1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "AMDGPUTargetMachine.h" 24 #include "R600MachineFunctionInfo.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 using namespace llvm; 36 37 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 38 CCValAssign::LocInfo LocInfo, 39 ISD::ArgFlagsTy ArgFlags, CCState &State) { 40 MachineFunction &MF = State.getMachineFunction(); 41 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 42 43 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 44 ArgFlags.getOrigAlign()); 45 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 46 return true; 47 } 48 49 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 50 CCValAssign::LocInfo LocInfo, 51 ISD::ArgFlagsTy ArgFlags, CCState &State, 52 const TargetRegisterClass *RC, 53 unsigned NumRegs) { 54 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 55 unsigned RegResult = State.AllocateReg(RegList); 56 if (RegResult == AMDGPU::NoRegister) 57 return false; 58 59 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 60 return true; 61 } 62 63 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 64 CCValAssign::LocInfo LocInfo, 65 ISD::ArgFlagsTy ArgFlags, CCState &State) { 66 switch (LocVT.SimpleTy) { 67 case MVT::i64: 68 case MVT::f64: 69 case MVT::v2i32: 70 case MVT::v2f32: { 71 // Up to SGPR0-SGPR39 72 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 73 &AMDGPU::SGPR_64RegClass, 20); 74 } 75 default: 76 return false; 77 } 78 } 79 80 // Allocate up to VGPR31. 81 // 82 // TODO: Since there are no VGPR alignent requirements would it be better to 83 // split into individual scalar registers? 84 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 85 CCValAssign::LocInfo LocInfo, 86 ISD::ArgFlagsTy ArgFlags, CCState &State) { 87 switch (LocVT.SimpleTy) { 88 case MVT::i64: 89 case MVT::f64: 90 case MVT::v2i32: 91 case MVT::v2f32: { 92 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 93 &AMDGPU::VReg_64RegClass, 31); 94 } 95 case MVT::v4i32: 96 case MVT::v4f32: 97 case MVT::v2i64: 98 case MVT::v2f64: { 99 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 100 &AMDGPU::VReg_128RegClass, 29); 101 } 102 case MVT::v8i32: 103 case MVT::v8f32: { 104 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 105 &AMDGPU::VReg_256RegClass, 25); 106 107 } 108 case MVT::v16i32: 109 case MVT::v16f32: { 110 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 111 &AMDGPU::VReg_512RegClass, 17); 112 113 } 114 default: 115 return false; 116 } 117 } 118 119 #include "AMDGPUGenCallingConv.inc" 120 121 // Find a larger type to do a load / store of a vector with. 122 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 123 unsigned StoreSize = VT.getStoreSizeInBits(); 124 if (StoreSize <= 32) 125 return EVT::getIntegerVT(Ctx, StoreSize); 126 127 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 128 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 129 } 130 131 bool AMDGPUTargetLowering::isOrEquivalentToAdd(SelectionDAG &DAG, SDValue Op) 132 { 133 assert(Op.getOpcode() == ISD::OR); 134 135 SDValue N0 = Op->getOperand(0); 136 SDValue N1 = Op->getOperand(1); 137 EVT VT = N0.getValueType(); 138 139 if (VT.isInteger() && !VT.isVector()) { 140 KnownBits LHSKnown, RHSKnown; 141 DAG.computeKnownBits(N0, LHSKnown); 142 143 if (LHSKnown.Zero.getBoolValue()) { 144 DAG.computeKnownBits(N1, RHSKnown); 145 146 if (!(~RHSKnown.Zero & ~LHSKnown.Zero)) 147 return true; 148 } 149 } 150 151 return false; 152 } 153 154 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 155 const AMDGPUSubtarget &STI) 156 : TargetLowering(TM), Subtarget(&STI) { 157 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 158 // Lower floating point store/load to integer store/load to reduce the number 159 // of patterns in tablegen. 160 setOperationAction(ISD::LOAD, MVT::f32, Promote); 161 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 162 163 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 164 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 165 166 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 167 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 168 169 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 170 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 171 172 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 173 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 174 175 setOperationAction(ISD::LOAD, MVT::i64, Promote); 176 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 177 178 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 179 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 180 181 setOperationAction(ISD::LOAD, MVT::f64, Promote); 182 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 183 184 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 185 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 186 187 // There are no 64-bit extloads. These should be done as a 32-bit extload and 188 // an extension to 64-bit. 189 for (MVT VT : MVT::integer_valuetypes()) { 190 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 191 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 192 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 193 } 194 195 for (MVT VT : MVT::integer_valuetypes()) { 196 if (VT == MVT::i64) 197 continue; 198 199 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 200 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 202 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 203 204 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 206 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 207 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 208 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 210 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 211 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 213 } 214 215 for (MVT VT : MVT::integer_vector_valuetypes()) { 216 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 217 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 218 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 219 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 220 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 221 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 222 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 226 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 227 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 228 } 229 230 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 232 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 233 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 234 235 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 237 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 238 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 239 240 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 241 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 242 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 243 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 244 245 setOperationAction(ISD::STORE, MVT::f32, Promote); 246 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 247 248 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 250 251 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 253 254 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 256 257 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 259 260 setOperationAction(ISD::STORE, MVT::i64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 262 263 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 264 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 265 266 setOperationAction(ISD::STORE, MVT::f64, Promote); 267 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 268 269 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 270 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 271 272 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 275 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 276 277 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 280 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 281 282 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 283 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 284 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 285 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 286 287 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 288 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 289 290 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 291 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 292 293 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 295 296 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 297 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 298 299 300 setOperationAction(ISD::Constant, MVT::i32, Legal); 301 setOperationAction(ISD::Constant, MVT::i64, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 303 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 304 305 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 306 setOperationAction(ISD::BRIND, MVT::Other, Expand); 307 308 // This is totally unsupported, just custom lower to produce an error. 309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 310 311 // Library functions. These default to Expand, but we have instructions 312 // for them. 313 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 314 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 315 setOperationAction(ISD::FPOW, MVT::f32, Legal); 316 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 317 setOperationAction(ISD::FABS, MVT::f32, Legal); 318 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 319 setOperationAction(ISD::FRINT, MVT::f32, Legal); 320 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 321 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 322 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 323 324 setOperationAction(ISD::FROUND, MVT::f32, Custom); 325 setOperationAction(ISD::FROUND, MVT::f64, Custom); 326 327 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 328 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 329 330 setOperationAction(ISD::FREM, MVT::f32, Custom); 331 setOperationAction(ISD::FREM, MVT::f64, Custom); 332 333 // v_mad_f32 does not support denormals according to some sources. 334 if (!Subtarget->hasFP32Denormals()) 335 setOperationAction(ISD::FMAD, MVT::f32, Legal); 336 337 // Expand to fneg + fadd. 338 setOperationAction(ISD::FSUB, MVT::f64, Expand); 339 340 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 341 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 342 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 343 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 350 351 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 352 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 353 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 354 setOperationAction(ISD::FRINT, MVT::f64, Custom); 355 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 356 } 357 358 if (!Subtarget->hasBFI()) { 359 // fcopysign can be done in a single instruction with BFI. 360 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 361 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 362 } 363 364 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 365 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 366 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 367 368 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 369 for (MVT VT : ScalarIntVTs) { 370 // These should use [SU]DIVREM, so set them to expand 371 setOperationAction(ISD::SDIV, VT, Expand); 372 setOperationAction(ISD::UDIV, VT, Expand); 373 setOperationAction(ISD::SREM, VT, Expand); 374 setOperationAction(ISD::UREM, VT, Expand); 375 376 // GPU does not have divrem function for signed or unsigned. 377 setOperationAction(ISD::SDIVREM, VT, Custom); 378 setOperationAction(ISD::UDIVREM, VT, Custom); 379 380 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 381 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 382 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 383 384 setOperationAction(ISD::BSWAP, VT, Expand); 385 setOperationAction(ISD::CTTZ, VT, Expand); 386 setOperationAction(ISD::CTLZ, VT, Expand); 387 } 388 389 if (!Subtarget->hasBCNT(32)) 390 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 391 392 if (!Subtarget->hasBCNT(64)) 393 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MUL, MVT::i64, Expand); 401 setOperationAction(ISD::MULHU, MVT::i64, Expand); 402 setOperationAction(ISD::MULHS, MVT::i64, Expand); 403 setOperationAction(ISD::UDIV, MVT::i32, Expand); 404 setOperationAction(ISD::UREM, MVT::i32, Expand); 405 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 406 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 407 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 408 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 409 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 410 411 setOperationAction(ISD::SMIN, MVT::i32, Legal); 412 setOperationAction(ISD::UMIN, MVT::i32, Legal); 413 setOperationAction(ISD::SMAX, MVT::i32, Legal); 414 setOperationAction(ISD::UMAX, MVT::i32, Legal); 415 416 if (Subtarget->hasFFBH()) 417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 418 419 if (Subtarget->hasFFBL()) 420 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 421 422 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 423 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 424 425 // We only really have 32-bit BFE instructions (and 16-bit on VI). 426 // 427 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 428 // effort to match them now. We want this to be false for i64 cases when the 429 // extraction isn't restricted to the upper or lower half. Ideally we would 430 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 431 // span the midpoint are probably relatively rare, so don't worry about them 432 // for now. 433 if (Subtarget->hasBFE()) 434 setHasExtractBitsInsn(true); 435 436 static const MVT::SimpleValueType VectorIntTypes[] = { 437 MVT::v2i32, MVT::v4i32 438 }; 439 440 for (MVT VT : VectorIntTypes) { 441 // Expand the following operations for the current type by default. 442 setOperationAction(ISD::ADD, VT, Expand); 443 setOperationAction(ISD::AND, VT, Expand); 444 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 445 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 446 setOperationAction(ISD::MUL, VT, Expand); 447 setOperationAction(ISD::MULHU, VT, Expand); 448 setOperationAction(ISD::MULHS, VT, Expand); 449 setOperationAction(ISD::OR, VT, Expand); 450 setOperationAction(ISD::SHL, VT, Expand); 451 setOperationAction(ISD::SRA, VT, Expand); 452 setOperationAction(ISD::SRL, VT, Expand); 453 setOperationAction(ISD::ROTL, VT, Expand); 454 setOperationAction(ISD::ROTR, VT, Expand); 455 setOperationAction(ISD::SUB, VT, Expand); 456 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 457 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 458 setOperationAction(ISD::SDIV, VT, Expand); 459 setOperationAction(ISD::UDIV, VT, Expand); 460 setOperationAction(ISD::SREM, VT, Expand); 461 setOperationAction(ISD::UREM, VT, Expand); 462 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 463 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 464 setOperationAction(ISD::SDIVREM, VT, Custom); 465 setOperationAction(ISD::UDIVREM, VT, Expand); 466 setOperationAction(ISD::ADDC, VT, Expand); 467 setOperationAction(ISD::SUBC, VT, Expand); 468 setOperationAction(ISD::ADDE, VT, Expand); 469 setOperationAction(ISD::SUBE, VT, Expand); 470 setOperationAction(ISD::SELECT, VT, Expand); 471 setOperationAction(ISD::VSELECT, VT, Expand); 472 setOperationAction(ISD::SELECT_CC, VT, Expand); 473 setOperationAction(ISD::XOR, VT, Expand); 474 setOperationAction(ISD::BSWAP, VT, Expand); 475 setOperationAction(ISD::CTPOP, VT, Expand); 476 setOperationAction(ISD::CTTZ, VT, Expand); 477 setOperationAction(ISD::CTLZ, VT, Expand); 478 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 479 setOperationAction(ISD::SETCC, VT, Expand); 480 } 481 482 static const MVT::SimpleValueType FloatVectorTypes[] = { 483 MVT::v2f32, MVT::v4f32 484 }; 485 486 for (MVT VT : FloatVectorTypes) { 487 setOperationAction(ISD::FABS, VT, Expand); 488 setOperationAction(ISD::FMINNUM, VT, Expand); 489 setOperationAction(ISD::FMAXNUM, VT, Expand); 490 setOperationAction(ISD::FADD, VT, Expand); 491 setOperationAction(ISD::FCEIL, VT, Expand); 492 setOperationAction(ISD::FCOS, VT, Expand); 493 setOperationAction(ISD::FDIV, VT, Expand); 494 setOperationAction(ISD::FEXP2, VT, Expand); 495 setOperationAction(ISD::FLOG2, VT, Expand); 496 setOperationAction(ISD::FREM, VT, Expand); 497 setOperationAction(ISD::FPOW, VT, Expand); 498 setOperationAction(ISD::FFLOOR, VT, Expand); 499 setOperationAction(ISD::FTRUNC, VT, Expand); 500 setOperationAction(ISD::FMUL, VT, Expand); 501 setOperationAction(ISD::FMA, VT, Expand); 502 setOperationAction(ISD::FRINT, VT, Expand); 503 setOperationAction(ISD::FNEARBYINT, VT, Expand); 504 setOperationAction(ISD::FSQRT, VT, Expand); 505 setOperationAction(ISD::FSIN, VT, Expand); 506 setOperationAction(ISD::FSUB, VT, Expand); 507 setOperationAction(ISD::FNEG, VT, Expand); 508 setOperationAction(ISD::VSELECT, VT, Expand); 509 setOperationAction(ISD::SELECT_CC, VT, Expand); 510 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 511 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 512 setOperationAction(ISD::SETCC, VT, Expand); 513 } 514 515 // This causes using an unrolled select operation rather than expansion with 516 // bit operations. This is in general better, but the alternative using BFI 517 // instructions may be better if the select sources are SGPRs. 518 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 519 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 520 521 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 522 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 523 524 // There are no libcalls of any kind. 525 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 526 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 527 528 setBooleanContents(ZeroOrNegativeOneBooleanContent); 529 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 530 531 setSchedulingPreference(Sched::RegPressure); 532 setJumpIsExpensive(true); 533 534 // FIXME: This is only partially true. If we have to do vector compares, any 535 // SGPR pair can be a condition register. If we have a uniform condition, we 536 // are better off doing SALU operations, where there is only one SCC. For now, 537 // we don't have a way of knowing during instruction selection if a condition 538 // will be uniform and we always use vector compares. Assume we are using 539 // vector compares until that is fixed. 540 setHasMultipleConditionRegisters(true); 541 542 // SI at least has hardware support for floating point exceptions, but no way 543 // of using or handling them is implemented. They are also optional in OpenCL 544 // (Section 7.3) 545 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 546 547 PredictableSelectIsExpensive = false; 548 549 // We want to find all load dependencies for long chains of stores to enable 550 // merging into very wide vectors. The problem is with vectors with > 4 551 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 552 // vectors are a legal type, even though we have to split the loads 553 // usually. When we can more precisely specify load legality per address 554 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 555 // smarter so that they can figure out what to do in 2 iterations without all 556 // N > 4 stores on the same chain. 557 GatherAllAliasesMaxDepth = 16; 558 559 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 560 // about these during lowering. 561 MaxStoresPerMemcpy = 0xffffffff; 562 MaxStoresPerMemmove = 0xffffffff; 563 MaxStoresPerMemset = 0xffffffff; 564 565 setTargetDAGCombine(ISD::BITCAST); 566 setTargetDAGCombine(ISD::SHL); 567 setTargetDAGCombine(ISD::SRA); 568 setTargetDAGCombine(ISD::SRL); 569 setTargetDAGCombine(ISD::MUL); 570 setTargetDAGCombine(ISD::MULHU); 571 setTargetDAGCombine(ISD::MULHS); 572 setTargetDAGCombine(ISD::SELECT); 573 setTargetDAGCombine(ISD::SELECT_CC); 574 setTargetDAGCombine(ISD::STORE); 575 setTargetDAGCombine(ISD::FADD); 576 setTargetDAGCombine(ISD::FSUB); 577 setTargetDAGCombine(ISD::FNEG); 578 setTargetDAGCombine(ISD::FABS); 579 setTargetDAGCombine(ISD::AssertZext); 580 setTargetDAGCombine(ISD::AssertSext); 581 } 582 583 //===----------------------------------------------------------------------===// 584 // Target Information 585 //===----------------------------------------------------------------------===// 586 587 LLVM_READNONE 588 static bool fnegFoldsIntoOp(unsigned Opc) { 589 switch (Opc) { 590 case ISD::FADD: 591 case ISD::FSUB: 592 case ISD::FMUL: 593 case ISD::FMA: 594 case ISD::FMAD: 595 case ISD::FMINNUM: 596 case ISD::FMAXNUM: 597 case ISD::FSIN: 598 case ISD::FTRUNC: 599 case ISD::FRINT: 600 case ISD::FNEARBYINT: 601 case AMDGPUISD::RCP: 602 case AMDGPUISD::RCP_LEGACY: 603 case AMDGPUISD::SIN_HW: 604 case AMDGPUISD::FMUL_LEGACY: 605 case AMDGPUISD::FMIN_LEGACY: 606 case AMDGPUISD::FMAX_LEGACY: 607 return true; 608 default: 609 return false; 610 } 611 } 612 613 /// \p returns true if the operation will definitely need to use a 64-bit 614 /// encoding, and thus will use a VOP3 encoding regardless of the source 615 /// modifiers. 616 LLVM_READONLY 617 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 618 return N->getNumOperands() > 2 || VT == MVT::f64; 619 } 620 621 // Most FP instructions support source modifiers, but this could be refined 622 // slightly. 623 LLVM_READONLY 624 static bool hasSourceMods(const SDNode *N) { 625 if (isa<MemSDNode>(N)) 626 return false; 627 628 switch (N->getOpcode()) { 629 case ISD::CopyToReg: 630 case ISD::SELECT: 631 case ISD::FDIV: 632 case ISD::FREM: 633 case ISD::INLINEASM: 634 case AMDGPUISD::INTERP_P1: 635 case AMDGPUISD::INTERP_P2: 636 case AMDGPUISD::DIV_SCALE: 637 638 // TODO: Should really be looking at the users of the bitcast. These are 639 // problematic because bitcasts are used to legalize all stores to integer 640 // types. 641 case ISD::BITCAST: 642 return false; 643 default: 644 return true; 645 } 646 } 647 648 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 649 unsigned CostThreshold) { 650 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 651 // it is truly free to use a source modifier in all cases. If there are 652 // multiple users but for each one will necessitate using VOP3, there will be 653 // a code size increase. Try to avoid increasing code size unless we know it 654 // will save on the instruction count. 655 unsigned NumMayIncreaseSize = 0; 656 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 657 658 // XXX - Should this limit number of uses to check? 659 for (const SDNode *U : N->uses()) { 660 if (!hasSourceMods(U)) 661 return false; 662 663 if (!opMustUseVOP3Encoding(U, VT)) { 664 if (++NumMayIncreaseSize > CostThreshold) 665 return false; 666 } 667 } 668 669 return true; 670 } 671 672 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 673 return MVT::i32; 674 } 675 676 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 677 return true; 678 } 679 680 // The backend supports 32 and 64 bit floating point immediates. 681 // FIXME: Why are we reporting vectors of FP immediates as legal? 682 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 683 EVT ScalarVT = VT.getScalarType(); 684 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 685 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 686 } 687 688 // We don't want to shrink f64 / f32 constants. 689 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 690 EVT ScalarVT = VT.getScalarType(); 691 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 692 } 693 694 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 695 ISD::LoadExtType, 696 EVT NewVT) const { 697 698 unsigned NewSize = NewVT.getStoreSizeInBits(); 699 700 // If we are reducing to a 32-bit load, this is always better. 701 if (NewSize == 32) 702 return true; 703 704 EVT OldVT = N->getValueType(0); 705 unsigned OldSize = OldVT.getStoreSizeInBits(); 706 707 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 708 // extloads, so doing one requires using a buffer_load. In cases where we 709 // still couldn't use a scalar load, using the wider load shouldn't really 710 // hurt anything. 711 712 // If the old size already had to be an extload, there's no harm in continuing 713 // to reduce the width. 714 return (OldSize < 32); 715 } 716 717 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 718 EVT CastTy) const { 719 720 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 721 722 if (LoadTy.getScalarType() == MVT::i32) 723 return false; 724 725 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 726 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 727 728 return (LScalarSize < CastScalarSize) || 729 (CastScalarSize >= 32); 730 } 731 732 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 733 // profitable with the expansion for 64-bit since it's generally good to 734 // speculate things. 735 // FIXME: These should really have the size as a parameter. 736 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 737 return true; 738 } 739 740 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 741 return true; 742 } 743 744 //===---------------------------------------------------------------------===// 745 // Target Properties 746 //===---------------------------------------------------------------------===// 747 748 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 749 assert(VT.isFloatingPoint()); 750 751 // Packed operations do not have a fabs modifier. 752 return VT == MVT::f32 || VT == MVT::f64 || 753 (Subtarget->has16BitInsts() && VT == MVT::f16); 754 } 755 756 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 757 assert(VT.isFloatingPoint()); 758 return VT == MVT::f32 || VT == MVT::f64 || 759 (Subtarget->has16BitInsts() && VT == MVT::f16) || 760 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 761 } 762 763 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 764 unsigned NumElem, 765 unsigned AS) const { 766 return true; 767 } 768 769 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 770 // There are few operations which truly have vector input operands. Any vector 771 // operation is going to involve operations on each component, and a 772 // build_vector will be a copy per element, so it always makes sense to use a 773 // build_vector input in place of the extracted element to avoid a copy into a 774 // super register. 775 // 776 // We should probably only do this if all users are extracts only, but this 777 // should be the common case. 778 return true; 779 } 780 781 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 782 // Truncate is just accessing a subregister. 783 784 unsigned SrcSize = Source.getSizeInBits(); 785 unsigned DestSize = Dest.getSizeInBits(); 786 787 return DestSize < SrcSize && DestSize % 32 == 0 ; 788 } 789 790 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 791 // Truncate is just accessing a subregister. 792 793 unsigned SrcSize = Source->getScalarSizeInBits(); 794 unsigned DestSize = Dest->getScalarSizeInBits(); 795 796 if (DestSize== 16 && Subtarget->has16BitInsts()) 797 return SrcSize >= 32; 798 799 return DestSize < SrcSize && DestSize % 32 == 0; 800 } 801 802 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 803 unsigned SrcSize = Src->getScalarSizeInBits(); 804 unsigned DestSize = Dest->getScalarSizeInBits(); 805 806 if (SrcSize == 16 && Subtarget->has16BitInsts()) 807 return DestSize >= 32; 808 809 return SrcSize == 32 && DestSize == 64; 810 } 811 812 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 813 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 814 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 815 // this will enable reducing 64-bit operations the 32-bit, which is always 816 // good. 817 818 if (Src == MVT::i16) 819 return Dest == MVT::i32 ||Dest == MVT::i64 ; 820 821 return Src == MVT::i32 && Dest == MVT::i64; 822 } 823 824 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 825 return isZExtFree(Val.getValueType(), VT2); 826 } 827 828 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 829 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 830 // limited number of native 64-bit operations. Shrinking an operation to fit 831 // in a single 32-bit register should always be helpful. As currently used, 832 // this is much less general than the name suggests, and is only used in 833 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 834 // not profitable, and may actually be harmful. 835 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 836 } 837 838 //===---------------------------------------------------------------------===// 839 // TargetLowering Callbacks 840 //===---------------------------------------------------------------------===// 841 842 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 843 bool IsVarArg) { 844 switch (CC) { 845 case CallingConv::AMDGPU_KERNEL: 846 case CallingConv::SPIR_KERNEL: 847 return CC_AMDGPU_Kernel; 848 case CallingConv::AMDGPU_VS: 849 case CallingConv::AMDGPU_GS: 850 case CallingConv::AMDGPU_PS: 851 case CallingConv::AMDGPU_CS: 852 case CallingConv::AMDGPU_HS: 853 case CallingConv::AMDGPU_ES: 854 case CallingConv::AMDGPU_LS: 855 return CC_AMDGPU; 856 case CallingConv::C: 857 case CallingConv::Fast: 858 case CallingConv::Cold: 859 return CC_AMDGPU_Func; 860 default: 861 report_fatal_error("Unsupported calling convention."); 862 } 863 } 864 865 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 866 bool IsVarArg) { 867 switch (CC) { 868 case CallingConv::AMDGPU_KERNEL: 869 case CallingConv::SPIR_KERNEL: 870 return CC_AMDGPU_Kernel; 871 case CallingConv::AMDGPU_VS: 872 case CallingConv::AMDGPU_GS: 873 case CallingConv::AMDGPU_PS: 874 case CallingConv::AMDGPU_CS: 875 case CallingConv::AMDGPU_HS: 876 case CallingConv::AMDGPU_ES: 877 case CallingConv::AMDGPU_LS: 878 return RetCC_SI_Shader; 879 case CallingConv::C: 880 case CallingConv::Fast: 881 case CallingConv::Cold: 882 return RetCC_AMDGPU_Func; 883 default: 884 report_fatal_error("Unsupported calling convention."); 885 } 886 } 887 888 /// The SelectionDAGBuilder will automatically promote function arguments 889 /// with illegal types. However, this does not work for the AMDGPU targets 890 /// since the function arguments are stored in memory as these illegal types. 891 /// In order to handle this properly we need to get the original types sizes 892 /// from the LLVM IR Function and fixup the ISD:InputArg values before 893 /// passing them to AnalyzeFormalArguments() 894 895 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 896 /// input values across multiple registers. Each item in the Ins array 897 /// represents a single value that will be stored in registers. Ins[x].VT is 898 /// the value type of the value that will be stored in the register, so 899 /// whatever SDNode we lower the argument to needs to be this type. 900 /// 901 /// In order to correctly lower the arguments we need to know the size of each 902 /// argument. Since Ins[x].VT gives us the size of the register that will 903 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 904 /// for the orignal function argument so that we can deduce the correct memory 905 /// type to use for Ins[x]. In most cases the correct memory type will be 906 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 907 /// we have a kernel argument of type v8i8, this argument will be split into 908 /// 8 parts and each part will be represented by its own item in the Ins array. 909 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 910 /// the argument before it was split. From this, we deduce that the memory type 911 /// for each individual part is i8. We pass the memory type as LocVT to the 912 /// calling convention analysis function and the register type (Ins[x].VT) as 913 /// the ValVT. 914 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 915 const SmallVectorImpl<ISD::InputArg> &Ins) const { 916 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 917 const ISD::InputArg &In = Ins[i]; 918 EVT MemVT; 919 920 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 921 922 if (!Subtarget->isAmdHsaOS() && 923 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 924 // The ABI says the caller will extend these values to 32-bits. 925 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 926 } else if (NumRegs == 1) { 927 // This argument is not split, so the IR type is the memory type. 928 assert(!In.Flags.isSplit()); 929 if (In.ArgVT.isExtended()) { 930 // We have an extended type, like i24, so we should just use the register type 931 MemVT = In.VT; 932 } else { 933 MemVT = In.ArgVT; 934 } 935 } else if (In.ArgVT.isVector() && In.VT.isVector() && 936 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 937 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 938 // We have a vector value which has been split into a vector with 939 // the same scalar type, but fewer elements. This should handle 940 // all the floating-point vector types. 941 MemVT = In.VT; 942 } else if (In.ArgVT.isVector() && 943 In.ArgVT.getVectorNumElements() == NumRegs) { 944 // This arg has been split so that each element is stored in a separate 945 // register. 946 MemVT = In.ArgVT.getScalarType(); 947 } else if (In.ArgVT.isExtended()) { 948 // We have an extended type, like i65. 949 MemVT = In.VT; 950 } else { 951 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 952 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 953 if (In.VT.isInteger()) { 954 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 955 } else if (In.VT.isVector()) { 956 assert(!In.VT.getScalarType().isFloatingPoint()); 957 unsigned NumElements = In.VT.getVectorNumElements(); 958 assert(MemoryBits % NumElements == 0); 959 // This vector type has been split into another vector type with 960 // a different elements size. 961 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 962 MemoryBits / NumElements); 963 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 964 } else { 965 llvm_unreachable("cannot deduce memory type."); 966 } 967 } 968 969 // Convert one element vectors to scalar. 970 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 971 MemVT = MemVT.getScalarType(); 972 973 if (MemVT.isExtended()) { 974 // This should really only happen if we have vec3 arguments 975 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 976 MemVT = MemVT.getPow2VectorType(State.getContext()); 977 } 978 979 assert(MemVT.isSimple()); 980 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 981 State); 982 } 983 } 984 985 SDValue AMDGPUTargetLowering::LowerReturn( 986 SDValue Chain, CallingConv::ID CallConv, 987 bool isVarArg, 988 const SmallVectorImpl<ISD::OutputArg> &Outs, 989 const SmallVectorImpl<SDValue> &OutVals, 990 const SDLoc &DL, SelectionDAG &DAG) const { 991 // FIXME: Fails for r600 tests 992 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 993 // "wave terminate should not have return values"); 994 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 995 } 996 997 //===---------------------------------------------------------------------===// 998 // Target specific lowering 999 //===---------------------------------------------------------------------===// 1000 1001 /// Selects the correct CCAssignFn for a given CallingConvention value. 1002 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1003 bool IsVarArg) { 1004 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1005 } 1006 1007 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1008 bool IsVarArg) { 1009 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1010 } 1011 1012 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1013 SelectionDAG &DAG, 1014 MachineFrameInfo &MFI, 1015 int ClobberedFI) const { 1016 SmallVector<SDValue, 8> ArgChains; 1017 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1018 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1019 1020 // Include the original chain at the beginning of the list. When this is 1021 // used by target LowerCall hooks, this helps legalize find the 1022 // CALLSEQ_BEGIN node. 1023 ArgChains.push_back(Chain); 1024 1025 // Add a chain value for each stack argument corresponding 1026 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1027 UE = DAG.getEntryNode().getNode()->use_end(); 1028 U != UE; ++U) { 1029 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1030 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1031 if (FI->getIndex() < 0) { 1032 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1033 int64_t InLastByte = InFirstByte; 1034 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1035 1036 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1037 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1038 ArgChains.push_back(SDValue(L, 1)); 1039 } 1040 } 1041 } 1042 } 1043 1044 // Build a tokenfactor for all the chains. 1045 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1046 } 1047 1048 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1049 SmallVectorImpl<SDValue> &InVals, 1050 StringRef Reason) const { 1051 SDValue Callee = CLI.Callee; 1052 SelectionDAG &DAG = CLI.DAG; 1053 1054 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1055 1056 StringRef FuncName("<unknown>"); 1057 1058 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1059 FuncName = G->getSymbol(); 1060 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1061 FuncName = G->getGlobal()->getName(); 1062 1063 DiagnosticInfoUnsupported NoCalls( 1064 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1065 DAG.getContext()->diagnose(NoCalls); 1066 1067 if (!CLI.IsTailCall) { 1068 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1069 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1070 } 1071 1072 return DAG.getEntryNode(); 1073 } 1074 1075 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1076 SmallVectorImpl<SDValue> &InVals) const { 1077 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1078 } 1079 1080 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1081 SelectionDAG &DAG) const { 1082 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1083 1084 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1085 SDLoc(Op).getDebugLoc()); 1086 DAG.getContext()->diagnose(NoDynamicAlloca); 1087 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1088 return DAG.getMergeValues(Ops, SDLoc()); 1089 } 1090 1091 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1092 SelectionDAG &DAG) const { 1093 switch (Op.getOpcode()) { 1094 default: 1095 Op->print(errs(), &DAG); 1096 llvm_unreachable("Custom lowering code for this" 1097 "instruction is not implemented yet!"); 1098 break; 1099 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1100 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1101 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1102 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1103 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1104 case ISD::FREM: return LowerFREM(Op, DAG); 1105 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1106 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1107 case ISD::FRINT: return LowerFRINT(Op, DAG); 1108 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1109 case ISD::FROUND: return LowerFROUND(Op, DAG); 1110 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1111 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1112 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1113 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1114 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1115 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1116 case ISD::CTLZ: 1117 case ISD::CTLZ_ZERO_UNDEF: 1118 return LowerCTLZ(Op, DAG); 1119 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1120 } 1121 return Op; 1122 } 1123 1124 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1125 SmallVectorImpl<SDValue> &Results, 1126 SelectionDAG &DAG) const { 1127 switch (N->getOpcode()) { 1128 case ISD::SIGN_EXTEND_INREG: 1129 // Different parts of legalization seem to interpret which type of 1130 // sign_extend_inreg is the one to check for custom lowering. The extended 1131 // from type is what really matters, but some places check for custom 1132 // lowering of the result type. This results in trying to use 1133 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1134 // nothing here and let the illegal result integer be handled normally. 1135 return; 1136 default: 1137 return; 1138 } 1139 } 1140 1141 static bool hasDefinedInitializer(const GlobalValue *GV) { 1142 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1143 if (!GVar || !GVar->hasInitializer()) 1144 return false; 1145 1146 return !isa<UndefValue>(GVar->getInitializer()); 1147 } 1148 1149 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1150 SDValue Op, 1151 SelectionDAG &DAG) const { 1152 1153 const DataLayout &DL = DAG.getDataLayout(); 1154 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1155 const GlobalValue *GV = G->getGlobal(); 1156 1157 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1158 // XXX: What does the value of G->getOffset() mean? 1159 assert(G->getOffset() == 0 && 1160 "Do not know what to do with an non-zero offset"); 1161 1162 // TODO: We could emit code to handle the initialization somewhere. 1163 if (!hasDefinedInitializer(GV)) { 1164 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1165 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1166 } 1167 } 1168 1169 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1170 DiagnosticInfoUnsupported BadInit( 1171 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1172 DAG.getContext()->diagnose(BadInit); 1173 return SDValue(); 1174 } 1175 1176 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1177 SelectionDAG &DAG) const { 1178 SmallVector<SDValue, 8> Args; 1179 1180 for (const SDUse &U : Op->ops()) 1181 DAG.ExtractVectorElements(U.get(), Args); 1182 1183 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1184 } 1185 1186 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1187 SelectionDAG &DAG) const { 1188 1189 SmallVector<SDValue, 8> Args; 1190 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1191 EVT VT = Op.getValueType(); 1192 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1193 VT.getVectorNumElements()); 1194 1195 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1196 } 1197 1198 /// \brief Generate Min/Max node 1199 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1200 SDValue LHS, SDValue RHS, 1201 SDValue True, SDValue False, 1202 SDValue CC, 1203 DAGCombinerInfo &DCI) const { 1204 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1205 return SDValue(); 1206 1207 SelectionDAG &DAG = DCI.DAG; 1208 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1209 switch (CCOpcode) { 1210 case ISD::SETOEQ: 1211 case ISD::SETONE: 1212 case ISD::SETUNE: 1213 case ISD::SETNE: 1214 case ISD::SETUEQ: 1215 case ISD::SETEQ: 1216 case ISD::SETFALSE: 1217 case ISD::SETFALSE2: 1218 case ISD::SETTRUE: 1219 case ISD::SETTRUE2: 1220 case ISD::SETUO: 1221 case ISD::SETO: 1222 break; 1223 case ISD::SETULE: 1224 case ISD::SETULT: { 1225 if (LHS == True) 1226 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1227 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1228 } 1229 case ISD::SETOLE: 1230 case ISD::SETOLT: 1231 case ISD::SETLE: 1232 case ISD::SETLT: { 1233 // Ordered. Assume ordered for undefined. 1234 1235 // Only do this after legalization to avoid interfering with other combines 1236 // which might occur. 1237 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1238 !DCI.isCalledByLegalizer()) 1239 return SDValue(); 1240 1241 // We need to permute the operands to get the correct NaN behavior. The 1242 // selected operand is the second one based on the failing compare with NaN, 1243 // so permute it based on the compare type the hardware uses. 1244 if (LHS == True) 1245 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1246 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1247 } 1248 case ISD::SETUGE: 1249 case ISD::SETUGT: { 1250 if (LHS == True) 1251 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1252 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1253 } 1254 case ISD::SETGT: 1255 case ISD::SETGE: 1256 case ISD::SETOGE: 1257 case ISD::SETOGT: { 1258 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1259 !DCI.isCalledByLegalizer()) 1260 return SDValue(); 1261 1262 if (LHS == True) 1263 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1264 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1265 } 1266 case ISD::SETCC_INVALID: 1267 llvm_unreachable("Invalid setcc condcode!"); 1268 } 1269 return SDValue(); 1270 } 1271 1272 std::pair<SDValue, SDValue> 1273 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1274 SDLoc SL(Op); 1275 1276 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1277 1278 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1279 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1280 1281 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1282 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1283 1284 return std::make_pair(Lo, Hi); 1285 } 1286 1287 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1288 SDLoc SL(Op); 1289 1290 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1291 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1292 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1293 } 1294 1295 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1296 SDLoc SL(Op); 1297 1298 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1299 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1300 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1301 } 1302 1303 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1304 SelectionDAG &DAG) const { 1305 LoadSDNode *Load = cast<LoadSDNode>(Op); 1306 EVT VT = Op.getValueType(); 1307 1308 1309 // If this is a 2 element vector, we really want to scalarize and not create 1310 // weird 1 element vectors. 1311 if (VT.getVectorNumElements() == 2) 1312 return scalarizeVectorLoad(Load, DAG); 1313 1314 SDValue BasePtr = Load->getBasePtr(); 1315 EVT PtrVT = BasePtr.getValueType(); 1316 EVT MemVT = Load->getMemoryVT(); 1317 SDLoc SL(Op); 1318 1319 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1320 1321 EVT LoVT, HiVT; 1322 EVT LoMemVT, HiMemVT; 1323 SDValue Lo, Hi; 1324 1325 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1326 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1327 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1328 1329 unsigned Size = LoMemVT.getStoreSize(); 1330 unsigned BaseAlign = Load->getAlignment(); 1331 unsigned HiAlign = MinAlign(BaseAlign, Size); 1332 1333 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1334 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1335 BaseAlign, Load->getMemOperand()->getFlags()); 1336 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1337 DAG.getConstant(Size, SL, PtrVT)); 1338 SDValue HiLoad = 1339 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1340 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1341 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1342 1343 SDValue Ops[] = { 1344 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1345 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1346 LoLoad.getValue(1), HiLoad.getValue(1)) 1347 }; 1348 1349 return DAG.getMergeValues(Ops, SL); 1350 } 1351 1352 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1353 SelectionDAG &DAG) const { 1354 StoreSDNode *Store = cast<StoreSDNode>(Op); 1355 SDValue Val = Store->getValue(); 1356 EVT VT = Val.getValueType(); 1357 1358 // If this is a 2 element vector, we really want to scalarize and not create 1359 // weird 1 element vectors. 1360 if (VT.getVectorNumElements() == 2) 1361 return scalarizeVectorStore(Store, DAG); 1362 1363 EVT MemVT = Store->getMemoryVT(); 1364 SDValue Chain = Store->getChain(); 1365 SDValue BasePtr = Store->getBasePtr(); 1366 SDLoc SL(Op); 1367 1368 EVT LoVT, HiVT; 1369 EVT LoMemVT, HiMemVT; 1370 SDValue Lo, Hi; 1371 1372 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1373 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1374 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1375 1376 EVT PtrVT = BasePtr.getValueType(); 1377 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1378 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1379 PtrVT)); 1380 1381 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1382 unsigned BaseAlign = Store->getAlignment(); 1383 unsigned Size = LoMemVT.getStoreSize(); 1384 unsigned HiAlign = MinAlign(BaseAlign, Size); 1385 1386 SDValue LoStore = 1387 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1388 Store->getMemOperand()->getFlags()); 1389 SDValue HiStore = 1390 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1391 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1392 1393 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1394 } 1395 1396 // This is a shortcut for integer division because we have fast i32<->f32 1397 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1398 // float is enough to accurately represent up to a 24-bit signed integer. 1399 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1400 bool Sign) const { 1401 SDLoc DL(Op); 1402 EVT VT = Op.getValueType(); 1403 SDValue LHS = Op.getOperand(0); 1404 SDValue RHS = Op.getOperand(1); 1405 MVT IntVT = MVT::i32; 1406 MVT FltVT = MVT::f32; 1407 1408 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1409 if (LHSSignBits < 9) 1410 return SDValue(); 1411 1412 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1413 if (RHSSignBits < 9) 1414 return SDValue(); 1415 1416 unsigned BitSize = VT.getSizeInBits(); 1417 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1418 unsigned DivBits = BitSize - SignBits; 1419 if (Sign) 1420 ++DivBits; 1421 1422 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1423 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1424 1425 SDValue jq = DAG.getConstant(1, DL, IntVT); 1426 1427 if (Sign) { 1428 // char|short jq = ia ^ ib; 1429 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1430 1431 // jq = jq >> (bitsize - 2) 1432 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1433 DAG.getConstant(BitSize - 2, DL, VT)); 1434 1435 // jq = jq | 0x1 1436 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1437 } 1438 1439 // int ia = (int)LHS; 1440 SDValue ia = LHS; 1441 1442 // int ib, (int)RHS; 1443 SDValue ib = RHS; 1444 1445 // float fa = (float)ia; 1446 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1447 1448 // float fb = (float)ib; 1449 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1450 1451 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1452 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1453 1454 // fq = trunc(fq); 1455 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1456 1457 // float fqneg = -fq; 1458 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1459 1460 // float fr = mad(fqneg, fb, fa); 1461 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1462 (unsigned)AMDGPUISD::FMAD_FTZ : 1463 (unsigned)ISD::FMAD; 1464 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1465 1466 // int iq = (int)fq; 1467 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1468 1469 // fr = fabs(fr); 1470 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1471 1472 // fb = fabs(fb); 1473 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1474 1475 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1476 1477 // int cv = fr >= fb; 1478 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1479 1480 // jq = (cv ? jq : 0); 1481 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1482 1483 // dst = iq + jq; 1484 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1485 1486 // Rem needs compensation, it's easier to recompute it 1487 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1488 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1489 1490 // Truncate to number of bits this divide really is. 1491 if (Sign) { 1492 SDValue InRegSize 1493 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1494 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1495 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1496 } else { 1497 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1498 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1499 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1500 } 1501 1502 return DAG.getMergeValues({ Div, Rem }, DL); 1503 } 1504 1505 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1506 SelectionDAG &DAG, 1507 SmallVectorImpl<SDValue> &Results) const { 1508 SDLoc DL(Op); 1509 EVT VT = Op.getValueType(); 1510 1511 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1512 1513 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1514 1515 SDValue One = DAG.getConstant(1, DL, HalfVT); 1516 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1517 1518 //HiLo split 1519 SDValue LHS = Op.getOperand(0); 1520 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1521 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1522 1523 SDValue RHS = Op.getOperand(1); 1524 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1525 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1526 1527 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1528 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1529 1530 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1531 LHS_Lo, RHS_Lo); 1532 1533 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1534 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1535 1536 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1537 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1538 return; 1539 } 1540 1541 if (isTypeLegal(MVT::i64)) { 1542 // Compute denominator reciprocal. 1543 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1544 (unsigned)AMDGPUISD::FMAD_FTZ : 1545 (unsigned)ISD::FMAD; 1546 1547 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1548 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1549 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1550 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1551 Cvt_Lo); 1552 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1553 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1554 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1555 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1556 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1557 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1558 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1559 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1560 Mul1); 1561 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1562 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1563 SDValue Rcp64 = DAG.getBitcast(VT, 1564 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1565 1566 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1567 SDValue One64 = DAG.getConstant(1, DL, VT); 1568 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1569 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1570 1571 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1572 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1573 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1574 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1575 Zero); 1576 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1577 One); 1578 1579 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1580 Mulhi1_Lo, Zero1); 1581 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1582 Mulhi1_Hi, Add1_Lo.getValue(1)); 1583 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1584 SDValue Add1 = DAG.getBitcast(VT, 1585 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1586 1587 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1588 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1589 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1590 Zero); 1591 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1592 One); 1593 1594 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1595 Mulhi2_Lo, Zero1); 1596 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1597 Mulhi2_Hi, Add1_Lo.getValue(1)); 1598 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1599 Zero, Add2_Lo.getValue(1)); 1600 SDValue Add2 = DAG.getBitcast(VT, 1601 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1602 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1603 1604 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1605 1606 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1607 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1608 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1609 Mul3_Lo, Zero1); 1610 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1611 Mul3_Hi, Sub1_Lo.getValue(1)); 1612 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1613 SDValue Sub1 = DAG.getBitcast(VT, 1614 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1615 1616 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1617 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1618 ISD::SETUGE); 1619 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1620 ISD::SETUGE); 1621 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1622 1623 // TODO: Here and below portions of the code can be enclosed into if/endif. 1624 // Currently control flow is unconditional and we have 4 selects after 1625 // potential endif to substitute PHIs. 1626 1627 // if C3 != 0 ... 1628 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1629 RHS_Lo, Zero1); 1630 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1631 RHS_Hi, Sub1_Lo.getValue(1)); 1632 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1633 Zero, Sub2_Lo.getValue(1)); 1634 SDValue Sub2 = DAG.getBitcast(VT, 1635 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1636 1637 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1638 1639 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1640 ISD::SETUGE); 1641 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1642 ISD::SETUGE); 1643 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1644 1645 // if (C6 != 0) 1646 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1647 1648 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1649 RHS_Lo, Zero1); 1650 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1651 RHS_Hi, Sub2_Lo.getValue(1)); 1652 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1653 Zero, Sub3_Lo.getValue(1)); 1654 SDValue Sub3 = DAG.getBitcast(VT, 1655 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1656 1657 // endif C6 1658 // endif C3 1659 1660 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1661 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1662 1663 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1664 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1665 1666 Results.push_back(Div); 1667 Results.push_back(Rem); 1668 1669 return; 1670 } 1671 1672 // r600 expandion. 1673 // Get Speculative values 1674 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1675 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1676 1677 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1678 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1679 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1680 1681 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1682 SDValue DIV_Lo = Zero; 1683 1684 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1685 1686 for (unsigned i = 0; i < halfBitWidth; ++i) { 1687 const unsigned bitPos = halfBitWidth - i - 1; 1688 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1689 // Get value of high bit 1690 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1691 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1692 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1693 1694 // Shift 1695 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1696 // Add LHS high bit 1697 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1698 1699 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1700 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1701 1702 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1703 1704 // Update REM 1705 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1706 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1707 } 1708 1709 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1710 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1711 Results.push_back(DIV); 1712 Results.push_back(REM); 1713 } 1714 1715 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1716 SelectionDAG &DAG) const { 1717 SDLoc DL(Op); 1718 EVT VT = Op.getValueType(); 1719 1720 if (VT == MVT::i64) { 1721 SmallVector<SDValue, 2> Results; 1722 LowerUDIVREM64(Op, DAG, Results); 1723 return DAG.getMergeValues(Results, DL); 1724 } 1725 1726 if (VT == MVT::i32) { 1727 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1728 return Res; 1729 } 1730 1731 SDValue Num = Op.getOperand(0); 1732 SDValue Den = Op.getOperand(1); 1733 1734 // RCP = URECIP(Den) = 2^32 / Den + e 1735 // e is rounding error. 1736 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1737 1738 // RCP_LO = mul(RCP, Den) */ 1739 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1740 1741 // RCP_HI = mulhu (RCP, Den) */ 1742 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1743 1744 // NEG_RCP_LO = -RCP_LO 1745 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1746 RCP_LO); 1747 1748 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1749 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1750 NEG_RCP_LO, RCP_LO, 1751 ISD::SETEQ); 1752 // Calculate the rounding error from the URECIP instruction 1753 // E = mulhu(ABS_RCP_LO, RCP) 1754 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1755 1756 // RCP_A_E = RCP + E 1757 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1758 1759 // RCP_S_E = RCP - E 1760 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1761 1762 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1763 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1764 RCP_A_E, RCP_S_E, 1765 ISD::SETEQ); 1766 // Quotient = mulhu(Tmp0, Num) 1767 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1768 1769 // Num_S_Remainder = Quotient * Den 1770 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1771 1772 // Remainder = Num - Num_S_Remainder 1773 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1774 1775 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1776 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1777 DAG.getConstant(-1, DL, VT), 1778 DAG.getConstant(0, DL, VT), 1779 ISD::SETUGE); 1780 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1781 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1782 Num_S_Remainder, 1783 DAG.getConstant(-1, DL, VT), 1784 DAG.getConstant(0, DL, VT), 1785 ISD::SETUGE); 1786 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1787 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1788 Remainder_GE_Zero); 1789 1790 // Calculate Division result: 1791 1792 // Quotient_A_One = Quotient + 1 1793 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1794 DAG.getConstant(1, DL, VT)); 1795 1796 // Quotient_S_One = Quotient - 1 1797 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1798 DAG.getConstant(1, DL, VT)); 1799 1800 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1801 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1802 Quotient, Quotient_A_One, ISD::SETEQ); 1803 1804 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1805 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1806 Quotient_S_One, Div, ISD::SETEQ); 1807 1808 // Calculate Rem result: 1809 1810 // Remainder_S_Den = Remainder - Den 1811 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1812 1813 // Remainder_A_Den = Remainder + Den 1814 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1815 1816 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1817 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1818 Remainder, Remainder_S_Den, ISD::SETEQ); 1819 1820 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1821 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1822 Remainder_A_Den, Rem, ISD::SETEQ); 1823 SDValue Ops[2] = { 1824 Div, 1825 Rem 1826 }; 1827 return DAG.getMergeValues(Ops, DL); 1828 } 1829 1830 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1831 SelectionDAG &DAG) const { 1832 SDLoc DL(Op); 1833 EVT VT = Op.getValueType(); 1834 1835 SDValue LHS = Op.getOperand(0); 1836 SDValue RHS = Op.getOperand(1); 1837 1838 SDValue Zero = DAG.getConstant(0, DL, VT); 1839 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1840 1841 if (VT == MVT::i32) { 1842 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1843 return Res; 1844 } 1845 1846 if (VT == MVT::i64 && 1847 DAG.ComputeNumSignBits(LHS) > 32 && 1848 DAG.ComputeNumSignBits(RHS) > 32) { 1849 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1850 1851 //HiLo split 1852 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1853 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1854 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1855 LHS_Lo, RHS_Lo); 1856 SDValue Res[2] = { 1857 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1858 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1859 }; 1860 return DAG.getMergeValues(Res, DL); 1861 } 1862 1863 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1864 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1865 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1866 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1867 1868 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1869 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1870 1871 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1872 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1873 1874 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1875 SDValue Rem = Div.getValue(1); 1876 1877 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1878 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1879 1880 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1881 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1882 1883 SDValue Res[2] = { 1884 Div, 1885 Rem 1886 }; 1887 return DAG.getMergeValues(Res, DL); 1888 } 1889 1890 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1891 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1892 SDLoc SL(Op); 1893 EVT VT = Op.getValueType(); 1894 SDValue X = Op.getOperand(0); 1895 SDValue Y = Op.getOperand(1); 1896 1897 // TODO: Should this propagate fast-math-flags? 1898 1899 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1900 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1901 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1902 1903 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1904 } 1905 1906 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1907 SDLoc SL(Op); 1908 SDValue Src = Op.getOperand(0); 1909 1910 // result = trunc(src) 1911 // if (src > 0.0 && src != result) 1912 // result += 1.0 1913 1914 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1915 1916 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1917 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1918 1919 EVT SetCCVT = 1920 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1921 1922 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1923 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1924 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1925 1926 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1927 // TODO: Should this propagate fast-math-flags? 1928 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1929 } 1930 1931 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1932 SelectionDAG &DAG) { 1933 const unsigned FractBits = 52; 1934 const unsigned ExpBits = 11; 1935 1936 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1937 Hi, 1938 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1939 DAG.getConstant(ExpBits, SL, MVT::i32)); 1940 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1941 DAG.getConstant(1023, SL, MVT::i32)); 1942 1943 return Exp; 1944 } 1945 1946 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1947 SDLoc SL(Op); 1948 SDValue Src = Op.getOperand(0); 1949 1950 assert(Op.getValueType() == MVT::f64); 1951 1952 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1953 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1954 1955 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1956 1957 // Extract the upper half, since this is where we will find the sign and 1958 // exponent. 1959 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1960 1961 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1962 1963 const unsigned FractBits = 52; 1964 1965 // Extract the sign bit. 1966 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1967 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1968 1969 // Extend back to to 64-bits. 1970 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1971 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1972 1973 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1974 const SDValue FractMask 1975 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1976 1977 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1978 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1979 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1980 1981 EVT SetCCVT = 1982 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1983 1984 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1985 1986 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1987 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1988 1989 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1990 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1991 1992 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1993 } 1994 1995 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1996 SDLoc SL(Op); 1997 SDValue Src = Op.getOperand(0); 1998 1999 assert(Op.getValueType() == MVT::f64); 2000 2001 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2002 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2003 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2004 2005 // TODO: Should this propagate fast-math-flags? 2006 2007 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2008 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2009 2010 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2011 2012 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2013 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2014 2015 EVT SetCCVT = 2016 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2017 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2018 2019 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2020 } 2021 2022 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2023 // FNEARBYINT and FRINT are the same, except in their handling of FP 2024 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2025 // rint, so just treat them as equivalent. 2026 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2027 } 2028 2029 // XXX - May require not supporting f32 denormals? 2030 2031 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2032 // compare and vselect end up producing worse code than scalarizing the whole 2033 // operation. 2034 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2035 SDLoc SL(Op); 2036 SDValue X = Op.getOperand(0); 2037 EVT VT = Op.getValueType(); 2038 2039 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2040 2041 // TODO: Should this propagate fast-math-flags? 2042 2043 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2044 2045 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2046 2047 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2048 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2049 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2050 2051 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2052 2053 EVT SetCCVT = 2054 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2055 2056 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2057 2058 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2059 2060 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2061 } 2062 2063 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2064 SDLoc SL(Op); 2065 SDValue X = Op.getOperand(0); 2066 2067 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2068 2069 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2070 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2071 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2072 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2073 EVT SetCCVT = 2074 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2075 2076 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2077 2078 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2079 2080 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2081 2082 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2083 MVT::i64); 2084 2085 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2086 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2087 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2088 MVT::i64), 2089 Exp); 2090 2091 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2092 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2093 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2094 ISD::SETNE); 2095 2096 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2097 D, DAG.getConstant(0, SL, MVT::i64)); 2098 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2099 2100 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2101 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2102 2103 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2104 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2105 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2106 2107 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2108 ExpEqNegOne, 2109 DAG.getConstantFP(1.0, SL, MVT::f64), 2110 DAG.getConstantFP(0.0, SL, MVT::f64)); 2111 2112 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2113 2114 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2115 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2116 2117 return K; 2118 } 2119 2120 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2121 EVT VT = Op.getValueType(); 2122 2123 if (VT == MVT::f32 || VT == MVT::f16) 2124 return LowerFROUND32_16(Op, DAG); 2125 2126 if (VT == MVT::f64) 2127 return LowerFROUND64(Op, DAG); 2128 2129 llvm_unreachable("unhandled type"); 2130 } 2131 2132 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2133 SDLoc SL(Op); 2134 SDValue Src = Op.getOperand(0); 2135 2136 // result = trunc(src); 2137 // if (src < 0.0 && src != result) 2138 // result += -1.0. 2139 2140 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2141 2142 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2143 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2144 2145 EVT SetCCVT = 2146 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2147 2148 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2149 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2150 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2151 2152 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2153 // TODO: Should this propagate fast-math-flags? 2154 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2155 } 2156 2157 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 2158 SDLoc SL(Op); 2159 SDValue Src = Op.getOperand(0); 2160 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2161 2162 if (ZeroUndef && Src.getValueType() == MVT::i32) 2163 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 2164 2165 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2166 2167 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2168 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2169 2170 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2171 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2172 2173 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2174 *DAG.getContext(), MVT::i32); 2175 2176 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 2177 2178 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 2179 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 2180 2181 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2182 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 2183 2184 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2185 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 2186 2187 if (!ZeroUndef) { 2188 // Test if the full 64-bit input is zero. 2189 2190 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2191 // which we probably don't want. 2192 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 2193 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 2194 2195 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2196 // with the same cycles, otherwise it is slower. 2197 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2198 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2199 2200 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2201 2202 // The instruction returns -1 for 0 input, but the defined intrinsic 2203 // behavior is to return the number of bits. 2204 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2205 SrcIsZero, Bits32, NewCtlz); 2206 } 2207 2208 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 2209 } 2210 2211 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2212 bool Signed) const { 2213 // Unsigned 2214 // cul2f(ulong u) 2215 //{ 2216 // uint lz = clz(u); 2217 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2218 // u = (u << lz) & 0x7fffffffffffffffUL; 2219 // ulong t = u & 0xffffffffffUL; 2220 // uint v = (e << 23) | (uint)(u >> 40); 2221 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2222 // return as_float(v + r); 2223 //} 2224 // Signed 2225 // cl2f(long l) 2226 //{ 2227 // long s = l >> 63; 2228 // float r = cul2f((l + s) ^ s); 2229 // return s ? -r : r; 2230 //} 2231 2232 SDLoc SL(Op); 2233 SDValue Src = Op.getOperand(0); 2234 SDValue L = Src; 2235 2236 SDValue S; 2237 if (Signed) { 2238 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2239 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2240 2241 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2242 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2243 } 2244 2245 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2246 *DAG.getContext(), MVT::f32); 2247 2248 2249 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2250 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2251 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2252 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2253 2254 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2255 SDValue E = DAG.getSelect(SL, MVT::i32, 2256 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2257 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2258 ZeroI32); 2259 2260 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2261 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2262 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2263 2264 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2265 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2266 2267 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2268 U, DAG.getConstant(40, SL, MVT::i64)); 2269 2270 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2271 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2272 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2273 2274 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2275 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2276 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2277 2278 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2279 2280 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2281 2282 SDValue R = DAG.getSelect(SL, MVT::i32, 2283 RCmp, 2284 One, 2285 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2286 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2287 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2288 2289 if (!Signed) 2290 return R; 2291 2292 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2293 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2294 } 2295 2296 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2297 bool Signed) const { 2298 SDLoc SL(Op); 2299 SDValue Src = Op.getOperand(0); 2300 2301 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2302 2303 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2304 DAG.getConstant(0, SL, MVT::i32)); 2305 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2306 DAG.getConstant(1, SL, MVT::i32)); 2307 2308 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2309 SL, MVT::f64, Hi); 2310 2311 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2312 2313 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2314 DAG.getConstant(32, SL, MVT::i32)); 2315 // TODO: Should this propagate fast-math-flags? 2316 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2317 } 2318 2319 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2320 SelectionDAG &DAG) const { 2321 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2322 "operation should be legal"); 2323 2324 // TODO: Factor out code common with LowerSINT_TO_FP. 2325 2326 EVT DestVT = Op.getValueType(); 2327 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2328 SDLoc DL(Op); 2329 SDValue Src = Op.getOperand(0); 2330 2331 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2332 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2333 SDValue FPRound = 2334 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2335 2336 return FPRound; 2337 } 2338 2339 if (DestVT == MVT::f32) 2340 return LowerINT_TO_FP32(Op, DAG, false); 2341 2342 assert(DestVT == MVT::f64); 2343 return LowerINT_TO_FP64(Op, DAG, false); 2344 } 2345 2346 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2347 SelectionDAG &DAG) const { 2348 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2349 "operation should be legal"); 2350 2351 // TODO: Factor out code common with LowerUINT_TO_FP. 2352 2353 EVT DestVT = Op.getValueType(); 2354 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2355 SDLoc DL(Op); 2356 SDValue Src = Op.getOperand(0); 2357 2358 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2359 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2360 SDValue FPRound = 2361 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2362 2363 return FPRound; 2364 } 2365 2366 if (DestVT == MVT::f32) 2367 return LowerINT_TO_FP32(Op, DAG, true); 2368 2369 assert(DestVT == MVT::f64); 2370 return LowerINT_TO_FP64(Op, DAG, true); 2371 } 2372 2373 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2374 bool Signed) const { 2375 SDLoc SL(Op); 2376 2377 SDValue Src = Op.getOperand(0); 2378 2379 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2380 2381 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2382 MVT::f64); 2383 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2384 MVT::f64); 2385 // TODO: Should this propagate fast-math-flags? 2386 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2387 2388 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2389 2390 2391 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2392 2393 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2394 MVT::i32, FloorMul); 2395 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2396 2397 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2398 2399 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2400 } 2401 2402 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2403 SDLoc DL(Op); 2404 SDValue N0 = Op.getOperand(0); 2405 2406 // Convert to target node to get known bits 2407 if (N0.getValueType() == MVT::f32) 2408 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2409 2410 if (getTargetMachine().Options.UnsafeFPMath) { 2411 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2412 return SDValue(); 2413 } 2414 2415 assert(N0.getSimpleValueType() == MVT::f64); 2416 2417 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2418 const unsigned ExpMask = 0x7ff; 2419 const unsigned ExpBiasf64 = 1023; 2420 const unsigned ExpBiasf16 = 15; 2421 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2422 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2423 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2424 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2425 DAG.getConstant(32, DL, MVT::i64)); 2426 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2427 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2428 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2429 DAG.getConstant(20, DL, MVT::i64)); 2430 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2431 DAG.getConstant(ExpMask, DL, MVT::i32)); 2432 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2433 // add the f16 bias (15) to get the biased exponent for the f16 format. 2434 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2435 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2436 2437 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2438 DAG.getConstant(8, DL, MVT::i32)); 2439 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2440 DAG.getConstant(0xffe, DL, MVT::i32)); 2441 2442 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2443 DAG.getConstant(0x1ff, DL, MVT::i32)); 2444 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2445 2446 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2447 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2448 2449 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2450 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2451 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2452 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2453 2454 // N = M | (E << 12); 2455 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2456 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2457 DAG.getConstant(12, DL, MVT::i32))); 2458 2459 // B = clamp(1-E, 0, 13); 2460 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2461 One, E); 2462 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2463 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2464 DAG.getConstant(13, DL, MVT::i32)); 2465 2466 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2467 DAG.getConstant(0x1000, DL, MVT::i32)); 2468 2469 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2470 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2471 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2472 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2473 2474 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2475 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2476 DAG.getConstant(0x7, DL, MVT::i32)); 2477 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2478 DAG.getConstant(2, DL, MVT::i32)); 2479 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2480 One, Zero, ISD::SETEQ); 2481 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2482 One, Zero, ISD::SETGT); 2483 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2484 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2485 2486 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2487 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2488 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2489 I, V, ISD::SETEQ); 2490 2491 // Extract the sign bit. 2492 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2493 DAG.getConstant(16, DL, MVT::i32)); 2494 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2495 DAG.getConstant(0x8000, DL, MVT::i32)); 2496 2497 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2498 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2499 } 2500 2501 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2502 SelectionDAG &DAG) const { 2503 SDValue Src = Op.getOperand(0); 2504 2505 // TODO: Factor out code common with LowerFP_TO_UINT. 2506 2507 EVT SrcVT = Src.getValueType(); 2508 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2509 SDLoc DL(Op); 2510 2511 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2512 SDValue FpToInt32 = 2513 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2514 2515 return FpToInt32; 2516 } 2517 2518 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2519 return LowerFP64_TO_INT(Op, DAG, true); 2520 2521 return SDValue(); 2522 } 2523 2524 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2525 SelectionDAG &DAG) const { 2526 SDValue Src = Op.getOperand(0); 2527 2528 // TODO: Factor out code common with LowerFP_TO_SINT. 2529 2530 EVT SrcVT = Src.getValueType(); 2531 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2532 SDLoc DL(Op); 2533 2534 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2535 SDValue FpToInt32 = 2536 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2537 2538 return FpToInt32; 2539 } 2540 2541 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2542 return LowerFP64_TO_INT(Op, DAG, false); 2543 2544 return SDValue(); 2545 } 2546 2547 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2548 SelectionDAG &DAG) const { 2549 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2550 MVT VT = Op.getSimpleValueType(); 2551 MVT ScalarVT = VT.getScalarType(); 2552 2553 assert(VT.isVector()); 2554 2555 SDValue Src = Op.getOperand(0); 2556 SDLoc DL(Op); 2557 2558 // TODO: Don't scalarize on Evergreen? 2559 unsigned NElts = VT.getVectorNumElements(); 2560 SmallVector<SDValue, 8> Args; 2561 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2562 2563 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2564 for (unsigned I = 0; I < NElts; ++I) 2565 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2566 2567 return DAG.getBuildVector(VT, DL, Args); 2568 } 2569 2570 //===----------------------------------------------------------------------===// 2571 // Custom DAG optimizations 2572 //===----------------------------------------------------------------------===// 2573 2574 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2575 KnownBits Known; 2576 EVT VT = Op.getValueType(); 2577 DAG.computeKnownBits(Op, Known); 2578 2579 return (VT.getSizeInBits() - Known.countMinLeadingZeros()) <= 24; 2580 } 2581 2582 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2583 EVT VT = Op.getValueType(); 2584 2585 // In order for this to be a signed 24-bit value, bit 23, must 2586 // be a sign bit. 2587 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2588 // as unsigned 24-bit values. 2589 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2590 } 2591 2592 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2593 TargetLowering::DAGCombinerInfo &DCI) { 2594 2595 SelectionDAG &DAG = DCI.DAG; 2596 SDValue Op = Node24->getOperand(OpIdx); 2597 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2598 EVT VT = Op.getValueType(); 2599 2600 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2601 APInt KnownZero, KnownOne; 2602 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2603 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2604 return true; 2605 2606 return false; 2607 } 2608 2609 template <typename IntTy> 2610 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2611 uint32_t Width, const SDLoc &DL) { 2612 if (Width + Offset < 32) { 2613 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2614 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2615 return DAG.getConstant(Result, DL, MVT::i32); 2616 } 2617 2618 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2619 } 2620 2621 static bool hasVolatileUser(SDNode *Val) { 2622 for (SDNode *U : Val->uses()) { 2623 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2624 if (M->isVolatile()) 2625 return true; 2626 } 2627 } 2628 2629 return false; 2630 } 2631 2632 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2633 // i32 vectors are the canonical memory type. 2634 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2635 return false; 2636 2637 if (!VT.isByteSized()) 2638 return false; 2639 2640 unsigned Size = VT.getStoreSize(); 2641 2642 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2643 return false; 2644 2645 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2646 return false; 2647 2648 return true; 2649 } 2650 2651 // Replace load of an illegal type with a store of a bitcast to a friendlier 2652 // type. 2653 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2654 DAGCombinerInfo &DCI) const { 2655 if (!DCI.isBeforeLegalize()) 2656 return SDValue(); 2657 2658 LoadSDNode *LN = cast<LoadSDNode>(N); 2659 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2660 return SDValue(); 2661 2662 SDLoc SL(N); 2663 SelectionDAG &DAG = DCI.DAG; 2664 EVT VT = LN->getMemoryVT(); 2665 2666 unsigned Size = VT.getStoreSize(); 2667 unsigned Align = LN->getAlignment(); 2668 if (Align < Size && isTypeLegal(VT)) { 2669 bool IsFast; 2670 unsigned AS = LN->getAddressSpace(); 2671 2672 // Expand unaligned loads earlier than legalization. Due to visitation order 2673 // problems during legalization, the emitted instructions to pack and unpack 2674 // the bytes again are not eliminated in the case of an unaligned copy. 2675 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2676 if (VT.isVector()) 2677 return scalarizeVectorLoad(LN, DAG); 2678 2679 SDValue Ops[2]; 2680 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2681 return DAG.getMergeValues(Ops, SDLoc(N)); 2682 } 2683 2684 if (!IsFast) 2685 return SDValue(); 2686 } 2687 2688 if (!shouldCombineMemoryType(VT)) 2689 return SDValue(); 2690 2691 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2692 2693 SDValue NewLoad 2694 = DAG.getLoad(NewVT, SL, LN->getChain(), 2695 LN->getBasePtr(), LN->getMemOperand()); 2696 2697 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2698 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2699 return SDValue(N, 0); 2700 } 2701 2702 // Replace store of an illegal type with a store of a bitcast to a friendlier 2703 // type. 2704 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2705 DAGCombinerInfo &DCI) const { 2706 if (!DCI.isBeforeLegalize()) 2707 return SDValue(); 2708 2709 StoreSDNode *SN = cast<StoreSDNode>(N); 2710 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2711 return SDValue(); 2712 2713 EVT VT = SN->getMemoryVT(); 2714 unsigned Size = VT.getStoreSize(); 2715 2716 SDLoc SL(N); 2717 SelectionDAG &DAG = DCI.DAG; 2718 unsigned Align = SN->getAlignment(); 2719 if (Align < Size && isTypeLegal(VT)) { 2720 bool IsFast; 2721 unsigned AS = SN->getAddressSpace(); 2722 2723 // Expand unaligned stores earlier than legalization. Due to visitation 2724 // order problems during legalization, the emitted instructions to pack and 2725 // unpack the bytes again are not eliminated in the case of an unaligned 2726 // copy. 2727 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2728 if (VT.isVector()) 2729 return scalarizeVectorStore(SN, DAG); 2730 2731 return expandUnalignedStore(SN, DAG); 2732 } 2733 2734 if (!IsFast) 2735 return SDValue(); 2736 } 2737 2738 if (!shouldCombineMemoryType(VT)) 2739 return SDValue(); 2740 2741 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2742 SDValue Val = SN->getValue(); 2743 2744 //DCI.AddToWorklist(Val.getNode()); 2745 2746 bool OtherUses = !Val.hasOneUse(); 2747 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2748 if (OtherUses) { 2749 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2750 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2751 } 2752 2753 return DAG.getStore(SN->getChain(), SL, CastVal, 2754 SN->getBasePtr(), SN->getMemOperand()); 2755 } 2756 2757 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2758 DAGCombinerInfo &DCI) const { 2759 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2760 if (!CSrc) 2761 return SDValue(); 2762 2763 const APFloat &F = CSrc->getValueAPF(); 2764 APFloat Zero = APFloat::getZero(F.getSemantics()); 2765 APFloat::cmpResult Cmp0 = F.compare(Zero); 2766 if (Cmp0 == APFloat::cmpLessThan || 2767 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2768 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2769 } 2770 2771 APFloat One(F.getSemantics(), "1.0"); 2772 APFloat::cmpResult Cmp1 = F.compare(One); 2773 if (Cmp1 == APFloat::cmpGreaterThan) 2774 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2775 2776 return SDValue(CSrc, 0); 2777 } 2778 2779 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2780 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2781 // issues. 2782 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2783 DAGCombinerInfo &DCI) const { 2784 SelectionDAG &DAG = DCI.DAG; 2785 SDValue N0 = N->getOperand(0); 2786 2787 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2788 // (vt2 (truncate (assertzext vt0:x, vt1))) 2789 if (N0.getOpcode() == ISD::TRUNCATE) { 2790 SDValue N1 = N->getOperand(1); 2791 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2792 SDLoc SL(N); 2793 2794 SDValue Src = N0.getOperand(0); 2795 EVT SrcVT = Src.getValueType(); 2796 if (SrcVT.bitsGE(ExtVT)) { 2797 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2798 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2799 } 2800 } 2801 2802 return SDValue(); 2803 } 2804 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2805 /// binary operation \p Opc to it with the corresponding constant operands. 2806 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2807 DAGCombinerInfo &DCI, const SDLoc &SL, 2808 unsigned Opc, SDValue LHS, 2809 uint32_t ValLo, uint32_t ValHi) const { 2810 SelectionDAG &DAG = DCI.DAG; 2811 SDValue Lo, Hi; 2812 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2813 2814 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2815 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2816 2817 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2818 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2819 2820 // Re-visit the ands. It's possible we eliminated one of them and it could 2821 // simplify the vector. 2822 DCI.AddToWorklist(Lo.getNode()); 2823 DCI.AddToWorklist(Hi.getNode()); 2824 2825 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2826 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2827 } 2828 2829 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2830 DAGCombinerInfo &DCI) const { 2831 EVT VT = N->getValueType(0); 2832 2833 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2834 if (!RHS) 2835 return SDValue(); 2836 2837 SDValue LHS = N->getOperand(0); 2838 unsigned RHSVal = RHS->getZExtValue(); 2839 if (!RHSVal) 2840 return LHS; 2841 2842 SDLoc SL(N); 2843 SelectionDAG &DAG = DCI.DAG; 2844 2845 switch (LHS->getOpcode()) { 2846 default: 2847 break; 2848 case ISD::ZERO_EXTEND: 2849 case ISD::SIGN_EXTEND: 2850 case ISD::ANY_EXTEND: { 2851 SDValue X = LHS->getOperand(0); 2852 2853 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2854 isTypeLegal(MVT::v2i16)) { 2855 // Prefer build_vector as the canonical form if packed types are legal. 2856 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2857 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2858 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2859 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2860 } 2861 2862 // shl (ext x) => zext (shl x), if shift does not overflow int 2863 if (VT != MVT::i64) 2864 break; 2865 KnownBits Known; 2866 DAG.computeKnownBits(X, Known); 2867 unsigned LZ = Known.countMinLeadingZeros(); 2868 if (LZ < RHSVal) 2869 break; 2870 EVT XVT = X.getValueType(); 2871 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2872 return DAG.getZExtOrTrunc(Shl, SL, VT); 2873 } 2874 case ISD::OR: 2875 if (!isOrEquivalentToAdd(DAG, LHS)) 2876 break; 2877 LLVM_FALLTHROUGH; 2878 case ISD::ADD: { 2879 // shl (or|add x, c2), c1 => or|add (shl x, c1), (c2 << c1) 2880 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 2881 SDValue Shl = DAG.getNode(ISD::SHL, SL, VT, LHS->getOperand(0), 2882 SDValue(RHS, 0)); 2883 SDValue C2V = DAG.getConstant(C2->getAPIntValue() << RHSVal, 2884 SDLoc(C2), VT); 2885 return DAG.getNode(LHS->getOpcode(), SL, VT, Shl, C2V); 2886 } 2887 break; 2888 } 2889 } 2890 2891 if (VT != MVT::i64) 2892 return SDValue(); 2893 2894 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2895 2896 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2897 // common case, splitting this into a move and a 32-bit shift is faster and 2898 // the same code size. 2899 if (RHSVal < 32) 2900 return SDValue(); 2901 2902 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2903 2904 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2905 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2906 2907 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2908 2909 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2910 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2911 } 2912 2913 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2914 DAGCombinerInfo &DCI) const { 2915 if (N->getValueType(0) != MVT::i64) 2916 return SDValue(); 2917 2918 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2919 if (!RHS) 2920 return SDValue(); 2921 2922 SelectionDAG &DAG = DCI.DAG; 2923 SDLoc SL(N); 2924 unsigned RHSVal = RHS->getZExtValue(); 2925 2926 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2927 if (RHSVal == 32) { 2928 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2929 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2930 DAG.getConstant(31, SL, MVT::i32)); 2931 2932 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2933 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2934 } 2935 2936 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2937 if (RHSVal == 63) { 2938 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2939 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2940 DAG.getConstant(31, SL, MVT::i32)); 2941 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2942 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2943 } 2944 2945 return SDValue(); 2946 } 2947 2948 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2949 DAGCombinerInfo &DCI) const { 2950 if (N->getValueType(0) != MVT::i64) 2951 return SDValue(); 2952 2953 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2954 if (!RHS) 2955 return SDValue(); 2956 2957 unsigned ShiftAmt = RHS->getZExtValue(); 2958 if (ShiftAmt < 32) 2959 return SDValue(); 2960 2961 // srl i64:x, C for C >= 32 2962 // => 2963 // build_pair (srl hi_32(x), C - 32), 0 2964 2965 SelectionDAG &DAG = DCI.DAG; 2966 SDLoc SL(N); 2967 2968 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2969 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2970 2971 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2972 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2973 VecOp, One); 2974 2975 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2976 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2977 2978 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2979 2980 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2981 } 2982 2983 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2984 // instructions. If we only match on the legalized i64 mul expansion, 2985 // SimplifyDemandedBits will be unable to remove them because there will be 2986 // multiple uses due to the separate mul + mulh[su]. 2987 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2988 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2989 if (Size <= 32) { 2990 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2991 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2992 } 2993 2994 // Because we want to eliminate extension instructions before the 2995 // operation, we need to create a single user here (i.e. not the separate 2996 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2997 2998 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2999 3000 SDValue Mul = DAG.getNode(MulOpc, SL, 3001 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3002 3003 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3004 Mul.getValue(0), Mul.getValue(1)); 3005 } 3006 3007 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3008 DAGCombinerInfo &DCI) const { 3009 EVT VT = N->getValueType(0); 3010 3011 unsigned Size = VT.getSizeInBits(); 3012 if (VT.isVector() || Size > 64) 3013 return SDValue(); 3014 3015 // There are i16 integer mul/mad. 3016 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3017 return SDValue(); 3018 3019 SelectionDAG &DAG = DCI.DAG; 3020 SDLoc DL(N); 3021 3022 SDValue N0 = N->getOperand(0); 3023 SDValue N1 = N->getOperand(1); 3024 SDValue Mul; 3025 3026 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3027 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3028 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3029 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3030 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3031 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3032 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3033 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3034 } else { 3035 return SDValue(); 3036 } 3037 3038 // We need to use sext even for MUL_U24, because MUL_U24 is used 3039 // for signed multiply of 8 and 16-bit types. 3040 return DAG.getSExtOrTrunc(Mul, DL, VT); 3041 } 3042 3043 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3044 DAGCombinerInfo &DCI) const { 3045 EVT VT = N->getValueType(0); 3046 3047 if (!Subtarget->hasMulI24() || VT.isVector()) 3048 return SDValue(); 3049 3050 SelectionDAG &DAG = DCI.DAG; 3051 SDLoc DL(N); 3052 3053 SDValue N0 = N->getOperand(0); 3054 SDValue N1 = N->getOperand(1); 3055 3056 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3057 return SDValue(); 3058 3059 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3060 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3061 3062 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3063 DCI.AddToWorklist(Mulhi.getNode()); 3064 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3065 } 3066 3067 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3068 DAGCombinerInfo &DCI) const { 3069 EVT VT = N->getValueType(0); 3070 3071 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3072 return SDValue(); 3073 3074 SelectionDAG &DAG = DCI.DAG; 3075 SDLoc DL(N); 3076 3077 SDValue N0 = N->getOperand(0); 3078 SDValue N1 = N->getOperand(1); 3079 3080 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3081 return SDValue(); 3082 3083 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3084 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3085 3086 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3087 DCI.AddToWorklist(Mulhi.getNode()); 3088 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3089 } 3090 3091 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3092 SDNode *N, DAGCombinerInfo &DCI) const { 3093 SelectionDAG &DAG = DCI.DAG; 3094 3095 // Simplify demanded bits before splitting into multiple users. 3096 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 3097 return SDValue(); 3098 3099 SDValue N0 = N->getOperand(0); 3100 SDValue N1 = N->getOperand(1); 3101 3102 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3103 3104 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3105 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3106 3107 SDLoc SL(N); 3108 3109 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3110 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3111 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3112 } 3113 3114 static bool isNegativeOne(SDValue Val) { 3115 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3116 return C->isAllOnesValue(); 3117 return false; 3118 } 3119 3120 static bool isCtlzOpc(unsigned Opc) { 3121 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 3122 } 3123 3124 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 3125 SDValue Op, 3126 const SDLoc &DL) const { 3127 EVT VT = Op.getValueType(); 3128 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3129 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3130 LegalVT != MVT::i16)) 3131 return SDValue(); 3132 3133 if (VT != MVT::i32) 3134 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3135 3136 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 3137 if (VT != MVT::i32) 3138 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 3139 3140 return FFBH; 3141 } 3142 3143 // The native instructions return -1 on 0 input. Optimize out a select that 3144 // produces -1 on 0. 3145 // 3146 // TODO: If zero is not undef, we could also do this if the output is compared 3147 // against the bitwidth. 3148 // 3149 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3150 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 3151 SDValue LHS, SDValue RHS, 3152 DAGCombinerInfo &DCI) const { 3153 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3154 if (!CmpRhs || !CmpRhs->isNullValue()) 3155 return SDValue(); 3156 3157 SelectionDAG &DAG = DCI.DAG; 3158 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3159 SDValue CmpLHS = Cond.getOperand(0); 3160 3161 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3162 if (CCOpcode == ISD::SETEQ && 3163 isCtlzOpc(RHS.getOpcode()) && 3164 RHS.getOperand(0) == CmpLHS && 3165 isNegativeOne(LHS)) { 3166 return getFFBH_U32(DAG, CmpLHS, SL); 3167 } 3168 3169 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3170 if (CCOpcode == ISD::SETNE && 3171 isCtlzOpc(LHS.getOpcode()) && 3172 LHS.getOperand(0) == CmpLHS && 3173 isNegativeOne(RHS)) { 3174 return getFFBH_U32(DAG, CmpLHS, SL); 3175 } 3176 3177 return SDValue(); 3178 } 3179 3180 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3181 unsigned Op, 3182 const SDLoc &SL, 3183 SDValue Cond, 3184 SDValue N1, 3185 SDValue N2) { 3186 SelectionDAG &DAG = DCI.DAG; 3187 EVT VT = N1.getValueType(); 3188 3189 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3190 N1.getOperand(0), N2.getOperand(0)); 3191 DCI.AddToWorklist(NewSelect.getNode()); 3192 return DAG.getNode(Op, SL, VT, NewSelect); 3193 } 3194 3195 // Pull a free FP operation out of a select so it may fold into uses. 3196 // 3197 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3198 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3199 // 3200 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3201 // select c, (fabs x), +k -> fabs (select c, x, k) 3202 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3203 SDValue N) { 3204 SelectionDAG &DAG = DCI.DAG; 3205 SDValue Cond = N.getOperand(0); 3206 SDValue LHS = N.getOperand(1); 3207 SDValue RHS = N.getOperand(2); 3208 3209 EVT VT = N.getValueType(); 3210 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3211 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3212 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3213 SDLoc(N), Cond, LHS, RHS); 3214 } 3215 3216 bool Inv = false; 3217 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3218 std::swap(LHS, RHS); 3219 Inv = true; 3220 } 3221 3222 // TODO: Support vector constants. 3223 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3224 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3225 SDLoc SL(N); 3226 // If one side is an fneg/fabs and the other is a constant, we can push the 3227 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3228 SDValue NewLHS = LHS.getOperand(0); 3229 SDValue NewRHS = RHS; 3230 3231 // Careful: if the neg can be folded up, don't try to pull it back down. 3232 bool ShouldFoldNeg = true; 3233 3234 if (NewLHS.hasOneUse()) { 3235 unsigned Opc = NewLHS.getOpcode(); 3236 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3237 ShouldFoldNeg = false; 3238 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3239 ShouldFoldNeg = false; 3240 } 3241 3242 if (ShouldFoldNeg) { 3243 if (LHS.getOpcode() == ISD::FNEG) 3244 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3245 else if (CRHS->isNegative()) 3246 return SDValue(); 3247 3248 if (Inv) 3249 std::swap(NewLHS, NewRHS); 3250 3251 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3252 Cond, NewLHS, NewRHS); 3253 DCI.AddToWorklist(NewSelect.getNode()); 3254 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3255 } 3256 } 3257 3258 return SDValue(); 3259 } 3260 3261 3262 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3263 DAGCombinerInfo &DCI) const { 3264 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3265 return Folded; 3266 3267 SDValue Cond = N->getOperand(0); 3268 if (Cond.getOpcode() != ISD::SETCC) 3269 return SDValue(); 3270 3271 EVT VT = N->getValueType(0); 3272 SDValue LHS = Cond.getOperand(0); 3273 SDValue RHS = Cond.getOperand(1); 3274 SDValue CC = Cond.getOperand(2); 3275 3276 SDValue True = N->getOperand(1); 3277 SDValue False = N->getOperand(2); 3278 3279 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3280 SelectionDAG &DAG = DCI.DAG; 3281 if ((DAG.isConstantValueOfAnyType(True) || 3282 DAG.isConstantValueOfAnyType(True)) && 3283 (!DAG.isConstantValueOfAnyType(False) && 3284 !DAG.isConstantValueOfAnyType(False))) { 3285 // Swap cmp + select pair to move constant to false input. 3286 // This will allow using VOPC cndmasks more often. 3287 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3288 3289 SDLoc SL(N); 3290 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3291 LHS.getValueType().isInteger()); 3292 3293 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3294 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3295 } 3296 3297 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3298 SDValue MinMax 3299 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3300 // Revisit this node so we can catch min3/max3/med3 patterns. 3301 //DCI.AddToWorklist(MinMax.getNode()); 3302 return MinMax; 3303 } 3304 } 3305 3306 // There's no reason to not do this if the condition has other uses. 3307 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 3308 } 3309 3310 static bool isConstantFPZero(SDValue N) { 3311 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3312 return C->isZero() && !C->isNegative(); 3313 return false; 3314 } 3315 3316 static unsigned inverseMinMax(unsigned Opc) { 3317 switch (Opc) { 3318 case ISD::FMAXNUM: 3319 return ISD::FMINNUM; 3320 case ISD::FMINNUM: 3321 return ISD::FMAXNUM; 3322 case AMDGPUISD::FMAX_LEGACY: 3323 return AMDGPUISD::FMIN_LEGACY; 3324 case AMDGPUISD::FMIN_LEGACY: 3325 return AMDGPUISD::FMAX_LEGACY; 3326 default: 3327 llvm_unreachable("invalid min/max opcode"); 3328 } 3329 } 3330 3331 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3332 DAGCombinerInfo &DCI) const { 3333 SelectionDAG &DAG = DCI.DAG; 3334 SDValue N0 = N->getOperand(0); 3335 EVT VT = N->getValueType(0); 3336 3337 unsigned Opc = N0.getOpcode(); 3338 3339 // If the input has multiple uses and we can either fold the negate down, or 3340 // the other uses cannot, give up. This both prevents unprofitable 3341 // transformations and infinite loops: we won't repeatedly try to fold around 3342 // a negate that has no 'good' form. 3343 if (N0.hasOneUse()) { 3344 // This may be able to fold into the source, but at a code size cost. Don't 3345 // fold if the fold into the user is free. 3346 if (allUsesHaveSourceMods(N, 0)) 3347 return SDValue(); 3348 } else { 3349 if (fnegFoldsIntoOp(Opc) && 3350 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3351 return SDValue(); 3352 } 3353 3354 SDLoc SL(N); 3355 switch (Opc) { 3356 case ISD::FADD: { 3357 if (!mayIgnoreSignedZero(N0)) 3358 return SDValue(); 3359 3360 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3361 SDValue LHS = N0.getOperand(0); 3362 SDValue RHS = N0.getOperand(1); 3363 3364 if (LHS.getOpcode() != ISD::FNEG) 3365 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3366 else 3367 LHS = LHS.getOperand(0); 3368 3369 if (RHS.getOpcode() != ISD::FNEG) 3370 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3371 else 3372 RHS = RHS.getOperand(0); 3373 3374 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3375 if (!N0.hasOneUse()) 3376 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3377 return Res; 3378 } 3379 case ISD::FMUL: 3380 case AMDGPUISD::FMUL_LEGACY: { 3381 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3382 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3383 SDValue LHS = N0.getOperand(0); 3384 SDValue RHS = N0.getOperand(1); 3385 3386 if (LHS.getOpcode() == ISD::FNEG) 3387 LHS = LHS.getOperand(0); 3388 else if (RHS.getOpcode() == ISD::FNEG) 3389 RHS = RHS.getOperand(0); 3390 else 3391 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3392 3393 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3394 if (!N0.hasOneUse()) 3395 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3396 return Res; 3397 } 3398 case ISD::FMA: 3399 case ISD::FMAD: { 3400 if (!mayIgnoreSignedZero(N0)) 3401 return SDValue(); 3402 3403 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3404 SDValue LHS = N0.getOperand(0); 3405 SDValue MHS = N0.getOperand(1); 3406 SDValue RHS = N0.getOperand(2); 3407 3408 if (LHS.getOpcode() == ISD::FNEG) 3409 LHS = LHS.getOperand(0); 3410 else if (MHS.getOpcode() == ISD::FNEG) 3411 MHS = MHS.getOperand(0); 3412 else 3413 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3414 3415 if (RHS.getOpcode() != ISD::FNEG) 3416 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3417 else 3418 RHS = RHS.getOperand(0); 3419 3420 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3421 if (!N0.hasOneUse()) 3422 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3423 return Res; 3424 } 3425 case ISD::FMAXNUM: 3426 case ISD::FMINNUM: 3427 case AMDGPUISD::FMAX_LEGACY: 3428 case AMDGPUISD::FMIN_LEGACY: { 3429 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3430 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3431 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3432 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3433 3434 SDValue LHS = N0.getOperand(0); 3435 SDValue RHS = N0.getOperand(1); 3436 3437 // 0 doesn't have a negated inline immediate. 3438 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3439 // operations. 3440 if (isConstantFPZero(RHS)) 3441 return SDValue(); 3442 3443 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3444 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3445 unsigned Opposite = inverseMinMax(Opc); 3446 3447 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3448 if (!N0.hasOneUse()) 3449 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3450 return Res; 3451 } 3452 case ISD::FP_EXTEND: 3453 case ISD::FTRUNC: 3454 case ISD::FRINT: 3455 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3456 case ISD::FSIN: 3457 case AMDGPUISD::RCP: 3458 case AMDGPUISD::RCP_LEGACY: 3459 case AMDGPUISD::SIN_HW: { 3460 SDValue CvtSrc = N0.getOperand(0); 3461 if (CvtSrc.getOpcode() == ISD::FNEG) { 3462 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3463 // (fneg (rcp (fneg x))) -> (rcp x) 3464 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3465 } 3466 3467 if (!N0.hasOneUse()) 3468 return SDValue(); 3469 3470 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3471 // (fneg (rcp x)) -> (rcp (fneg x)) 3472 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3473 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3474 } 3475 case ISD::FP_ROUND: { 3476 SDValue CvtSrc = N0.getOperand(0); 3477 3478 if (CvtSrc.getOpcode() == ISD::FNEG) { 3479 // (fneg (fp_round (fneg x))) -> (fp_round x) 3480 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3481 CvtSrc.getOperand(0), N0.getOperand(1)); 3482 } 3483 3484 if (!N0.hasOneUse()) 3485 return SDValue(); 3486 3487 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3488 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3489 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3490 } 3491 case ISD::FP16_TO_FP: { 3492 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3493 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3494 // Put the fneg back as a legal source operation that can be matched later. 3495 SDLoc SL(N); 3496 3497 SDValue Src = N0.getOperand(0); 3498 EVT SrcVT = Src.getValueType(); 3499 3500 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3501 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3502 DAG.getConstant(0x8000, SL, SrcVT)); 3503 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3504 } 3505 default: 3506 return SDValue(); 3507 } 3508 } 3509 3510 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3511 DAGCombinerInfo &DCI) const { 3512 SelectionDAG &DAG = DCI.DAG; 3513 SDValue N0 = N->getOperand(0); 3514 3515 if (!N0.hasOneUse()) 3516 return SDValue(); 3517 3518 switch (N0.getOpcode()) { 3519 case ISD::FP16_TO_FP: { 3520 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3521 SDLoc SL(N); 3522 SDValue Src = N0.getOperand(0); 3523 EVT SrcVT = Src.getValueType(); 3524 3525 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3526 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3527 DAG.getConstant(0x7fff, SL, SrcVT)); 3528 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3529 } 3530 default: 3531 return SDValue(); 3532 } 3533 } 3534 3535 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3536 DAGCombinerInfo &DCI) const { 3537 SelectionDAG &DAG = DCI.DAG; 3538 SDLoc DL(N); 3539 3540 switch(N->getOpcode()) { 3541 default: 3542 break; 3543 case ISD::BITCAST: { 3544 EVT DestVT = N->getValueType(0); 3545 3546 // Push casts through vector builds. This helps avoid emitting a large 3547 // number of copies when materializing floating point vector constants. 3548 // 3549 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3550 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3551 if (DestVT.isVector()) { 3552 SDValue Src = N->getOperand(0); 3553 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3554 EVT SrcVT = Src.getValueType(); 3555 unsigned NElts = DestVT.getVectorNumElements(); 3556 3557 if (SrcVT.getVectorNumElements() == NElts) { 3558 EVT DestEltVT = DestVT.getVectorElementType(); 3559 3560 SmallVector<SDValue, 8> CastedElts; 3561 SDLoc SL(N); 3562 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3563 SDValue Elt = Src.getOperand(I); 3564 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3565 } 3566 3567 return DAG.getBuildVector(DestVT, SL, CastedElts); 3568 } 3569 } 3570 } 3571 3572 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3573 break; 3574 3575 // Fold bitcasts of constants. 3576 // 3577 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3578 // TODO: Generalize and move to DAGCombiner 3579 SDValue Src = N->getOperand(0); 3580 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3581 assert(Src.getValueType() == MVT::i64); 3582 SDLoc SL(N); 3583 uint64_t CVal = C->getZExtValue(); 3584 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3585 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3586 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3587 } 3588 3589 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3590 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3591 SDLoc SL(N); 3592 uint64_t CVal = Val.getZExtValue(); 3593 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3594 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3595 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3596 3597 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3598 } 3599 3600 break; 3601 } 3602 case ISD::SHL: { 3603 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3604 break; 3605 3606 return performShlCombine(N, DCI); 3607 } 3608 case ISD::SRL: { 3609 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3610 break; 3611 3612 return performSrlCombine(N, DCI); 3613 } 3614 case ISD::SRA: { 3615 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3616 break; 3617 3618 return performSraCombine(N, DCI); 3619 } 3620 case ISD::MUL: 3621 return performMulCombine(N, DCI); 3622 case ISD::MULHS: 3623 return performMulhsCombine(N, DCI); 3624 case ISD::MULHU: 3625 return performMulhuCombine(N, DCI); 3626 case AMDGPUISD::MUL_I24: 3627 case AMDGPUISD::MUL_U24: 3628 case AMDGPUISD::MULHI_I24: 3629 case AMDGPUISD::MULHI_U24: { 3630 // If the first call to simplify is successfull, then N may end up being 3631 // deleted, so we shouldn't call simplifyI24 again. 3632 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3633 return SDValue(); 3634 } 3635 case AMDGPUISD::MUL_LOHI_I24: 3636 case AMDGPUISD::MUL_LOHI_U24: 3637 return performMulLoHi24Combine(N, DCI); 3638 case ISD::SELECT: 3639 return performSelectCombine(N, DCI); 3640 case ISD::FNEG: 3641 return performFNegCombine(N, DCI); 3642 case ISD::FABS: 3643 return performFAbsCombine(N, DCI); 3644 case AMDGPUISD::BFE_I32: 3645 case AMDGPUISD::BFE_U32: { 3646 assert(!N->getValueType(0).isVector() && 3647 "Vector handling of BFE not implemented"); 3648 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3649 if (!Width) 3650 break; 3651 3652 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3653 if (WidthVal == 0) 3654 return DAG.getConstant(0, DL, MVT::i32); 3655 3656 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3657 if (!Offset) 3658 break; 3659 3660 SDValue BitsFrom = N->getOperand(0); 3661 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3662 3663 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3664 3665 if (OffsetVal == 0) { 3666 // This is already sign / zero extended, so try to fold away extra BFEs. 3667 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3668 3669 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3670 if (OpSignBits >= SignBits) 3671 return BitsFrom; 3672 3673 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3674 if (Signed) { 3675 // This is a sign_extend_inreg. Replace it to take advantage of existing 3676 // DAG Combines. If not eliminated, we will match back to BFE during 3677 // selection. 3678 3679 // TODO: The sext_inreg of extended types ends, although we can could 3680 // handle them in a single BFE. 3681 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3682 DAG.getValueType(SmallVT)); 3683 } 3684 3685 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3686 } 3687 3688 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3689 if (Signed) { 3690 return constantFoldBFE<int32_t>(DAG, 3691 CVal->getSExtValue(), 3692 OffsetVal, 3693 WidthVal, 3694 DL); 3695 } 3696 3697 return constantFoldBFE<uint32_t>(DAG, 3698 CVal->getZExtValue(), 3699 OffsetVal, 3700 WidthVal, 3701 DL); 3702 } 3703 3704 if ((OffsetVal + WidthVal) >= 32 && 3705 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3706 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3707 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3708 BitsFrom, ShiftVal); 3709 } 3710 3711 if (BitsFrom.hasOneUse()) { 3712 APInt Demanded = APInt::getBitsSet(32, 3713 OffsetVal, 3714 OffsetVal + WidthVal); 3715 3716 KnownBits Known; 3717 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3718 !DCI.isBeforeLegalizeOps()); 3719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3720 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3721 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3722 DCI.CommitTargetLoweringOpt(TLO); 3723 } 3724 } 3725 3726 break; 3727 } 3728 case ISD::LOAD: 3729 return performLoadCombine(N, DCI); 3730 case ISD::STORE: 3731 return performStoreCombine(N, DCI); 3732 case AMDGPUISD::CLAMP: 3733 return performClampCombine(N, DCI); 3734 case AMDGPUISD::RCP: { 3735 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3736 // XXX - Should this flush denormals? 3737 const APFloat &Val = CFP->getValueAPF(); 3738 APFloat One(Val.getSemantics(), "1.0"); 3739 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3740 } 3741 3742 break; 3743 } 3744 case ISD::AssertZext: 3745 case ISD::AssertSext: 3746 return performAssertSZExtCombine(N, DCI); 3747 } 3748 return SDValue(); 3749 } 3750 3751 //===----------------------------------------------------------------------===// 3752 // Helper functions 3753 //===----------------------------------------------------------------------===// 3754 3755 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3756 const TargetRegisterClass *RC, 3757 unsigned Reg, EVT VT, 3758 const SDLoc &SL, 3759 bool RawReg) const { 3760 MachineFunction &MF = DAG.getMachineFunction(); 3761 MachineRegisterInfo &MRI = MF.getRegInfo(); 3762 unsigned VReg; 3763 3764 if (!MRI.isLiveIn(Reg)) { 3765 VReg = MRI.createVirtualRegister(RC); 3766 MRI.addLiveIn(Reg, VReg); 3767 } else { 3768 VReg = MRI.getLiveInVirtReg(Reg); 3769 } 3770 3771 if (RawReg) 3772 return DAG.getRegister(VReg, VT); 3773 3774 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3775 } 3776 3777 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3778 EVT VT, 3779 const SDLoc &SL, 3780 int64_t Offset) const { 3781 MachineFunction &MF = DAG.getMachineFunction(); 3782 MachineFrameInfo &MFI = MF.getFrameInfo(); 3783 3784 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 3785 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 3786 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 3787 3788 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 3789 MachineMemOperand::MODereferenceable | 3790 MachineMemOperand::MOInvariant); 3791 } 3792 3793 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 3794 const SDLoc &SL, 3795 SDValue Chain, 3796 SDValue StackPtr, 3797 SDValue ArgVal, 3798 int64_t Offset) const { 3799 MachineFunction &MF = DAG.getMachineFunction(); 3800 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 3801 SDValue PtrOffset = DAG.getConstant(Offset, SL, MVT::i32); 3802 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, StackPtr, PtrOffset); 3803 3804 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 3805 MachineMemOperand::MODereferenceable); 3806 return Store; 3807 } 3808 3809 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 3810 const TargetRegisterClass *RC, 3811 EVT VT, const SDLoc &SL, 3812 const ArgDescriptor &Arg) const { 3813 assert(Arg && "Attempting to load missing argument"); 3814 3815 if (Arg.isRegister()) 3816 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 3817 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 3818 } 3819 3820 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3821 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3822 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3823 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3824 switch (Param) { 3825 case GRID_DIM: 3826 return ArgOffset; 3827 case GRID_OFFSET: 3828 return ArgOffset + 4; 3829 } 3830 llvm_unreachable("unexpected implicit parameter type"); 3831 } 3832 3833 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3834 3835 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3836 switch ((AMDGPUISD::NodeType)Opcode) { 3837 case AMDGPUISD::FIRST_NUMBER: break; 3838 // AMDIL DAG nodes 3839 NODE_NAME_CASE(UMUL); 3840 NODE_NAME_CASE(BRANCH_COND); 3841 3842 // AMDGPU DAG nodes 3843 NODE_NAME_CASE(IF) 3844 NODE_NAME_CASE(ELSE) 3845 NODE_NAME_CASE(LOOP) 3846 NODE_NAME_CASE(CALL) 3847 NODE_NAME_CASE(TC_RETURN) 3848 NODE_NAME_CASE(TRAP) 3849 NODE_NAME_CASE(RET_FLAG) 3850 NODE_NAME_CASE(RETURN_TO_EPILOG) 3851 NODE_NAME_CASE(ENDPGM) 3852 NODE_NAME_CASE(DWORDADDR) 3853 NODE_NAME_CASE(FRACT) 3854 NODE_NAME_CASE(SETCC) 3855 NODE_NAME_CASE(SETREG) 3856 NODE_NAME_CASE(FMA_W_CHAIN) 3857 NODE_NAME_CASE(FMUL_W_CHAIN) 3858 NODE_NAME_CASE(CLAMP) 3859 NODE_NAME_CASE(COS_HW) 3860 NODE_NAME_CASE(SIN_HW) 3861 NODE_NAME_CASE(FMAX_LEGACY) 3862 NODE_NAME_CASE(FMIN_LEGACY) 3863 NODE_NAME_CASE(FMAX3) 3864 NODE_NAME_CASE(SMAX3) 3865 NODE_NAME_CASE(UMAX3) 3866 NODE_NAME_CASE(FMIN3) 3867 NODE_NAME_CASE(SMIN3) 3868 NODE_NAME_CASE(UMIN3) 3869 NODE_NAME_CASE(FMED3) 3870 NODE_NAME_CASE(SMED3) 3871 NODE_NAME_CASE(UMED3) 3872 NODE_NAME_CASE(URECIP) 3873 NODE_NAME_CASE(DIV_SCALE) 3874 NODE_NAME_CASE(DIV_FMAS) 3875 NODE_NAME_CASE(DIV_FIXUP) 3876 NODE_NAME_CASE(FMAD_FTZ) 3877 NODE_NAME_CASE(TRIG_PREOP) 3878 NODE_NAME_CASE(RCP) 3879 NODE_NAME_CASE(RSQ) 3880 NODE_NAME_CASE(RCP_LEGACY) 3881 NODE_NAME_CASE(RSQ_LEGACY) 3882 NODE_NAME_CASE(FMUL_LEGACY) 3883 NODE_NAME_CASE(RSQ_CLAMP) 3884 NODE_NAME_CASE(LDEXP) 3885 NODE_NAME_CASE(FP_CLASS) 3886 NODE_NAME_CASE(DOT4) 3887 NODE_NAME_CASE(CARRY) 3888 NODE_NAME_CASE(BORROW) 3889 NODE_NAME_CASE(BFE_U32) 3890 NODE_NAME_CASE(BFE_I32) 3891 NODE_NAME_CASE(BFI) 3892 NODE_NAME_CASE(BFM) 3893 NODE_NAME_CASE(FFBH_U32) 3894 NODE_NAME_CASE(FFBH_I32) 3895 NODE_NAME_CASE(MUL_U24) 3896 NODE_NAME_CASE(MUL_I24) 3897 NODE_NAME_CASE(MULHI_U24) 3898 NODE_NAME_CASE(MULHI_I24) 3899 NODE_NAME_CASE(MUL_LOHI_U24) 3900 NODE_NAME_CASE(MUL_LOHI_I24) 3901 NODE_NAME_CASE(MAD_U24) 3902 NODE_NAME_CASE(MAD_I24) 3903 NODE_NAME_CASE(TEXTURE_FETCH) 3904 NODE_NAME_CASE(EXPORT) 3905 NODE_NAME_CASE(EXPORT_DONE) 3906 NODE_NAME_CASE(R600_EXPORT) 3907 NODE_NAME_CASE(CONST_ADDRESS) 3908 NODE_NAME_CASE(REGISTER_LOAD) 3909 NODE_NAME_CASE(REGISTER_STORE) 3910 NODE_NAME_CASE(SAMPLE) 3911 NODE_NAME_CASE(SAMPLEB) 3912 NODE_NAME_CASE(SAMPLED) 3913 NODE_NAME_CASE(SAMPLEL) 3914 NODE_NAME_CASE(CVT_F32_UBYTE0) 3915 NODE_NAME_CASE(CVT_F32_UBYTE1) 3916 NODE_NAME_CASE(CVT_F32_UBYTE2) 3917 NODE_NAME_CASE(CVT_F32_UBYTE3) 3918 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3919 NODE_NAME_CASE(FP_TO_FP16) 3920 NODE_NAME_CASE(FP16_ZEXT) 3921 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3922 NODE_NAME_CASE(CONST_DATA_PTR) 3923 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3924 NODE_NAME_CASE(KILL) 3925 NODE_NAME_CASE(DUMMY_CHAIN) 3926 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3927 NODE_NAME_CASE(INIT_EXEC) 3928 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 3929 NODE_NAME_CASE(SENDMSG) 3930 NODE_NAME_CASE(SENDMSGHALT) 3931 NODE_NAME_CASE(INTERP_MOV) 3932 NODE_NAME_CASE(INTERP_P1) 3933 NODE_NAME_CASE(INTERP_P2) 3934 NODE_NAME_CASE(STORE_MSKOR) 3935 NODE_NAME_CASE(LOAD_CONSTANT) 3936 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3937 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 3938 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 3939 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3940 NODE_NAME_CASE(ATOMIC_INC) 3941 NODE_NAME_CASE(ATOMIC_DEC) 3942 NODE_NAME_CASE(BUFFER_LOAD) 3943 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3944 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3945 } 3946 return nullptr; 3947 } 3948 3949 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3950 SelectionDAG &DAG, int Enabled, 3951 int &RefinementSteps, 3952 bool &UseOneConstNR, 3953 bool Reciprocal) const { 3954 EVT VT = Operand.getValueType(); 3955 3956 if (VT == MVT::f32) { 3957 RefinementSteps = 0; 3958 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3959 } 3960 3961 // TODO: There is also f64 rsq instruction, but the documentation is less 3962 // clear on its precision. 3963 3964 return SDValue(); 3965 } 3966 3967 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3968 SelectionDAG &DAG, int Enabled, 3969 int &RefinementSteps) const { 3970 EVT VT = Operand.getValueType(); 3971 3972 if (VT == MVT::f32) { 3973 // Reciprocal, < 1 ulp error. 3974 // 3975 // This reciprocal approximation converges to < 0.5 ulp error with one 3976 // newton rhapson performed with two fused multiple adds (FMAs). 3977 3978 RefinementSteps = 0; 3979 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3980 } 3981 3982 // TODO: There is also f64 rcp instruction, but the documentation is less 3983 // clear on its precision. 3984 3985 return SDValue(); 3986 } 3987 3988 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3989 const SDValue Op, KnownBits &Known, 3990 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 3991 3992 Known.resetAll(); // Don't know anything. 3993 3994 unsigned Opc = Op.getOpcode(); 3995 3996 switch (Opc) { 3997 default: 3998 break; 3999 case AMDGPUISD::CARRY: 4000 case AMDGPUISD::BORROW: { 4001 Known.Zero = APInt::getHighBitsSet(32, 31); 4002 break; 4003 } 4004 4005 case AMDGPUISD::BFE_I32: 4006 case AMDGPUISD::BFE_U32: { 4007 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4008 if (!CWidth) 4009 return; 4010 4011 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4012 4013 if (Opc == AMDGPUISD::BFE_U32) 4014 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4015 4016 break; 4017 } 4018 case AMDGPUISD::FP_TO_FP16: 4019 case AMDGPUISD::FP16_ZEXT: { 4020 unsigned BitWidth = Known.getBitWidth(); 4021 4022 // High bits are zero. 4023 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4024 break; 4025 } 4026 case AMDGPUISD::MUL_U24: 4027 case AMDGPUISD::MUL_I24: { 4028 KnownBits LHSKnown, RHSKnown; 4029 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 4030 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 4031 4032 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4033 RHSKnown.countMinTrailingZeros(); 4034 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4035 4036 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 4037 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 4038 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4039 if (MaxValBits >= 32) 4040 break; 4041 bool Negative = false; 4042 if (Opc == AMDGPUISD::MUL_I24) { 4043 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 4044 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 4045 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 4046 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 4047 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4048 break; 4049 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4050 } 4051 if (Negative) 4052 Known.One.setHighBits(32 - MaxValBits); 4053 else 4054 Known.Zero.setHighBits(32 - MaxValBits); 4055 break; 4056 } 4057 } 4058 } 4059 4060 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4061 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4062 unsigned Depth) const { 4063 switch (Op.getOpcode()) { 4064 case AMDGPUISD::BFE_I32: { 4065 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4066 if (!Width) 4067 return 1; 4068 4069 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4070 if (!isNullConstant(Op.getOperand(1))) 4071 return SignBits; 4072 4073 // TODO: Could probably figure something out with non-0 offsets. 4074 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4075 return std::max(SignBits, Op0SignBits); 4076 } 4077 4078 case AMDGPUISD::BFE_U32: { 4079 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4080 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4081 } 4082 4083 case AMDGPUISD::CARRY: 4084 case AMDGPUISD::BORROW: 4085 return 31; 4086 case AMDGPUISD::FP_TO_FP16: 4087 case AMDGPUISD::FP16_ZEXT: 4088 return 16; 4089 default: 4090 return 1; 4091 } 4092 } 4093