1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 17 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 18 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 19 20 #include "AMDGPUISelLowering.h" 21 #include "AMDGPU.h" 22 #include "AMDGPUCallLowering.h" 23 #include "AMDGPUFrameLowering.h" 24 #include "AMDGPUIntrinsicInfo.h" 25 #include "AMDGPURegisterInfo.h" 26 #include "AMDGPUSubtarget.h" 27 #include "AMDGPUTargetMachine.h" 28 #include "Utils/AMDGPUBaseInfo.h" 29 #include "R600MachineFunctionInfo.h" 30 #include "SIInstrInfo.h" 31 #include "SIMachineFunctionInfo.h" 32 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 33 #include "llvm/CodeGen/CallingConvLower.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DiagnosticInfo.h" 40 #include "llvm/Support/KnownBits.h" 41 using namespace llvm; 42 43 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 44 CCValAssign::LocInfo LocInfo, 45 ISD::ArgFlagsTy ArgFlags, CCState &State) { 46 MachineFunction &MF = State.getMachineFunction(); 47 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 48 49 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 50 ArgFlags.getOrigAlign()); 51 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 52 return true; 53 } 54 55 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 56 CCValAssign::LocInfo LocInfo, 57 ISD::ArgFlagsTy ArgFlags, CCState &State, 58 const TargetRegisterClass *RC, 59 unsigned NumRegs) { 60 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 61 unsigned RegResult = State.AllocateReg(RegList); 62 if (RegResult == AMDGPU::NoRegister) 63 return false; 64 65 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 66 return true; 67 } 68 69 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 70 CCValAssign::LocInfo LocInfo, 71 ISD::ArgFlagsTy ArgFlags, CCState &State) { 72 switch (LocVT.SimpleTy) { 73 case MVT::i64: 74 case MVT::f64: 75 case MVT::v2i32: 76 case MVT::v2f32: { 77 // Up to SGPR0-SGPR39 78 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 79 &AMDGPU::SGPR_64RegClass, 20); 80 } 81 default: 82 return false; 83 } 84 } 85 86 // Allocate up to VGPR31. 87 // 88 // TODO: Since there are no VGPR alignent requirements would it be better to 89 // split into individual scalar registers? 90 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 91 CCValAssign::LocInfo LocInfo, 92 ISD::ArgFlagsTy ArgFlags, CCState &State) { 93 switch (LocVT.SimpleTy) { 94 case MVT::i64: 95 case MVT::f64: 96 case MVT::v2i32: 97 case MVT::v2f32: { 98 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 99 &AMDGPU::VReg_64RegClass, 31); 100 } 101 case MVT::v4i32: 102 case MVT::v4f32: 103 case MVT::v2i64: 104 case MVT::v2f64: { 105 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 106 &AMDGPU::VReg_128RegClass, 29); 107 } 108 case MVT::v8i32: 109 case MVT::v8f32: { 110 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 111 &AMDGPU::VReg_256RegClass, 25); 112 113 } 114 case MVT::v16i32: 115 case MVT::v16f32: { 116 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 117 &AMDGPU::VReg_512RegClass, 17); 118 119 } 120 default: 121 return false; 122 } 123 } 124 125 #include "AMDGPUGenCallingConv.inc" 126 127 // Find a larger type to do a load / store of a vector with. 128 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 129 unsigned StoreSize = VT.getStoreSizeInBits(); 130 if (StoreSize <= 32) 131 return EVT::getIntegerVT(Ctx, StoreSize); 132 133 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 134 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 135 } 136 137 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 138 KnownBits Known; 139 EVT VT = Op.getValueType(); 140 DAG.computeKnownBits(Op, Known); 141 142 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 143 } 144 145 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 146 EVT VT = Op.getValueType(); 147 148 // In order for this to be a signed 24-bit value, bit 23, must 149 // be a sign bit. 150 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 151 } 152 153 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 154 const AMDGPUSubtarget &STI) 155 : TargetLowering(TM), Subtarget(&STI) { 156 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 157 // Lower floating point store/load to integer store/load to reduce the number 158 // of patterns in tablegen. 159 setOperationAction(ISD::LOAD, MVT::f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 161 162 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 164 165 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 167 168 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 170 171 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 173 174 setOperationAction(ISD::LOAD, MVT::i64, Promote); 175 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 176 177 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 178 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 179 180 setOperationAction(ISD::LOAD, MVT::f64, Promote); 181 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 182 183 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 184 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 185 186 // There are no 64-bit extloads. These should be done as a 32-bit extload and 187 // an extension to 64-bit. 188 for (MVT VT : MVT::integer_valuetypes()) { 189 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 190 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 191 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 192 } 193 194 for (MVT VT : MVT::integer_valuetypes()) { 195 if (VT == MVT::i64) 196 continue; 197 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 199 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 200 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 202 203 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 204 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 206 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 207 208 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 210 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 211 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 212 } 213 214 for (MVT VT : MVT::integer_vector_valuetypes()) { 215 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 218 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 219 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 220 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 221 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 222 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 223 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 225 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 226 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 227 } 228 229 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 232 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 233 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 237 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 238 239 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 240 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 241 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 242 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 243 244 setOperationAction(ISD::STORE, MVT::f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 246 247 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 249 250 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 252 253 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 254 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 255 256 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 258 259 setOperationAction(ISD::STORE, MVT::i64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 261 262 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 263 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 264 265 setOperationAction(ISD::STORE, MVT::f64, Promote); 266 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 267 268 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 269 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 270 271 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 272 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 275 276 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 277 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 280 281 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 282 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 283 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 284 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 285 286 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 287 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 288 289 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 290 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 291 292 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 293 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 294 295 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 296 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 297 298 299 setOperationAction(ISD::Constant, MVT::i32, Legal); 300 setOperationAction(ISD::Constant, MVT::i64, Legal); 301 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 303 304 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 305 setOperationAction(ISD::BRIND, MVT::Other, Expand); 306 307 // This is totally unsupported, just custom lower to produce an error. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 309 310 // Library functions. These default to Expand, but we have instructions 311 // for them. 312 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 314 setOperationAction(ISD::FPOW, MVT::f32, Legal); 315 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 316 setOperationAction(ISD::FABS, MVT::f32, Legal); 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FRINT, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 321 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 322 323 setOperationAction(ISD::FROUND, MVT::f32, Custom); 324 setOperationAction(ISD::FROUND, MVT::f64, Custom); 325 326 setOperationAction(ISD::FLOG, MVT::f32, Custom); 327 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 328 329 if (Subtarget->has16BitInsts()) { 330 setOperationAction(ISD::FLOG, MVT::f16, Custom); 331 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 332 } 333 334 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 335 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 336 337 setOperationAction(ISD::FREM, MVT::f32, Custom); 338 setOperationAction(ISD::FREM, MVT::f64, Custom); 339 340 // v_mad_f32 does not support denormals according to some sources. 341 if (!Subtarget->hasFP32Denormals()) 342 setOperationAction(ISD::FMAD, MVT::f32, Legal); 343 344 // Expand to fneg + fadd. 345 setOperationAction(ISD::FSUB, MVT::f64, Expand); 346 347 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 348 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 349 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 350 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 357 358 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 359 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 360 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 361 setOperationAction(ISD::FRINT, MVT::f64, Custom); 362 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 363 } 364 365 if (!Subtarget->hasBFI()) { 366 // fcopysign can be done in a single instruction with BFI. 367 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 368 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 369 } 370 371 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 372 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 373 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 374 375 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 376 for (MVT VT : ScalarIntVTs) { 377 // These should use [SU]DIVREM, so set them to expand 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 383 // GPU does not have divrem function for signed or unsigned. 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Custom); 386 387 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 388 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 389 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 390 391 setOperationAction(ISD::BSWAP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 } 395 396 if (!Subtarget->hasBCNT(32)) 397 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 398 399 if (!Subtarget->hasBCNT(64)) 400 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 401 402 // The hardware supports 32-bit ROTR, but not ROTL. 403 setOperationAction(ISD::ROTL, MVT::i32, Expand); 404 setOperationAction(ISD::ROTL, MVT::i64, Expand); 405 setOperationAction(ISD::ROTR, MVT::i64, Expand); 406 407 setOperationAction(ISD::MUL, MVT::i64, Expand); 408 setOperationAction(ISD::MULHU, MVT::i64, Expand); 409 setOperationAction(ISD::MULHS, MVT::i64, Expand); 410 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 411 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 412 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 413 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 414 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 415 416 setOperationAction(ISD::SMIN, MVT::i32, Legal); 417 setOperationAction(ISD::UMIN, MVT::i32, Legal); 418 setOperationAction(ISD::SMAX, MVT::i32, Legal); 419 setOperationAction(ISD::UMAX, MVT::i32, Legal); 420 421 if (Subtarget->hasFFBH()) 422 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 423 424 if (Subtarget->hasFFBL()) 425 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 426 427 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 428 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 429 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 430 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 431 432 // We only really have 32-bit BFE instructions (and 16-bit on VI). 433 // 434 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 435 // effort to match them now. We want this to be false for i64 cases when the 436 // extraction isn't restricted to the upper or lower half. Ideally we would 437 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 438 // span the midpoint are probably relatively rare, so don't worry about them 439 // for now. 440 if (Subtarget->hasBFE()) 441 setHasExtractBitsInsn(true); 442 443 static const MVT::SimpleValueType VectorIntTypes[] = { 444 MVT::v2i32, MVT::v4i32 445 }; 446 447 for (MVT VT : VectorIntTypes) { 448 // Expand the following operations for the current type by default. 449 setOperationAction(ISD::ADD, VT, Expand); 450 setOperationAction(ISD::AND, VT, Expand); 451 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 452 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 453 setOperationAction(ISD::MUL, VT, Expand); 454 setOperationAction(ISD::MULHU, VT, Expand); 455 setOperationAction(ISD::MULHS, VT, Expand); 456 setOperationAction(ISD::OR, VT, Expand); 457 setOperationAction(ISD::SHL, VT, Expand); 458 setOperationAction(ISD::SRA, VT, Expand); 459 setOperationAction(ISD::SRL, VT, Expand); 460 setOperationAction(ISD::ROTL, VT, Expand); 461 setOperationAction(ISD::ROTR, VT, Expand); 462 setOperationAction(ISD::SUB, VT, Expand); 463 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 464 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 465 setOperationAction(ISD::SDIV, VT, Expand); 466 setOperationAction(ISD::UDIV, VT, Expand); 467 setOperationAction(ISD::SREM, VT, Expand); 468 setOperationAction(ISD::UREM, VT, Expand); 469 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 470 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 471 setOperationAction(ISD::SDIVREM, VT, Custom); 472 setOperationAction(ISD::UDIVREM, VT, Expand); 473 setOperationAction(ISD::ADDC, VT, Expand); 474 setOperationAction(ISD::SUBC, VT, Expand); 475 setOperationAction(ISD::ADDE, VT, Expand); 476 setOperationAction(ISD::SUBE, VT, Expand); 477 setOperationAction(ISD::SELECT, VT, Expand); 478 setOperationAction(ISD::VSELECT, VT, Expand); 479 setOperationAction(ISD::SELECT_CC, VT, Expand); 480 setOperationAction(ISD::XOR, VT, Expand); 481 setOperationAction(ISD::BSWAP, VT, Expand); 482 setOperationAction(ISD::CTPOP, VT, Expand); 483 setOperationAction(ISD::CTTZ, VT, Expand); 484 setOperationAction(ISD::CTLZ, VT, Expand); 485 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 486 setOperationAction(ISD::SETCC, VT, Expand); 487 } 488 489 static const MVT::SimpleValueType FloatVectorTypes[] = { 490 MVT::v2f32, MVT::v4f32 491 }; 492 493 for (MVT VT : FloatVectorTypes) { 494 setOperationAction(ISD::FABS, VT, Expand); 495 setOperationAction(ISD::FMINNUM, VT, Expand); 496 setOperationAction(ISD::FMAXNUM, VT, Expand); 497 setOperationAction(ISD::FADD, VT, Expand); 498 setOperationAction(ISD::FCEIL, VT, Expand); 499 setOperationAction(ISD::FCOS, VT, Expand); 500 setOperationAction(ISD::FDIV, VT, Expand); 501 setOperationAction(ISD::FEXP2, VT, Expand); 502 setOperationAction(ISD::FLOG2, VT, Expand); 503 setOperationAction(ISD::FREM, VT, Expand); 504 setOperationAction(ISD::FLOG, VT, Expand); 505 setOperationAction(ISD::FLOG10, VT, Expand); 506 setOperationAction(ISD::FPOW, VT, Expand); 507 setOperationAction(ISD::FFLOOR, VT, Expand); 508 setOperationAction(ISD::FTRUNC, VT, Expand); 509 setOperationAction(ISD::FMUL, VT, Expand); 510 setOperationAction(ISD::FMA, VT, Expand); 511 setOperationAction(ISD::FRINT, VT, Expand); 512 setOperationAction(ISD::FNEARBYINT, VT, Expand); 513 setOperationAction(ISD::FSQRT, VT, Expand); 514 setOperationAction(ISD::FSIN, VT, Expand); 515 setOperationAction(ISD::FSUB, VT, Expand); 516 setOperationAction(ISD::FNEG, VT, Expand); 517 setOperationAction(ISD::VSELECT, VT, Expand); 518 setOperationAction(ISD::SELECT_CC, VT, Expand); 519 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 520 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 521 setOperationAction(ISD::SETCC, VT, Expand); 522 } 523 524 // This causes using an unrolled select operation rather than expansion with 525 // bit operations. This is in general better, but the alternative using BFI 526 // instructions may be better if the select sources are SGPRs. 527 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 528 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 529 530 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 531 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 532 533 // There are no libcalls of any kind. 534 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 535 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 536 537 setBooleanContents(ZeroOrNegativeOneBooleanContent); 538 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 539 540 setSchedulingPreference(Sched::RegPressure); 541 setJumpIsExpensive(true); 542 543 // FIXME: This is only partially true. If we have to do vector compares, any 544 // SGPR pair can be a condition register. If we have a uniform condition, we 545 // are better off doing SALU operations, where there is only one SCC. For now, 546 // we don't have a way of knowing during instruction selection if a condition 547 // will be uniform and we always use vector compares. Assume we are using 548 // vector compares until that is fixed. 549 setHasMultipleConditionRegisters(true); 550 551 // SI at least has hardware support for floating point exceptions, but no way 552 // of using or handling them is implemented. They are also optional in OpenCL 553 // (Section 7.3) 554 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 555 556 PredictableSelectIsExpensive = false; 557 558 // We want to find all load dependencies for long chains of stores to enable 559 // merging into very wide vectors. The problem is with vectors with > 4 560 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 561 // vectors are a legal type, even though we have to split the loads 562 // usually. When we can more precisely specify load legality per address 563 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 564 // smarter so that they can figure out what to do in 2 iterations without all 565 // N > 4 stores on the same chain. 566 GatherAllAliasesMaxDepth = 16; 567 568 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 569 // about these during lowering. 570 MaxStoresPerMemcpy = 0xffffffff; 571 MaxStoresPerMemmove = 0xffffffff; 572 MaxStoresPerMemset = 0xffffffff; 573 574 setTargetDAGCombine(ISD::BITCAST); 575 setTargetDAGCombine(ISD::SHL); 576 setTargetDAGCombine(ISD::SRA); 577 setTargetDAGCombine(ISD::SRL); 578 setTargetDAGCombine(ISD::TRUNCATE); 579 setTargetDAGCombine(ISD::MUL); 580 setTargetDAGCombine(ISD::MULHU); 581 setTargetDAGCombine(ISD::MULHS); 582 setTargetDAGCombine(ISD::SELECT); 583 setTargetDAGCombine(ISD::SELECT_CC); 584 setTargetDAGCombine(ISD::STORE); 585 setTargetDAGCombine(ISD::FADD); 586 setTargetDAGCombine(ISD::FSUB); 587 setTargetDAGCombine(ISD::FNEG); 588 setTargetDAGCombine(ISD::FABS); 589 setTargetDAGCombine(ISD::AssertZext); 590 setTargetDAGCombine(ISD::AssertSext); 591 } 592 593 //===----------------------------------------------------------------------===// 594 // Target Information 595 //===----------------------------------------------------------------------===// 596 597 LLVM_READNONE 598 static bool fnegFoldsIntoOp(unsigned Opc) { 599 switch (Opc) { 600 case ISD::FADD: 601 case ISD::FSUB: 602 case ISD::FMUL: 603 case ISD::FMA: 604 case ISD::FMAD: 605 case ISD::FMINNUM: 606 case ISD::FMAXNUM: 607 case ISD::FSIN: 608 case ISD::FTRUNC: 609 case ISD::FRINT: 610 case ISD::FNEARBYINT: 611 case AMDGPUISD::RCP: 612 case AMDGPUISD::RCP_LEGACY: 613 case AMDGPUISD::SIN_HW: 614 case AMDGPUISD::FMUL_LEGACY: 615 case AMDGPUISD::FMIN_LEGACY: 616 case AMDGPUISD::FMAX_LEGACY: 617 return true; 618 default: 619 return false; 620 } 621 } 622 623 /// \p returns true if the operation will definitely need to use a 64-bit 624 /// encoding, and thus will use a VOP3 encoding regardless of the source 625 /// modifiers. 626 LLVM_READONLY 627 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 628 return N->getNumOperands() > 2 || VT == MVT::f64; 629 } 630 631 // Most FP instructions support source modifiers, but this could be refined 632 // slightly. 633 LLVM_READONLY 634 static bool hasSourceMods(const SDNode *N) { 635 if (isa<MemSDNode>(N)) 636 return false; 637 638 switch (N->getOpcode()) { 639 case ISD::CopyToReg: 640 case ISD::SELECT: 641 case ISD::FDIV: 642 case ISD::FREM: 643 case ISD::INLINEASM: 644 case AMDGPUISD::INTERP_P1: 645 case AMDGPUISD::INTERP_P2: 646 case AMDGPUISD::DIV_SCALE: 647 648 // TODO: Should really be looking at the users of the bitcast. These are 649 // problematic because bitcasts are used to legalize all stores to integer 650 // types. 651 case ISD::BITCAST: 652 return false; 653 default: 654 return true; 655 } 656 } 657 658 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 659 unsigned CostThreshold) { 660 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 661 // it is truly free to use a source modifier in all cases. If there are 662 // multiple users but for each one will necessitate using VOP3, there will be 663 // a code size increase. Try to avoid increasing code size unless we know it 664 // will save on the instruction count. 665 unsigned NumMayIncreaseSize = 0; 666 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 667 668 // XXX - Should this limit number of uses to check? 669 for (const SDNode *U : N->uses()) { 670 if (!hasSourceMods(U)) 671 return false; 672 673 if (!opMustUseVOP3Encoding(U, VT)) { 674 if (++NumMayIncreaseSize > CostThreshold) 675 return false; 676 } 677 } 678 679 return true; 680 } 681 682 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 683 return MVT::i32; 684 } 685 686 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 687 return true; 688 } 689 690 // The backend supports 32 and 64 bit floating point immediates. 691 // FIXME: Why are we reporting vectors of FP immediates as legal? 692 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 693 EVT ScalarVT = VT.getScalarType(); 694 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 695 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 696 } 697 698 // We don't want to shrink f64 / f32 constants. 699 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 700 EVT ScalarVT = VT.getScalarType(); 701 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 702 } 703 704 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 705 ISD::LoadExtType, 706 EVT NewVT) const { 707 708 unsigned NewSize = NewVT.getStoreSizeInBits(); 709 710 // If we are reducing to a 32-bit load, this is always better. 711 if (NewSize == 32) 712 return true; 713 714 EVT OldVT = N->getValueType(0); 715 unsigned OldSize = OldVT.getStoreSizeInBits(); 716 717 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 718 // extloads, so doing one requires using a buffer_load. In cases where we 719 // still couldn't use a scalar load, using the wider load shouldn't really 720 // hurt anything. 721 722 // If the old size already had to be an extload, there's no harm in continuing 723 // to reduce the width. 724 return (OldSize < 32); 725 } 726 727 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 728 EVT CastTy) const { 729 730 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 731 732 if (LoadTy.getScalarType() == MVT::i32) 733 return false; 734 735 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 736 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 737 738 return (LScalarSize < CastScalarSize) || 739 (CastScalarSize >= 32); 740 } 741 742 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 743 // profitable with the expansion for 64-bit since it's generally good to 744 // speculate things. 745 // FIXME: These should really have the size as a parameter. 746 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 747 return true; 748 } 749 750 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 751 return true; 752 } 753 754 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 755 switch (N->getOpcode()) { 756 default: 757 return false; 758 case ISD::EntryToken: 759 case ISD::TokenFactor: 760 return true; 761 case ISD::INTRINSIC_WO_CHAIN: 762 { 763 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 764 switch (IntrID) { 765 default: 766 return false; 767 case Intrinsic::amdgcn_readfirstlane: 768 case Intrinsic::amdgcn_readlane: 769 return true; 770 } 771 } 772 break; 773 case ISD::LOAD: 774 { 775 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 776 if (L->getMemOperand()->getAddrSpace() 777 == Subtarget->getAMDGPUAS().CONSTANT_ADDRESS_32BIT) 778 return true; 779 return false; 780 } 781 break; 782 } 783 } 784 785 bool AMDGPUTargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, 786 FunctionLoweringInfo * FLI, DivergenceAnalysis * DA) const 787 { 788 switch (N->getOpcode()) { 789 case ISD::Register: 790 case ISD::CopyFromReg: 791 { 792 const RegisterSDNode *R = nullptr; 793 if (N->getOpcode() == ISD::Register) { 794 R = dyn_cast<RegisterSDNode>(N); 795 } 796 else { 797 R = dyn_cast<RegisterSDNode>(N->getOperand(1)); 798 } 799 if (R) 800 { 801 const MachineFunction * MF = FLI->MF; 802 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 803 const MachineRegisterInfo &MRI = MF->getRegInfo(); 804 const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); 805 unsigned Reg = R->getReg(); 806 if (TRI.isPhysicalRegister(Reg)) 807 return TRI.isVGPR(MRI, Reg); 808 809 if (MRI.isLiveIn(Reg)) { 810 // workitem.id.x workitem.id.y workitem.id.z 811 // Any VGPR formal argument is also considered divergent 812 if ((MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_X) || 813 (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Y) || 814 (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Z) || 815 (TRI.isVGPR(MRI, Reg))) 816 return true; 817 // Formal arguments of non-entry functions 818 // are conservatively considered divergent 819 else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) 820 return true; 821 } 822 return !DA || DA->isDivergent(FLI->getValueFromVirtualReg(Reg)); 823 } 824 } 825 break; 826 case ISD::LOAD: { 827 const LoadSDNode *L = dyn_cast<LoadSDNode>(N); 828 if (L->getMemOperand()->getAddrSpace() == 829 Subtarget->getAMDGPUAS().PRIVATE_ADDRESS) 830 return true; 831 } break; 832 case ISD::CALLSEQ_END: 833 return true; 834 break; 835 case ISD::INTRINSIC_WO_CHAIN: 836 { 837 838 } 839 return AMDGPU::isIntrinsicSourceOfDivergence( 840 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 841 case ISD::INTRINSIC_W_CHAIN: 842 return AMDGPU::isIntrinsicSourceOfDivergence( 843 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 844 // In some cases intrinsics that are a source of divergence have been 845 // lowered to AMDGPUISD so we also need to check those too. 846 case AMDGPUISD::INTERP_MOV: 847 case AMDGPUISD::INTERP_P1: 848 case AMDGPUISD::INTERP_P2: 849 return true; 850 } 851 return false; 852 } 853 854 //===---------------------------------------------------------------------===// 855 // Target Properties 856 //===---------------------------------------------------------------------===// 857 858 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 859 assert(VT.isFloatingPoint()); 860 861 // Packed operations do not have a fabs modifier. 862 return VT == MVT::f32 || VT == MVT::f64 || 863 (Subtarget->has16BitInsts() && VT == MVT::f16); 864 } 865 866 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 867 assert(VT.isFloatingPoint()); 868 return VT == MVT::f32 || VT == MVT::f64 || 869 (Subtarget->has16BitInsts() && VT == MVT::f16) || 870 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 871 } 872 873 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 874 unsigned NumElem, 875 unsigned AS) const { 876 return true; 877 } 878 879 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 880 // There are few operations which truly have vector input operands. Any vector 881 // operation is going to involve operations on each component, and a 882 // build_vector will be a copy per element, so it always makes sense to use a 883 // build_vector input in place of the extracted element to avoid a copy into a 884 // super register. 885 // 886 // We should probably only do this if all users are extracts only, but this 887 // should be the common case. 888 return true; 889 } 890 891 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 892 // Truncate is just accessing a subregister. 893 894 unsigned SrcSize = Source.getSizeInBits(); 895 unsigned DestSize = Dest.getSizeInBits(); 896 897 return DestSize < SrcSize && DestSize % 32 == 0 ; 898 } 899 900 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 901 // Truncate is just accessing a subregister. 902 903 unsigned SrcSize = Source->getScalarSizeInBits(); 904 unsigned DestSize = Dest->getScalarSizeInBits(); 905 906 if (DestSize== 16 && Subtarget->has16BitInsts()) 907 return SrcSize >= 32; 908 909 return DestSize < SrcSize && DestSize % 32 == 0; 910 } 911 912 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 913 unsigned SrcSize = Src->getScalarSizeInBits(); 914 unsigned DestSize = Dest->getScalarSizeInBits(); 915 916 if (SrcSize == 16 && Subtarget->has16BitInsts()) 917 return DestSize >= 32; 918 919 return SrcSize == 32 && DestSize == 64; 920 } 921 922 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 923 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 924 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 925 // this will enable reducing 64-bit operations the 32-bit, which is always 926 // good. 927 928 if (Src == MVT::i16) 929 return Dest == MVT::i32 ||Dest == MVT::i64 ; 930 931 return Src == MVT::i32 && Dest == MVT::i64; 932 } 933 934 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 935 return isZExtFree(Val.getValueType(), VT2); 936 } 937 938 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 939 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 940 // limited number of native 64-bit operations. Shrinking an operation to fit 941 // in a single 32-bit register should always be helpful. As currently used, 942 // this is much less general than the name suggests, and is only used in 943 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 944 // not profitable, and may actually be harmful. 945 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 946 } 947 948 //===---------------------------------------------------------------------===// 949 // TargetLowering Callbacks 950 //===---------------------------------------------------------------------===// 951 952 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 953 bool IsVarArg) { 954 switch (CC) { 955 case CallingConv::AMDGPU_KERNEL: 956 case CallingConv::SPIR_KERNEL: 957 return CC_AMDGPU_Kernel; 958 case CallingConv::AMDGPU_VS: 959 case CallingConv::AMDGPU_GS: 960 case CallingConv::AMDGPU_PS: 961 case CallingConv::AMDGPU_CS: 962 case CallingConv::AMDGPU_HS: 963 case CallingConv::AMDGPU_ES: 964 case CallingConv::AMDGPU_LS: 965 return CC_AMDGPU; 966 case CallingConv::C: 967 case CallingConv::Fast: 968 case CallingConv::Cold: 969 return CC_AMDGPU_Func; 970 default: 971 report_fatal_error("Unsupported calling convention."); 972 } 973 } 974 975 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 976 bool IsVarArg) { 977 switch (CC) { 978 case CallingConv::AMDGPU_KERNEL: 979 case CallingConv::SPIR_KERNEL: 980 return CC_AMDGPU_Kernel; 981 case CallingConv::AMDGPU_VS: 982 case CallingConv::AMDGPU_GS: 983 case CallingConv::AMDGPU_PS: 984 case CallingConv::AMDGPU_CS: 985 case CallingConv::AMDGPU_HS: 986 case CallingConv::AMDGPU_ES: 987 case CallingConv::AMDGPU_LS: 988 return RetCC_SI_Shader; 989 case CallingConv::C: 990 case CallingConv::Fast: 991 case CallingConv::Cold: 992 return RetCC_AMDGPU_Func; 993 default: 994 report_fatal_error("Unsupported calling convention."); 995 } 996 } 997 998 /// The SelectionDAGBuilder will automatically promote function arguments 999 /// with illegal types. However, this does not work for the AMDGPU targets 1000 /// since the function arguments are stored in memory as these illegal types. 1001 /// In order to handle this properly we need to get the original types sizes 1002 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1003 /// passing them to AnalyzeFormalArguments() 1004 1005 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1006 /// input values across multiple registers. Each item in the Ins array 1007 /// represents a single value that will be stored in registers. Ins[x].VT is 1008 /// the value type of the value that will be stored in the register, so 1009 /// whatever SDNode we lower the argument to needs to be this type. 1010 /// 1011 /// In order to correctly lower the arguments we need to know the size of each 1012 /// argument. Since Ins[x].VT gives us the size of the register that will 1013 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1014 /// for the orignal function argument so that we can deduce the correct memory 1015 /// type to use for Ins[x]. In most cases the correct memory type will be 1016 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1017 /// we have a kernel argument of type v8i8, this argument will be split into 1018 /// 8 parts and each part will be represented by its own item in the Ins array. 1019 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1020 /// the argument before it was split. From this, we deduce that the memory type 1021 /// for each individual part is i8. We pass the memory type as LocVT to the 1022 /// calling convention analysis function and the register type (Ins[x].VT) as 1023 /// the ValVT. 1024 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 1025 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1026 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 1027 const ISD::InputArg &In = Ins[i]; 1028 EVT MemVT; 1029 1030 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 1031 1032 if (!Subtarget->isAmdHsaOS() && 1033 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 1034 // The ABI says the caller will extend these values to 32-bits. 1035 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 1036 } else if (NumRegs == 1) { 1037 // This argument is not split, so the IR type is the memory type. 1038 assert(!In.Flags.isSplit()); 1039 if (In.ArgVT.isExtended()) { 1040 // We have an extended type, like i24, so we should just use the register type 1041 MemVT = In.VT; 1042 } else { 1043 MemVT = In.ArgVT; 1044 } 1045 } else if (In.ArgVT.isVector() && In.VT.isVector() && 1046 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 1047 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 1048 // We have a vector value which has been split into a vector with 1049 // the same scalar type, but fewer elements. This should handle 1050 // all the floating-point vector types. 1051 MemVT = In.VT; 1052 } else if (In.ArgVT.isVector() && 1053 In.ArgVT.getVectorNumElements() == NumRegs) { 1054 // This arg has been split so that each element is stored in a separate 1055 // register. 1056 MemVT = In.ArgVT.getScalarType(); 1057 } else if (In.ArgVT.isExtended()) { 1058 // We have an extended type, like i65. 1059 MemVT = In.VT; 1060 } else { 1061 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 1062 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 1063 if (In.VT.isInteger()) { 1064 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1065 } else if (In.VT.isVector()) { 1066 assert(!In.VT.getScalarType().isFloatingPoint()); 1067 unsigned NumElements = In.VT.getVectorNumElements(); 1068 assert(MemoryBits % NumElements == 0); 1069 // This vector type has been split into another vector type with 1070 // a different elements size. 1071 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1072 MemoryBits / NumElements); 1073 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1074 } else { 1075 llvm_unreachable("cannot deduce memory type."); 1076 } 1077 } 1078 1079 // Convert one element vectors to scalar. 1080 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1081 MemVT = MemVT.getScalarType(); 1082 1083 if (MemVT.isExtended()) { 1084 // This should really only happen if we have vec3 arguments 1085 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 1086 MemVT = MemVT.getPow2VectorType(State.getContext()); 1087 } 1088 1089 assert(MemVT.isSimple()); 1090 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 1091 State); 1092 } 1093 } 1094 1095 SDValue AMDGPUTargetLowering::LowerReturn( 1096 SDValue Chain, CallingConv::ID CallConv, 1097 bool isVarArg, 1098 const SmallVectorImpl<ISD::OutputArg> &Outs, 1099 const SmallVectorImpl<SDValue> &OutVals, 1100 const SDLoc &DL, SelectionDAG &DAG) const { 1101 // FIXME: Fails for r600 tests 1102 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1103 // "wave terminate should not have return values"); 1104 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1105 } 1106 1107 //===---------------------------------------------------------------------===// 1108 // Target specific lowering 1109 //===---------------------------------------------------------------------===// 1110 1111 /// Selects the correct CCAssignFn for a given CallingConvention value. 1112 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1113 bool IsVarArg) { 1114 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1115 } 1116 1117 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1118 bool IsVarArg) { 1119 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1120 } 1121 1122 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1123 SelectionDAG &DAG, 1124 MachineFrameInfo &MFI, 1125 int ClobberedFI) const { 1126 SmallVector<SDValue, 8> ArgChains; 1127 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1128 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1129 1130 // Include the original chain at the beginning of the list. When this is 1131 // used by target LowerCall hooks, this helps legalize find the 1132 // CALLSEQ_BEGIN node. 1133 ArgChains.push_back(Chain); 1134 1135 // Add a chain value for each stack argument corresponding 1136 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1137 UE = DAG.getEntryNode().getNode()->use_end(); 1138 U != UE; ++U) { 1139 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1140 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1141 if (FI->getIndex() < 0) { 1142 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1143 int64_t InLastByte = InFirstByte; 1144 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1145 1146 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1147 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1148 ArgChains.push_back(SDValue(L, 1)); 1149 } 1150 } 1151 } 1152 } 1153 1154 // Build a tokenfactor for all the chains. 1155 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1156 } 1157 1158 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1159 SmallVectorImpl<SDValue> &InVals, 1160 StringRef Reason) const { 1161 SDValue Callee = CLI.Callee; 1162 SelectionDAG &DAG = CLI.DAG; 1163 1164 const Function &Fn = DAG.getMachineFunction().getFunction(); 1165 1166 StringRef FuncName("<unknown>"); 1167 1168 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1169 FuncName = G->getSymbol(); 1170 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1171 FuncName = G->getGlobal()->getName(); 1172 1173 DiagnosticInfoUnsupported NoCalls( 1174 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1175 DAG.getContext()->diagnose(NoCalls); 1176 1177 if (!CLI.IsTailCall) { 1178 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1179 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1180 } 1181 1182 return DAG.getEntryNode(); 1183 } 1184 1185 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1186 SmallVectorImpl<SDValue> &InVals) const { 1187 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1188 } 1189 1190 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1191 SelectionDAG &DAG) const { 1192 const Function &Fn = DAG.getMachineFunction().getFunction(); 1193 1194 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1195 SDLoc(Op).getDebugLoc()); 1196 DAG.getContext()->diagnose(NoDynamicAlloca); 1197 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1198 return DAG.getMergeValues(Ops, SDLoc()); 1199 } 1200 1201 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1202 SelectionDAG &DAG) const { 1203 switch (Op.getOpcode()) { 1204 default: 1205 Op->print(errs(), &DAG); 1206 llvm_unreachable("Custom lowering code for this" 1207 "instruction is not implemented yet!"); 1208 break; 1209 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1210 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1211 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1212 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1213 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1214 case ISD::FREM: return LowerFREM(Op, DAG); 1215 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1216 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1217 case ISD::FRINT: return LowerFRINT(Op, DAG); 1218 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1219 case ISD::FROUND: return LowerFROUND(Op, DAG); 1220 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1221 case ISD::FLOG: 1222 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1223 case ISD::FLOG10: 1224 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1225 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1226 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1227 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1228 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1229 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1230 case ISD::CTTZ: 1231 case ISD::CTTZ_ZERO_UNDEF: 1232 case ISD::CTLZ: 1233 case ISD::CTLZ_ZERO_UNDEF: 1234 return LowerCTLZ_CTTZ(Op, DAG); 1235 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1236 } 1237 return Op; 1238 } 1239 1240 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1241 SmallVectorImpl<SDValue> &Results, 1242 SelectionDAG &DAG) const { 1243 switch (N->getOpcode()) { 1244 case ISD::SIGN_EXTEND_INREG: 1245 // Different parts of legalization seem to interpret which type of 1246 // sign_extend_inreg is the one to check for custom lowering. The extended 1247 // from type is what really matters, but some places check for custom 1248 // lowering of the result type. This results in trying to use 1249 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1250 // nothing here and let the illegal result integer be handled normally. 1251 return; 1252 default: 1253 return; 1254 } 1255 } 1256 1257 static bool hasDefinedInitializer(const GlobalValue *GV) { 1258 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1259 if (!GVar || !GVar->hasInitializer()) 1260 return false; 1261 1262 return !isa<UndefValue>(GVar->getInitializer()); 1263 } 1264 1265 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1266 SDValue Op, 1267 SelectionDAG &DAG) const { 1268 1269 const DataLayout &DL = DAG.getDataLayout(); 1270 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1271 const GlobalValue *GV = G->getGlobal(); 1272 1273 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1274 // XXX: What does the value of G->getOffset() mean? 1275 assert(G->getOffset() == 0 && 1276 "Do not know what to do with an non-zero offset"); 1277 1278 // TODO: We could emit code to handle the initialization somewhere. 1279 if (!hasDefinedInitializer(GV)) { 1280 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1281 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1282 } 1283 } 1284 1285 const Function &Fn = DAG.getMachineFunction().getFunction(); 1286 DiagnosticInfoUnsupported BadInit( 1287 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1288 DAG.getContext()->diagnose(BadInit); 1289 return SDValue(); 1290 } 1291 1292 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1293 SelectionDAG &DAG) const { 1294 SmallVector<SDValue, 8> Args; 1295 1296 for (const SDUse &U : Op->ops()) 1297 DAG.ExtractVectorElements(U.get(), Args); 1298 1299 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1300 } 1301 1302 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1303 SelectionDAG &DAG) const { 1304 1305 SmallVector<SDValue, 8> Args; 1306 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1307 EVT VT = Op.getValueType(); 1308 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1309 VT.getVectorNumElements()); 1310 1311 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1312 } 1313 1314 /// Generate Min/Max node 1315 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1316 SDValue LHS, SDValue RHS, 1317 SDValue True, SDValue False, 1318 SDValue CC, 1319 DAGCombinerInfo &DCI) const { 1320 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1321 return SDValue(); 1322 1323 SelectionDAG &DAG = DCI.DAG; 1324 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1325 switch (CCOpcode) { 1326 case ISD::SETOEQ: 1327 case ISD::SETONE: 1328 case ISD::SETUNE: 1329 case ISD::SETNE: 1330 case ISD::SETUEQ: 1331 case ISD::SETEQ: 1332 case ISD::SETFALSE: 1333 case ISD::SETFALSE2: 1334 case ISD::SETTRUE: 1335 case ISD::SETTRUE2: 1336 case ISD::SETUO: 1337 case ISD::SETO: 1338 break; 1339 case ISD::SETULE: 1340 case ISD::SETULT: { 1341 if (LHS == True) 1342 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1343 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1344 } 1345 case ISD::SETOLE: 1346 case ISD::SETOLT: 1347 case ISD::SETLE: 1348 case ISD::SETLT: { 1349 // Ordered. Assume ordered for undefined. 1350 1351 // Only do this after legalization to avoid interfering with other combines 1352 // which might occur. 1353 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1354 !DCI.isCalledByLegalizer()) 1355 return SDValue(); 1356 1357 // We need to permute the operands to get the correct NaN behavior. The 1358 // selected operand is the second one based on the failing compare with NaN, 1359 // so permute it based on the compare type the hardware uses. 1360 if (LHS == True) 1361 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1362 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1363 } 1364 case ISD::SETUGE: 1365 case ISD::SETUGT: { 1366 if (LHS == True) 1367 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1368 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1369 } 1370 case ISD::SETGT: 1371 case ISD::SETGE: 1372 case ISD::SETOGE: 1373 case ISD::SETOGT: { 1374 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1375 !DCI.isCalledByLegalizer()) 1376 return SDValue(); 1377 1378 if (LHS == True) 1379 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1380 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1381 } 1382 case ISD::SETCC_INVALID: 1383 llvm_unreachable("Invalid setcc condcode!"); 1384 } 1385 return SDValue(); 1386 } 1387 1388 std::pair<SDValue, SDValue> 1389 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1390 SDLoc SL(Op); 1391 1392 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1393 1394 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1395 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1396 1397 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1398 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1399 1400 return std::make_pair(Lo, Hi); 1401 } 1402 1403 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1404 SDLoc SL(Op); 1405 1406 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1407 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1408 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1409 } 1410 1411 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1412 SDLoc SL(Op); 1413 1414 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1415 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1416 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1417 } 1418 1419 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1420 SelectionDAG &DAG) const { 1421 LoadSDNode *Load = cast<LoadSDNode>(Op); 1422 EVT VT = Op.getValueType(); 1423 1424 1425 // If this is a 2 element vector, we really want to scalarize and not create 1426 // weird 1 element vectors. 1427 if (VT.getVectorNumElements() == 2) 1428 return scalarizeVectorLoad(Load, DAG); 1429 1430 SDValue BasePtr = Load->getBasePtr(); 1431 EVT MemVT = Load->getMemoryVT(); 1432 SDLoc SL(Op); 1433 1434 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1435 1436 EVT LoVT, HiVT; 1437 EVT LoMemVT, HiMemVT; 1438 SDValue Lo, Hi; 1439 1440 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1441 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1442 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1443 1444 unsigned Size = LoMemVT.getStoreSize(); 1445 unsigned BaseAlign = Load->getAlignment(); 1446 unsigned HiAlign = MinAlign(BaseAlign, Size); 1447 1448 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1449 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1450 BaseAlign, Load->getMemOperand()->getFlags()); 1451 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1452 SDValue HiLoad = 1453 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1454 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1455 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1456 1457 SDValue Ops[] = { 1458 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1459 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1460 LoLoad.getValue(1), HiLoad.getValue(1)) 1461 }; 1462 1463 return DAG.getMergeValues(Ops, SL); 1464 } 1465 1466 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1467 SelectionDAG &DAG) const { 1468 StoreSDNode *Store = cast<StoreSDNode>(Op); 1469 SDValue Val = Store->getValue(); 1470 EVT VT = Val.getValueType(); 1471 1472 // If this is a 2 element vector, we really want to scalarize and not create 1473 // weird 1 element vectors. 1474 if (VT.getVectorNumElements() == 2) 1475 return scalarizeVectorStore(Store, DAG); 1476 1477 EVT MemVT = Store->getMemoryVT(); 1478 SDValue Chain = Store->getChain(); 1479 SDValue BasePtr = Store->getBasePtr(); 1480 SDLoc SL(Op); 1481 1482 EVT LoVT, HiVT; 1483 EVT LoMemVT, HiMemVT; 1484 SDValue Lo, Hi; 1485 1486 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1487 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1488 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1489 1490 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1491 1492 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1493 unsigned BaseAlign = Store->getAlignment(); 1494 unsigned Size = LoMemVT.getStoreSize(); 1495 unsigned HiAlign = MinAlign(BaseAlign, Size); 1496 1497 SDValue LoStore = 1498 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1499 Store->getMemOperand()->getFlags()); 1500 SDValue HiStore = 1501 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1502 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1503 1504 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1505 } 1506 1507 // This is a shortcut for integer division because we have fast i32<->f32 1508 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1509 // float is enough to accurately represent up to a 24-bit signed integer. 1510 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1511 bool Sign) const { 1512 SDLoc DL(Op); 1513 EVT VT = Op.getValueType(); 1514 SDValue LHS = Op.getOperand(0); 1515 SDValue RHS = Op.getOperand(1); 1516 MVT IntVT = MVT::i32; 1517 MVT FltVT = MVT::f32; 1518 1519 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1520 if (LHSSignBits < 9) 1521 return SDValue(); 1522 1523 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1524 if (RHSSignBits < 9) 1525 return SDValue(); 1526 1527 unsigned BitSize = VT.getSizeInBits(); 1528 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1529 unsigned DivBits = BitSize - SignBits; 1530 if (Sign) 1531 ++DivBits; 1532 1533 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1534 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1535 1536 SDValue jq = DAG.getConstant(1, DL, IntVT); 1537 1538 if (Sign) { 1539 // char|short jq = ia ^ ib; 1540 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1541 1542 // jq = jq >> (bitsize - 2) 1543 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1544 DAG.getConstant(BitSize - 2, DL, VT)); 1545 1546 // jq = jq | 0x1 1547 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1548 } 1549 1550 // int ia = (int)LHS; 1551 SDValue ia = LHS; 1552 1553 // int ib, (int)RHS; 1554 SDValue ib = RHS; 1555 1556 // float fa = (float)ia; 1557 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1558 1559 // float fb = (float)ib; 1560 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1561 1562 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1563 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1564 1565 // fq = trunc(fq); 1566 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1567 1568 // float fqneg = -fq; 1569 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1570 1571 // float fr = mad(fqneg, fb, fa); 1572 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1573 (unsigned)AMDGPUISD::FMAD_FTZ : 1574 (unsigned)ISD::FMAD; 1575 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1576 1577 // int iq = (int)fq; 1578 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1579 1580 // fr = fabs(fr); 1581 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1582 1583 // fb = fabs(fb); 1584 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1585 1586 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1587 1588 // int cv = fr >= fb; 1589 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1590 1591 // jq = (cv ? jq : 0); 1592 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1593 1594 // dst = iq + jq; 1595 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1596 1597 // Rem needs compensation, it's easier to recompute it 1598 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1599 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1600 1601 // Truncate to number of bits this divide really is. 1602 if (Sign) { 1603 SDValue InRegSize 1604 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1605 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1606 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1607 } else { 1608 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1609 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1610 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1611 } 1612 1613 return DAG.getMergeValues({ Div, Rem }, DL); 1614 } 1615 1616 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1617 SelectionDAG &DAG, 1618 SmallVectorImpl<SDValue> &Results) const { 1619 SDLoc DL(Op); 1620 EVT VT = Op.getValueType(); 1621 1622 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1623 1624 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1625 1626 SDValue One = DAG.getConstant(1, DL, HalfVT); 1627 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1628 1629 //HiLo split 1630 SDValue LHS = Op.getOperand(0); 1631 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1632 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1633 1634 SDValue RHS = Op.getOperand(1); 1635 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1636 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1637 1638 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1639 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1640 1641 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1642 LHS_Lo, RHS_Lo); 1643 1644 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1645 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1646 1647 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1648 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1649 return; 1650 } 1651 1652 if (isTypeLegal(MVT::i64)) { 1653 // Compute denominator reciprocal. 1654 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1655 (unsigned)AMDGPUISD::FMAD_FTZ : 1656 (unsigned)ISD::FMAD; 1657 1658 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1659 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1660 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1661 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1662 Cvt_Lo); 1663 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1664 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1665 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1666 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1667 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1668 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1669 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1670 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1671 Mul1); 1672 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1673 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1674 SDValue Rcp64 = DAG.getBitcast(VT, 1675 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1676 1677 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1678 SDValue One64 = DAG.getConstant(1, DL, VT); 1679 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1680 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1681 1682 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1683 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1684 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1685 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1686 Zero); 1687 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1688 One); 1689 1690 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1691 Mulhi1_Lo, Zero1); 1692 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1693 Mulhi1_Hi, Add1_Lo.getValue(1)); 1694 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1695 SDValue Add1 = DAG.getBitcast(VT, 1696 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1697 1698 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1699 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1700 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1701 Zero); 1702 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1703 One); 1704 1705 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1706 Mulhi2_Lo, Zero1); 1707 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1708 Mulhi2_Hi, Add1_Lo.getValue(1)); 1709 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1710 Zero, Add2_Lo.getValue(1)); 1711 SDValue Add2 = DAG.getBitcast(VT, 1712 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1713 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1714 1715 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1716 1717 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1718 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1719 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1720 Mul3_Lo, Zero1); 1721 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1722 Mul3_Hi, Sub1_Lo.getValue(1)); 1723 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1724 SDValue Sub1 = DAG.getBitcast(VT, 1725 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1726 1727 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1728 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1729 ISD::SETUGE); 1730 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1731 ISD::SETUGE); 1732 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1733 1734 // TODO: Here and below portions of the code can be enclosed into if/endif. 1735 // Currently control flow is unconditional and we have 4 selects after 1736 // potential endif to substitute PHIs. 1737 1738 // if C3 != 0 ... 1739 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1740 RHS_Lo, Zero1); 1741 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1742 RHS_Hi, Sub1_Lo.getValue(1)); 1743 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1744 Zero, Sub2_Lo.getValue(1)); 1745 SDValue Sub2 = DAG.getBitcast(VT, 1746 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1747 1748 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1749 1750 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1751 ISD::SETUGE); 1752 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1753 ISD::SETUGE); 1754 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1755 1756 // if (C6 != 0) 1757 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1758 1759 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1760 RHS_Lo, Zero1); 1761 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1762 RHS_Hi, Sub2_Lo.getValue(1)); 1763 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1764 Zero, Sub3_Lo.getValue(1)); 1765 SDValue Sub3 = DAG.getBitcast(VT, 1766 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1767 1768 // endif C6 1769 // endif C3 1770 1771 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1772 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1773 1774 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1775 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1776 1777 Results.push_back(Div); 1778 Results.push_back(Rem); 1779 1780 return; 1781 } 1782 1783 // r600 expandion. 1784 // Get Speculative values 1785 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1786 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1787 1788 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1789 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1790 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1791 1792 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1793 SDValue DIV_Lo = Zero; 1794 1795 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1796 1797 for (unsigned i = 0; i < halfBitWidth; ++i) { 1798 const unsigned bitPos = halfBitWidth - i - 1; 1799 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1800 // Get value of high bit 1801 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1802 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1803 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1804 1805 // Shift 1806 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1807 // Add LHS high bit 1808 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1809 1810 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1811 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1812 1813 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1814 1815 // Update REM 1816 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1817 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1818 } 1819 1820 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1821 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1822 Results.push_back(DIV); 1823 Results.push_back(REM); 1824 } 1825 1826 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1827 SelectionDAG &DAG) const { 1828 SDLoc DL(Op); 1829 EVT VT = Op.getValueType(); 1830 1831 if (VT == MVT::i64) { 1832 SmallVector<SDValue, 2> Results; 1833 LowerUDIVREM64(Op, DAG, Results); 1834 return DAG.getMergeValues(Results, DL); 1835 } 1836 1837 if (VT == MVT::i32) { 1838 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1839 return Res; 1840 } 1841 1842 SDValue Num = Op.getOperand(0); 1843 SDValue Den = Op.getOperand(1); 1844 1845 // RCP = URECIP(Den) = 2^32 / Den + e 1846 // e is rounding error. 1847 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1848 1849 // RCP_LO = mul(RCP, Den) */ 1850 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1851 1852 // RCP_HI = mulhu (RCP, Den) */ 1853 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1854 1855 // NEG_RCP_LO = -RCP_LO 1856 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1857 RCP_LO); 1858 1859 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1860 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1861 NEG_RCP_LO, RCP_LO, 1862 ISD::SETEQ); 1863 // Calculate the rounding error from the URECIP instruction 1864 // E = mulhu(ABS_RCP_LO, RCP) 1865 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1866 1867 // RCP_A_E = RCP + E 1868 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1869 1870 // RCP_S_E = RCP - E 1871 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1872 1873 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1874 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1875 RCP_A_E, RCP_S_E, 1876 ISD::SETEQ); 1877 // Quotient = mulhu(Tmp0, Num) 1878 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1879 1880 // Num_S_Remainder = Quotient * Den 1881 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1882 1883 // Remainder = Num - Num_S_Remainder 1884 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1885 1886 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1887 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1888 DAG.getConstant(-1, DL, VT), 1889 DAG.getConstant(0, DL, VT), 1890 ISD::SETUGE); 1891 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1892 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1893 Num_S_Remainder, 1894 DAG.getConstant(-1, DL, VT), 1895 DAG.getConstant(0, DL, VT), 1896 ISD::SETUGE); 1897 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1898 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1899 Remainder_GE_Zero); 1900 1901 // Calculate Division result: 1902 1903 // Quotient_A_One = Quotient + 1 1904 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1905 DAG.getConstant(1, DL, VT)); 1906 1907 // Quotient_S_One = Quotient - 1 1908 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1909 DAG.getConstant(1, DL, VT)); 1910 1911 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1912 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1913 Quotient, Quotient_A_One, ISD::SETEQ); 1914 1915 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1916 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1917 Quotient_S_One, Div, ISD::SETEQ); 1918 1919 // Calculate Rem result: 1920 1921 // Remainder_S_Den = Remainder - Den 1922 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1923 1924 // Remainder_A_Den = Remainder + Den 1925 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1926 1927 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1928 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1929 Remainder, Remainder_S_Den, ISD::SETEQ); 1930 1931 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1932 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1933 Remainder_A_Den, Rem, ISD::SETEQ); 1934 SDValue Ops[2] = { 1935 Div, 1936 Rem 1937 }; 1938 return DAG.getMergeValues(Ops, DL); 1939 } 1940 1941 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1942 SelectionDAG &DAG) const { 1943 SDLoc DL(Op); 1944 EVT VT = Op.getValueType(); 1945 1946 SDValue LHS = Op.getOperand(0); 1947 SDValue RHS = Op.getOperand(1); 1948 1949 SDValue Zero = DAG.getConstant(0, DL, VT); 1950 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1951 1952 if (VT == MVT::i32) { 1953 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1954 return Res; 1955 } 1956 1957 if (VT == MVT::i64 && 1958 DAG.ComputeNumSignBits(LHS) > 32 && 1959 DAG.ComputeNumSignBits(RHS) > 32) { 1960 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1961 1962 //HiLo split 1963 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1964 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1965 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1966 LHS_Lo, RHS_Lo); 1967 SDValue Res[2] = { 1968 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1969 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1970 }; 1971 return DAG.getMergeValues(Res, DL); 1972 } 1973 1974 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1975 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1976 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1977 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1978 1979 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1980 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1981 1982 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1983 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1984 1985 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1986 SDValue Rem = Div.getValue(1); 1987 1988 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1989 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1990 1991 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1992 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1993 1994 SDValue Res[2] = { 1995 Div, 1996 Rem 1997 }; 1998 return DAG.getMergeValues(Res, DL); 1999 } 2000 2001 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2002 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2003 SDLoc SL(Op); 2004 EVT VT = Op.getValueType(); 2005 SDValue X = Op.getOperand(0); 2006 SDValue Y = Op.getOperand(1); 2007 2008 // TODO: Should this propagate fast-math-flags? 2009 2010 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2011 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2012 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2013 2014 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2015 } 2016 2017 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2018 SDLoc SL(Op); 2019 SDValue Src = Op.getOperand(0); 2020 2021 // result = trunc(src) 2022 // if (src > 0.0 && src != result) 2023 // result += 1.0 2024 2025 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2026 2027 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2028 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2029 2030 EVT SetCCVT = 2031 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2032 2033 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2034 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2035 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2036 2037 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2038 // TODO: Should this propagate fast-math-flags? 2039 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2040 } 2041 2042 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2043 SelectionDAG &DAG) { 2044 const unsigned FractBits = 52; 2045 const unsigned ExpBits = 11; 2046 2047 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2048 Hi, 2049 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2050 DAG.getConstant(ExpBits, SL, MVT::i32)); 2051 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2052 DAG.getConstant(1023, SL, MVT::i32)); 2053 2054 return Exp; 2055 } 2056 2057 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2058 SDLoc SL(Op); 2059 SDValue Src = Op.getOperand(0); 2060 2061 assert(Op.getValueType() == MVT::f64); 2062 2063 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2064 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2065 2066 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2067 2068 // Extract the upper half, since this is where we will find the sign and 2069 // exponent. 2070 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2071 2072 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2073 2074 const unsigned FractBits = 52; 2075 2076 // Extract the sign bit. 2077 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2078 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2079 2080 // Extend back to 64-bits. 2081 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2082 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2083 2084 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2085 const SDValue FractMask 2086 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2087 2088 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2089 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2090 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2091 2092 EVT SetCCVT = 2093 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2094 2095 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2096 2097 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2098 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2099 2100 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2101 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2102 2103 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2104 } 2105 2106 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2107 SDLoc SL(Op); 2108 SDValue Src = Op.getOperand(0); 2109 2110 assert(Op.getValueType() == MVT::f64); 2111 2112 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2113 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2114 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2115 2116 // TODO: Should this propagate fast-math-flags? 2117 2118 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2119 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2120 2121 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2122 2123 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2124 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2125 2126 EVT SetCCVT = 2127 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2128 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2129 2130 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2131 } 2132 2133 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2134 // FNEARBYINT and FRINT are the same, except in their handling of FP 2135 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2136 // rint, so just treat them as equivalent. 2137 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2138 } 2139 2140 // XXX - May require not supporting f32 denormals? 2141 2142 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2143 // compare and vselect end up producing worse code than scalarizing the whole 2144 // operation. 2145 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2146 SDLoc SL(Op); 2147 SDValue X = Op.getOperand(0); 2148 EVT VT = Op.getValueType(); 2149 2150 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2151 2152 // TODO: Should this propagate fast-math-flags? 2153 2154 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2155 2156 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2157 2158 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2159 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2160 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2161 2162 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2163 2164 EVT SetCCVT = 2165 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2166 2167 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2168 2169 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2170 2171 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2172 } 2173 2174 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2175 SDLoc SL(Op); 2176 SDValue X = Op.getOperand(0); 2177 2178 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2179 2180 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2181 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2182 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2183 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2184 EVT SetCCVT = 2185 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2186 2187 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2188 2189 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2190 2191 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2192 2193 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2194 MVT::i64); 2195 2196 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2197 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2198 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2199 MVT::i64), 2200 Exp); 2201 2202 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2203 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2204 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2205 ISD::SETNE); 2206 2207 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2208 D, DAG.getConstant(0, SL, MVT::i64)); 2209 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2210 2211 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2212 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2213 2214 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2215 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2216 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2217 2218 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2219 ExpEqNegOne, 2220 DAG.getConstantFP(1.0, SL, MVT::f64), 2221 DAG.getConstantFP(0.0, SL, MVT::f64)); 2222 2223 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2224 2225 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2226 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2227 2228 return K; 2229 } 2230 2231 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2232 EVT VT = Op.getValueType(); 2233 2234 if (VT == MVT::f32 || VT == MVT::f16) 2235 return LowerFROUND32_16(Op, DAG); 2236 2237 if (VT == MVT::f64) 2238 return LowerFROUND64(Op, DAG); 2239 2240 llvm_unreachable("unhandled type"); 2241 } 2242 2243 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2244 SDLoc SL(Op); 2245 SDValue Src = Op.getOperand(0); 2246 2247 // result = trunc(src); 2248 // if (src < 0.0 && src != result) 2249 // result += -1.0. 2250 2251 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2252 2253 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2254 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2255 2256 EVT SetCCVT = 2257 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2258 2259 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2260 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2261 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2262 2263 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2264 // TODO: Should this propagate fast-math-flags? 2265 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2266 } 2267 2268 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2269 double Log2BaseInverted) const { 2270 EVT VT = Op.getValueType(); 2271 2272 SDLoc SL(Op); 2273 SDValue Operand = Op.getOperand(0); 2274 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2275 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2276 2277 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2278 } 2279 2280 static bool isCtlzOpc(unsigned Opc) { 2281 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2282 } 2283 2284 static bool isCttzOpc(unsigned Opc) { 2285 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2286 } 2287 2288 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2289 SDLoc SL(Op); 2290 SDValue Src = Op.getOperand(0); 2291 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2292 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2293 2294 unsigned ISDOpc, NewOpc; 2295 if (isCtlzOpc(Op.getOpcode())) { 2296 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2297 NewOpc = AMDGPUISD::FFBH_U32; 2298 } else if (isCttzOpc(Op.getOpcode())) { 2299 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2300 NewOpc = AMDGPUISD::FFBL_B32; 2301 } else 2302 llvm_unreachable("Unexpected OPCode!!!"); 2303 2304 2305 if (ZeroUndef && Src.getValueType() == MVT::i32) 2306 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2307 2308 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2309 2310 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2311 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2312 2313 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2314 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2315 2316 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2317 *DAG.getContext(), MVT::i32); 2318 2319 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2320 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2321 2322 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2323 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2324 2325 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2326 SDValue Add, NewOpr; 2327 if (isCtlzOpc(Op.getOpcode())) { 2328 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2329 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2330 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2331 } else { 2332 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2333 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2334 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2335 } 2336 2337 if (!ZeroUndef) { 2338 // Test if the full 64-bit input is zero. 2339 2340 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2341 // which we probably don't want. 2342 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2343 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2344 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2345 2346 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2347 // with the same cycles, otherwise it is slower. 2348 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2349 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2350 2351 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2352 2353 // The instruction returns -1 for 0 input, but the defined intrinsic 2354 // behavior is to return the number of bits. 2355 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2356 SrcIsZero, Bits32, NewOpr); 2357 } 2358 2359 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2360 } 2361 2362 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2363 bool Signed) const { 2364 // Unsigned 2365 // cul2f(ulong u) 2366 //{ 2367 // uint lz = clz(u); 2368 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2369 // u = (u << lz) & 0x7fffffffffffffffUL; 2370 // ulong t = u & 0xffffffffffUL; 2371 // uint v = (e << 23) | (uint)(u >> 40); 2372 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2373 // return as_float(v + r); 2374 //} 2375 // Signed 2376 // cl2f(long l) 2377 //{ 2378 // long s = l >> 63; 2379 // float r = cul2f((l + s) ^ s); 2380 // return s ? -r : r; 2381 //} 2382 2383 SDLoc SL(Op); 2384 SDValue Src = Op.getOperand(0); 2385 SDValue L = Src; 2386 2387 SDValue S; 2388 if (Signed) { 2389 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2390 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2391 2392 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2393 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2394 } 2395 2396 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2397 *DAG.getContext(), MVT::f32); 2398 2399 2400 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2401 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2402 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2403 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2404 2405 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2406 SDValue E = DAG.getSelect(SL, MVT::i32, 2407 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2408 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2409 ZeroI32); 2410 2411 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2412 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2413 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2414 2415 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2416 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2417 2418 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2419 U, DAG.getConstant(40, SL, MVT::i64)); 2420 2421 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2422 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2423 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2424 2425 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2426 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2427 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2428 2429 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2430 2431 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2432 2433 SDValue R = DAG.getSelect(SL, MVT::i32, 2434 RCmp, 2435 One, 2436 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2437 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2438 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2439 2440 if (!Signed) 2441 return R; 2442 2443 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2444 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2445 } 2446 2447 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2448 bool Signed) const { 2449 SDLoc SL(Op); 2450 SDValue Src = Op.getOperand(0); 2451 2452 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2453 2454 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2455 DAG.getConstant(0, SL, MVT::i32)); 2456 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2457 DAG.getConstant(1, SL, MVT::i32)); 2458 2459 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2460 SL, MVT::f64, Hi); 2461 2462 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2463 2464 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2465 DAG.getConstant(32, SL, MVT::i32)); 2466 // TODO: Should this propagate fast-math-flags? 2467 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2468 } 2469 2470 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2471 SelectionDAG &DAG) const { 2472 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2473 "operation should be legal"); 2474 2475 // TODO: Factor out code common with LowerSINT_TO_FP. 2476 2477 EVT DestVT = Op.getValueType(); 2478 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2479 SDLoc DL(Op); 2480 SDValue Src = Op.getOperand(0); 2481 2482 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2483 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2484 SDValue FPRound = 2485 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2486 2487 return FPRound; 2488 } 2489 2490 if (DestVT == MVT::f32) 2491 return LowerINT_TO_FP32(Op, DAG, false); 2492 2493 assert(DestVT == MVT::f64); 2494 return LowerINT_TO_FP64(Op, DAG, false); 2495 } 2496 2497 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2498 SelectionDAG &DAG) const { 2499 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2500 "operation should be legal"); 2501 2502 // TODO: Factor out code common with LowerUINT_TO_FP. 2503 2504 EVT DestVT = Op.getValueType(); 2505 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2506 SDLoc DL(Op); 2507 SDValue Src = Op.getOperand(0); 2508 2509 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2510 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2511 SDValue FPRound = 2512 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2513 2514 return FPRound; 2515 } 2516 2517 if (DestVT == MVT::f32) 2518 return LowerINT_TO_FP32(Op, DAG, true); 2519 2520 assert(DestVT == MVT::f64); 2521 return LowerINT_TO_FP64(Op, DAG, true); 2522 } 2523 2524 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2525 bool Signed) const { 2526 SDLoc SL(Op); 2527 2528 SDValue Src = Op.getOperand(0); 2529 2530 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2531 2532 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2533 MVT::f64); 2534 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2535 MVT::f64); 2536 // TODO: Should this propagate fast-math-flags? 2537 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2538 2539 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2540 2541 2542 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2543 2544 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2545 MVT::i32, FloorMul); 2546 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2547 2548 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2549 2550 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2551 } 2552 2553 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2554 SDLoc DL(Op); 2555 SDValue N0 = Op.getOperand(0); 2556 2557 // Convert to target node to get known bits 2558 if (N0.getValueType() == MVT::f32) 2559 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2560 2561 if (getTargetMachine().Options.UnsafeFPMath) { 2562 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2563 return SDValue(); 2564 } 2565 2566 assert(N0.getSimpleValueType() == MVT::f64); 2567 2568 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2569 const unsigned ExpMask = 0x7ff; 2570 const unsigned ExpBiasf64 = 1023; 2571 const unsigned ExpBiasf16 = 15; 2572 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2573 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2574 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2575 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2576 DAG.getConstant(32, DL, MVT::i64)); 2577 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2578 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2579 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2580 DAG.getConstant(20, DL, MVT::i64)); 2581 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2582 DAG.getConstant(ExpMask, DL, MVT::i32)); 2583 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2584 // add the f16 bias (15) to get the biased exponent for the f16 format. 2585 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2586 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2587 2588 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2589 DAG.getConstant(8, DL, MVT::i32)); 2590 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2591 DAG.getConstant(0xffe, DL, MVT::i32)); 2592 2593 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2594 DAG.getConstant(0x1ff, DL, MVT::i32)); 2595 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2596 2597 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2598 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2599 2600 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2601 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2602 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2603 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2604 2605 // N = M | (E << 12); 2606 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2607 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2608 DAG.getConstant(12, DL, MVT::i32))); 2609 2610 // B = clamp(1-E, 0, 13); 2611 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2612 One, E); 2613 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2614 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2615 DAG.getConstant(13, DL, MVT::i32)); 2616 2617 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2618 DAG.getConstant(0x1000, DL, MVT::i32)); 2619 2620 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2621 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2622 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2623 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2624 2625 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2626 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2627 DAG.getConstant(0x7, DL, MVT::i32)); 2628 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2629 DAG.getConstant(2, DL, MVT::i32)); 2630 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2631 One, Zero, ISD::SETEQ); 2632 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2633 One, Zero, ISD::SETGT); 2634 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2635 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2636 2637 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2638 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2639 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2640 I, V, ISD::SETEQ); 2641 2642 // Extract the sign bit. 2643 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2644 DAG.getConstant(16, DL, MVT::i32)); 2645 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2646 DAG.getConstant(0x8000, DL, MVT::i32)); 2647 2648 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2649 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2650 } 2651 2652 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2653 SelectionDAG &DAG) const { 2654 SDValue Src = Op.getOperand(0); 2655 2656 // TODO: Factor out code common with LowerFP_TO_UINT. 2657 2658 EVT SrcVT = Src.getValueType(); 2659 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2660 SDLoc DL(Op); 2661 2662 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2663 SDValue FpToInt32 = 2664 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2665 2666 return FpToInt32; 2667 } 2668 2669 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2670 return LowerFP64_TO_INT(Op, DAG, true); 2671 2672 return SDValue(); 2673 } 2674 2675 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2676 SelectionDAG &DAG) const { 2677 SDValue Src = Op.getOperand(0); 2678 2679 // TODO: Factor out code common with LowerFP_TO_SINT. 2680 2681 EVT SrcVT = Src.getValueType(); 2682 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2683 SDLoc DL(Op); 2684 2685 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2686 SDValue FpToInt32 = 2687 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2688 2689 return FpToInt32; 2690 } 2691 2692 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2693 return LowerFP64_TO_INT(Op, DAG, false); 2694 2695 return SDValue(); 2696 } 2697 2698 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2699 SelectionDAG &DAG) const { 2700 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2701 MVT VT = Op.getSimpleValueType(); 2702 MVT ScalarVT = VT.getScalarType(); 2703 2704 assert(VT.isVector()); 2705 2706 SDValue Src = Op.getOperand(0); 2707 SDLoc DL(Op); 2708 2709 // TODO: Don't scalarize on Evergreen? 2710 unsigned NElts = VT.getVectorNumElements(); 2711 SmallVector<SDValue, 8> Args; 2712 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2713 2714 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2715 for (unsigned I = 0; I < NElts; ++I) 2716 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2717 2718 return DAG.getBuildVector(VT, DL, Args); 2719 } 2720 2721 //===----------------------------------------------------------------------===// 2722 // Custom DAG optimizations 2723 //===----------------------------------------------------------------------===// 2724 2725 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2726 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2727 } 2728 2729 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2730 EVT VT = Op.getValueType(); 2731 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2732 // as unsigned 24-bit values. 2733 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2734 } 2735 2736 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2737 TargetLowering::DAGCombinerInfo &DCI) { 2738 2739 SelectionDAG &DAG = DCI.DAG; 2740 SDValue Op = Node24->getOperand(OpIdx); 2741 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2742 EVT VT = Op.getValueType(); 2743 2744 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2745 APInt KnownZero, KnownOne; 2746 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2747 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2748 return true; 2749 2750 return false; 2751 } 2752 2753 template <typename IntTy> 2754 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2755 uint32_t Width, const SDLoc &DL) { 2756 if (Width + Offset < 32) { 2757 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2758 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2759 return DAG.getConstant(Result, DL, MVT::i32); 2760 } 2761 2762 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2763 } 2764 2765 static bool hasVolatileUser(SDNode *Val) { 2766 for (SDNode *U : Val->uses()) { 2767 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2768 if (M->isVolatile()) 2769 return true; 2770 } 2771 } 2772 2773 return false; 2774 } 2775 2776 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2777 // i32 vectors are the canonical memory type. 2778 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2779 return false; 2780 2781 if (!VT.isByteSized()) 2782 return false; 2783 2784 unsigned Size = VT.getStoreSize(); 2785 2786 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2787 return false; 2788 2789 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2790 return false; 2791 2792 return true; 2793 } 2794 2795 // Replace load of an illegal type with a store of a bitcast to a friendlier 2796 // type. 2797 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2798 DAGCombinerInfo &DCI) const { 2799 if (!DCI.isBeforeLegalize()) 2800 return SDValue(); 2801 2802 LoadSDNode *LN = cast<LoadSDNode>(N); 2803 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2804 return SDValue(); 2805 2806 SDLoc SL(N); 2807 SelectionDAG &DAG = DCI.DAG; 2808 EVT VT = LN->getMemoryVT(); 2809 2810 unsigned Size = VT.getStoreSize(); 2811 unsigned Align = LN->getAlignment(); 2812 if (Align < Size && isTypeLegal(VT)) { 2813 bool IsFast; 2814 unsigned AS = LN->getAddressSpace(); 2815 2816 // Expand unaligned loads earlier than legalization. Due to visitation order 2817 // problems during legalization, the emitted instructions to pack and unpack 2818 // the bytes again are not eliminated in the case of an unaligned copy. 2819 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2820 if (VT.isVector()) 2821 return scalarizeVectorLoad(LN, DAG); 2822 2823 SDValue Ops[2]; 2824 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2825 return DAG.getMergeValues(Ops, SDLoc(N)); 2826 } 2827 2828 if (!IsFast) 2829 return SDValue(); 2830 } 2831 2832 if (!shouldCombineMemoryType(VT)) 2833 return SDValue(); 2834 2835 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2836 2837 SDValue NewLoad 2838 = DAG.getLoad(NewVT, SL, LN->getChain(), 2839 LN->getBasePtr(), LN->getMemOperand()); 2840 2841 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2842 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2843 return SDValue(N, 0); 2844 } 2845 2846 // Replace store of an illegal type with a store of a bitcast to a friendlier 2847 // type. 2848 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2849 DAGCombinerInfo &DCI) const { 2850 if (!DCI.isBeforeLegalize()) 2851 return SDValue(); 2852 2853 StoreSDNode *SN = cast<StoreSDNode>(N); 2854 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2855 return SDValue(); 2856 2857 EVT VT = SN->getMemoryVT(); 2858 unsigned Size = VT.getStoreSize(); 2859 2860 SDLoc SL(N); 2861 SelectionDAG &DAG = DCI.DAG; 2862 unsigned Align = SN->getAlignment(); 2863 if (Align < Size && isTypeLegal(VT)) { 2864 bool IsFast; 2865 unsigned AS = SN->getAddressSpace(); 2866 2867 // Expand unaligned stores earlier than legalization. Due to visitation 2868 // order problems during legalization, the emitted instructions to pack and 2869 // unpack the bytes again are not eliminated in the case of an unaligned 2870 // copy. 2871 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2872 if (VT.isVector()) 2873 return scalarizeVectorStore(SN, DAG); 2874 2875 return expandUnalignedStore(SN, DAG); 2876 } 2877 2878 if (!IsFast) 2879 return SDValue(); 2880 } 2881 2882 if (!shouldCombineMemoryType(VT)) 2883 return SDValue(); 2884 2885 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2886 SDValue Val = SN->getValue(); 2887 2888 //DCI.AddToWorklist(Val.getNode()); 2889 2890 bool OtherUses = !Val.hasOneUse(); 2891 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2892 if (OtherUses) { 2893 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2894 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2895 } 2896 2897 return DAG.getStore(SN->getChain(), SL, CastVal, 2898 SN->getBasePtr(), SN->getMemOperand()); 2899 } 2900 2901 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2902 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2903 // issues. 2904 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2905 DAGCombinerInfo &DCI) const { 2906 SelectionDAG &DAG = DCI.DAG; 2907 SDValue N0 = N->getOperand(0); 2908 2909 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2910 // (vt2 (truncate (assertzext vt0:x, vt1))) 2911 if (N0.getOpcode() == ISD::TRUNCATE) { 2912 SDValue N1 = N->getOperand(1); 2913 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2914 SDLoc SL(N); 2915 2916 SDValue Src = N0.getOperand(0); 2917 EVT SrcVT = Src.getValueType(); 2918 if (SrcVT.bitsGE(ExtVT)) { 2919 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2920 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2921 } 2922 } 2923 2924 return SDValue(); 2925 } 2926 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2927 /// binary operation \p Opc to it with the corresponding constant operands. 2928 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2929 DAGCombinerInfo &DCI, const SDLoc &SL, 2930 unsigned Opc, SDValue LHS, 2931 uint32_t ValLo, uint32_t ValHi) const { 2932 SelectionDAG &DAG = DCI.DAG; 2933 SDValue Lo, Hi; 2934 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2935 2936 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2937 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2938 2939 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2940 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2941 2942 // Re-visit the ands. It's possible we eliminated one of them and it could 2943 // simplify the vector. 2944 DCI.AddToWorklist(Lo.getNode()); 2945 DCI.AddToWorklist(Hi.getNode()); 2946 2947 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2948 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2949 } 2950 2951 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2952 DAGCombinerInfo &DCI) const { 2953 EVT VT = N->getValueType(0); 2954 2955 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2956 if (!RHS) 2957 return SDValue(); 2958 2959 SDValue LHS = N->getOperand(0); 2960 unsigned RHSVal = RHS->getZExtValue(); 2961 if (!RHSVal) 2962 return LHS; 2963 2964 SDLoc SL(N); 2965 SelectionDAG &DAG = DCI.DAG; 2966 2967 switch (LHS->getOpcode()) { 2968 default: 2969 break; 2970 case ISD::ZERO_EXTEND: 2971 case ISD::SIGN_EXTEND: 2972 case ISD::ANY_EXTEND: { 2973 SDValue X = LHS->getOperand(0); 2974 2975 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2976 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 2977 // Prefer build_vector as the canonical form if packed types are legal. 2978 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2979 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2980 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2981 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2982 } 2983 2984 // shl (ext x) => zext (shl x), if shift does not overflow int 2985 if (VT != MVT::i64) 2986 break; 2987 KnownBits Known; 2988 DAG.computeKnownBits(X, Known); 2989 unsigned LZ = Known.countMinLeadingZeros(); 2990 if (LZ < RHSVal) 2991 break; 2992 EVT XVT = X.getValueType(); 2993 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2994 return DAG.getZExtOrTrunc(Shl, SL, VT); 2995 } 2996 } 2997 2998 if (VT != MVT::i64) 2999 return SDValue(); 3000 3001 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3002 3003 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3004 // common case, splitting this into a move and a 32-bit shift is faster and 3005 // the same code size. 3006 if (RHSVal < 32) 3007 return SDValue(); 3008 3009 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3010 3011 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3012 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3013 3014 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3015 3016 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3017 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3018 } 3019 3020 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3021 DAGCombinerInfo &DCI) const { 3022 if (N->getValueType(0) != MVT::i64) 3023 return SDValue(); 3024 3025 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3026 if (!RHS) 3027 return SDValue(); 3028 3029 SelectionDAG &DAG = DCI.DAG; 3030 SDLoc SL(N); 3031 unsigned RHSVal = RHS->getZExtValue(); 3032 3033 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3034 if (RHSVal == 32) { 3035 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3036 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3037 DAG.getConstant(31, SL, MVT::i32)); 3038 3039 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3040 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3041 } 3042 3043 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3044 if (RHSVal == 63) { 3045 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3046 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3047 DAG.getConstant(31, SL, MVT::i32)); 3048 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3049 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3050 } 3051 3052 return SDValue(); 3053 } 3054 3055 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3056 DAGCombinerInfo &DCI) const { 3057 if (N->getValueType(0) != MVT::i64) 3058 return SDValue(); 3059 3060 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3061 if (!RHS) 3062 return SDValue(); 3063 3064 unsigned ShiftAmt = RHS->getZExtValue(); 3065 if (ShiftAmt < 32) 3066 return SDValue(); 3067 3068 // srl i64:x, C for C >= 32 3069 // => 3070 // build_pair (srl hi_32(x), C - 32), 0 3071 3072 SelectionDAG &DAG = DCI.DAG; 3073 SDLoc SL(N); 3074 3075 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3076 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3077 3078 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 3079 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 3080 VecOp, One); 3081 3082 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3083 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3084 3085 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3086 3087 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3088 } 3089 3090 SDValue AMDGPUTargetLowering::performTruncateCombine( 3091 SDNode *N, DAGCombinerInfo &DCI) const { 3092 SDLoc SL(N); 3093 SelectionDAG &DAG = DCI.DAG; 3094 EVT VT = N->getValueType(0); 3095 SDValue Src = N->getOperand(0); 3096 3097 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3098 if (Src.getOpcode() == ISD::BITCAST) { 3099 SDValue Vec = Src.getOperand(0); 3100 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3101 SDValue Elt0 = Vec.getOperand(0); 3102 EVT EltVT = Elt0.getValueType(); 3103 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3104 if (EltVT.isFloatingPoint()) { 3105 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3106 EltVT.changeTypeToInteger(), Elt0); 3107 } 3108 3109 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3110 } 3111 } 3112 } 3113 3114 // Equivalent of above for accessing the high element of a vector as an 3115 // integer operation. 3116 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3117 if (Src.getOpcode() == ISD::SRL) { 3118 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3119 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3120 SDValue BV = stripBitcast(Src.getOperand(0)); 3121 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3122 BV.getValueType().getVectorNumElements() == 2) { 3123 SDValue SrcElt = BV.getOperand(1); 3124 EVT SrcEltVT = SrcElt.getValueType(); 3125 if (SrcEltVT.isFloatingPoint()) { 3126 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3127 SrcEltVT.changeTypeToInteger(), SrcElt); 3128 } 3129 3130 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3131 } 3132 } 3133 } 3134 } 3135 3136 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3137 // 3138 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3139 // i16 (trunc (srl (i32 (trunc x), K))) 3140 if (VT.getScalarSizeInBits() < 32) { 3141 EVT SrcVT = Src.getValueType(); 3142 if (SrcVT.getScalarSizeInBits() > 32 && 3143 (Src.getOpcode() == ISD::SRL || 3144 Src.getOpcode() == ISD::SRA || 3145 Src.getOpcode() == ISD::SHL)) { 3146 SDValue Amt = Src.getOperand(1); 3147 KnownBits Known; 3148 DAG.computeKnownBits(Amt, Known); 3149 unsigned Size = VT.getScalarSizeInBits(); 3150 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3151 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3152 EVT MidVT = VT.isVector() ? 3153 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3154 VT.getVectorNumElements()) : MVT::i32; 3155 3156 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3157 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3158 Src.getOperand(0)); 3159 DCI.AddToWorklist(Trunc.getNode()); 3160 3161 if (Amt.getValueType() != NewShiftVT) { 3162 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3163 DCI.AddToWorklist(Amt.getNode()); 3164 } 3165 3166 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3167 Trunc, Amt); 3168 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3169 } 3170 } 3171 } 3172 3173 return SDValue(); 3174 } 3175 3176 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3177 // instructions. If we only match on the legalized i64 mul expansion, 3178 // SimplifyDemandedBits will be unable to remove them because there will be 3179 // multiple uses due to the separate mul + mulh[su]. 3180 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3181 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3182 if (Size <= 32) { 3183 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3184 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3185 } 3186 3187 // Because we want to eliminate extension instructions before the 3188 // operation, we need to create a single user here (i.e. not the separate 3189 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3190 3191 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3192 3193 SDValue Mul = DAG.getNode(MulOpc, SL, 3194 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3195 3196 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3197 Mul.getValue(0), Mul.getValue(1)); 3198 } 3199 3200 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3201 DAGCombinerInfo &DCI) const { 3202 EVT VT = N->getValueType(0); 3203 3204 unsigned Size = VT.getSizeInBits(); 3205 if (VT.isVector() || Size > 64) 3206 return SDValue(); 3207 3208 // There are i16 integer mul/mad. 3209 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3210 return SDValue(); 3211 3212 SelectionDAG &DAG = DCI.DAG; 3213 SDLoc DL(N); 3214 3215 SDValue N0 = N->getOperand(0); 3216 SDValue N1 = N->getOperand(1); 3217 3218 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3219 // in the source into any_extends if the result of the mul is truncated. Since 3220 // we can assume the high bits are whatever we want, use the underlying value 3221 // to avoid the unknown high bits from interfering. 3222 if (N0.getOpcode() == ISD::ANY_EXTEND) 3223 N0 = N0.getOperand(0); 3224 3225 if (N1.getOpcode() == ISD::ANY_EXTEND) 3226 N1 = N1.getOperand(0); 3227 3228 SDValue Mul; 3229 3230 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3231 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3232 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3233 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3234 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3235 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3236 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3237 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3238 } else { 3239 return SDValue(); 3240 } 3241 3242 // We need to use sext even for MUL_U24, because MUL_U24 is used 3243 // for signed multiply of 8 and 16-bit types. 3244 return DAG.getSExtOrTrunc(Mul, DL, VT); 3245 } 3246 3247 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3248 DAGCombinerInfo &DCI) const { 3249 EVT VT = N->getValueType(0); 3250 3251 if (!Subtarget->hasMulI24() || VT.isVector()) 3252 return SDValue(); 3253 3254 SelectionDAG &DAG = DCI.DAG; 3255 SDLoc DL(N); 3256 3257 SDValue N0 = N->getOperand(0); 3258 SDValue N1 = N->getOperand(1); 3259 3260 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3261 return SDValue(); 3262 3263 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3264 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3265 3266 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3267 DCI.AddToWorklist(Mulhi.getNode()); 3268 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3269 } 3270 3271 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3272 DAGCombinerInfo &DCI) const { 3273 EVT VT = N->getValueType(0); 3274 3275 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3276 return SDValue(); 3277 3278 SelectionDAG &DAG = DCI.DAG; 3279 SDLoc DL(N); 3280 3281 SDValue N0 = N->getOperand(0); 3282 SDValue N1 = N->getOperand(1); 3283 3284 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3285 return SDValue(); 3286 3287 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3288 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3289 3290 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3291 DCI.AddToWorklist(Mulhi.getNode()); 3292 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3293 } 3294 3295 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3296 SDNode *N, DAGCombinerInfo &DCI) const { 3297 SelectionDAG &DAG = DCI.DAG; 3298 3299 // Simplify demanded bits before splitting into multiple users. 3300 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 3301 return SDValue(); 3302 3303 SDValue N0 = N->getOperand(0); 3304 SDValue N1 = N->getOperand(1); 3305 3306 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3307 3308 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3309 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3310 3311 SDLoc SL(N); 3312 3313 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3314 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3315 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3316 } 3317 3318 static bool isNegativeOne(SDValue Val) { 3319 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3320 return C->isAllOnesValue(); 3321 return false; 3322 } 3323 3324 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3325 SDValue Op, 3326 const SDLoc &DL, 3327 unsigned Opc) const { 3328 EVT VT = Op.getValueType(); 3329 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3330 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3331 LegalVT != MVT::i16)) 3332 return SDValue(); 3333 3334 if (VT != MVT::i32) 3335 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3336 3337 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3338 if (VT != MVT::i32) 3339 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3340 3341 return FFBX; 3342 } 3343 3344 // The native instructions return -1 on 0 input. Optimize out a select that 3345 // produces -1 on 0. 3346 // 3347 // TODO: If zero is not undef, we could also do this if the output is compared 3348 // against the bitwidth. 3349 // 3350 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3351 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3352 SDValue LHS, SDValue RHS, 3353 DAGCombinerInfo &DCI) const { 3354 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3355 if (!CmpRhs || !CmpRhs->isNullValue()) 3356 return SDValue(); 3357 3358 SelectionDAG &DAG = DCI.DAG; 3359 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3360 SDValue CmpLHS = Cond.getOperand(0); 3361 3362 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3363 AMDGPUISD::FFBH_U32; 3364 3365 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3366 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3367 if (CCOpcode == ISD::SETEQ && 3368 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3369 RHS.getOperand(0) == CmpLHS && 3370 isNegativeOne(LHS)) { 3371 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3372 } 3373 3374 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3375 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3376 if (CCOpcode == ISD::SETNE && 3377 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3378 LHS.getOperand(0) == CmpLHS && 3379 isNegativeOne(RHS)) { 3380 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3381 } 3382 3383 return SDValue(); 3384 } 3385 3386 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3387 unsigned Op, 3388 const SDLoc &SL, 3389 SDValue Cond, 3390 SDValue N1, 3391 SDValue N2) { 3392 SelectionDAG &DAG = DCI.DAG; 3393 EVT VT = N1.getValueType(); 3394 3395 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3396 N1.getOperand(0), N2.getOperand(0)); 3397 DCI.AddToWorklist(NewSelect.getNode()); 3398 return DAG.getNode(Op, SL, VT, NewSelect); 3399 } 3400 3401 // Pull a free FP operation out of a select so it may fold into uses. 3402 // 3403 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3404 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3405 // 3406 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3407 // select c, (fabs x), +k -> fabs (select c, x, k) 3408 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3409 SDValue N) { 3410 SelectionDAG &DAG = DCI.DAG; 3411 SDValue Cond = N.getOperand(0); 3412 SDValue LHS = N.getOperand(1); 3413 SDValue RHS = N.getOperand(2); 3414 3415 EVT VT = N.getValueType(); 3416 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3417 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3418 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3419 SDLoc(N), Cond, LHS, RHS); 3420 } 3421 3422 bool Inv = false; 3423 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3424 std::swap(LHS, RHS); 3425 Inv = true; 3426 } 3427 3428 // TODO: Support vector constants. 3429 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3430 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3431 SDLoc SL(N); 3432 // If one side is an fneg/fabs and the other is a constant, we can push the 3433 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3434 SDValue NewLHS = LHS.getOperand(0); 3435 SDValue NewRHS = RHS; 3436 3437 // Careful: if the neg can be folded up, don't try to pull it back down. 3438 bool ShouldFoldNeg = true; 3439 3440 if (NewLHS.hasOneUse()) { 3441 unsigned Opc = NewLHS.getOpcode(); 3442 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3443 ShouldFoldNeg = false; 3444 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3445 ShouldFoldNeg = false; 3446 } 3447 3448 if (ShouldFoldNeg) { 3449 if (LHS.getOpcode() == ISD::FNEG) 3450 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3451 else if (CRHS->isNegative()) 3452 return SDValue(); 3453 3454 if (Inv) 3455 std::swap(NewLHS, NewRHS); 3456 3457 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3458 Cond, NewLHS, NewRHS); 3459 DCI.AddToWorklist(NewSelect.getNode()); 3460 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3461 } 3462 } 3463 3464 return SDValue(); 3465 } 3466 3467 3468 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3469 DAGCombinerInfo &DCI) const { 3470 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3471 return Folded; 3472 3473 SDValue Cond = N->getOperand(0); 3474 if (Cond.getOpcode() != ISD::SETCC) 3475 return SDValue(); 3476 3477 EVT VT = N->getValueType(0); 3478 SDValue LHS = Cond.getOperand(0); 3479 SDValue RHS = Cond.getOperand(1); 3480 SDValue CC = Cond.getOperand(2); 3481 3482 SDValue True = N->getOperand(1); 3483 SDValue False = N->getOperand(2); 3484 3485 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3486 SelectionDAG &DAG = DCI.DAG; 3487 if ((DAG.isConstantValueOfAnyType(True) || 3488 DAG.isConstantValueOfAnyType(True)) && 3489 (!DAG.isConstantValueOfAnyType(False) && 3490 !DAG.isConstantValueOfAnyType(False))) { 3491 // Swap cmp + select pair to move constant to false input. 3492 // This will allow using VOPC cndmasks more often. 3493 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3494 3495 SDLoc SL(N); 3496 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3497 LHS.getValueType().isInteger()); 3498 3499 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3500 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3501 } 3502 3503 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3504 SDValue MinMax 3505 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3506 // Revisit this node so we can catch min3/max3/med3 patterns. 3507 //DCI.AddToWorklist(MinMax.getNode()); 3508 return MinMax; 3509 } 3510 } 3511 3512 // There's no reason to not do this if the condition has other uses. 3513 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3514 } 3515 3516 static bool isConstantFPZero(SDValue N) { 3517 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3518 return C->isZero() && !C->isNegative(); 3519 return false; 3520 } 3521 3522 static unsigned inverseMinMax(unsigned Opc) { 3523 switch (Opc) { 3524 case ISD::FMAXNUM: 3525 return ISD::FMINNUM; 3526 case ISD::FMINNUM: 3527 return ISD::FMAXNUM; 3528 case AMDGPUISD::FMAX_LEGACY: 3529 return AMDGPUISD::FMIN_LEGACY; 3530 case AMDGPUISD::FMIN_LEGACY: 3531 return AMDGPUISD::FMAX_LEGACY; 3532 default: 3533 llvm_unreachable("invalid min/max opcode"); 3534 } 3535 } 3536 3537 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3538 DAGCombinerInfo &DCI) const { 3539 SelectionDAG &DAG = DCI.DAG; 3540 SDValue N0 = N->getOperand(0); 3541 EVT VT = N->getValueType(0); 3542 3543 unsigned Opc = N0.getOpcode(); 3544 3545 // If the input has multiple uses and we can either fold the negate down, or 3546 // the other uses cannot, give up. This both prevents unprofitable 3547 // transformations and infinite loops: we won't repeatedly try to fold around 3548 // a negate that has no 'good' form. 3549 if (N0.hasOneUse()) { 3550 // This may be able to fold into the source, but at a code size cost. Don't 3551 // fold if the fold into the user is free. 3552 if (allUsesHaveSourceMods(N, 0)) 3553 return SDValue(); 3554 } else { 3555 if (fnegFoldsIntoOp(Opc) && 3556 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3557 return SDValue(); 3558 } 3559 3560 SDLoc SL(N); 3561 switch (Opc) { 3562 case ISD::FADD: { 3563 if (!mayIgnoreSignedZero(N0)) 3564 return SDValue(); 3565 3566 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3567 SDValue LHS = N0.getOperand(0); 3568 SDValue RHS = N0.getOperand(1); 3569 3570 if (LHS.getOpcode() != ISD::FNEG) 3571 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3572 else 3573 LHS = LHS.getOperand(0); 3574 3575 if (RHS.getOpcode() != ISD::FNEG) 3576 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3577 else 3578 RHS = RHS.getOperand(0); 3579 3580 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3581 if (!N0.hasOneUse()) 3582 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3583 return Res; 3584 } 3585 case ISD::FMUL: 3586 case AMDGPUISD::FMUL_LEGACY: { 3587 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3588 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3589 SDValue LHS = N0.getOperand(0); 3590 SDValue RHS = N0.getOperand(1); 3591 3592 if (LHS.getOpcode() == ISD::FNEG) 3593 LHS = LHS.getOperand(0); 3594 else if (RHS.getOpcode() == ISD::FNEG) 3595 RHS = RHS.getOperand(0); 3596 else 3597 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3598 3599 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3600 if (!N0.hasOneUse()) 3601 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3602 return Res; 3603 } 3604 case ISD::FMA: 3605 case ISD::FMAD: { 3606 if (!mayIgnoreSignedZero(N0)) 3607 return SDValue(); 3608 3609 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3610 SDValue LHS = N0.getOperand(0); 3611 SDValue MHS = N0.getOperand(1); 3612 SDValue RHS = N0.getOperand(2); 3613 3614 if (LHS.getOpcode() == ISD::FNEG) 3615 LHS = LHS.getOperand(0); 3616 else if (MHS.getOpcode() == ISD::FNEG) 3617 MHS = MHS.getOperand(0); 3618 else 3619 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3620 3621 if (RHS.getOpcode() != ISD::FNEG) 3622 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3623 else 3624 RHS = RHS.getOperand(0); 3625 3626 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3627 if (!N0.hasOneUse()) 3628 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3629 return Res; 3630 } 3631 case ISD::FMAXNUM: 3632 case ISD::FMINNUM: 3633 case AMDGPUISD::FMAX_LEGACY: 3634 case AMDGPUISD::FMIN_LEGACY: { 3635 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3636 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3637 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3638 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3639 3640 SDValue LHS = N0.getOperand(0); 3641 SDValue RHS = N0.getOperand(1); 3642 3643 // 0 doesn't have a negated inline immediate. 3644 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3645 // operations. 3646 if (isConstantFPZero(RHS)) 3647 return SDValue(); 3648 3649 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3650 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3651 unsigned Opposite = inverseMinMax(Opc); 3652 3653 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3654 if (!N0.hasOneUse()) 3655 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3656 return Res; 3657 } 3658 case ISD::FP_EXTEND: 3659 case ISD::FTRUNC: 3660 case ISD::FRINT: 3661 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3662 case ISD::FSIN: 3663 case AMDGPUISD::RCP: 3664 case AMDGPUISD::RCP_LEGACY: 3665 case AMDGPUISD::SIN_HW: { 3666 SDValue CvtSrc = N0.getOperand(0); 3667 if (CvtSrc.getOpcode() == ISD::FNEG) { 3668 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3669 // (fneg (rcp (fneg x))) -> (rcp x) 3670 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3671 } 3672 3673 if (!N0.hasOneUse()) 3674 return SDValue(); 3675 3676 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3677 // (fneg (rcp x)) -> (rcp (fneg x)) 3678 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3679 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3680 } 3681 case ISD::FP_ROUND: { 3682 SDValue CvtSrc = N0.getOperand(0); 3683 3684 if (CvtSrc.getOpcode() == ISD::FNEG) { 3685 // (fneg (fp_round (fneg x))) -> (fp_round x) 3686 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3687 CvtSrc.getOperand(0), N0.getOperand(1)); 3688 } 3689 3690 if (!N0.hasOneUse()) 3691 return SDValue(); 3692 3693 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3694 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3695 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3696 } 3697 case ISD::FP16_TO_FP: { 3698 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3699 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3700 // Put the fneg back as a legal source operation that can be matched later. 3701 SDLoc SL(N); 3702 3703 SDValue Src = N0.getOperand(0); 3704 EVT SrcVT = Src.getValueType(); 3705 3706 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3707 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3708 DAG.getConstant(0x8000, SL, SrcVT)); 3709 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3710 } 3711 default: 3712 return SDValue(); 3713 } 3714 } 3715 3716 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3717 DAGCombinerInfo &DCI) const { 3718 SelectionDAG &DAG = DCI.DAG; 3719 SDValue N0 = N->getOperand(0); 3720 3721 if (!N0.hasOneUse()) 3722 return SDValue(); 3723 3724 switch (N0.getOpcode()) { 3725 case ISD::FP16_TO_FP: { 3726 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3727 SDLoc SL(N); 3728 SDValue Src = N0.getOperand(0); 3729 EVT SrcVT = Src.getValueType(); 3730 3731 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3732 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3733 DAG.getConstant(0x7fff, SL, SrcVT)); 3734 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3735 } 3736 default: 3737 return SDValue(); 3738 } 3739 } 3740 3741 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3742 DAGCombinerInfo &DCI) const { 3743 SelectionDAG &DAG = DCI.DAG; 3744 SDLoc DL(N); 3745 3746 switch(N->getOpcode()) { 3747 default: 3748 break; 3749 case ISD::BITCAST: { 3750 EVT DestVT = N->getValueType(0); 3751 3752 // Push casts through vector builds. This helps avoid emitting a large 3753 // number of copies when materializing floating point vector constants. 3754 // 3755 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3756 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3757 if (DestVT.isVector()) { 3758 SDValue Src = N->getOperand(0); 3759 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3760 EVT SrcVT = Src.getValueType(); 3761 unsigned NElts = DestVT.getVectorNumElements(); 3762 3763 if (SrcVT.getVectorNumElements() == NElts) { 3764 EVT DestEltVT = DestVT.getVectorElementType(); 3765 3766 SmallVector<SDValue, 8> CastedElts; 3767 SDLoc SL(N); 3768 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3769 SDValue Elt = Src.getOperand(I); 3770 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3771 } 3772 3773 return DAG.getBuildVector(DestVT, SL, CastedElts); 3774 } 3775 } 3776 } 3777 3778 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3779 break; 3780 3781 // Fold bitcasts of constants. 3782 // 3783 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3784 // TODO: Generalize and move to DAGCombiner 3785 SDValue Src = N->getOperand(0); 3786 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3787 if (Src.getValueType() == MVT::i64) { 3788 SDLoc SL(N); 3789 uint64_t CVal = C->getZExtValue(); 3790 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3791 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3792 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3793 } 3794 } 3795 3796 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3797 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3798 SDLoc SL(N); 3799 uint64_t CVal = Val.getZExtValue(); 3800 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3801 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3802 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3803 3804 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3805 } 3806 3807 break; 3808 } 3809 case ISD::SHL: { 3810 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3811 break; 3812 3813 return performShlCombine(N, DCI); 3814 } 3815 case ISD::SRL: { 3816 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3817 break; 3818 3819 return performSrlCombine(N, DCI); 3820 } 3821 case ISD::SRA: { 3822 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3823 break; 3824 3825 return performSraCombine(N, DCI); 3826 } 3827 case ISD::TRUNCATE: 3828 return performTruncateCombine(N, DCI); 3829 case ISD::MUL: 3830 return performMulCombine(N, DCI); 3831 case ISD::MULHS: 3832 return performMulhsCombine(N, DCI); 3833 case ISD::MULHU: 3834 return performMulhuCombine(N, DCI); 3835 case AMDGPUISD::MUL_I24: 3836 case AMDGPUISD::MUL_U24: 3837 case AMDGPUISD::MULHI_I24: 3838 case AMDGPUISD::MULHI_U24: { 3839 // If the first call to simplify is successfull, then N may end up being 3840 // deleted, so we shouldn't call simplifyI24 again. 3841 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3842 return SDValue(); 3843 } 3844 case AMDGPUISD::MUL_LOHI_I24: 3845 case AMDGPUISD::MUL_LOHI_U24: 3846 return performMulLoHi24Combine(N, DCI); 3847 case ISD::SELECT: 3848 return performSelectCombine(N, DCI); 3849 case ISD::FNEG: 3850 return performFNegCombine(N, DCI); 3851 case ISD::FABS: 3852 return performFAbsCombine(N, DCI); 3853 case AMDGPUISD::BFE_I32: 3854 case AMDGPUISD::BFE_U32: { 3855 assert(!N->getValueType(0).isVector() && 3856 "Vector handling of BFE not implemented"); 3857 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3858 if (!Width) 3859 break; 3860 3861 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3862 if (WidthVal == 0) 3863 return DAG.getConstant(0, DL, MVT::i32); 3864 3865 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3866 if (!Offset) 3867 break; 3868 3869 SDValue BitsFrom = N->getOperand(0); 3870 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3871 3872 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3873 3874 if (OffsetVal == 0) { 3875 // This is already sign / zero extended, so try to fold away extra BFEs. 3876 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3877 3878 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3879 if (OpSignBits >= SignBits) 3880 return BitsFrom; 3881 3882 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3883 if (Signed) { 3884 // This is a sign_extend_inreg. Replace it to take advantage of existing 3885 // DAG Combines. If not eliminated, we will match back to BFE during 3886 // selection. 3887 3888 // TODO: The sext_inreg of extended types ends, although we can could 3889 // handle them in a single BFE. 3890 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3891 DAG.getValueType(SmallVT)); 3892 } 3893 3894 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3895 } 3896 3897 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3898 if (Signed) { 3899 return constantFoldBFE<int32_t>(DAG, 3900 CVal->getSExtValue(), 3901 OffsetVal, 3902 WidthVal, 3903 DL); 3904 } 3905 3906 return constantFoldBFE<uint32_t>(DAG, 3907 CVal->getZExtValue(), 3908 OffsetVal, 3909 WidthVal, 3910 DL); 3911 } 3912 3913 if ((OffsetVal + WidthVal) >= 32 && 3914 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3915 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3916 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3917 BitsFrom, ShiftVal); 3918 } 3919 3920 if (BitsFrom.hasOneUse()) { 3921 APInt Demanded = APInt::getBitsSet(32, 3922 OffsetVal, 3923 OffsetVal + WidthVal); 3924 3925 KnownBits Known; 3926 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3927 !DCI.isBeforeLegalizeOps()); 3928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3929 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3930 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3931 DCI.CommitTargetLoweringOpt(TLO); 3932 } 3933 } 3934 3935 break; 3936 } 3937 case ISD::LOAD: 3938 return performLoadCombine(N, DCI); 3939 case ISD::STORE: 3940 return performStoreCombine(N, DCI); 3941 case AMDGPUISD::RCP: { 3942 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3943 // XXX - Should this flush denormals? 3944 const APFloat &Val = CFP->getValueAPF(); 3945 APFloat One(Val.getSemantics(), "1.0"); 3946 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3947 } 3948 3949 break; 3950 } 3951 case ISD::AssertZext: 3952 case ISD::AssertSext: 3953 return performAssertSZExtCombine(N, DCI); 3954 } 3955 return SDValue(); 3956 } 3957 3958 //===----------------------------------------------------------------------===// 3959 // Helper functions 3960 //===----------------------------------------------------------------------===// 3961 3962 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3963 const TargetRegisterClass *RC, 3964 unsigned Reg, EVT VT, 3965 const SDLoc &SL, 3966 bool RawReg) const { 3967 MachineFunction &MF = DAG.getMachineFunction(); 3968 MachineRegisterInfo &MRI = MF.getRegInfo(); 3969 unsigned VReg; 3970 3971 if (!MRI.isLiveIn(Reg)) { 3972 VReg = MRI.createVirtualRegister(RC); 3973 MRI.addLiveIn(Reg, VReg); 3974 } else { 3975 VReg = MRI.getLiveInVirtReg(Reg); 3976 } 3977 3978 if (RawReg) 3979 return DAG.getRegister(VReg, VT); 3980 3981 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3982 } 3983 3984 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3985 EVT VT, 3986 const SDLoc &SL, 3987 int64_t Offset) const { 3988 MachineFunction &MF = DAG.getMachineFunction(); 3989 MachineFrameInfo &MFI = MF.getFrameInfo(); 3990 3991 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 3992 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 3993 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 3994 3995 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 3996 MachineMemOperand::MODereferenceable | 3997 MachineMemOperand::MOInvariant); 3998 } 3999 4000 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4001 const SDLoc &SL, 4002 SDValue Chain, 4003 SDValue StackPtr, 4004 SDValue ArgVal, 4005 int64_t Offset) const { 4006 MachineFunction &MF = DAG.getMachineFunction(); 4007 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4008 4009 SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset); 4010 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4011 MachineMemOperand::MODereferenceable); 4012 return Store; 4013 } 4014 4015 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4016 const TargetRegisterClass *RC, 4017 EVT VT, const SDLoc &SL, 4018 const ArgDescriptor &Arg) const { 4019 assert(Arg && "Attempting to load missing argument"); 4020 4021 if (Arg.isRegister()) 4022 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4023 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4024 } 4025 4026 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4027 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 4028 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 4029 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 4030 switch (Param) { 4031 case GRID_DIM: 4032 return ArgOffset; 4033 case GRID_OFFSET: 4034 return ArgOffset + 4; 4035 } 4036 llvm_unreachable("unexpected implicit parameter type"); 4037 } 4038 4039 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4040 4041 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4042 switch ((AMDGPUISD::NodeType)Opcode) { 4043 case AMDGPUISD::FIRST_NUMBER: break; 4044 // AMDIL DAG nodes 4045 NODE_NAME_CASE(UMUL); 4046 NODE_NAME_CASE(BRANCH_COND); 4047 4048 // AMDGPU DAG nodes 4049 NODE_NAME_CASE(IF) 4050 NODE_NAME_CASE(ELSE) 4051 NODE_NAME_CASE(LOOP) 4052 NODE_NAME_CASE(CALL) 4053 NODE_NAME_CASE(TC_RETURN) 4054 NODE_NAME_CASE(TRAP) 4055 NODE_NAME_CASE(RET_FLAG) 4056 NODE_NAME_CASE(RETURN_TO_EPILOG) 4057 NODE_NAME_CASE(ENDPGM) 4058 NODE_NAME_CASE(DWORDADDR) 4059 NODE_NAME_CASE(FRACT) 4060 NODE_NAME_CASE(SETCC) 4061 NODE_NAME_CASE(SETREG) 4062 NODE_NAME_CASE(FMA_W_CHAIN) 4063 NODE_NAME_CASE(FMUL_W_CHAIN) 4064 NODE_NAME_CASE(CLAMP) 4065 NODE_NAME_CASE(COS_HW) 4066 NODE_NAME_CASE(SIN_HW) 4067 NODE_NAME_CASE(FMAX_LEGACY) 4068 NODE_NAME_CASE(FMIN_LEGACY) 4069 NODE_NAME_CASE(FMAX3) 4070 NODE_NAME_CASE(SMAX3) 4071 NODE_NAME_CASE(UMAX3) 4072 NODE_NAME_CASE(FMIN3) 4073 NODE_NAME_CASE(SMIN3) 4074 NODE_NAME_CASE(UMIN3) 4075 NODE_NAME_CASE(FMED3) 4076 NODE_NAME_CASE(SMED3) 4077 NODE_NAME_CASE(UMED3) 4078 NODE_NAME_CASE(URECIP) 4079 NODE_NAME_CASE(DIV_SCALE) 4080 NODE_NAME_CASE(DIV_FMAS) 4081 NODE_NAME_CASE(DIV_FIXUP) 4082 NODE_NAME_CASE(FMAD_FTZ) 4083 NODE_NAME_CASE(TRIG_PREOP) 4084 NODE_NAME_CASE(RCP) 4085 NODE_NAME_CASE(RSQ) 4086 NODE_NAME_CASE(RCP_LEGACY) 4087 NODE_NAME_CASE(RSQ_LEGACY) 4088 NODE_NAME_CASE(FMUL_LEGACY) 4089 NODE_NAME_CASE(RSQ_CLAMP) 4090 NODE_NAME_CASE(LDEXP) 4091 NODE_NAME_CASE(FP_CLASS) 4092 NODE_NAME_CASE(DOT4) 4093 NODE_NAME_CASE(CARRY) 4094 NODE_NAME_CASE(BORROW) 4095 NODE_NAME_CASE(BFE_U32) 4096 NODE_NAME_CASE(BFE_I32) 4097 NODE_NAME_CASE(BFI) 4098 NODE_NAME_CASE(BFM) 4099 NODE_NAME_CASE(FFBH_U32) 4100 NODE_NAME_CASE(FFBH_I32) 4101 NODE_NAME_CASE(FFBL_B32) 4102 NODE_NAME_CASE(MUL_U24) 4103 NODE_NAME_CASE(MUL_I24) 4104 NODE_NAME_CASE(MULHI_U24) 4105 NODE_NAME_CASE(MULHI_I24) 4106 NODE_NAME_CASE(MUL_LOHI_U24) 4107 NODE_NAME_CASE(MUL_LOHI_I24) 4108 NODE_NAME_CASE(MAD_U24) 4109 NODE_NAME_CASE(MAD_I24) 4110 NODE_NAME_CASE(MAD_I64_I32) 4111 NODE_NAME_CASE(MAD_U64_U32) 4112 NODE_NAME_CASE(TEXTURE_FETCH) 4113 NODE_NAME_CASE(EXPORT) 4114 NODE_NAME_CASE(EXPORT_DONE) 4115 NODE_NAME_CASE(R600_EXPORT) 4116 NODE_NAME_CASE(CONST_ADDRESS) 4117 NODE_NAME_CASE(REGISTER_LOAD) 4118 NODE_NAME_CASE(REGISTER_STORE) 4119 NODE_NAME_CASE(SAMPLE) 4120 NODE_NAME_CASE(SAMPLEB) 4121 NODE_NAME_CASE(SAMPLED) 4122 NODE_NAME_CASE(SAMPLEL) 4123 NODE_NAME_CASE(CVT_F32_UBYTE0) 4124 NODE_NAME_CASE(CVT_F32_UBYTE1) 4125 NODE_NAME_CASE(CVT_F32_UBYTE2) 4126 NODE_NAME_CASE(CVT_F32_UBYTE3) 4127 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4128 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4129 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4130 NODE_NAME_CASE(CVT_PK_I16_I32) 4131 NODE_NAME_CASE(CVT_PK_U16_U32) 4132 NODE_NAME_CASE(FP_TO_FP16) 4133 NODE_NAME_CASE(FP16_ZEXT) 4134 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4135 NODE_NAME_CASE(CONST_DATA_PTR) 4136 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4137 NODE_NAME_CASE(KILL) 4138 NODE_NAME_CASE(DUMMY_CHAIN) 4139 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4140 NODE_NAME_CASE(INIT_EXEC) 4141 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4142 NODE_NAME_CASE(SENDMSG) 4143 NODE_NAME_CASE(SENDMSGHALT) 4144 NODE_NAME_CASE(INTERP_MOV) 4145 NODE_NAME_CASE(INTERP_P1) 4146 NODE_NAME_CASE(INTERP_P2) 4147 NODE_NAME_CASE(STORE_MSKOR) 4148 NODE_NAME_CASE(LOAD_CONSTANT) 4149 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4150 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 4151 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4152 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4153 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4154 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4155 NODE_NAME_CASE(ATOMIC_INC) 4156 NODE_NAME_CASE(ATOMIC_DEC) 4157 NODE_NAME_CASE(ATOMIC_LOAD_FADD) 4158 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4159 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4160 NODE_NAME_CASE(BUFFER_LOAD) 4161 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4162 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4163 NODE_NAME_CASE(BUFFER_STORE) 4164 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4165 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4166 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4167 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4168 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4169 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4170 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4171 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4172 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4173 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4174 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4175 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4176 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4177 NODE_NAME_CASE(IMAGE_LOAD) 4178 NODE_NAME_CASE(IMAGE_LOAD_MIP) 4179 NODE_NAME_CASE(IMAGE_STORE) 4180 NODE_NAME_CASE(IMAGE_STORE_MIP) 4181 // Basic sample. 4182 NODE_NAME_CASE(IMAGE_SAMPLE) 4183 NODE_NAME_CASE(IMAGE_SAMPLE_CL) 4184 NODE_NAME_CASE(IMAGE_SAMPLE_D) 4185 NODE_NAME_CASE(IMAGE_SAMPLE_D_CL) 4186 NODE_NAME_CASE(IMAGE_SAMPLE_L) 4187 NODE_NAME_CASE(IMAGE_SAMPLE_B) 4188 NODE_NAME_CASE(IMAGE_SAMPLE_B_CL) 4189 NODE_NAME_CASE(IMAGE_SAMPLE_LZ) 4190 NODE_NAME_CASE(IMAGE_SAMPLE_CD) 4191 NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL) 4192 // Sample with comparison. 4193 NODE_NAME_CASE(IMAGE_SAMPLE_C) 4194 NODE_NAME_CASE(IMAGE_SAMPLE_C_CL) 4195 NODE_NAME_CASE(IMAGE_SAMPLE_C_D) 4196 NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL) 4197 NODE_NAME_CASE(IMAGE_SAMPLE_C_L) 4198 NODE_NAME_CASE(IMAGE_SAMPLE_C_B) 4199 NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL) 4200 NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ) 4201 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD) 4202 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL) 4203 // Sample with offsets. 4204 NODE_NAME_CASE(IMAGE_SAMPLE_O) 4205 NODE_NAME_CASE(IMAGE_SAMPLE_CL_O) 4206 NODE_NAME_CASE(IMAGE_SAMPLE_D_O) 4207 NODE_NAME_CASE(IMAGE_SAMPLE_D_CL_O) 4208 NODE_NAME_CASE(IMAGE_SAMPLE_L_O) 4209 NODE_NAME_CASE(IMAGE_SAMPLE_B_O) 4210 NODE_NAME_CASE(IMAGE_SAMPLE_B_CL_O) 4211 NODE_NAME_CASE(IMAGE_SAMPLE_LZ_O) 4212 NODE_NAME_CASE(IMAGE_SAMPLE_CD_O) 4213 NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL_O) 4214 // Sample with comparison and offsets. 4215 NODE_NAME_CASE(IMAGE_SAMPLE_C_O) 4216 NODE_NAME_CASE(IMAGE_SAMPLE_C_CL_O) 4217 NODE_NAME_CASE(IMAGE_SAMPLE_C_D_O) 4218 NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL_O) 4219 NODE_NAME_CASE(IMAGE_SAMPLE_C_L_O) 4220 NODE_NAME_CASE(IMAGE_SAMPLE_C_B_O) 4221 NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL_O) 4222 NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ_O) 4223 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_O) 4224 NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL_O) 4225 // Basic gather4. 4226 NODE_NAME_CASE(IMAGE_GATHER4) 4227 NODE_NAME_CASE(IMAGE_GATHER4_CL) 4228 NODE_NAME_CASE(IMAGE_GATHER4_L) 4229 NODE_NAME_CASE(IMAGE_GATHER4_B) 4230 NODE_NAME_CASE(IMAGE_GATHER4_B_CL) 4231 NODE_NAME_CASE(IMAGE_GATHER4_LZ) 4232 // Gather4 with comparison. 4233 NODE_NAME_CASE(IMAGE_GATHER4_C) 4234 NODE_NAME_CASE(IMAGE_GATHER4_C_CL) 4235 NODE_NAME_CASE(IMAGE_GATHER4_C_L) 4236 NODE_NAME_CASE(IMAGE_GATHER4_C_B) 4237 NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL) 4238 NODE_NAME_CASE(IMAGE_GATHER4_C_LZ) 4239 // Gather4 with offsets. 4240 NODE_NAME_CASE(IMAGE_GATHER4_O) 4241 NODE_NAME_CASE(IMAGE_GATHER4_CL_O) 4242 NODE_NAME_CASE(IMAGE_GATHER4_L_O) 4243 NODE_NAME_CASE(IMAGE_GATHER4_B_O) 4244 NODE_NAME_CASE(IMAGE_GATHER4_B_CL_O) 4245 NODE_NAME_CASE(IMAGE_GATHER4_LZ_O) 4246 // Gather4 with comparison and offsets. 4247 NODE_NAME_CASE(IMAGE_GATHER4_C_O) 4248 NODE_NAME_CASE(IMAGE_GATHER4_C_CL_O) 4249 NODE_NAME_CASE(IMAGE_GATHER4_C_L_O) 4250 NODE_NAME_CASE(IMAGE_GATHER4_C_B_O) 4251 NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL_O) 4252 NODE_NAME_CASE(IMAGE_GATHER4_C_LZ_O) 4253 4254 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4255 } 4256 return nullptr; 4257 } 4258 4259 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4260 SelectionDAG &DAG, int Enabled, 4261 int &RefinementSteps, 4262 bool &UseOneConstNR, 4263 bool Reciprocal) const { 4264 EVT VT = Operand.getValueType(); 4265 4266 if (VT == MVT::f32) { 4267 RefinementSteps = 0; 4268 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4269 } 4270 4271 // TODO: There is also f64 rsq instruction, but the documentation is less 4272 // clear on its precision. 4273 4274 return SDValue(); 4275 } 4276 4277 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4278 SelectionDAG &DAG, int Enabled, 4279 int &RefinementSteps) const { 4280 EVT VT = Operand.getValueType(); 4281 4282 if (VT == MVT::f32) { 4283 // Reciprocal, < 1 ulp error. 4284 // 4285 // This reciprocal approximation converges to < 0.5 ulp error with one 4286 // newton rhapson performed with two fused multiple adds (FMAs). 4287 4288 RefinementSteps = 0; 4289 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4290 } 4291 4292 // TODO: There is also f64 rcp instruction, but the documentation is less 4293 // clear on its precision. 4294 4295 return SDValue(); 4296 } 4297 4298 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4299 const SDValue Op, KnownBits &Known, 4300 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4301 4302 Known.resetAll(); // Don't know anything. 4303 4304 unsigned Opc = Op.getOpcode(); 4305 4306 switch (Opc) { 4307 default: 4308 break; 4309 case AMDGPUISD::CARRY: 4310 case AMDGPUISD::BORROW: { 4311 Known.Zero = APInt::getHighBitsSet(32, 31); 4312 break; 4313 } 4314 4315 case AMDGPUISD::BFE_I32: 4316 case AMDGPUISD::BFE_U32: { 4317 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4318 if (!CWidth) 4319 return; 4320 4321 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4322 4323 if (Opc == AMDGPUISD::BFE_U32) 4324 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4325 4326 break; 4327 } 4328 case AMDGPUISD::FP_TO_FP16: 4329 case AMDGPUISD::FP16_ZEXT: { 4330 unsigned BitWidth = Known.getBitWidth(); 4331 4332 // High bits are zero. 4333 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4334 break; 4335 } 4336 case AMDGPUISD::MUL_U24: 4337 case AMDGPUISD::MUL_I24: { 4338 KnownBits LHSKnown, RHSKnown; 4339 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 4340 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 4341 4342 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4343 RHSKnown.countMinTrailingZeros(); 4344 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4345 4346 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 4347 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 4348 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4349 if (MaxValBits >= 32) 4350 break; 4351 bool Negative = false; 4352 if (Opc == AMDGPUISD::MUL_I24) { 4353 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 4354 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 4355 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 4356 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 4357 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4358 break; 4359 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4360 } 4361 if (Negative) 4362 Known.One.setHighBits(32 - MaxValBits); 4363 else 4364 Known.Zero.setHighBits(32 - MaxValBits); 4365 break; 4366 } 4367 case ISD::INTRINSIC_WO_CHAIN: { 4368 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4369 switch (IID) { 4370 case Intrinsic::amdgcn_mbcnt_lo: 4371 case Intrinsic::amdgcn_mbcnt_hi: { 4372 // These return at most the wavefront size - 1. 4373 unsigned Size = Op.getValueType().getSizeInBits(); 4374 Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2()); 4375 break; 4376 } 4377 default: 4378 break; 4379 } 4380 } 4381 } 4382 } 4383 4384 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4385 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4386 unsigned Depth) const { 4387 switch (Op.getOpcode()) { 4388 case AMDGPUISD::BFE_I32: { 4389 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4390 if (!Width) 4391 return 1; 4392 4393 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4394 if (!isNullConstant(Op.getOperand(1))) 4395 return SignBits; 4396 4397 // TODO: Could probably figure something out with non-0 offsets. 4398 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4399 return std::max(SignBits, Op0SignBits); 4400 } 4401 4402 case AMDGPUISD::BFE_U32: { 4403 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4404 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4405 } 4406 4407 case AMDGPUISD::CARRY: 4408 case AMDGPUISD::BORROW: 4409 return 31; 4410 case AMDGPUISD::FP_TO_FP16: 4411 case AMDGPUISD::FP16_ZEXT: 4412 return 16; 4413 default: 4414 return 1; 4415 } 4416 } 4417