1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "AMDGPUTargetMachine.h" 24 #include "R600MachineFunctionInfo.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 using namespace llvm; 36 37 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 38 CCValAssign::LocInfo LocInfo, 39 ISD::ArgFlagsTy ArgFlags, CCState &State) { 40 MachineFunction &MF = State.getMachineFunction(); 41 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 42 43 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 44 ArgFlags.getOrigAlign()); 45 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 46 return true; 47 } 48 49 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 50 CCValAssign::LocInfo LocInfo, 51 ISD::ArgFlagsTy ArgFlags, CCState &State, 52 const TargetRegisterClass *RC, 53 unsigned NumRegs) { 54 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 55 unsigned RegResult = State.AllocateReg(RegList); 56 if (RegResult == AMDGPU::NoRegister) 57 return false; 58 59 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 60 return true; 61 } 62 63 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 64 CCValAssign::LocInfo LocInfo, 65 ISD::ArgFlagsTy ArgFlags, CCState &State) { 66 switch (LocVT.SimpleTy) { 67 case MVT::i64: 68 case MVT::f64: 69 case MVT::v2i32: 70 case MVT::v2f32: { 71 // Up to SGPR0-SGPR39 72 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 73 &AMDGPU::SGPR_64RegClass, 20); 74 } 75 default: 76 return false; 77 } 78 } 79 80 // Allocate up to VGPR31. 81 // 82 // TODO: Since there are no VGPR alignent requirements would it be better to 83 // split into individual scalar registers? 84 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 85 CCValAssign::LocInfo LocInfo, 86 ISD::ArgFlagsTy ArgFlags, CCState &State) { 87 switch (LocVT.SimpleTy) { 88 case MVT::i64: 89 case MVT::f64: 90 case MVT::v2i32: 91 case MVT::v2f32: { 92 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 93 &AMDGPU::VReg_64RegClass, 31); 94 } 95 case MVT::v4i32: 96 case MVT::v4f32: 97 case MVT::v2i64: 98 case MVT::v2f64: { 99 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 100 &AMDGPU::VReg_128RegClass, 29); 101 } 102 case MVT::v8i32: 103 case MVT::v8f32: { 104 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 105 &AMDGPU::VReg_256RegClass, 25); 106 107 } 108 case MVT::v16i32: 109 case MVT::v16f32: { 110 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 111 &AMDGPU::VReg_512RegClass, 17); 112 113 } 114 default: 115 return false; 116 } 117 } 118 119 #include "AMDGPUGenCallingConv.inc" 120 121 // Find a larger type to do a load / store of a vector with. 122 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 123 unsigned StoreSize = VT.getStoreSizeInBits(); 124 if (StoreSize <= 32) 125 return EVT::getIntegerVT(Ctx, StoreSize); 126 127 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 128 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 129 } 130 131 bool AMDGPUTargetLowering::isOrEquivalentToAdd(SelectionDAG &DAG, SDValue Op) 132 { 133 assert(Op.getOpcode() == ISD::OR); 134 135 SDValue N0 = Op->getOperand(0); 136 SDValue N1 = Op->getOperand(1); 137 EVT VT = N0.getValueType(); 138 139 if (VT.isInteger() && !VT.isVector()) { 140 KnownBits LHSKnown, RHSKnown; 141 DAG.computeKnownBits(N0, LHSKnown); 142 143 if (LHSKnown.Zero.getBoolValue()) { 144 DAG.computeKnownBits(N1, RHSKnown); 145 146 if (!(~RHSKnown.Zero & ~LHSKnown.Zero)) 147 return true; 148 } 149 } 150 151 return false; 152 } 153 154 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 155 const AMDGPUSubtarget &STI) 156 : TargetLowering(TM), Subtarget(&STI) { 157 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 158 // Lower floating point store/load to integer store/load to reduce the number 159 // of patterns in tablegen. 160 setOperationAction(ISD::LOAD, MVT::f32, Promote); 161 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 162 163 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 164 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 165 166 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 167 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 168 169 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 170 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 171 172 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 173 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 174 175 setOperationAction(ISD::LOAD, MVT::i64, Promote); 176 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 177 178 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 179 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 180 181 setOperationAction(ISD::LOAD, MVT::f64, Promote); 182 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 183 184 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 185 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 186 187 // There are no 64-bit extloads. These should be done as a 32-bit extload and 188 // an extension to 64-bit. 189 for (MVT VT : MVT::integer_valuetypes()) { 190 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 191 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 192 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 193 } 194 195 for (MVT VT : MVT::integer_valuetypes()) { 196 if (VT == MVT::i64) 197 continue; 198 199 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 200 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 202 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 203 204 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 206 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 207 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 208 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 210 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 211 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 213 } 214 215 for (MVT VT : MVT::integer_vector_valuetypes()) { 216 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 217 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 218 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 219 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 220 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 221 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 222 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 226 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 227 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 228 } 229 230 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 232 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 233 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 234 235 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 237 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 238 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 239 240 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 241 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 242 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 243 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 244 245 setOperationAction(ISD::STORE, MVT::f32, Promote); 246 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 247 248 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 250 251 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 253 254 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 256 257 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 259 260 setOperationAction(ISD::STORE, MVT::i64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 262 263 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 264 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 265 266 setOperationAction(ISD::STORE, MVT::f64, Promote); 267 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 268 269 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 270 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 271 272 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 275 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 276 277 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 280 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 281 282 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 283 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 284 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 285 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 286 287 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 288 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 289 290 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 291 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 292 293 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 295 296 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 297 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 298 299 300 setOperationAction(ISD::Constant, MVT::i32, Legal); 301 setOperationAction(ISD::Constant, MVT::i64, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 303 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 304 305 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 306 setOperationAction(ISD::BRIND, MVT::Other, Expand); 307 308 // This is totally unsupported, just custom lower to produce an error. 309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 310 311 // Library functions. These default to Expand, but we have instructions 312 // for them. 313 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 314 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 315 setOperationAction(ISD::FPOW, MVT::f32, Legal); 316 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 317 setOperationAction(ISD::FABS, MVT::f32, Legal); 318 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 319 setOperationAction(ISD::FRINT, MVT::f32, Legal); 320 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 321 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 322 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 323 324 setOperationAction(ISD::FROUND, MVT::f32, Custom); 325 setOperationAction(ISD::FROUND, MVT::f64, Custom); 326 327 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 328 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 329 330 setOperationAction(ISD::FREM, MVT::f32, Custom); 331 setOperationAction(ISD::FREM, MVT::f64, Custom); 332 333 // v_mad_f32 does not support denormals according to some sources. 334 if (!Subtarget->hasFP32Denormals()) 335 setOperationAction(ISD::FMAD, MVT::f32, Legal); 336 337 // Expand to fneg + fadd. 338 setOperationAction(ISD::FSUB, MVT::f64, Expand); 339 340 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 341 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 342 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 343 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 350 351 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 352 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 353 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 354 setOperationAction(ISD::FRINT, MVT::f64, Custom); 355 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 356 } 357 358 if (!Subtarget->hasBFI()) { 359 // fcopysign can be done in a single instruction with BFI. 360 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 361 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 362 } 363 364 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 365 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 366 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 367 368 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 369 for (MVT VT : ScalarIntVTs) { 370 // These should use [SU]DIVREM, so set them to expand 371 setOperationAction(ISD::SDIV, VT, Expand); 372 setOperationAction(ISD::UDIV, VT, Expand); 373 setOperationAction(ISD::SREM, VT, Expand); 374 setOperationAction(ISD::UREM, VT, Expand); 375 376 // GPU does not have divrem function for signed or unsigned. 377 setOperationAction(ISD::SDIVREM, VT, Custom); 378 setOperationAction(ISD::UDIVREM, VT, Custom); 379 380 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 381 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 382 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 383 384 setOperationAction(ISD::BSWAP, VT, Expand); 385 setOperationAction(ISD::CTTZ, VT, Expand); 386 setOperationAction(ISD::CTLZ, VT, Expand); 387 } 388 389 if (!Subtarget->hasBCNT(32)) 390 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 391 392 if (!Subtarget->hasBCNT(64)) 393 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MUL, MVT::i64, Expand); 401 setOperationAction(ISD::MULHU, MVT::i64, Expand); 402 setOperationAction(ISD::MULHS, MVT::i64, Expand); 403 setOperationAction(ISD::UDIV, MVT::i32, Expand); 404 setOperationAction(ISD::UREM, MVT::i32, Expand); 405 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 406 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 407 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 408 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 409 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 410 411 setOperationAction(ISD::SMIN, MVT::i32, Legal); 412 setOperationAction(ISD::UMIN, MVT::i32, Legal); 413 setOperationAction(ISD::SMAX, MVT::i32, Legal); 414 setOperationAction(ISD::UMAX, MVT::i32, Legal); 415 416 if (Subtarget->hasFFBH()) 417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 418 419 if (Subtarget->hasFFBL()) 420 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 421 422 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 423 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 424 425 // We only really have 32-bit BFE instructions (and 16-bit on VI). 426 // 427 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 428 // effort to match them now. We want this to be false for i64 cases when the 429 // extraction isn't restricted to the upper or lower half. Ideally we would 430 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 431 // span the midpoint are probably relatively rare, so don't worry about them 432 // for now. 433 if (Subtarget->hasBFE()) 434 setHasExtractBitsInsn(true); 435 436 static const MVT::SimpleValueType VectorIntTypes[] = { 437 MVT::v2i32, MVT::v4i32 438 }; 439 440 for (MVT VT : VectorIntTypes) { 441 // Expand the following operations for the current type by default. 442 setOperationAction(ISD::ADD, VT, Expand); 443 setOperationAction(ISD::AND, VT, Expand); 444 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 445 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 446 setOperationAction(ISD::MUL, VT, Expand); 447 setOperationAction(ISD::MULHU, VT, Expand); 448 setOperationAction(ISD::MULHS, VT, Expand); 449 setOperationAction(ISD::OR, VT, Expand); 450 setOperationAction(ISD::SHL, VT, Expand); 451 setOperationAction(ISD::SRA, VT, Expand); 452 setOperationAction(ISD::SRL, VT, Expand); 453 setOperationAction(ISD::ROTL, VT, Expand); 454 setOperationAction(ISD::ROTR, VT, Expand); 455 setOperationAction(ISD::SUB, VT, Expand); 456 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 457 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 458 setOperationAction(ISD::SDIV, VT, Expand); 459 setOperationAction(ISD::UDIV, VT, Expand); 460 setOperationAction(ISD::SREM, VT, Expand); 461 setOperationAction(ISD::UREM, VT, Expand); 462 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 463 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 464 setOperationAction(ISD::SDIVREM, VT, Custom); 465 setOperationAction(ISD::UDIVREM, VT, Expand); 466 setOperationAction(ISD::ADDC, VT, Expand); 467 setOperationAction(ISD::SUBC, VT, Expand); 468 setOperationAction(ISD::ADDE, VT, Expand); 469 setOperationAction(ISD::SUBE, VT, Expand); 470 setOperationAction(ISD::SELECT, VT, Expand); 471 setOperationAction(ISD::VSELECT, VT, Expand); 472 setOperationAction(ISD::SELECT_CC, VT, Expand); 473 setOperationAction(ISD::XOR, VT, Expand); 474 setOperationAction(ISD::BSWAP, VT, Expand); 475 setOperationAction(ISD::CTPOP, VT, Expand); 476 setOperationAction(ISD::CTTZ, VT, Expand); 477 setOperationAction(ISD::CTLZ, VT, Expand); 478 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 479 } 480 481 static const MVT::SimpleValueType FloatVectorTypes[] = { 482 MVT::v2f32, MVT::v4f32 483 }; 484 485 for (MVT VT : FloatVectorTypes) { 486 setOperationAction(ISD::FABS, VT, Expand); 487 setOperationAction(ISD::FMINNUM, VT, Expand); 488 setOperationAction(ISD::FMAXNUM, VT, Expand); 489 setOperationAction(ISD::FADD, VT, Expand); 490 setOperationAction(ISD::FCEIL, VT, Expand); 491 setOperationAction(ISD::FCOS, VT, Expand); 492 setOperationAction(ISD::FDIV, VT, Expand); 493 setOperationAction(ISD::FEXP2, VT, Expand); 494 setOperationAction(ISD::FLOG2, VT, Expand); 495 setOperationAction(ISD::FREM, VT, Expand); 496 setOperationAction(ISD::FPOW, VT, Expand); 497 setOperationAction(ISD::FFLOOR, VT, Expand); 498 setOperationAction(ISD::FTRUNC, VT, Expand); 499 setOperationAction(ISD::FMUL, VT, Expand); 500 setOperationAction(ISD::FMA, VT, Expand); 501 setOperationAction(ISD::FRINT, VT, Expand); 502 setOperationAction(ISD::FNEARBYINT, VT, Expand); 503 setOperationAction(ISD::FSQRT, VT, Expand); 504 setOperationAction(ISD::FSIN, VT, Expand); 505 setOperationAction(ISD::FSUB, VT, Expand); 506 setOperationAction(ISD::FNEG, VT, Expand); 507 setOperationAction(ISD::VSELECT, VT, Expand); 508 setOperationAction(ISD::SELECT_CC, VT, Expand); 509 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 510 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 511 } 512 513 // This causes using an unrolled select operation rather than expansion with 514 // bit operations. This is in general better, but the alternative using BFI 515 // instructions may be better if the select sources are SGPRs. 516 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 517 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 518 519 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 520 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 521 522 // There are no libcalls of any kind. 523 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 524 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 525 526 setBooleanContents(ZeroOrNegativeOneBooleanContent); 527 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 528 529 setSchedulingPreference(Sched::RegPressure); 530 setJumpIsExpensive(true); 531 532 // FIXME: This is only partially true. If we have to do vector compares, any 533 // SGPR pair can be a condition register. If we have a uniform condition, we 534 // are better off doing SALU operations, where there is only one SCC. For now, 535 // we don't have a way of knowing during instruction selection if a condition 536 // will be uniform and we always use vector compares. Assume we are using 537 // vector compares until that is fixed. 538 setHasMultipleConditionRegisters(true); 539 540 // SI at least has hardware support for floating point exceptions, but no way 541 // of using or handling them is implemented. They are also optional in OpenCL 542 // (Section 7.3) 543 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 544 545 PredictableSelectIsExpensive = false; 546 547 // We want to find all load dependencies for long chains of stores to enable 548 // merging into very wide vectors. The problem is with vectors with > 4 549 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 550 // vectors are a legal type, even though we have to split the loads 551 // usually. When we can more precisely specify load legality per address 552 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 553 // smarter so that they can figure out what to do in 2 iterations without all 554 // N > 4 stores on the same chain. 555 GatherAllAliasesMaxDepth = 16; 556 557 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 558 // about these during lowering. 559 MaxStoresPerMemcpy = 0xffffffff; 560 MaxStoresPerMemmove = 0xffffffff; 561 MaxStoresPerMemset = 0xffffffff; 562 563 setTargetDAGCombine(ISD::BITCAST); 564 setTargetDAGCombine(ISD::SHL); 565 setTargetDAGCombine(ISD::SRA); 566 setTargetDAGCombine(ISD::SRL); 567 setTargetDAGCombine(ISD::MUL); 568 setTargetDAGCombine(ISD::MULHU); 569 setTargetDAGCombine(ISD::MULHS); 570 setTargetDAGCombine(ISD::SELECT); 571 setTargetDAGCombine(ISD::SELECT_CC); 572 setTargetDAGCombine(ISD::STORE); 573 setTargetDAGCombine(ISD::FADD); 574 setTargetDAGCombine(ISD::FSUB); 575 setTargetDAGCombine(ISD::FNEG); 576 setTargetDAGCombine(ISD::FABS); 577 setTargetDAGCombine(ISD::AssertZext); 578 setTargetDAGCombine(ISD::AssertSext); 579 } 580 581 //===----------------------------------------------------------------------===// 582 // Target Information 583 //===----------------------------------------------------------------------===// 584 585 LLVM_READNONE 586 static bool fnegFoldsIntoOp(unsigned Opc) { 587 switch (Opc) { 588 case ISD::FADD: 589 case ISD::FSUB: 590 case ISD::FMUL: 591 case ISD::FMA: 592 case ISD::FMAD: 593 case ISD::FMINNUM: 594 case ISD::FMAXNUM: 595 case ISD::FSIN: 596 case ISD::FTRUNC: 597 case ISD::FRINT: 598 case ISD::FNEARBYINT: 599 case AMDGPUISD::RCP: 600 case AMDGPUISD::RCP_LEGACY: 601 case AMDGPUISD::SIN_HW: 602 case AMDGPUISD::FMUL_LEGACY: 603 case AMDGPUISD::FMIN_LEGACY: 604 case AMDGPUISD::FMAX_LEGACY: 605 return true; 606 default: 607 return false; 608 } 609 } 610 611 /// \p returns true if the operation will definitely need to use a 64-bit 612 /// encoding, and thus will use a VOP3 encoding regardless of the source 613 /// modifiers. 614 LLVM_READONLY 615 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 616 return N->getNumOperands() > 2 || VT == MVT::f64; 617 } 618 619 // Most FP instructions support source modifiers, but this could be refined 620 // slightly. 621 LLVM_READONLY 622 static bool hasSourceMods(const SDNode *N) { 623 if (isa<MemSDNode>(N)) 624 return false; 625 626 switch (N->getOpcode()) { 627 case ISD::CopyToReg: 628 case ISD::SELECT: 629 case ISD::FDIV: 630 case ISD::FREM: 631 case ISD::INLINEASM: 632 case AMDGPUISD::INTERP_P1: 633 case AMDGPUISD::INTERP_P2: 634 case AMDGPUISD::DIV_SCALE: 635 636 // TODO: Should really be looking at the users of the bitcast. These are 637 // problematic because bitcasts are used to legalize all stores to integer 638 // types. 639 case ISD::BITCAST: 640 return false; 641 default: 642 return true; 643 } 644 } 645 646 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 647 unsigned CostThreshold) { 648 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 649 // it is truly free to use a source modifier in all cases. If there are 650 // multiple users but for each one will necessitate using VOP3, there will be 651 // a code size increase. Try to avoid increasing code size unless we know it 652 // will save on the instruction count. 653 unsigned NumMayIncreaseSize = 0; 654 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 655 656 // XXX - Should this limit number of uses to check? 657 for (const SDNode *U : N->uses()) { 658 if (!hasSourceMods(U)) 659 return false; 660 661 if (!opMustUseVOP3Encoding(U, VT)) { 662 if (++NumMayIncreaseSize > CostThreshold) 663 return false; 664 } 665 } 666 667 return true; 668 } 669 670 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 671 return MVT::i32; 672 } 673 674 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 675 return true; 676 } 677 678 // The backend supports 32 and 64 bit floating point immediates. 679 // FIXME: Why are we reporting vectors of FP immediates as legal? 680 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 681 EVT ScalarVT = VT.getScalarType(); 682 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 683 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 684 } 685 686 // We don't want to shrink f64 / f32 constants. 687 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 688 EVT ScalarVT = VT.getScalarType(); 689 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 690 } 691 692 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 693 ISD::LoadExtType, 694 EVT NewVT) const { 695 696 unsigned NewSize = NewVT.getStoreSizeInBits(); 697 698 // If we are reducing to a 32-bit load, this is always better. 699 if (NewSize == 32) 700 return true; 701 702 EVT OldVT = N->getValueType(0); 703 unsigned OldSize = OldVT.getStoreSizeInBits(); 704 705 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 706 // extloads, so doing one requires using a buffer_load. In cases where we 707 // still couldn't use a scalar load, using the wider load shouldn't really 708 // hurt anything. 709 710 // If the old size already had to be an extload, there's no harm in continuing 711 // to reduce the width. 712 return (OldSize < 32); 713 } 714 715 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 716 EVT CastTy) const { 717 718 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 719 720 if (LoadTy.getScalarType() == MVT::i32) 721 return false; 722 723 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 724 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 725 726 return (LScalarSize < CastScalarSize) || 727 (CastScalarSize >= 32); 728 } 729 730 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 731 // profitable with the expansion for 64-bit since it's generally good to 732 // speculate things. 733 // FIXME: These should really have the size as a parameter. 734 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 735 return true; 736 } 737 738 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 739 return true; 740 } 741 742 //===---------------------------------------------------------------------===// 743 // Target Properties 744 //===---------------------------------------------------------------------===// 745 746 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 747 assert(VT.isFloatingPoint()); 748 749 // Packed operations do not have a fabs modifier. 750 return VT == MVT::f32 || VT == MVT::f64 || 751 (Subtarget->has16BitInsts() && VT == MVT::f16); 752 } 753 754 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 755 assert(VT.isFloatingPoint()); 756 return VT == MVT::f32 || VT == MVT::f64 || 757 (Subtarget->has16BitInsts() && VT == MVT::f16) || 758 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 759 } 760 761 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 762 unsigned NumElem, 763 unsigned AS) const { 764 return true; 765 } 766 767 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 768 // There are few operations which truly have vector input operands. Any vector 769 // operation is going to involve operations on each component, and a 770 // build_vector will be a copy per element, so it always makes sense to use a 771 // build_vector input in place of the extracted element to avoid a copy into a 772 // super register. 773 // 774 // We should probably only do this if all users are extracts only, but this 775 // should be the common case. 776 return true; 777 } 778 779 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 780 // Truncate is just accessing a subregister. 781 782 unsigned SrcSize = Source.getSizeInBits(); 783 unsigned DestSize = Dest.getSizeInBits(); 784 785 return DestSize < SrcSize && DestSize % 32 == 0 ; 786 } 787 788 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 789 // Truncate is just accessing a subregister. 790 791 unsigned SrcSize = Source->getScalarSizeInBits(); 792 unsigned DestSize = Dest->getScalarSizeInBits(); 793 794 if (DestSize== 16 && Subtarget->has16BitInsts()) 795 return SrcSize >= 32; 796 797 return DestSize < SrcSize && DestSize % 32 == 0; 798 } 799 800 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 801 unsigned SrcSize = Src->getScalarSizeInBits(); 802 unsigned DestSize = Dest->getScalarSizeInBits(); 803 804 if (SrcSize == 16 && Subtarget->has16BitInsts()) 805 return DestSize >= 32; 806 807 return SrcSize == 32 && DestSize == 64; 808 } 809 810 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 811 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 812 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 813 // this will enable reducing 64-bit operations the 32-bit, which is always 814 // good. 815 816 if (Src == MVT::i16) 817 return Dest == MVT::i32 ||Dest == MVT::i64 ; 818 819 return Src == MVT::i32 && Dest == MVT::i64; 820 } 821 822 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 823 return isZExtFree(Val.getValueType(), VT2); 824 } 825 826 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 827 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 828 // limited number of native 64-bit operations. Shrinking an operation to fit 829 // in a single 32-bit register should always be helpful. As currently used, 830 // this is much less general than the name suggests, and is only used in 831 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 832 // not profitable, and may actually be harmful. 833 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 834 } 835 836 //===---------------------------------------------------------------------===// 837 // TargetLowering Callbacks 838 //===---------------------------------------------------------------------===// 839 840 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 841 bool IsVarArg) { 842 switch (CC) { 843 case CallingConv::AMDGPU_KERNEL: 844 case CallingConv::SPIR_KERNEL: 845 return CC_AMDGPU_Kernel; 846 case CallingConv::AMDGPU_VS: 847 case CallingConv::AMDGPU_GS: 848 case CallingConv::AMDGPU_PS: 849 case CallingConv::AMDGPU_CS: 850 case CallingConv::AMDGPU_HS: 851 return CC_AMDGPU; 852 case CallingConv::C: 853 case CallingConv::Fast: 854 return CC_AMDGPU_Func; 855 default: 856 report_fatal_error("Unsupported calling convention."); 857 } 858 } 859 860 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 861 bool IsVarArg) { 862 switch (CC) { 863 case CallingConv::AMDGPU_KERNEL: 864 case CallingConv::SPIR_KERNEL: 865 return CC_AMDGPU_Kernel; 866 case CallingConv::AMDGPU_VS: 867 case CallingConv::AMDGPU_GS: 868 case CallingConv::AMDGPU_PS: 869 case CallingConv::AMDGPU_CS: 870 case CallingConv::AMDGPU_HS: 871 return RetCC_SI_Shader; 872 case CallingConv::C: 873 case CallingConv::Fast: 874 return RetCC_AMDGPU_Func; 875 default: 876 report_fatal_error("Unsupported calling convention."); 877 } 878 } 879 880 /// The SelectionDAGBuilder will automatically promote function arguments 881 /// with illegal types. However, this does not work for the AMDGPU targets 882 /// since the function arguments are stored in memory as these illegal types. 883 /// In order to handle this properly we need to get the original types sizes 884 /// from the LLVM IR Function and fixup the ISD:InputArg values before 885 /// passing them to AnalyzeFormalArguments() 886 887 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 888 /// input values across multiple registers. Each item in the Ins array 889 /// represents a single value that will be stored in registers. Ins[x].VT is 890 /// the value type of the value that will be stored in the register, so 891 /// whatever SDNode we lower the argument to needs to be this type. 892 /// 893 /// In order to correctly lower the arguments we need to know the size of each 894 /// argument. Since Ins[x].VT gives us the size of the register that will 895 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 896 /// for the orignal function argument so that we can deduce the correct memory 897 /// type to use for Ins[x]. In most cases the correct memory type will be 898 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 899 /// we have a kernel argument of type v8i8, this argument will be split into 900 /// 8 parts and each part will be represented by its own item in the Ins array. 901 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 902 /// the argument before it was split. From this, we deduce that the memory type 903 /// for each individual part is i8. We pass the memory type as LocVT to the 904 /// calling convention analysis function and the register type (Ins[x].VT) as 905 /// the ValVT. 906 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 907 const SmallVectorImpl<ISD::InputArg> &Ins) const { 908 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 909 const ISD::InputArg &In = Ins[i]; 910 EVT MemVT; 911 912 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 913 914 if (!Subtarget->isAmdHsaOS() && 915 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 916 // The ABI says the caller will extend these values to 32-bits. 917 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 918 } else if (NumRegs == 1) { 919 // This argument is not split, so the IR type is the memory type. 920 assert(!In.Flags.isSplit()); 921 if (In.ArgVT.isExtended()) { 922 // We have an extended type, like i24, so we should just use the register type 923 MemVT = In.VT; 924 } else { 925 MemVT = In.ArgVT; 926 } 927 } else if (In.ArgVT.isVector() && In.VT.isVector() && 928 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 929 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 930 // We have a vector value which has been split into a vector with 931 // the same scalar type, but fewer elements. This should handle 932 // all the floating-point vector types. 933 MemVT = In.VT; 934 } else if (In.ArgVT.isVector() && 935 In.ArgVT.getVectorNumElements() == NumRegs) { 936 // This arg has been split so that each element is stored in a separate 937 // register. 938 MemVT = In.ArgVT.getScalarType(); 939 } else if (In.ArgVT.isExtended()) { 940 // We have an extended type, like i65. 941 MemVT = In.VT; 942 } else { 943 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 944 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 945 if (In.VT.isInteger()) { 946 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 947 } else if (In.VT.isVector()) { 948 assert(!In.VT.getScalarType().isFloatingPoint()); 949 unsigned NumElements = In.VT.getVectorNumElements(); 950 assert(MemoryBits % NumElements == 0); 951 // This vector type has been split into another vector type with 952 // a different elements size. 953 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 954 MemoryBits / NumElements); 955 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 956 } else { 957 llvm_unreachable("cannot deduce memory type."); 958 } 959 } 960 961 // Convert one element vectors to scalar. 962 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 963 MemVT = MemVT.getScalarType(); 964 965 if (MemVT.isExtended()) { 966 // This should really only happen if we have vec3 arguments 967 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 968 MemVT = MemVT.getPow2VectorType(State.getContext()); 969 } 970 971 assert(MemVT.isSimple()); 972 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 973 State); 974 } 975 } 976 977 SDValue AMDGPUTargetLowering::LowerReturn( 978 SDValue Chain, CallingConv::ID CallConv, 979 bool isVarArg, 980 const SmallVectorImpl<ISD::OutputArg> &Outs, 981 const SmallVectorImpl<SDValue> &OutVals, 982 const SDLoc &DL, SelectionDAG &DAG) const { 983 // FIXME: Fails for r600 tests 984 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 985 // "wave terminate should not have return values"); 986 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 987 } 988 989 //===---------------------------------------------------------------------===// 990 // Target specific lowering 991 //===---------------------------------------------------------------------===// 992 993 /// Selects the correct CCAssignFn for a given CallingConvention value. 994 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 995 bool IsVarArg) { 996 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 997 } 998 999 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1000 bool IsVarArg) { 1001 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1002 } 1003 1004 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1005 SelectionDAG &DAG, 1006 MachineFrameInfo &MFI, 1007 int ClobberedFI) const { 1008 SmallVector<SDValue, 8> ArgChains; 1009 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1010 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1011 1012 // Include the original chain at the beginning of the list. When this is 1013 // used by target LowerCall hooks, this helps legalize find the 1014 // CALLSEQ_BEGIN node. 1015 ArgChains.push_back(Chain); 1016 1017 // Add a chain value for each stack argument corresponding 1018 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1019 UE = DAG.getEntryNode().getNode()->use_end(); 1020 U != UE; ++U) { 1021 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1022 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1023 if (FI->getIndex() < 0) { 1024 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1025 int64_t InLastByte = InFirstByte; 1026 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1027 1028 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1029 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1030 ArgChains.push_back(SDValue(L, 1)); 1031 } 1032 } 1033 } 1034 } 1035 1036 // Build a tokenfactor for all the chains. 1037 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1038 } 1039 1040 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1041 SmallVectorImpl<SDValue> &InVals, 1042 StringRef Reason) const { 1043 SDValue Callee = CLI.Callee; 1044 SelectionDAG &DAG = CLI.DAG; 1045 1046 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1047 1048 StringRef FuncName("<unknown>"); 1049 1050 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1051 FuncName = G->getSymbol(); 1052 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1053 FuncName = G->getGlobal()->getName(); 1054 1055 DiagnosticInfoUnsupported NoCalls( 1056 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1057 DAG.getContext()->diagnose(NoCalls); 1058 1059 if (!CLI.IsTailCall) { 1060 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1061 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1062 } 1063 1064 return DAG.getEntryNode(); 1065 } 1066 1067 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1068 SmallVectorImpl<SDValue> &InVals) const { 1069 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1070 } 1071 1072 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1073 SelectionDAG &DAG) const { 1074 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1075 1076 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1077 SDLoc(Op).getDebugLoc()); 1078 DAG.getContext()->diagnose(NoDynamicAlloca); 1079 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1080 return DAG.getMergeValues(Ops, SDLoc()); 1081 } 1082 1083 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1084 SelectionDAG &DAG) const { 1085 switch (Op.getOpcode()) { 1086 default: 1087 Op->print(errs(), &DAG); 1088 llvm_unreachable("Custom lowering code for this" 1089 "instruction is not implemented yet!"); 1090 break; 1091 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1092 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1093 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1094 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1095 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1096 case ISD::FREM: return LowerFREM(Op, DAG); 1097 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1098 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1099 case ISD::FRINT: return LowerFRINT(Op, DAG); 1100 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1101 case ISD::FROUND: return LowerFROUND(Op, DAG); 1102 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1103 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1104 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1105 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1106 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1107 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1108 case ISD::CTLZ: 1109 case ISD::CTLZ_ZERO_UNDEF: 1110 return LowerCTLZ(Op, DAG); 1111 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1112 } 1113 return Op; 1114 } 1115 1116 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1117 SmallVectorImpl<SDValue> &Results, 1118 SelectionDAG &DAG) const { 1119 switch (N->getOpcode()) { 1120 case ISD::SIGN_EXTEND_INREG: 1121 // Different parts of legalization seem to interpret which type of 1122 // sign_extend_inreg is the one to check for custom lowering. The extended 1123 // from type is what really matters, but some places check for custom 1124 // lowering of the result type. This results in trying to use 1125 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1126 // nothing here and let the illegal result integer be handled normally. 1127 return; 1128 default: 1129 return; 1130 } 1131 } 1132 1133 static bool hasDefinedInitializer(const GlobalValue *GV) { 1134 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1135 if (!GVar || !GVar->hasInitializer()) 1136 return false; 1137 1138 return !isa<UndefValue>(GVar->getInitializer()); 1139 } 1140 1141 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1142 SDValue Op, 1143 SelectionDAG &DAG) const { 1144 1145 const DataLayout &DL = DAG.getDataLayout(); 1146 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1147 const GlobalValue *GV = G->getGlobal(); 1148 1149 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1150 // XXX: What does the value of G->getOffset() mean? 1151 assert(G->getOffset() == 0 && 1152 "Do not know what to do with an non-zero offset"); 1153 1154 // TODO: We could emit code to handle the initialization somewhere. 1155 if (!hasDefinedInitializer(GV)) { 1156 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1157 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1158 } 1159 } 1160 1161 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1162 DiagnosticInfoUnsupported BadInit( 1163 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1164 DAG.getContext()->diagnose(BadInit); 1165 return SDValue(); 1166 } 1167 1168 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1169 SelectionDAG &DAG) const { 1170 SmallVector<SDValue, 8> Args; 1171 1172 for (const SDUse &U : Op->ops()) 1173 DAG.ExtractVectorElements(U.get(), Args); 1174 1175 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1176 } 1177 1178 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1179 SelectionDAG &DAG) const { 1180 1181 SmallVector<SDValue, 8> Args; 1182 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1183 EVT VT = Op.getValueType(); 1184 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1185 VT.getVectorNumElements()); 1186 1187 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1188 } 1189 1190 /// \brief Generate Min/Max node 1191 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1192 SDValue LHS, SDValue RHS, 1193 SDValue True, SDValue False, 1194 SDValue CC, 1195 DAGCombinerInfo &DCI) const { 1196 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1197 return SDValue(); 1198 1199 SelectionDAG &DAG = DCI.DAG; 1200 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1201 switch (CCOpcode) { 1202 case ISD::SETOEQ: 1203 case ISD::SETONE: 1204 case ISD::SETUNE: 1205 case ISD::SETNE: 1206 case ISD::SETUEQ: 1207 case ISD::SETEQ: 1208 case ISD::SETFALSE: 1209 case ISD::SETFALSE2: 1210 case ISD::SETTRUE: 1211 case ISD::SETTRUE2: 1212 case ISD::SETUO: 1213 case ISD::SETO: 1214 break; 1215 case ISD::SETULE: 1216 case ISD::SETULT: { 1217 if (LHS == True) 1218 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1219 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1220 } 1221 case ISD::SETOLE: 1222 case ISD::SETOLT: 1223 case ISD::SETLE: 1224 case ISD::SETLT: { 1225 // Ordered. Assume ordered for undefined. 1226 1227 // Only do this after legalization to avoid interfering with other combines 1228 // which might occur. 1229 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1230 !DCI.isCalledByLegalizer()) 1231 return SDValue(); 1232 1233 // We need to permute the operands to get the correct NaN behavior. The 1234 // selected operand is the second one based on the failing compare with NaN, 1235 // so permute it based on the compare type the hardware uses. 1236 if (LHS == True) 1237 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1238 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1239 } 1240 case ISD::SETUGE: 1241 case ISD::SETUGT: { 1242 if (LHS == True) 1243 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1244 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1245 } 1246 case ISD::SETGT: 1247 case ISD::SETGE: 1248 case ISD::SETOGE: 1249 case ISD::SETOGT: { 1250 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1251 !DCI.isCalledByLegalizer()) 1252 return SDValue(); 1253 1254 if (LHS == True) 1255 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1256 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1257 } 1258 case ISD::SETCC_INVALID: 1259 llvm_unreachable("Invalid setcc condcode!"); 1260 } 1261 return SDValue(); 1262 } 1263 1264 std::pair<SDValue, SDValue> 1265 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1266 SDLoc SL(Op); 1267 1268 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1269 1270 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1271 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1272 1273 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1274 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1275 1276 return std::make_pair(Lo, Hi); 1277 } 1278 1279 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1280 SDLoc SL(Op); 1281 1282 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1283 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1284 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1285 } 1286 1287 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1288 SDLoc SL(Op); 1289 1290 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1291 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1292 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1293 } 1294 1295 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1296 SelectionDAG &DAG) const { 1297 LoadSDNode *Load = cast<LoadSDNode>(Op); 1298 EVT VT = Op.getValueType(); 1299 1300 1301 // If this is a 2 element vector, we really want to scalarize and not create 1302 // weird 1 element vectors. 1303 if (VT.getVectorNumElements() == 2) 1304 return scalarizeVectorLoad(Load, DAG); 1305 1306 SDValue BasePtr = Load->getBasePtr(); 1307 EVT PtrVT = BasePtr.getValueType(); 1308 EVT MemVT = Load->getMemoryVT(); 1309 SDLoc SL(Op); 1310 1311 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1312 1313 EVT LoVT, HiVT; 1314 EVT LoMemVT, HiMemVT; 1315 SDValue Lo, Hi; 1316 1317 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1318 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1319 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1320 1321 unsigned Size = LoMemVT.getStoreSize(); 1322 unsigned BaseAlign = Load->getAlignment(); 1323 unsigned HiAlign = MinAlign(BaseAlign, Size); 1324 1325 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1326 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1327 BaseAlign, Load->getMemOperand()->getFlags()); 1328 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1329 DAG.getConstant(Size, SL, PtrVT)); 1330 SDValue HiLoad = 1331 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1332 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1333 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1334 1335 SDValue Ops[] = { 1336 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1337 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1338 LoLoad.getValue(1), HiLoad.getValue(1)) 1339 }; 1340 1341 return DAG.getMergeValues(Ops, SL); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1345 SelectionDAG &DAG) const { 1346 StoreSDNode *Store = cast<StoreSDNode>(Op); 1347 SDValue Val = Store->getValue(); 1348 EVT VT = Val.getValueType(); 1349 1350 // If this is a 2 element vector, we really want to scalarize and not create 1351 // weird 1 element vectors. 1352 if (VT.getVectorNumElements() == 2) 1353 return scalarizeVectorStore(Store, DAG); 1354 1355 EVT MemVT = Store->getMemoryVT(); 1356 SDValue Chain = Store->getChain(); 1357 SDValue BasePtr = Store->getBasePtr(); 1358 SDLoc SL(Op); 1359 1360 EVT LoVT, HiVT; 1361 EVT LoMemVT, HiMemVT; 1362 SDValue Lo, Hi; 1363 1364 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1365 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1366 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1367 1368 EVT PtrVT = BasePtr.getValueType(); 1369 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1370 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1371 PtrVT)); 1372 1373 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1374 unsigned BaseAlign = Store->getAlignment(); 1375 unsigned Size = LoMemVT.getStoreSize(); 1376 unsigned HiAlign = MinAlign(BaseAlign, Size); 1377 1378 SDValue LoStore = 1379 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1380 Store->getMemOperand()->getFlags()); 1381 SDValue HiStore = 1382 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1383 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1384 1385 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1386 } 1387 1388 // This is a shortcut for integer division because we have fast i32<->f32 1389 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1390 // float is enough to accurately represent up to a 24-bit signed integer. 1391 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1392 bool Sign) const { 1393 SDLoc DL(Op); 1394 EVT VT = Op.getValueType(); 1395 SDValue LHS = Op.getOperand(0); 1396 SDValue RHS = Op.getOperand(1); 1397 MVT IntVT = MVT::i32; 1398 MVT FltVT = MVT::f32; 1399 1400 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1401 if (LHSSignBits < 9) 1402 return SDValue(); 1403 1404 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1405 if (RHSSignBits < 9) 1406 return SDValue(); 1407 1408 unsigned BitSize = VT.getSizeInBits(); 1409 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1410 unsigned DivBits = BitSize - SignBits; 1411 if (Sign) 1412 ++DivBits; 1413 1414 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1415 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1416 1417 SDValue jq = DAG.getConstant(1, DL, IntVT); 1418 1419 if (Sign) { 1420 // char|short jq = ia ^ ib; 1421 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1422 1423 // jq = jq >> (bitsize - 2) 1424 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1425 DAG.getConstant(BitSize - 2, DL, VT)); 1426 1427 // jq = jq | 0x1 1428 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1429 } 1430 1431 // int ia = (int)LHS; 1432 SDValue ia = LHS; 1433 1434 // int ib, (int)RHS; 1435 SDValue ib = RHS; 1436 1437 // float fa = (float)ia; 1438 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1439 1440 // float fb = (float)ib; 1441 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1442 1443 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1444 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1445 1446 // fq = trunc(fq); 1447 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1448 1449 // float fqneg = -fq; 1450 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1451 1452 // float fr = mad(fqneg, fb, fa); 1453 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1454 (unsigned)AMDGPUISD::FMAD_FTZ : 1455 (unsigned)ISD::FMAD; 1456 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1457 1458 // int iq = (int)fq; 1459 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1460 1461 // fr = fabs(fr); 1462 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1463 1464 // fb = fabs(fb); 1465 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1466 1467 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1468 1469 // int cv = fr >= fb; 1470 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1471 1472 // jq = (cv ? jq : 0); 1473 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1474 1475 // dst = iq + jq; 1476 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1477 1478 // Rem needs compensation, it's easier to recompute it 1479 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1480 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1481 1482 // Truncate to number of bits this divide really is. 1483 if (Sign) { 1484 SDValue InRegSize 1485 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1486 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1487 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1488 } else { 1489 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1490 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1491 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1492 } 1493 1494 return DAG.getMergeValues({ Div, Rem }, DL); 1495 } 1496 1497 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1498 SelectionDAG &DAG, 1499 SmallVectorImpl<SDValue> &Results) const { 1500 assert(Op.getValueType() == MVT::i64); 1501 1502 SDLoc DL(Op); 1503 EVT VT = Op.getValueType(); 1504 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1505 1506 SDValue one = DAG.getConstant(1, DL, HalfVT); 1507 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1508 1509 //HiLo split 1510 SDValue LHS = Op.getOperand(0); 1511 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1512 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1513 1514 SDValue RHS = Op.getOperand(1); 1515 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1516 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1517 1518 if (VT == MVT::i64 && 1519 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1520 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1521 1522 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1523 LHS_Lo, RHS_Lo); 1524 1525 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1526 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1527 1528 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1529 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1530 return; 1531 } 1532 1533 // Get Speculative values 1534 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1535 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1536 1537 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1538 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1539 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1540 1541 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1542 SDValue DIV_Lo = zero; 1543 1544 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1545 1546 for (unsigned i = 0; i < halfBitWidth; ++i) { 1547 const unsigned bitPos = halfBitWidth - i - 1; 1548 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1549 // Get value of high bit 1550 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1551 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1552 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1553 1554 // Shift 1555 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1556 // Add LHS high bit 1557 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1558 1559 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1560 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1561 1562 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1563 1564 // Update REM 1565 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1566 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1567 } 1568 1569 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1570 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1571 Results.push_back(DIV); 1572 Results.push_back(REM); 1573 } 1574 1575 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1576 SelectionDAG &DAG) const { 1577 SDLoc DL(Op); 1578 EVT VT = Op.getValueType(); 1579 1580 if (VT == MVT::i64) { 1581 SmallVector<SDValue, 2> Results; 1582 LowerUDIVREM64(Op, DAG, Results); 1583 return DAG.getMergeValues(Results, DL); 1584 } 1585 1586 if (VT == MVT::i32) { 1587 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1588 return Res; 1589 } 1590 1591 SDValue Num = Op.getOperand(0); 1592 SDValue Den = Op.getOperand(1); 1593 1594 // RCP = URECIP(Den) = 2^32 / Den + e 1595 // e is rounding error. 1596 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1597 1598 // RCP_LO = mul(RCP, Den) */ 1599 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1600 1601 // RCP_HI = mulhu (RCP, Den) */ 1602 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1603 1604 // NEG_RCP_LO = -RCP_LO 1605 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1606 RCP_LO); 1607 1608 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1609 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1610 NEG_RCP_LO, RCP_LO, 1611 ISD::SETEQ); 1612 // Calculate the rounding error from the URECIP instruction 1613 // E = mulhu(ABS_RCP_LO, RCP) 1614 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1615 1616 // RCP_A_E = RCP + E 1617 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1618 1619 // RCP_S_E = RCP - E 1620 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1621 1622 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1623 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1624 RCP_A_E, RCP_S_E, 1625 ISD::SETEQ); 1626 // Quotient = mulhu(Tmp0, Num) 1627 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1628 1629 // Num_S_Remainder = Quotient * Den 1630 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1631 1632 // Remainder = Num - Num_S_Remainder 1633 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1634 1635 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1636 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1637 DAG.getConstant(-1, DL, VT), 1638 DAG.getConstant(0, DL, VT), 1639 ISD::SETUGE); 1640 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1641 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1642 Num_S_Remainder, 1643 DAG.getConstant(-1, DL, VT), 1644 DAG.getConstant(0, DL, VT), 1645 ISD::SETUGE); 1646 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1647 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1648 Remainder_GE_Zero); 1649 1650 // Calculate Division result: 1651 1652 // Quotient_A_One = Quotient + 1 1653 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1654 DAG.getConstant(1, DL, VT)); 1655 1656 // Quotient_S_One = Quotient - 1 1657 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1658 DAG.getConstant(1, DL, VT)); 1659 1660 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1661 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1662 Quotient, Quotient_A_One, ISD::SETEQ); 1663 1664 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1665 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1666 Quotient_S_One, Div, ISD::SETEQ); 1667 1668 // Calculate Rem result: 1669 1670 // Remainder_S_Den = Remainder - Den 1671 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1672 1673 // Remainder_A_Den = Remainder + Den 1674 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1675 1676 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1677 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1678 Remainder, Remainder_S_Den, ISD::SETEQ); 1679 1680 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1681 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1682 Remainder_A_Den, Rem, ISD::SETEQ); 1683 SDValue Ops[2] = { 1684 Div, 1685 Rem 1686 }; 1687 return DAG.getMergeValues(Ops, DL); 1688 } 1689 1690 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1691 SelectionDAG &DAG) const { 1692 SDLoc DL(Op); 1693 EVT VT = Op.getValueType(); 1694 1695 SDValue LHS = Op.getOperand(0); 1696 SDValue RHS = Op.getOperand(1); 1697 1698 SDValue Zero = DAG.getConstant(0, DL, VT); 1699 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1700 1701 if (VT == MVT::i32) { 1702 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1703 return Res; 1704 } 1705 1706 if (VT == MVT::i64 && 1707 DAG.ComputeNumSignBits(LHS) > 32 && 1708 DAG.ComputeNumSignBits(RHS) > 32) { 1709 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1710 1711 //HiLo split 1712 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1713 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1714 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1715 LHS_Lo, RHS_Lo); 1716 SDValue Res[2] = { 1717 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1718 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1719 }; 1720 return DAG.getMergeValues(Res, DL); 1721 } 1722 1723 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1724 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1725 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1726 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1727 1728 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1729 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1730 1731 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1732 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1733 1734 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1735 SDValue Rem = Div.getValue(1); 1736 1737 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1738 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1739 1740 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1741 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1742 1743 SDValue Res[2] = { 1744 Div, 1745 Rem 1746 }; 1747 return DAG.getMergeValues(Res, DL); 1748 } 1749 1750 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1751 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1752 SDLoc SL(Op); 1753 EVT VT = Op.getValueType(); 1754 SDValue X = Op.getOperand(0); 1755 SDValue Y = Op.getOperand(1); 1756 1757 // TODO: Should this propagate fast-math-flags? 1758 1759 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1760 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1761 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1762 1763 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1764 } 1765 1766 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1767 SDLoc SL(Op); 1768 SDValue Src = Op.getOperand(0); 1769 1770 // result = trunc(src) 1771 // if (src > 0.0 && src != result) 1772 // result += 1.0 1773 1774 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1775 1776 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1777 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1778 1779 EVT SetCCVT = 1780 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1781 1782 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1783 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1784 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1785 1786 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1787 // TODO: Should this propagate fast-math-flags? 1788 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1789 } 1790 1791 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1792 SelectionDAG &DAG) { 1793 const unsigned FractBits = 52; 1794 const unsigned ExpBits = 11; 1795 1796 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1797 Hi, 1798 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1799 DAG.getConstant(ExpBits, SL, MVT::i32)); 1800 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1801 DAG.getConstant(1023, SL, MVT::i32)); 1802 1803 return Exp; 1804 } 1805 1806 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1807 SDLoc SL(Op); 1808 SDValue Src = Op.getOperand(0); 1809 1810 assert(Op.getValueType() == MVT::f64); 1811 1812 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1813 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1814 1815 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1816 1817 // Extract the upper half, since this is where we will find the sign and 1818 // exponent. 1819 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1820 1821 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1822 1823 const unsigned FractBits = 52; 1824 1825 // Extract the sign bit. 1826 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1827 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1828 1829 // Extend back to to 64-bits. 1830 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1831 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1832 1833 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1834 const SDValue FractMask 1835 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1836 1837 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1838 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1839 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1840 1841 EVT SetCCVT = 1842 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1843 1844 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1845 1846 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1847 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1848 1849 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1850 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1851 1852 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1853 } 1854 1855 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1856 SDLoc SL(Op); 1857 SDValue Src = Op.getOperand(0); 1858 1859 assert(Op.getValueType() == MVT::f64); 1860 1861 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1862 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1863 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1864 1865 // TODO: Should this propagate fast-math-flags? 1866 1867 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1868 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1869 1870 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1871 1872 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1873 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1874 1875 EVT SetCCVT = 1876 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1877 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1878 1879 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1880 } 1881 1882 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1883 // FNEARBYINT and FRINT are the same, except in their handling of FP 1884 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1885 // rint, so just treat them as equivalent. 1886 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1887 } 1888 1889 // XXX - May require not supporting f32 denormals? 1890 1891 // Don't handle v2f16. The extra instructions to scalarize and repack around the 1892 // compare and vselect end up producing worse code than scalarizing the whole 1893 // operation. 1894 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 1895 SDLoc SL(Op); 1896 SDValue X = Op.getOperand(0); 1897 EVT VT = Op.getValueType(); 1898 1899 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 1900 1901 // TODO: Should this propagate fast-math-flags? 1902 1903 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 1904 1905 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 1906 1907 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 1908 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 1909 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 1910 1911 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 1912 1913 EVT SetCCVT = 1914 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1915 1916 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1917 1918 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 1919 1920 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 1921 } 1922 1923 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1924 SDLoc SL(Op); 1925 SDValue X = Op.getOperand(0); 1926 1927 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1928 1929 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1930 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1931 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1932 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1933 EVT SetCCVT = 1934 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1935 1936 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1937 1938 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1939 1940 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1941 1942 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1943 MVT::i64); 1944 1945 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1946 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1947 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1948 MVT::i64), 1949 Exp); 1950 1951 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1952 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1953 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1954 ISD::SETNE); 1955 1956 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1957 D, DAG.getConstant(0, SL, MVT::i64)); 1958 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1959 1960 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1961 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1962 1963 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1964 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1965 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1966 1967 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1968 ExpEqNegOne, 1969 DAG.getConstantFP(1.0, SL, MVT::f64), 1970 DAG.getConstantFP(0.0, SL, MVT::f64)); 1971 1972 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1973 1974 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1975 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1976 1977 return K; 1978 } 1979 1980 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1981 EVT VT = Op.getValueType(); 1982 1983 if (VT == MVT::f32 || VT == MVT::f16) 1984 return LowerFROUND32_16(Op, DAG); 1985 1986 if (VT == MVT::f64) 1987 return LowerFROUND64(Op, DAG); 1988 1989 llvm_unreachable("unhandled type"); 1990 } 1991 1992 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1993 SDLoc SL(Op); 1994 SDValue Src = Op.getOperand(0); 1995 1996 // result = trunc(src); 1997 // if (src < 0.0 && src != result) 1998 // result += -1.0. 1999 2000 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2001 2002 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2003 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2004 2005 EVT SetCCVT = 2006 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2007 2008 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2009 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2010 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2011 2012 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2013 // TODO: Should this propagate fast-math-flags? 2014 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2015 } 2016 2017 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 2018 SDLoc SL(Op); 2019 SDValue Src = Op.getOperand(0); 2020 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2021 2022 if (ZeroUndef && Src.getValueType() == MVT::i32) 2023 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 2024 2025 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2026 2027 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2028 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2029 2030 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2031 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2032 2033 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2034 *DAG.getContext(), MVT::i32); 2035 2036 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 2037 2038 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 2039 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 2040 2041 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2042 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 2043 2044 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2045 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 2046 2047 if (!ZeroUndef) { 2048 // Test if the full 64-bit input is zero. 2049 2050 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2051 // which we probably don't want. 2052 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 2053 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 2054 2055 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2056 // with the same cycles, otherwise it is slower. 2057 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2058 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2059 2060 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2061 2062 // The instruction returns -1 for 0 input, but the defined intrinsic 2063 // behavior is to return the number of bits. 2064 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2065 SrcIsZero, Bits32, NewCtlz); 2066 } 2067 2068 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 2069 } 2070 2071 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2072 bool Signed) const { 2073 // Unsigned 2074 // cul2f(ulong u) 2075 //{ 2076 // uint lz = clz(u); 2077 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2078 // u = (u << lz) & 0x7fffffffffffffffUL; 2079 // ulong t = u & 0xffffffffffUL; 2080 // uint v = (e << 23) | (uint)(u >> 40); 2081 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2082 // return as_float(v + r); 2083 //} 2084 // Signed 2085 // cl2f(long l) 2086 //{ 2087 // long s = l >> 63; 2088 // float r = cul2f((l + s) ^ s); 2089 // return s ? -r : r; 2090 //} 2091 2092 SDLoc SL(Op); 2093 SDValue Src = Op.getOperand(0); 2094 SDValue L = Src; 2095 2096 SDValue S; 2097 if (Signed) { 2098 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2099 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2100 2101 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2102 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2103 } 2104 2105 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2106 *DAG.getContext(), MVT::f32); 2107 2108 2109 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2110 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2111 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2112 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2113 2114 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2115 SDValue E = DAG.getSelect(SL, MVT::i32, 2116 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2117 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2118 ZeroI32); 2119 2120 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2121 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2122 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2123 2124 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2125 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2126 2127 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2128 U, DAG.getConstant(40, SL, MVT::i64)); 2129 2130 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2131 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2132 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2133 2134 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2135 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2136 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2137 2138 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2139 2140 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2141 2142 SDValue R = DAG.getSelect(SL, MVT::i32, 2143 RCmp, 2144 One, 2145 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2146 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2147 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2148 2149 if (!Signed) 2150 return R; 2151 2152 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2153 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2154 } 2155 2156 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2157 bool Signed) const { 2158 SDLoc SL(Op); 2159 SDValue Src = Op.getOperand(0); 2160 2161 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2162 2163 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2164 DAG.getConstant(0, SL, MVT::i32)); 2165 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2166 DAG.getConstant(1, SL, MVT::i32)); 2167 2168 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2169 SL, MVT::f64, Hi); 2170 2171 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2172 2173 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2174 DAG.getConstant(32, SL, MVT::i32)); 2175 // TODO: Should this propagate fast-math-flags? 2176 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2177 } 2178 2179 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2180 SelectionDAG &DAG) const { 2181 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2182 "operation should be legal"); 2183 2184 // TODO: Factor out code common with LowerSINT_TO_FP. 2185 2186 EVT DestVT = Op.getValueType(); 2187 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2188 SDLoc DL(Op); 2189 SDValue Src = Op.getOperand(0); 2190 2191 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2192 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2193 SDValue FPRound = 2194 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2195 2196 return FPRound; 2197 } 2198 2199 if (DestVT == MVT::f32) 2200 return LowerINT_TO_FP32(Op, DAG, false); 2201 2202 assert(DestVT == MVT::f64); 2203 return LowerINT_TO_FP64(Op, DAG, false); 2204 } 2205 2206 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2207 SelectionDAG &DAG) const { 2208 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2209 "operation should be legal"); 2210 2211 // TODO: Factor out code common with LowerUINT_TO_FP. 2212 2213 EVT DestVT = Op.getValueType(); 2214 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2215 SDLoc DL(Op); 2216 SDValue Src = Op.getOperand(0); 2217 2218 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2219 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2220 SDValue FPRound = 2221 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2222 2223 return FPRound; 2224 } 2225 2226 if (DestVT == MVT::f32) 2227 return LowerINT_TO_FP32(Op, DAG, true); 2228 2229 assert(DestVT == MVT::f64); 2230 return LowerINT_TO_FP64(Op, DAG, true); 2231 } 2232 2233 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2234 bool Signed) const { 2235 SDLoc SL(Op); 2236 2237 SDValue Src = Op.getOperand(0); 2238 2239 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2240 2241 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2242 MVT::f64); 2243 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2244 MVT::f64); 2245 // TODO: Should this propagate fast-math-flags? 2246 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2247 2248 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2249 2250 2251 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2252 2253 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2254 MVT::i32, FloorMul); 2255 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2256 2257 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2258 2259 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2260 } 2261 2262 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2263 SDLoc DL(Op); 2264 SDValue N0 = Op.getOperand(0); 2265 2266 // Convert to target node to get known bits 2267 if (N0.getValueType() == MVT::f32) 2268 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2269 2270 if (getTargetMachine().Options.UnsafeFPMath) { 2271 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2272 return SDValue(); 2273 } 2274 2275 assert(N0.getSimpleValueType() == MVT::f64); 2276 2277 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2278 const unsigned ExpMask = 0x7ff; 2279 const unsigned ExpBiasf64 = 1023; 2280 const unsigned ExpBiasf16 = 15; 2281 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2282 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2283 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2284 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2285 DAG.getConstant(32, DL, MVT::i64)); 2286 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2287 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2288 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2289 DAG.getConstant(20, DL, MVT::i64)); 2290 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2291 DAG.getConstant(ExpMask, DL, MVT::i32)); 2292 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2293 // add the f16 bias (15) to get the biased exponent for the f16 format. 2294 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2295 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2296 2297 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2298 DAG.getConstant(8, DL, MVT::i32)); 2299 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2300 DAG.getConstant(0xffe, DL, MVT::i32)); 2301 2302 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2303 DAG.getConstant(0x1ff, DL, MVT::i32)); 2304 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2305 2306 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2307 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2308 2309 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2310 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2311 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2312 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2313 2314 // N = M | (E << 12); 2315 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2316 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2317 DAG.getConstant(12, DL, MVT::i32))); 2318 2319 // B = clamp(1-E, 0, 13); 2320 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2321 One, E); 2322 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2323 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2324 DAG.getConstant(13, DL, MVT::i32)); 2325 2326 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2327 DAG.getConstant(0x1000, DL, MVT::i32)); 2328 2329 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2330 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2331 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2332 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2333 2334 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2335 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2336 DAG.getConstant(0x7, DL, MVT::i32)); 2337 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2338 DAG.getConstant(2, DL, MVT::i32)); 2339 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2340 One, Zero, ISD::SETEQ); 2341 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2342 One, Zero, ISD::SETGT); 2343 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2344 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2345 2346 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2347 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2348 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2349 I, V, ISD::SETEQ); 2350 2351 // Extract the sign bit. 2352 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2353 DAG.getConstant(16, DL, MVT::i32)); 2354 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2355 DAG.getConstant(0x8000, DL, MVT::i32)); 2356 2357 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2358 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2359 } 2360 2361 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2362 SelectionDAG &DAG) const { 2363 SDValue Src = Op.getOperand(0); 2364 2365 // TODO: Factor out code common with LowerFP_TO_UINT. 2366 2367 EVT SrcVT = Src.getValueType(); 2368 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2369 SDLoc DL(Op); 2370 2371 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2372 SDValue FpToInt32 = 2373 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2374 2375 return FpToInt32; 2376 } 2377 2378 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2379 return LowerFP64_TO_INT(Op, DAG, true); 2380 2381 return SDValue(); 2382 } 2383 2384 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2385 SelectionDAG &DAG) const { 2386 SDValue Src = Op.getOperand(0); 2387 2388 // TODO: Factor out code common with LowerFP_TO_SINT. 2389 2390 EVT SrcVT = Src.getValueType(); 2391 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2392 SDLoc DL(Op); 2393 2394 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2395 SDValue FpToInt32 = 2396 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2397 2398 return FpToInt32; 2399 } 2400 2401 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2402 return LowerFP64_TO_INT(Op, DAG, false); 2403 2404 return SDValue(); 2405 } 2406 2407 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2408 SelectionDAG &DAG) const { 2409 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2410 MVT VT = Op.getSimpleValueType(); 2411 MVT ScalarVT = VT.getScalarType(); 2412 2413 assert(VT.isVector()); 2414 2415 SDValue Src = Op.getOperand(0); 2416 SDLoc DL(Op); 2417 2418 // TODO: Don't scalarize on Evergreen? 2419 unsigned NElts = VT.getVectorNumElements(); 2420 SmallVector<SDValue, 8> Args; 2421 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2422 2423 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2424 for (unsigned I = 0; I < NElts; ++I) 2425 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2426 2427 return DAG.getBuildVector(VT, DL, Args); 2428 } 2429 2430 //===----------------------------------------------------------------------===// 2431 // Custom DAG optimizations 2432 //===----------------------------------------------------------------------===// 2433 2434 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2435 KnownBits Known; 2436 EVT VT = Op.getValueType(); 2437 DAG.computeKnownBits(Op, Known); 2438 2439 return (VT.getSizeInBits() - Known.countMinLeadingZeros()) <= 24; 2440 } 2441 2442 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2443 EVT VT = Op.getValueType(); 2444 2445 // In order for this to be a signed 24-bit value, bit 23, must 2446 // be a sign bit. 2447 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2448 // as unsigned 24-bit values. 2449 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2450 } 2451 2452 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2453 TargetLowering::DAGCombinerInfo &DCI) { 2454 2455 SelectionDAG &DAG = DCI.DAG; 2456 SDValue Op = Node24->getOperand(OpIdx); 2457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2458 EVT VT = Op.getValueType(); 2459 2460 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2461 APInt KnownZero, KnownOne; 2462 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2463 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2464 return true; 2465 2466 return false; 2467 } 2468 2469 template <typename IntTy> 2470 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2471 uint32_t Width, const SDLoc &DL) { 2472 if (Width + Offset < 32) { 2473 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2474 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2475 return DAG.getConstant(Result, DL, MVT::i32); 2476 } 2477 2478 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2479 } 2480 2481 static bool hasVolatileUser(SDNode *Val) { 2482 for (SDNode *U : Val->uses()) { 2483 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2484 if (M->isVolatile()) 2485 return true; 2486 } 2487 } 2488 2489 return false; 2490 } 2491 2492 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2493 // i32 vectors are the canonical memory type. 2494 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2495 return false; 2496 2497 if (!VT.isByteSized()) 2498 return false; 2499 2500 unsigned Size = VT.getStoreSize(); 2501 2502 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2503 return false; 2504 2505 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2506 return false; 2507 2508 return true; 2509 } 2510 2511 // Replace load of an illegal type with a store of a bitcast to a friendlier 2512 // type. 2513 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2514 DAGCombinerInfo &DCI) const { 2515 if (!DCI.isBeforeLegalize()) 2516 return SDValue(); 2517 2518 LoadSDNode *LN = cast<LoadSDNode>(N); 2519 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2520 return SDValue(); 2521 2522 SDLoc SL(N); 2523 SelectionDAG &DAG = DCI.DAG; 2524 EVT VT = LN->getMemoryVT(); 2525 2526 unsigned Size = VT.getStoreSize(); 2527 unsigned Align = LN->getAlignment(); 2528 if (Align < Size && isTypeLegal(VT)) { 2529 bool IsFast; 2530 unsigned AS = LN->getAddressSpace(); 2531 2532 // Expand unaligned loads earlier than legalization. Due to visitation order 2533 // problems during legalization, the emitted instructions to pack and unpack 2534 // the bytes again are not eliminated in the case of an unaligned copy. 2535 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2536 if (VT.isVector()) 2537 return scalarizeVectorLoad(LN, DAG); 2538 2539 SDValue Ops[2]; 2540 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2541 return DAG.getMergeValues(Ops, SDLoc(N)); 2542 } 2543 2544 if (!IsFast) 2545 return SDValue(); 2546 } 2547 2548 if (!shouldCombineMemoryType(VT)) 2549 return SDValue(); 2550 2551 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2552 2553 SDValue NewLoad 2554 = DAG.getLoad(NewVT, SL, LN->getChain(), 2555 LN->getBasePtr(), LN->getMemOperand()); 2556 2557 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2558 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2559 return SDValue(N, 0); 2560 } 2561 2562 // Replace store of an illegal type with a store of a bitcast to a friendlier 2563 // type. 2564 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2565 DAGCombinerInfo &DCI) const { 2566 if (!DCI.isBeforeLegalize()) 2567 return SDValue(); 2568 2569 StoreSDNode *SN = cast<StoreSDNode>(N); 2570 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2571 return SDValue(); 2572 2573 EVT VT = SN->getMemoryVT(); 2574 unsigned Size = VT.getStoreSize(); 2575 2576 SDLoc SL(N); 2577 SelectionDAG &DAG = DCI.DAG; 2578 unsigned Align = SN->getAlignment(); 2579 if (Align < Size && isTypeLegal(VT)) { 2580 bool IsFast; 2581 unsigned AS = SN->getAddressSpace(); 2582 2583 // Expand unaligned stores earlier than legalization. Due to visitation 2584 // order problems during legalization, the emitted instructions to pack and 2585 // unpack the bytes again are not eliminated in the case of an unaligned 2586 // copy. 2587 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2588 if (VT.isVector()) 2589 return scalarizeVectorStore(SN, DAG); 2590 2591 return expandUnalignedStore(SN, DAG); 2592 } 2593 2594 if (!IsFast) 2595 return SDValue(); 2596 } 2597 2598 if (!shouldCombineMemoryType(VT)) 2599 return SDValue(); 2600 2601 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2602 SDValue Val = SN->getValue(); 2603 2604 //DCI.AddToWorklist(Val.getNode()); 2605 2606 bool OtherUses = !Val.hasOneUse(); 2607 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2608 if (OtherUses) { 2609 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2610 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2611 } 2612 2613 return DAG.getStore(SN->getChain(), SL, CastVal, 2614 SN->getBasePtr(), SN->getMemOperand()); 2615 } 2616 2617 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2618 DAGCombinerInfo &DCI) const { 2619 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2620 if (!CSrc) 2621 return SDValue(); 2622 2623 const APFloat &F = CSrc->getValueAPF(); 2624 APFloat Zero = APFloat::getZero(F.getSemantics()); 2625 APFloat::cmpResult Cmp0 = F.compare(Zero); 2626 if (Cmp0 == APFloat::cmpLessThan || 2627 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2628 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2629 } 2630 2631 APFloat One(F.getSemantics(), "1.0"); 2632 APFloat::cmpResult Cmp1 = F.compare(One); 2633 if (Cmp1 == APFloat::cmpGreaterThan) 2634 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2635 2636 return SDValue(CSrc, 0); 2637 } 2638 2639 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2640 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2641 // issues. 2642 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2643 DAGCombinerInfo &DCI) const { 2644 SelectionDAG &DAG = DCI.DAG; 2645 SDValue N0 = N->getOperand(0); 2646 2647 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2648 // (vt2 (truncate (assertzext vt0:x, vt1))) 2649 if (N0.getOpcode() == ISD::TRUNCATE) { 2650 SDValue N1 = N->getOperand(1); 2651 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2652 SDLoc SL(N); 2653 2654 SDValue Src = N0.getOperand(0); 2655 EVT SrcVT = Src.getValueType(); 2656 if (SrcVT.bitsGE(ExtVT)) { 2657 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2658 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2659 } 2660 } 2661 2662 return SDValue(); 2663 } 2664 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2665 /// binary operation \p Opc to it with the corresponding constant operands. 2666 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2667 DAGCombinerInfo &DCI, const SDLoc &SL, 2668 unsigned Opc, SDValue LHS, 2669 uint32_t ValLo, uint32_t ValHi) const { 2670 SelectionDAG &DAG = DCI.DAG; 2671 SDValue Lo, Hi; 2672 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2673 2674 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2675 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2676 2677 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2678 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2679 2680 // Re-visit the ands. It's possible we eliminated one of them and it could 2681 // simplify the vector. 2682 DCI.AddToWorklist(Lo.getNode()); 2683 DCI.AddToWorklist(Hi.getNode()); 2684 2685 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2686 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2687 } 2688 2689 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2690 DAGCombinerInfo &DCI) const { 2691 EVT VT = N->getValueType(0); 2692 2693 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2694 if (!RHS) 2695 return SDValue(); 2696 2697 SDValue LHS = N->getOperand(0); 2698 unsigned RHSVal = RHS->getZExtValue(); 2699 if (!RHSVal) 2700 return LHS; 2701 2702 SDLoc SL(N); 2703 SelectionDAG &DAG = DCI.DAG; 2704 2705 switch (LHS->getOpcode()) { 2706 default: 2707 break; 2708 case ISD::ZERO_EXTEND: 2709 case ISD::SIGN_EXTEND: 2710 case ISD::ANY_EXTEND: { 2711 SDValue X = LHS->getOperand(0); 2712 2713 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2714 isTypeLegal(MVT::v2i16)) { 2715 // Prefer build_vector as the canonical form if packed types are legal. 2716 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2717 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2718 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2719 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2720 } 2721 2722 // shl (ext x) => zext (shl x), if shift does not overflow int 2723 if (VT != MVT::i64) 2724 break; 2725 KnownBits Known; 2726 DAG.computeKnownBits(X, Known); 2727 unsigned LZ = Known.countMinLeadingZeros(); 2728 if (LZ < RHSVal) 2729 break; 2730 EVT XVT = X.getValueType(); 2731 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2732 return DAG.getZExtOrTrunc(Shl, SL, VT); 2733 } 2734 case ISD::OR: 2735 if (!isOrEquivalentToAdd(DAG, LHS)) 2736 break; 2737 LLVM_FALLTHROUGH; 2738 case ISD::ADD: { 2739 // shl (or|add x, c2), c1 => or|add (shl x, c1), (c2 << c1) 2740 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 2741 SDValue Shl = DAG.getNode(ISD::SHL, SL, VT, LHS->getOperand(0), 2742 SDValue(RHS, 0)); 2743 SDValue C2V = DAG.getConstant(C2->getAPIntValue() << RHSVal, 2744 SDLoc(C2), VT); 2745 return DAG.getNode(LHS->getOpcode(), SL, VT, Shl, C2V); 2746 } 2747 break; 2748 } 2749 } 2750 2751 if (VT != MVT::i64) 2752 return SDValue(); 2753 2754 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2755 2756 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2757 // common case, splitting this into a move and a 32-bit shift is faster and 2758 // the same code size. 2759 if (RHSVal < 32) 2760 return SDValue(); 2761 2762 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2763 2764 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2765 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2766 2767 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2768 2769 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2770 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2771 } 2772 2773 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2774 DAGCombinerInfo &DCI) const { 2775 if (N->getValueType(0) != MVT::i64) 2776 return SDValue(); 2777 2778 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2779 if (!RHS) 2780 return SDValue(); 2781 2782 SelectionDAG &DAG = DCI.DAG; 2783 SDLoc SL(N); 2784 unsigned RHSVal = RHS->getZExtValue(); 2785 2786 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2787 if (RHSVal == 32) { 2788 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2789 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2790 DAG.getConstant(31, SL, MVT::i32)); 2791 2792 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2793 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2794 } 2795 2796 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2797 if (RHSVal == 63) { 2798 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2799 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2800 DAG.getConstant(31, SL, MVT::i32)); 2801 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2802 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2803 } 2804 2805 return SDValue(); 2806 } 2807 2808 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2809 DAGCombinerInfo &DCI) const { 2810 if (N->getValueType(0) != MVT::i64) 2811 return SDValue(); 2812 2813 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2814 if (!RHS) 2815 return SDValue(); 2816 2817 unsigned ShiftAmt = RHS->getZExtValue(); 2818 if (ShiftAmt < 32) 2819 return SDValue(); 2820 2821 // srl i64:x, C for C >= 32 2822 // => 2823 // build_pair (srl hi_32(x), C - 32), 0 2824 2825 SelectionDAG &DAG = DCI.DAG; 2826 SDLoc SL(N); 2827 2828 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2829 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2830 2831 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2832 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2833 VecOp, One); 2834 2835 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2836 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2837 2838 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2839 2840 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2841 } 2842 2843 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2844 // instructions. If we only match on the legalized i64 mul expansion, 2845 // SimplifyDemandedBits will be unable to remove them because there will be 2846 // multiple uses due to the separate mul + mulh[su]. 2847 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2848 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2849 if (Size <= 32) { 2850 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2851 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2852 } 2853 2854 // Because we want to eliminate extension instructions before the 2855 // operation, we need to create a single user here (i.e. not the separate 2856 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2857 2858 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2859 2860 SDValue Mul = DAG.getNode(MulOpc, SL, 2861 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2862 2863 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2864 Mul.getValue(0), Mul.getValue(1)); 2865 } 2866 2867 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2868 DAGCombinerInfo &DCI) const { 2869 EVT VT = N->getValueType(0); 2870 2871 unsigned Size = VT.getSizeInBits(); 2872 if (VT.isVector() || Size > 64) 2873 return SDValue(); 2874 2875 // There are i16 integer mul/mad. 2876 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2877 return SDValue(); 2878 2879 SelectionDAG &DAG = DCI.DAG; 2880 SDLoc DL(N); 2881 2882 SDValue N0 = N->getOperand(0); 2883 SDValue N1 = N->getOperand(1); 2884 SDValue Mul; 2885 2886 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2887 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2888 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2889 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2890 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2891 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2892 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2893 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2894 } else { 2895 return SDValue(); 2896 } 2897 2898 // We need to use sext even for MUL_U24, because MUL_U24 is used 2899 // for signed multiply of 8 and 16-bit types. 2900 return DAG.getSExtOrTrunc(Mul, DL, VT); 2901 } 2902 2903 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2904 DAGCombinerInfo &DCI) const { 2905 EVT VT = N->getValueType(0); 2906 2907 if (!Subtarget->hasMulI24() || VT.isVector()) 2908 return SDValue(); 2909 2910 SelectionDAG &DAG = DCI.DAG; 2911 SDLoc DL(N); 2912 2913 SDValue N0 = N->getOperand(0); 2914 SDValue N1 = N->getOperand(1); 2915 2916 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2917 return SDValue(); 2918 2919 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2920 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2921 2922 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2923 DCI.AddToWorklist(Mulhi.getNode()); 2924 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2925 } 2926 2927 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2928 DAGCombinerInfo &DCI) const { 2929 EVT VT = N->getValueType(0); 2930 2931 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2932 return SDValue(); 2933 2934 SelectionDAG &DAG = DCI.DAG; 2935 SDLoc DL(N); 2936 2937 SDValue N0 = N->getOperand(0); 2938 SDValue N1 = N->getOperand(1); 2939 2940 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2941 return SDValue(); 2942 2943 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2944 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2945 2946 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2947 DCI.AddToWorklist(Mulhi.getNode()); 2948 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2949 } 2950 2951 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2952 SDNode *N, DAGCombinerInfo &DCI) const { 2953 SelectionDAG &DAG = DCI.DAG; 2954 2955 // Simplify demanded bits before splitting into multiple users. 2956 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2957 return SDValue(); 2958 2959 SDValue N0 = N->getOperand(0); 2960 SDValue N1 = N->getOperand(1); 2961 2962 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2963 2964 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2965 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2966 2967 SDLoc SL(N); 2968 2969 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2970 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2971 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2972 } 2973 2974 static bool isNegativeOne(SDValue Val) { 2975 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2976 return C->isAllOnesValue(); 2977 return false; 2978 } 2979 2980 static bool isCtlzOpc(unsigned Opc) { 2981 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2982 } 2983 2984 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2985 SDValue Op, 2986 const SDLoc &DL) const { 2987 EVT VT = Op.getValueType(); 2988 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2989 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2990 LegalVT != MVT::i16)) 2991 return SDValue(); 2992 2993 if (VT != MVT::i32) 2994 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2995 2996 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2997 if (VT != MVT::i32) 2998 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2999 3000 return FFBH; 3001 } 3002 3003 // The native instructions return -1 on 0 input. Optimize out a select that 3004 // produces -1 on 0. 3005 // 3006 // TODO: If zero is not undef, we could also do this if the output is compared 3007 // against the bitwidth. 3008 // 3009 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3010 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 3011 SDValue LHS, SDValue RHS, 3012 DAGCombinerInfo &DCI) const { 3013 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3014 if (!CmpRhs || !CmpRhs->isNullValue()) 3015 return SDValue(); 3016 3017 SelectionDAG &DAG = DCI.DAG; 3018 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3019 SDValue CmpLHS = Cond.getOperand(0); 3020 3021 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3022 if (CCOpcode == ISD::SETEQ && 3023 isCtlzOpc(RHS.getOpcode()) && 3024 RHS.getOperand(0) == CmpLHS && 3025 isNegativeOne(LHS)) { 3026 return getFFBH_U32(DAG, CmpLHS, SL); 3027 } 3028 3029 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3030 if (CCOpcode == ISD::SETNE && 3031 isCtlzOpc(LHS.getOpcode()) && 3032 LHS.getOperand(0) == CmpLHS && 3033 isNegativeOne(RHS)) { 3034 return getFFBH_U32(DAG, CmpLHS, SL); 3035 } 3036 3037 return SDValue(); 3038 } 3039 3040 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3041 unsigned Op, 3042 const SDLoc &SL, 3043 SDValue Cond, 3044 SDValue N1, 3045 SDValue N2) { 3046 SelectionDAG &DAG = DCI.DAG; 3047 EVT VT = N1.getValueType(); 3048 3049 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3050 N1.getOperand(0), N2.getOperand(0)); 3051 DCI.AddToWorklist(NewSelect.getNode()); 3052 return DAG.getNode(Op, SL, VT, NewSelect); 3053 } 3054 3055 // Pull a free FP operation out of a select so it may fold into uses. 3056 // 3057 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3058 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3059 // 3060 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3061 // select c, (fabs x), +k -> fabs (select c, x, k) 3062 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3063 SDValue N) { 3064 SelectionDAG &DAG = DCI.DAG; 3065 SDValue Cond = N.getOperand(0); 3066 SDValue LHS = N.getOperand(1); 3067 SDValue RHS = N.getOperand(2); 3068 3069 EVT VT = N.getValueType(); 3070 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3071 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3072 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3073 SDLoc(N), Cond, LHS, RHS); 3074 } 3075 3076 bool Inv = false; 3077 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3078 std::swap(LHS, RHS); 3079 Inv = true; 3080 } 3081 3082 // TODO: Support vector constants. 3083 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3084 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3085 SDLoc SL(N); 3086 // If one side is an fneg/fabs and the other is a constant, we can push the 3087 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3088 SDValue NewLHS = LHS.getOperand(0); 3089 SDValue NewRHS = RHS; 3090 3091 // Careful: if the neg can be folded up, don't try to pull it back down. 3092 bool ShouldFoldNeg = true; 3093 3094 if (NewLHS.hasOneUse()) { 3095 unsigned Opc = NewLHS.getOpcode(); 3096 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3097 ShouldFoldNeg = false; 3098 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3099 ShouldFoldNeg = false; 3100 } 3101 3102 if (ShouldFoldNeg) { 3103 if (LHS.getOpcode() == ISD::FNEG) 3104 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3105 else if (CRHS->isNegative()) 3106 return SDValue(); 3107 3108 if (Inv) 3109 std::swap(NewLHS, NewRHS); 3110 3111 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3112 Cond, NewLHS, NewRHS); 3113 DCI.AddToWorklist(NewSelect.getNode()); 3114 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3115 } 3116 } 3117 3118 return SDValue(); 3119 } 3120 3121 3122 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3123 DAGCombinerInfo &DCI) const { 3124 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3125 return Folded; 3126 3127 SDValue Cond = N->getOperand(0); 3128 if (Cond.getOpcode() != ISD::SETCC) 3129 return SDValue(); 3130 3131 EVT VT = N->getValueType(0); 3132 SDValue LHS = Cond.getOperand(0); 3133 SDValue RHS = Cond.getOperand(1); 3134 SDValue CC = Cond.getOperand(2); 3135 3136 SDValue True = N->getOperand(1); 3137 SDValue False = N->getOperand(2); 3138 3139 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3140 SelectionDAG &DAG = DCI.DAG; 3141 if ((DAG.isConstantValueOfAnyType(True) || 3142 DAG.isConstantValueOfAnyType(True)) && 3143 (!DAG.isConstantValueOfAnyType(False) && 3144 !DAG.isConstantValueOfAnyType(False))) { 3145 // Swap cmp + select pair to move constant to false input. 3146 // This will allow using VOPC cndmasks more often. 3147 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3148 3149 SDLoc SL(N); 3150 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3151 LHS.getValueType().isInteger()); 3152 3153 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3154 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3155 } 3156 3157 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3158 SDValue MinMax 3159 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3160 // Revisit this node so we can catch min3/max3/med3 patterns. 3161 //DCI.AddToWorklist(MinMax.getNode()); 3162 return MinMax; 3163 } 3164 } 3165 3166 // There's no reason to not do this if the condition has other uses. 3167 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 3168 } 3169 3170 static bool isConstantFPZero(SDValue N) { 3171 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3172 return C->isZero() && !C->isNegative(); 3173 return false; 3174 } 3175 3176 static unsigned inverseMinMax(unsigned Opc) { 3177 switch (Opc) { 3178 case ISD::FMAXNUM: 3179 return ISD::FMINNUM; 3180 case ISD::FMINNUM: 3181 return ISD::FMAXNUM; 3182 case AMDGPUISD::FMAX_LEGACY: 3183 return AMDGPUISD::FMIN_LEGACY; 3184 case AMDGPUISD::FMIN_LEGACY: 3185 return AMDGPUISD::FMAX_LEGACY; 3186 default: 3187 llvm_unreachable("invalid min/max opcode"); 3188 } 3189 } 3190 3191 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3192 DAGCombinerInfo &DCI) const { 3193 SelectionDAG &DAG = DCI.DAG; 3194 SDValue N0 = N->getOperand(0); 3195 EVT VT = N->getValueType(0); 3196 3197 unsigned Opc = N0.getOpcode(); 3198 3199 // If the input has multiple uses and we can either fold the negate down, or 3200 // the other uses cannot, give up. This both prevents unprofitable 3201 // transformations and infinite loops: we won't repeatedly try to fold around 3202 // a negate that has no 'good' form. 3203 if (N0.hasOneUse()) { 3204 // This may be able to fold into the source, but at a code size cost. Don't 3205 // fold if the fold into the user is free. 3206 if (allUsesHaveSourceMods(N, 0)) 3207 return SDValue(); 3208 } else { 3209 if (fnegFoldsIntoOp(Opc) && 3210 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3211 return SDValue(); 3212 } 3213 3214 SDLoc SL(N); 3215 switch (Opc) { 3216 case ISD::FADD: { 3217 if (!mayIgnoreSignedZero(N0)) 3218 return SDValue(); 3219 3220 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3221 SDValue LHS = N0.getOperand(0); 3222 SDValue RHS = N0.getOperand(1); 3223 3224 if (LHS.getOpcode() != ISD::FNEG) 3225 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3226 else 3227 LHS = LHS.getOperand(0); 3228 3229 if (RHS.getOpcode() != ISD::FNEG) 3230 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3231 else 3232 RHS = RHS.getOperand(0); 3233 3234 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3235 if (!N0.hasOneUse()) 3236 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3237 return Res; 3238 } 3239 case ISD::FMUL: 3240 case AMDGPUISD::FMUL_LEGACY: { 3241 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3242 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3243 SDValue LHS = N0.getOperand(0); 3244 SDValue RHS = N0.getOperand(1); 3245 3246 if (LHS.getOpcode() == ISD::FNEG) 3247 LHS = LHS.getOperand(0); 3248 else if (RHS.getOpcode() == ISD::FNEG) 3249 RHS = RHS.getOperand(0); 3250 else 3251 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3252 3253 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3254 if (!N0.hasOneUse()) 3255 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3256 return Res; 3257 } 3258 case ISD::FMA: 3259 case ISD::FMAD: { 3260 if (!mayIgnoreSignedZero(N0)) 3261 return SDValue(); 3262 3263 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3264 SDValue LHS = N0.getOperand(0); 3265 SDValue MHS = N0.getOperand(1); 3266 SDValue RHS = N0.getOperand(2); 3267 3268 if (LHS.getOpcode() == ISD::FNEG) 3269 LHS = LHS.getOperand(0); 3270 else if (MHS.getOpcode() == ISD::FNEG) 3271 MHS = MHS.getOperand(0); 3272 else 3273 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3274 3275 if (RHS.getOpcode() != ISD::FNEG) 3276 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3277 else 3278 RHS = RHS.getOperand(0); 3279 3280 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3281 if (!N0.hasOneUse()) 3282 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3283 return Res; 3284 } 3285 case ISD::FMAXNUM: 3286 case ISD::FMINNUM: 3287 case AMDGPUISD::FMAX_LEGACY: 3288 case AMDGPUISD::FMIN_LEGACY: { 3289 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3290 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3291 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3292 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3293 3294 SDValue LHS = N0.getOperand(0); 3295 SDValue RHS = N0.getOperand(1); 3296 3297 // 0 doesn't have a negated inline immediate. 3298 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3299 // operations. 3300 if (isConstantFPZero(RHS)) 3301 return SDValue(); 3302 3303 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3304 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3305 unsigned Opposite = inverseMinMax(Opc); 3306 3307 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3308 if (!N0.hasOneUse()) 3309 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3310 return Res; 3311 } 3312 case ISD::FP_EXTEND: 3313 case ISD::FTRUNC: 3314 case ISD::FRINT: 3315 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3316 case ISD::FSIN: 3317 case AMDGPUISD::RCP: 3318 case AMDGPUISD::RCP_LEGACY: 3319 case AMDGPUISD::SIN_HW: { 3320 SDValue CvtSrc = N0.getOperand(0); 3321 if (CvtSrc.getOpcode() == ISD::FNEG) { 3322 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3323 // (fneg (rcp (fneg x))) -> (rcp x) 3324 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3325 } 3326 3327 if (!N0.hasOneUse()) 3328 return SDValue(); 3329 3330 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3331 // (fneg (rcp x)) -> (rcp (fneg x)) 3332 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3333 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3334 } 3335 case ISD::FP_ROUND: { 3336 SDValue CvtSrc = N0.getOperand(0); 3337 3338 if (CvtSrc.getOpcode() == ISD::FNEG) { 3339 // (fneg (fp_round (fneg x))) -> (fp_round x) 3340 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3341 CvtSrc.getOperand(0), N0.getOperand(1)); 3342 } 3343 3344 if (!N0.hasOneUse()) 3345 return SDValue(); 3346 3347 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3348 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3349 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3350 } 3351 case ISD::FP16_TO_FP: { 3352 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3353 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3354 // Put the fneg back as a legal source operation that can be matched later. 3355 SDLoc SL(N); 3356 3357 SDValue Src = N0.getOperand(0); 3358 EVT SrcVT = Src.getValueType(); 3359 3360 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3361 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3362 DAG.getConstant(0x8000, SL, SrcVT)); 3363 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3364 } 3365 default: 3366 return SDValue(); 3367 } 3368 } 3369 3370 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3371 DAGCombinerInfo &DCI) const { 3372 SelectionDAG &DAG = DCI.DAG; 3373 SDValue N0 = N->getOperand(0); 3374 3375 if (!N0.hasOneUse()) 3376 return SDValue(); 3377 3378 switch (N0.getOpcode()) { 3379 case ISD::FP16_TO_FP: { 3380 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3381 SDLoc SL(N); 3382 SDValue Src = N0.getOperand(0); 3383 EVT SrcVT = Src.getValueType(); 3384 3385 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3386 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3387 DAG.getConstant(0x7fff, SL, SrcVT)); 3388 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3389 } 3390 default: 3391 return SDValue(); 3392 } 3393 } 3394 3395 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3396 DAGCombinerInfo &DCI) const { 3397 SelectionDAG &DAG = DCI.DAG; 3398 SDLoc DL(N); 3399 3400 switch(N->getOpcode()) { 3401 default: 3402 break; 3403 case ISD::BITCAST: { 3404 EVT DestVT = N->getValueType(0); 3405 3406 // Push casts through vector builds. This helps avoid emitting a large 3407 // number of copies when materializing floating point vector constants. 3408 // 3409 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3410 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3411 if (DestVT.isVector()) { 3412 SDValue Src = N->getOperand(0); 3413 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3414 EVT SrcVT = Src.getValueType(); 3415 unsigned NElts = DestVT.getVectorNumElements(); 3416 3417 if (SrcVT.getVectorNumElements() == NElts) { 3418 EVT DestEltVT = DestVT.getVectorElementType(); 3419 3420 SmallVector<SDValue, 8> CastedElts; 3421 SDLoc SL(N); 3422 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3423 SDValue Elt = Src.getOperand(I); 3424 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3425 } 3426 3427 return DAG.getBuildVector(DestVT, SL, CastedElts); 3428 } 3429 } 3430 } 3431 3432 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3433 break; 3434 3435 // Fold bitcasts of constants. 3436 // 3437 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3438 // TODO: Generalize and move to DAGCombiner 3439 SDValue Src = N->getOperand(0); 3440 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3441 assert(Src.getValueType() == MVT::i64); 3442 SDLoc SL(N); 3443 uint64_t CVal = C->getZExtValue(); 3444 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3445 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3446 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3447 } 3448 3449 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3450 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3451 SDLoc SL(N); 3452 uint64_t CVal = Val.getZExtValue(); 3453 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3454 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3455 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3456 3457 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3458 } 3459 3460 break; 3461 } 3462 case ISD::SHL: { 3463 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3464 break; 3465 3466 return performShlCombine(N, DCI); 3467 } 3468 case ISD::SRL: { 3469 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3470 break; 3471 3472 return performSrlCombine(N, DCI); 3473 } 3474 case ISD::SRA: { 3475 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3476 break; 3477 3478 return performSraCombine(N, DCI); 3479 } 3480 case ISD::MUL: 3481 return performMulCombine(N, DCI); 3482 case ISD::MULHS: 3483 return performMulhsCombine(N, DCI); 3484 case ISD::MULHU: 3485 return performMulhuCombine(N, DCI); 3486 case AMDGPUISD::MUL_I24: 3487 case AMDGPUISD::MUL_U24: 3488 case AMDGPUISD::MULHI_I24: 3489 case AMDGPUISD::MULHI_U24: { 3490 // If the first call to simplify is successfull, then N may end up being 3491 // deleted, so we shouldn't call simplifyI24 again. 3492 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3493 return SDValue(); 3494 } 3495 case AMDGPUISD::MUL_LOHI_I24: 3496 case AMDGPUISD::MUL_LOHI_U24: 3497 return performMulLoHi24Combine(N, DCI); 3498 case ISD::SELECT: 3499 return performSelectCombine(N, DCI); 3500 case ISD::FNEG: 3501 return performFNegCombine(N, DCI); 3502 case ISD::FABS: 3503 return performFAbsCombine(N, DCI); 3504 case AMDGPUISD::BFE_I32: 3505 case AMDGPUISD::BFE_U32: { 3506 assert(!N->getValueType(0).isVector() && 3507 "Vector handling of BFE not implemented"); 3508 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3509 if (!Width) 3510 break; 3511 3512 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3513 if (WidthVal == 0) 3514 return DAG.getConstant(0, DL, MVT::i32); 3515 3516 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3517 if (!Offset) 3518 break; 3519 3520 SDValue BitsFrom = N->getOperand(0); 3521 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3522 3523 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3524 3525 if (OffsetVal == 0) { 3526 // This is already sign / zero extended, so try to fold away extra BFEs. 3527 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3528 3529 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3530 if (OpSignBits >= SignBits) 3531 return BitsFrom; 3532 3533 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3534 if (Signed) { 3535 // This is a sign_extend_inreg. Replace it to take advantage of existing 3536 // DAG Combines. If not eliminated, we will match back to BFE during 3537 // selection. 3538 3539 // TODO: The sext_inreg of extended types ends, although we can could 3540 // handle them in a single BFE. 3541 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3542 DAG.getValueType(SmallVT)); 3543 } 3544 3545 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3546 } 3547 3548 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3549 if (Signed) { 3550 return constantFoldBFE<int32_t>(DAG, 3551 CVal->getSExtValue(), 3552 OffsetVal, 3553 WidthVal, 3554 DL); 3555 } 3556 3557 return constantFoldBFE<uint32_t>(DAG, 3558 CVal->getZExtValue(), 3559 OffsetVal, 3560 WidthVal, 3561 DL); 3562 } 3563 3564 if ((OffsetVal + WidthVal) >= 32 && 3565 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3566 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3567 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3568 BitsFrom, ShiftVal); 3569 } 3570 3571 if (BitsFrom.hasOneUse()) { 3572 APInt Demanded = APInt::getBitsSet(32, 3573 OffsetVal, 3574 OffsetVal + WidthVal); 3575 3576 KnownBits Known; 3577 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3578 !DCI.isBeforeLegalizeOps()); 3579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3580 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3581 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3582 DCI.CommitTargetLoweringOpt(TLO); 3583 } 3584 } 3585 3586 break; 3587 } 3588 case ISD::LOAD: 3589 return performLoadCombine(N, DCI); 3590 case ISD::STORE: 3591 return performStoreCombine(N, DCI); 3592 case AMDGPUISD::CLAMP: 3593 return performClampCombine(N, DCI); 3594 case AMDGPUISD::RCP: { 3595 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3596 // XXX - Should this flush denormals? 3597 const APFloat &Val = CFP->getValueAPF(); 3598 APFloat One(Val.getSemantics(), "1.0"); 3599 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3600 } 3601 3602 break; 3603 } 3604 case ISD::AssertZext: 3605 case ISD::AssertSext: 3606 return performAssertSZExtCombine(N, DCI); 3607 } 3608 return SDValue(); 3609 } 3610 3611 //===----------------------------------------------------------------------===// 3612 // Helper functions 3613 //===----------------------------------------------------------------------===// 3614 3615 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3616 const TargetRegisterClass *RC, 3617 unsigned Reg, EVT VT, 3618 const SDLoc &SL, 3619 bool RawReg) const { 3620 MachineFunction &MF = DAG.getMachineFunction(); 3621 MachineRegisterInfo &MRI = MF.getRegInfo(); 3622 unsigned VReg; 3623 3624 if (!MRI.isLiveIn(Reg)) { 3625 VReg = MRI.createVirtualRegister(RC); 3626 MRI.addLiveIn(Reg, VReg); 3627 } else { 3628 VReg = MRI.getLiveInVirtReg(Reg); 3629 } 3630 3631 if (RawReg) 3632 return DAG.getRegister(VReg, VT); 3633 3634 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3635 } 3636 3637 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3638 EVT VT, 3639 const SDLoc &SL, 3640 int64_t Offset) const { 3641 MachineFunction &MF = DAG.getMachineFunction(); 3642 MachineFrameInfo &MFI = MF.getFrameInfo(); 3643 3644 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 3645 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 3646 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 3647 3648 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 3649 MachineMemOperand::MODereferenceable | 3650 MachineMemOperand::MOInvariant); 3651 } 3652 3653 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 3654 const SDLoc &SL, 3655 SDValue Chain, 3656 SDValue StackPtr, 3657 SDValue ArgVal, 3658 int64_t Offset) const { 3659 MachineFunction &MF = DAG.getMachineFunction(); 3660 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 3661 SDValue PtrOffset = DAG.getConstant(Offset, SL, MVT::i32); 3662 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, StackPtr, PtrOffset); 3663 3664 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 3665 MachineMemOperand::MODereferenceable); 3666 return Store; 3667 } 3668 3669 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 3670 const TargetRegisterClass *RC, 3671 EVT VT, const SDLoc &SL, 3672 const ArgDescriptor &Arg) const { 3673 assert(Arg && "Attempting to load missing argument"); 3674 3675 if (Arg.isRegister()) 3676 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 3677 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 3678 } 3679 3680 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3681 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3682 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3683 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3684 switch (Param) { 3685 case GRID_DIM: 3686 return ArgOffset; 3687 case GRID_OFFSET: 3688 return ArgOffset + 4; 3689 } 3690 llvm_unreachable("unexpected implicit parameter type"); 3691 } 3692 3693 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3694 3695 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3696 switch ((AMDGPUISD::NodeType)Opcode) { 3697 case AMDGPUISD::FIRST_NUMBER: break; 3698 // AMDIL DAG nodes 3699 NODE_NAME_CASE(UMUL); 3700 NODE_NAME_CASE(BRANCH_COND); 3701 3702 // AMDGPU DAG nodes 3703 NODE_NAME_CASE(IF) 3704 NODE_NAME_CASE(ELSE) 3705 NODE_NAME_CASE(LOOP) 3706 NODE_NAME_CASE(CALL) 3707 NODE_NAME_CASE(TC_RETURN) 3708 NODE_NAME_CASE(TRAP) 3709 NODE_NAME_CASE(RET_FLAG) 3710 NODE_NAME_CASE(RETURN_TO_EPILOG) 3711 NODE_NAME_CASE(ENDPGM) 3712 NODE_NAME_CASE(DWORDADDR) 3713 NODE_NAME_CASE(FRACT) 3714 NODE_NAME_CASE(SETCC) 3715 NODE_NAME_CASE(SETREG) 3716 NODE_NAME_CASE(FMA_W_CHAIN) 3717 NODE_NAME_CASE(FMUL_W_CHAIN) 3718 NODE_NAME_CASE(CLAMP) 3719 NODE_NAME_CASE(COS_HW) 3720 NODE_NAME_CASE(SIN_HW) 3721 NODE_NAME_CASE(FMAX_LEGACY) 3722 NODE_NAME_CASE(FMIN_LEGACY) 3723 NODE_NAME_CASE(FMAX3) 3724 NODE_NAME_CASE(SMAX3) 3725 NODE_NAME_CASE(UMAX3) 3726 NODE_NAME_CASE(FMIN3) 3727 NODE_NAME_CASE(SMIN3) 3728 NODE_NAME_CASE(UMIN3) 3729 NODE_NAME_CASE(FMED3) 3730 NODE_NAME_CASE(SMED3) 3731 NODE_NAME_CASE(UMED3) 3732 NODE_NAME_CASE(URECIP) 3733 NODE_NAME_CASE(DIV_SCALE) 3734 NODE_NAME_CASE(DIV_FMAS) 3735 NODE_NAME_CASE(DIV_FIXUP) 3736 NODE_NAME_CASE(FMAD_FTZ) 3737 NODE_NAME_CASE(TRIG_PREOP) 3738 NODE_NAME_CASE(RCP) 3739 NODE_NAME_CASE(RSQ) 3740 NODE_NAME_CASE(RCP_LEGACY) 3741 NODE_NAME_CASE(RSQ_LEGACY) 3742 NODE_NAME_CASE(FMUL_LEGACY) 3743 NODE_NAME_CASE(RSQ_CLAMP) 3744 NODE_NAME_CASE(LDEXP) 3745 NODE_NAME_CASE(FP_CLASS) 3746 NODE_NAME_CASE(DOT4) 3747 NODE_NAME_CASE(CARRY) 3748 NODE_NAME_CASE(BORROW) 3749 NODE_NAME_CASE(BFE_U32) 3750 NODE_NAME_CASE(BFE_I32) 3751 NODE_NAME_CASE(BFI) 3752 NODE_NAME_CASE(BFM) 3753 NODE_NAME_CASE(FFBH_U32) 3754 NODE_NAME_CASE(FFBH_I32) 3755 NODE_NAME_CASE(MUL_U24) 3756 NODE_NAME_CASE(MUL_I24) 3757 NODE_NAME_CASE(MULHI_U24) 3758 NODE_NAME_CASE(MULHI_I24) 3759 NODE_NAME_CASE(MUL_LOHI_U24) 3760 NODE_NAME_CASE(MUL_LOHI_I24) 3761 NODE_NAME_CASE(MAD_U24) 3762 NODE_NAME_CASE(MAD_I24) 3763 NODE_NAME_CASE(TEXTURE_FETCH) 3764 NODE_NAME_CASE(EXPORT) 3765 NODE_NAME_CASE(EXPORT_DONE) 3766 NODE_NAME_CASE(R600_EXPORT) 3767 NODE_NAME_CASE(CONST_ADDRESS) 3768 NODE_NAME_CASE(REGISTER_LOAD) 3769 NODE_NAME_CASE(REGISTER_STORE) 3770 NODE_NAME_CASE(SAMPLE) 3771 NODE_NAME_CASE(SAMPLEB) 3772 NODE_NAME_CASE(SAMPLED) 3773 NODE_NAME_CASE(SAMPLEL) 3774 NODE_NAME_CASE(CVT_F32_UBYTE0) 3775 NODE_NAME_CASE(CVT_F32_UBYTE1) 3776 NODE_NAME_CASE(CVT_F32_UBYTE2) 3777 NODE_NAME_CASE(CVT_F32_UBYTE3) 3778 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3779 NODE_NAME_CASE(FP_TO_FP16) 3780 NODE_NAME_CASE(FP16_ZEXT) 3781 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3782 NODE_NAME_CASE(CONST_DATA_PTR) 3783 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3784 NODE_NAME_CASE(KILL) 3785 NODE_NAME_CASE(DUMMY_CHAIN) 3786 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3787 NODE_NAME_CASE(INIT_EXEC) 3788 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 3789 NODE_NAME_CASE(SENDMSG) 3790 NODE_NAME_CASE(SENDMSGHALT) 3791 NODE_NAME_CASE(INTERP_MOV) 3792 NODE_NAME_CASE(INTERP_P1) 3793 NODE_NAME_CASE(INTERP_P2) 3794 NODE_NAME_CASE(STORE_MSKOR) 3795 NODE_NAME_CASE(LOAD_CONSTANT) 3796 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3797 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 3798 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 3799 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3800 NODE_NAME_CASE(ATOMIC_INC) 3801 NODE_NAME_CASE(ATOMIC_DEC) 3802 NODE_NAME_CASE(BUFFER_LOAD) 3803 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3804 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3805 } 3806 return nullptr; 3807 } 3808 3809 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3810 SelectionDAG &DAG, int Enabled, 3811 int &RefinementSteps, 3812 bool &UseOneConstNR, 3813 bool Reciprocal) const { 3814 EVT VT = Operand.getValueType(); 3815 3816 if (VT == MVT::f32) { 3817 RefinementSteps = 0; 3818 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3819 } 3820 3821 // TODO: There is also f64 rsq instruction, but the documentation is less 3822 // clear on its precision. 3823 3824 return SDValue(); 3825 } 3826 3827 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3828 SelectionDAG &DAG, int Enabled, 3829 int &RefinementSteps) const { 3830 EVT VT = Operand.getValueType(); 3831 3832 if (VT == MVT::f32) { 3833 // Reciprocal, < 1 ulp error. 3834 // 3835 // This reciprocal approximation converges to < 0.5 ulp error with one 3836 // newton rhapson performed with two fused multiple adds (FMAs). 3837 3838 RefinementSteps = 0; 3839 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3840 } 3841 3842 // TODO: There is also f64 rcp instruction, but the documentation is less 3843 // clear on its precision. 3844 3845 return SDValue(); 3846 } 3847 3848 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3849 const SDValue Op, KnownBits &Known, 3850 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 3851 3852 Known.resetAll(); // Don't know anything. 3853 3854 unsigned Opc = Op.getOpcode(); 3855 3856 switch (Opc) { 3857 default: 3858 break; 3859 case AMDGPUISD::CARRY: 3860 case AMDGPUISD::BORROW: { 3861 Known.Zero = APInt::getHighBitsSet(32, 31); 3862 break; 3863 } 3864 3865 case AMDGPUISD::BFE_I32: 3866 case AMDGPUISD::BFE_U32: { 3867 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3868 if (!CWidth) 3869 return; 3870 3871 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3872 3873 if (Opc == AMDGPUISD::BFE_U32) 3874 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 3875 3876 break; 3877 } 3878 case AMDGPUISD::FP_TO_FP16: 3879 case AMDGPUISD::FP16_ZEXT: { 3880 unsigned BitWidth = Known.getBitWidth(); 3881 3882 // High bits are zero. 3883 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 3884 break; 3885 } 3886 case AMDGPUISD::MUL_U24: 3887 case AMDGPUISD::MUL_I24: { 3888 KnownBits LHSKnown, RHSKnown; 3889 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 3890 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 3891 3892 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 3893 RHSKnown.countMinTrailingZeros(); 3894 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 3895 3896 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 3897 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 3898 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 3899 if (MaxValBits >= 32) 3900 break; 3901 bool Negative = false; 3902 if (Opc == AMDGPUISD::MUL_I24) { 3903 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 3904 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 3905 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 3906 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 3907 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 3908 break; 3909 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 3910 } 3911 if (Negative) 3912 Known.One.setHighBits(32 - MaxValBits); 3913 else 3914 Known.Zero.setHighBits(32 - MaxValBits); 3915 break; 3916 } 3917 } 3918 } 3919 3920 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3921 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3922 unsigned Depth) const { 3923 switch (Op.getOpcode()) { 3924 case AMDGPUISD::BFE_I32: { 3925 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3926 if (!Width) 3927 return 1; 3928 3929 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3930 if (!isNullConstant(Op.getOperand(1))) 3931 return SignBits; 3932 3933 // TODO: Could probably figure something out with non-0 offsets. 3934 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3935 return std::max(SignBits, Op0SignBits); 3936 } 3937 3938 case AMDGPUISD::BFE_U32: { 3939 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3940 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3941 } 3942 3943 case AMDGPUISD::CARRY: 3944 case AMDGPUISD::BORROW: 3945 return 31; 3946 case AMDGPUISD::FP_TO_FP16: 3947 case AMDGPUISD::FP16_ZEXT: 3948 return 16; 3949 default: 3950 return 1; 3951 } 3952 } 3953