { 968 // This arg has been split so that each element is stored in a separate 969 // register. 970 MemVT = ArgVT.getScalarType(); 971 } else if (ArgVT.isExtended()) { 972 // We have an extended type, like i65. 973 MemVT = RegisterVT; 974 } else { 975 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 976 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 977 if (RegisterVT.isInteger()) { 978 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 979 } else if (RegisterVT.isVector()) { 980 assert(!RegisterVT.getScalarType().isFloatingPoint()); 981 unsigned NumElements = RegisterVT.getVectorNumElements(); 982 assert(MemoryBits % NumElements == 0); 983 // This vector type has been split into another vector type with 984 // a different elements size. 985 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 986 MemoryBits / NumElements); 987 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 988 } else { 989 llvm_unreachable("cannot deduce memory type."); 990 } 991 } 992 993 // Convert one element vectors to scalar. 994 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 995 MemVT = MemVT.getScalarType(); 996 997 // Round up vec3/vec5 argument. 998 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 999 assert(MemVT.getVectorNumElements() == 3 || 1000 MemVT.getVectorNumElements() == 5); 1001 MemVT = MemVT.getPow2VectorType(State.getContext()); 1002 } 1003 1004 unsigned PartOffset = 0; 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1007 BasePartOffset + PartOffset, 1008 MemVT.getSimpleVT(), 1009 CCValAssign::Full)); 1010 PartOffset += MemVT.getStoreSize(); 1011 } 1012 } 1013 } 1014 } 1015 1016 SDValue AMDGPUTargetLowering::LowerReturn( 1017 SDValue Chain, CallingConv::ID CallConv, 1018 bool isVarArg, 1019 const SmallVectorImpl<ISD::OutputArg> &Outs, 1020 const SmallVectorImpl<SDValue> &OutVals, 1021 const SDLoc &DL, SelectionDAG &DAG) const { 1022 // FIXME: Fails for r600 tests 1023 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1024 // "wave terminate should not have return values"); 1025 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1026 } 1027 1028 //===---------------------------------------------------------------------===// 1029 // Target specific lowering 1030 //===---------------------------------------------------------------------===// 1031 1032 /// Selects the correct CCAssignFn for a given CallingConvention value. 1033 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1034 bool IsVarArg) { 1035 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1036 } 1037 1038 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1039 bool IsVarArg) { 1040 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1041 } 1042 1043 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1044 SelectionDAG &DAG, 1045 MachineFrameInfo &MFI, 1046 int ClobberedFI) const { 1047 SmallVector<SDValue, 8> ArgChains; 1048 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1049 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1050 1051 // Include the original chain at the beginning of the list. When this is 1052 // used by target LowerCall hooks, this helps legalize find the 1053 // CALLSEQ_BEGIN node. 1054 ArgChains.push_back(Chain); 1055 1056 // Add a chain value for each stack argument corresponding 1057 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1058 UE = DAG.getEntryNode().getNode()->use_end(); 1059 U != UE; ++U) { 1060 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1061 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1062 if (FI->getIndex() < 0) { 1063 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1064 int64_t InLastByte = InFirstByte; 1065 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1066 1067 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1068 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1069 ArgChains.push_back(SDValue(L, 1)); 1070 } 1071 } 1072 } 1073 } 1074 1075 // Build a tokenfactor for all the chains. 1076 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1077 } 1078 1079 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1080 SmallVectorImpl<SDValue> &InVals, 1081 StringRef Reason) const { 1082 SDValue Callee = CLI.Callee; 1083 SelectionDAG &DAG = CLI.DAG; 1084 1085 const Function &Fn = DAG.getMachineFunction().getFunction(); 1086 1087 StringRef FuncName("<unknown>"); 1088 1089 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1090 FuncName = G->getSymbol(); 1091 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1092 FuncName = G->getGlobal()->getName(); 1093 1094 DiagnosticInfoUnsupported NoCalls( 1095 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1096 DAG.getContext()->diagnose(NoCalls); 1097 1098 if (!CLI.IsTailCall) { 1099 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1100 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1101 } 1102 1103 return DAG.getEntryNode(); 1104 } 1105 1106 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1107 SmallVectorImpl<SDValue> &InVals) const { 1108 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1109 } 1110 1111 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1112 SelectionDAG &DAG) const { 1113 const Function &Fn = DAG.getMachineFunction().getFunction(); 1114 1115 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1116 SDLoc(Op).getDebugLoc()); 1117 DAG.getContext()->diagnose(NoDynamicAlloca); 1118 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1119 return DAG.getMergeValues(Ops, SDLoc()); 1120 } 1121 1122 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1123 SelectionDAG &DAG) const { 1124 switch (Op.getOpcode()) { 1125 default: 1126 Op->print(errs(), &DAG); 1127 llvm_unreachable("Custom lowering code for this" 1128 "instruction is not implemented yet!"); 1129 break; 1130 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1131 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1132 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1133 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1134 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1135 case ISD::FREM: return LowerFREM(Op, DAG); 1136 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1137 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1138 case ISD::FRINT: return LowerFRINT(Op, DAG); 1139 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1140 case ISD::FROUND: return LowerFROUND(Op, DAG); 1141 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1142 case ISD::FLOG: 1143 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1144 case ISD::FLOG10: 1145 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1146 case ISD::FEXP: 1147 return lowerFEXP(Op, DAG); 1148 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1149 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1150 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1151 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1152 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1153 case ISD::CTTZ: 1154 case ISD::CTTZ_ZERO_UNDEF: 1155 case ISD::CTLZ: 1156 case ISD::CTLZ_ZERO_UNDEF: 1157 return LowerCTLZ_CTTZ(Op, DAG); 1158 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1159 } 1160 return Op; 1161 } 1162 1163 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1164 SmallVectorImpl<SDValue> &Results, 1165 SelectionDAG &DAG) const { 1166 switch (N->getOpcode()) { 1167 case ISD::SIGN_EXTEND_INREG: 1168 // Different parts of legalization seem to interpret which type of 1169 // sign_extend_inreg is the one to check for custom lowering. The extended 1170 // from type is what really matters, but some places check for custom 1171 // lowering of the result type. This results in trying to use 1172 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1173 // nothing here and let the illegal result integer be handled normally. 1174 return; 1175 default: 1176 return; 1177 } 1178 } 1179 1180 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1181 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1182 if (!GVar || !GVar->hasInitializer()) 1183 return false; 1184 1185 return !isa<UndefValue>(GVar->getInitializer()); 1186 } 1187 1188 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1189 SDValue Op, 1190 SelectionDAG &DAG) const { 1191 1192 const DataLayout &DL = DAG.getDataLayout(); 1193 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1194 const GlobalValue *GV = G->getGlobal(); 1195 1196 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1197 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1198 if (!MFI->isEntryFunction()) { 1199 const Function &Fn = DAG.getMachineFunction().getFunction(); 1200 DiagnosticInfoUnsupported BadLDSDecl( 1201 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1202 DAG.getContext()->diagnose(BadLDSDecl); 1203 } 1204 1205 // XXX: What does the value of G->getOffset() mean? 1206 assert(G->getOffset() == 0 && 1207 "Do not know what to do with an non-zero offset"); 1208 1209 // TODO: We could emit code to handle the initialization somewhere. 1210 if (!hasDefinedInitializer(GV)) { 1211 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1212 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1213 } 1214 } 1215 1216 const Function &Fn = DAG.getMachineFunction().getFunction(); 1217 DiagnosticInfoUnsupported BadInit( 1218 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1219 DAG.getContext()->diagnose(BadInit); 1220 return SDValue(); 1221 } 1222 1223 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1224 SelectionDAG &DAG) const { 1225 SmallVector<SDValue, 8> Args; 1226 1227 EVT VT = Op.getValueType(); 1228 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1229 SDLoc SL(Op); 1230 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1231 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1232 1233 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1234 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1235 } 1236 1237 for (const SDUse &U : Op->ops()) 1238 DAG.ExtractVectorElements(U.get(), Args); 1239 1240 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1241 } 1242 1243 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1244 SelectionDAG &DAG) const { 1245 1246 SmallVector<SDValue, 8> Args; 1247 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1248 EVT VT = Op.getValueType(); 1249 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1250 VT.getVectorNumElements()); 1251 1252 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1253 } 1254 1255 /// Generate Min/Max node 1256 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1257 SDValue LHS, SDValue RHS, 1258 SDValue True, SDValue False, 1259 SDValue CC, 1260 DAGCombinerInfo &DCI) const { 1261 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1262 return SDValue(); 1263 1264 SelectionDAG &DAG = DCI.DAG; 1265 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1266 switch (CCOpcode) { 1267 case ISD::SETOEQ: 1268 case ISD::SETONE: 1269 case ISD::SETUNE: 1270 case ISD::SETNE: 1271 case ISD::SETUEQ: 1272 case ISD::SETEQ: 1273 case ISD::SETFALSE: 1274 case ISD::SETFALSE2: 1275 case ISD::SETTRUE: 1276 case ISD::SETTRUE2: 1277 case ISD::SETUO: 1278 case ISD::SETO: 1279 break; 1280 case ISD::SETULE: 1281 case ISD::SETULT: { 1282 if (LHS == True) 1283 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1284 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1285 } 1286 case ISD::SETOLE: 1287 case ISD::SETOLT: 1288 case ISD::SETLE: 1289 case ISD::SETLT: { 1290 // Ordered. Assume ordered for undefined. 1291 1292 // Only do this after legalization to avoid interfering with other combines 1293 // which might occur. 1294 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1295 !DCI.isCalledByLegalizer()) 1296 return SDValue(); 1297 1298 // We need to permute the operands to get the correct NaN behavior. The 1299 // selected operand is the second one based on the failing compare with NaN, 1300 // so permute it based on the compare type the hardware uses. 1301 if (LHS == True) 1302 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1303 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1304 } 1305 case ISD::SETUGE: 1306 case ISD::SETUGT: { 1307 if (LHS == True) 1308 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1309 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1310 } 1311 case ISD::SETGT: 1312 case ISD::SETGE: 1313 case ISD::SETOGE: 1314 case ISD::SETOGT: { 1315 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1316 !DCI.isCalledByLegalizer()) 1317 return SDValue(); 1318 1319 if (LHS == True) 1320 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1321 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1322 } 1323 case ISD::SETCC_INVALID: 1324 llvm_unreachable("Invalid setcc condcode!"); 1325 } 1326 return SDValue(); 1327 } 1328 1329 std::pair<SDValue, SDValue> 1330 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1331 SDLoc SL(Op); 1332 1333 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1334 1335 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1336 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1337 1338 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1339 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1340 1341 return std::make_pair(Lo, Hi); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1345 SDLoc SL(Op); 1346 1347 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1348 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1349 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1350 } 1351 1352 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1353 SDLoc SL(Op); 1354 1355 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1356 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1357 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1358 } 1359 1360 // Split a vector type into two parts. The first part is a power of two vector. 1361 // The second part is whatever is left over, and is a scalar if it would 1362 // otherwise be a 1-vector. 1363 std::pair<EVT, EVT> 1364 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1365 EVT LoVT, HiVT; 1366 EVT EltVT = VT.getVectorElementType(); 1367 unsigned NumElts = VT.getVectorNumElements(); 1368 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1369 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1370 HiVT = NumElts - LoNumElts == 1 1371 ? EltVT 1372 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1373 return std::make_pair(LoVT, HiVT); 1374 } 1375 1376 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1377 // scalar. 1378 std::pair<SDValue, SDValue> 1379 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1380 const EVT &LoVT, const EVT &HiVT, 1381 SelectionDAG &DAG) const { 1382 assert(LoVT.getVectorNumElements() + 1383 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1384 N.getValueType().getVectorNumElements() && 1385 "More vector elements requested than available!"); 1386 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1387 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1388 DAG.getConstant(0, DL, IdxTy)); 1389 SDValue Hi = DAG.getNode( 1390 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1391 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1392 return std::make_pair(Lo, Hi); 1393 } 1394 1395 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1396 SelectionDAG &DAG) const { 1397 LoadSDNode *Load = cast<LoadSDNode>(Op); 1398 EVT VT = Op.getValueType(); 1399 1400 1401 // If this is a 2 element vector, we really want to scalarize and not create 1402 // weird 1 element vectors. 1403 if (VT.getVectorNumElements() == 2) 1404 return scalarizeVectorLoad(Load, DAG); 1405 1406 SDValue BasePtr = Load->getBasePtr(); 1407 EVT MemVT = Load->getMemoryVT(); 1408 SDLoc SL(Op); 1409 1410 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1411 1412 EVT LoVT, HiVT; 1413 EVT LoMemVT, HiMemVT; 1414 SDValue Lo, Hi; 1415 1416 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1417 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1418 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1419 1420 unsigned Size = LoMemVT.getStoreSize(); 1421 unsigned BaseAlign = Load->getAlignment(); 1422 unsigned HiAlign = MinAlign(BaseAlign, Size); 1423 1424 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1425 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1426 BaseAlign, Load->getMemOperand()->getFlags()); 1427 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1428 SDValue HiLoad = 1429 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1430 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1431 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1432 1433 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1434 SDValue Join; 1435 if (LoVT == HiVT) { 1436 // This is the case that the vector is power of two so was evenly split. 1437 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1438 } else { 1439 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1440 DAG.getConstant(0, SL, IdxTy)); 1441 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1442 : ISD::INSERT_VECTOR_ELT, 1443 SL, VT, Join, HiLoad, 1444 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1445 } 1446 1447 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1448 LoLoad.getValue(1), HiLoad.getValue(1))}; 1449 1450 return DAG.getMergeValues(Ops, SL); 1451 } 1452 1453 // Widen a vector load from vec3 to vec4. 1454 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1455 SelectionDAG &DAG) const { 1456 LoadSDNode *Load = cast<LoadSDNode>(Op); 1457 EVT VT = Op.getValueType(); 1458 assert(VT.getVectorNumElements() == 3); 1459 SDValue BasePtr = Load->getBasePtr(); 1460 EVT MemVT = Load->getMemoryVT(); 1461 SDLoc SL(Op); 1462 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1463 unsigned BaseAlign = Load->getAlignment(); 1464 1465 EVT WideVT = 1466 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1467 EVT WideMemVT = 1468 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1469 SDValue WideLoad = DAG.getExtLoad( 1470 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1471 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1472 return DAG.getMergeValues( 1473 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1474 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1475 WideLoad.getValue(1)}, 1476 SL); 1477 } 1478 1479 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1480 SelectionDAG &DAG) const { 1481 StoreSDNode *Store = cast<StoreSDNode>(Op); 1482 SDValue Val = Store->getValue(); 1483 EVT VT = Val.getValueType(); 1484 1485 // If this is a 2 element vector, we really want to scalarize and not create 1486 // weird 1 element vectors. 1487 if (VT.getVectorNumElements() == 2) 1488 return scalarizeVectorStore(Store, DAG); 1489 1490 EVT MemVT = Store->getMemoryVT(); 1491 SDValue Chain = Store->getChain(); 1492 SDValue BasePtr = Store->getBasePtr(); 1493 SDLoc SL(Op); 1494 1495 EVT LoVT, HiVT; 1496 EVT LoMemVT, HiMemVT; 1497 SDValue Lo, Hi; 1498 1499 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1500 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1501 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1502 1503 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1504 1505 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1506 unsigned BaseAlign = Store->getAlignment(); 1507 unsigned Size = LoMemVT.getStoreSize(); 1508 unsigned HiAlign = MinAlign(BaseAlign, Size); 1509 1510 SDValue LoStore = 1511 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1512 Store->getMemOperand()->getFlags()); 1513 SDValue HiStore = 1514 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1515 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1516 1517 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1518 } 1519 1520 // This is a shortcut for integer division because we have fast i32<->f32 1521 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1522 // float is enough to accurately represent up to a 24-bit signed integer. 1523 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1524 bool Sign) const { 1525 SDLoc DL(Op); 1526 EVT VT = Op.getValueType(); 1527 SDValue LHS = Op.getOperand(0); 1528 SDValue RHS = Op.getOperand(1); 1529 MVT IntVT = MVT::i32; 1530 MVT FltVT = MVT::f32; 1531 1532 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1533 if (LHSSignBits < 9) 1534 return SDValue(); 1535 1536 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1537 if (RHSSignBits < 9) 1538 return SDValue(); 1539 1540 unsigned BitSize = VT.getSizeInBits(); 1541 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1542 unsigned DivBits = BitSize - SignBits; 1543 if (Sign) 1544 ++DivBits; 1545 1546 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1547 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1548 1549 SDValue jq = DAG.getConstant(1, DL, IntVT); 1550 1551 if (Sign) { 1552 // char|short jq = ia ^ ib; 1553 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1554 1555 // jq = jq >> (bitsize - 2) 1556 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1557 DAG.getConstant(BitSize - 2, DL, VT)); 1558 1559 // jq = jq | 0x1 1560 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1561 } 1562 1563 // int ia = (int)LHS; 1564 SDValue ia = LHS; 1565 1566 // int ib, (int)RHS; 1567 SDValue ib = RHS; 1568 1569 // float fa = (float)ia; 1570 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1571 1572 // float fb = (float)ib; 1573 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1574 1575 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1576 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1577 1578 // fq = trunc(fq); 1579 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1580 1581 // float fqneg = -fq; 1582 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1583 1584 MachineFunction &MF = DAG.getMachineFunction(); 1585 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1586 1587 // float fr = mad(fqneg, fb, fa); 1588 unsigned OpCode = MFI->getMode().FP32Denormals ? 1589 (unsigned)AMDGPUISD::FMAD_FTZ : 1590 (unsigned)ISD::FMAD; 1591 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1592 1593 // int iq = (int)fq; 1594 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1595 1596 // fr = fabs(fr); 1597 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1598 1599 // fb = fabs(fb); 1600 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1601 1602 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1603 1604 // int cv = fr >= fb; 1605 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1606 1607 // jq = (cv ? jq : 0); 1608 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1609 1610 // dst = iq + jq; 1611 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1612 1613 // Rem needs compensation, it's easier to recompute it 1614 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1615 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1616 1617 // Truncate to number of bits this divide really is. 1618 if (Sign) { 1619 SDValue InRegSize 1620 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1621 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1622 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1623 } else { 1624 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1625 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1626 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1627 } 1628 1629 return DAG.getMergeValues({ Div, Rem }, DL); 1630 } 1631 1632 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1633 SelectionDAG &DAG, 1634 SmallVectorImpl<SDValue> &Results) const { 1635 SDLoc DL(Op); 1636 EVT VT = Op.getValueType(); 1637 1638 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1639 1640 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1641 1642 SDValue One = DAG.getConstant(1, DL, HalfVT); 1643 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1644 1645 //HiLo split 1646 SDValue LHS = Op.getOperand(0); 1647 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1648 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1649 1650 SDValue RHS = Op.getOperand(1); 1651 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1652 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1653 1654 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1655 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1656 1657 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1658 LHS_Lo, RHS_Lo); 1659 1660 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1661 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1662 1663 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1664 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1665 return; 1666 } 1667 1668 if (isTypeLegal(MVT::i64)) { 1669 MachineFunction &MF = DAG.getMachineFunction(); 1670 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1671 1672 // Compute denominator reciprocal. 1673 unsigned FMAD = MFI->getMode().FP32Denormals ? 1674 (unsigned)AMDGPUISD::FMAD_FTZ : 1675 (unsigned)ISD::FMAD; 1676 1677 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1678 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1679 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1680 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1681 Cvt_Lo); 1682 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1683 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1684 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1685 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1686 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1687 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1688 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1689 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1690 Mul1); 1691 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1692 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1693 SDValue Rcp64 = DAG.getBitcast(VT, 1694 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1695 1696 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1697 SDValue One64 = DAG.getConstant(1, DL, VT); 1698 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1699 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1700 1701 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1702 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1703 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1704 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1705 Zero); 1706 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1707 One); 1708 1709 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1710 Mulhi1_Lo, Zero1); 1711 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1712 Mulhi1_Hi, Add1_Lo.getValue(1)); 1713 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1714 SDValue Add1 = DAG.getBitcast(VT, 1715 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1716 1717 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1718 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1719 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1720 Zero); 1721 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1722 One); 1723 1724 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1725 Mulhi2_Lo, Zero1); 1726 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1727 Mulhi2_Hi, Add1_Lo.getValue(1)); 1728 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1729 Zero, Add2_Lo.getValue(1)); 1730 SDValue Add2 = DAG.getBitcast(VT, 1731 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1732 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1733 1734 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1735 1736 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1737 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1738 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1739 Mul3_Lo, Zero1); 1740 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1741 Mul3_Hi, Sub1_Lo.getValue(1)); 1742 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1743 SDValue Sub1 = DAG.getBitcast(VT, 1744 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1745 1746 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1747 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1748 ISD::SETUGE); 1749 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1750 ISD::SETUGE); 1751 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1752 1753 // TODO: Here and below portions of the code can be enclosed into if/endif. 1754 // Currently control flow is unconditional and we have 4 selects after 1755 // potential endif to substitute PHIs. 1756 1757 // if C3 != 0 ... 1758 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1759 RHS_Lo, Zero1); 1760 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1761 RHS_Hi, Sub1_Lo.getValue(1)); 1762 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1763 Zero, Sub2_Lo.getValue(1)); 1764 SDValue Sub2 = DAG.getBitcast(VT, 1765 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1766 1767 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1768 1769 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1770 ISD::SETUGE); 1771 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1772 ISD::SETUGE); 1773 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1774 1775 // if (C6 != 0) 1776 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1777 1778 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1779 RHS_Lo, Zero1); 1780 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1781 RHS_Hi, Sub2_Lo.getValue(1)); 1782 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1783 Zero, Sub3_Lo.getValue(1)); 1784 SDValue Sub3 = DAG.getBitcast(VT, 1785 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1786 1787 // endif C6 1788 // endif C3 1789 1790 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1791 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1792 1793 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1794 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1795 1796 Results.push_back(Div); 1797 Results.push_back(Rem); 1798 1799 return; 1800 } 1801 1802 // r600 expandion. 1803 // Get Speculative values 1804 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1805 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1806 1807 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1808 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1809 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1810 1811 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1812 SDValue DIV_Lo = Zero; 1813 1814 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1815 1816 for (unsigned i = 0; i < halfBitWidth; ++i) { 1817 const unsigned bitPos = halfBitWidth - i - 1; 1818 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1819 // Get value of high bit 1820 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1821 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1822 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1823 1824 // Shift 1825 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1826 // Add LHS high bit 1827 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1828 1829 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1830 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1831 1832 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1833 1834 // Update REM 1835 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1836 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1837 } 1838 1839 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1840 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1841 Results.push_back(DIV); 1842 Results.push_back(REM); 1843 } 1844 1845 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1846 SelectionDAG &DAG) const { 1847 SDLoc DL(Op); 1848 EVT VT = Op.getValueType(); 1849 1850 if (VT == MVT::i64) { 1851 SmallVector<SDValue, 2> Results; 1852 LowerUDIVREM64(Op, DAG, Results); 1853 return DAG.getMergeValues(Results, DL); 1854 } 1855 1856 if (VT == MVT::i32) { 1857 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1858 return Res; 1859 } 1860 1861 SDValue Num = Op.getOperand(0); 1862 SDValue Den = Op.getOperand(1); 1863 1864 // RCP = URECIP(Den) = 2^32 / Den + e 1865 // e is rounding error. 1866 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1867 1868 // RCP_LO = mul(RCP, Den) */ 1869 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1870 1871 // RCP_HI = mulhu (RCP, Den) */ 1872 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1873 1874 // NEG_RCP_LO = -RCP_LO 1875 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1876 RCP_LO); 1877 1878 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1879 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1880 NEG_RCP_LO, RCP_LO, 1881 ISD::SETEQ); 1882 // Calculate the rounding error from the URECIP instruction 1883 // E = mulhu(ABS_RCP_LO, RCP) 1884 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1885 1886 // RCP_A_E = RCP + E 1887 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1888 1889 // RCP_S_E = RCP - E 1890 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1891 1892 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1893 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1894 RCP_A_E, RCP_S_E, 1895 ISD::SETEQ); 1896 // Quotient = mulhu(Tmp0, Num) 1897 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1898 1899 // Num_S_Remainder = Quotient * Den 1900 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1901 1902 // Remainder = Num - Num_S_Remainder 1903 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1904 1905 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1906 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1907 DAG.getConstant(-1, DL, VT), 1908 DAG.getConstant(0, DL, VT), 1909 ISD::SETUGE); 1910 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1911 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1912 Num_S_Remainder, 1913 DAG.getConstant(-1, DL, VT), 1914 DAG.getConstant(0, DL, VT), 1915 ISD::SETUGE); 1916 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1917 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1918 Remainder_GE_Zero); 1919 1920 // Calculate Division result: 1921 1922 // Quotient_A_One = Quotient + 1 1923 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1924 DAG.getConstant(1, DL, VT)); 1925 1926 // Quotient_S_One = Quotient - 1 1927 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1928 DAG.getConstant(1, DL, VT)); 1929 1930 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1931 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1932 Quotient, Quotient_A_One, ISD::SETEQ); 1933 1934 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1935 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1936 Quotient_S_One, Div, ISD::SETEQ); 1937 1938 // Calculate Rem result: 1939 1940 // Remainder_S_Den = Remainder - Den 1941 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1942 1943 // Remainder_A_Den = Remainder + Den 1944 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1945 1946 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1947 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1948 Remainder, Remainder_S_Den, ISD::SETEQ); 1949 1950 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1951 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1952 Remainder_A_Den, Rem, ISD::SETEQ); 1953 SDValue Ops[2] = { 1954 Div, 1955 Rem 1956 }; 1957 return DAG.getMergeValues(Ops, DL); 1958 } 1959 1960 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1961 SelectionDAG &DAG) const { 1962 SDLoc DL(Op); 1963 EVT VT = Op.getValueType(); 1964 1965 SDValue LHS = Op.getOperand(0); 1966 SDValue RHS = Op.getOperand(1); 1967 1968 SDValue Zero = DAG.getConstant(0, DL, VT); 1969 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1970 1971 if (VT == MVT::i32) { 1972 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1973 return Res; 1974 } 1975 1976 if (VT == MVT::i64 && 1977 DAG.ComputeNumSignBits(LHS) > 32 && 1978 DAG.ComputeNumSignBits(RHS) > 32) { 1979 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1980 1981 //HiLo split 1982 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1983 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1984 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1985 LHS_Lo, RHS_Lo); 1986 SDValue Res[2] = { 1987 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1988 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1989 }; 1990 return DAG.getMergeValues(Res, DL); 1991 } 1992 1993 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1994 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1995 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1996 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1997 1998 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1999 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2000 2001 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2002 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2003 2004 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2005 SDValue Rem = Div.getValue(1); 2006 2007 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2008 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2009 2010 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2011 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2012 2013 SDValue Res[2] = { 2014 Div, 2015 Rem 2016 }; 2017 return DAG.getMergeValues(Res, DL); 2018 } 2019 2020 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2021 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2022 SDLoc SL(Op); 2023 EVT VT = Op.getValueType(); 2024 SDValue X = Op.getOperand(0); 2025 SDValue Y = Op.getOperand(1); 2026 2027 // TODO: Should this propagate fast-math-flags? 2028 2029 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2030 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2031 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2032 2033 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2034 } 2035 2036 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2037 SDLoc SL(Op); 2038 SDValue Src = Op.getOperand(0); 2039 2040 // result = trunc(src) 2041 // if (src > 0.0 && src != result) 2042 // result += 1.0 2043 2044 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2045 2046 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2047 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2048 2049 EVT SetCCVT = 2050 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2051 2052 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2053 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2054 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2055 2056 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2057 // TODO: Should this propagate fast-math-flags? 2058 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2059 } 2060 2061 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2062 SelectionDAG &DAG) { 2063 const unsigned FractBits = 52; 2064 const unsigned ExpBits = 11; 2065 2066 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2067 Hi, 2068 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2069 DAG.getConstant(ExpBits, SL, MVT::i32)); 2070 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2071 DAG.getConstant(1023, SL, MVT::i32)); 2072 2073 return Exp; 2074 } 2075 2076 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2077 SDLoc SL(Op); 2078 SDValue Src = Op.getOperand(0); 2079 2080 assert(Op.getValueType() == MVT::f64); 2081 2082 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2083 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2084 2085 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2086 2087 // Extract the upper half, since this is where we will find the sign and 2088 // exponent. 2089 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2090 2091 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2092 2093 const unsigned FractBits = 52; 2094 2095 // Extract the sign bit. 2096 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2097 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2098 2099 // Extend back to 64-bits. 2100 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2101 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2102 2103 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2104 const SDValue FractMask 2105 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2106 2107 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2108 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2109 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2110 2111 EVT SetCCVT = 2112 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2113 2114 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2115 2116 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2117 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2118 2119 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2120 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2121 2122 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2123 } 2124 2125 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2126 SDLoc SL(Op); 2127 SDValue Src = Op.getOperand(0); 2128 2129 assert(Op.getValueType() == MVT::f64); 2130 2131 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2132 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2133 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2134 2135 // TODO: Should this propagate fast-math-flags? 2136 2137 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2138 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2139 2140 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2141 2142 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2143 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2144 2145 EVT SetCCVT = 2146 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2147 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2148 2149 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2150 } 2151 2152 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2153 // FNEARBYINT and FRINT are the same, except in their handling of FP 2154 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2155 // rint, so just treat them as equivalent. 2156 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2157 } 2158 2159 // XXX - May require not supporting f32 denormals? 2160 2161 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2162 // compare and vselect end up producing worse code than scalarizing the whole 2163 // operation. 2164 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2165 SDLoc SL(Op); 2166 SDValue X = Op.getOperand(0); 2167 EVT VT = Op.getValueType(); 2168 2169 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2170 2171 // TODO: Should this propagate fast-math-flags? 2172 2173 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2174 2175 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2176 2177 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2178 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2179 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2180 2181 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2182 2183 EVT SetCCVT = 2184 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2185 2186 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2187 2188 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2189 2190 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2191 } 2192 2193 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2194 SDLoc SL(Op); 2195 SDValue X = Op.getOperand(0); 2196 2197 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2198 2199 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2200 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2201 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2202 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2203 EVT SetCCVT = 2204 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2205 2206 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2207 2208 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2209 2210 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2211 2212 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2213 MVT::i64); 2214 2215 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2216 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2217 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2218 MVT::i64), 2219 Exp); 2220 2221 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2222 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2223 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2224 ISD::SETNE); 2225 2226 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2227 D, DAG.getConstant(0, SL, MVT::i64)); 2228 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2229 2230 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2231 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2232 2233 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2234 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2235 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2236 2237 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2238 ExpEqNegOne, 2239 DAG.getConstantFP(1.0, SL, MVT::f64), 2240 DAG.getConstantFP(0.0, SL, MVT::f64)); 2241 2242 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2243 2244 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2245 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2246 2247 return K; 2248 } 2249 2250 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2251 EVT VT = Op.getValueType(); 2252 2253 if (VT == MVT::f32 || VT == MVT::f16) 2254 return LowerFROUND32_16(Op, DAG); 2255 2256 if (VT == MVT::f64) 2257 return LowerFROUND64(Op, DAG); 2258 2259 llvm_unreachable("unhandled type"); 2260 } 2261 2262 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2263 SDLoc SL(Op); 2264 SDValue Src = Op.getOperand(0); 2265 2266 // result = trunc(src); 2267 // if (src < 0.0 && src != result) 2268 // result += -1.0. 2269 2270 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2271 2272 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2273 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2274 2275 EVT SetCCVT = 2276 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2277 2278 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2279 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2280 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2281 2282 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2283 // TODO: Should this propagate fast-math-flags? 2284 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2285 } 2286 2287 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2288 double Log2BaseInverted) const { 2289 EVT VT = Op.getValueType(); 2290 2291 SDLoc SL(Op); 2292 SDValue Operand = Op.getOperand(0); 2293 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2294 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2295 2296 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2297 } 2298 2299 // exp2(M_LOG2E_F * f); 2300 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2301 EVT VT = Op.getValueType(); 2302 SDLoc SL(Op); 2303 SDValue Src = Op.getOperand(0); 2304 2305 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2306 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2307 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2308 } 2309 2310 static bool isCtlzOpc(unsigned Opc) { 2311 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2312 } 2313 2314 static bool isCttzOpc(unsigned Opc) { 2315 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2316 } 2317 2318 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2319 SDLoc SL(Op); 2320 SDValue Src = Op.getOperand(0); 2321 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2322 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2323 2324 unsigned ISDOpc, NewOpc; 2325 if (isCtlzOpc(Op.getOpcode())) { 2326 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2327 NewOpc = AMDGPUISD::FFBH_U32; 2328 } else if (isCttzOpc(Op.getOpcode())) { 2329 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2330 NewOpc = AMDGPUISD::FFBL_B32; 2331 } else 2332 llvm_unreachable("Unexpected OPCode!!!"); 2333 2334 2335 if (ZeroUndef && Src.getValueType() == MVT::i32) 2336 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2337 2338 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2339 2340 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2341 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2342 2343 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2344 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2345 2346 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2347 *DAG.getContext(), MVT::i32); 2348 2349 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2350 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2351 2352 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2353 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2354 2355 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2356 SDValue Add, NewOpr; 2357 if (isCtlzOpc(Op.getOpcode())) { 2358 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2359 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2360 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2361 } else { 2362 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2363 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2364 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2365 } 2366 2367 if (!ZeroUndef) { 2368 // Test if the full 64-bit input is zero. 2369 2370 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2371 // which we probably don't want. 2372 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2373 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2374 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2375 2376 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2377 // with the same cycles, otherwise it is slower. 2378 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2379 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2380 2381 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2382 2383 // The instruction returns -1 for 0 input, but the defined intrinsic 2384 // behavior is to return the number of bits. 2385 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2386 SrcIsZero, Bits32, NewOpr); 2387 } 2388 2389 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2390 } 2391 2392 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2393 bool Signed) const { 2394 // Unsigned 2395 // cul2f(ulong u) 2396 //{ 2397 // uint lz = clz(u); 2398 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2399 // u = (u << lz) & 0x7fffffffffffffffUL; 2400 // ulong t = u & 0xffffffffffUL; 2401 // uint v = (e << 23) | (uint)(u >> 40); 2402 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2403 // return as_float(v + r); 2404 //} 2405 // Signed 2406 // cl2f(long l) 2407 //{ 2408 // long s = l >> 63; 2409 // float r = cul2f((l + s) ^ s); 2410 // return s ? -r : r; 2411 //} 2412 2413 SDLoc SL(Op); 2414 SDValue Src = Op.getOperand(0); 2415 SDValue L = Src; 2416 2417 SDValue S; 2418 if (Signed) { 2419 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2420 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2421 2422 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2423 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2424 } 2425 2426 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2427 *DAG.getContext(), MVT::f32); 2428 2429 2430 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2431 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2432 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2433 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2434 2435 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2436 SDValue E = DAG.getSelect(SL, MVT::i32, 2437 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2438 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2439 ZeroI32); 2440 2441 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2442 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2443 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2444 2445 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2446 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2447 2448 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2449 U, DAG.getConstant(40, SL, MVT::i64)); 2450 2451 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2452 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2453 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2454 2455 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2456 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2457 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2458 2459 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2460 2461 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2462 2463 SDValue R = DAG.getSelect(SL, MVT::i32, 2464 RCmp, 2465 One, 2466 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2467 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2468 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2469 2470 if (!Signed) 2471 return R; 2472 2473 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2474 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2475 } 2476 2477 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2478 bool Signed) const { 2479 SDLoc SL(Op); 2480 SDValue Src = Op.getOperand(0); 2481 2482 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2483 2484 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2485 DAG.getConstant(0, SL, MVT::i32)); 2486 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2487 DAG.getConstant(1, SL, MVT::i32)); 2488 2489 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2490 SL, MVT::f64, Hi); 2491 2492 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2493 2494 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2495 DAG.getConstant(32, SL, MVT::i32)); 2496 // TODO: Should this propagate fast-math-flags? 2497 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2498 } 2499 2500 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2501 SelectionDAG &DAG) const { 2502 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2503 "operation should be legal"); 2504 2505 // TODO: Factor out code common with LowerSINT_TO_FP. 2506 2507 EVT DestVT = Op.getValueType(); 2508 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2509 SDLoc DL(Op); 2510 SDValue Src = Op.getOperand(0); 2511 2512 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2513 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2514 SDValue FPRound = 2515 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2516 2517 return FPRound; 2518 } 2519 2520 if (DestVT == MVT::f32) 2521 return LowerINT_TO_FP32(Op, DAG, false); 2522 2523 assert(DestVT == MVT::f64); 2524 return LowerINT_TO_FP64(Op, DAG, false); 2525 } 2526 2527 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2528 SelectionDAG &DAG) const { 2529 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2530 "operation should be legal"); 2531 2532 // TODO: Factor out code common with LowerUINT_TO_FP. 2533 2534 EVT DestVT = Op.getValueType(); 2535 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2536 SDLoc DL(Op); 2537 SDValue Src = Op.getOperand(0); 2538 2539 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2540 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2541 SDValue FPRound = 2542 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2543 2544 return FPRound; 2545 } 2546 2547 if (DestVT == MVT::f32) 2548 return LowerINT_TO_FP32(Op, DAG, true); 2549 2550 assert(DestVT == MVT::f64); 2551 return LowerINT_TO_FP64(Op, DAG, true); 2552 } 2553 2554 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2555 bool Signed) const { 2556 SDLoc SL(Op); 2557 2558 SDValue Src = Op.getOperand(0); 2559 2560 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2561 2562 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2563 MVT::f64); 2564 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2565 MVT::f64); 2566 // TODO: Should this propagate fast-math-flags? 2567 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2568 2569 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2570 2571 2572 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2573 2574 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2575 MVT::i32, FloorMul); 2576 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2577 2578 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2579 2580 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2581 } 2582 2583 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2584 SDLoc DL(Op); 2585 SDValue N0 = Op.getOperand(0); 2586 2587 // Convert to target node to get known bits 2588 if (N0.getValueType() == MVT::f32) 2589 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2590 2591 if (getTargetMachine().Options.UnsafeFPMath) { 2592 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2593 return SDValue(); 2594 } 2595 2596 assert(N0.getSimpleValueType() == MVT::f64); 2597 2598 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2599 const unsigned ExpMask = 0x7ff; 2600 const unsigned ExpBiasf64 = 1023; 2601 const unsigned ExpBiasf16 = 15; 2602 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2603 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2604 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2605 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2606 DAG.getConstant(32, DL, MVT::i64)); 2607 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2608 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2609 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2610 DAG.getConstant(20, DL, MVT::i64)); 2611 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2612 DAG.getConstant(ExpMask, DL, MVT::i32)); 2613 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2614 // add the f16 bias (15) to get the biased exponent for the f16 format. 2615 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2616 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2617 2618 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2619 DAG.getConstant(8, DL, MVT::i32)); 2620 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2621 DAG.getConstant(0xffe, DL, MVT::i32)); 2622 2623 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2624 DAG.getConstant(0x1ff, DL, MVT::i32)); 2625 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2626 2627 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2628 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2629 2630 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2631 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2632 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2633 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2634 2635 // N = M | (E << 12); 2636 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2637 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2638 DAG.getConstant(12, DL, MVT::i32))); 2639 2640 // B = clamp(1-E, 0, 13); 2641 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2642 One, E); 2643 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2644 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2645 DAG.getConstant(13, DL, MVT::i32)); 2646 2647 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2648 DAG.getConstant(0x1000, DL, MVT::i32)); 2649 2650 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2651 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2652 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2653 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2654 2655 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2656 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2657 DAG.getConstant(0x7, DL, MVT::i32)); 2658 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2659 DAG.getConstant(2, DL, MVT::i32)); 2660 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2661 One, Zero, ISD::SETEQ); 2662 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2663 One, Zero, ISD::SETGT); 2664 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2665 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2666 2667 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2668 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2669 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2670 I, V, ISD::SETEQ); 2671 2672 // Extract the sign bit. 2673 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2674 DAG.getConstant(16, DL, MVT::i32)); 2675 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2676 DAG.getConstant(0x8000, DL, MVT::i32)); 2677 2678 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2679 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2680 } 2681 2682 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2683 SelectionDAG &DAG) const { 2684 SDValue Src = Op.getOperand(0); 2685 2686 // TODO: Factor out code common with LowerFP_TO_UINT. 2687 2688 EVT SrcVT = Src.getValueType(); 2689 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2690 SDLoc DL(Op); 2691 2692 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2693 SDValue FpToInt32 = 2694 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2695 2696 return FpToInt32; 2697 } 2698 2699 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2700 return LowerFP64_TO_INT(Op, DAG, true); 2701 2702 return SDValue(); 2703 } 2704 2705 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2706 SelectionDAG &DAG) const { 2707 SDValue Src = Op.getOperand(0); 2708 2709 // TODO: Factor out code common with LowerFP_TO_SINT. 2710 2711 EVT SrcVT = Src.getValueType(); 2712 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2713 SDLoc DL(Op); 2714 2715 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2716 SDValue FpToInt32 = 2717 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2718 2719 return FpToInt32; 2720 } 2721 2722 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2723 return LowerFP64_TO_INT(Op, DAG, false); 2724 2725 return SDValue(); 2726 } 2727 2728 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2729 SelectionDAG &DAG) const { 2730 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2731 MVT VT = Op.getSimpleValueType(); 2732 MVT ScalarVT = VT.getScalarType(); 2733 2734 assert(VT.isVector()); 2735 2736 SDValue Src = Op.getOperand(0); 2737 SDLoc DL(Op); 2738 2739 // TODO: Don't scalarize on Evergreen? 2740 unsigned NElts = VT.getVectorNumElements(); 2741 SmallVector<SDValue, 8> Args; 2742 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2743 2744 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2745 for (unsigned I = 0; I < NElts; ++I) 2746 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2747 2748 return DAG.getBuildVector(VT, DL, Args); 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // Custom DAG optimizations 2753 //===----------------------------------------------------------------------===// 2754 2755 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2756 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2757 } 2758 2759 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2760 EVT VT = Op.getValueType(); 2761 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2762 // as unsigned 24-bit values. 2763 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2764 } 2765 2766 static SDValue simplifyI24(SDNode *Node24, 2767 TargetLowering::DAGCombinerInfo &DCI) { 2768 SelectionDAG &DAG = DCI.DAG; 2769 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2770 2771 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2772 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2773 unsigned NewOpcode = Node24->getOpcode(); 2774 if (IsIntrin) { 2775 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2776 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2777 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2778 } 2779 2780 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2781 2782 // First try to simplify using GetDemandedBits which allows the operands to 2783 // have other uses, but will only perform simplifications that involve 2784 // bypassing some nodes for this user. 2785 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2786 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2787 if (DemandedLHS || DemandedRHS) 2788 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2789 DemandedLHS ? DemandedLHS : LHS, 2790 DemandedRHS ? DemandedRHS : RHS); 2791 2792 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2793 // operands if this node is the only user. 2794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2795 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2796 return SDValue(Node24, 0); 2797 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2798 return SDValue(Node24, 0); 2799 2800 return SDValue(); 2801 } 2802 2803 template <typename IntTy> 2804 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2805 uint32_t Width, const SDLoc &DL) { 2806 if (Width + Offset < 32) { 2807 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2808 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2809 return DAG.getConstant(Result, DL, MVT::i32); 2810 } 2811 2812 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2813 } 2814 2815 static bool hasVolatileUser(SDNode *Val) { 2816 for (SDNode *U : Val->uses()) { 2817 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2818 if (M->isVolatile()) 2819 return true; 2820 } 2821 } 2822 2823 return false; 2824 } 2825 2826 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2827 // i32 vectors are the canonical memory type. 2828 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2829 return false; 2830 2831 if (!VT.isByteSized()) 2832 return false; 2833 2834 unsigned Size = VT.getStoreSize(); 2835 2836 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2837 return false; 2838 2839 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2840 return false; 2841 2842 return true; 2843 } 2844 2845 // Replace load of an illegal type with a store of a bitcast to a friendlier 2846 // type. 2847 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2848 DAGCombinerInfo &DCI) const { 2849 if (!DCI.isBeforeLegalize()) 2850 return SDValue(); 2851 2852 LoadSDNode *LN = cast<LoadSDNode>(N); 2853 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2854 return SDValue(); 2855 2856 SDLoc SL(N); 2857 SelectionDAG &DAG = DCI.DAG; 2858 EVT VT = LN->getMemoryVT(); 2859 2860 unsigned Size = VT.getStoreSize(); 2861 unsigned Align = LN->getAlignment(); 2862 if (Align < Size && isTypeLegal(VT)) { 2863 bool IsFast; 2864 unsigned AS = LN->getAddressSpace(); 2865 2866 // Expand unaligned loads earlier than legalization. Due to visitation order 2867 // problems during legalization, the emitted instructions to pack and unpack 2868 // the bytes again are not eliminated in the case of an unaligned copy. 2869 if (!allowsMisalignedMemoryAccesses( 2870 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2871 if (VT.isVector()) 2872 return scalarizeVectorLoad(LN, DAG); 2873 2874 SDValue Ops[2]; 2875 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2876 return DAG.getMergeValues(Ops, SDLoc(N)); 2877 } 2878 2879 if (!IsFast) 2880 return SDValue(); 2881 } 2882 2883 if (!shouldCombineMemoryType(VT)) 2884 return SDValue(); 2885 2886 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2887 2888 SDValue NewLoad 2889 = DAG.getLoad(NewVT, SL, LN->getChain(), 2890 LN->getBasePtr(), LN->getMemOperand()); 2891 2892 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2893 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2894 return SDValue(N, 0); 2895 } 2896 2897 // Replace store of an illegal type with a store of a bitcast to a friendlier 2898 // type. 2899 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2900 DAGCombinerInfo &DCI) const { 2901 if (!DCI.isBeforeLegalize()) 2902 return SDValue(); 2903 2904 StoreSDNode *SN = cast<StoreSDNode>(N); 2905 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2906 return SDValue(); 2907 2908 EVT VT = SN->getMemoryVT(); 2909 unsigned Size = VT.getStoreSize(); 2910 2911 SDLoc SL(N); 2912 SelectionDAG &DAG = DCI.DAG; 2913 unsigned Align = SN->getAlignment(); 2914 if (Align < Size && isTypeLegal(VT)) { 2915 bool IsFast; 2916 unsigned AS = SN->getAddressSpace(); 2917 2918 // Expand unaligned stores earlier than legalization. Due to visitation 2919 // order problems during legalization, the emitted instructions to pack and 2920 // unpack the bytes again are not eliminated in the case of an unaligned 2921 // copy. 2922 if (!allowsMisalignedMemoryAccesses( 2923 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2924 if (VT.isVector()) 2925 return scalarizeVectorStore(SN, DAG); 2926 2927 return expandUnalignedStore(SN, DAG); 2928 } 2929 2930 if (!IsFast) 2931 return SDValue(); 2932 } 2933 2934 if (!shouldCombineMemoryType(VT)) 2935 return SDValue(); 2936 2937 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2938 SDValue Val = SN->getValue(); 2939 2940 //DCI.AddToWorklist(Val.getNode()); 2941 2942 bool OtherUses = !Val.hasOneUse(); 2943 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2944 if (OtherUses) { 2945 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2946 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2947 } 2948 2949 return DAG.getStore(SN->getChain(), SL, CastVal, 2950 SN->getBasePtr(), SN->getMemOperand()); 2951 } 2952 2953 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2954 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2955 // issues. 2956 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2957 DAGCombinerInfo &DCI) const { 2958 SelectionDAG &DAG = DCI.DAG; 2959 SDValue N0 = N->getOperand(0); 2960 2961 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2962 // (vt2 (truncate (assertzext vt0:x, vt1))) 2963 if (N0.getOpcode() == ISD::TRUNCATE) { 2964 SDValue N1 = N->getOperand(1); 2965 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2966 SDLoc SL(N); 2967 2968 SDValue Src = N0.getOperand(0); 2969 EVT SrcVT = Src.getValueType(); 2970 if (SrcVT.bitsGE(ExtVT)) { 2971 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2972 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2973 } 2974 } 2975 2976 return SDValue(); 2977 } 2978 2979 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2980 SDNode *N, DAGCombinerInfo &DCI) const { 2981 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2982 switch (IID) { 2983 case Intrinsic::amdgcn_mul_i24: 2984 case Intrinsic::amdgcn_mul_u24: 2985 return simplifyI24(N, DCI); 2986 default: 2987 return SDValue(); 2988 } 2989 } 2990 2991 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2992 /// binary operation \p Opc to it with the corresponding constant operands. 2993 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2994 DAGCombinerInfo &DCI, const SDLoc &SL, 2995 unsigned Opc, SDValue LHS, 2996 uint32_t ValLo, uint32_t ValHi) const { 2997 SelectionDAG &DAG = DCI.DAG; 2998 SDValue Lo, Hi; 2999 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3000 3001 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3002 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3003 3004 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3005 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3006 3007 // Re-visit the ands. It's possible we eliminated one of them and it could 3008 // simplify the vector. 3009 DCI.AddToWorklist(Lo.getNode()); 3010 DCI.AddToWorklist(Hi.getNode()); 3011 3012 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3013 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3014 } 3015 3016 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3017 DAGCombinerInfo &DCI) const { 3018 EVT VT = N->getValueType(0); 3019 3020 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3021 if (!RHS) 3022 return SDValue(); 3023 3024 SDValue LHS = N->getOperand(0); 3025 unsigned RHSVal = RHS->getZExtValue(); 3026 if (!RHSVal) 3027 return LHS; 3028 3029 SDLoc SL(N); 3030 SelectionDAG &DAG = DCI.DAG; 3031 3032 switch (LHS->getOpcode()) { 3033 default: 3034 break; 3035 case ISD::ZERO_EXTEND: 3036 case ISD::SIGN_EXTEND: 3037 case ISD::ANY_EXTEND: { 3038 SDValue X = LHS->getOperand(0); 3039 3040 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3041 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3042 // Prefer build_vector as the canonical form if packed types are legal. 3043 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3044 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3045 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3046 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3047 } 3048 3049 // shl (ext x) => zext (shl x), if shift does not overflow int 3050 if (VT != MVT::i64) 3051 break; 3052 KnownBits Known = DAG.computeKnownBits(X); 3053 unsigned LZ = Known.countMinLeadingZeros(); 3054 if (LZ < RHSVal) 3055 break; 3056 EVT XVT = X.getValueType(); 3057 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3058 return DAG.getZExtOrTrunc(Shl, SL, VT); 3059 } 3060 } 3061 3062 if (VT != MVT::i64) 3063 return SDValue(); 3064 3065 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3066 3067 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3068 // common case, splitting this into a move and a 32-bit shift is faster and 3069 // the same code size. 3070 if (RHSVal < 32) 3071 return SDValue(); 3072 3073 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3074 3075 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3076 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3077 3078 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3079 3080 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3081 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3082 } 3083 3084 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3085 DAGCombinerInfo &DCI) const { 3086 if (N->getValueType(0) != MVT::i64) 3087 return SDValue(); 3088 3089 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3090 if (!RHS) 3091 return SDValue(); 3092 3093 SelectionDAG &DAG = DCI.DAG; 3094 SDLoc SL(N); 3095 unsigned RHSVal = RHS->getZExtValue(); 3096 3097 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3098 if (RHSVal == 32) { 3099 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3100 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3101 DAG.getConstant(31, SL, MVT::i32)); 3102 3103 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3104 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3105 } 3106 3107 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3108 if (RHSVal == 63) { 3109 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3110 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3111 DAG.getConstant(31, SL, MVT::i32)); 3112 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3113 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3114 } 3115 3116 return SDValue(); 3117 } 3118 3119 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3120 DAGCombinerInfo &DCI) const { 3121 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3122 if (!RHS) 3123 return SDValue(); 3124 3125 EVT VT = N->getValueType(0); 3126 SDValue LHS = N->getOperand(0); 3127 unsigned ShiftAmt = RHS->getZExtValue(); 3128 SelectionDAG &DAG = DCI.DAG; 3129 SDLoc SL(N); 3130 3131 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3132 // this improves the ability to match BFE patterns in isel. 3133 if (LHS.getOpcode() == ISD::AND) { 3134 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3135 if (Mask->getAPIntValue().isShiftedMask() && 3136 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3137 return DAG.getNode( 3138 ISD::AND, SL, VT, 3139 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3140 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3141 } 3142 } 3143 } 3144 3145 if (VT != MVT::i64) 3146 return SDValue(); 3147 3148 if (ShiftAmt < 32) 3149 return SDValue(); 3150 3151 // srl i64:x, C for C >= 32 3152 // => 3153 // build_pair (srl hi_32(x), C - 32), 0 3154 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3155 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3156 3157 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3158 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3159 3160 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3161 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3162 3163 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3164 3165 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3166 } 3167 3168 SDValue AMDGPUTargetLowering::performTruncateCombine( 3169 SDNode *N, DAGCombinerInfo &DCI) const { 3170 SDLoc SL(N); 3171 SelectionDAG &DAG = DCI.DAG; 3172 EVT VT = N->getValueType(0); 3173 SDValue Src = N->getOperand(0); 3174 3175 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3176 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3177 SDValue Vec = Src.getOperand(0); 3178 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3179 SDValue Elt0 = Vec.getOperand(0); 3180 EVT EltVT = Elt0.getValueType(); 3181 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3182 if (EltVT.isFloatingPoint()) { 3183 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3184 EltVT.changeTypeToInteger(), Elt0); 3185 } 3186 3187 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3188 } 3189 } 3190 } 3191 3192 // Equivalent of above for accessing the high element of a vector as an 3193 // integer operation. 3194 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3195 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3196 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3197 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3198 SDValue BV = stripBitcast(Src.getOperand(0)); 3199 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3200 BV.getValueType().getVectorNumElements() == 2) { 3201 SDValue SrcElt = BV.getOperand(1); 3202 EVT SrcEltVT = SrcElt.getValueType(); 3203 if (SrcEltVT.isFloatingPoint()) { 3204 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3205 SrcEltVT.changeTypeToInteger(), SrcElt); 3206 } 3207 3208 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3209 } 3210 } 3211 } 3212 } 3213 3214 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3215 // 3216 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3217 // i16 (trunc (srl (i32 (trunc x), K))) 3218 if (VT.getScalarSizeInBits() < 32) { 3219 EVT SrcVT = Src.getValueType(); 3220 if (SrcVT.getScalarSizeInBits() > 32 && 3221 (Src.getOpcode() == ISD::SRL || 3222 Src.getOpcode() == ISD::SRA || 3223 Src.getOpcode() == ISD::SHL)) { 3224 SDValue Amt = Src.getOperand(1); 3225 KnownBits Known = DAG.computeKnownBits(Amt); 3226 unsigned Size = VT.getScalarSizeInBits(); 3227 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3228 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3229 EVT MidVT = VT.isVector() ? 3230 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3231 VT.getVectorNumElements()) : MVT::i32; 3232 3233 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3234 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3235 Src.getOperand(0)); 3236 DCI.AddToWorklist(Trunc.getNode()); 3237 3238 if (Amt.getValueType() != NewShiftVT) { 3239 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3240 DCI.AddToWorklist(Amt.getNode()); 3241 } 3242 3243 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3244 Trunc, Amt); 3245 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3246 } 3247 } 3248 } 3249 3250 return SDValue(); 3251 } 3252 3253 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3254 // instructions. If we only match on the legalized i64 mul expansion, 3255 // SimplifyDemandedBits will be unable to remove them because there will be 3256 // multiple uses due to the separate mul + mulh[su]. 3257 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3258 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3259 if (Size <= 32) { 3260 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3261 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3262 } 3263 3264 // Because we want to eliminate extension instructions before the 3265 // operation, we need to create a single user here (i.e. not the separate 3266 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3267 3268 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3269 3270 SDValue Mul = DAG.getNode(MulOpc, SL, 3271 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3272 3273 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3274 Mul.getValue(0), Mul.getValue(1)); 3275 } 3276 3277 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3278 DAGCombinerInfo &DCI) const { 3279 EVT VT = N->getValueType(0); 3280 3281 unsigned Size = VT.getSizeInBits(); 3282 if (VT.isVector() || Size > 64) 3283 return SDValue(); 3284 3285 // There are i16 integer mul/mad. 3286 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3287 return SDValue(); 3288 3289 SelectionDAG &DAG = DCI.DAG; 3290 SDLoc DL(N); 3291 3292 SDValue N0 = N->getOperand(0); 3293 SDValue N1 = N->getOperand(1); 3294 3295 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3296 // in the source into any_extends if the result of the mul is truncated. Since 3297 // we can assume the high bits are whatever we want, use the underlying value 3298 // to avoid the unknown high bits from interfering. 3299 if (N0.getOpcode() == ISD::ANY_EXTEND) 3300 N0 = N0.getOperand(0); 3301 3302 if (N1.getOpcode() == ISD::ANY_EXTEND) 3303 N1 = N1.getOperand(0); 3304 3305 SDValue Mul; 3306 3307 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3308 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3309 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3310 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3311 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3312 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3313 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3314 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3315 } else { 3316 return SDValue(); 3317 } 3318 3319 // We need to use sext even for MUL_U24, because MUL_U24 is used 3320 // for signed multiply of 8 and 16-bit types. 3321 return DAG.getSExtOrTrunc(Mul, DL, VT); 3322 } 3323 3324 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3325 DAGCombinerInfo &DCI) const { 3326 EVT VT = N->getValueType(0); 3327 3328 if (!Subtarget->hasMulI24() || VT.isVector()) 3329 return SDValue(); 3330 3331 SelectionDAG &DAG = DCI.DAG; 3332 SDLoc DL(N); 3333 3334 SDValue N0 = N->getOperand(0); 3335 SDValue N1 = N->getOperand(1); 3336 3337 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3338 return SDValue(); 3339 3340 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3341 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3342 3343 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3344 DCI.AddToWorklist(Mulhi.getNode()); 3345 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3346 } 3347 3348 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3349 DAGCombinerInfo &DCI) const { 3350 EVT VT = N->getValueType(0); 3351 3352 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3353 return SDValue(); 3354 3355 SelectionDAG &DAG = DCI.DAG; 3356 SDLoc DL(N); 3357 3358 SDValue N0 = N->getOperand(0); 3359 SDValue N1 = N->getOperand(1); 3360 3361 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3362 return SDValue(); 3363 3364 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3365 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3366 3367 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3368 DCI.AddToWorklist(Mulhi.getNode()); 3369 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3370 } 3371 3372 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3373 SDNode *N, DAGCombinerInfo &DCI) const { 3374 SelectionDAG &DAG = DCI.DAG; 3375 3376 // Simplify demanded bits before splitting into multiple users. 3377 if (SDValue V = simplifyI24(N, DCI)) 3378 return V; 3379 3380 SDValue N0 = N->getOperand(0); 3381 SDValue N1 = N->getOperand(1); 3382 3383 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3384 3385 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3386 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3387 3388 SDLoc SL(N); 3389 3390 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3391 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3392 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3393 } 3394 3395 static bool isNegativeOne(SDValue Val) { 3396 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3397 return C->isAllOnesValue(); 3398 return false; 3399 } 3400 3401 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3402 SDValue Op, 3403 const SDLoc &DL, 3404 unsigned Opc) const { 3405 EVT VT = Op.getValueType(); 3406 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3407 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3408 LegalVT != MVT::i16)) 3409 return SDValue(); 3410 3411 if (VT != MVT::i32) 3412 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3413 3414 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3415 if (VT != MVT::i32) 3416 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3417 3418 return FFBX; 3419 } 3420 3421 // The native instructions return -1 on 0 input. Optimize out a select that 3422 // produces -1 on 0. 3423 // 3424 // TODO: If zero is not undef, we could also do this if the output is compared 3425 // against the bitwidth. 3426 // 3427 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3428 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3429 SDValue LHS, SDValue RHS, 3430 DAGCombinerInfo &DCI) const { 3431 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3432 if (!CmpRhs || !CmpRhs->isNullValue()) 3433 return SDValue(); 3434 3435 SelectionDAG &DAG = DCI.DAG; 3436 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3437 SDValue CmpLHS = Cond.getOperand(0); 3438 3439 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3440 AMDGPUISD::FFBH_U32; 3441 3442 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3443 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3444 if (CCOpcode == ISD::SETEQ && 3445 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3446 RHS.getOperand(0) == CmpLHS && 3447 isNegativeOne(LHS)) { 3448 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3449 } 3450 3451 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3452 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3453 if (CCOpcode == ISD::SETNE && 3454 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3455 LHS.getOperand(0) == CmpLHS && 3456 isNegativeOne(RHS)) { 3457 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3458 } 3459 3460 return SDValue(); 3461 } 3462 3463 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3464 unsigned Op, 3465 const SDLoc &SL, 3466 SDValue Cond, 3467 SDValue N1, 3468 SDValue N2) { 3469 SelectionDAG &DAG = DCI.DAG; 3470 EVT VT = N1.getValueType(); 3471 3472 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3473 N1.getOperand(0), N2.getOperand(0)); 3474 DCI.AddToWorklist(NewSelect.getNode()); 3475 return DAG.getNode(Op, SL, VT, NewSelect); 3476 } 3477 3478 // Pull a free FP operation out of a select so it may fold into uses. 3479 // 3480 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3481 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3482 // 3483 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3484 // select c, (fabs x), +k -> fabs (select c, x, k) 3485 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3486 SDValue N) { 3487 SelectionDAG &DAG = DCI.DAG; 3488 SDValue Cond = N.getOperand(0); 3489 SDValue LHS = N.getOperand(1); 3490 SDValue RHS = N.getOperand(2); 3491 3492 EVT VT = N.getValueType(); 3493 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3494 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3495 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3496 SDLoc(N), Cond, LHS, RHS); 3497 } 3498 3499 bool Inv = false; 3500 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3501 std::swap(LHS, RHS); 3502 Inv = true; 3503 } 3504 3505 // TODO: Support vector constants. 3506 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3507 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3508 SDLoc SL(N); 3509 // If one side is an fneg/fabs and the other is a constant, we can push the 3510 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3511 SDValue NewLHS = LHS.getOperand(0); 3512 SDValue NewRHS = RHS; 3513 3514 // Careful: if the neg can be folded up, don't try to pull it back down. 3515 bool ShouldFoldNeg = true; 3516 3517 if (NewLHS.hasOneUse()) { 3518 unsigned Opc = NewLHS.getOpcode(); 3519 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3520 ShouldFoldNeg = false; 3521 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3522 ShouldFoldNeg = false; 3523 } 3524 3525 if (ShouldFoldNeg) { 3526 if (LHS.getOpcode() == ISD::FNEG) 3527 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3528 else if (CRHS->isNegative()) 3529 return SDValue(); 3530 3531 if (Inv) 3532 std::swap(NewLHS, NewRHS); 3533 3534 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3535 Cond, NewLHS, NewRHS); 3536 DCI.AddToWorklist(NewSelect.getNode()); 3537 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3538 } 3539 } 3540 3541 return SDValue(); 3542 } 3543 3544 3545 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3546 DAGCombinerInfo &DCI) const { 3547 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3548 return Folded; 3549 3550 SDValue Cond = N->getOperand(0); 3551 if (Cond.getOpcode() != ISD::SETCC) 3552 return SDValue(); 3553 3554 EVT VT = N->getValueType(0); 3555 SDValue LHS = Cond.getOperand(0); 3556 SDValue RHS = Cond.getOperand(1); 3557 SDValue CC = Cond.getOperand(2); 3558 3559 SDValue True = N->getOperand(1); 3560 SDValue False = N->getOperand(2); 3561 3562 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3563 SelectionDAG &DAG = DCI.DAG; 3564 if (DAG.isConstantValueOfAnyType(True) && 3565 !DAG.isConstantValueOfAnyType(False)) { 3566 // Swap cmp + select pair to move constant to false input. 3567 // This will allow using VOPC cndmasks more often. 3568 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3569 3570 SDLoc SL(N); 3571 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3572 LHS.getValueType().isInteger()); 3573 3574 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3575 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3576 } 3577 3578 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3579 SDValue MinMax 3580 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3581 // Revisit this node so we can catch min3/max3/med3 patterns. 3582 //DCI.AddToWorklist(MinMax.getNode()); 3583 return MinMax; 3584 } 3585 } 3586 3587 // There's no reason to not do this if the condition has other uses. 3588 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3589 } 3590 3591 static bool isInv2Pi(const APFloat &APF) { 3592 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3593 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3594 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3595 3596 return APF.bitwiseIsEqual(KF16) || 3597 APF.bitwiseIsEqual(KF32) || 3598 APF.bitwiseIsEqual(KF64); 3599 } 3600 3601 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3602 // additional cost to negate them. 3603 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3604 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3605 if (C->isZero() && !C->isNegative()) 3606 return true; 3607 3608 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3609 return true; 3610 } 3611 3612 return false; 3613 } 3614 3615 static unsigned inverseMinMax(unsigned Opc) { 3616 switch (Opc) { 3617 case ISD::FMAXNUM: 3618 return ISD::FMINNUM; 3619 case ISD::FMINNUM: 3620 return ISD::FMAXNUM; 3621 case ISD::FMAXNUM_IEEE: 3622 return ISD::FMINNUM_IEEE; 3623 case ISD::FMINNUM_IEEE: 3624 return ISD::FMAXNUM_IEEE; 3625 case AMDGPUISD::FMAX_LEGACY: 3626 return AMDGPUISD::FMIN_LEGACY; 3627 case AMDGPUISD::FMIN_LEGACY: 3628 return AMDGPUISD::FMAX_LEGACY; 3629 default: 3630 llvm_unreachable("invalid min/max opcode"); 3631 } 3632 } 3633 3634 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3635 DAGCombinerInfo &DCI) const { 3636 SelectionDAG &DAG = DCI.DAG; 3637 SDValue N0 = N->getOperand(0); 3638 EVT VT = N->getValueType(0); 3639 3640 unsigned Opc = N0.getOpcode(); 3641 3642 // If the input has multiple uses and we can either fold the negate down, or 3643 // the other uses cannot, give up. This both prevents unprofitable 3644 // transformations and infinite loops: we won't repeatedly try to fold around 3645 // a negate that has no 'good' form. 3646 if (N0.hasOneUse()) { 3647 // This may be able to fold into the source, but at a code size cost. Don't 3648 // fold if the fold into the user is free. 3649 if (allUsesHaveSourceMods(N, 0)) 3650 return SDValue(); 3651 } else { 3652 if (fnegFoldsIntoOp(Opc) && 3653 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3654 return SDValue(); 3655 } 3656 3657 SDLoc SL(N); 3658 switch (Opc) { 3659 case ISD::FADD: { 3660 if (!mayIgnoreSignedZero(N0)) 3661 return SDValue(); 3662 3663 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3664 SDValue LHS = N0.getOperand(0); 3665 SDValue RHS = N0.getOperand(1); 3666 3667 if (LHS.getOpcode() != ISD::FNEG) 3668 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3669 else 3670 LHS = LHS.getOperand(0); 3671 3672 if (RHS.getOpcode() != ISD::FNEG) 3673 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3674 else 3675 RHS = RHS.getOperand(0); 3676 3677 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3678 if (Res.getOpcode() != ISD::FADD) 3679 return SDValue(); // Op got folded away. 3680 if (!N0.hasOneUse()) 3681 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3682 return Res; 3683 } 3684 case ISD::FMUL: 3685 case AMDGPUISD::FMUL_LEGACY: { 3686 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3687 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3688 SDValue LHS = N0.getOperand(0); 3689 SDValue RHS = N0.getOperand(1); 3690 3691 if (LHS.getOpcode() == ISD::FNEG) 3692 LHS = LHS.getOperand(0); 3693 else if (RHS.getOpcode() == ISD::FNEG) 3694 RHS = RHS.getOperand(0); 3695 else 3696 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3697 3698 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3699 if (Res.getOpcode() != Opc) 3700 return SDValue(); // Op got folded away. 3701 if (!N0.hasOneUse()) 3702 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3703 return Res; 3704 } 3705 case ISD::FMA: 3706 case ISD::FMAD: { 3707 if (!mayIgnoreSignedZero(N0)) 3708 return SDValue(); 3709 3710 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3711 SDValue LHS = N0.getOperand(0); 3712 SDValue MHS = N0.getOperand(1); 3713 SDValue RHS = N0.getOperand(2); 3714 3715 if (LHS.getOpcode() == ISD::FNEG) 3716 LHS = LHS.getOperand(0); 3717 else if (MHS.getOpcode() == ISD::FNEG) 3718 MHS = MHS.getOperand(0); 3719 else 3720 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3721 3722 if (RHS.getOpcode() != ISD::FNEG) 3723 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3724 else 3725 RHS = RHS.getOperand(0); 3726 3727 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3728 if (Res.getOpcode() != Opc) 3729 return SDValue(); // Op got folded away. 3730 if (!N0.hasOneUse()) 3731 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3732 return Res; 3733 } 3734 case ISD::FMAXNUM: 3735 case ISD::FMINNUM: 3736 case ISD::FMAXNUM_IEEE: 3737 case ISD::FMINNUM_IEEE: 3738 case AMDGPUISD::FMAX_LEGACY: 3739 case AMDGPUISD::FMIN_LEGACY: { 3740 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3741 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3742 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3743 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3744 3745 SDValue LHS = N0.getOperand(0); 3746 SDValue RHS = N0.getOperand(1); 3747 3748 // 0 doesn't have a negated inline immediate. 3749 // TODO: This constant check should be generalized to other operations. 3750 if (isConstantCostlierToNegate(RHS)) 3751 return SDValue(); 3752 3753 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3754 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3755 unsigned Opposite = inverseMinMax(Opc); 3756 3757 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3758 if (Res.getOpcode() != Opposite) 3759 return SDValue(); // Op got folded away. 3760 if (!N0.hasOneUse()) 3761 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3762 return Res; 3763 } 3764 case AMDGPUISD::FMED3: { 3765 SDValue Ops[3]; 3766 for (unsigned I = 0; I < 3; ++I) 3767 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3768 3769 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3770 if (Res.getOpcode() != AMDGPUISD::FMED3) 3771 return SDValue(); // Op got folded away. 3772 if (!N0.hasOneUse()) 3773 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3774 return Res; 3775 } 3776 case ISD::FP_EXTEND: 3777 case ISD::FTRUNC: 3778 case ISD::FRINT: 3779 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3780 case ISD::FSIN: 3781 case ISD::FCANONICALIZE: 3782 case AMDGPUISD::RCP: 3783 case AMDGPUISD::RCP_LEGACY: 3784 case AMDGPUISD::RCP_IFLAG: 3785 case AMDGPUISD::SIN_HW: { 3786 SDValue CvtSrc = N0.getOperand(0); 3787 if (CvtSrc.getOpcode() == ISD::FNEG) { 3788 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3789 // (fneg (rcp (fneg x))) -> (rcp x) 3790 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3791 } 3792 3793 if (!N0.hasOneUse()) 3794 return SDValue(); 3795 3796 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3797 // (fneg (rcp x)) -> (rcp (fneg x)) 3798 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3799 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3800 } 3801 case ISD::FP_ROUND: { 3802 SDValue CvtSrc = N0.getOperand(0); 3803 3804 if (CvtSrc.getOpcode() == ISD::FNEG) { 3805 // (fneg (fp_round (fneg x))) -> (fp_round x) 3806 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3807 CvtSrc.getOperand(0), N0.getOperand(1)); 3808 } 3809 3810 if (!N0.hasOneUse()) 3811 return SDValue(); 3812 3813 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3814 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3815 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3816 } 3817 case ISD::FP16_TO_FP: { 3818 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3819 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3820 // Put the fneg back as a legal source operation that can be matched later. 3821 SDLoc SL(N); 3822 3823 SDValue Src = N0.getOperand(0); 3824 EVT SrcVT = Src.getValueType(); 3825 3826 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3827 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3828 DAG.getConstant(0x8000, SL, SrcVT)); 3829 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3830 } 3831 default: 3832 return SDValue(); 3833 } 3834 } 3835 3836 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3837 DAGCombinerInfo &DCI) const { 3838 SelectionDAG &DAG = DCI.DAG; 3839 SDValue N0 = N->getOperand(0); 3840 3841 if (!N0.hasOneUse()) 3842 return SDValue(); 3843 3844 switch (N0.getOpcode()) { 3845 case ISD::FP16_TO_FP: { 3846 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3847 SDLoc SL(N); 3848 SDValue Src = N0.getOperand(0); 3849 EVT SrcVT = Src.getValueType(); 3850 3851 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3852 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3853 DAG.getConstant(0x7fff, SL, SrcVT)); 3854 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3855 } 3856 default: 3857 return SDValue(); 3858 } 3859 } 3860 3861 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3862 DAGCombinerInfo &DCI) const { 3863 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3864 if (!CFP) 3865 return SDValue(); 3866 3867 // XXX - Should this flush denormals? 3868 const APFloat &Val = CFP->getValueAPF(); 3869 APFloat One(Val.getSemantics(), "1.0"); 3870 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3871 } 3872 3873 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3874 DAGCombinerInfo &DCI) const { 3875 SelectionDAG &DAG = DCI.DAG; 3876 SDLoc DL(N); 3877 3878 switch(N->getOpcode()) { 3879 default: 3880 break; 3881 case ISD::BITCAST: { 3882 EVT DestVT = N->getValueType(0); 3883 3884 // Push casts through vector builds. This helps avoid emitting a large 3885 // number of copies when materializing floating point vector constants. 3886 // 3887 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3888 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3889 if (DestVT.isVector()) { 3890 SDValue Src = N->getOperand(0); 3891 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3892 EVT SrcVT = Src.getValueType(); 3893 unsigned NElts = DestVT.getVectorNumElements(); 3894 3895 if (SrcVT.getVectorNumElements() == NElts) { 3896 EVT DestEltVT = DestVT.getVectorElementType(); 3897 3898 SmallVector<SDValue, 8> CastedElts; 3899 SDLoc SL(N); 3900 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3901 SDValue Elt = Src.getOperand(I); 3902 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3903 } 3904 3905 return DAG.getBuildVector(DestVT, SL, CastedElts); 3906 } 3907 } 3908 } 3909 3910 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3911 break; 3912 3913 // Fold bitcasts of constants. 3914 // 3915 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3916 // TODO: Generalize and move to DAGCombiner 3917 SDValue Src = N->getOperand(0); 3918 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3919 if (Src.getValueType() == MVT::i64) { 3920 SDLoc SL(N); 3921 uint64_t CVal = C->getZExtValue(); 3922 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3923 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3924 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3925 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3926 } 3927 } 3928 3929 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3930 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3931 SDLoc SL(N); 3932 uint64_t CVal = Val.getZExtValue(); 3933 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3934 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3935 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3936 3937 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3938 } 3939 3940 break; 3941 } 3942 case ISD::SHL: { 3943 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3944 break; 3945 3946 return performShlCombine(N, DCI); 3947 } 3948 case ISD::SRL: { 3949 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3950 break; 3951 3952 return performSrlCombine(N, DCI); 3953 } 3954 case ISD::SRA: { 3955 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3956 break; 3957 3958 return performSraCombine(N, DCI); 3959 } 3960 case ISD::TRUNCATE: 3961 return performTruncateCombine(N, DCI); 3962 case ISD::MUL: 3963 return performMulCombine(N, DCI); 3964 case ISD::MULHS: 3965 return performMulhsCombine(N, DCI); 3966 case ISD::MULHU: 3967 return performMulhuCombine(N, DCI); 3968 case AMDGPUISD::MUL_I24: 3969 case AMDGPUISD::MUL_U24: 3970 case AMDGPUISD::MULHI_I24: 3971 case AMDGPUISD::MULHI_U24: { 3972 if (SDValue V = simplifyI24(N, DCI)) 3973 return V; 3974 return SDValue(); 3975 } 3976 case AMDGPUISD::MUL_LOHI_I24: 3977 case AMDGPUISD::MUL_LOHI_U24: 3978 return performMulLoHi24Combine(N, DCI); 3979 case ISD::SELECT: 3980 return performSelectCombine(N, DCI); 3981 case ISD::FNEG: 3982 return performFNegCombine(N, DCI); 3983 case ISD::FABS: 3984 return performFAbsCombine(N, DCI); 3985 case AMDGPUISD::BFE_I32: 3986 case AMDGPUISD::BFE_U32: { 3987 assert(!N->getValueType(0).isVector() && 3988 "Vector handling of BFE not implemented"); 3989 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3990 if (!Width) 3991 break; 3992 3993 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3994 if (WidthVal == 0) 3995 return DAG.getConstant(0, DL, MVT::i32); 3996 3997 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3998 if (!Offset) 3999 break; 4000 4001 SDValue BitsFrom = N->getOperand(0); 4002 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4003 4004 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4005 4006 if (OffsetVal == 0) { 4007 // This is already sign / zero extended, so try to fold away extra BFEs. 4008 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4009 4010 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4011 if (OpSignBits >= SignBits) 4012 return BitsFrom; 4013 4014 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4015 if (Signed) { 4016 // This is a sign_extend_inreg. Replace it to take advantage of existing 4017 // DAG Combines. If not eliminated, we will match back to BFE during 4018 // selection. 4019 4020 // TODO: The sext_inreg of extended types ends, although we can could 4021 // handle them in a single BFE. 4022 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4023 DAG.getValueType(SmallVT)); 4024 } 4025 4026 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4027 } 4028 4029 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4030 if (Signed) { 4031 return constantFoldBFE<int32_t>(DAG, 4032 CVal->getSExtValue(), 4033 OffsetVal, 4034 WidthVal, 4035 DL); 4036 } 4037 4038 return constantFoldBFE<uint32_t>(DAG, 4039 CVal->getZExtValue(), 4040 OffsetVal, 4041 WidthVal, 4042 DL); 4043 } 4044 4045 if ((OffsetVal + WidthVal) >= 32 && 4046 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4047 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4048 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4049 BitsFrom, ShiftVal); 4050 } 4051 4052 if (BitsFrom.hasOneUse()) { 4053 APInt Demanded = APInt::getBitsSet(32, 4054 OffsetVal, 4055 OffsetVal + WidthVal); 4056 4057 KnownBits Known; 4058 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4059 !DCI.isBeforeLegalizeOps()); 4060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4061 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4062 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4063 DCI.CommitTargetLoweringOpt(TLO); 4064 } 4065 } 4066 4067 break; 4068 } 4069 case ISD::LOAD: 4070 return performLoadCombine(N, DCI); 4071 case ISD::STORE: 4072 return performStoreCombine(N, DCI); 4073 case AMDGPUISD::RCP: 4074 case AMDGPUISD::RCP_IFLAG: 4075 return performRcpCombine(N, DCI); 4076 case ISD::AssertZext: 4077 case ISD::AssertSext: 4078 return performAssertSZExtCombine(N, DCI); 4079 case ISD::INTRINSIC_WO_CHAIN: 4080 return performIntrinsicWOChainCombine(N, DCI); 4081 } 4082 return SDValue(); 4083 } 4084 4085 //===----------------------------------------------------------------------===// 4086 // Helper functions 4087 //===----------------------------------------------------------------------===// 4088 4089 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4090 const TargetRegisterClass *RC, 4091 unsigned Reg, EVT VT, 4092 const SDLoc &SL, 4093 bool RawReg) const { 4094 MachineFunction &MF = DAG.getMachineFunction(); 4095 MachineRegisterInfo &MRI = MF.getRegInfo(); 4096 unsigned VReg; 4097 4098 if (!MRI.isLiveIn(Reg)) { 4099 VReg = MRI.createVirtualRegister(RC); 4100 MRI.addLiveIn(Reg, VReg); 4101 } else { 4102 VReg = MRI.getLiveInVirtReg(Reg); 4103 } 4104 4105 if (RawReg) 4106 return DAG.getRegister(VReg, VT); 4107 4108 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4109 } 4110 4111 // This may be called multiple times, and nothing prevents creating multiple 4112 // objects at the same offset. See if we already defined this object. 4113 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4114 int64_t Offset) { 4115 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4116 if (MFI.getObjectOffset(I) == Offset) { 4117 assert(MFI.getObjectSize(I) == Size); 4118 return I; 4119 } 4120 } 4121 4122 return MFI.CreateFixedObject(Size, Offset, true); 4123 } 4124 4125 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4126 EVT VT, 4127 const SDLoc &SL, 4128 int64_t Offset) const { 4129 MachineFunction &MF = DAG.getMachineFunction(); 4130 MachineFrameInfo &MFI = MF.getFrameInfo(); 4131 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4132 4133 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4134 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4135 4136 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4137 MachineMemOperand::MODereferenceable | 4138 MachineMemOperand::MOInvariant); 4139 } 4140 4141 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4142 const SDLoc &SL, 4143 SDValue Chain, 4144 SDValue ArgVal, 4145 int64_t Offset) const { 4146 MachineFunction &MF = DAG.getMachineFunction(); 4147 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4148 4149 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4150 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4151 MachineMemOperand::MODereferenceable); 4152 return Store; 4153 } 4154 4155 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4156 const TargetRegisterClass *RC, 4157 EVT VT, const SDLoc &SL, 4158 const ArgDescriptor &Arg) const { 4159 assert(Arg && "Attempting to load missing argument"); 4160 4161 SDValue V = Arg.isRegister() ? 4162 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4163 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4164 4165 if (!Arg.isMasked()) 4166 return V; 4167 4168 unsigned Mask = Arg.getMask(); 4169 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4170 V = DAG.getNode(ISD::SRL, SL, VT, V, 4171 DAG.getShiftAmountConstant(Shift, VT, SL)); 4172 return DAG.getNode(ISD::AND, SL, VT, V, 4173 DAG.getConstant(Mask >> Shift, SL, VT)); 4174 } 4175 4176 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4177 const MachineFunction &MF, const ImplicitParameter Param) const { 4178 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4179 const AMDGPUSubtarget &ST = 4180 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4181 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4182 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4183 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4184 ExplicitArgOffset; 4185 switch (Param) { 4186 case GRID_DIM: 4187 return ArgOffset; 4188 case GRID_OFFSET: 4189 return ArgOffset + 4; 4190 } 4191 llvm_unreachable("unexpected implicit parameter type"); 4192 } 4193 4194 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4195 4196 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4197 switch ((AMDGPUISD::NodeType)Opcode) { 4198 case AMDGPUISD::FIRST_NUMBER: break; 4199 // AMDIL DAG nodes 4200 NODE_NAME_CASE(UMUL); 4201 NODE_NAME_CASE(BRANCH_COND); 4202 4203 // AMDGPU DAG nodes 4204 NODE_NAME_CASE(IF) 4205 NODE_NAME_CASE(ELSE) 4206 NODE_NAME_CASE(LOOP) 4207 NODE_NAME_CASE(CALL) 4208 NODE_NAME_CASE(TC_RETURN) 4209 NODE_NAME_CASE(TRAP) 4210 NODE_NAME_CASE(RET_FLAG) 4211 NODE_NAME_CASE(RETURN_TO_EPILOG) 4212 NODE_NAME_CASE(ENDPGM) 4213 NODE_NAME_CASE(DWORDADDR) 4214 NODE_NAME_CASE(FRACT) 4215 NODE_NAME_CASE(SETCC) 4216 NODE_NAME_CASE(SETREG) 4217 NODE_NAME_CASE(DENORM_MODE) 4218 NODE_NAME_CASE(FMA_W_CHAIN) 4219 NODE_NAME_CASE(FMUL_W_CHAIN) 4220 NODE_NAME_CASE(CLAMP) 4221 NODE_NAME_CASE(COS_HW) 4222 NODE_NAME_CASE(SIN_HW) 4223 NODE_NAME_CASE(FMAX_LEGACY) 4224 NODE_NAME_CASE(FMIN_LEGACY) 4225 NODE_NAME_CASE(FMAX3) 4226 NODE_NAME_CASE(SMAX3) 4227 NODE_NAME_CASE(UMAX3) 4228 NODE_NAME_CASE(FMIN3) 4229 NODE_NAME_CASE(SMIN3) 4230 NODE_NAME_CASE(UMIN3) 4231 NODE_NAME_CASE(FMED3) 4232 NODE_NAME_CASE(SMED3) 4233 NODE_NAME_CASE(UMED3) 4234 NODE_NAME_CASE(FDOT2) 4235 NODE_NAME_CASE(URECIP) 4236 NODE_NAME_CASE(DIV_SCALE) 4237 NODE_NAME_CASE(DIV_FMAS) 4238 NODE_NAME_CASE(DIV_FIXUP) 4239 NODE_NAME_CASE(FMAD_FTZ) 4240 NODE_NAME_CASE(TRIG_PREOP) 4241 NODE_NAME_CASE(RCP) 4242 NODE_NAME_CASE(RSQ) 4243 NODE_NAME_CASE(RCP_LEGACY) 4244 NODE_NAME_CASE(RSQ_LEGACY) 4245 NODE_NAME_CASE(RCP_IFLAG) 4246 NODE_NAME_CASE(FMUL_LEGACY) 4247 NODE_NAME_CASE(RSQ_CLAMP) 4248 NODE_NAME_CASE(LDEXP) 4249 NODE_NAME_CASE(FP_CLASS) 4250 NODE_NAME_CASE(DOT4) 4251 NODE_NAME_CASE(CARRY) 4252 NODE_NAME_CASE(BORROW) 4253 NODE_NAME_CASE(BFE_U32) 4254 NODE_NAME_CASE(BFE_I32) 4255 NODE_NAME_CASE(BFI) 4256 NODE_NAME_CASE(BFM) 4257 NODE_NAME_CASE(FFBH_U32) 4258 NODE_NAME_CASE(FFBH_I32) 4259 NODE_NAME_CASE(FFBL_B32) 4260 NODE_NAME_CASE(MUL_U24) 4261 NODE_NAME_CASE(MUL_I24) 4262 NODE_NAME_CASE(MULHI_U24) 4263 NODE_NAME_CASE(MULHI_I24) 4264 NODE_NAME_CASE(MUL_LOHI_U24) 4265 NODE_NAME_CASE(MUL_LOHI_I24) 4266 NODE_NAME_CASE(MAD_U24) 4267 NODE_NAME_CASE(MAD_I24) 4268 NODE_NAME_CASE(MAD_I64_I32) 4269 NODE_NAME_CASE(MAD_U64_U32) 4270 NODE_NAME_CASE(PERM) 4271 NODE_NAME_CASE(TEXTURE_FETCH) 4272 NODE_NAME_CASE(EXPORT) 4273 NODE_NAME_CASE(EXPORT_DONE) 4274 NODE_NAME_CASE(R600_EXPORT) 4275 NODE_NAME_CASE(CONST_ADDRESS) 4276 NODE_NAME_CASE(REGISTER_LOAD) 4277 NODE_NAME_CASE(REGISTER_STORE) 4278 NODE_NAME_CASE(SAMPLE) 4279 NODE_NAME_CASE(SAMPLEB) 4280 NODE_NAME_CASE(SAMPLED) 4281 NODE_NAME_CASE(SAMPLEL) 4282 NODE_NAME_CASE(CVT_F32_UBYTE0) 4283 NODE_NAME_CASE(CVT_F32_UBYTE1) 4284 NODE_NAME_CASE(CVT_F32_UBYTE2) 4285 NODE_NAME_CASE(CVT_F32_UBYTE3) 4286 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4287 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4288 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4289 NODE_NAME_CASE(CVT_PK_I16_I32) 4290 NODE_NAME_CASE(CVT_PK_U16_U32) 4291 NODE_NAME_CASE(FP_TO_FP16) 4292 NODE_NAME_CASE(FP16_ZEXT) 4293 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4294 NODE_NAME_CASE(CONST_DATA_PTR) 4295 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4296 NODE_NAME_CASE(LDS) 4297 NODE_NAME_CASE(KILL) 4298 NODE_NAME_CASE(DUMMY_CHAIN) 4299 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4300 NODE_NAME_CASE(INTERP_P1LL_F16) 4301 NODE_NAME_CASE(INTERP_P1LV_F16) 4302 NODE_NAME_CASE(INTERP_P2_F16) 4303 NODE_NAME_CASE(LOAD_D16_HI) 4304 NODE_NAME_CASE(LOAD_D16_LO) 4305 NODE_NAME_CASE(LOAD_D16_HI_I8) 4306 NODE_NAME_CASE(LOAD_D16_HI_U8) 4307 NODE_NAME_CASE(LOAD_D16_LO_I8) 4308 NODE_NAME_CASE(LOAD_D16_LO_U8) 4309 NODE_NAME_CASE(STORE_MSKOR) 4310 NODE_NAME_CASE(LOAD_CONSTANT) 4311 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4312 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4313 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4314 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4315 NODE_NAME_CASE(DS_ORDERED_COUNT) 4316 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4317 NODE_NAME_CASE(ATOMIC_INC) 4318 NODE_NAME_CASE(ATOMIC_DEC) 4319 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4320 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4321 NODE_NAME_CASE(BUFFER_LOAD) 4322 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4323 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4324 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4325 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4326 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4327 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4328 NODE_NAME_CASE(SBUFFER_LOAD) 4329 NODE_NAME_CASE(BUFFER_STORE) 4330 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4331 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4332 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4333 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4334 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4335 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4336 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4337 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4338 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4339 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4340 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4341 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4342 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4343 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4344 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4345 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4346 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4347 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4348 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4349 NODE_NAME_CASE(ATOMIC_PK_FADD) 4350 4351 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4352 } 4353 return nullptr; 4354 } 4355 4356 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4357 SelectionDAG &DAG, int Enabled, 4358 int &RefinementSteps, 4359 bool &UseOneConstNR, 4360 bool Reciprocal) const { 4361 EVT VT = Operand.getValueType(); 4362 4363 if (VT == MVT::f32) { 4364 RefinementSteps = 0; 4365 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4366 } 4367 4368 // TODO: There is also f64 rsq instruction, but the documentation is less 4369 // clear on its precision. 4370 4371 return SDValue(); 4372 } 4373 4374 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4375 SelectionDAG &DAG, int Enabled, 4376 int &RefinementSteps) const { 4377 EVT VT = Operand.getValueType(); 4378 4379 if (VT == MVT::f32) { 4380 // Reciprocal, < 1 ulp error. 4381 // 4382 // This reciprocal approximation converges to < 0.5 ulp error with one 4383 // newton rhapson performed with two fused multiple adds (FMAs). 4384 4385 RefinementSteps = 0; 4386 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4387 } 4388 4389 // TODO: There is also f64 rcp instruction, but the documentation is less 4390 // clear on its precision. 4391 4392 return SDValue(); 4393 } 4394 4395 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4396 const SDValue Op, KnownBits &Known, 4397 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4398 4399 Known.resetAll(); // Don't know anything. 4400 4401 unsigned Opc = Op.getOpcode(); 4402 4403 switch (Opc) { 4404 default: 4405 break; 4406 case AMDGPUISD::CARRY: 4407 case AMDGPUISD::BORROW: { 4408 Known.Zero = APInt::getHighBitsSet(32, 31); 4409 break; 4410 } 4411 4412 case AMDGPUISD::BFE_I32: 4413 case AMDGPUISD::BFE_U32: { 4414 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4415 if (!CWidth) 4416 return; 4417 4418 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4419 4420 if (Opc == AMDGPUISD::BFE_U32) 4421 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4422 4423 break; 4424 } 4425 case AMDGPUISD::FP_TO_FP16: 4426 case AMDGPUISD::FP16_ZEXT: { 4427 unsigned BitWidth = Known.getBitWidth(); 4428 4429 // High bits are zero. 4430 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4431 break; 4432 } 4433 case AMDGPUISD::MUL_U24: 4434 case AMDGPUISD::MUL_I24: { 4435 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4436 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4437 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4438 RHSKnown.countMinTrailingZeros(); 4439 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4440 // Skip extra check if all bits are known zeros. 4441 if (TrailZ >= 32) 4442 break; 4443 4444 // Truncate to 24 bits. 4445 LHSKnown = LHSKnown.trunc(24); 4446 RHSKnown = RHSKnown.trunc(24); 4447 4448 bool Negative = false; 4449 if (Opc == AMDGPUISD::MUL_I24) { 4450 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4451 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4452 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4453 if (MaxValBits >= 32) 4454 break; 4455 bool LHSNegative = LHSKnown.isNegative(); 4456 bool LHSPositive = LHSKnown.isNonNegative(); 4457 bool RHSNegative = RHSKnown.isNegative(); 4458 bool RHSPositive = RHSKnown.isNonNegative(); 4459 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4460 break; 4461 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4462 if (Negative) 4463 Known.One.setHighBits(32 - MaxValBits); 4464 else 4465 Known.Zero.setHighBits(32 - MaxValBits); 4466 } else { 4467 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4468 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4469 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4470 if (MaxValBits >= 32) 4471 break; 4472 Known.Zero.setHighBits(32 - MaxValBits); 4473 } 4474 break; 4475 } 4476 case AMDGPUISD::PERM: { 4477 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4478 if (!CMask) 4479 return; 4480 4481 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4482 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4483 unsigned Sel = CMask->getZExtValue(); 4484 4485 for (unsigned I = 0; I < 32; I += 8) { 4486 unsigned SelBits = Sel & 0xff; 4487 if (SelBits < 4) { 4488 SelBits *= 8; 4489 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4490 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4491 } else if (SelBits < 7) { 4492 SelBits = (SelBits & 3) * 8; 4493 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4494 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4495 } else if (SelBits == 0x0c) { 4496 Known.Zero |= 0xFFull << I; 4497 } else if (SelBits > 0x0c) { 4498 Known.One |= 0xFFull << I; 4499 } 4500 Sel >>= 8; 4501 } 4502 break; 4503 } 4504 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4505 Known.Zero.setHighBits(24); 4506 break; 4507 } 4508 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4509 Known.Zero.setHighBits(16); 4510 break; 4511 } 4512 case AMDGPUISD::LDS: { 4513 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4514 unsigned Align = GA->getGlobal()->getAlignment(); 4515 4516 Known.Zero.setHighBits(16); 4517 if (Align) 4518 Known.Zero.setLowBits(Log2_32(Align)); 4519 break; 4520 } 4521 case ISD::INTRINSIC_WO_CHAIN: { 4522 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4523 switch (IID) { 4524 case Intrinsic::amdgcn_mbcnt_lo: 4525 case Intrinsic::amdgcn_mbcnt_hi: { 4526 const GCNSubtarget &ST = 4527 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4528 // These return at most the wavefront size - 1. 4529 unsigned Size = Op.getValueType().getSizeInBits(); 4530 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4531 break; 4532 } 4533 default: 4534 break; 4535 } 4536 } 4537 } 4538 } 4539 4540 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4541 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4542 unsigned Depth) const { 4543 switch (Op.getOpcode()) { 4544 case AMDGPUISD::BFE_I32: { 4545 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4546 if (!Width) 4547 return 1; 4548 4549 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4550 if (!isNullConstant(Op.getOperand(1))) 4551 return SignBits; 4552 4553 // TODO: Could probably figure something out with non-0 offsets. 4554 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4555 return std::max(SignBits, Op0SignBits); 4556 } 4557 4558 case AMDGPUISD::BFE_U32: { 4559 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4560 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4561 } 4562 4563 case AMDGPUISD::CARRY: 4564 case AMDGPUISD::BORROW: 4565 return 31; 4566 case AMDGPUISD::BUFFER_LOAD_BYTE: 4567 return 25; 4568 case AMDGPUISD::BUFFER_LOAD_SHORT: 4569 return 17; 4570 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4571 return 24; 4572 case AMDGPUISD::BUFFER_LOAD_USHORT: 4573 return 16; 4574 case AMDGPUISD::FP_TO_FP16: 4575 case AMDGPUISD::FP16_ZEXT: 4576 return 16; 4577 default: 4578 return 1; 4579 } 4580 } 4581 4582 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4583 const SelectionDAG &DAG, 4584 bool SNaN, 4585 unsigned Depth) const { 4586 unsigned Opcode = Op.getOpcode(); 4587 switch (Opcode) { 4588 case AMDGPUISD::FMIN_LEGACY: 4589 case AMDGPUISD::FMAX_LEGACY: { 4590 if (SNaN) 4591 return true; 4592 4593 // TODO: Can check no nans on one of the operands for each one, but which 4594 // one? 4595 return false; 4596 } 4597 case AMDGPUISD::FMUL_LEGACY: 4598 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4599 if (SNaN) 4600 return true; 4601 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4602 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4603 } 4604 case AMDGPUISD::FMED3: 4605 case AMDGPUISD::FMIN3: 4606 case AMDGPUISD::FMAX3: 4607 case AMDGPUISD::FMAD_FTZ: { 4608 if (SNaN) 4609 return true; 4610 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4611 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4612 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4613 } 4614 case AMDGPUISD::CVT_F32_UBYTE0: 4615 case AMDGPUISD::CVT_F32_UBYTE1: 4616 case AMDGPUISD::CVT_F32_UBYTE2: 4617 case AMDGPUISD::CVT_F32_UBYTE3: 4618 return true; 4619 4620 case AMDGPUISD::RCP: 4621 case AMDGPUISD::RSQ: 4622 case AMDGPUISD::RCP_LEGACY: 4623 case AMDGPUISD::RSQ_LEGACY: 4624 case AMDGPUISD::RSQ_CLAMP: { 4625 if (SNaN) 4626 return true; 4627 4628 // TODO: Need is known positive check. 4629 return false; 4630 } 4631 case AMDGPUISD::LDEXP: 4632 case AMDGPUISD::FRACT: { 4633 if (SNaN) 4634 return true; 4635 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4636 } 4637 case AMDGPUISD::DIV_SCALE: 4638 case AMDGPUISD::DIV_FMAS: 4639 case AMDGPUISD::DIV_FIXUP: 4640 case AMDGPUISD::TRIG_PREOP: 4641 // TODO: Refine on operands. 4642 return SNaN; 4643 case AMDGPUISD::SIN_HW: 4644 case AMDGPUISD::COS_HW: { 4645 // TODO: Need check for infinity 4646 return SNaN; 4647 } 4648 case ISD::INTRINSIC_WO_CHAIN: { 4649 unsigned IntrinsicID 4650 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4651 // TODO: Handle more intrinsics 4652 switch (IntrinsicID) { 4653 case Intrinsic::amdgcn_cubeid: 4654 return true; 4655 4656 case Intrinsic::amdgcn_frexp_mant: { 4657 if (SNaN) 4658 return true; 4659 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4660 } 4661 case Intrinsic::amdgcn_cvt_pkrtz: { 4662 if (SNaN) 4663 return true; 4664 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4665 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4666 } 4667 case Intrinsic::amdgcn_fdot2: 4668 // TODO: Refine on operand 4669 return SNaN; 4670 default: 4671 return false; 4672 } 4673 } 4674 default: 4675 return false; 4676 } 4677 } 4678 4679 TargetLowering::AtomicExpansionKind 4680 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4681 switch (RMW->getOperation()) { 4682 case AtomicRMWInst::Nand: 4683 case AtomicRMWInst::FAdd: 4684 case AtomicRMWInst::FSub: 4685 return AtomicExpansionKind::CmpXChg; 4686 default: 4687 return AtomicExpansionKind::None; 4688 } 4689 } 4690