1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIInstrInfo.h"
24 #include "SIMachineFunctionInfo.h"
25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/MathExtras.h"
36 using namespace llvm;
37 
38 #include "AMDGPUGenCallingConv.inc"
39 
40 // Find a larger type to do a load / store of a vector with.
41 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
42   unsigned StoreSize = VT.getStoreSizeInBits();
43   if (StoreSize <= 32)
44     return EVT::getIntegerVT(Ctx, StoreSize);
45 
46   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
47   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
48 }
49 
50 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
51   EVT VT = Op.getValueType();
52   KnownBits Known = DAG.computeKnownBits(Op);
53   return VT.getSizeInBits() - Known.countMinLeadingZeros();
54 }
55 
56 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
57   EVT VT = Op.getValueType();
58 
59   // In order for this to be a signed 24-bit value, bit 23, must
60   // be a sign bit.
61   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
62 }
63 
64 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
65                                            const AMDGPUSubtarget &STI)
66     : TargetLowering(TM), Subtarget(&STI) {
67   // Lower floating point store/load to integer store/load to reduce the number
68   // of patterns in tablegen.
69   setOperationAction(ISD::LOAD, MVT::f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
77 
78   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
83 
84   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
89 
90   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
91   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
92 
93   setOperationAction(ISD::LOAD, MVT::i64, Promote);
94   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
95 
96   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
97   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
98 
99   setOperationAction(ISD::LOAD, MVT::f64, Promote);
100   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
101 
102   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
103   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
104 
105   // There are no 64-bit extloads. These should be done as a 32-bit extload and
106   // an extension to 64-bit.
107   for (MVT VT : MVT::integer_valuetypes()) {
108     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
109     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
110     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
111   }
112 
113   for (MVT VT : MVT::integer_valuetypes()) {
114     if (VT == MVT::i64)
115       continue;
116 
117     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
118     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
119     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
121 
122     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
123     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
125     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
126 
127     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
129     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
130     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
131   }
132 
133   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
134     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
135     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
136     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
137     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
138     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
139     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
140     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
141     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
142     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
143     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
144     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
145     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
146     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
147     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
148     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
149   }
150 
151   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
152   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
153   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
154   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
155   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
156   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
157   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
158 
159   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
160   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
161   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
162   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
163 
164   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
165   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
166   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
167   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
168 
169   setOperationAction(ISD::STORE, MVT::f32, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
174 
175   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
176   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
177 
178   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
179   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
180 
181   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
182   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
183 
184   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
185   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
186 
187   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
188   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
189 
190   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
191   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
192 
193   setOperationAction(ISD::STORE, MVT::i64, Promote);
194   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
195 
196   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
197   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
198 
199   setOperationAction(ISD::STORE, MVT::f64, Promote);
200   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
201 
202   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
203   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
204 
205   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
206   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
207   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
208   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
209 
210   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
211   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
212   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
213   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
214 
215   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
216   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
217   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
218   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
219   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
220   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
221   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
222 
223   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
224   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
225 
226   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
227   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
228 
229   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
230   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
231 
232   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
233   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
234 
235 
236   setOperationAction(ISD::Constant, MVT::i32, Legal);
237   setOperationAction(ISD::Constant, MVT::i64, Legal);
238   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
239   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
240 
241   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
242   setOperationAction(ISD::BRIND, MVT::Other, Expand);
243 
244   // This is totally unsupported, just custom lower to produce an error.
245   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
246 
247   // Library functions.  These default to Expand, but we have instructions
248   // for them.
249   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
250   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
251   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
252   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
253   setOperationAction(ISD::FABS,   MVT::f32, Legal);
254   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
255   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
256   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
257   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
258   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
259 
260   setOperationAction(ISD::FROUND, MVT::f32, Custom);
261   setOperationAction(ISD::FROUND, MVT::f64, Custom);
262 
263   setOperationAction(ISD::FLOG, MVT::f32, Custom);
264   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
265   setOperationAction(ISD::FEXP, MVT::f32, Custom);
266 
267 
268   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
269   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
270 
271   setOperationAction(ISD::FREM, MVT::f32, Custom);
272   setOperationAction(ISD::FREM, MVT::f64, Custom);
273 
274   // Expand to fneg + fadd.
275   setOperationAction(ISD::FSUB, MVT::f64, Expand);
276 
277   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
278   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
279   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
280   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
281   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
282   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
283   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
284   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
285   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
286   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
287   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
288   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
289   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
290   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
291   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
292   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
293   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
294   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
295   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
296   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
297   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
298   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
299 
300   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
301   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
302   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
303 
304   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
305   for (MVT VT : ScalarIntVTs) {
306     // These should use [SU]DIVREM, so set them to expand
307     setOperationAction(ISD::SDIV, VT, Expand);
308     setOperationAction(ISD::UDIV, VT, Expand);
309     setOperationAction(ISD::SREM, VT, Expand);
310     setOperationAction(ISD::UREM, VT, Expand);
311 
312     // GPU does not have divrem function for signed or unsigned.
313     setOperationAction(ISD::SDIVREM, VT, Custom);
314     setOperationAction(ISD::UDIVREM, VT, Custom);
315 
316     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
317     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
318     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
319 
320     setOperationAction(ISD::BSWAP, VT, Expand);
321     setOperationAction(ISD::CTTZ, VT, Expand);
322     setOperationAction(ISD::CTLZ, VT, Expand);
323 
324     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
325     setOperationAction(ISD::ADDC, VT, Legal);
326     setOperationAction(ISD::SUBC, VT, Legal);
327     setOperationAction(ISD::ADDE, VT, Legal);
328     setOperationAction(ISD::SUBE, VT, Legal);
329   }
330 
331   // The hardware supports 32-bit ROTR, but not ROTL.
332   setOperationAction(ISD::ROTL, MVT::i32, Expand);
333   setOperationAction(ISD::ROTL, MVT::i64, Expand);
334   setOperationAction(ISD::ROTR, MVT::i64, Expand);
335 
336   setOperationAction(ISD::MUL, MVT::i64, Expand);
337   setOperationAction(ISD::MULHU, MVT::i64, Expand);
338   setOperationAction(ISD::MULHS, MVT::i64, Expand);
339   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
340   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
341   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
342   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
343   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
344 
345   setOperationAction(ISD::SMIN, MVT::i32, Legal);
346   setOperationAction(ISD::UMIN, MVT::i32, Legal);
347   setOperationAction(ISD::SMAX, MVT::i32, Legal);
348   setOperationAction(ISD::UMAX, MVT::i32, Legal);
349 
350   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
351   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
352   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
353   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
354 
355   static const MVT::SimpleValueType VectorIntTypes[] = {
356     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
357   };
358 
359   for (MVT VT : VectorIntTypes) {
360     // Expand the following operations for the current type by default.
361     setOperationAction(ISD::ADD,  VT, Expand);
362     setOperationAction(ISD::AND,  VT, Expand);
363     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
364     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
365     setOperationAction(ISD::MUL,  VT, Expand);
366     setOperationAction(ISD::MULHU, VT, Expand);
367     setOperationAction(ISD::MULHS, VT, Expand);
368     setOperationAction(ISD::OR,   VT, Expand);
369     setOperationAction(ISD::SHL,  VT, Expand);
370     setOperationAction(ISD::SRA,  VT, Expand);
371     setOperationAction(ISD::SRL,  VT, Expand);
372     setOperationAction(ISD::ROTL, VT, Expand);
373     setOperationAction(ISD::ROTR, VT, Expand);
374     setOperationAction(ISD::SUB,  VT, Expand);
375     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
376     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
377     setOperationAction(ISD::SDIV, VT, Expand);
378     setOperationAction(ISD::UDIV, VT, Expand);
379     setOperationAction(ISD::SREM, VT, Expand);
380     setOperationAction(ISD::UREM, VT, Expand);
381     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
382     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
383     setOperationAction(ISD::SDIVREM, VT, Custom);
384     setOperationAction(ISD::UDIVREM, VT, Expand);
385     setOperationAction(ISD::SELECT, VT, Expand);
386     setOperationAction(ISD::VSELECT, VT, Expand);
387     setOperationAction(ISD::SELECT_CC, VT, Expand);
388     setOperationAction(ISD::XOR,  VT, Expand);
389     setOperationAction(ISD::BSWAP, VT, Expand);
390     setOperationAction(ISD::CTPOP, VT, Expand);
391     setOperationAction(ISD::CTTZ, VT, Expand);
392     setOperationAction(ISD::CTLZ, VT, Expand);
393     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
394     setOperationAction(ISD::SETCC, VT, Expand);
395   }
396 
397   static const MVT::SimpleValueType FloatVectorTypes[] = {
398      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
399   };
400 
401   for (MVT VT : FloatVectorTypes) {
402     setOperationAction(ISD::FABS, VT, Expand);
403     setOperationAction(ISD::FMINNUM, VT, Expand);
404     setOperationAction(ISD::FMAXNUM, VT, Expand);
405     setOperationAction(ISD::FADD, VT, Expand);
406     setOperationAction(ISD::FCEIL, VT, Expand);
407     setOperationAction(ISD::FCOS, VT, Expand);
408     setOperationAction(ISD::FDIV, VT, Expand);
409     setOperationAction(ISD::FEXP2, VT, Expand);
410     setOperationAction(ISD::FEXP, VT, Expand);
411     setOperationAction(ISD::FLOG2, VT, Expand);
412     setOperationAction(ISD::FREM, VT, Expand);
413     setOperationAction(ISD::FLOG, VT, Expand);
414     setOperationAction(ISD::FLOG10, VT, Expand);
415     setOperationAction(ISD::FPOW, VT, Expand);
416     setOperationAction(ISD::FFLOOR, VT, Expand);
417     setOperationAction(ISD::FTRUNC, VT, Expand);
418     setOperationAction(ISD::FMUL, VT, Expand);
419     setOperationAction(ISD::FMA, VT, Expand);
420     setOperationAction(ISD::FRINT, VT, Expand);
421     setOperationAction(ISD::FNEARBYINT, VT, Expand);
422     setOperationAction(ISD::FSQRT, VT, Expand);
423     setOperationAction(ISD::FSIN, VT, Expand);
424     setOperationAction(ISD::FSUB, VT, Expand);
425     setOperationAction(ISD::FNEG, VT, Expand);
426     setOperationAction(ISD::VSELECT, VT, Expand);
427     setOperationAction(ISD::SELECT_CC, VT, Expand);
428     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
429     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
430     setOperationAction(ISD::SETCC, VT, Expand);
431     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
432   }
433 
434   // This causes using an unrolled select operation rather than expansion with
435   // bit operations. This is in general better, but the alternative using BFI
436   // instructions may be better if the select sources are SGPRs.
437   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
438   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
439 
440   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
441   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
442 
443   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
444   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
445 
446   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
447   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
448 
449   // There are no libcalls of any kind.
450   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
451     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
452 
453   setSchedulingPreference(Sched::RegPressure);
454   setJumpIsExpensive(true);
455 
456   // FIXME: This is only partially true. If we have to do vector compares, any
457   // SGPR pair can be a condition register. If we have a uniform condition, we
458   // are better off doing SALU operations, where there is only one SCC. For now,
459   // we don't have a way of knowing during instruction selection if a condition
460   // will be uniform and we always use vector compares. Assume we are using
461   // vector compares until that is fixed.
462   setHasMultipleConditionRegisters(true);
463 
464   setMinCmpXchgSizeInBits(32);
465   setSupportsUnalignedAtomics(false);
466 
467   PredictableSelectIsExpensive = false;
468 
469   // We want to find all load dependencies for long chains of stores to enable
470   // merging into very wide vectors. The problem is with vectors with > 4
471   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
472   // vectors are a legal type, even though we have to split the loads
473   // usually. When we can more precisely specify load legality per address
474   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
475   // smarter so that they can figure out what to do in 2 iterations without all
476   // N > 4 stores on the same chain.
477   GatherAllAliasesMaxDepth = 16;
478 
479   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
480   // about these during lowering.
481   MaxStoresPerMemcpy  = 0xffffffff;
482   MaxStoresPerMemmove = 0xffffffff;
483   MaxStoresPerMemset  = 0xffffffff;
484 
485   setTargetDAGCombine(ISD::BITCAST);
486   setTargetDAGCombine(ISD::SHL);
487   setTargetDAGCombine(ISD::SRA);
488   setTargetDAGCombine(ISD::SRL);
489   setTargetDAGCombine(ISD::TRUNCATE);
490   setTargetDAGCombine(ISD::MUL);
491   setTargetDAGCombine(ISD::MULHU);
492   setTargetDAGCombine(ISD::MULHS);
493   setTargetDAGCombine(ISD::SELECT);
494   setTargetDAGCombine(ISD::SELECT_CC);
495   setTargetDAGCombine(ISD::STORE);
496   setTargetDAGCombine(ISD::FADD);
497   setTargetDAGCombine(ISD::FSUB);
498   setTargetDAGCombine(ISD::FNEG);
499   setTargetDAGCombine(ISD::FABS);
500   setTargetDAGCombine(ISD::AssertZext);
501   setTargetDAGCombine(ISD::AssertSext);
502   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
503 }
504 
505 //===----------------------------------------------------------------------===//
506 // Target Information
507 //===----------------------------------------------------------------------===//
508 
509 LLVM_READNONE
510 static bool fnegFoldsIntoOp(unsigned Opc) {
511   switch (Opc) {
512   case ISD::FADD:
513   case ISD::FSUB:
514   case ISD::FMUL:
515   case ISD::FMA:
516   case ISD::FMAD:
517   case ISD::FMINNUM:
518   case ISD::FMAXNUM:
519   case ISD::FMINNUM_IEEE:
520   case ISD::FMAXNUM_IEEE:
521   case ISD::FSIN:
522   case ISD::FTRUNC:
523   case ISD::FRINT:
524   case ISD::FNEARBYINT:
525   case ISD::FCANONICALIZE:
526   case AMDGPUISD::RCP:
527   case AMDGPUISD::RCP_LEGACY:
528   case AMDGPUISD::RCP_IFLAG:
529   case AMDGPUISD::SIN_HW:
530   case AMDGPUISD::FMUL_LEGACY:
531   case AMDGPUISD::FMIN_LEGACY:
532   case AMDGPUISD::FMAX_LEGACY:
533   case AMDGPUISD::FMED3:
534     return true;
535   default:
536     return false;
537   }
538 }
539 
540 /// \p returns true if the operation will definitely need to use a 64-bit
541 /// encoding, and thus will use a VOP3 encoding regardless of the source
542 /// modifiers.
543 LLVM_READONLY
544 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
545   return N->getNumOperands() > 2 || VT == MVT::f64;
546 }
547 
548 // Most FP instructions support source modifiers, but this could be refined
549 // slightly.
550 LLVM_READONLY
551 static bool hasSourceMods(const SDNode *N) {
552   if (isa<MemSDNode>(N))
553     return false;
554 
555   switch (N->getOpcode()) {
556   case ISD::CopyToReg:
557   case ISD::SELECT:
558   case ISD::FDIV:
559   case ISD::FREM:
560   case ISD::INLINEASM:
561   case ISD::INLINEASM_BR:
562   case AMDGPUISD::DIV_SCALE:
563   case ISD::INTRINSIC_W_CHAIN:
564 
565   // TODO: Should really be looking at the users of the bitcast. These are
566   // problematic because bitcasts are used to legalize all stores to integer
567   // types.
568   case ISD::BITCAST:
569     return false;
570   case ISD::INTRINSIC_WO_CHAIN: {
571     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
572     case Intrinsic::amdgcn_interp_p1:
573     case Intrinsic::amdgcn_interp_p2:
574     case Intrinsic::amdgcn_interp_mov:
575     case Intrinsic::amdgcn_interp_p1_f16:
576     case Intrinsic::amdgcn_interp_p2_f16:
577       return false;
578     default:
579       return true;
580     }
581   }
582   default:
583     return true;
584   }
585 }
586 
587 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
588                                                  unsigned CostThreshold) {
589   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
590   // it is truly free to use a source modifier in all cases. If there are
591   // multiple users but for each one will necessitate using VOP3, there will be
592   // a code size increase. Try to avoid increasing code size unless we know it
593   // will save on the instruction count.
594   unsigned NumMayIncreaseSize = 0;
595   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
596 
597   // XXX - Should this limit number of uses to check?
598   for (const SDNode *U : N->uses()) {
599     if (!hasSourceMods(U))
600       return false;
601 
602     if (!opMustUseVOP3Encoding(U, VT)) {
603       if (++NumMayIncreaseSize > CostThreshold)
604         return false;
605     }
606   }
607 
608   return true;
609 }
610 
611 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
612   return MVT::i32;
613 }
614 
615 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
616   return true;
617 }
618 
619 // The backend supports 32 and 64 bit floating point immediates.
620 // FIXME: Why are we reporting vectors of FP immediates as legal?
621 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
622                                         bool ForCodeSize) const {
623   EVT ScalarVT = VT.getScalarType();
624   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
625          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
626 }
627 
628 // We don't want to shrink f64 / f32 constants.
629 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
630   EVT ScalarVT = VT.getScalarType();
631   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
632 }
633 
634 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
635                                                  ISD::LoadExtType ExtTy,
636                                                  EVT NewVT) const {
637   // TODO: This may be worth removing. Check regression tests for diffs.
638   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
639     return false;
640 
641   unsigned NewSize = NewVT.getStoreSizeInBits();
642 
643   // If we are reducing to a 32-bit load or a smaller multi-dword load,
644   // this is always better.
645   if (NewSize >= 32)
646     return true;
647 
648   EVT OldVT = N->getValueType(0);
649   unsigned OldSize = OldVT.getStoreSizeInBits();
650 
651   MemSDNode *MN = cast<MemSDNode>(N);
652   unsigned AS = MN->getAddressSpace();
653   // Do not shrink an aligned scalar load to sub-dword.
654   // Scalar engine cannot do sub-dword loads.
655   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
656       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
657        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
658        (isa<LoadSDNode>(N) &&
659         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
660       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
661     return false;
662 
663   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
664   // extloads, so doing one requires using a buffer_load. In cases where we
665   // still couldn't use a scalar load, using the wider load shouldn't really
666   // hurt anything.
667 
668   // If the old size already had to be an extload, there's no harm in continuing
669   // to reduce the width.
670   return (OldSize < 32);
671 }
672 
673 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
674                                                    const SelectionDAG &DAG,
675                                                    const MachineMemOperand &MMO) const {
676 
677   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
678 
679   if (LoadTy.getScalarType() == MVT::i32)
680     return false;
681 
682   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
683   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
684 
685   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
686     return false;
687 
688   bool Fast = false;
689   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
690                                         CastTy, MMO, &Fast) &&
691          Fast;
692 }
693 
694 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
695 // profitable with the expansion for 64-bit since it's generally good to
696 // speculate things.
697 // FIXME: These should really have the size as a parameter.
698 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
699   return true;
700 }
701 
702 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
703   return true;
704 }
705 
706 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
707   switch (N->getOpcode()) {
708     default:
709     return false;
710     case ISD::EntryToken:
711     case ISD::TokenFactor:
712       return true;
713     case ISD::INTRINSIC_WO_CHAIN:
714     {
715       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
716       switch (IntrID) {
717         default:
718         return false;
719         case Intrinsic::amdgcn_readfirstlane:
720         case Intrinsic::amdgcn_readlane:
721           return true;
722       }
723     }
724     break;
725     case ISD::LOAD:
726     {
727       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
728           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
729         return true;
730       return false;
731     }
732     break;
733   }
734 }
735 
736 TargetLowering::NegatibleCost
737 AMDGPUTargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
738                                        bool LegalOperations, bool ForCodeSize,
739                                        unsigned Depth) const {
740   switch (Op.getOpcode()) {
741   case ISD::FMA:
742   case ISD::FMAD: {
743     // Negating a fma is not free if it has users without source mods.
744     if (!allUsesHaveSourceMods(Op.getNode()))
745       return NegatibleCost::Expensive;
746     break;
747   }
748   default:
749     break;
750   }
751 
752   return TargetLowering::getNegatibleCost(Op, DAG, LegalOperations, ForCodeSize,
753                                           Depth);
754 }
755 
756 //===---------------------------------------------------------------------===//
757 // Target Properties
758 //===---------------------------------------------------------------------===//
759 
760 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
761   assert(VT.isFloatingPoint());
762 
763   // Packed operations do not have a fabs modifier.
764   return VT == MVT::f32 || VT == MVT::f64 ||
765          (Subtarget->has16BitInsts() && VT == MVT::f16);
766 }
767 
768 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
769   assert(VT.isFloatingPoint());
770   return VT == MVT::f32 || VT == MVT::f64 ||
771          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
772          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
773 }
774 
775 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
776                                                          unsigned NumElem,
777                                                          unsigned AS) const {
778   return true;
779 }
780 
781 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
782   // There are few operations which truly have vector input operands. Any vector
783   // operation is going to involve operations on each component, and a
784   // build_vector will be a copy per element, so it always makes sense to use a
785   // build_vector input in place of the extracted element to avoid a copy into a
786   // super register.
787   //
788   // We should probably only do this if all users are extracts only, but this
789   // should be the common case.
790   return true;
791 }
792 
793 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
794   // Truncate is just accessing a subregister.
795 
796   unsigned SrcSize = Source.getSizeInBits();
797   unsigned DestSize = Dest.getSizeInBits();
798 
799   return DestSize < SrcSize && DestSize % 32 == 0 ;
800 }
801 
802 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
803   // Truncate is just accessing a subregister.
804 
805   unsigned SrcSize = Source->getScalarSizeInBits();
806   unsigned DestSize = Dest->getScalarSizeInBits();
807 
808   if (DestSize== 16 && Subtarget->has16BitInsts())
809     return SrcSize >= 32;
810 
811   return DestSize < SrcSize && DestSize % 32 == 0;
812 }
813 
814 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
815   unsigned SrcSize = Src->getScalarSizeInBits();
816   unsigned DestSize = Dest->getScalarSizeInBits();
817 
818   if (SrcSize == 16 && Subtarget->has16BitInsts())
819     return DestSize >= 32;
820 
821   return SrcSize == 32 && DestSize == 64;
822 }
823 
824 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
825   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
826   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
827   // this will enable reducing 64-bit operations the 32-bit, which is always
828   // good.
829 
830   if (Src == MVT::i16)
831     return Dest == MVT::i32 ||Dest == MVT::i64 ;
832 
833   return Src == MVT::i32 && Dest == MVT::i64;
834 }
835 
836 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
837   return isZExtFree(Val.getValueType(), VT2);
838 }
839 
840 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
841   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
842   // limited number of native 64-bit operations. Shrinking an operation to fit
843   // in a single 32-bit register should always be helpful. As currently used,
844   // this is much less general than the name suggests, and is only used in
845   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
846   // not profitable, and may actually be harmful.
847   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
848 }
849 
850 //===---------------------------------------------------------------------===//
851 // TargetLowering Callbacks
852 //===---------------------------------------------------------------------===//
853 
854 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
855                                                   bool IsVarArg) {
856   switch (CC) {
857   case CallingConv::AMDGPU_VS:
858   case CallingConv::AMDGPU_GS:
859   case CallingConv::AMDGPU_PS:
860   case CallingConv::AMDGPU_CS:
861   case CallingConv::AMDGPU_HS:
862   case CallingConv::AMDGPU_ES:
863   case CallingConv::AMDGPU_LS:
864     return CC_AMDGPU;
865   case CallingConv::C:
866   case CallingConv::Fast:
867   case CallingConv::Cold:
868     return CC_AMDGPU_Func;
869   case CallingConv::AMDGPU_KERNEL:
870   case CallingConv::SPIR_KERNEL:
871   default:
872     report_fatal_error("Unsupported calling convention for call");
873   }
874 }
875 
876 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
877                                                     bool IsVarArg) {
878   switch (CC) {
879   case CallingConv::AMDGPU_KERNEL:
880   case CallingConv::SPIR_KERNEL:
881     llvm_unreachable("kernels should not be handled here");
882   case CallingConv::AMDGPU_VS:
883   case CallingConv::AMDGPU_GS:
884   case CallingConv::AMDGPU_PS:
885   case CallingConv::AMDGPU_CS:
886   case CallingConv::AMDGPU_HS:
887   case CallingConv::AMDGPU_ES:
888   case CallingConv::AMDGPU_LS:
889     return RetCC_SI_Shader;
890   case CallingConv::C:
891   case CallingConv::Fast:
892   case CallingConv::Cold:
893     return RetCC_AMDGPU_Func;
894   default:
895     report_fatal_error("Unsupported calling convention.");
896   }
897 }
898 
899 /// The SelectionDAGBuilder will automatically promote function arguments
900 /// with illegal types.  However, this does not work for the AMDGPU targets
901 /// since the function arguments are stored in memory as these illegal types.
902 /// In order to handle this properly we need to get the original types sizes
903 /// from the LLVM IR Function and fixup the ISD:InputArg values before
904 /// passing them to AnalyzeFormalArguments()
905 
906 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
907 /// input values across multiple registers.  Each item in the Ins array
908 /// represents a single value that will be stored in registers.  Ins[x].VT is
909 /// the value type of the value that will be stored in the register, so
910 /// whatever SDNode we lower the argument to needs to be this type.
911 ///
912 /// In order to correctly lower the arguments we need to know the size of each
913 /// argument.  Since Ins[x].VT gives us the size of the register that will
914 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
915 /// for the orignal function argument so that we can deduce the correct memory
916 /// type to use for Ins[x].  In most cases the correct memory type will be
917 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
918 /// we have a kernel argument of type v8i8, this argument will be split into
919 /// 8 parts and each part will be represented by its own item in the Ins array.
920 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
921 /// the argument before it was split.  From this, we deduce that the memory type
922 /// for each individual part is i8.  We pass the memory type as LocVT to the
923 /// calling convention analysis function and the register type (Ins[x].VT) as
924 /// the ValVT.
925 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
926   CCState &State,
927   const SmallVectorImpl<ISD::InputArg> &Ins) const {
928   const MachineFunction &MF = State.getMachineFunction();
929   const Function &Fn = MF.getFunction();
930   LLVMContext &Ctx = Fn.getParent()->getContext();
931   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
932   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
933   CallingConv::ID CC = Fn.getCallingConv();
934 
935   unsigned MaxAlign = 1;
936   uint64_t ExplicitArgOffset = 0;
937   const DataLayout &DL = Fn.getParent()->getDataLayout();
938 
939   unsigned InIndex = 0;
940 
941   for (const Argument &Arg : Fn.args()) {
942     Type *BaseArgTy = Arg.getType();
943     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
944     MaxAlign = std::max(Align, MaxAlign);
945     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
946 
947     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
948     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
949 
950     // We're basically throwing away everything passed into us and starting over
951     // to get accurate in-memory offsets. The "PartOffset" is completely useless
952     // to us as computed in Ins.
953     //
954     // We also need to figure out what type legalization is trying to do to get
955     // the correct memory offsets.
956 
957     SmallVector<EVT, 16> ValueVTs;
958     SmallVector<uint64_t, 16> Offsets;
959     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
960 
961     for (unsigned Value = 0, NumValues = ValueVTs.size();
962          Value != NumValues; ++Value) {
963       uint64_t BasePartOffset = Offsets[Value];
964 
965       EVT ArgVT = ValueVTs[Value];
966       EVT MemVT = ArgVT;
967       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
968       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
969 
970       if (NumRegs == 1) {
971         // This argument is not split, so the IR type is the memory type.
972         if (ArgVT.isExtended()) {
973           // We have an extended type, like i24, so we should just use the
974           // register type.
975           MemVT = RegisterVT;
976         } else {
977           MemVT = ArgVT;
978         }
979       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
980                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
981         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
982         // We have a vector value which has been split into a vector with
983         // the same scalar type, but fewer elements.  This should handle
984         // all the floating-point vector types.
985         MemVT = RegisterVT;
986       } else if (ArgVT.isVector() &&
987                  ArgVT.getVectorNumElements() == NumRegs) {
988         // This arg has been split so that each element is stored in a separate
989         // register.
990         MemVT = ArgVT.getScalarType();
991       } else if (ArgVT.isExtended()) {
992         // We have an extended type, like i65.
993         MemVT = RegisterVT;
994       } else {
995         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
996         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
997         if (RegisterVT.isInteger()) {
998           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
999         } else if (RegisterVT.isVector()) {
1000           assert(!RegisterVT.getScalarType().isFloatingPoint());
1001           unsigned NumElements = RegisterVT.getVectorNumElements();
1002           assert(MemoryBits % NumElements == 0);
1003           // This vector type has been split into another vector type with
1004           // a different elements size.
1005           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1006                                            MemoryBits / NumElements);
1007           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1008         } else {
1009           llvm_unreachable("cannot deduce memory type.");
1010         }
1011       }
1012 
1013       // Convert one element vectors to scalar.
1014       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1015         MemVT = MemVT.getScalarType();
1016 
1017       // Round up vec3/vec5 argument.
1018       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1019         assert(MemVT.getVectorNumElements() == 3 ||
1020                MemVT.getVectorNumElements() == 5);
1021         MemVT = MemVT.getPow2VectorType(State.getContext());
1022       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1023         MemVT = MemVT.getRoundIntegerType(State.getContext());
1024       }
1025 
1026       unsigned PartOffset = 0;
1027       for (unsigned i = 0; i != NumRegs; ++i) {
1028         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1029                                                BasePartOffset + PartOffset,
1030                                                MemVT.getSimpleVT(),
1031                                                CCValAssign::Full));
1032         PartOffset += MemVT.getStoreSize();
1033       }
1034     }
1035   }
1036 }
1037 
1038 SDValue AMDGPUTargetLowering::LowerReturn(
1039   SDValue Chain, CallingConv::ID CallConv,
1040   bool isVarArg,
1041   const SmallVectorImpl<ISD::OutputArg> &Outs,
1042   const SmallVectorImpl<SDValue> &OutVals,
1043   const SDLoc &DL, SelectionDAG &DAG) const {
1044   // FIXME: Fails for r600 tests
1045   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1046   // "wave terminate should not have return values");
1047   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1048 }
1049 
1050 //===---------------------------------------------------------------------===//
1051 // Target specific lowering
1052 //===---------------------------------------------------------------------===//
1053 
1054 /// Selects the correct CCAssignFn for a given CallingConvention value.
1055 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1056                                                     bool IsVarArg) {
1057   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1058 }
1059 
1060 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1061                                                       bool IsVarArg) {
1062   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1063 }
1064 
1065 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1066                                                   SelectionDAG &DAG,
1067                                                   MachineFrameInfo &MFI,
1068                                                   int ClobberedFI) const {
1069   SmallVector<SDValue, 8> ArgChains;
1070   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1071   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1072 
1073   // Include the original chain at the beginning of the list. When this is
1074   // used by target LowerCall hooks, this helps legalize find the
1075   // CALLSEQ_BEGIN node.
1076   ArgChains.push_back(Chain);
1077 
1078   // Add a chain value for each stack argument corresponding
1079   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1080                             UE = DAG.getEntryNode().getNode()->use_end();
1081        U != UE; ++U) {
1082     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1083       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1084         if (FI->getIndex() < 0) {
1085           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1086           int64_t InLastByte = InFirstByte;
1087           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1088 
1089           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1090               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1091             ArgChains.push_back(SDValue(L, 1));
1092         }
1093       }
1094     }
1095   }
1096 
1097   // Build a tokenfactor for all the chains.
1098   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1099 }
1100 
1101 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1102                                                  SmallVectorImpl<SDValue> &InVals,
1103                                                  StringRef Reason) const {
1104   SDValue Callee = CLI.Callee;
1105   SelectionDAG &DAG = CLI.DAG;
1106 
1107   const Function &Fn = DAG.getMachineFunction().getFunction();
1108 
1109   StringRef FuncName("<unknown>");
1110 
1111   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1112     FuncName = G->getSymbol();
1113   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1114     FuncName = G->getGlobal()->getName();
1115 
1116   DiagnosticInfoUnsupported NoCalls(
1117     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1118   DAG.getContext()->diagnose(NoCalls);
1119 
1120   if (!CLI.IsTailCall) {
1121     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1122       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1123   }
1124 
1125   return DAG.getEntryNode();
1126 }
1127 
1128 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1129                                         SmallVectorImpl<SDValue> &InVals) const {
1130   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1131 }
1132 
1133 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1134                                                       SelectionDAG &DAG) const {
1135   const Function &Fn = DAG.getMachineFunction().getFunction();
1136 
1137   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1138                                             SDLoc(Op).getDebugLoc());
1139   DAG.getContext()->diagnose(NoDynamicAlloca);
1140   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1141   return DAG.getMergeValues(Ops, SDLoc());
1142 }
1143 
1144 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1145                                              SelectionDAG &DAG) const {
1146   switch (Op.getOpcode()) {
1147   default:
1148     Op->print(errs(), &DAG);
1149     llvm_unreachable("Custom lowering code for this"
1150                      "instruction is not implemented yet!");
1151     break;
1152   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1153   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1154   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1155   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1156   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1157   case ISD::FREM: return LowerFREM(Op, DAG);
1158   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1159   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1160   case ISD::FRINT: return LowerFRINT(Op, DAG);
1161   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1162   case ISD::FROUND: return LowerFROUND(Op, DAG);
1163   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1164   case ISD::FLOG:
1165     return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef);
1166   case ISD::FLOG10:
1167     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1168   case ISD::FEXP:
1169     return lowerFEXP(Op, DAG);
1170   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1171   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1172   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1173   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1174   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1175   case ISD::CTTZ:
1176   case ISD::CTTZ_ZERO_UNDEF:
1177   case ISD::CTLZ:
1178   case ISD::CTLZ_ZERO_UNDEF:
1179     return LowerCTLZ_CTTZ(Op, DAG);
1180   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1181   }
1182   return Op;
1183 }
1184 
1185 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1186                                               SmallVectorImpl<SDValue> &Results,
1187                                               SelectionDAG &DAG) const {
1188   switch (N->getOpcode()) {
1189   case ISD::SIGN_EXTEND_INREG:
1190     // Different parts of legalization seem to interpret which type of
1191     // sign_extend_inreg is the one to check for custom lowering. The extended
1192     // from type is what really matters, but some places check for custom
1193     // lowering of the result type. This results in trying to use
1194     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1195     // nothing here and let the illegal result integer be handled normally.
1196     return;
1197   default:
1198     return;
1199   }
1200 }
1201 
1202 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1203   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1204   if (!GVar || !GVar->hasInitializer())
1205     return false;
1206 
1207   return !isa<UndefValue>(GVar->getInitializer());
1208 }
1209 
1210 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1211                                                  SDValue Op,
1212                                                  SelectionDAG &DAG) const {
1213 
1214   const DataLayout &DL = DAG.getDataLayout();
1215   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1216   const GlobalValue *GV = G->getGlobal();
1217 
1218   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1219       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1220     if (!MFI->isEntryFunction()) {
1221       const Function &Fn = DAG.getMachineFunction().getFunction();
1222       DiagnosticInfoUnsupported BadLDSDecl(
1223         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1224       DAG.getContext()->diagnose(BadLDSDecl);
1225     }
1226 
1227     // XXX: What does the value of G->getOffset() mean?
1228     assert(G->getOffset() == 0 &&
1229          "Do not know what to do with an non-zero offset");
1230 
1231     // TODO: We could emit code to handle the initialization somewhere.
1232     if (!hasDefinedInitializer(GV)) {
1233       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1234       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1235     }
1236   }
1237 
1238   const Function &Fn = DAG.getMachineFunction().getFunction();
1239   DiagnosticInfoUnsupported BadInit(
1240       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1241   DAG.getContext()->diagnose(BadInit);
1242   return SDValue();
1243 }
1244 
1245 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1246                                                   SelectionDAG &DAG) const {
1247   SmallVector<SDValue, 8> Args;
1248 
1249   EVT VT = Op.getValueType();
1250   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1251     SDLoc SL(Op);
1252     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1253     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1254 
1255     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1256     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1257   }
1258 
1259   for (const SDUse &U : Op->ops())
1260     DAG.ExtractVectorElements(U.get(), Args);
1261 
1262   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1263 }
1264 
1265 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1266                                                      SelectionDAG &DAG) const {
1267 
1268   SmallVector<SDValue, 8> Args;
1269   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1270   EVT VT = Op.getValueType();
1271   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1272                             VT.getVectorNumElements());
1273 
1274   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1275 }
1276 
1277 /// Generate Min/Max node
1278 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1279                                                    SDValue LHS, SDValue RHS,
1280                                                    SDValue True, SDValue False,
1281                                                    SDValue CC,
1282                                                    DAGCombinerInfo &DCI) const {
1283   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1284     return SDValue();
1285 
1286   SelectionDAG &DAG = DCI.DAG;
1287   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1288   switch (CCOpcode) {
1289   case ISD::SETOEQ:
1290   case ISD::SETONE:
1291   case ISD::SETUNE:
1292   case ISD::SETNE:
1293   case ISD::SETUEQ:
1294   case ISD::SETEQ:
1295   case ISD::SETFALSE:
1296   case ISD::SETFALSE2:
1297   case ISD::SETTRUE:
1298   case ISD::SETTRUE2:
1299   case ISD::SETUO:
1300   case ISD::SETO:
1301     break;
1302   case ISD::SETULE:
1303   case ISD::SETULT: {
1304     if (LHS == True)
1305       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1306     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1307   }
1308   case ISD::SETOLE:
1309   case ISD::SETOLT:
1310   case ISD::SETLE:
1311   case ISD::SETLT: {
1312     // Ordered. Assume ordered for undefined.
1313 
1314     // Only do this after legalization to avoid interfering with other combines
1315     // which might occur.
1316     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1317         !DCI.isCalledByLegalizer())
1318       return SDValue();
1319 
1320     // We need to permute the operands to get the correct NaN behavior. The
1321     // selected operand is the second one based on the failing compare with NaN,
1322     // so permute it based on the compare type the hardware uses.
1323     if (LHS == True)
1324       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1325     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1326   }
1327   case ISD::SETUGE:
1328   case ISD::SETUGT: {
1329     if (LHS == True)
1330       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1331     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1332   }
1333   case ISD::SETGT:
1334   case ISD::SETGE:
1335   case ISD::SETOGE:
1336   case ISD::SETOGT: {
1337     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1338         !DCI.isCalledByLegalizer())
1339       return SDValue();
1340 
1341     if (LHS == True)
1342       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1343     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1344   }
1345   case ISD::SETCC_INVALID:
1346     llvm_unreachable("Invalid setcc condcode!");
1347   }
1348   return SDValue();
1349 }
1350 
1351 std::pair<SDValue, SDValue>
1352 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1353   SDLoc SL(Op);
1354 
1355   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1356 
1357   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1358   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1359 
1360   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1361   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1362 
1363   return std::make_pair(Lo, Hi);
1364 }
1365 
1366 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1367   SDLoc SL(Op);
1368 
1369   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1370   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1371   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1372 }
1373 
1374 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1375   SDLoc SL(Op);
1376 
1377   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1378   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1379   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1380 }
1381 
1382 // Split a vector type into two parts. The first part is a power of two vector.
1383 // The second part is whatever is left over, and is a scalar if it would
1384 // otherwise be a 1-vector.
1385 std::pair<EVT, EVT>
1386 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1387   EVT LoVT, HiVT;
1388   EVT EltVT = VT.getVectorElementType();
1389   unsigned NumElts = VT.getVectorNumElements();
1390   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1391   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1392   HiVT = NumElts - LoNumElts == 1
1393              ? EltVT
1394              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1395   return std::make_pair(LoVT, HiVT);
1396 }
1397 
1398 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1399 // scalar.
1400 std::pair<SDValue, SDValue>
1401 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1402                                   const EVT &LoVT, const EVT &HiVT,
1403                                   SelectionDAG &DAG) const {
1404   assert(LoVT.getVectorNumElements() +
1405                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1406              N.getValueType().getVectorNumElements() &&
1407          "More vector elements requested than available!");
1408   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1409                            DAG.getVectorIdxConstant(0, DL));
1410   SDValue Hi = DAG.getNode(
1411       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1412       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1413   return std::make_pair(Lo, Hi);
1414 }
1415 
1416 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1417                                               SelectionDAG &DAG) const {
1418   LoadSDNode *Load = cast<LoadSDNode>(Op);
1419   EVT VT = Op.getValueType();
1420   SDLoc SL(Op);
1421 
1422 
1423   // If this is a 2 element vector, we really want to scalarize and not create
1424   // weird 1 element vectors.
1425   if (VT.getVectorNumElements() == 2) {
1426     SDValue Ops[2];
1427     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1428     return DAG.getMergeValues(Ops, SL);
1429   }
1430 
1431   SDValue BasePtr = Load->getBasePtr();
1432   EVT MemVT = Load->getMemoryVT();
1433 
1434   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1435 
1436   EVT LoVT, HiVT;
1437   EVT LoMemVT, HiMemVT;
1438   SDValue Lo, Hi;
1439 
1440   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1441   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1442   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1443 
1444   unsigned Size = LoMemVT.getStoreSize();
1445   unsigned BaseAlign = Load->getAlignment();
1446   unsigned HiAlign = MinAlign(BaseAlign, Size);
1447 
1448   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1449                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1450                                   BaseAlign, Load->getMemOperand()->getFlags());
1451   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1452   SDValue HiLoad =
1453       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1454                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1455                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1456 
1457   SDValue Join;
1458   if (LoVT == HiVT) {
1459     // This is the case that the vector is power of two so was evenly split.
1460     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1461   } else {
1462     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1463                        DAG.getVectorIdxConstant(0, SL));
1464     Join = DAG.getNode(
1465         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1466         VT, Join, HiLoad,
1467         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1468   }
1469 
1470   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1471                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1472 
1473   return DAG.getMergeValues(Ops, SL);
1474 }
1475 
1476 // Widen a vector load from vec3 to vec4.
1477 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1478                                               SelectionDAG &DAG) const {
1479   LoadSDNode *Load = cast<LoadSDNode>(Op);
1480   EVT VT = Op.getValueType();
1481   assert(VT.getVectorNumElements() == 3);
1482   SDValue BasePtr = Load->getBasePtr();
1483   EVT MemVT = Load->getMemoryVT();
1484   SDLoc SL(Op);
1485   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1486   unsigned BaseAlign = Load->getAlignment();
1487 
1488   EVT WideVT =
1489       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1490   EVT WideMemVT =
1491       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1492   SDValue WideLoad = DAG.getExtLoad(
1493       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1494       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1495   return DAG.getMergeValues(
1496       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1497                    DAG.getVectorIdxConstant(0, SL)),
1498        WideLoad.getValue(1)},
1499       SL);
1500 }
1501 
1502 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1503                                                SelectionDAG &DAG) const {
1504   StoreSDNode *Store = cast<StoreSDNode>(Op);
1505   SDValue Val = Store->getValue();
1506   EVT VT = Val.getValueType();
1507 
1508   // If this is a 2 element vector, we really want to scalarize and not create
1509   // weird 1 element vectors.
1510   if (VT.getVectorNumElements() == 2)
1511     return scalarizeVectorStore(Store, DAG);
1512 
1513   EVT MemVT = Store->getMemoryVT();
1514   SDValue Chain = Store->getChain();
1515   SDValue BasePtr = Store->getBasePtr();
1516   SDLoc SL(Op);
1517 
1518   EVT LoVT, HiVT;
1519   EVT LoMemVT, HiMemVT;
1520   SDValue Lo, Hi;
1521 
1522   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1523   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1524   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1525 
1526   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1527 
1528   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1529   unsigned BaseAlign = Store->getAlignment();
1530   unsigned Size = LoMemVT.getStoreSize();
1531   unsigned HiAlign = MinAlign(BaseAlign, Size);
1532 
1533   SDValue LoStore =
1534       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1535                         Store->getMemOperand()->getFlags());
1536   SDValue HiStore =
1537       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1538                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1539 
1540   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1541 }
1542 
1543 // This is a shortcut for integer division because we have fast i32<->f32
1544 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1545 // float is enough to accurately represent up to a 24-bit signed integer.
1546 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1547                                             bool Sign) const {
1548   SDLoc DL(Op);
1549   EVT VT = Op.getValueType();
1550   SDValue LHS = Op.getOperand(0);
1551   SDValue RHS = Op.getOperand(1);
1552   MVT IntVT = MVT::i32;
1553   MVT FltVT = MVT::f32;
1554 
1555   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1556   if (LHSSignBits < 9)
1557     return SDValue();
1558 
1559   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1560   if (RHSSignBits < 9)
1561     return SDValue();
1562 
1563   unsigned BitSize = VT.getSizeInBits();
1564   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1565   unsigned DivBits = BitSize - SignBits;
1566   if (Sign)
1567     ++DivBits;
1568 
1569   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1570   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1571 
1572   SDValue jq = DAG.getConstant(1, DL, IntVT);
1573 
1574   if (Sign) {
1575     // char|short jq = ia ^ ib;
1576     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1577 
1578     // jq = jq >> (bitsize - 2)
1579     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1580                      DAG.getConstant(BitSize - 2, DL, VT));
1581 
1582     // jq = jq | 0x1
1583     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1584   }
1585 
1586   // int ia = (int)LHS;
1587   SDValue ia = LHS;
1588 
1589   // int ib, (int)RHS;
1590   SDValue ib = RHS;
1591 
1592   // float fa = (float)ia;
1593   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1594 
1595   // float fb = (float)ib;
1596   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1597 
1598   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1599                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1600 
1601   // fq = trunc(fq);
1602   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1603 
1604   // float fqneg = -fq;
1605   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1606 
1607   MachineFunction &MF = DAG.getMachineFunction();
1608   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1609 
1610   // float fr = mad(fqneg, fb, fa);
1611   unsigned OpCode = MFI->getMode().allFP32Denormals() ?
1612                     (unsigned)AMDGPUISD::FMAD_FTZ :
1613                     (unsigned)ISD::FMAD;
1614   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1615 
1616   // int iq = (int)fq;
1617   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1618 
1619   // fr = fabs(fr);
1620   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1621 
1622   // fb = fabs(fb);
1623   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1624 
1625   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1626 
1627   // int cv = fr >= fb;
1628   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1629 
1630   // jq = (cv ? jq : 0);
1631   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1632 
1633   // dst = iq + jq;
1634   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1635 
1636   // Rem needs compensation, it's easier to recompute it
1637   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1638   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1639 
1640   // Truncate to number of bits this divide really is.
1641   if (Sign) {
1642     SDValue InRegSize
1643       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1644     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1645     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1646   } else {
1647     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1648     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1649     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1650   }
1651 
1652   return DAG.getMergeValues({ Div, Rem }, DL);
1653 }
1654 
1655 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1656                                       SelectionDAG &DAG,
1657                                       SmallVectorImpl<SDValue> &Results) const {
1658   SDLoc DL(Op);
1659   EVT VT = Op.getValueType();
1660 
1661   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1662 
1663   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1664 
1665   SDValue One = DAG.getConstant(1, DL, HalfVT);
1666   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1667 
1668   //HiLo split
1669   SDValue LHS = Op.getOperand(0);
1670   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1671   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1672 
1673   SDValue RHS = Op.getOperand(1);
1674   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1675   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1676 
1677   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1678       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1679 
1680     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1681                               LHS_Lo, RHS_Lo);
1682 
1683     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1684     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1685 
1686     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1687     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1688     return;
1689   }
1690 
1691   if (isTypeLegal(MVT::i64)) {
1692     MachineFunction &MF = DAG.getMachineFunction();
1693     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1694 
1695     // Compute denominator reciprocal.
1696     unsigned FMAD = MFI->getMode().allFP32Denormals() ?
1697                     (unsigned)AMDGPUISD::FMAD_FTZ :
1698                     (unsigned)ISD::FMAD;
1699 
1700     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1701     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1702     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1703       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1704       Cvt_Lo);
1705     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1706     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1707       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1708     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1709       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1710     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1711     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1712       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1713       Mul1);
1714     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1715     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1716     SDValue Rcp64 = DAG.getBitcast(VT,
1717                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1718 
1719     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1720     SDValue One64  = DAG.getConstant(1, DL, VT);
1721     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1722     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1723 
1724     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1725     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1726     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1727     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1728                                     Zero);
1729     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1730                                     One);
1731 
1732     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1733                                   Mulhi1_Lo, Zero1);
1734     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1735                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1736     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1737     SDValue Add1 = DAG.getBitcast(VT,
1738                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1739 
1740     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1741     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1742     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1743                                     Zero);
1744     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1745                                     One);
1746 
1747     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1748                                   Mulhi2_Lo, Zero1);
1749     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1750                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1751     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1752                                   Zero, Add2_Lo.getValue(1));
1753     SDValue Add2 = DAG.getBitcast(VT,
1754                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1755     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1756 
1757     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1758 
1759     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1760     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1761     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1762                                   Mul3_Lo, Zero1);
1763     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1764                                   Mul3_Hi, Sub1_Lo.getValue(1));
1765     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1766     SDValue Sub1 = DAG.getBitcast(VT,
1767                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1768 
1769     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1770     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1771                                  ISD::SETUGE);
1772     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1773                                  ISD::SETUGE);
1774     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1775 
1776     // TODO: Here and below portions of the code can be enclosed into if/endif.
1777     // Currently control flow is unconditional and we have 4 selects after
1778     // potential endif to substitute PHIs.
1779 
1780     // if C3 != 0 ...
1781     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1782                                   RHS_Lo, Zero1);
1783     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1784                                   RHS_Hi, Sub1_Lo.getValue(1));
1785     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1786                                   Zero, Sub2_Lo.getValue(1));
1787     SDValue Sub2 = DAG.getBitcast(VT,
1788                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1789 
1790     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1791 
1792     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1793                                  ISD::SETUGE);
1794     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1795                                  ISD::SETUGE);
1796     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1797 
1798     // if (C6 != 0)
1799     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1800 
1801     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1802                                   RHS_Lo, Zero1);
1803     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1804                                   RHS_Hi, Sub2_Lo.getValue(1));
1805     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1806                                   Zero, Sub3_Lo.getValue(1));
1807     SDValue Sub3 = DAG.getBitcast(VT,
1808                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1809 
1810     // endif C6
1811     // endif C3
1812 
1813     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1814     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1815 
1816     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1817     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1818 
1819     Results.push_back(Div);
1820     Results.push_back(Rem);
1821 
1822     return;
1823   }
1824 
1825   // r600 expandion.
1826   // Get Speculative values
1827   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1828   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1829 
1830   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1831   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1832   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1833 
1834   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1835   SDValue DIV_Lo = Zero;
1836 
1837   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1838 
1839   for (unsigned i = 0; i < halfBitWidth; ++i) {
1840     const unsigned bitPos = halfBitWidth - i - 1;
1841     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1842     // Get value of high bit
1843     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1844     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1845     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1846 
1847     // Shift
1848     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1849     // Add LHS high bit
1850     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1851 
1852     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1853     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1854 
1855     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1856 
1857     // Update REM
1858     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1859     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1860   }
1861 
1862   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1863   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1864   Results.push_back(DIV);
1865   Results.push_back(REM);
1866 }
1867 
1868 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1869                                            SelectionDAG &DAG) const {
1870   SDLoc DL(Op);
1871   EVT VT = Op.getValueType();
1872 
1873   if (VT == MVT::i64) {
1874     SmallVector<SDValue, 2> Results;
1875     LowerUDIVREM64(Op, DAG, Results);
1876     return DAG.getMergeValues(Results, DL);
1877   }
1878 
1879   if (VT == MVT::i32) {
1880     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1881       return Res;
1882   }
1883 
1884   SDValue Num = Op.getOperand(0);
1885   SDValue Den = Op.getOperand(1);
1886 
1887   // RCP =  URECIP(Den) = 2^32 / Den + e
1888   // e is rounding error.
1889   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1890 
1891   // RCP_LO = mul(RCP, Den) */
1892   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1893 
1894   // RCP_HI = mulhu (RCP, Den) */
1895   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1896 
1897   // NEG_RCP_LO = -RCP_LO
1898   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1899                                                      RCP_LO);
1900 
1901   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1902   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1903                                            NEG_RCP_LO, RCP_LO,
1904                                            ISD::SETEQ);
1905   // Calculate the rounding error from the URECIP instruction
1906   // E = mulhu(ABS_RCP_LO, RCP)
1907   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1908 
1909   // RCP_A_E = RCP + E
1910   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1911 
1912   // RCP_S_E = RCP - E
1913   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1914 
1915   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1916   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1917                                      RCP_A_E, RCP_S_E,
1918                                      ISD::SETEQ);
1919   // Quotient = mulhu(Tmp0, Num)
1920   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1921 
1922   // Num_S_Remainder = Quotient * Den
1923   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1924 
1925   // Remainder = Num - Num_S_Remainder
1926   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1927 
1928   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1929   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1930                                                  DAG.getConstant(-1, DL, VT),
1931                                                  DAG.getConstant(0, DL, VT),
1932                                                  ISD::SETUGE);
1933   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1934   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1935                                                   Num_S_Remainder,
1936                                                   DAG.getConstant(-1, DL, VT),
1937                                                   DAG.getConstant(0, DL, VT),
1938                                                   ISD::SETUGE);
1939   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1940   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1941                                                Remainder_GE_Zero);
1942 
1943   // Calculate Division result:
1944 
1945   // Quotient_A_One = Quotient + 1
1946   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1947                                        DAG.getConstant(1, DL, VT));
1948 
1949   // Quotient_S_One = Quotient - 1
1950   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1951                                        DAG.getConstant(1, DL, VT));
1952 
1953   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1954   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1955                                      Quotient, Quotient_A_One, ISD::SETEQ);
1956 
1957   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1958   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1959                             Quotient_S_One, Div, ISD::SETEQ);
1960 
1961   // Calculate Rem result:
1962 
1963   // Remainder_S_Den = Remainder - Den
1964   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1965 
1966   // Remainder_A_Den = Remainder + Den
1967   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1968 
1969   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1970   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1971                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1972 
1973   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1974   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1975                             Remainder_A_Den, Rem, ISD::SETEQ);
1976   SDValue Ops[2] = {
1977     Div,
1978     Rem
1979   };
1980   return DAG.getMergeValues(Ops, DL);
1981 }
1982 
1983 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1984                                            SelectionDAG &DAG) const {
1985   SDLoc DL(Op);
1986   EVT VT = Op.getValueType();
1987 
1988   SDValue LHS = Op.getOperand(0);
1989   SDValue RHS = Op.getOperand(1);
1990 
1991   SDValue Zero = DAG.getConstant(0, DL, VT);
1992   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1993 
1994   if (VT == MVT::i32) {
1995     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1996       return Res;
1997   }
1998 
1999   if (VT == MVT::i64 &&
2000       DAG.ComputeNumSignBits(LHS) > 32 &&
2001       DAG.ComputeNumSignBits(RHS) > 32) {
2002     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2003 
2004     //HiLo split
2005     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2006     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2007     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2008                                  LHS_Lo, RHS_Lo);
2009     SDValue Res[2] = {
2010       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2011       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2012     };
2013     return DAG.getMergeValues(Res, DL);
2014   }
2015 
2016   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2017   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2018   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2019   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2020 
2021   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2022   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2023 
2024   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2025   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2026 
2027   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2028   SDValue Rem = Div.getValue(1);
2029 
2030   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2031   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2032 
2033   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2034   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2035 
2036   SDValue Res[2] = {
2037     Div,
2038     Rem
2039   };
2040   return DAG.getMergeValues(Res, DL);
2041 }
2042 
2043 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2044 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2045   SDLoc SL(Op);
2046   EVT VT = Op.getValueType();
2047   SDValue X = Op.getOperand(0);
2048   SDValue Y = Op.getOperand(1);
2049 
2050   // TODO: Should this propagate fast-math-flags?
2051 
2052   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2053   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2054   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2055 
2056   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2057 }
2058 
2059 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2060   SDLoc SL(Op);
2061   SDValue Src = Op.getOperand(0);
2062 
2063   // result = trunc(src)
2064   // if (src > 0.0 && src != result)
2065   //   result += 1.0
2066 
2067   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2068 
2069   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2070   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2071 
2072   EVT SetCCVT =
2073       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2074 
2075   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2076   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2077   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2078 
2079   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2080   // TODO: Should this propagate fast-math-flags?
2081   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2082 }
2083 
2084 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2085                                   SelectionDAG &DAG) {
2086   const unsigned FractBits = 52;
2087   const unsigned ExpBits = 11;
2088 
2089   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2090                                 Hi,
2091                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2092                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2093   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2094                             DAG.getConstant(1023, SL, MVT::i32));
2095 
2096   return Exp;
2097 }
2098 
2099 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2100   SDLoc SL(Op);
2101   SDValue Src = Op.getOperand(0);
2102 
2103   assert(Op.getValueType() == MVT::f64);
2104 
2105   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2106   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2107 
2108   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2109 
2110   // Extract the upper half, since this is where we will find the sign and
2111   // exponent.
2112   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2113 
2114   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2115 
2116   const unsigned FractBits = 52;
2117 
2118   // Extract the sign bit.
2119   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2120   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2121 
2122   // Extend back to 64-bits.
2123   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2124   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2125 
2126   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2127   const SDValue FractMask
2128     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2129 
2130   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2131   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2132   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2133 
2134   EVT SetCCVT =
2135       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2136 
2137   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2138 
2139   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2140   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2141 
2142   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2143   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2144 
2145   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2146 }
2147 
2148 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2149   SDLoc SL(Op);
2150   SDValue Src = Op.getOperand(0);
2151 
2152   assert(Op.getValueType() == MVT::f64);
2153 
2154   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2155   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2156   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2157 
2158   // TODO: Should this propagate fast-math-flags?
2159 
2160   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2161   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2162 
2163   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2164 
2165   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2166   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2167 
2168   EVT SetCCVT =
2169       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2170   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2171 
2172   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2173 }
2174 
2175 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2176   // FNEARBYINT and FRINT are the same, except in their handling of FP
2177   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2178   // rint, so just treat them as equivalent.
2179   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2180 }
2181 
2182 // XXX - May require not supporting f32 denormals?
2183 
2184 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2185 // compare and vselect end up producing worse code than scalarizing the whole
2186 // operation.
2187 SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op,
2188                                                       SelectionDAG &DAG) const {
2189   SDLoc SL(Op);
2190   SDValue X = Op.getOperand(0);
2191   EVT VT = Op.getValueType();
2192 
2193   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2194 
2195   // TODO: Should this propagate fast-math-flags?
2196 
2197   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2198 
2199   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2200 
2201   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2202   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2203   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2204 
2205   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2206 
2207   EVT SetCCVT =
2208       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2209 
2210   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2211 
2212   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2213 
2214   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2215 }
2216 
2217 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2218   SDLoc SL(Op);
2219   SDValue X = Op.getOperand(0);
2220 
2221   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2222 
2223   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2224   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2225   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2226   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2227   EVT SetCCVT =
2228       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2229 
2230   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2231 
2232   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2233 
2234   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2235 
2236   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2237                                        MVT::i64);
2238 
2239   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2240   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2241                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2242                                           MVT::i64),
2243                           Exp);
2244 
2245   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2246   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2247                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2248                               ISD::SETNE);
2249 
2250   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2251                              D, DAG.getConstant(0, SL, MVT::i64));
2252   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2253 
2254   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2255   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2256 
2257   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2258   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2259   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2260 
2261   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2262                             ExpEqNegOne,
2263                             DAG.getConstantFP(1.0, SL, MVT::f64),
2264                             DAG.getConstantFP(0.0, SL, MVT::f64));
2265 
2266   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2267 
2268   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2269   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2270 
2271   return K;
2272 }
2273 
2274 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2275   EVT VT = Op.getValueType();
2276 
2277   if (isOperationLegal(ISD::FTRUNC, VT))
2278     return LowerFROUND_LegalFTRUNC(Op, DAG);
2279 
2280   if (VT == MVT::f64)
2281     return LowerFROUND64(Op, DAG);
2282 
2283   llvm_unreachable("unhandled type");
2284 }
2285 
2286 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2287   SDLoc SL(Op);
2288   SDValue Src = Op.getOperand(0);
2289 
2290   // result = trunc(src);
2291   // if (src < 0.0 && src != result)
2292   //   result += -1.0.
2293 
2294   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2295 
2296   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2297   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2298 
2299   EVT SetCCVT =
2300       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2301 
2302   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2303   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2304   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2305 
2306   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2307   // TODO: Should this propagate fast-math-flags?
2308   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2309 }
2310 
2311 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2312                                         double Log2BaseInverted) const {
2313   EVT VT = Op.getValueType();
2314 
2315   SDLoc SL(Op);
2316   SDValue Operand = Op.getOperand(0);
2317   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2318   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2319 
2320   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2321 }
2322 
2323 // exp2(M_LOG2E_F * f);
2324 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2325   EVT VT = Op.getValueType();
2326   SDLoc SL(Op);
2327   SDValue Src = Op.getOperand(0);
2328 
2329   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2330   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2331   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2332 }
2333 
2334 static bool isCtlzOpc(unsigned Opc) {
2335   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2336 }
2337 
2338 static bool isCttzOpc(unsigned Opc) {
2339   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2340 }
2341 
2342 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2343   SDLoc SL(Op);
2344   SDValue Src = Op.getOperand(0);
2345   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2346                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2347 
2348   unsigned ISDOpc, NewOpc;
2349   if (isCtlzOpc(Op.getOpcode())) {
2350     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2351     NewOpc = AMDGPUISD::FFBH_U32;
2352   } else if (isCttzOpc(Op.getOpcode())) {
2353     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2354     NewOpc = AMDGPUISD::FFBL_B32;
2355   } else
2356     llvm_unreachable("Unexpected OPCode!!!");
2357 
2358 
2359   if (ZeroUndef && Src.getValueType() == MVT::i32)
2360     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2361 
2362   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2363 
2364   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2365   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2366 
2367   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2368   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2369 
2370   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2371                                    *DAG.getContext(), MVT::i32);
2372 
2373   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2374   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2375 
2376   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2377   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2378 
2379   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2380   SDValue Add, NewOpr;
2381   if (isCtlzOpc(Op.getOpcode())) {
2382     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2383     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2384     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2385   } else {
2386     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2387     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2388     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2389   }
2390 
2391   if (!ZeroUndef) {
2392     // Test if the full 64-bit input is zero.
2393 
2394     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2395     // which we probably don't want.
2396     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2397     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2398     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2399 
2400     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2401     // with the same cycles, otherwise it is slower.
2402     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2403     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2404 
2405     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2406 
2407     // The instruction returns -1 for 0 input, but the defined intrinsic
2408     // behavior is to return the number of bits.
2409     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2410                          SrcIsZero, Bits32, NewOpr);
2411   }
2412 
2413   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2414 }
2415 
2416 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2417                                                bool Signed) const {
2418   // Unsigned
2419   // cul2f(ulong u)
2420   //{
2421   //  uint lz = clz(u);
2422   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2423   //  u = (u << lz) & 0x7fffffffffffffffUL;
2424   //  ulong t = u & 0xffffffffffUL;
2425   //  uint v = (e << 23) | (uint)(u >> 40);
2426   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2427   //  return as_float(v + r);
2428   //}
2429   // Signed
2430   // cl2f(long l)
2431   //{
2432   //  long s = l >> 63;
2433   //  float r = cul2f((l + s) ^ s);
2434   //  return s ? -r : r;
2435   //}
2436 
2437   SDLoc SL(Op);
2438   SDValue Src = Op.getOperand(0);
2439   SDValue L = Src;
2440 
2441   SDValue S;
2442   if (Signed) {
2443     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2444     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2445 
2446     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2447     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2448   }
2449 
2450   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2451                                    *DAG.getContext(), MVT::f32);
2452 
2453 
2454   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2455   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2456   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2457   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2458 
2459   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2460   SDValue E = DAG.getSelect(SL, MVT::i32,
2461     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2462     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2463     ZeroI32);
2464 
2465   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2466     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2467     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2468 
2469   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2470                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2471 
2472   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2473                              U, DAG.getConstant(40, SL, MVT::i64));
2474 
2475   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2476     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2477     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2478 
2479   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2480   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2481   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2482 
2483   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2484 
2485   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2486 
2487   SDValue R = DAG.getSelect(SL, MVT::i32,
2488     RCmp,
2489     One,
2490     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2491   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2492   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2493 
2494   if (!Signed)
2495     return R;
2496 
2497   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2498   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2499 }
2500 
2501 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2502                                                bool Signed) const {
2503   SDLoc SL(Op);
2504   SDValue Src = Op.getOperand(0);
2505 
2506   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2507 
2508   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2509                            DAG.getConstant(0, SL, MVT::i32));
2510   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2511                            DAG.getConstant(1, SL, MVT::i32));
2512 
2513   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2514                               SL, MVT::f64, Hi);
2515 
2516   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2517 
2518   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2519                               DAG.getConstant(32, SL, MVT::i32));
2520   // TODO: Should this propagate fast-math-flags?
2521   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2522 }
2523 
2524 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2525                                                SelectionDAG &DAG) const {
2526   // TODO: Factor out code common with LowerSINT_TO_FP.
2527   EVT DestVT = Op.getValueType();
2528   SDValue Src = Op.getOperand(0);
2529   EVT SrcVT = Src.getValueType();
2530 
2531   if (SrcVT == MVT::i16) {
2532     if (DestVT == MVT::f16)
2533       return Op;
2534     SDLoc DL(Op);
2535 
2536     // Promote src to i32
2537     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2538     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2539   }
2540 
2541   assert(SrcVT == MVT::i64 && "operation should be legal");
2542 
2543   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2544     SDLoc DL(Op);
2545 
2546     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2547     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2548     SDValue FPRound =
2549         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2550 
2551     return FPRound;
2552   }
2553 
2554   if (DestVT == MVT::f32)
2555     return LowerINT_TO_FP32(Op, DAG, false);
2556 
2557   assert(DestVT == MVT::f64);
2558   return LowerINT_TO_FP64(Op, DAG, false);
2559 }
2560 
2561 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2562                                               SelectionDAG &DAG) const {
2563   EVT DestVT = Op.getValueType();
2564 
2565   SDValue Src = Op.getOperand(0);
2566   EVT SrcVT = Src.getValueType();
2567 
2568   if (SrcVT == MVT::i16) {
2569     if (DestVT == MVT::f16)
2570       return Op;
2571 
2572     SDLoc DL(Op);
2573     // Promote src to i32
2574     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2575     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2576   }
2577 
2578   assert(SrcVT == MVT::i64 && "operation should be legal");
2579 
2580   // TODO: Factor out code common with LowerUINT_TO_FP.
2581 
2582   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2583     SDLoc DL(Op);
2584     SDValue Src = Op.getOperand(0);
2585 
2586     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2587     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2588     SDValue FPRound =
2589         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2590 
2591     return FPRound;
2592   }
2593 
2594   if (DestVT == MVT::f32)
2595     return LowerINT_TO_FP32(Op, DAG, true);
2596 
2597   assert(DestVT == MVT::f64);
2598   return LowerINT_TO_FP64(Op, DAG, true);
2599 }
2600 
2601 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2602                                                bool Signed) const {
2603   SDLoc SL(Op);
2604 
2605   SDValue Src = Op.getOperand(0);
2606 
2607   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2608 
2609   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2610                                  MVT::f64);
2611   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2612                                  MVT::f64);
2613   // TODO: Should this propagate fast-math-flags?
2614   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2615 
2616   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2617 
2618 
2619   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2620 
2621   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2622                            MVT::i32, FloorMul);
2623   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2624 
2625   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2626 
2627   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2628 }
2629 
2630 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2631   SDLoc DL(Op);
2632   SDValue N0 = Op.getOperand(0);
2633 
2634   // Convert to target node to get known bits
2635   if (N0.getValueType() == MVT::f32)
2636     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2637 
2638   if (getTargetMachine().Options.UnsafeFPMath) {
2639     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2640     return SDValue();
2641   }
2642 
2643   assert(N0.getSimpleValueType() == MVT::f64);
2644 
2645   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2646   const unsigned ExpMask = 0x7ff;
2647   const unsigned ExpBiasf64 = 1023;
2648   const unsigned ExpBiasf16 = 15;
2649   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2650   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2651   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2652   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2653                            DAG.getConstant(32, DL, MVT::i64));
2654   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2655   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2656   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2657                           DAG.getConstant(20, DL, MVT::i64));
2658   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2659                   DAG.getConstant(ExpMask, DL, MVT::i32));
2660   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2661   // add the f16 bias (15) to get the biased exponent for the f16 format.
2662   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2663                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2664 
2665   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2666                           DAG.getConstant(8, DL, MVT::i32));
2667   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2668                   DAG.getConstant(0xffe, DL, MVT::i32));
2669 
2670   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2671                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2672   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2673 
2674   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2675   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2676 
2677   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2678   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2679       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2680                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2681 
2682   // N = M | (E << 12);
2683   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2684       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2685                   DAG.getConstant(12, DL, MVT::i32)));
2686 
2687   // B = clamp(1-E, 0, 13);
2688   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2689                                   One, E);
2690   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2691   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2692                   DAG.getConstant(13, DL, MVT::i32));
2693 
2694   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2695                                    DAG.getConstant(0x1000, DL, MVT::i32));
2696 
2697   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2698   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2699   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2700   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2701 
2702   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2703   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2704                               DAG.getConstant(0x7, DL, MVT::i32));
2705   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2706                   DAG.getConstant(2, DL, MVT::i32));
2707   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2708                                One, Zero, ISD::SETEQ);
2709   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2710                                One, Zero, ISD::SETGT);
2711   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2712   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2713 
2714   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2715                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2716   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2717                       I, V, ISD::SETEQ);
2718 
2719   // Extract the sign bit.
2720   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2721                             DAG.getConstant(16, DL, MVT::i32));
2722   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2723                      DAG.getConstant(0x8000, DL, MVT::i32));
2724 
2725   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2726   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2727 }
2728 
2729 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2730                                               SelectionDAG &DAG) const {
2731   SDValue Src = Op.getOperand(0);
2732 
2733   // TODO: Factor out code common with LowerFP_TO_UINT.
2734 
2735   EVT SrcVT = Src.getValueType();
2736   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2737     SDLoc DL(Op);
2738 
2739     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2740     SDValue FpToInt32 =
2741         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2742 
2743     return FpToInt32;
2744   }
2745 
2746   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2747     return LowerFP64_TO_INT(Op, DAG, true);
2748 
2749   return SDValue();
2750 }
2751 
2752 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2753                                               SelectionDAG &DAG) const {
2754   SDValue Src = Op.getOperand(0);
2755 
2756   // TODO: Factor out code common with LowerFP_TO_SINT.
2757 
2758   EVT SrcVT = Src.getValueType();
2759   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2760     SDLoc DL(Op);
2761 
2762     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2763     SDValue FpToInt32 =
2764         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2765 
2766     return FpToInt32;
2767   }
2768 
2769   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2770     return LowerFP64_TO_INT(Op, DAG, false);
2771 
2772   return SDValue();
2773 }
2774 
2775 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2776                                                      SelectionDAG &DAG) const {
2777   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2778   MVT VT = Op.getSimpleValueType();
2779   MVT ScalarVT = VT.getScalarType();
2780 
2781   assert(VT.isVector());
2782 
2783   SDValue Src = Op.getOperand(0);
2784   SDLoc DL(Op);
2785 
2786   // TODO: Don't scalarize on Evergreen?
2787   unsigned NElts = VT.getVectorNumElements();
2788   SmallVector<SDValue, 8> Args;
2789   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2790 
2791   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2792   for (unsigned I = 0; I < NElts; ++I)
2793     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2794 
2795   return DAG.getBuildVector(VT, DL, Args);
2796 }
2797 
2798 //===----------------------------------------------------------------------===//
2799 // Custom DAG optimizations
2800 //===----------------------------------------------------------------------===//
2801 
2802 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2803   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2804 }
2805 
2806 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2807   EVT VT = Op.getValueType();
2808   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2809                                      // as unsigned 24-bit values.
2810     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2811 }
2812 
2813 static SDValue simplifyI24(SDNode *Node24,
2814                            TargetLowering::DAGCombinerInfo &DCI) {
2815   SelectionDAG &DAG = DCI.DAG;
2816   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2817 
2818   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2819   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2820   unsigned NewOpcode = Node24->getOpcode();
2821   if (IsIntrin) {
2822     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2823     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2824       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2825   }
2826 
2827   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2828 
2829   // First try to simplify using GetDemandedBits which allows the operands to
2830   // have other uses, but will only perform simplifications that involve
2831   // bypassing some nodes for this user.
2832   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2833   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2834   if (DemandedLHS || DemandedRHS)
2835     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2836                        DemandedLHS ? DemandedLHS : LHS,
2837                        DemandedRHS ? DemandedRHS : RHS);
2838 
2839   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2840   // operands if this node is the only user.
2841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2842   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2843     return SDValue(Node24, 0);
2844   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2845     return SDValue(Node24, 0);
2846 
2847   return SDValue();
2848 }
2849 
2850 template <typename IntTy>
2851 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2852                                uint32_t Width, const SDLoc &DL) {
2853   if (Width + Offset < 32) {
2854     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2855     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2856     return DAG.getConstant(Result, DL, MVT::i32);
2857   }
2858 
2859   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2860 }
2861 
2862 static bool hasVolatileUser(SDNode *Val) {
2863   for (SDNode *U : Val->uses()) {
2864     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2865       if (M->isVolatile())
2866         return true;
2867     }
2868   }
2869 
2870   return false;
2871 }
2872 
2873 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2874   // i32 vectors are the canonical memory type.
2875   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2876     return false;
2877 
2878   if (!VT.isByteSized())
2879     return false;
2880 
2881   unsigned Size = VT.getStoreSize();
2882 
2883   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2884     return false;
2885 
2886   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2887     return false;
2888 
2889   return true;
2890 }
2891 
2892 // Replace load of an illegal type with a store of a bitcast to a friendlier
2893 // type.
2894 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2895                                                  DAGCombinerInfo &DCI) const {
2896   if (!DCI.isBeforeLegalize())
2897     return SDValue();
2898 
2899   LoadSDNode *LN = cast<LoadSDNode>(N);
2900   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2901     return SDValue();
2902 
2903   SDLoc SL(N);
2904   SelectionDAG &DAG = DCI.DAG;
2905   EVT VT = LN->getMemoryVT();
2906 
2907   unsigned Size = VT.getStoreSize();
2908   unsigned Align = LN->getAlignment();
2909   if (Align < Size && isTypeLegal(VT)) {
2910     bool IsFast;
2911     unsigned AS = LN->getAddressSpace();
2912 
2913     // Expand unaligned loads earlier than legalization. Due to visitation order
2914     // problems during legalization, the emitted instructions to pack and unpack
2915     // the bytes again are not eliminated in the case of an unaligned copy.
2916     if (!allowsMisalignedMemoryAccesses(
2917             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2918       SDValue Ops[2];
2919 
2920       if (VT.isVector())
2921         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2922       else
2923         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2924 
2925       return DAG.getMergeValues(Ops, SDLoc(N));
2926     }
2927 
2928     if (!IsFast)
2929       return SDValue();
2930   }
2931 
2932   if (!shouldCombineMemoryType(VT))
2933     return SDValue();
2934 
2935   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2936 
2937   SDValue NewLoad
2938     = DAG.getLoad(NewVT, SL, LN->getChain(),
2939                   LN->getBasePtr(), LN->getMemOperand());
2940 
2941   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2942   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2943   return SDValue(N, 0);
2944 }
2945 
2946 // Replace store of an illegal type with a store of a bitcast to a friendlier
2947 // type.
2948 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2949                                                   DAGCombinerInfo &DCI) const {
2950   if (!DCI.isBeforeLegalize())
2951     return SDValue();
2952 
2953   StoreSDNode *SN = cast<StoreSDNode>(N);
2954   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2955     return SDValue();
2956 
2957   EVT VT = SN->getMemoryVT();
2958   unsigned Size = VT.getStoreSize();
2959 
2960   SDLoc SL(N);
2961   SelectionDAG &DAG = DCI.DAG;
2962   unsigned Align = SN->getAlignment();
2963   if (Align < Size && isTypeLegal(VT)) {
2964     bool IsFast;
2965     unsigned AS = SN->getAddressSpace();
2966 
2967     // Expand unaligned stores earlier than legalization. Due to visitation
2968     // order problems during legalization, the emitted instructions to pack and
2969     // unpack the bytes again are not eliminated in the case of an unaligned
2970     // copy.
2971     if (!allowsMisalignedMemoryAccesses(
2972             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2973       if (VT.isVector())
2974         return scalarizeVectorStore(SN, DAG);
2975 
2976       return expandUnalignedStore(SN, DAG);
2977     }
2978 
2979     if (!IsFast)
2980       return SDValue();
2981   }
2982 
2983   if (!shouldCombineMemoryType(VT))
2984     return SDValue();
2985 
2986   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2987   SDValue Val = SN->getValue();
2988 
2989   //DCI.AddToWorklist(Val.getNode());
2990 
2991   bool OtherUses = !Val.hasOneUse();
2992   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2993   if (OtherUses) {
2994     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2995     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2996   }
2997 
2998   return DAG.getStore(SN->getChain(), SL, CastVal,
2999                       SN->getBasePtr(), SN->getMemOperand());
3000 }
3001 
3002 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3003 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3004 // issues.
3005 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3006                                                         DAGCombinerInfo &DCI) const {
3007   SelectionDAG &DAG = DCI.DAG;
3008   SDValue N0 = N->getOperand(0);
3009 
3010   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3011   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3012   if (N0.getOpcode() == ISD::TRUNCATE) {
3013     SDValue N1 = N->getOperand(1);
3014     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3015     SDLoc SL(N);
3016 
3017     SDValue Src = N0.getOperand(0);
3018     EVT SrcVT = Src.getValueType();
3019     if (SrcVT.bitsGE(ExtVT)) {
3020       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3021       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3022     }
3023   }
3024 
3025   return SDValue();
3026 }
3027 
3028 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3029   SDNode *N, DAGCombinerInfo &DCI) const {
3030   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3031   switch (IID) {
3032   case Intrinsic::amdgcn_mul_i24:
3033   case Intrinsic::amdgcn_mul_u24:
3034     return simplifyI24(N, DCI);
3035   default:
3036     return SDValue();
3037   }
3038 }
3039 
3040 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3041 /// binary operation \p Opc to it with the corresponding constant operands.
3042 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3043   DAGCombinerInfo &DCI, const SDLoc &SL,
3044   unsigned Opc, SDValue LHS,
3045   uint32_t ValLo, uint32_t ValHi) const {
3046   SelectionDAG &DAG = DCI.DAG;
3047   SDValue Lo, Hi;
3048   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3049 
3050   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3051   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3052 
3053   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3054   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3055 
3056   // Re-visit the ands. It's possible we eliminated one of them and it could
3057   // simplify the vector.
3058   DCI.AddToWorklist(Lo.getNode());
3059   DCI.AddToWorklist(Hi.getNode());
3060 
3061   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3062   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3063 }
3064 
3065 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3066                                                 DAGCombinerInfo &DCI) const {
3067   EVT VT = N->getValueType(0);
3068 
3069   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3070   if (!RHS)
3071     return SDValue();
3072 
3073   SDValue LHS = N->getOperand(0);
3074   unsigned RHSVal = RHS->getZExtValue();
3075   if (!RHSVal)
3076     return LHS;
3077 
3078   SDLoc SL(N);
3079   SelectionDAG &DAG = DCI.DAG;
3080 
3081   switch (LHS->getOpcode()) {
3082   default:
3083     break;
3084   case ISD::ZERO_EXTEND:
3085   case ISD::SIGN_EXTEND:
3086   case ISD::ANY_EXTEND: {
3087     SDValue X = LHS->getOperand(0);
3088 
3089     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3090         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3091       // Prefer build_vector as the canonical form if packed types are legal.
3092       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3093       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3094        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3095       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3096     }
3097 
3098     // shl (ext x) => zext (shl x), if shift does not overflow int
3099     if (VT != MVT::i64)
3100       break;
3101     KnownBits Known = DAG.computeKnownBits(X);
3102     unsigned LZ = Known.countMinLeadingZeros();
3103     if (LZ < RHSVal)
3104       break;
3105     EVT XVT = X.getValueType();
3106     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3107     return DAG.getZExtOrTrunc(Shl, SL, VT);
3108   }
3109   }
3110 
3111   if (VT != MVT::i64)
3112     return SDValue();
3113 
3114   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3115 
3116   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3117   // common case, splitting this into a move and a 32-bit shift is faster and
3118   // the same code size.
3119   if (RHSVal < 32)
3120     return SDValue();
3121 
3122   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3123 
3124   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3125   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3126 
3127   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3128 
3129   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3130   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3131 }
3132 
3133 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3134                                                 DAGCombinerInfo &DCI) const {
3135   if (N->getValueType(0) != MVT::i64)
3136     return SDValue();
3137 
3138   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3139   if (!RHS)
3140     return SDValue();
3141 
3142   SelectionDAG &DAG = DCI.DAG;
3143   SDLoc SL(N);
3144   unsigned RHSVal = RHS->getZExtValue();
3145 
3146   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3147   if (RHSVal == 32) {
3148     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3149     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3150                                    DAG.getConstant(31, SL, MVT::i32));
3151 
3152     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3153     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3154   }
3155 
3156   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3157   if (RHSVal == 63) {
3158     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3159     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3160                                    DAG.getConstant(31, SL, MVT::i32));
3161     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3162     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3163   }
3164 
3165   return SDValue();
3166 }
3167 
3168 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3169                                                 DAGCombinerInfo &DCI) const {
3170   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3171   if (!RHS)
3172     return SDValue();
3173 
3174   EVT VT = N->getValueType(0);
3175   SDValue LHS = N->getOperand(0);
3176   unsigned ShiftAmt = RHS->getZExtValue();
3177   SelectionDAG &DAG = DCI.DAG;
3178   SDLoc SL(N);
3179 
3180   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3181   // this improves the ability to match BFE patterns in isel.
3182   if (LHS.getOpcode() == ISD::AND) {
3183     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3184       if (Mask->getAPIntValue().isShiftedMask() &&
3185           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3186         return DAG.getNode(
3187             ISD::AND, SL, VT,
3188             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3189             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3190       }
3191     }
3192   }
3193 
3194   if (VT != MVT::i64)
3195     return SDValue();
3196 
3197   if (ShiftAmt < 32)
3198     return SDValue();
3199 
3200   // srl i64:x, C for C >= 32
3201   // =>
3202   //   build_pair (srl hi_32(x), C - 32), 0
3203   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3204   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3205 
3206   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3207   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3208 
3209   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3210   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3211 
3212   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3213 
3214   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3215 }
3216 
3217 SDValue AMDGPUTargetLowering::performTruncateCombine(
3218   SDNode *N, DAGCombinerInfo &DCI) const {
3219   SDLoc SL(N);
3220   SelectionDAG &DAG = DCI.DAG;
3221   EVT VT = N->getValueType(0);
3222   SDValue Src = N->getOperand(0);
3223 
3224   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3225   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3226     SDValue Vec = Src.getOperand(0);
3227     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3228       SDValue Elt0 = Vec.getOperand(0);
3229       EVT EltVT = Elt0.getValueType();
3230       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3231         if (EltVT.isFloatingPoint()) {
3232           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3233                              EltVT.changeTypeToInteger(), Elt0);
3234         }
3235 
3236         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3237       }
3238     }
3239   }
3240 
3241   // Equivalent of above for accessing the high element of a vector as an
3242   // integer operation.
3243   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3244   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3245     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3246       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3247         SDValue BV = stripBitcast(Src.getOperand(0));
3248         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3249             BV.getValueType().getVectorNumElements() == 2) {
3250           SDValue SrcElt = BV.getOperand(1);
3251           EVT SrcEltVT = SrcElt.getValueType();
3252           if (SrcEltVT.isFloatingPoint()) {
3253             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3254                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3255           }
3256 
3257           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3258         }
3259       }
3260     }
3261   }
3262 
3263   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3264   //
3265   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3266   //     i16 (trunc (srl (i32 (trunc x), K)))
3267   if (VT.getScalarSizeInBits() < 32) {
3268     EVT SrcVT = Src.getValueType();
3269     if (SrcVT.getScalarSizeInBits() > 32 &&
3270         (Src.getOpcode() == ISD::SRL ||
3271          Src.getOpcode() == ISD::SRA ||
3272          Src.getOpcode() == ISD::SHL)) {
3273       SDValue Amt = Src.getOperand(1);
3274       KnownBits Known = DAG.computeKnownBits(Amt);
3275       unsigned Size = VT.getScalarSizeInBits();
3276       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3277           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3278         EVT MidVT = VT.isVector() ?
3279           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3280                            VT.getVectorNumElements()) : MVT::i32;
3281 
3282         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3283         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3284                                     Src.getOperand(0));
3285         DCI.AddToWorklist(Trunc.getNode());
3286 
3287         if (Amt.getValueType() != NewShiftVT) {
3288           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3289           DCI.AddToWorklist(Amt.getNode());
3290         }
3291 
3292         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3293                                           Trunc, Amt);
3294         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3295       }
3296     }
3297   }
3298 
3299   return SDValue();
3300 }
3301 
3302 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3303 // instructions. If we only match on the legalized i64 mul expansion,
3304 // SimplifyDemandedBits will be unable to remove them because there will be
3305 // multiple uses due to the separate mul + mulh[su].
3306 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3307                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3308   if (Size <= 32) {
3309     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3310     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3311   }
3312 
3313   // Because we want to eliminate extension instructions before the
3314   // operation, we need to create a single user here (i.e. not the separate
3315   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3316 
3317   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3318 
3319   SDValue Mul = DAG.getNode(MulOpc, SL,
3320                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3321 
3322   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3323                      Mul.getValue(0), Mul.getValue(1));
3324 }
3325 
3326 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3327                                                 DAGCombinerInfo &DCI) const {
3328   EVT VT = N->getValueType(0);
3329 
3330   unsigned Size = VT.getSizeInBits();
3331   if (VT.isVector() || Size > 64)
3332     return SDValue();
3333 
3334   // There are i16 integer mul/mad.
3335   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3336     return SDValue();
3337 
3338   SelectionDAG &DAG = DCI.DAG;
3339   SDLoc DL(N);
3340 
3341   SDValue N0 = N->getOperand(0);
3342   SDValue N1 = N->getOperand(1);
3343 
3344   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3345   // in the source into any_extends if the result of the mul is truncated. Since
3346   // we can assume the high bits are whatever we want, use the underlying value
3347   // to avoid the unknown high bits from interfering.
3348   if (N0.getOpcode() == ISD::ANY_EXTEND)
3349     N0 = N0.getOperand(0);
3350 
3351   if (N1.getOpcode() == ISD::ANY_EXTEND)
3352     N1 = N1.getOperand(0);
3353 
3354   SDValue Mul;
3355 
3356   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3357     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3358     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3359     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3360   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3361     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3362     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3363     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3364   } else {
3365     return SDValue();
3366   }
3367 
3368   // We need to use sext even for MUL_U24, because MUL_U24 is used
3369   // for signed multiply of 8 and 16-bit types.
3370   return DAG.getSExtOrTrunc(Mul, DL, VT);
3371 }
3372 
3373 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3374                                                   DAGCombinerInfo &DCI) const {
3375   EVT VT = N->getValueType(0);
3376 
3377   if (!Subtarget->hasMulI24() || VT.isVector())
3378     return SDValue();
3379 
3380   SelectionDAG &DAG = DCI.DAG;
3381   SDLoc DL(N);
3382 
3383   SDValue N0 = N->getOperand(0);
3384   SDValue N1 = N->getOperand(1);
3385 
3386   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3387     return SDValue();
3388 
3389   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3390   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3391 
3392   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3393   DCI.AddToWorklist(Mulhi.getNode());
3394   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3395 }
3396 
3397 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3398                                                   DAGCombinerInfo &DCI) const {
3399   EVT VT = N->getValueType(0);
3400 
3401   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3402     return SDValue();
3403 
3404   SelectionDAG &DAG = DCI.DAG;
3405   SDLoc DL(N);
3406 
3407   SDValue N0 = N->getOperand(0);
3408   SDValue N1 = N->getOperand(1);
3409 
3410   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3411     return SDValue();
3412 
3413   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3414   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3415 
3416   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3417   DCI.AddToWorklist(Mulhi.getNode());
3418   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3419 }
3420 
3421 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3422   SDNode *N, DAGCombinerInfo &DCI) const {
3423   SelectionDAG &DAG = DCI.DAG;
3424 
3425   // Simplify demanded bits before splitting into multiple users.
3426   if (SDValue V = simplifyI24(N, DCI))
3427     return V;
3428 
3429   SDValue N0 = N->getOperand(0);
3430   SDValue N1 = N->getOperand(1);
3431 
3432   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3433 
3434   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3435   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3436 
3437   SDLoc SL(N);
3438 
3439   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3440   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3441   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3442 }
3443 
3444 static bool isNegativeOne(SDValue Val) {
3445   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3446     return C->isAllOnesValue();
3447   return false;
3448 }
3449 
3450 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3451                                           SDValue Op,
3452                                           const SDLoc &DL,
3453                                           unsigned Opc) const {
3454   EVT VT = Op.getValueType();
3455   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3456   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3457                               LegalVT != MVT::i16))
3458     return SDValue();
3459 
3460   if (VT != MVT::i32)
3461     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3462 
3463   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3464   if (VT != MVT::i32)
3465     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3466 
3467   return FFBX;
3468 }
3469 
3470 // The native instructions return -1 on 0 input. Optimize out a select that
3471 // produces -1 on 0.
3472 //
3473 // TODO: If zero is not undef, we could also do this if the output is compared
3474 // against the bitwidth.
3475 //
3476 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3477 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3478                                                  SDValue LHS, SDValue RHS,
3479                                                  DAGCombinerInfo &DCI) const {
3480   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3481   if (!CmpRhs || !CmpRhs->isNullValue())
3482     return SDValue();
3483 
3484   SelectionDAG &DAG = DCI.DAG;
3485   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3486   SDValue CmpLHS = Cond.getOperand(0);
3487 
3488   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3489                                            AMDGPUISD::FFBH_U32;
3490 
3491   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3492   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3493   if (CCOpcode == ISD::SETEQ &&
3494       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3495       RHS.getOperand(0) == CmpLHS &&
3496       isNegativeOne(LHS)) {
3497     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3498   }
3499 
3500   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3501   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3502   if (CCOpcode == ISD::SETNE &&
3503       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3504       LHS.getOperand(0) == CmpLHS &&
3505       isNegativeOne(RHS)) {
3506     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3507   }
3508 
3509   return SDValue();
3510 }
3511 
3512 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3513                                          unsigned Op,
3514                                          const SDLoc &SL,
3515                                          SDValue Cond,
3516                                          SDValue N1,
3517                                          SDValue N2) {
3518   SelectionDAG &DAG = DCI.DAG;
3519   EVT VT = N1.getValueType();
3520 
3521   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3522                                   N1.getOperand(0), N2.getOperand(0));
3523   DCI.AddToWorklist(NewSelect.getNode());
3524   return DAG.getNode(Op, SL, VT, NewSelect);
3525 }
3526 
3527 // Pull a free FP operation out of a select so it may fold into uses.
3528 //
3529 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3530 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3531 //
3532 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3533 // select c, (fabs x), +k -> fabs (select c, x, k)
3534 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3535                                     SDValue N) {
3536   SelectionDAG &DAG = DCI.DAG;
3537   SDValue Cond = N.getOperand(0);
3538   SDValue LHS = N.getOperand(1);
3539   SDValue RHS = N.getOperand(2);
3540 
3541   EVT VT = N.getValueType();
3542   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3543       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3544     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3545                                      SDLoc(N), Cond, LHS, RHS);
3546   }
3547 
3548   bool Inv = false;
3549   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3550     std::swap(LHS, RHS);
3551     Inv = true;
3552   }
3553 
3554   // TODO: Support vector constants.
3555   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3556   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3557     SDLoc SL(N);
3558     // If one side is an fneg/fabs and the other is a constant, we can push the
3559     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3560     SDValue NewLHS = LHS.getOperand(0);
3561     SDValue NewRHS = RHS;
3562 
3563     // Careful: if the neg can be folded up, don't try to pull it back down.
3564     bool ShouldFoldNeg = true;
3565 
3566     if (NewLHS.hasOneUse()) {
3567       unsigned Opc = NewLHS.getOpcode();
3568       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3569         ShouldFoldNeg = false;
3570       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3571         ShouldFoldNeg = false;
3572     }
3573 
3574     if (ShouldFoldNeg) {
3575       if (LHS.getOpcode() == ISD::FNEG)
3576         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3577       else if (CRHS->isNegative())
3578         return SDValue();
3579 
3580       if (Inv)
3581         std::swap(NewLHS, NewRHS);
3582 
3583       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3584                                       Cond, NewLHS, NewRHS);
3585       DCI.AddToWorklist(NewSelect.getNode());
3586       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3587     }
3588   }
3589 
3590   return SDValue();
3591 }
3592 
3593 
3594 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3595                                                    DAGCombinerInfo &DCI) const {
3596   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3597     return Folded;
3598 
3599   SDValue Cond = N->getOperand(0);
3600   if (Cond.getOpcode() != ISD::SETCC)
3601     return SDValue();
3602 
3603   EVT VT = N->getValueType(0);
3604   SDValue LHS = Cond.getOperand(0);
3605   SDValue RHS = Cond.getOperand(1);
3606   SDValue CC = Cond.getOperand(2);
3607 
3608   SDValue True = N->getOperand(1);
3609   SDValue False = N->getOperand(2);
3610 
3611   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3612     SelectionDAG &DAG = DCI.DAG;
3613     if (DAG.isConstantValueOfAnyType(True) &&
3614         !DAG.isConstantValueOfAnyType(False)) {
3615       // Swap cmp + select pair to move constant to false input.
3616       // This will allow using VOPC cndmasks more often.
3617       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3618 
3619       SDLoc SL(N);
3620       ISD::CondCode NewCC =
3621           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3622 
3623       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3624       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3625     }
3626 
3627     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3628       SDValue MinMax
3629         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3630       // Revisit this node so we can catch min3/max3/med3 patterns.
3631       //DCI.AddToWorklist(MinMax.getNode());
3632       return MinMax;
3633     }
3634   }
3635 
3636   // There's no reason to not do this if the condition has other uses.
3637   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3638 }
3639 
3640 static bool isInv2Pi(const APFloat &APF) {
3641   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3642   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3643   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3644 
3645   return APF.bitwiseIsEqual(KF16) ||
3646          APF.bitwiseIsEqual(KF32) ||
3647          APF.bitwiseIsEqual(KF64);
3648 }
3649 
3650 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3651 // additional cost to negate them.
3652 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3653   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3654     if (C->isZero() && !C->isNegative())
3655       return true;
3656 
3657     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3658       return true;
3659   }
3660 
3661   return false;
3662 }
3663 
3664 static unsigned inverseMinMax(unsigned Opc) {
3665   switch (Opc) {
3666   case ISD::FMAXNUM:
3667     return ISD::FMINNUM;
3668   case ISD::FMINNUM:
3669     return ISD::FMAXNUM;
3670   case ISD::FMAXNUM_IEEE:
3671     return ISD::FMINNUM_IEEE;
3672   case ISD::FMINNUM_IEEE:
3673     return ISD::FMAXNUM_IEEE;
3674   case AMDGPUISD::FMAX_LEGACY:
3675     return AMDGPUISD::FMIN_LEGACY;
3676   case AMDGPUISD::FMIN_LEGACY:
3677     return  AMDGPUISD::FMAX_LEGACY;
3678   default:
3679     llvm_unreachable("invalid min/max opcode");
3680   }
3681 }
3682 
3683 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3684                                                  DAGCombinerInfo &DCI) const {
3685   SelectionDAG &DAG = DCI.DAG;
3686   SDValue N0 = N->getOperand(0);
3687   EVT VT = N->getValueType(0);
3688 
3689   unsigned Opc = N0.getOpcode();
3690 
3691   // If the input has multiple uses and we can either fold the negate down, or
3692   // the other uses cannot, give up. This both prevents unprofitable
3693   // transformations and infinite loops: we won't repeatedly try to fold around
3694   // a negate that has no 'good' form.
3695   if (N0.hasOneUse()) {
3696     // This may be able to fold into the source, but at a code size cost. Don't
3697     // fold if the fold into the user is free.
3698     if (allUsesHaveSourceMods(N, 0))
3699       return SDValue();
3700   } else {
3701     if (fnegFoldsIntoOp(Opc) &&
3702         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3703       return SDValue();
3704   }
3705 
3706   SDLoc SL(N);
3707   switch (Opc) {
3708   case ISD::FADD: {
3709     if (!mayIgnoreSignedZero(N0))
3710       return SDValue();
3711 
3712     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3713     SDValue LHS = N0.getOperand(0);
3714     SDValue RHS = N0.getOperand(1);
3715 
3716     if (LHS.getOpcode() != ISD::FNEG)
3717       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3718     else
3719       LHS = LHS.getOperand(0);
3720 
3721     if (RHS.getOpcode() != ISD::FNEG)
3722       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3723     else
3724       RHS = RHS.getOperand(0);
3725 
3726     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3727     if (Res.getOpcode() != ISD::FADD)
3728       return SDValue(); // Op got folded away.
3729     if (!N0.hasOneUse())
3730       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3731     return Res;
3732   }
3733   case ISD::FMUL:
3734   case AMDGPUISD::FMUL_LEGACY: {
3735     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3736     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3737     SDValue LHS = N0.getOperand(0);
3738     SDValue RHS = N0.getOperand(1);
3739 
3740     if (LHS.getOpcode() == ISD::FNEG)
3741       LHS = LHS.getOperand(0);
3742     else if (RHS.getOpcode() == ISD::FNEG)
3743       RHS = RHS.getOperand(0);
3744     else
3745       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3746 
3747     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3748     if (Res.getOpcode() != Opc)
3749       return SDValue(); // Op got folded away.
3750     if (!N0.hasOneUse())
3751       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3752     return Res;
3753   }
3754   case ISD::FMA:
3755   case ISD::FMAD: {
3756     if (!mayIgnoreSignedZero(N0))
3757       return SDValue();
3758 
3759     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3760     SDValue LHS = N0.getOperand(0);
3761     SDValue MHS = N0.getOperand(1);
3762     SDValue RHS = N0.getOperand(2);
3763 
3764     if (LHS.getOpcode() == ISD::FNEG)
3765       LHS = LHS.getOperand(0);
3766     else if (MHS.getOpcode() == ISD::FNEG)
3767       MHS = MHS.getOperand(0);
3768     else
3769       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3770 
3771     if (RHS.getOpcode() != ISD::FNEG)
3772       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3773     else
3774       RHS = RHS.getOperand(0);
3775 
3776     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3777     if (Res.getOpcode() != Opc)
3778       return SDValue(); // Op got folded away.
3779     if (!N0.hasOneUse())
3780       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3781     return Res;
3782   }
3783   case ISD::FMAXNUM:
3784   case ISD::FMINNUM:
3785   case ISD::FMAXNUM_IEEE:
3786   case ISD::FMINNUM_IEEE:
3787   case AMDGPUISD::FMAX_LEGACY:
3788   case AMDGPUISD::FMIN_LEGACY: {
3789     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3790     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3791     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3792     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3793 
3794     SDValue LHS = N0.getOperand(0);
3795     SDValue RHS = N0.getOperand(1);
3796 
3797     // 0 doesn't have a negated inline immediate.
3798     // TODO: This constant check should be generalized to other operations.
3799     if (isConstantCostlierToNegate(RHS))
3800       return SDValue();
3801 
3802     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3803     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3804     unsigned Opposite = inverseMinMax(Opc);
3805 
3806     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3807     if (Res.getOpcode() != Opposite)
3808       return SDValue(); // Op got folded away.
3809     if (!N0.hasOneUse())
3810       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3811     return Res;
3812   }
3813   case AMDGPUISD::FMED3: {
3814     SDValue Ops[3];
3815     for (unsigned I = 0; I < 3; ++I)
3816       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3817 
3818     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3819     if (Res.getOpcode() != AMDGPUISD::FMED3)
3820       return SDValue(); // Op got folded away.
3821     if (!N0.hasOneUse())
3822       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3823     return Res;
3824   }
3825   case ISD::FP_EXTEND:
3826   case ISD::FTRUNC:
3827   case ISD::FRINT:
3828   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3829   case ISD::FSIN:
3830   case ISD::FCANONICALIZE:
3831   case AMDGPUISD::RCP:
3832   case AMDGPUISD::RCP_LEGACY:
3833   case AMDGPUISD::RCP_IFLAG:
3834   case AMDGPUISD::SIN_HW: {
3835     SDValue CvtSrc = N0.getOperand(0);
3836     if (CvtSrc.getOpcode() == ISD::FNEG) {
3837       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3838       // (fneg (rcp (fneg x))) -> (rcp x)
3839       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3840     }
3841 
3842     if (!N0.hasOneUse())
3843       return SDValue();
3844 
3845     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3846     // (fneg (rcp x)) -> (rcp (fneg x))
3847     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3848     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3849   }
3850   case ISD::FP_ROUND: {
3851     SDValue CvtSrc = N0.getOperand(0);
3852 
3853     if (CvtSrc.getOpcode() == ISD::FNEG) {
3854       // (fneg (fp_round (fneg x))) -> (fp_round x)
3855       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3856                          CvtSrc.getOperand(0), N0.getOperand(1));
3857     }
3858 
3859     if (!N0.hasOneUse())
3860       return SDValue();
3861 
3862     // (fneg (fp_round x)) -> (fp_round (fneg x))
3863     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3864     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3865   }
3866   case ISD::FP16_TO_FP: {
3867     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3868     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3869     // Put the fneg back as a legal source operation that can be matched later.
3870     SDLoc SL(N);
3871 
3872     SDValue Src = N0.getOperand(0);
3873     EVT SrcVT = Src.getValueType();
3874 
3875     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3876     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3877                                   DAG.getConstant(0x8000, SL, SrcVT));
3878     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3879   }
3880   default:
3881     return SDValue();
3882   }
3883 }
3884 
3885 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3886                                                  DAGCombinerInfo &DCI) const {
3887   SelectionDAG &DAG = DCI.DAG;
3888   SDValue N0 = N->getOperand(0);
3889 
3890   if (!N0.hasOneUse())
3891     return SDValue();
3892 
3893   switch (N0.getOpcode()) {
3894   case ISD::FP16_TO_FP: {
3895     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3896     SDLoc SL(N);
3897     SDValue Src = N0.getOperand(0);
3898     EVT SrcVT = Src.getValueType();
3899 
3900     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3901     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3902                                   DAG.getConstant(0x7fff, SL, SrcVT));
3903     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3904   }
3905   default:
3906     return SDValue();
3907   }
3908 }
3909 
3910 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3911                                                 DAGCombinerInfo &DCI) const {
3912   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3913   if (!CFP)
3914     return SDValue();
3915 
3916   // XXX - Should this flush denormals?
3917   const APFloat &Val = CFP->getValueAPF();
3918   APFloat One(Val.getSemantics(), "1.0");
3919   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3920 }
3921 
3922 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3923                                                 DAGCombinerInfo &DCI) const {
3924   SelectionDAG &DAG = DCI.DAG;
3925   SDLoc DL(N);
3926 
3927   switch(N->getOpcode()) {
3928   default:
3929     break;
3930   case ISD::BITCAST: {
3931     EVT DestVT = N->getValueType(0);
3932 
3933     // Push casts through vector builds. This helps avoid emitting a large
3934     // number of copies when materializing floating point vector constants.
3935     //
3936     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3937     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3938     if (DestVT.isVector()) {
3939       SDValue Src = N->getOperand(0);
3940       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3941         EVT SrcVT = Src.getValueType();
3942         unsigned NElts = DestVT.getVectorNumElements();
3943 
3944         if (SrcVT.getVectorNumElements() == NElts) {
3945           EVT DestEltVT = DestVT.getVectorElementType();
3946 
3947           SmallVector<SDValue, 8> CastedElts;
3948           SDLoc SL(N);
3949           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3950             SDValue Elt = Src.getOperand(I);
3951             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3952           }
3953 
3954           return DAG.getBuildVector(DestVT, SL, CastedElts);
3955         }
3956       }
3957     }
3958 
3959     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3960       break;
3961 
3962     // Fold bitcasts of constants.
3963     //
3964     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3965     // TODO: Generalize and move to DAGCombiner
3966     SDValue Src = N->getOperand(0);
3967     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3968       if (Src.getValueType() == MVT::i64) {
3969         SDLoc SL(N);
3970         uint64_t CVal = C->getZExtValue();
3971         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3972                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3973                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3974         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3975       }
3976     }
3977 
3978     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3979       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3980       SDLoc SL(N);
3981       uint64_t CVal = Val.getZExtValue();
3982       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3983                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3984                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3985 
3986       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3987     }
3988 
3989     break;
3990   }
3991   case ISD::SHL: {
3992     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3993       break;
3994 
3995     return performShlCombine(N, DCI);
3996   }
3997   case ISD::SRL: {
3998     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3999       break;
4000 
4001     return performSrlCombine(N, DCI);
4002   }
4003   case ISD::SRA: {
4004     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4005       break;
4006 
4007     return performSraCombine(N, DCI);
4008   }
4009   case ISD::TRUNCATE:
4010     return performTruncateCombine(N, DCI);
4011   case ISD::MUL:
4012     return performMulCombine(N, DCI);
4013   case ISD::MULHS:
4014     return performMulhsCombine(N, DCI);
4015   case ISD::MULHU:
4016     return performMulhuCombine(N, DCI);
4017   case AMDGPUISD::MUL_I24:
4018   case AMDGPUISD::MUL_U24:
4019   case AMDGPUISD::MULHI_I24:
4020   case AMDGPUISD::MULHI_U24: {
4021     if (SDValue V = simplifyI24(N, DCI))
4022       return V;
4023     return SDValue();
4024   }
4025   case AMDGPUISD::MUL_LOHI_I24:
4026   case AMDGPUISD::MUL_LOHI_U24:
4027     return performMulLoHi24Combine(N, DCI);
4028   case ISD::SELECT:
4029     return performSelectCombine(N, DCI);
4030   case ISD::FNEG:
4031     return performFNegCombine(N, DCI);
4032   case ISD::FABS:
4033     return performFAbsCombine(N, DCI);
4034   case AMDGPUISD::BFE_I32:
4035   case AMDGPUISD::BFE_U32: {
4036     assert(!N->getValueType(0).isVector() &&
4037            "Vector handling of BFE not implemented");
4038     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4039     if (!Width)
4040       break;
4041 
4042     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4043     if (WidthVal == 0)
4044       return DAG.getConstant(0, DL, MVT::i32);
4045 
4046     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4047     if (!Offset)
4048       break;
4049 
4050     SDValue BitsFrom = N->getOperand(0);
4051     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4052 
4053     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4054 
4055     if (OffsetVal == 0) {
4056       // This is already sign / zero extended, so try to fold away extra BFEs.
4057       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4058 
4059       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4060       if (OpSignBits >= SignBits)
4061         return BitsFrom;
4062 
4063       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4064       if (Signed) {
4065         // This is a sign_extend_inreg. Replace it to take advantage of existing
4066         // DAG Combines. If not eliminated, we will match back to BFE during
4067         // selection.
4068 
4069         // TODO: The sext_inreg of extended types ends, although we can could
4070         // handle them in a single BFE.
4071         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4072                            DAG.getValueType(SmallVT));
4073       }
4074 
4075       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4076     }
4077 
4078     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4079       if (Signed) {
4080         return constantFoldBFE<int32_t>(DAG,
4081                                         CVal->getSExtValue(),
4082                                         OffsetVal,
4083                                         WidthVal,
4084                                         DL);
4085       }
4086 
4087       return constantFoldBFE<uint32_t>(DAG,
4088                                        CVal->getZExtValue(),
4089                                        OffsetVal,
4090                                        WidthVal,
4091                                        DL);
4092     }
4093 
4094     if ((OffsetVal + WidthVal) >= 32 &&
4095         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4096       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4097       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4098                          BitsFrom, ShiftVal);
4099     }
4100 
4101     if (BitsFrom.hasOneUse()) {
4102       APInt Demanded = APInt::getBitsSet(32,
4103                                          OffsetVal,
4104                                          OffsetVal + WidthVal);
4105 
4106       KnownBits Known;
4107       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4108                                             !DCI.isBeforeLegalizeOps());
4109       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4110       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4111           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4112         DCI.CommitTargetLoweringOpt(TLO);
4113       }
4114     }
4115 
4116     break;
4117   }
4118   case ISD::LOAD:
4119     return performLoadCombine(N, DCI);
4120   case ISD::STORE:
4121     return performStoreCombine(N, DCI);
4122   case AMDGPUISD::RCP:
4123   case AMDGPUISD::RCP_IFLAG:
4124     return performRcpCombine(N, DCI);
4125   case ISD::AssertZext:
4126   case ISD::AssertSext:
4127     return performAssertSZExtCombine(N, DCI);
4128   case ISD::INTRINSIC_WO_CHAIN:
4129     return performIntrinsicWOChainCombine(N, DCI);
4130   }
4131   return SDValue();
4132 }
4133 
4134 //===----------------------------------------------------------------------===//
4135 // Helper functions
4136 //===----------------------------------------------------------------------===//
4137 
4138 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4139                                                    const TargetRegisterClass *RC,
4140                                                    unsigned Reg, EVT VT,
4141                                                    const SDLoc &SL,
4142                                                    bool RawReg) const {
4143   MachineFunction &MF = DAG.getMachineFunction();
4144   MachineRegisterInfo &MRI = MF.getRegInfo();
4145   unsigned VReg;
4146 
4147   if (!MRI.isLiveIn(Reg)) {
4148     VReg = MRI.createVirtualRegister(RC);
4149     MRI.addLiveIn(Reg, VReg);
4150   } else {
4151     VReg = MRI.getLiveInVirtReg(Reg);
4152   }
4153 
4154   if (RawReg)
4155     return DAG.getRegister(VReg, VT);
4156 
4157   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4158 }
4159 
4160 // This may be called multiple times, and nothing prevents creating multiple
4161 // objects at the same offset. See if we already defined this object.
4162 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4163                                        int64_t Offset) {
4164   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4165     if (MFI.getObjectOffset(I) == Offset) {
4166       assert(MFI.getObjectSize(I) == Size);
4167       return I;
4168     }
4169   }
4170 
4171   return MFI.CreateFixedObject(Size, Offset, true);
4172 }
4173 
4174 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4175                                                   EVT VT,
4176                                                   const SDLoc &SL,
4177                                                   int64_t Offset) const {
4178   MachineFunction &MF = DAG.getMachineFunction();
4179   MachineFrameInfo &MFI = MF.getFrameInfo();
4180   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4181 
4182   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4183   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4184 
4185   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4186                      MachineMemOperand::MODereferenceable |
4187                      MachineMemOperand::MOInvariant);
4188 }
4189 
4190 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4191                                                    const SDLoc &SL,
4192                                                    SDValue Chain,
4193                                                    SDValue ArgVal,
4194                                                    int64_t Offset) const {
4195   MachineFunction &MF = DAG.getMachineFunction();
4196   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4197 
4198   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4199   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4200                                MachineMemOperand::MODereferenceable);
4201   return Store;
4202 }
4203 
4204 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4205                                              const TargetRegisterClass *RC,
4206                                              EVT VT, const SDLoc &SL,
4207                                              const ArgDescriptor &Arg) const {
4208   assert(Arg && "Attempting to load missing argument");
4209 
4210   SDValue V = Arg.isRegister() ?
4211     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4212     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4213 
4214   if (!Arg.isMasked())
4215     return V;
4216 
4217   unsigned Mask = Arg.getMask();
4218   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4219   V = DAG.getNode(ISD::SRL, SL, VT, V,
4220                   DAG.getShiftAmountConstant(Shift, VT, SL));
4221   return DAG.getNode(ISD::AND, SL, VT, V,
4222                      DAG.getConstant(Mask >> Shift, SL, VT));
4223 }
4224 
4225 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4226     const MachineFunction &MF, const ImplicitParameter Param) const {
4227   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4228   const AMDGPUSubtarget &ST =
4229       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4230   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4231   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4232   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4233                        ExplicitArgOffset;
4234   switch (Param) {
4235   case GRID_DIM:
4236     return ArgOffset;
4237   case GRID_OFFSET:
4238     return ArgOffset + 4;
4239   }
4240   llvm_unreachable("unexpected implicit parameter type");
4241 }
4242 
4243 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4244 
4245 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4246   switch ((AMDGPUISD::NodeType)Opcode) {
4247   case AMDGPUISD::FIRST_NUMBER: break;
4248   // AMDIL DAG nodes
4249   NODE_NAME_CASE(UMUL);
4250   NODE_NAME_CASE(BRANCH_COND);
4251 
4252   // AMDGPU DAG nodes
4253   NODE_NAME_CASE(IF)
4254   NODE_NAME_CASE(ELSE)
4255   NODE_NAME_CASE(LOOP)
4256   NODE_NAME_CASE(CALL)
4257   NODE_NAME_CASE(TC_RETURN)
4258   NODE_NAME_CASE(TRAP)
4259   NODE_NAME_CASE(RET_FLAG)
4260   NODE_NAME_CASE(RETURN_TO_EPILOG)
4261   NODE_NAME_CASE(ENDPGM)
4262   NODE_NAME_CASE(DWORDADDR)
4263   NODE_NAME_CASE(FRACT)
4264   NODE_NAME_CASE(SETCC)
4265   NODE_NAME_CASE(SETREG)
4266   NODE_NAME_CASE(DENORM_MODE)
4267   NODE_NAME_CASE(FMA_W_CHAIN)
4268   NODE_NAME_CASE(FMUL_W_CHAIN)
4269   NODE_NAME_CASE(CLAMP)
4270   NODE_NAME_CASE(COS_HW)
4271   NODE_NAME_CASE(SIN_HW)
4272   NODE_NAME_CASE(FMAX_LEGACY)
4273   NODE_NAME_CASE(FMIN_LEGACY)
4274   NODE_NAME_CASE(FMAX3)
4275   NODE_NAME_CASE(SMAX3)
4276   NODE_NAME_CASE(UMAX3)
4277   NODE_NAME_CASE(FMIN3)
4278   NODE_NAME_CASE(SMIN3)
4279   NODE_NAME_CASE(UMIN3)
4280   NODE_NAME_CASE(FMED3)
4281   NODE_NAME_CASE(SMED3)
4282   NODE_NAME_CASE(UMED3)
4283   NODE_NAME_CASE(FDOT2)
4284   NODE_NAME_CASE(URECIP)
4285   NODE_NAME_CASE(DIV_SCALE)
4286   NODE_NAME_CASE(DIV_FMAS)
4287   NODE_NAME_CASE(DIV_FIXUP)
4288   NODE_NAME_CASE(FMAD_FTZ)
4289   NODE_NAME_CASE(TRIG_PREOP)
4290   NODE_NAME_CASE(RCP)
4291   NODE_NAME_CASE(RSQ)
4292   NODE_NAME_CASE(RCP_LEGACY)
4293   NODE_NAME_CASE(RSQ_LEGACY)
4294   NODE_NAME_CASE(RCP_IFLAG)
4295   NODE_NAME_CASE(FMUL_LEGACY)
4296   NODE_NAME_CASE(RSQ_CLAMP)
4297   NODE_NAME_CASE(LDEXP)
4298   NODE_NAME_CASE(FP_CLASS)
4299   NODE_NAME_CASE(DOT4)
4300   NODE_NAME_CASE(CARRY)
4301   NODE_NAME_CASE(BORROW)
4302   NODE_NAME_CASE(BFE_U32)
4303   NODE_NAME_CASE(BFE_I32)
4304   NODE_NAME_CASE(BFI)
4305   NODE_NAME_CASE(BFM)
4306   NODE_NAME_CASE(FFBH_U32)
4307   NODE_NAME_CASE(FFBH_I32)
4308   NODE_NAME_CASE(FFBL_B32)
4309   NODE_NAME_CASE(MUL_U24)
4310   NODE_NAME_CASE(MUL_I24)
4311   NODE_NAME_CASE(MULHI_U24)
4312   NODE_NAME_CASE(MULHI_I24)
4313   NODE_NAME_CASE(MUL_LOHI_U24)
4314   NODE_NAME_CASE(MUL_LOHI_I24)
4315   NODE_NAME_CASE(MAD_U24)
4316   NODE_NAME_CASE(MAD_I24)
4317   NODE_NAME_CASE(MAD_I64_I32)
4318   NODE_NAME_CASE(MAD_U64_U32)
4319   NODE_NAME_CASE(PERM)
4320   NODE_NAME_CASE(TEXTURE_FETCH)
4321   NODE_NAME_CASE(R600_EXPORT)
4322   NODE_NAME_CASE(CONST_ADDRESS)
4323   NODE_NAME_CASE(REGISTER_LOAD)
4324   NODE_NAME_CASE(REGISTER_STORE)
4325   NODE_NAME_CASE(SAMPLE)
4326   NODE_NAME_CASE(SAMPLEB)
4327   NODE_NAME_CASE(SAMPLED)
4328   NODE_NAME_CASE(SAMPLEL)
4329   NODE_NAME_CASE(CVT_F32_UBYTE0)
4330   NODE_NAME_CASE(CVT_F32_UBYTE1)
4331   NODE_NAME_CASE(CVT_F32_UBYTE2)
4332   NODE_NAME_CASE(CVT_F32_UBYTE3)
4333   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4334   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4335   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4336   NODE_NAME_CASE(CVT_PK_I16_I32)
4337   NODE_NAME_CASE(CVT_PK_U16_U32)
4338   NODE_NAME_CASE(FP_TO_FP16)
4339   NODE_NAME_CASE(FP16_ZEXT)
4340   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4341   NODE_NAME_CASE(CONST_DATA_PTR)
4342   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4343   NODE_NAME_CASE(LDS)
4344   NODE_NAME_CASE(DUMMY_CHAIN)
4345   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4346   NODE_NAME_CASE(LOAD_D16_HI)
4347   NODE_NAME_CASE(LOAD_D16_LO)
4348   NODE_NAME_CASE(LOAD_D16_HI_I8)
4349   NODE_NAME_CASE(LOAD_D16_HI_U8)
4350   NODE_NAME_CASE(LOAD_D16_LO_I8)
4351   NODE_NAME_CASE(LOAD_D16_LO_U8)
4352   NODE_NAME_CASE(STORE_MSKOR)
4353   NODE_NAME_CASE(LOAD_CONSTANT)
4354   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4355   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4356   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4357   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4358   NODE_NAME_CASE(DS_ORDERED_COUNT)
4359   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4360   NODE_NAME_CASE(ATOMIC_INC)
4361   NODE_NAME_CASE(ATOMIC_DEC)
4362   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4363   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4364   NODE_NAME_CASE(BUFFER_LOAD)
4365   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4366   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4367   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4368   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4369   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4370   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4371   NODE_NAME_CASE(SBUFFER_LOAD)
4372   NODE_NAME_CASE(BUFFER_STORE)
4373   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4374   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4375   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4376   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4377   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4378   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4379   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4380   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4381   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4382   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4383   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4384   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4385   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4386   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4387   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4388   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4389   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4390   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4391   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4392   NODE_NAME_CASE(ATOMIC_PK_FADD)
4393 
4394   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4395   }
4396   return nullptr;
4397 }
4398 
4399 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4400                                               SelectionDAG &DAG, int Enabled,
4401                                               int &RefinementSteps,
4402                                               bool &UseOneConstNR,
4403                                               bool Reciprocal) const {
4404   EVT VT = Operand.getValueType();
4405 
4406   if (VT == MVT::f32) {
4407     RefinementSteps = 0;
4408     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4409   }
4410 
4411   // TODO: There is also f64 rsq instruction, but the documentation is less
4412   // clear on its precision.
4413 
4414   return SDValue();
4415 }
4416 
4417 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4418                                                SelectionDAG &DAG, int Enabled,
4419                                                int &RefinementSteps) const {
4420   EVT VT = Operand.getValueType();
4421 
4422   if (VT == MVT::f32) {
4423     // Reciprocal, < 1 ulp error.
4424     //
4425     // This reciprocal approximation converges to < 0.5 ulp error with one
4426     // newton rhapson performed with two fused multiple adds (FMAs).
4427 
4428     RefinementSteps = 0;
4429     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4430   }
4431 
4432   // TODO: There is also f64 rcp instruction, but the documentation is less
4433   // clear on its precision.
4434 
4435   return SDValue();
4436 }
4437 
4438 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4439     const SDValue Op, KnownBits &Known,
4440     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4441 
4442   Known.resetAll(); // Don't know anything.
4443 
4444   unsigned Opc = Op.getOpcode();
4445 
4446   switch (Opc) {
4447   default:
4448     break;
4449   case AMDGPUISD::CARRY:
4450   case AMDGPUISD::BORROW: {
4451     Known.Zero = APInt::getHighBitsSet(32, 31);
4452     break;
4453   }
4454 
4455   case AMDGPUISD::BFE_I32:
4456   case AMDGPUISD::BFE_U32: {
4457     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4458     if (!CWidth)
4459       return;
4460 
4461     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4462 
4463     if (Opc == AMDGPUISD::BFE_U32)
4464       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4465 
4466     break;
4467   }
4468   case AMDGPUISD::FP_TO_FP16:
4469   case AMDGPUISD::FP16_ZEXT: {
4470     unsigned BitWidth = Known.getBitWidth();
4471 
4472     // High bits are zero.
4473     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4474     break;
4475   }
4476   case AMDGPUISD::MUL_U24:
4477   case AMDGPUISD::MUL_I24: {
4478     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4479     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4480     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4481                       RHSKnown.countMinTrailingZeros();
4482     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4483     // Skip extra check if all bits are known zeros.
4484     if (TrailZ >= 32)
4485       break;
4486 
4487     // Truncate to 24 bits.
4488     LHSKnown = LHSKnown.trunc(24);
4489     RHSKnown = RHSKnown.trunc(24);
4490 
4491     if (Opc == AMDGPUISD::MUL_I24) {
4492       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4493       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4494       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4495       if (MaxValBits >= 32)
4496         break;
4497       bool LHSNegative = LHSKnown.isNegative();
4498       bool LHSNonNegative = LHSKnown.isNonNegative();
4499       bool LHSPositive = LHSKnown.isStrictlyPositive();
4500       bool RHSNegative = RHSKnown.isNegative();
4501       bool RHSNonNegative = RHSKnown.isNonNegative();
4502       bool RHSPositive = RHSKnown.isStrictlyPositive();
4503 
4504       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4505         Known.Zero.setHighBits(32 - MaxValBits);
4506       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4507         Known.One.setHighBits(32 - MaxValBits);
4508     } else {
4509       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4510       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4511       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4512       if (MaxValBits >= 32)
4513         break;
4514       Known.Zero.setHighBits(32 - MaxValBits);
4515     }
4516     break;
4517   }
4518   case AMDGPUISD::PERM: {
4519     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4520     if (!CMask)
4521       return;
4522 
4523     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4524     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4525     unsigned Sel = CMask->getZExtValue();
4526 
4527     for (unsigned I = 0; I < 32; I += 8) {
4528       unsigned SelBits = Sel & 0xff;
4529       if (SelBits < 4) {
4530         SelBits *= 8;
4531         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4532         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4533       } else if (SelBits < 7) {
4534         SelBits = (SelBits & 3) * 8;
4535         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4536         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4537       } else if (SelBits == 0x0c) {
4538         Known.Zero |= 0xFFull << I;
4539       } else if (SelBits > 0x0c) {
4540         Known.One |= 0xFFull << I;
4541       }
4542       Sel >>= 8;
4543     }
4544     break;
4545   }
4546   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4547     Known.Zero.setHighBits(24);
4548     break;
4549   }
4550   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4551     Known.Zero.setHighBits(16);
4552     break;
4553   }
4554   case AMDGPUISD::LDS: {
4555     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4556     unsigned Align = GA->getGlobal()->getAlignment();
4557 
4558     Known.Zero.setHighBits(16);
4559     if (Align)
4560       Known.Zero.setLowBits(Log2_32(Align));
4561     break;
4562   }
4563   case ISD::INTRINSIC_WO_CHAIN: {
4564     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4565     switch (IID) {
4566     case Intrinsic::amdgcn_mbcnt_lo:
4567     case Intrinsic::amdgcn_mbcnt_hi: {
4568       const GCNSubtarget &ST =
4569           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4570       // These return at most the wavefront size - 1.
4571       unsigned Size = Op.getValueType().getSizeInBits();
4572       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4573       break;
4574     }
4575     default:
4576       break;
4577     }
4578   }
4579   }
4580 }
4581 
4582 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4583     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4584     unsigned Depth) const {
4585   switch (Op.getOpcode()) {
4586   case AMDGPUISD::BFE_I32: {
4587     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4588     if (!Width)
4589       return 1;
4590 
4591     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4592     if (!isNullConstant(Op.getOperand(1)))
4593       return SignBits;
4594 
4595     // TODO: Could probably figure something out with non-0 offsets.
4596     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4597     return std::max(SignBits, Op0SignBits);
4598   }
4599 
4600   case AMDGPUISD::BFE_U32: {
4601     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4602     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4603   }
4604 
4605   case AMDGPUISD::CARRY:
4606   case AMDGPUISD::BORROW:
4607     return 31;
4608   case AMDGPUISD::BUFFER_LOAD_BYTE:
4609     return 25;
4610   case AMDGPUISD::BUFFER_LOAD_SHORT:
4611     return 17;
4612   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4613     return 24;
4614   case AMDGPUISD::BUFFER_LOAD_USHORT:
4615     return 16;
4616   case AMDGPUISD::FP_TO_FP16:
4617   case AMDGPUISD::FP16_ZEXT:
4618     return 16;
4619   default:
4620     return 1;
4621   }
4622 }
4623 
4624 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4625                                                         const SelectionDAG &DAG,
4626                                                         bool SNaN,
4627                                                         unsigned Depth) const {
4628   unsigned Opcode = Op.getOpcode();
4629   switch (Opcode) {
4630   case AMDGPUISD::FMIN_LEGACY:
4631   case AMDGPUISD::FMAX_LEGACY: {
4632     if (SNaN)
4633       return true;
4634 
4635     // TODO: Can check no nans on one of the operands for each one, but which
4636     // one?
4637     return false;
4638   }
4639   case AMDGPUISD::FMUL_LEGACY:
4640   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4641     if (SNaN)
4642       return true;
4643     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4644            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4645   }
4646   case AMDGPUISD::FMED3:
4647   case AMDGPUISD::FMIN3:
4648   case AMDGPUISD::FMAX3:
4649   case AMDGPUISD::FMAD_FTZ: {
4650     if (SNaN)
4651       return true;
4652     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4653            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4654            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4655   }
4656   case AMDGPUISD::CVT_F32_UBYTE0:
4657   case AMDGPUISD::CVT_F32_UBYTE1:
4658   case AMDGPUISD::CVT_F32_UBYTE2:
4659   case AMDGPUISD::CVT_F32_UBYTE3:
4660     return true;
4661 
4662   case AMDGPUISD::RCP:
4663   case AMDGPUISD::RSQ:
4664   case AMDGPUISD::RCP_LEGACY:
4665   case AMDGPUISD::RSQ_LEGACY:
4666   case AMDGPUISD::RSQ_CLAMP: {
4667     if (SNaN)
4668       return true;
4669 
4670     // TODO: Need is known positive check.
4671     return false;
4672   }
4673   case AMDGPUISD::LDEXP:
4674   case AMDGPUISD::FRACT: {
4675     if (SNaN)
4676       return true;
4677     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4678   }
4679   case AMDGPUISD::DIV_SCALE:
4680   case AMDGPUISD::DIV_FMAS:
4681   case AMDGPUISD::DIV_FIXUP:
4682   case AMDGPUISD::TRIG_PREOP:
4683     // TODO: Refine on operands.
4684     return SNaN;
4685   case AMDGPUISD::SIN_HW:
4686   case AMDGPUISD::COS_HW: {
4687     // TODO: Need check for infinity
4688     return SNaN;
4689   }
4690   case ISD::INTRINSIC_WO_CHAIN: {
4691     unsigned IntrinsicID
4692       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4693     // TODO: Handle more intrinsics
4694     switch (IntrinsicID) {
4695     case Intrinsic::amdgcn_cubeid:
4696       return true;
4697 
4698     case Intrinsic::amdgcn_frexp_mant: {
4699       if (SNaN)
4700         return true;
4701       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4702     }
4703     case Intrinsic::amdgcn_cvt_pkrtz: {
4704       if (SNaN)
4705         return true;
4706       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4707              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4708     }
4709     case Intrinsic::amdgcn_fdot2:
4710       // TODO: Refine on operand
4711       return SNaN;
4712     default:
4713       return false;
4714     }
4715   }
4716   default:
4717     return false;
4718   }
4719 }
4720 
4721 TargetLowering::AtomicExpansionKind
4722 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4723   switch (RMW->getOperation()) {
4724   case AtomicRMWInst::Nand:
4725   case AtomicRMWInst::FAdd:
4726   case AtomicRMWInst::FSub:
4727     return AtomicExpansionKind::CmpXChg;
4728   default:
4729     return AtomicExpansionKind::None;
4730   }
4731 }
4732