1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 #include "AMDGPUGenCallingConv.inc" 31 32 static cl::opt<bool> AMDGPUBypassSlowDiv( 33 "amdgpu-bypass-slow-div", 34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 35 cl::init(true)); 36 37 // Find a larger type to do a load / store of a vector with. 38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 39 unsigned StoreSize = VT.getStoreSizeInBits(); 40 if (StoreSize <= 32) 41 return EVT::getIntegerVT(Ctx, StoreSize); 42 43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 45 } 46 47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 48 return DAG.computeKnownBits(Op).countMaxActiveBits(); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 52 // In order for this to be a signed 24-bit value, bit 23, must 53 // be a sign bit. 54 return DAG.ComputeMinSignedBits(Op); 55 } 56 57 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 58 const AMDGPUSubtarget &STI) 59 : TargetLowering(TM), Subtarget(&STI) { 60 // Lower floating point store/load to integer store/load to reduce the number 61 // of patterns in tablegen. 62 setOperationAction(ISD::LOAD, MVT::f32, Promote); 63 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 64 65 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 66 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 67 68 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 69 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 70 71 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 72 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 73 74 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 76 77 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 79 80 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 82 83 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 85 86 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 88 89 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 91 92 setOperationAction(ISD::LOAD, MVT::i64, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 94 95 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 97 98 setOperationAction(ISD::LOAD, MVT::f64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 106 107 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 109 110 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 188 189 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 193 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 195 196 setOperationAction(ISD::STORE, MVT::f32, Promote); 197 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 198 199 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 200 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 201 202 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 203 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 204 205 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 206 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 207 208 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 209 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 210 211 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 212 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 213 214 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 215 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 216 217 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 218 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 219 220 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 221 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 222 223 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 224 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 225 226 setOperationAction(ISD::STORE, MVT::i64, Promote); 227 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 228 229 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 230 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 231 232 setOperationAction(ISD::STORE, MVT::f64, Promote); 233 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 234 235 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 236 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 237 238 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 239 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 240 241 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 243 244 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 246 247 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 249 250 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 252 253 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 254 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 255 256 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 258 259 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 261 262 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 263 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 264 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 265 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 266 267 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 268 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 269 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 270 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 271 272 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 273 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 274 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 275 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 276 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 277 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 278 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 279 280 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 281 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 282 283 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 284 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 285 286 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 287 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 288 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 289 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 290 291 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 292 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 293 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 295 296 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 297 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 298 299 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 300 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 301 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 302 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 303 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 304 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 306 307 setOperationAction(ISD::Constant, MVT::i32, Legal); 308 setOperationAction(ISD::Constant, MVT::i64, Legal); 309 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 310 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 311 312 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 313 setOperationAction(ISD::BRIND, MVT::Other, Expand); 314 315 // This is totally unsupported, just custom lower to produce an error. 316 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 317 318 // Library functions. These default to Expand, but we have instructions 319 // for them. 320 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 321 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 322 setOperationAction(ISD::FPOW, MVT::f32, Legal); 323 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 324 setOperationAction(ISD::FABS, MVT::f32, Legal); 325 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 326 setOperationAction(ISD::FRINT, MVT::f32, Legal); 327 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 328 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 330 331 setOperationAction(ISD::FROUND, MVT::f32, Custom); 332 setOperationAction(ISD::FROUND, MVT::f64, Custom); 333 334 setOperationAction(ISD::FLOG, MVT::f32, Custom); 335 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 336 setOperationAction(ISD::FEXP, MVT::f32, Custom); 337 338 339 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 340 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 341 342 setOperationAction(ISD::FREM, MVT::f16, Custom); 343 setOperationAction(ISD::FREM, MVT::f32, Custom); 344 setOperationAction(ISD::FREM, MVT::f64, Custom); 345 346 // Expand to fneg + fadd. 347 setOperationAction(ISD::FSUB, MVT::f64, Expand); 348 349 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 350 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 351 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 352 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 361 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 362 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 363 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 364 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 391 392 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 393 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 394 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 395 396 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 397 for (MVT VT : ScalarIntVTs) { 398 // These should use [SU]DIVREM, so set them to expand 399 setOperationAction(ISD::SDIV, VT, Expand); 400 setOperationAction(ISD::UDIV, VT, Expand); 401 setOperationAction(ISD::SREM, VT, Expand); 402 setOperationAction(ISD::UREM, VT, Expand); 403 404 // GPU does not have divrem function for signed or unsigned. 405 setOperationAction(ISD::SDIVREM, VT, Custom); 406 setOperationAction(ISD::UDIVREM, VT, Custom); 407 408 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 409 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 410 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 411 412 setOperationAction(ISD::BSWAP, VT, Expand); 413 setOperationAction(ISD::CTTZ, VT, Expand); 414 setOperationAction(ISD::CTLZ, VT, Expand); 415 416 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 417 setOperationAction(ISD::ADDC, VT, Legal); 418 setOperationAction(ISD::SUBC, VT, Legal); 419 setOperationAction(ISD::ADDE, VT, Legal); 420 setOperationAction(ISD::SUBE, VT, Legal); 421 } 422 423 // The hardware supports 32-bit FSHR, but not FSHL. 424 setOperationAction(ISD::FSHR, MVT::i32, Legal); 425 426 // The hardware supports 32-bit ROTR, but not ROTL. 427 setOperationAction(ISD::ROTL, MVT::i32, Expand); 428 setOperationAction(ISD::ROTL, MVT::i64, Expand); 429 setOperationAction(ISD::ROTR, MVT::i64, Expand); 430 431 setOperationAction(ISD::MULHU, MVT::i16, Expand); 432 setOperationAction(ISD::MULHS, MVT::i16, Expand); 433 434 setOperationAction(ISD::MUL, MVT::i64, Expand); 435 setOperationAction(ISD::MULHU, MVT::i64, Expand); 436 setOperationAction(ISD::MULHS, MVT::i64, Expand); 437 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 438 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 439 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 440 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 441 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 442 443 setOperationAction(ISD::SMIN, MVT::i32, Legal); 444 setOperationAction(ISD::UMIN, MVT::i32, Legal); 445 setOperationAction(ISD::SMAX, MVT::i32, Legal); 446 setOperationAction(ISD::UMAX, MVT::i32, Legal); 447 448 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 449 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 450 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 451 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 452 453 static const MVT::SimpleValueType VectorIntTypes[] = { 454 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 455 456 for (MVT VT : VectorIntTypes) { 457 // Expand the following operations for the current type by default. 458 setOperationAction(ISD::ADD, VT, Expand); 459 setOperationAction(ISD::AND, VT, Expand); 460 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 461 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 462 setOperationAction(ISD::MUL, VT, Expand); 463 setOperationAction(ISD::MULHU, VT, Expand); 464 setOperationAction(ISD::MULHS, VT, Expand); 465 setOperationAction(ISD::OR, VT, Expand); 466 setOperationAction(ISD::SHL, VT, Expand); 467 setOperationAction(ISD::SRA, VT, Expand); 468 setOperationAction(ISD::SRL, VT, Expand); 469 setOperationAction(ISD::ROTL, VT, Expand); 470 setOperationAction(ISD::ROTR, VT, Expand); 471 setOperationAction(ISD::SUB, VT, Expand); 472 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 473 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 474 setOperationAction(ISD::SDIV, VT, Expand); 475 setOperationAction(ISD::UDIV, VT, Expand); 476 setOperationAction(ISD::SREM, VT, Expand); 477 setOperationAction(ISD::UREM, VT, Expand); 478 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 479 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 480 setOperationAction(ISD::SDIVREM, VT, Expand); 481 setOperationAction(ISD::UDIVREM, VT, Expand); 482 setOperationAction(ISD::SELECT, VT, Expand); 483 setOperationAction(ISD::VSELECT, VT, Expand); 484 setOperationAction(ISD::SELECT_CC, VT, Expand); 485 setOperationAction(ISD::XOR, VT, Expand); 486 setOperationAction(ISD::BSWAP, VT, Expand); 487 setOperationAction(ISD::CTPOP, VT, Expand); 488 setOperationAction(ISD::CTTZ, VT, Expand); 489 setOperationAction(ISD::CTLZ, VT, Expand); 490 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 491 setOperationAction(ISD::SETCC, VT, Expand); 492 } 493 494 static const MVT::SimpleValueType FloatVectorTypes[] = { 495 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 496 497 for (MVT VT : FloatVectorTypes) { 498 setOperationAction(ISD::FABS, VT, Expand); 499 setOperationAction(ISD::FMINNUM, VT, Expand); 500 setOperationAction(ISD::FMAXNUM, VT, Expand); 501 setOperationAction(ISD::FADD, VT, Expand); 502 setOperationAction(ISD::FCEIL, VT, Expand); 503 setOperationAction(ISD::FCOS, VT, Expand); 504 setOperationAction(ISD::FDIV, VT, Expand); 505 setOperationAction(ISD::FEXP2, VT, Expand); 506 setOperationAction(ISD::FEXP, VT, Expand); 507 setOperationAction(ISD::FLOG2, VT, Expand); 508 setOperationAction(ISD::FREM, VT, Expand); 509 setOperationAction(ISD::FLOG, VT, Expand); 510 setOperationAction(ISD::FLOG10, VT, Expand); 511 setOperationAction(ISD::FPOW, VT, Expand); 512 setOperationAction(ISD::FFLOOR, VT, Expand); 513 setOperationAction(ISD::FTRUNC, VT, Expand); 514 setOperationAction(ISD::FMUL, VT, Expand); 515 setOperationAction(ISD::FMA, VT, Expand); 516 setOperationAction(ISD::FRINT, VT, Expand); 517 setOperationAction(ISD::FNEARBYINT, VT, Expand); 518 setOperationAction(ISD::FSQRT, VT, Expand); 519 setOperationAction(ISD::FSIN, VT, Expand); 520 setOperationAction(ISD::FSUB, VT, Expand); 521 setOperationAction(ISD::FNEG, VT, Expand); 522 setOperationAction(ISD::VSELECT, VT, Expand); 523 setOperationAction(ISD::SELECT_CC, VT, Expand); 524 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 525 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 526 setOperationAction(ISD::SETCC, VT, Expand); 527 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 528 } 529 530 // This causes using an unrolled select operation rather than expansion with 531 // bit operations. This is in general better, but the alternative using BFI 532 // instructions may be better if the select sources are SGPRs. 533 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 534 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 535 536 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 537 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 538 539 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 540 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 541 542 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 543 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 544 545 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 546 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 547 548 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 549 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 550 551 // There are no libcalls of any kind. 552 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 553 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 554 555 setSchedulingPreference(Sched::RegPressure); 556 setJumpIsExpensive(true); 557 558 // FIXME: This is only partially true. If we have to do vector compares, any 559 // SGPR pair can be a condition register. If we have a uniform condition, we 560 // are better off doing SALU operations, where there is only one SCC. For now, 561 // we don't have a way of knowing during instruction selection if a condition 562 // will be uniform and we always use vector compares. Assume we are using 563 // vector compares until that is fixed. 564 setHasMultipleConditionRegisters(true); 565 566 setMinCmpXchgSizeInBits(32); 567 setSupportsUnalignedAtomics(false); 568 569 PredictableSelectIsExpensive = false; 570 571 // We want to find all load dependencies for long chains of stores to enable 572 // merging into very wide vectors. The problem is with vectors with > 4 573 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 574 // vectors are a legal type, even though we have to split the loads 575 // usually. When we can more precisely specify load legality per address 576 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 577 // smarter so that they can figure out what to do in 2 iterations without all 578 // N > 4 stores on the same chain. 579 GatherAllAliasesMaxDepth = 16; 580 581 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 582 // about these during lowering. 583 MaxStoresPerMemcpy = 0xffffffff; 584 MaxStoresPerMemmove = 0xffffffff; 585 MaxStoresPerMemset = 0xffffffff; 586 587 // The expansion for 64-bit division is enormous. 588 if (AMDGPUBypassSlowDiv) 589 addBypassSlowDiv(64, 32); 590 591 setTargetDAGCombine(ISD::BITCAST); 592 setTargetDAGCombine(ISD::SHL); 593 setTargetDAGCombine(ISD::SRA); 594 setTargetDAGCombine(ISD::SRL); 595 setTargetDAGCombine(ISD::TRUNCATE); 596 setTargetDAGCombine(ISD::MUL); 597 setTargetDAGCombine(ISD::MULHU); 598 setTargetDAGCombine(ISD::MULHS); 599 setTargetDAGCombine(ISD::SELECT); 600 setTargetDAGCombine(ISD::SELECT_CC); 601 setTargetDAGCombine(ISD::STORE); 602 setTargetDAGCombine(ISD::FADD); 603 setTargetDAGCombine(ISD::FSUB); 604 setTargetDAGCombine(ISD::FNEG); 605 setTargetDAGCombine(ISD::FABS); 606 setTargetDAGCombine(ISD::AssertZext); 607 setTargetDAGCombine(ISD::AssertSext); 608 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 609 } 610 611 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 612 if (getTargetMachine().Options.NoSignedZerosFPMath) 613 return true; 614 615 const auto Flags = Op.getNode()->getFlags(); 616 if (Flags.hasNoSignedZeros()) 617 return true; 618 619 return false; 620 } 621 622 //===----------------------------------------------------------------------===// 623 // Target Information 624 //===----------------------------------------------------------------------===// 625 626 LLVM_READNONE 627 static bool fnegFoldsIntoOp(unsigned Opc) { 628 switch (Opc) { 629 case ISD::FADD: 630 case ISD::FSUB: 631 case ISD::FMUL: 632 case ISD::FMA: 633 case ISD::FMAD: 634 case ISD::FMINNUM: 635 case ISD::FMAXNUM: 636 case ISD::FMINNUM_IEEE: 637 case ISD::FMAXNUM_IEEE: 638 case ISD::FSIN: 639 case ISD::FTRUNC: 640 case ISD::FRINT: 641 case ISD::FNEARBYINT: 642 case ISD::FCANONICALIZE: 643 case AMDGPUISD::RCP: 644 case AMDGPUISD::RCP_LEGACY: 645 case AMDGPUISD::RCP_IFLAG: 646 case AMDGPUISD::SIN_HW: 647 case AMDGPUISD::FMUL_LEGACY: 648 case AMDGPUISD::FMIN_LEGACY: 649 case AMDGPUISD::FMAX_LEGACY: 650 case AMDGPUISD::FMED3: 651 // TODO: handle llvm.amdgcn.fma.legacy 652 return true; 653 default: 654 return false; 655 } 656 } 657 658 /// \p returns true if the operation will definitely need to use a 64-bit 659 /// encoding, and thus will use a VOP3 encoding regardless of the source 660 /// modifiers. 661 LLVM_READONLY 662 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 663 return N->getNumOperands() > 2 || VT == MVT::f64; 664 } 665 666 // Most FP instructions support source modifiers, but this could be refined 667 // slightly. 668 LLVM_READONLY 669 static bool hasSourceMods(const SDNode *N) { 670 if (isa<MemSDNode>(N)) 671 return false; 672 673 switch (N->getOpcode()) { 674 case ISD::CopyToReg: 675 case ISD::SELECT: 676 case ISD::FDIV: 677 case ISD::FREM: 678 case ISD::INLINEASM: 679 case ISD::INLINEASM_BR: 680 case AMDGPUISD::DIV_SCALE: 681 case ISD::INTRINSIC_W_CHAIN: 682 683 // TODO: Should really be looking at the users of the bitcast. These are 684 // problematic because bitcasts are used to legalize all stores to integer 685 // types. 686 case ISD::BITCAST: 687 return false; 688 case ISD::INTRINSIC_WO_CHAIN: { 689 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 690 case Intrinsic::amdgcn_interp_p1: 691 case Intrinsic::amdgcn_interp_p2: 692 case Intrinsic::amdgcn_interp_mov: 693 case Intrinsic::amdgcn_interp_p1_f16: 694 case Intrinsic::amdgcn_interp_p2_f16: 695 return false; 696 default: 697 return true; 698 } 699 } 700 default: 701 return true; 702 } 703 } 704 705 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 706 unsigned CostThreshold) { 707 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 708 // it is truly free to use a source modifier in all cases. If there are 709 // multiple users but for each one will necessitate using VOP3, there will be 710 // a code size increase. Try to avoid increasing code size unless we know it 711 // will save on the instruction count. 712 unsigned NumMayIncreaseSize = 0; 713 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 714 715 // XXX - Should this limit number of uses to check? 716 for (const SDNode *U : N->uses()) { 717 if (!hasSourceMods(U)) 718 return false; 719 720 if (!opMustUseVOP3Encoding(U, VT)) { 721 if (++NumMayIncreaseSize > CostThreshold) 722 return false; 723 } 724 } 725 726 return true; 727 } 728 729 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 730 ISD::NodeType ExtendKind) const { 731 assert(!VT.isVector() && "only scalar expected"); 732 733 // Round to the next multiple of 32-bits. 734 unsigned Size = VT.getSizeInBits(); 735 if (Size <= 32) 736 return MVT::i32; 737 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 738 } 739 740 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 741 return MVT::i32; 742 } 743 744 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 745 return true; 746 } 747 748 // The backend supports 32 and 64 bit floating point immediates. 749 // FIXME: Why are we reporting vectors of FP immediates as legal? 750 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 751 bool ForCodeSize) const { 752 EVT ScalarVT = VT.getScalarType(); 753 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 754 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 755 } 756 757 // We don't want to shrink f64 / f32 constants. 758 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 759 EVT ScalarVT = VT.getScalarType(); 760 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 761 } 762 763 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 764 ISD::LoadExtType ExtTy, 765 EVT NewVT) const { 766 // TODO: This may be worth removing. Check regression tests for diffs. 767 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 768 return false; 769 770 unsigned NewSize = NewVT.getStoreSizeInBits(); 771 772 // If we are reducing to a 32-bit load or a smaller multi-dword load, 773 // this is always better. 774 if (NewSize >= 32) 775 return true; 776 777 EVT OldVT = N->getValueType(0); 778 unsigned OldSize = OldVT.getStoreSizeInBits(); 779 780 MemSDNode *MN = cast<MemSDNode>(N); 781 unsigned AS = MN->getAddressSpace(); 782 // Do not shrink an aligned scalar load to sub-dword. 783 // Scalar engine cannot do sub-dword loads. 784 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 785 (AS == AMDGPUAS::CONSTANT_ADDRESS || 786 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 787 (isa<LoadSDNode>(N) && 788 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 789 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 790 return false; 791 792 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 793 // extloads, so doing one requires using a buffer_load. In cases where we 794 // still couldn't use a scalar load, using the wider load shouldn't really 795 // hurt anything. 796 797 // If the old size already had to be an extload, there's no harm in continuing 798 // to reduce the width. 799 return (OldSize < 32); 800 } 801 802 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 803 const SelectionDAG &DAG, 804 const MachineMemOperand &MMO) const { 805 806 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 807 808 if (LoadTy.getScalarType() == MVT::i32) 809 return false; 810 811 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 812 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 813 814 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 815 return false; 816 817 bool Fast = false; 818 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 819 CastTy, MMO, &Fast) && 820 Fast; 821 } 822 823 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 824 // profitable with the expansion for 64-bit since it's generally good to 825 // speculate things. 826 // FIXME: These should really have the size as a parameter. 827 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 828 return true; 829 } 830 831 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 832 return true; 833 } 834 835 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 836 switch (N->getOpcode()) { 837 case ISD::EntryToken: 838 case ISD::TokenFactor: 839 return true; 840 case ISD::INTRINSIC_WO_CHAIN: { 841 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 842 switch (IntrID) { 843 case Intrinsic::amdgcn_readfirstlane: 844 case Intrinsic::amdgcn_readlane: 845 return true; 846 } 847 return false; 848 } 849 case ISD::LOAD: 850 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 851 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 852 return true; 853 return false; 854 } 855 return false; 856 } 857 858 SDValue AMDGPUTargetLowering::getNegatedExpression( 859 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 860 NegatibleCost &Cost, unsigned Depth) const { 861 862 switch (Op.getOpcode()) { 863 case ISD::FMA: 864 case ISD::FMAD: { 865 // Negating a fma is not free if it has users without source mods. 866 if (!allUsesHaveSourceMods(Op.getNode())) 867 return SDValue(); 868 break; 869 } 870 default: 871 break; 872 } 873 874 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 875 ForCodeSize, Cost, Depth); 876 } 877 878 //===---------------------------------------------------------------------===// 879 // Target Properties 880 //===---------------------------------------------------------------------===// 881 882 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 883 assert(VT.isFloatingPoint()); 884 885 // Packed operations do not have a fabs modifier. 886 return VT == MVT::f32 || VT == MVT::f64 || 887 (Subtarget->has16BitInsts() && VT == MVT::f16); 888 } 889 890 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 891 assert(VT.isFloatingPoint()); 892 // Report this based on the end legalized type. 893 VT = VT.getScalarType(); 894 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 895 } 896 897 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 898 unsigned NumElem, 899 unsigned AS) const { 900 return true; 901 } 902 903 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 904 // There are few operations which truly have vector input operands. Any vector 905 // operation is going to involve operations on each component, and a 906 // build_vector will be a copy per element, so it always makes sense to use a 907 // build_vector input in place of the extracted element to avoid a copy into a 908 // super register. 909 // 910 // We should probably only do this if all users are extracts only, but this 911 // should be the common case. 912 return true; 913 } 914 915 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 916 // Truncate is just accessing a subregister. 917 918 unsigned SrcSize = Source.getSizeInBits(); 919 unsigned DestSize = Dest.getSizeInBits(); 920 921 return DestSize < SrcSize && DestSize % 32 == 0 ; 922 } 923 924 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 925 // Truncate is just accessing a subregister. 926 927 unsigned SrcSize = Source->getScalarSizeInBits(); 928 unsigned DestSize = Dest->getScalarSizeInBits(); 929 930 if (DestSize== 16 && Subtarget->has16BitInsts()) 931 return SrcSize >= 32; 932 933 return DestSize < SrcSize && DestSize % 32 == 0; 934 } 935 936 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 937 unsigned SrcSize = Src->getScalarSizeInBits(); 938 unsigned DestSize = Dest->getScalarSizeInBits(); 939 940 if (SrcSize == 16 && Subtarget->has16BitInsts()) 941 return DestSize >= 32; 942 943 return SrcSize == 32 && DestSize == 64; 944 } 945 946 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 947 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 948 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 949 // this will enable reducing 64-bit operations the 32-bit, which is always 950 // good. 951 952 if (Src == MVT::i16) 953 return Dest == MVT::i32 ||Dest == MVT::i64 ; 954 955 return Src == MVT::i32 && Dest == MVT::i64; 956 } 957 958 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 959 return isZExtFree(Val.getValueType(), VT2); 960 } 961 962 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 963 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 964 // limited number of native 64-bit operations. Shrinking an operation to fit 965 // in a single 32-bit register should always be helpful. As currently used, 966 // this is much less general than the name suggests, and is only used in 967 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 968 // not profitable, and may actually be harmful. 969 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 970 } 971 972 //===---------------------------------------------------------------------===// 973 // TargetLowering Callbacks 974 //===---------------------------------------------------------------------===// 975 976 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 977 bool IsVarArg) { 978 switch (CC) { 979 case CallingConv::AMDGPU_VS: 980 case CallingConv::AMDGPU_GS: 981 case CallingConv::AMDGPU_PS: 982 case CallingConv::AMDGPU_CS: 983 case CallingConv::AMDGPU_HS: 984 case CallingConv::AMDGPU_ES: 985 case CallingConv::AMDGPU_LS: 986 return CC_AMDGPU; 987 case CallingConv::C: 988 case CallingConv::Fast: 989 case CallingConv::Cold: 990 return CC_AMDGPU_Func; 991 case CallingConv::AMDGPU_Gfx: 992 return CC_SI_Gfx; 993 case CallingConv::AMDGPU_KERNEL: 994 case CallingConv::SPIR_KERNEL: 995 default: 996 report_fatal_error("Unsupported calling convention for call"); 997 } 998 } 999 1000 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 1001 bool IsVarArg) { 1002 switch (CC) { 1003 case CallingConv::AMDGPU_KERNEL: 1004 case CallingConv::SPIR_KERNEL: 1005 llvm_unreachable("kernels should not be handled here"); 1006 case CallingConv::AMDGPU_VS: 1007 case CallingConv::AMDGPU_GS: 1008 case CallingConv::AMDGPU_PS: 1009 case CallingConv::AMDGPU_CS: 1010 case CallingConv::AMDGPU_HS: 1011 case CallingConv::AMDGPU_ES: 1012 case CallingConv::AMDGPU_LS: 1013 return RetCC_SI_Shader; 1014 case CallingConv::AMDGPU_Gfx: 1015 return RetCC_SI_Gfx; 1016 case CallingConv::C: 1017 case CallingConv::Fast: 1018 case CallingConv::Cold: 1019 return RetCC_AMDGPU_Func; 1020 default: 1021 report_fatal_error("Unsupported calling convention."); 1022 } 1023 } 1024 1025 /// The SelectionDAGBuilder will automatically promote function arguments 1026 /// with illegal types. However, this does not work for the AMDGPU targets 1027 /// since the function arguments are stored in memory as these illegal types. 1028 /// In order to handle this properly we need to get the original types sizes 1029 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1030 /// passing them to AnalyzeFormalArguments() 1031 1032 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1033 /// input values across multiple registers. Each item in the Ins array 1034 /// represents a single value that will be stored in registers. Ins[x].VT is 1035 /// the value type of the value that will be stored in the register, so 1036 /// whatever SDNode we lower the argument to needs to be this type. 1037 /// 1038 /// In order to correctly lower the arguments we need to know the size of each 1039 /// argument. Since Ins[x].VT gives us the size of the register that will 1040 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1041 /// for the original function argument so that we can deduce the correct memory 1042 /// type to use for Ins[x]. In most cases the correct memory type will be 1043 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1044 /// we have a kernel argument of type v8i8, this argument will be split into 1045 /// 8 parts and each part will be represented by its own item in the Ins array. 1046 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1047 /// the argument before it was split. From this, we deduce that the memory type 1048 /// for each individual part is i8. We pass the memory type as LocVT to the 1049 /// calling convention analysis function and the register type (Ins[x].VT) as 1050 /// the ValVT. 1051 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1052 CCState &State, 1053 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1054 const MachineFunction &MF = State.getMachineFunction(); 1055 const Function &Fn = MF.getFunction(); 1056 LLVMContext &Ctx = Fn.getParent()->getContext(); 1057 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1058 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1059 CallingConv::ID CC = Fn.getCallingConv(); 1060 1061 Align MaxAlign = Align(1); 1062 uint64_t ExplicitArgOffset = 0; 1063 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1064 1065 unsigned InIndex = 0; 1066 1067 for (const Argument &Arg : Fn.args()) { 1068 const bool IsByRef = Arg.hasByRefAttr(); 1069 Type *BaseArgTy = Arg.getType(); 1070 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1071 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1072 if (!Alignment) 1073 Alignment = DL.getABITypeAlign(MemArgTy); 1074 MaxAlign = max(Alignment, MaxAlign); 1075 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1076 1077 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1078 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1079 1080 // We're basically throwing away everything passed into us and starting over 1081 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1082 // to us as computed in Ins. 1083 // 1084 // We also need to figure out what type legalization is trying to do to get 1085 // the correct memory offsets. 1086 1087 SmallVector<EVT, 16> ValueVTs; 1088 SmallVector<uint64_t, 16> Offsets; 1089 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1090 1091 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1092 Value != NumValues; ++Value) { 1093 uint64_t BasePartOffset = Offsets[Value]; 1094 1095 EVT ArgVT = ValueVTs[Value]; 1096 EVT MemVT = ArgVT; 1097 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1098 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1099 1100 if (NumRegs == 1) { 1101 // This argument is not split, so the IR type is the memory type. 1102 if (ArgVT.isExtended()) { 1103 // We have an extended type, like i24, so we should just use the 1104 // register type. 1105 MemVT = RegisterVT; 1106 } else { 1107 MemVT = ArgVT; 1108 } 1109 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1110 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1111 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1112 // We have a vector value which has been split into a vector with 1113 // the same scalar type, but fewer elements. This should handle 1114 // all the floating-point vector types. 1115 MemVT = RegisterVT; 1116 } else if (ArgVT.isVector() && 1117 ArgVT.getVectorNumElements() == NumRegs) { 1118 // This arg has been split so that each element is stored in a separate 1119 // register. 1120 MemVT = ArgVT.getScalarType(); 1121 } else if (ArgVT.isExtended()) { 1122 // We have an extended type, like i65. 1123 MemVT = RegisterVT; 1124 } else { 1125 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1126 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1127 if (RegisterVT.isInteger()) { 1128 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1129 } else if (RegisterVT.isVector()) { 1130 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1131 unsigned NumElements = RegisterVT.getVectorNumElements(); 1132 assert(MemoryBits % NumElements == 0); 1133 // This vector type has been split into another vector type with 1134 // a different elements size. 1135 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1136 MemoryBits / NumElements); 1137 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1138 } else { 1139 llvm_unreachable("cannot deduce memory type."); 1140 } 1141 } 1142 1143 // Convert one element vectors to scalar. 1144 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1145 MemVT = MemVT.getScalarType(); 1146 1147 // Round up vec3/vec5 argument. 1148 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1149 assert(MemVT.getVectorNumElements() == 3 || 1150 MemVT.getVectorNumElements() == 5); 1151 MemVT = MemVT.getPow2VectorType(State.getContext()); 1152 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1153 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1154 } 1155 1156 unsigned PartOffset = 0; 1157 for (unsigned i = 0; i != NumRegs; ++i) { 1158 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1159 BasePartOffset + PartOffset, 1160 MemVT.getSimpleVT(), 1161 CCValAssign::Full)); 1162 PartOffset += MemVT.getStoreSize(); 1163 } 1164 } 1165 } 1166 } 1167 1168 SDValue AMDGPUTargetLowering::LowerReturn( 1169 SDValue Chain, CallingConv::ID CallConv, 1170 bool isVarArg, 1171 const SmallVectorImpl<ISD::OutputArg> &Outs, 1172 const SmallVectorImpl<SDValue> &OutVals, 1173 const SDLoc &DL, SelectionDAG &DAG) const { 1174 // FIXME: Fails for r600 tests 1175 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1176 // "wave terminate should not have return values"); 1177 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1178 } 1179 1180 //===---------------------------------------------------------------------===// 1181 // Target specific lowering 1182 //===---------------------------------------------------------------------===// 1183 1184 /// Selects the correct CCAssignFn for a given CallingConvention value. 1185 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1186 bool IsVarArg) { 1187 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1188 } 1189 1190 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1191 bool IsVarArg) { 1192 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1193 } 1194 1195 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1196 SelectionDAG &DAG, 1197 MachineFrameInfo &MFI, 1198 int ClobberedFI) const { 1199 SmallVector<SDValue, 8> ArgChains; 1200 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1201 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1202 1203 // Include the original chain at the beginning of the list. When this is 1204 // used by target LowerCall hooks, this helps legalize find the 1205 // CALLSEQ_BEGIN node. 1206 ArgChains.push_back(Chain); 1207 1208 // Add a chain value for each stack argument corresponding 1209 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1210 UE = DAG.getEntryNode().getNode()->use_end(); 1211 U != UE; ++U) { 1212 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1213 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1214 if (FI->getIndex() < 0) { 1215 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1216 int64_t InLastByte = InFirstByte; 1217 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1218 1219 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1220 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1221 ArgChains.push_back(SDValue(L, 1)); 1222 } 1223 } 1224 } 1225 } 1226 1227 // Build a tokenfactor for all the chains. 1228 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1229 } 1230 1231 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1232 SmallVectorImpl<SDValue> &InVals, 1233 StringRef Reason) const { 1234 SDValue Callee = CLI.Callee; 1235 SelectionDAG &DAG = CLI.DAG; 1236 1237 const Function &Fn = DAG.getMachineFunction().getFunction(); 1238 1239 StringRef FuncName("<unknown>"); 1240 1241 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1242 FuncName = G->getSymbol(); 1243 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1244 FuncName = G->getGlobal()->getName(); 1245 1246 DiagnosticInfoUnsupported NoCalls( 1247 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1248 DAG.getContext()->diagnose(NoCalls); 1249 1250 if (!CLI.IsTailCall) { 1251 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1252 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1253 } 1254 1255 return DAG.getEntryNode(); 1256 } 1257 1258 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1259 SmallVectorImpl<SDValue> &InVals) const { 1260 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1261 } 1262 1263 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1264 SelectionDAG &DAG) const { 1265 const Function &Fn = DAG.getMachineFunction().getFunction(); 1266 1267 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1268 SDLoc(Op).getDebugLoc()); 1269 DAG.getContext()->diagnose(NoDynamicAlloca); 1270 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1271 return DAG.getMergeValues(Ops, SDLoc()); 1272 } 1273 1274 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1275 SelectionDAG &DAG) const { 1276 switch (Op.getOpcode()) { 1277 default: 1278 Op->print(errs(), &DAG); 1279 llvm_unreachable("Custom lowering code for this " 1280 "instruction is not implemented yet!"); 1281 break; 1282 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1283 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1284 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1285 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1286 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1287 case ISD::FREM: return LowerFREM(Op, DAG); 1288 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1289 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1290 case ISD::FRINT: return LowerFRINT(Op, DAG); 1291 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1292 case ISD::FROUND: return LowerFROUND(Op, DAG); 1293 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1294 case ISD::FLOG: 1295 return LowerFLOG(Op, DAG, numbers::ln2f); 1296 case ISD::FLOG10: 1297 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1298 case ISD::FEXP: 1299 return lowerFEXP(Op, DAG); 1300 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1301 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1302 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1303 case ISD::FP_TO_SINT: 1304 case ISD::FP_TO_UINT: 1305 return LowerFP_TO_INT(Op, DAG); 1306 case ISD::CTTZ: 1307 case ISD::CTTZ_ZERO_UNDEF: 1308 case ISD::CTLZ: 1309 case ISD::CTLZ_ZERO_UNDEF: 1310 return LowerCTLZ_CTTZ(Op, DAG); 1311 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1312 } 1313 return Op; 1314 } 1315 1316 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1317 SmallVectorImpl<SDValue> &Results, 1318 SelectionDAG &DAG) const { 1319 switch (N->getOpcode()) { 1320 case ISD::SIGN_EXTEND_INREG: 1321 // Different parts of legalization seem to interpret which type of 1322 // sign_extend_inreg is the one to check for custom lowering. The extended 1323 // from type is what really matters, but some places check for custom 1324 // lowering of the result type. This results in trying to use 1325 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1326 // nothing here and let the illegal result integer be handled normally. 1327 return; 1328 default: 1329 return; 1330 } 1331 } 1332 1333 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1334 SDValue Op, 1335 SelectionDAG &DAG) const { 1336 1337 const DataLayout &DL = DAG.getDataLayout(); 1338 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1339 const GlobalValue *GV = G->getGlobal(); 1340 1341 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1342 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1343 if (!MFI->isModuleEntryFunction() && 1344 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1345 SDLoc DL(Op); 1346 const Function &Fn = DAG.getMachineFunction().getFunction(); 1347 DiagnosticInfoUnsupported BadLDSDecl( 1348 Fn, "local memory global used by non-kernel function", 1349 DL.getDebugLoc(), DS_Warning); 1350 DAG.getContext()->diagnose(BadLDSDecl); 1351 1352 // We currently don't have a way to correctly allocate LDS objects that 1353 // aren't directly associated with a kernel. We do force inlining of 1354 // functions that use local objects. However, if these dead functions are 1355 // not eliminated, we don't want a compile time error. Just emit a warning 1356 // and a trap, since there should be no callable path here. 1357 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1358 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1359 Trap, DAG.getRoot()); 1360 DAG.setRoot(OutputChain); 1361 return DAG.getUNDEF(Op.getValueType()); 1362 } 1363 1364 // XXX: What does the value of G->getOffset() mean? 1365 assert(G->getOffset() == 0 && 1366 "Do not know what to do with an non-zero offset"); 1367 1368 // TODO: We could emit code to handle the initialization somewhere. 1369 // We ignore the initializer for now and legalize it to allow selection. 1370 // The initializer will anyway get errored out during assembly emission. 1371 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1372 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1373 } 1374 return SDValue(); 1375 } 1376 1377 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1378 SelectionDAG &DAG) const { 1379 SmallVector<SDValue, 8> Args; 1380 1381 EVT VT = Op.getValueType(); 1382 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1383 SDLoc SL(Op); 1384 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1385 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1386 1387 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1388 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1389 } 1390 1391 for (const SDUse &U : Op->ops()) 1392 DAG.ExtractVectorElements(U.get(), Args); 1393 1394 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1395 } 1396 1397 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1398 SelectionDAG &DAG) const { 1399 1400 SmallVector<SDValue, 8> Args; 1401 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1402 EVT VT = Op.getValueType(); 1403 EVT SrcVT = Op.getOperand(0).getValueType(); 1404 1405 // For these types, we have some TableGen patterns except if the index is 1 1406 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1407 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1408 Start != 1) 1409 return Op; 1410 1411 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1412 VT.getVectorNumElements()); 1413 1414 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1415 } 1416 1417 /// Generate Min/Max node 1418 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1419 SDValue LHS, SDValue RHS, 1420 SDValue True, SDValue False, 1421 SDValue CC, 1422 DAGCombinerInfo &DCI) const { 1423 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1424 return SDValue(); 1425 1426 SelectionDAG &DAG = DCI.DAG; 1427 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1428 switch (CCOpcode) { 1429 case ISD::SETOEQ: 1430 case ISD::SETONE: 1431 case ISD::SETUNE: 1432 case ISD::SETNE: 1433 case ISD::SETUEQ: 1434 case ISD::SETEQ: 1435 case ISD::SETFALSE: 1436 case ISD::SETFALSE2: 1437 case ISD::SETTRUE: 1438 case ISD::SETTRUE2: 1439 case ISD::SETUO: 1440 case ISD::SETO: 1441 break; 1442 case ISD::SETULE: 1443 case ISD::SETULT: { 1444 if (LHS == True) 1445 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1446 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1447 } 1448 case ISD::SETOLE: 1449 case ISD::SETOLT: 1450 case ISD::SETLE: 1451 case ISD::SETLT: { 1452 // Ordered. Assume ordered for undefined. 1453 1454 // Only do this after legalization to avoid interfering with other combines 1455 // which might occur. 1456 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1457 !DCI.isCalledByLegalizer()) 1458 return SDValue(); 1459 1460 // We need to permute the operands to get the correct NaN behavior. The 1461 // selected operand is the second one based on the failing compare with NaN, 1462 // so permute it based on the compare type the hardware uses. 1463 if (LHS == True) 1464 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1465 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1466 } 1467 case ISD::SETUGE: 1468 case ISD::SETUGT: { 1469 if (LHS == True) 1470 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1471 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1472 } 1473 case ISD::SETGT: 1474 case ISD::SETGE: 1475 case ISD::SETOGE: 1476 case ISD::SETOGT: { 1477 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1478 !DCI.isCalledByLegalizer()) 1479 return SDValue(); 1480 1481 if (LHS == True) 1482 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1483 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1484 } 1485 case ISD::SETCC_INVALID: 1486 llvm_unreachable("Invalid setcc condcode!"); 1487 } 1488 return SDValue(); 1489 } 1490 1491 std::pair<SDValue, SDValue> 1492 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1493 SDLoc SL(Op); 1494 1495 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1496 1497 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1498 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1499 1500 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1501 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1502 1503 return std::make_pair(Lo, Hi); 1504 } 1505 1506 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1507 SDLoc SL(Op); 1508 1509 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1510 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1511 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1512 } 1513 1514 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1515 SDLoc SL(Op); 1516 1517 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1518 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1519 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1520 } 1521 1522 // Split a vector type into two parts. The first part is a power of two vector. 1523 // The second part is whatever is left over, and is a scalar if it would 1524 // otherwise be a 1-vector. 1525 std::pair<EVT, EVT> 1526 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1527 EVT LoVT, HiVT; 1528 EVT EltVT = VT.getVectorElementType(); 1529 unsigned NumElts = VT.getVectorNumElements(); 1530 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1531 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1532 HiVT = NumElts - LoNumElts == 1 1533 ? EltVT 1534 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1535 return std::make_pair(LoVT, HiVT); 1536 } 1537 1538 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1539 // scalar. 1540 std::pair<SDValue, SDValue> 1541 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1542 const EVT &LoVT, const EVT &HiVT, 1543 SelectionDAG &DAG) const { 1544 assert(LoVT.getVectorNumElements() + 1545 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1546 N.getValueType().getVectorNumElements() && 1547 "More vector elements requested than available!"); 1548 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1549 DAG.getVectorIdxConstant(0, DL)); 1550 SDValue Hi = DAG.getNode( 1551 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1552 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1553 return std::make_pair(Lo, Hi); 1554 } 1555 1556 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1557 SelectionDAG &DAG) const { 1558 LoadSDNode *Load = cast<LoadSDNode>(Op); 1559 EVT VT = Op.getValueType(); 1560 SDLoc SL(Op); 1561 1562 1563 // If this is a 2 element vector, we really want to scalarize and not create 1564 // weird 1 element vectors. 1565 if (VT.getVectorNumElements() == 2) { 1566 SDValue Ops[2]; 1567 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1568 return DAG.getMergeValues(Ops, SL); 1569 } 1570 1571 SDValue BasePtr = Load->getBasePtr(); 1572 EVT MemVT = Load->getMemoryVT(); 1573 1574 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1575 1576 EVT LoVT, HiVT; 1577 EVT LoMemVT, HiMemVT; 1578 SDValue Lo, Hi; 1579 1580 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1581 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1582 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1583 1584 unsigned Size = LoMemVT.getStoreSize(); 1585 unsigned BaseAlign = Load->getAlignment(); 1586 unsigned HiAlign = MinAlign(BaseAlign, Size); 1587 1588 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1589 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1590 BaseAlign, Load->getMemOperand()->getFlags()); 1591 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1592 SDValue HiLoad = 1593 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1594 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1595 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1596 1597 SDValue Join; 1598 if (LoVT == HiVT) { 1599 // This is the case that the vector is power of two so was evenly split. 1600 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1601 } else { 1602 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1603 DAG.getVectorIdxConstant(0, SL)); 1604 Join = DAG.getNode( 1605 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1606 VT, Join, HiLoad, 1607 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1608 } 1609 1610 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1611 LoLoad.getValue(1), HiLoad.getValue(1))}; 1612 1613 return DAG.getMergeValues(Ops, SL); 1614 } 1615 1616 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1617 SelectionDAG &DAG) const { 1618 LoadSDNode *Load = cast<LoadSDNode>(Op); 1619 EVT VT = Op.getValueType(); 1620 SDValue BasePtr = Load->getBasePtr(); 1621 EVT MemVT = Load->getMemoryVT(); 1622 SDLoc SL(Op); 1623 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1624 unsigned BaseAlign = Load->getAlignment(); 1625 unsigned NumElements = MemVT.getVectorNumElements(); 1626 1627 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1628 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1629 if (NumElements != 3 || 1630 (BaseAlign < 8 && 1631 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1632 return SplitVectorLoad(Op, DAG); 1633 1634 assert(NumElements == 3); 1635 1636 EVT WideVT = 1637 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1638 EVT WideMemVT = 1639 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1640 SDValue WideLoad = DAG.getExtLoad( 1641 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1642 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1643 return DAG.getMergeValues( 1644 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1645 DAG.getVectorIdxConstant(0, SL)), 1646 WideLoad.getValue(1)}, 1647 SL); 1648 } 1649 1650 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1651 SelectionDAG &DAG) const { 1652 StoreSDNode *Store = cast<StoreSDNode>(Op); 1653 SDValue Val = Store->getValue(); 1654 EVT VT = Val.getValueType(); 1655 1656 // If this is a 2 element vector, we really want to scalarize and not create 1657 // weird 1 element vectors. 1658 if (VT.getVectorNumElements() == 2) 1659 return scalarizeVectorStore(Store, DAG); 1660 1661 EVT MemVT = Store->getMemoryVT(); 1662 SDValue Chain = Store->getChain(); 1663 SDValue BasePtr = Store->getBasePtr(); 1664 SDLoc SL(Op); 1665 1666 EVT LoVT, HiVT; 1667 EVT LoMemVT, HiMemVT; 1668 SDValue Lo, Hi; 1669 1670 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1671 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1672 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1673 1674 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1675 1676 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1677 unsigned BaseAlign = Store->getAlignment(); 1678 unsigned Size = LoMemVT.getStoreSize(); 1679 unsigned HiAlign = MinAlign(BaseAlign, Size); 1680 1681 SDValue LoStore = 1682 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1683 Store->getMemOperand()->getFlags()); 1684 SDValue HiStore = 1685 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1686 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1687 1688 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1689 } 1690 1691 // This is a shortcut for integer division because we have fast i32<->f32 1692 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1693 // float is enough to accurately represent up to a 24-bit signed integer. 1694 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1695 bool Sign) const { 1696 SDLoc DL(Op); 1697 EVT VT = Op.getValueType(); 1698 SDValue LHS = Op.getOperand(0); 1699 SDValue RHS = Op.getOperand(1); 1700 MVT IntVT = MVT::i32; 1701 MVT FltVT = MVT::f32; 1702 1703 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1704 if (LHSSignBits < 9) 1705 return SDValue(); 1706 1707 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1708 if (RHSSignBits < 9) 1709 return SDValue(); 1710 1711 unsigned BitSize = VT.getSizeInBits(); 1712 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1713 unsigned DivBits = BitSize - SignBits; 1714 if (Sign) 1715 ++DivBits; 1716 1717 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1718 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1719 1720 SDValue jq = DAG.getConstant(1, DL, IntVT); 1721 1722 if (Sign) { 1723 // char|short jq = ia ^ ib; 1724 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1725 1726 // jq = jq >> (bitsize - 2) 1727 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1728 DAG.getConstant(BitSize - 2, DL, VT)); 1729 1730 // jq = jq | 0x1 1731 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1732 } 1733 1734 // int ia = (int)LHS; 1735 SDValue ia = LHS; 1736 1737 // int ib, (int)RHS; 1738 SDValue ib = RHS; 1739 1740 // float fa = (float)ia; 1741 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1742 1743 // float fb = (float)ib; 1744 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1745 1746 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1747 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1748 1749 // fq = trunc(fq); 1750 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1751 1752 // float fqneg = -fq; 1753 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1754 1755 MachineFunction &MF = DAG.getMachineFunction(); 1756 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1757 1758 // float fr = mad(fqneg, fb, fa); 1759 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1760 (unsigned)ISD::FMA : 1761 !MFI->getMode().allFP32Denormals() ? 1762 (unsigned)ISD::FMAD : 1763 (unsigned)AMDGPUISD::FMAD_FTZ; 1764 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1765 1766 // int iq = (int)fq; 1767 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1768 1769 // fr = fabs(fr); 1770 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1771 1772 // fb = fabs(fb); 1773 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1774 1775 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1776 1777 // int cv = fr >= fb; 1778 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1779 1780 // jq = (cv ? jq : 0); 1781 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1782 1783 // dst = iq + jq; 1784 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1785 1786 // Rem needs compensation, it's easier to recompute it 1787 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1788 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1789 1790 // Truncate to number of bits this divide really is. 1791 if (Sign) { 1792 SDValue InRegSize 1793 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1794 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1795 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1796 } else { 1797 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1798 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1799 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1800 } 1801 1802 return DAG.getMergeValues({ Div, Rem }, DL); 1803 } 1804 1805 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1806 SelectionDAG &DAG, 1807 SmallVectorImpl<SDValue> &Results) const { 1808 SDLoc DL(Op); 1809 EVT VT = Op.getValueType(); 1810 1811 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1812 1813 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1814 1815 SDValue One = DAG.getConstant(1, DL, HalfVT); 1816 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1817 1818 //HiLo split 1819 SDValue LHS = Op.getOperand(0); 1820 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1821 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1822 1823 SDValue RHS = Op.getOperand(1); 1824 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1825 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1826 1827 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1828 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1829 1830 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1831 LHS_Lo, RHS_Lo); 1832 1833 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1834 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1835 1836 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1837 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1838 return; 1839 } 1840 1841 if (isTypeLegal(MVT::i64)) { 1842 MachineFunction &MF = DAG.getMachineFunction(); 1843 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1844 1845 // Compute denominator reciprocal. 1846 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1847 (unsigned)ISD::FMA : 1848 !MFI->getMode().allFP32Denormals() ? 1849 (unsigned)ISD::FMAD : 1850 (unsigned)AMDGPUISD::FMAD_FTZ; 1851 1852 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1853 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1854 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1855 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1856 Cvt_Lo); 1857 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1858 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1859 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1860 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1861 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1862 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1863 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1864 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1865 Mul1); 1866 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1867 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1868 SDValue Rcp64 = DAG.getBitcast(VT, 1869 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1870 1871 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1872 SDValue One64 = DAG.getConstant(1, DL, VT); 1873 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1874 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1875 1876 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1877 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1878 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1879 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1880 Zero); 1881 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1882 One); 1883 1884 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1885 Mulhi1_Lo, Zero1); 1886 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1887 Mulhi1_Hi, Add1_Lo.getValue(1)); 1888 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1889 SDValue Add1 = DAG.getBitcast(VT, 1890 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1891 1892 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1893 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1894 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1895 Zero); 1896 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1897 One); 1898 1899 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1900 Mulhi2_Lo, Zero1); 1901 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1902 Mulhi2_Hi, Add1_Lo.getValue(1)); 1903 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1904 Zero, Add2_Lo.getValue(1)); 1905 SDValue Add2 = DAG.getBitcast(VT, 1906 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1907 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1908 1909 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1910 1911 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1912 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1913 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1914 Mul3_Lo, Zero1); 1915 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1916 Mul3_Hi, Sub1_Lo.getValue(1)); 1917 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1918 SDValue Sub1 = DAG.getBitcast(VT, 1919 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1920 1921 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1922 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1923 ISD::SETUGE); 1924 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1925 ISD::SETUGE); 1926 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1927 1928 // TODO: Here and below portions of the code can be enclosed into if/endif. 1929 // Currently control flow is unconditional and we have 4 selects after 1930 // potential endif to substitute PHIs. 1931 1932 // if C3 != 0 ... 1933 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1934 RHS_Lo, Zero1); 1935 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1936 RHS_Hi, Sub1_Lo.getValue(1)); 1937 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1938 Zero, Sub2_Lo.getValue(1)); 1939 SDValue Sub2 = DAG.getBitcast(VT, 1940 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1941 1942 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1943 1944 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1945 ISD::SETUGE); 1946 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1947 ISD::SETUGE); 1948 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1949 1950 // if (C6 != 0) 1951 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1952 1953 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1954 RHS_Lo, Zero1); 1955 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1956 RHS_Hi, Sub2_Lo.getValue(1)); 1957 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1958 Zero, Sub3_Lo.getValue(1)); 1959 SDValue Sub3 = DAG.getBitcast(VT, 1960 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1961 1962 // endif C6 1963 // endif C3 1964 1965 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1966 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1967 1968 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1969 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1970 1971 Results.push_back(Div); 1972 Results.push_back(Rem); 1973 1974 return; 1975 } 1976 1977 // r600 expandion. 1978 // Get Speculative values 1979 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1980 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1981 1982 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1983 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1984 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1985 1986 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1987 SDValue DIV_Lo = Zero; 1988 1989 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1990 1991 for (unsigned i = 0; i < halfBitWidth; ++i) { 1992 const unsigned bitPos = halfBitWidth - i - 1; 1993 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1994 // Get value of high bit 1995 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1996 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1997 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1998 1999 // Shift 2000 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2001 // Add LHS high bit 2002 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2003 2004 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2005 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2006 2007 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2008 2009 // Update REM 2010 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2011 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2012 } 2013 2014 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2015 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2016 Results.push_back(DIV); 2017 Results.push_back(REM); 2018 } 2019 2020 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2021 SelectionDAG &DAG) const { 2022 SDLoc DL(Op); 2023 EVT VT = Op.getValueType(); 2024 2025 if (VT == MVT::i64) { 2026 SmallVector<SDValue, 2> Results; 2027 LowerUDIVREM64(Op, DAG, Results); 2028 return DAG.getMergeValues(Results, DL); 2029 } 2030 2031 if (VT == MVT::i32) { 2032 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2033 return Res; 2034 } 2035 2036 SDValue X = Op.getOperand(0); 2037 SDValue Y = Op.getOperand(1); 2038 2039 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2040 // algorithm used here. 2041 2042 // Initial estimate of inv(y). 2043 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2044 2045 // One round of UNR. 2046 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2047 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2048 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2049 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2050 2051 // Quotient/remainder estimate. 2052 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2053 SDValue R = 2054 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2055 2056 // First quotient/remainder refinement. 2057 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2058 SDValue One = DAG.getConstant(1, DL, VT); 2059 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2060 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2061 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2062 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2063 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2064 2065 // Second quotient/remainder refinement. 2066 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2067 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2068 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2069 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2070 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2071 2072 return DAG.getMergeValues({Q, R}, DL); 2073 } 2074 2075 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2076 SelectionDAG &DAG) const { 2077 SDLoc DL(Op); 2078 EVT VT = Op.getValueType(); 2079 2080 SDValue LHS = Op.getOperand(0); 2081 SDValue RHS = Op.getOperand(1); 2082 2083 SDValue Zero = DAG.getConstant(0, DL, VT); 2084 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2085 2086 if (VT == MVT::i32) { 2087 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2088 return Res; 2089 } 2090 2091 if (VT == MVT::i64 && 2092 DAG.ComputeNumSignBits(LHS) > 32 && 2093 DAG.ComputeNumSignBits(RHS) > 32) { 2094 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2095 2096 //HiLo split 2097 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2098 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2099 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2100 LHS_Lo, RHS_Lo); 2101 SDValue Res[2] = { 2102 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2103 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2104 }; 2105 return DAG.getMergeValues(Res, DL); 2106 } 2107 2108 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2109 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2110 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2111 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2112 2113 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2114 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2115 2116 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2117 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2118 2119 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2120 SDValue Rem = Div.getValue(1); 2121 2122 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2123 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2124 2125 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2126 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2127 2128 SDValue Res[2] = { 2129 Div, 2130 Rem 2131 }; 2132 return DAG.getMergeValues(Res, DL); 2133 } 2134 2135 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2136 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2137 SDLoc SL(Op); 2138 EVT VT = Op.getValueType(); 2139 auto Flags = Op->getFlags(); 2140 SDValue X = Op.getOperand(0); 2141 SDValue Y = Op.getOperand(1); 2142 2143 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2144 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2145 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2146 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2147 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2148 } 2149 2150 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2151 SDLoc SL(Op); 2152 SDValue Src = Op.getOperand(0); 2153 2154 // result = trunc(src) 2155 // if (src > 0.0 && src != result) 2156 // result += 1.0 2157 2158 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2159 2160 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2161 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2162 2163 EVT SetCCVT = 2164 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2165 2166 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2167 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2168 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2169 2170 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2171 // TODO: Should this propagate fast-math-flags? 2172 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2173 } 2174 2175 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2176 SelectionDAG &DAG) { 2177 const unsigned FractBits = 52; 2178 const unsigned ExpBits = 11; 2179 2180 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2181 Hi, 2182 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2183 DAG.getConstant(ExpBits, SL, MVT::i32)); 2184 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2185 DAG.getConstant(1023, SL, MVT::i32)); 2186 2187 return Exp; 2188 } 2189 2190 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2191 SDLoc SL(Op); 2192 SDValue Src = Op.getOperand(0); 2193 2194 assert(Op.getValueType() == MVT::f64); 2195 2196 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2197 2198 // Extract the upper half, since this is where we will find the sign and 2199 // exponent. 2200 SDValue Hi = getHiHalf64(Src, DAG); 2201 2202 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2203 2204 const unsigned FractBits = 52; 2205 2206 // Extract the sign bit. 2207 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2208 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2209 2210 // Extend back to 64-bits. 2211 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2212 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2213 2214 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2215 const SDValue FractMask 2216 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2217 2218 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2219 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2220 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2221 2222 EVT SetCCVT = 2223 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2224 2225 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2226 2227 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2228 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2229 2230 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2231 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2232 2233 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2234 } 2235 2236 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2237 SDLoc SL(Op); 2238 SDValue Src = Op.getOperand(0); 2239 2240 assert(Op.getValueType() == MVT::f64); 2241 2242 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2243 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2244 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2245 2246 // TODO: Should this propagate fast-math-flags? 2247 2248 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2249 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2250 2251 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2252 2253 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2254 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2255 2256 EVT SetCCVT = 2257 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2258 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2259 2260 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2261 } 2262 2263 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2264 // FNEARBYINT and FRINT are the same, except in their handling of FP 2265 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2266 // rint, so just treat them as equivalent. 2267 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2268 } 2269 2270 // XXX - May require not supporting f32 denormals? 2271 2272 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2273 // compare and vselect end up producing worse code than scalarizing the whole 2274 // operation. 2275 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2276 SDLoc SL(Op); 2277 SDValue X = Op.getOperand(0); 2278 EVT VT = Op.getValueType(); 2279 2280 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2281 2282 // TODO: Should this propagate fast-math-flags? 2283 2284 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2285 2286 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2287 2288 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2289 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2290 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2291 2292 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2293 2294 EVT SetCCVT = 2295 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2296 2297 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2298 2299 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2300 2301 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2302 } 2303 2304 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2305 SDLoc SL(Op); 2306 SDValue Src = Op.getOperand(0); 2307 2308 // result = trunc(src); 2309 // if (src < 0.0 && src != result) 2310 // result += -1.0. 2311 2312 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2313 2314 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2315 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2316 2317 EVT SetCCVT = 2318 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2319 2320 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2321 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2322 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2323 2324 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2325 // TODO: Should this propagate fast-math-flags? 2326 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2327 } 2328 2329 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2330 double Log2BaseInverted) const { 2331 EVT VT = Op.getValueType(); 2332 2333 SDLoc SL(Op); 2334 SDValue Operand = Op.getOperand(0); 2335 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2336 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2337 2338 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2339 } 2340 2341 // exp2(M_LOG2E_F * f); 2342 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2343 EVT VT = Op.getValueType(); 2344 SDLoc SL(Op); 2345 SDValue Src = Op.getOperand(0); 2346 2347 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2348 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2349 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2350 } 2351 2352 static bool isCtlzOpc(unsigned Opc) { 2353 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2354 } 2355 2356 static bool isCttzOpc(unsigned Opc) { 2357 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2358 } 2359 2360 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2361 SDLoc SL(Op); 2362 SDValue Src = Op.getOperand(0); 2363 2364 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2365 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2366 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2367 2368 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2369 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2370 2371 if (Src.getValueType() == MVT::i32) { 2372 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2373 // (cttz hi:lo) -> (umin (ffbl src), 32) 2374 // (ctlz_zero_undef src) -> (ffbh src) 2375 // (cttz_zero_undef src) -> (ffbl src) 2376 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2377 if (!ZeroUndef) { 2378 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2379 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2380 } 2381 return NewOpr; 2382 } 2383 2384 SDValue Lo, Hi; 2385 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2386 2387 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2388 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2389 2390 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2391 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2392 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2393 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2394 2395 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2396 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2397 if (Ctlz) 2398 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2399 else 2400 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2401 2402 SDValue NewOpr; 2403 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2404 if (!ZeroUndef) { 2405 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2406 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2407 } 2408 2409 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2410 } 2411 2412 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2413 bool Signed) const { 2414 // The regular method converting a 64-bit integer to float roughly consists of 2415 // 2 steps: normalization and rounding. In fact, after normalization, the 2416 // conversion from a 64-bit integer to a float is essentially the same as the 2417 // one from a 32-bit integer. The only difference is that it has more 2418 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2419 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2420 // converted into the correct float number. The basic steps for the unsigned 2421 // conversion are illustrated in the following pseudo code: 2422 // 2423 // f32 uitofp(i64 u) { 2424 // i32 hi, lo = split(u); 2425 // // Only count the leading zeros in hi as we have native support of the 2426 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2427 // // reduced to a 32-bit one automatically. 2428 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2429 // u <<= shamt; 2430 // hi, lo = split(u); 2431 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2432 // // convert it as a 32-bit integer and scale the result back. 2433 // return uitofp(hi) * 2^(32 - shamt); 2434 // } 2435 // 2436 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2437 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2438 // converted instead followed by negation based its sign bit. 2439 2440 SDLoc SL(Op); 2441 SDValue Src = Op.getOperand(0); 2442 2443 SDValue Lo, Hi; 2444 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2445 SDValue Sign; 2446 SDValue ShAmt; 2447 if (Signed && Subtarget->isGCN()) { 2448 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2449 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2450 // account. That is, the maximal shift is 2451 // - 32 if Lo and Hi have opposite signs; 2452 // - 33 if Lo and Hi have the same sign. 2453 // 2454 // Or, MaxShAmt = 33 + OppositeSign, where 2455 // 2456 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2457 // - -1 if Lo and Hi have opposite signs; and 2458 // - 0 otherwise. 2459 // 2460 // All in all, ShAmt is calculated as 2461 // 2462 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2463 // 2464 // or 2465 // 2466 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2467 // 2468 // to reduce the critical path. 2469 SDValue OppositeSign = DAG.getNode( 2470 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2471 DAG.getConstant(31, SL, MVT::i32)); 2472 SDValue MaxShAmt = 2473 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2474 OppositeSign); 2475 // Count the leading sign bits. 2476 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2477 // Different from unsigned conversion, the shift should be one bit less to 2478 // preserve the sign bit. 2479 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2480 DAG.getConstant(1, SL, MVT::i32)); 2481 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2482 } else { 2483 if (Signed) { 2484 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2485 // absolute value first. 2486 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2487 DAG.getConstant(63, SL, MVT::i64)); 2488 SDValue Abs = 2489 DAG.getNode(ISD::XOR, SL, MVT::i64, 2490 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2491 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2492 } 2493 // Count the leading zeros. 2494 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2495 // The shift amount for signed integers is [0, 32]. 2496 } 2497 // Normalize the given 64-bit integer. 2498 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2499 // Split it again. 2500 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2501 // Calculate the adjust bit for rounding. 2502 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2503 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2504 DAG.getConstant(1, SL, MVT::i32), Lo); 2505 // Get the 32-bit normalized integer. 2506 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2507 // Convert the normalized 32-bit integer into f32. 2508 unsigned Opc = 2509 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2510 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2511 2512 // Finally, need to scale back the converted floating number as the original 2513 // 64-bit integer is converted as a 32-bit one. 2514 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2515 ShAmt); 2516 // On GCN, use LDEXP directly. 2517 if (Subtarget->isGCN()) 2518 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2519 2520 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2521 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2522 // exponent is enough to avoid overflowing into the sign bit. 2523 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2524 DAG.getConstant(23, SL, MVT::i32)); 2525 SDValue IVal = 2526 DAG.getNode(ISD::ADD, SL, MVT::i32, 2527 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2528 if (Signed) { 2529 // Set the sign bit. 2530 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2531 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2532 DAG.getConstant(31, SL, MVT::i32)); 2533 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2534 } 2535 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2536 } 2537 2538 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2539 bool Signed) const { 2540 SDLoc SL(Op); 2541 SDValue Src = Op.getOperand(0); 2542 2543 SDValue Lo, Hi; 2544 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2545 2546 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2547 SL, MVT::f64, Hi); 2548 2549 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2550 2551 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2552 DAG.getConstant(32, SL, MVT::i32)); 2553 // TODO: Should this propagate fast-math-flags? 2554 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2555 } 2556 2557 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2558 SelectionDAG &DAG) const { 2559 // TODO: Factor out code common with LowerSINT_TO_FP. 2560 EVT DestVT = Op.getValueType(); 2561 SDValue Src = Op.getOperand(0); 2562 EVT SrcVT = Src.getValueType(); 2563 2564 if (SrcVT == MVT::i16) { 2565 if (DestVT == MVT::f16) 2566 return Op; 2567 SDLoc DL(Op); 2568 2569 // Promote src to i32 2570 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2571 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2572 } 2573 2574 assert(SrcVT == MVT::i64 && "operation should be legal"); 2575 2576 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2577 SDLoc DL(Op); 2578 2579 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2580 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2581 SDValue FPRound = 2582 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2583 2584 return FPRound; 2585 } 2586 2587 if (DestVT == MVT::f32) 2588 return LowerINT_TO_FP32(Op, DAG, false); 2589 2590 assert(DestVT == MVT::f64); 2591 return LowerINT_TO_FP64(Op, DAG, false); 2592 } 2593 2594 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2595 SelectionDAG &DAG) const { 2596 EVT DestVT = Op.getValueType(); 2597 2598 SDValue Src = Op.getOperand(0); 2599 EVT SrcVT = Src.getValueType(); 2600 2601 if (SrcVT == MVT::i16) { 2602 if (DestVT == MVT::f16) 2603 return Op; 2604 2605 SDLoc DL(Op); 2606 // Promote src to i32 2607 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2608 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2609 } 2610 2611 assert(SrcVT == MVT::i64 && "operation should be legal"); 2612 2613 // TODO: Factor out code common with LowerUINT_TO_FP. 2614 2615 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2616 SDLoc DL(Op); 2617 SDValue Src = Op.getOperand(0); 2618 2619 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2620 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2621 SDValue FPRound = 2622 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2623 2624 return FPRound; 2625 } 2626 2627 if (DestVT == MVT::f32) 2628 return LowerINT_TO_FP32(Op, DAG, true); 2629 2630 assert(DestVT == MVT::f64); 2631 return LowerINT_TO_FP64(Op, DAG, true); 2632 } 2633 2634 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2635 bool Signed) const { 2636 SDLoc SL(Op); 2637 2638 SDValue Src = Op.getOperand(0); 2639 EVT SrcVT = Src.getValueType(); 2640 2641 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2642 2643 // The basic idea of converting a floating point number into a pair of 32-bit 2644 // integers is illustrated as follows: 2645 // 2646 // tf := trunc(val); 2647 // hif := floor(tf * 2^-32); 2648 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2649 // hi := fptoi(hif); 2650 // lo := fptoi(lof); 2651 // 2652 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2653 SDValue Sign; 2654 if (Signed && SrcVT == MVT::f32) { 2655 // However, a 32-bit floating point number has only 23 bits mantissa and 2656 // it's not enough to hold all the significant bits of `lof` if val is 2657 // negative. To avoid the loss of precision, We need to take the absolute 2658 // value after truncating and flip the result back based on the original 2659 // signedness. 2660 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2661 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2662 DAG.getConstant(31, SL, MVT::i32)); 2663 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2664 } 2665 2666 SDValue K0, K1; 2667 if (SrcVT == MVT::f64) { 2668 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2669 SL, SrcVT); 2670 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2671 SL, SrcVT); 2672 } else { 2673 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2674 SrcVT); 2675 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2676 SrcVT); 2677 } 2678 // TODO: Should this propagate fast-math-flags? 2679 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2680 2681 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2682 2683 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2684 2685 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2686 : ISD::FP_TO_UINT, 2687 SL, MVT::i32, FloorMul); 2688 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2689 2690 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2691 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2692 2693 if (Signed && SrcVT == MVT::f32) { 2694 assert(Sign); 2695 // Flip the result based on the signedness, which is either all 0s or 1s. 2696 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2697 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2698 // r := xor(r, sign) - sign; 2699 Result = 2700 DAG.getNode(ISD::SUB, SL, MVT::i64, 2701 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2702 } 2703 2704 return Result; 2705 } 2706 2707 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2708 SDLoc DL(Op); 2709 SDValue N0 = Op.getOperand(0); 2710 2711 // Convert to target node to get known bits 2712 if (N0.getValueType() == MVT::f32) 2713 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2714 2715 if (getTargetMachine().Options.UnsafeFPMath) { 2716 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2717 return SDValue(); 2718 } 2719 2720 assert(N0.getSimpleValueType() == MVT::f64); 2721 2722 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2723 const unsigned ExpMask = 0x7ff; 2724 const unsigned ExpBiasf64 = 1023; 2725 const unsigned ExpBiasf16 = 15; 2726 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2727 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2728 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2729 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2730 DAG.getConstant(32, DL, MVT::i64)); 2731 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2732 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2733 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2734 DAG.getConstant(20, DL, MVT::i64)); 2735 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2736 DAG.getConstant(ExpMask, DL, MVT::i32)); 2737 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2738 // add the f16 bias (15) to get the biased exponent for the f16 format. 2739 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2740 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2741 2742 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2743 DAG.getConstant(8, DL, MVT::i32)); 2744 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2745 DAG.getConstant(0xffe, DL, MVT::i32)); 2746 2747 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2748 DAG.getConstant(0x1ff, DL, MVT::i32)); 2749 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2750 2751 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2752 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2753 2754 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2755 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2756 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2757 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2758 2759 // N = M | (E << 12); 2760 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2761 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2762 DAG.getConstant(12, DL, MVT::i32))); 2763 2764 // B = clamp(1-E, 0, 13); 2765 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2766 One, E); 2767 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2768 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2769 DAG.getConstant(13, DL, MVT::i32)); 2770 2771 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2772 DAG.getConstant(0x1000, DL, MVT::i32)); 2773 2774 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2775 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2776 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2777 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2778 2779 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2780 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2781 DAG.getConstant(0x7, DL, MVT::i32)); 2782 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2783 DAG.getConstant(2, DL, MVT::i32)); 2784 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2785 One, Zero, ISD::SETEQ); 2786 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2787 One, Zero, ISD::SETGT); 2788 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2789 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2790 2791 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2792 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2793 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2794 I, V, ISD::SETEQ); 2795 2796 // Extract the sign bit. 2797 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2798 DAG.getConstant(16, DL, MVT::i32)); 2799 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2800 DAG.getConstant(0x8000, DL, MVT::i32)); 2801 2802 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2803 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2804 } 2805 2806 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2807 SelectionDAG &DAG) const { 2808 SDValue Src = Op.getOperand(0); 2809 unsigned OpOpcode = Op.getOpcode(); 2810 EVT SrcVT = Src.getValueType(); 2811 EVT DestVT = Op.getValueType(); 2812 2813 // Will be selected natively 2814 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2815 return Op; 2816 2817 // Promote i16 to i32 2818 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2819 SDLoc DL(Op); 2820 2821 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2822 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2823 } 2824 2825 if (SrcVT == MVT::f16 || 2826 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2827 SDLoc DL(Op); 2828 2829 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2830 unsigned Ext = 2831 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2832 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2833 } 2834 2835 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2836 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2837 2838 return SDValue(); 2839 } 2840 2841 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2842 SelectionDAG &DAG) const { 2843 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2844 MVT VT = Op.getSimpleValueType(); 2845 MVT ScalarVT = VT.getScalarType(); 2846 2847 assert(VT.isVector()); 2848 2849 SDValue Src = Op.getOperand(0); 2850 SDLoc DL(Op); 2851 2852 // TODO: Don't scalarize on Evergreen? 2853 unsigned NElts = VT.getVectorNumElements(); 2854 SmallVector<SDValue, 8> Args; 2855 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2856 2857 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2858 for (unsigned I = 0; I < NElts; ++I) 2859 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2860 2861 return DAG.getBuildVector(VT, DL, Args); 2862 } 2863 2864 //===----------------------------------------------------------------------===// 2865 // Custom DAG optimizations 2866 //===----------------------------------------------------------------------===// 2867 2868 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2869 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2870 } 2871 2872 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2873 EVT VT = Op.getValueType(); 2874 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2875 // as unsigned 24-bit values. 2876 AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; 2877 } 2878 2879 static SDValue simplifyMul24(SDNode *Node24, 2880 TargetLowering::DAGCombinerInfo &DCI) { 2881 SelectionDAG &DAG = DCI.DAG; 2882 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2883 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2884 2885 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2886 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2887 unsigned NewOpcode = Node24->getOpcode(); 2888 if (IsIntrin) { 2889 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2890 switch (IID) { 2891 case Intrinsic::amdgcn_mul_i24: 2892 NewOpcode = AMDGPUISD::MUL_I24; 2893 break; 2894 case Intrinsic::amdgcn_mul_u24: 2895 NewOpcode = AMDGPUISD::MUL_U24; 2896 break; 2897 case Intrinsic::amdgcn_mulhi_i24: 2898 NewOpcode = AMDGPUISD::MULHI_I24; 2899 break; 2900 case Intrinsic::amdgcn_mulhi_u24: 2901 NewOpcode = AMDGPUISD::MULHI_U24; 2902 break; 2903 default: 2904 llvm_unreachable("Expected 24-bit mul intrinsic"); 2905 } 2906 } 2907 2908 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2909 2910 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2911 // the operands to have other uses, but will only perform simplifications that 2912 // involve bypassing some nodes for this user. 2913 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2914 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2915 if (DemandedLHS || DemandedRHS) 2916 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2917 DemandedLHS ? DemandedLHS : LHS, 2918 DemandedRHS ? DemandedRHS : RHS); 2919 2920 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2921 // operands if this node is the only user. 2922 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2923 return SDValue(Node24, 0); 2924 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2925 return SDValue(Node24, 0); 2926 2927 return SDValue(); 2928 } 2929 2930 template <typename IntTy> 2931 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2932 uint32_t Width, const SDLoc &DL) { 2933 if (Width + Offset < 32) { 2934 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2935 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2936 return DAG.getConstant(Result, DL, MVT::i32); 2937 } 2938 2939 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2940 } 2941 2942 static bool hasVolatileUser(SDNode *Val) { 2943 for (SDNode *U : Val->uses()) { 2944 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2945 if (M->isVolatile()) 2946 return true; 2947 } 2948 } 2949 2950 return false; 2951 } 2952 2953 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2954 // i32 vectors are the canonical memory type. 2955 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2956 return false; 2957 2958 if (!VT.isByteSized()) 2959 return false; 2960 2961 unsigned Size = VT.getStoreSize(); 2962 2963 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2964 return false; 2965 2966 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2967 return false; 2968 2969 return true; 2970 } 2971 2972 // Replace load of an illegal type with a store of a bitcast to a friendlier 2973 // type. 2974 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2975 DAGCombinerInfo &DCI) const { 2976 if (!DCI.isBeforeLegalize()) 2977 return SDValue(); 2978 2979 LoadSDNode *LN = cast<LoadSDNode>(N); 2980 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2981 return SDValue(); 2982 2983 SDLoc SL(N); 2984 SelectionDAG &DAG = DCI.DAG; 2985 EVT VT = LN->getMemoryVT(); 2986 2987 unsigned Size = VT.getStoreSize(); 2988 Align Alignment = LN->getAlign(); 2989 if (Alignment < Size && isTypeLegal(VT)) { 2990 bool IsFast; 2991 unsigned AS = LN->getAddressSpace(); 2992 2993 // Expand unaligned loads earlier than legalization. Due to visitation order 2994 // problems during legalization, the emitted instructions to pack and unpack 2995 // the bytes again are not eliminated in the case of an unaligned copy. 2996 if (!allowsMisalignedMemoryAccesses( 2997 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 2998 SDValue Ops[2]; 2999 3000 if (VT.isVector()) 3001 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 3002 else 3003 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3004 3005 return DAG.getMergeValues(Ops, SDLoc(N)); 3006 } 3007 3008 if (!IsFast) 3009 return SDValue(); 3010 } 3011 3012 if (!shouldCombineMemoryType(VT)) 3013 return SDValue(); 3014 3015 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3016 3017 SDValue NewLoad 3018 = DAG.getLoad(NewVT, SL, LN->getChain(), 3019 LN->getBasePtr(), LN->getMemOperand()); 3020 3021 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3022 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3023 return SDValue(N, 0); 3024 } 3025 3026 // Replace store of an illegal type with a store of a bitcast to a friendlier 3027 // type. 3028 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3029 DAGCombinerInfo &DCI) const { 3030 if (!DCI.isBeforeLegalize()) 3031 return SDValue(); 3032 3033 StoreSDNode *SN = cast<StoreSDNode>(N); 3034 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3035 return SDValue(); 3036 3037 EVT VT = SN->getMemoryVT(); 3038 unsigned Size = VT.getStoreSize(); 3039 3040 SDLoc SL(N); 3041 SelectionDAG &DAG = DCI.DAG; 3042 Align Alignment = SN->getAlign(); 3043 if (Alignment < Size && isTypeLegal(VT)) { 3044 bool IsFast; 3045 unsigned AS = SN->getAddressSpace(); 3046 3047 // Expand unaligned stores earlier than legalization. Due to visitation 3048 // order problems during legalization, the emitted instructions to pack and 3049 // unpack the bytes again are not eliminated in the case of an unaligned 3050 // copy. 3051 if (!allowsMisalignedMemoryAccesses( 3052 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3053 if (VT.isVector()) 3054 return scalarizeVectorStore(SN, DAG); 3055 3056 return expandUnalignedStore(SN, DAG); 3057 } 3058 3059 if (!IsFast) 3060 return SDValue(); 3061 } 3062 3063 if (!shouldCombineMemoryType(VT)) 3064 return SDValue(); 3065 3066 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3067 SDValue Val = SN->getValue(); 3068 3069 //DCI.AddToWorklist(Val.getNode()); 3070 3071 bool OtherUses = !Val.hasOneUse(); 3072 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3073 if (OtherUses) { 3074 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3075 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3076 } 3077 3078 return DAG.getStore(SN->getChain(), SL, CastVal, 3079 SN->getBasePtr(), SN->getMemOperand()); 3080 } 3081 3082 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3083 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3084 // issues. 3085 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3086 DAGCombinerInfo &DCI) const { 3087 SelectionDAG &DAG = DCI.DAG; 3088 SDValue N0 = N->getOperand(0); 3089 3090 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3091 // (vt2 (truncate (assertzext vt0:x, vt1))) 3092 if (N0.getOpcode() == ISD::TRUNCATE) { 3093 SDValue N1 = N->getOperand(1); 3094 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3095 SDLoc SL(N); 3096 3097 SDValue Src = N0.getOperand(0); 3098 EVT SrcVT = Src.getValueType(); 3099 if (SrcVT.bitsGE(ExtVT)) { 3100 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3101 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3102 } 3103 } 3104 3105 return SDValue(); 3106 } 3107 3108 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3109 SDNode *N, DAGCombinerInfo &DCI) const { 3110 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3111 switch (IID) { 3112 case Intrinsic::amdgcn_mul_i24: 3113 case Intrinsic::amdgcn_mul_u24: 3114 case Intrinsic::amdgcn_mulhi_i24: 3115 case Intrinsic::amdgcn_mulhi_u24: 3116 return simplifyMul24(N, DCI); 3117 case Intrinsic::amdgcn_fract: 3118 case Intrinsic::amdgcn_rsq: 3119 case Intrinsic::amdgcn_rcp_legacy: 3120 case Intrinsic::amdgcn_rsq_legacy: 3121 case Intrinsic::amdgcn_rsq_clamp: 3122 case Intrinsic::amdgcn_ldexp: { 3123 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3124 SDValue Src = N->getOperand(1); 3125 return Src.isUndef() ? Src : SDValue(); 3126 } 3127 default: 3128 return SDValue(); 3129 } 3130 } 3131 3132 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3133 /// binary operation \p Opc to it with the corresponding constant operands. 3134 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3135 DAGCombinerInfo &DCI, const SDLoc &SL, 3136 unsigned Opc, SDValue LHS, 3137 uint32_t ValLo, uint32_t ValHi) const { 3138 SelectionDAG &DAG = DCI.DAG; 3139 SDValue Lo, Hi; 3140 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3141 3142 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3143 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3144 3145 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3146 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3147 3148 // Re-visit the ands. It's possible we eliminated one of them and it could 3149 // simplify the vector. 3150 DCI.AddToWorklist(Lo.getNode()); 3151 DCI.AddToWorklist(Hi.getNode()); 3152 3153 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3154 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3155 } 3156 3157 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3158 DAGCombinerInfo &DCI) const { 3159 EVT VT = N->getValueType(0); 3160 3161 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3162 if (!RHS) 3163 return SDValue(); 3164 3165 SDValue LHS = N->getOperand(0); 3166 unsigned RHSVal = RHS->getZExtValue(); 3167 if (!RHSVal) 3168 return LHS; 3169 3170 SDLoc SL(N); 3171 SelectionDAG &DAG = DCI.DAG; 3172 3173 switch (LHS->getOpcode()) { 3174 default: 3175 break; 3176 case ISD::ZERO_EXTEND: 3177 case ISD::SIGN_EXTEND: 3178 case ISD::ANY_EXTEND: { 3179 SDValue X = LHS->getOperand(0); 3180 3181 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3182 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3183 // Prefer build_vector as the canonical form if packed types are legal. 3184 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3185 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3186 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3187 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3188 } 3189 3190 // shl (ext x) => zext (shl x), if shift does not overflow int 3191 if (VT != MVT::i64) 3192 break; 3193 KnownBits Known = DAG.computeKnownBits(X); 3194 unsigned LZ = Known.countMinLeadingZeros(); 3195 if (LZ < RHSVal) 3196 break; 3197 EVT XVT = X.getValueType(); 3198 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3199 return DAG.getZExtOrTrunc(Shl, SL, VT); 3200 } 3201 } 3202 3203 if (VT != MVT::i64) 3204 return SDValue(); 3205 3206 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3207 3208 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3209 // common case, splitting this into a move and a 32-bit shift is faster and 3210 // the same code size. 3211 if (RHSVal < 32) 3212 return SDValue(); 3213 3214 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3215 3216 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3217 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3218 3219 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3220 3221 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3222 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3223 } 3224 3225 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3226 DAGCombinerInfo &DCI) const { 3227 if (N->getValueType(0) != MVT::i64) 3228 return SDValue(); 3229 3230 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3231 if (!RHS) 3232 return SDValue(); 3233 3234 SelectionDAG &DAG = DCI.DAG; 3235 SDLoc SL(N); 3236 unsigned RHSVal = RHS->getZExtValue(); 3237 3238 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3239 if (RHSVal == 32) { 3240 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3241 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3242 DAG.getConstant(31, SL, MVT::i32)); 3243 3244 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3245 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3246 } 3247 3248 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3249 if (RHSVal == 63) { 3250 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3251 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3252 DAG.getConstant(31, SL, MVT::i32)); 3253 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3254 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3255 } 3256 3257 return SDValue(); 3258 } 3259 3260 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3261 DAGCombinerInfo &DCI) const { 3262 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3263 if (!RHS) 3264 return SDValue(); 3265 3266 EVT VT = N->getValueType(0); 3267 SDValue LHS = N->getOperand(0); 3268 unsigned ShiftAmt = RHS->getZExtValue(); 3269 SelectionDAG &DAG = DCI.DAG; 3270 SDLoc SL(N); 3271 3272 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3273 // this improves the ability to match BFE patterns in isel. 3274 if (LHS.getOpcode() == ISD::AND) { 3275 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3276 if (Mask->getAPIntValue().isShiftedMask() && 3277 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3278 return DAG.getNode( 3279 ISD::AND, SL, VT, 3280 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3281 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3282 } 3283 } 3284 } 3285 3286 if (VT != MVT::i64) 3287 return SDValue(); 3288 3289 if (ShiftAmt < 32) 3290 return SDValue(); 3291 3292 // srl i64:x, C for C >= 32 3293 // => 3294 // build_pair (srl hi_32(x), C - 32), 0 3295 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3296 3297 SDValue Hi = getHiHalf64(LHS, DAG); 3298 3299 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3300 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3301 3302 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3303 3304 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3305 } 3306 3307 SDValue AMDGPUTargetLowering::performTruncateCombine( 3308 SDNode *N, DAGCombinerInfo &DCI) const { 3309 SDLoc SL(N); 3310 SelectionDAG &DAG = DCI.DAG; 3311 EVT VT = N->getValueType(0); 3312 SDValue Src = N->getOperand(0); 3313 3314 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3315 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3316 SDValue Vec = Src.getOperand(0); 3317 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3318 SDValue Elt0 = Vec.getOperand(0); 3319 EVT EltVT = Elt0.getValueType(); 3320 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3321 if (EltVT.isFloatingPoint()) { 3322 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3323 EltVT.changeTypeToInteger(), Elt0); 3324 } 3325 3326 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3327 } 3328 } 3329 } 3330 3331 // Equivalent of above for accessing the high element of a vector as an 3332 // integer operation. 3333 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3334 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3335 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3336 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3337 SDValue BV = stripBitcast(Src.getOperand(0)); 3338 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3339 BV.getValueType().getVectorNumElements() == 2) { 3340 SDValue SrcElt = BV.getOperand(1); 3341 EVT SrcEltVT = SrcElt.getValueType(); 3342 if (SrcEltVT.isFloatingPoint()) { 3343 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3344 SrcEltVT.changeTypeToInteger(), SrcElt); 3345 } 3346 3347 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3348 } 3349 } 3350 } 3351 } 3352 3353 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3354 // 3355 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3356 // i16 (trunc (srl (i32 (trunc x), K))) 3357 if (VT.getScalarSizeInBits() < 32) { 3358 EVT SrcVT = Src.getValueType(); 3359 if (SrcVT.getScalarSizeInBits() > 32 && 3360 (Src.getOpcode() == ISD::SRL || 3361 Src.getOpcode() == ISD::SRA || 3362 Src.getOpcode() == ISD::SHL)) { 3363 SDValue Amt = Src.getOperand(1); 3364 KnownBits Known = DAG.computeKnownBits(Amt); 3365 unsigned Size = VT.getScalarSizeInBits(); 3366 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3367 (Known.countMaxActiveBits() <= Log2_32(Size))) { 3368 EVT MidVT = VT.isVector() ? 3369 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3370 VT.getVectorNumElements()) : MVT::i32; 3371 3372 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3373 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3374 Src.getOperand(0)); 3375 DCI.AddToWorklist(Trunc.getNode()); 3376 3377 if (Amt.getValueType() != NewShiftVT) { 3378 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3379 DCI.AddToWorklist(Amt.getNode()); 3380 } 3381 3382 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3383 Trunc, Amt); 3384 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3385 } 3386 } 3387 } 3388 3389 return SDValue(); 3390 } 3391 3392 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3393 // instructions. If we only match on the legalized i64 mul expansion, 3394 // SimplifyDemandedBits will be unable to remove them because there will be 3395 // multiple uses due to the separate mul + mulh[su]. 3396 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3397 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3398 if (Size <= 32) { 3399 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3400 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3401 } 3402 3403 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3404 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3405 3406 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3407 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3408 3409 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3410 } 3411 3412 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3413 DAGCombinerInfo &DCI) const { 3414 EVT VT = N->getValueType(0); 3415 3416 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3417 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3418 // unnecessarily). isDivergent() is used as an approximation of whether the 3419 // value is in an SGPR. 3420 if (!N->isDivergent()) 3421 return SDValue(); 3422 3423 unsigned Size = VT.getSizeInBits(); 3424 if (VT.isVector() || Size > 64) 3425 return SDValue(); 3426 3427 // There are i16 integer mul/mad. 3428 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3429 return SDValue(); 3430 3431 SelectionDAG &DAG = DCI.DAG; 3432 SDLoc DL(N); 3433 3434 SDValue N0 = N->getOperand(0); 3435 SDValue N1 = N->getOperand(1); 3436 3437 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3438 // in the source into any_extends if the result of the mul is truncated. Since 3439 // we can assume the high bits are whatever we want, use the underlying value 3440 // to avoid the unknown high bits from interfering. 3441 if (N0.getOpcode() == ISD::ANY_EXTEND) 3442 N0 = N0.getOperand(0); 3443 3444 if (N1.getOpcode() == ISD::ANY_EXTEND) 3445 N1 = N1.getOperand(0); 3446 3447 SDValue Mul; 3448 3449 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3450 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3451 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3452 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3453 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3454 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3455 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3456 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3457 } else { 3458 return SDValue(); 3459 } 3460 3461 // We need to use sext even for MUL_U24, because MUL_U24 is used 3462 // for signed multiply of 8 and 16-bit types. 3463 return DAG.getSExtOrTrunc(Mul, DL, VT); 3464 } 3465 3466 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3467 DAGCombinerInfo &DCI) const { 3468 EVT VT = N->getValueType(0); 3469 3470 if (!Subtarget->hasMulI24() || VT.isVector()) 3471 return SDValue(); 3472 3473 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3474 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3475 // unnecessarily). isDivergent() is used as an approximation of whether the 3476 // value is in an SGPR. 3477 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3478 // valu op anyway) 3479 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3480 return SDValue(); 3481 3482 SelectionDAG &DAG = DCI.DAG; 3483 SDLoc DL(N); 3484 3485 SDValue N0 = N->getOperand(0); 3486 SDValue N1 = N->getOperand(1); 3487 3488 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3489 return SDValue(); 3490 3491 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3492 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3493 3494 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3495 DCI.AddToWorklist(Mulhi.getNode()); 3496 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3497 } 3498 3499 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3500 DAGCombinerInfo &DCI) const { 3501 EVT VT = N->getValueType(0); 3502 3503 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3504 return SDValue(); 3505 3506 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3507 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3508 // unnecessarily). isDivergent() is used as an approximation of whether the 3509 // value is in an SGPR. 3510 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3511 // valu op anyway) 3512 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3513 return SDValue(); 3514 3515 SelectionDAG &DAG = DCI.DAG; 3516 SDLoc DL(N); 3517 3518 SDValue N0 = N->getOperand(0); 3519 SDValue N1 = N->getOperand(1); 3520 3521 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3522 return SDValue(); 3523 3524 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3525 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3526 3527 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3528 DCI.AddToWorklist(Mulhi.getNode()); 3529 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3530 } 3531 3532 static bool isNegativeOne(SDValue Val) { 3533 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3534 return C->isAllOnes(); 3535 return false; 3536 } 3537 3538 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3539 SDValue Op, 3540 const SDLoc &DL, 3541 unsigned Opc) const { 3542 EVT VT = Op.getValueType(); 3543 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3544 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3545 LegalVT != MVT::i16)) 3546 return SDValue(); 3547 3548 if (VT != MVT::i32) 3549 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3550 3551 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3552 if (VT != MVT::i32) 3553 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3554 3555 return FFBX; 3556 } 3557 3558 // The native instructions return -1 on 0 input. Optimize out a select that 3559 // produces -1 on 0. 3560 // 3561 // TODO: If zero is not undef, we could also do this if the output is compared 3562 // against the bitwidth. 3563 // 3564 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3565 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3566 SDValue LHS, SDValue RHS, 3567 DAGCombinerInfo &DCI) const { 3568 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3569 if (!CmpRhs || !CmpRhs->isZero()) 3570 return SDValue(); 3571 3572 SelectionDAG &DAG = DCI.DAG; 3573 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3574 SDValue CmpLHS = Cond.getOperand(0); 3575 3576 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3577 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3578 if (CCOpcode == ISD::SETEQ && 3579 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3580 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3581 unsigned Opc = 3582 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3583 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3584 } 3585 3586 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3587 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3588 if (CCOpcode == ISD::SETNE && 3589 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3590 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3591 unsigned Opc = 3592 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3593 3594 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3595 } 3596 3597 return SDValue(); 3598 } 3599 3600 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3601 unsigned Op, 3602 const SDLoc &SL, 3603 SDValue Cond, 3604 SDValue N1, 3605 SDValue N2) { 3606 SelectionDAG &DAG = DCI.DAG; 3607 EVT VT = N1.getValueType(); 3608 3609 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3610 N1.getOperand(0), N2.getOperand(0)); 3611 DCI.AddToWorklist(NewSelect.getNode()); 3612 return DAG.getNode(Op, SL, VT, NewSelect); 3613 } 3614 3615 // Pull a free FP operation out of a select so it may fold into uses. 3616 // 3617 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3618 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3619 // 3620 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3621 // select c, (fabs x), +k -> fabs (select c, x, k) 3622 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3623 SDValue N) { 3624 SelectionDAG &DAG = DCI.DAG; 3625 SDValue Cond = N.getOperand(0); 3626 SDValue LHS = N.getOperand(1); 3627 SDValue RHS = N.getOperand(2); 3628 3629 EVT VT = N.getValueType(); 3630 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3631 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3632 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3633 SDLoc(N), Cond, LHS, RHS); 3634 } 3635 3636 bool Inv = false; 3637 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3638 std::swap(LHS, RHS); 3639 Inv = true; 3640 } 3641 3642 // TODO: Support vector constants. 3643 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3644 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3645 SDLoc SL(N); 3646 // If one side is an fneg/fabs and the other is a constant, we can push the 3647 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3648 SDValue NewLHS = LHS.getOperand(0); 3649 SDValue NewRHS = RHS; 3650 3651 // Careful: if the neg can be folded up, don't try to pull it back down. 3652 bool ShouldFoldNeg = true; 3653 3654 if (NewLHS.hasOneUse()) { 3655 unsigned Opc = NewLHS.getOpcode(); 3656 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3657 ShouldFoldNeg = false; 3658 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3659 ShouldFoldNeg = false; 3660 } 3661 3662 if (ShouldFoldNeg) { 3663 if (LHS.getOpcode() == ISD::FNEG) 3664 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3665 else if (CRHS->isNegative()) 3666 return SDValue(); 3667 3668 if (Inv) 3669 std::swap(NewLHS, NewRHS); 3670 3671 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3672 Cond, NewLHS, NewRHS); 3673 DCI.AddToWorklist(NewSelect.getNode()); 3674 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3675 } 3676 } 3677 3678 return SDValue(); 3679 } 3680 3681 3682 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3683 DAGCombinerInfo &DCI) const { 3684 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3685 return Folded; 3686 3687 SDValue Cond = N->getOperand(0); 3688 if (Cond.getOpcode() != ISD::SETCC) 3689 return SDValue(); 3690 3691 EVT VT = N->getValueType(0); 3692 SDValue LHS = Cond.getOperand(0); 3693 SDValue RHS = Cond.getOperand(1); 3694 SDValue CC = Cond.getOperand(2); 3695 3696 SDValue True = N->getOperand(1); 3697 SDValue False = N->getOperand(2); 3698 3699 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3700 SelectionDAG &DAG = DCI.DAG; 3701 if (DAG.isConstantValueOfAnyType(True) && 3702 !DAG.isConstantValueOfAnyType(False)) { 3703 // Swap cmp + select pair to move constant to false input. 3704 // This will allow using VOPC cndmasks more often. 3705 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3706 3707 SDLoc SL(N); 3708 ISD::CondCode NewCC = 3709 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3710 3711 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3712 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3713 } 3714 3715 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3716 SDValue MinMax 3717 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3718 // Revisit this node so we can catch min3/max3/med3 patterns. 3719 //DCI.AddToWorklist(MinMax.getNode()); 3720 return MinMax; 3721 } 3722 } 3723 3724 // There's no reason to not do this if the condition has other uses. 3725 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3726 } 3727 3728 static bool isInv2Pi(const APFloat &APF) { 3729 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3730 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3731 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3732 3733 return APF.bitwiseIsEqual(KF16) || 3734 APF.bitwiseIsEqual(KF32) || 3735 APF.bitwiseIsEqual(KF64); 3736 } 3737 3738 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3739 // additional cost to negate them. 3740 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3741 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3742 if (C->isZero() && !C->isNegative()) 3743 return true; 3744 3745 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3746 return true; 3747 } 3748 3749 return false; 3750 } 3751 3752 static unsigned inverseMinMax(unsigned Opc) { 3753 switch (Opc) { 3754 case ISD::FMAXNUM: 3755 return ISD::FMINNUM; 3756 case ISD::FMINNUM: 3757 return ISD::FMAXNUM; 3758 case ISD::FMAXNUM_IEEE: 3759 return ISD::FMINNUM_IEEE; 3760 case ISD::FMINNUM_IEEE: 3761 return ISD::FMAXNUM_IEEE; 3762 case AMDGPUISD::FMAX_LEGACY: 3763 return AMDGPUISD::FMIN_LEGACY; 3764 case AMDGPUISD::FMIN_LEGACY: 3765 return AMDGPUISD::FMAX_LEGACY; 3766 default: 3767 llvm_unreachable("invalid min/max opcode"); 3768 } 3769 } 3770 3771 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3772 DAGCombinerInfo &DCI) const { 3773 SelectionDAG &DAG = DCI.DAG; 3774 SDValue N0 = N->getOperand(0); 3775 EVT VT = N->getValueType(0); 3776 3777 unsigned Opc = N0.getOpcode(); 3778 3779 // If the input has multiple uses and we can either fold the negate down, or 3780 // the other uses cannot, give up. This both prevents unprofitable 3781 // transformations and infinite loops: we won't repeatedly try to fold around 3782 // a negate that has no 'good' form. 3783 if (N0.hasOneUse()) { 3784 // This may be able to fold into the source, but at a code size cost. Don't 3785 // fold if the fold into the user is free. 3786 if (allUsesHaveSourceMods(N, 0)) 3787 return SDValue(); 3788 } else { 3789 if (fnegFoldsIntoOp(Opc) && 3790 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3791 return SDValue(); 3792 } 3793 3794 SDLoc SL(N); 3795 switch (Opc) { 3796 case ISD::FADD: { 3797 if (!mayIgnoreSignedZero(N0)) 3798 return SDValue(); 3799 3800 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3801 SDValue LHS = N0.getOperand(0); 3802 SDValue RHS = N0.getOperand(1); 3803 3804 if (LHS.getOpcode() != ISD::FNEG) 3805 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3806 else 3807 LHS = LHS.getOperand(0); 3808 3809 if (RHS.getOpcode() != ISD::FNEG) 3810 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3811 else 3812 RHS = RHS.getOperand(0); 3813 3814 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3815 if (Res.getOpcode() != ISD::FADD) 3816 return SDValue(); // Op got folded away. 3817 if (!N0.hasOneUse()) 3818 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3819 return Res; 3820 } 3821 case ISD::FMUL: 3822 case AMDGPUISD::FMUL_LEGACY: { 3823 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3824 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3825 SDValue LHS = N0.getOperand(0); 3826 SDValue RHS = N0.getOperand(1); 3827 3828 if (LHS.getOpcode() == ISD::FNEG) 3829 LHS = LHS.getOperand(0); 3830 else if (RHS.getOpcode() == ISD::FNEG) 3831 RHS = RHS.getOperand(0); 3832 else 3833 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3834 3835 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3836 if (Res.getOpcode() != Opc) 3837 return SDValue(); // Op got folded away. 3838 if (!N0.hasOneUse()) 3839 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3840 return Res; 3841 } 3842 case ISD::FMA: 3843 case ISD::FMAD: { 3844 // TODO: handle llvm.amdgcn.fma.legacy 3845 if (!mayIgnoreSignedZero(N0)) 3846 return SDValue(); 3847 3848 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3849 SDValue LHS = N0.getOperand(0); 3850 SDValue MHS = N0.getOperand(1); 3851 SDValue RHS = N0.getOperand(2); 3852 3853 if (LHS.getOpcode() == ISD::FNEG) 3854 LHS = LHS.getOperand(0); 3855 else if (MHS.getOpcode() == ISD::FNEG) 3856 MHS = MHS.getOperand(0); 3857 else 3858 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3859 3860 if (RHS.getOpcode() != ISD::FNEG) 3861 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3862 else 3863 RHS = RHS.getOperand(0); 3864 3865 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3866 if (Res.getOpcode() != Opc) 3867 return SDValue(); // Op got folded away. 3868 if (!N0.hasOneUse()) 3869 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3870 return Res; 3871 } 3872 case ISD::FMAXNUM: 3873 case ISD::FMINNUM: 3874 case ISD::FMAXNUM_IEEE: 3875 case ISD::FMINNUM_IEEE: 3876 case AMDGPUISD::FMAX_LEGACY: 3877 case AMDGPUISD::FMIN_LEGACY: { 3878 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3879 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3880 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3881 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3882 3883 SDValue LHS = N0.getOperand(0); 3884 SDValue RHS = N0.getOperand(1); 3885 3886 // 0 doesn't have a negated inline immediate. 3887 // TODO: This constant check should be generalized to other operations. 3888 if (isConstantCostlierToNegate(RHS)) 3889 return SDValue(); 3890 3891 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3892 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3893 unsigned Opposite = inverseMinMax(Opc); 3894 3895 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3896 if (Res.getOpcode() != Opposite) 3897 return SDValue(); // Op got folded away. 3898 if (!N0.hasOneUse()) 3899 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3900 return Res; 3901 } 3902 case AMDGPUISD::FMED3: { 3903 SDValue Ops[3]; 3904 for (unsigned I = 0; I < 3; ++I) 3905 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3906 3907 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3908 if (Res.getOpcode() != AMDGPUISD::FMED3) 3909 return SDValue(); // Op got folded away. 3910 3911 if (!N0.hasOneUse()) { 3912 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3913 DAG.ReplaceAllUsesWith(N0, Neg); 3914 3915 for (SDNode *U : Neg->uses()) 3916 DCI.AddToWorklist(U); 3917 } 3918 3919 return Res; 3920 } 3921 case ISD::FP_EXTEND: 3922 case ISD::FTRUNC: 3923 case ISD::FRINT: 3924 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3925 case ISD::FSIN: 3926 case ISD::FCANONICALIZE: 3927 case AMDGPUISD::RCP: 3928 case AMDGPUISD::RCP_LEGACY: 3929 case AMDGPUISD::RCP_IFLAG: 3930 case AMDGPUISD::SIN_HW: { 3931 SDValue CvtSrc = N0.getOperand(0); 3932 if (CvtSrc.getOpcode() == ISD::FNEG) { 3933 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3934 // (fneg (rcp (fneg x))) -> (rcp x) 3935 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3936 } 3937 3938 if (!N0.hasOneUse()) 3939 return SDValue(); 3940 3941 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3942 // (fneg (rcp x)) -> (rcp (fneg x)) 3943 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3944 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3945 } 3946 case ISD::FP_ROUND: { 3947 SDValue CvtSrc = N0.getOperand(0); 3948 3949 if (CvtSrc.getOpcode() == ISD::FNEG) { 3950 // (fneg (fp_round (fneg x))) -> (fp_round x) 3951 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3952 CvtSrc.getOperand(0), N0.getOperand(1)); 3953 } 3954 3955 if (!N0.hasOneUse()) 3956 return SDValue(); 3957 3958 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3959 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3960 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3961 } 3962 case ISD::FP16_TO_FP: { 3963 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3964 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3965 // Put the fneg back as a legal source operation that can be matched later. 3966 SDLoc SL(N); 3967 3968 SDValue Src = N0.getOperand(0); 3969 EVT SrcVT = Src.getValueType(); 3970 3971 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3972 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3973 DAG.getConstant(0x8000, SL, SrcVT)); 3974 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3975 } 3976 default: 3977 return SDValue(); 3978 } 3979 } 3980 3981 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3982 DAGCombinerInfo &DCI) const { 3983 SelectionDAG &DAG = DCI.DAG; 3984 SDValue N0 = N->getOperand(0); 3985 3986 if (!N0.hasOneUse()) 3987 return SDValue(); 3988 3989 switch (N0.getOpcode()) { 3990 case ISD::FP16_TO_FP: { 3991 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3992 SDLoc SL(N); 3993 SDValue Src = N0.getOperand(0); 3994 EVT SrcVT = Src.getValueType(); 3995 3996 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3997 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3998 DAG.getConstant(0x7fff, SL, SrcVT)); 3999 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 4000 } 4001 default: 4002 return SDValue(); 4003 } 4004 } 4005 4006 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4007 DAGCombinerInfo &DCI) const { 4008 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4009 if (!CFP) 4010 return SDValue(); 4011 4012 // XXX - Should this flush denormals? 4013 const APFloat &Val = CFP->getValueAPF(); 4014 APFloat One(Val.getSemantics(), "1.0"); 4015 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4016 } 4017 4018 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4019 DAGCombinerInfo &DCI) const { 4020 SelectionDAG &DAG = DCI.DAG; 4021 SDLoc DL(N); 4022 4023 switch(N->getOpcode()) { 4024 default: 4025 break; 4026 case ISD::BITCAST: { 4027 EVT DestVT = N->getValueType(0); 4028 4029 // Push casts through vector builds. This helps avoid emitting a large 4030 // number of copies when materializing floating point vector constants. 4031 // 4032 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4033 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4034 if (DestVT.isVector()) { 4035 SDValue Src = N->getOperand(0); 4036 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4037 EVT SrcVT = Src.getValueType(); 4038 unsigned NElts = DestVT.getVectorNumElements(); 4039 4040 if (SrcVT.getVectorNumElements() == NElts) { 4041 EVT DestEltVT = DestVT.getVectorElementType(); 4042 4043 SmallVector<SDValue, 8> CastedElts; 4044 SDLoc SL(N); 4045 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4046 SDValue Elt = Src.getOperand(I); 4047 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4048 } 4049 4050 return DAG.getBuildVector(DestVT, SL, CastedElts); 4051 } 4052 } 4053 } 4054 4055 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4056 break; 4057 4058 // Fold bitcasts of constants. 4059 // 4060 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4061 // TODO: Generalize and move to DAGCombiner 4062 SDValue Src = N->getOperand(0); 4063 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4064 SDLoc SL(N); 4065 uint64_t CVal = C->getZExtValue(); 4066 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4067 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4068 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4069 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4070 } 4071 4072 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4073 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4074 SDLoc SL(N); 4075 uint64_t CVal = Val.getZExtValue(); 4076 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4077 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4078 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4079 4080 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4081 } 4082 4083 break; 4084 } 4085 case ISD::SHL: { 4086 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4087 break; 4088 4089 return performShlCombine(N, DCI); 4090 } 4091 case ISD::SRL: { 4092 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4093 break; 4094 4095 return performSrlCombine(N, DCI); 4096 } 4097 case ISD::SRA: { 4098 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4099 break; 4100 4101 return performSraCombine(N, DCI); 4102 } 4103 case ISD::TRUNCATE: 4104 return performTruncateCombine(N, DCI); 4105 case ISD::MUL: 4106 return performMulCombine(N, DCI); 4107 case ISD::MULHS: 4108 return performMulhsCombine(N, DCI); 4109 case ISD::MULHU: 4110 return performMulhuCombine(N, DCI); 4111 case AMDGPUISD::MUL_I24: 4112 case AMDGPUISD::MUL_U24: 4113 case AMDGPUISD::MULHI_I24: 4114 case AMDGPUISD::MULHI_U24: 4115 return simplifyMul24(N, DCI); 4116 case ISD::SELECT: 4117 return performSelectCombine(N, DCI); 4118 case ISD::FNEG: 4119 return performFNegCombine(N, DCI); 4120 case ISD::FABS: 4121 return performFAbsCombine(N, DCI); 4122 case AMDGPUISD::BFE_I32: 4123 case AMDGPUISD::BFE_U32: { 4124 assert(!N->getValueType(0).isVector() && 4125 "Vector handling of BFE not implemented"); 4126 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4127 if (!Width) 4128 break; 4129 4130 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4131 if (WidthVal == 0) 4132 return DAG.getConstant(0, DL, MVT::i32); 4133 4134 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4135 if (!Offset) 4136 break; 4137 4138 SDValue BitsFrom = N->getOperand(0); 4139 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4140 4141 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4142 4143 if (OffsetVal == 0) { 4144 // This is already sign / zero extended, so try to fold away extra BFEs. 4145 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4146 4147 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4148 if (OpSignBits >= SignBits) 4149 return BitsFrom; 4150 4151 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4152 if (Signed) { 4153 // This is a sign_extend_inreg. Replace it to take advantage of existing 4154 // DAG Combines. If not eliminated, we will match back to BFE during 4155 // selection. 4156 4157 // TODO: The sext_inreg of extended types ends, although we can could 4158 // handle them in a single BFE. 4159 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4160 DAG.getValueType(SmallVT)); 4161 } 4162 4163 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4164 } 4165 4166 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4167 if (Signed) { 4168 return constantFoldBFE<int32_t>(DAG, 4169 CVal->getSExtValue(), 4170 OffsetVal, 4171 WidthVal, 4172 DL); 4173 } 4174 4175 return constantFoldBFE<uint32_t>(DAG, 4176 CVal->getZExtValue(), 4177 OffsetVal, 4178 WidthVal, 4179 DL); 4180 } 4181 4182 if ((OffsetVal + WidthVal) >= 32 && 4183 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4184 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4185 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4186 BitsFrom, ShiftVal); 4187 } 4188 4189 if (BitsFrom.hasOneUse()) { 4190 APInt Demanded = APInt::getBitsSet(32, 4191 OffsetVal, 4192 OffsetVal + WidthVal); 4193 4194 KnownBits Known; 4195 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4196 !DCI.isBeforeLegalizeOps()); 4197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4198 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4199 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4200 DCI.CommitTargetLoweringOpt(TLO); 4201 } 4202 } 4203 4204 break; 4205 } 4206 case ISD::LOAD: 4207 return performLoadCombine(N, DCI); 4208 case ISD::STORE: 4209 return performStoreCombine(N, DCI); 4210 case AMDGPUISD::RCP: 4211 case AMDGPUISD::RCP_IFLAG: 4212 return performRcpCombine(N, DCI); 4213 case ISD::AssertZext: 4214 case ISD::AssertSext: 4215 return performAssertSZExtCombine(N, DCI); 4216 case ISD::INTRINSIC_WO_CHAIN: 4217 return performIntrinsicWOChainCombine(N, DCI); 4218 } 4219 return SDValue(); 4220 } 4221 4222 //===----------------------------------------------------------------------===// 4223 // Helper functions 4224 //===----------------------------------------------------------------------===// 4225 4226 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4227 const TargetRegisterClass *RC, 4228 Register Reg, EVT VT, 4229 const SDLoc &SL, 4230 bool RawReg) const { 4231 MachineFunction &MF = DAG.getMachineFunction(); 4232 MachineRegisterInfo &MRI = MF.getRegInfo(); 4233 Register VReg; 4234 4235 if (!MRI.isLiveIn(Reg)) { 4236 VReg = MRI.createVirtualRegister(RC); 4237 MRI.addLiveIn(Reg, VReg); 4238 } else { 4239 VReg = MRI.getLiveInVirtReg(Reg); 4240 } 4241 4242 if (RawReg) 4243 return DAG.getRegister(VReg, VT); 4244 4245 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4246 } 4247 4248 // This may be called multiple times, and nothing prevents creating multiple 4249 // objects at the same offset. See if we already defined this object. 4250 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4251 int64_t Offset) { 4252 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4253 if (MFI.getObjectOffset(I) == Offset) { 4254 assert(MFI.getObjectSize(I) == Size); 4255 return I; 4256 } 4257 } 4258 4259 return MFI.CreateFixedObject(Size, Offset, true); 4260 } 4261 4262 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4263 EVT VT, 4264 const SDLoc &SL, 4265 int64_t Offset) const { 4266 MachineFunction &MF = DAG.getMachineFunction(); 4267 MachineFrameInfo &MFI = MF.getFrameInfo(); 4268 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4269 4270 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4271 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4272 4273 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4274 MachineMemOperand::MODereferenceable | 4275 MachineMemOperand::MOInvariant); 4276 } 4277 4278 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4279 const SDLoc &SL, 4280 SDValue Chain, 4281 SDValue ArgVal, 4282 int64_t Offset) const { 4283 MachineFunction &MF = DAG.getMachineFunction(); 4284 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4285 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4286 4287 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4288 // Stores to the argument stack area are relative to the stack pointer. 4289 SDValue SP = 4290 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4291 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4292 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4293 MachineMemOperand::MODereferenceable); 4294 return Store; 4295 } 4296 4297 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4298 const TargetRegisterClass *RC, 4299 EVT VT, const SDLoc &SL, 4300 const ArgDescriptor &Arg) const { 4301 assert(Arg && "Attempting to load missing argument"); 4302 4303 SDValue V = Arg.isRegister() ? 4304 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4305 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4306 4307 if (!Arg.isMasked()) 4308 return V; 4309 4310 unsigned Mask = Arg.getMask(); 4311 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4312 V = DAG.getNode(ISD::SRL, SL, VT, V, 4313 DAG.getShiftAmountConstant(Shift, VT, SL)); 4314 return DAG.getNode(ISD::AND, SL, VT, V, 4315 DAG.getConstant(Mask >> Shift, SL, VT)); 4316 } 4317 4318 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4319 const MachineFunction &MF, const ImplicitParameter Param) const { 4320 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4321 const AMDGPUSubtarget &ST = 4322 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4323 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4324 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4325 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4326 ExplicitArgOffset; 4327 switch (Param) { 4328 case GRID_DIM: 4329 return ArgOffset; 4330 case GRID_OFFSET: 4331 return ArgOffset + 4; 4332 } 4333 llvm_unreachable("unexpected implicit parameter type"); 4334 } 4335 4336 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4337 4338 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4339 switch ((AMDGPUISD::NodeType)Opcode) { 4340 case AMDGPUISD::FIRST_NUMBER: break; 4341 // AMDIL DAG nodes 4342 NODE_NAME_CASE(UMUL); 4343 NODE_NAME_CASE(BRANCH_COND); 4344 4345 // AMDGPU DAG nodes 4346 NODE_NAME_CASE(IF) 4347 NODE_NAME_CASE(ELSE) 4348 NODE_NAME_CASE(LOOP) 4349 NODE_NAME_CASE(CALL) 4350 NODE_NAME_CASE(TC_RETURN) 4351 NODE_NAME_CASE(TRAP) 4352 NODE_NAME_CASE(RET_FLAG) 4353 NODE_NAME_CASE(RET_GFX_FLAG) 4354 NODE_NAME_CASE(RETURN_TO_EPILOG) 4355 NODE_NAME_CASE(ENDPGM) 4356 NODE_NAME_CASE(DWORDADDR) 4357 NODE_NAME_CASE(FRACT) 4358 NODE_NAME_CASE(SETCC) 4359 NODE_NAME_CASE(SETREG) 4360 NODE_NAME_CASE(DENORM_MODE) 4361 NODE_NAME_CASE(FMA_W_CHAIN) 4362 NODE_NAME_CASE(FMUL_W_CHAIN) 4363 NODE_NAME_CASE(CLAMP) 4364 NODE_NAME_CASE(COS_HW) 4365 NODE_NAME_CASE(SIN_HW) 4366 NODE_NAME_CASE(FMAX_LEGACY) 4367 NODE_NAME_CASE(FMIN_LEGACY) 4368 NODE_NAME_CASE(FMAX3) 4369 NODE_NAME_CASE(SMAX3) 4370 NODE_NAME_CASE(UMAX3) 4371 NODE_NAME_CASE(FMIN3) 4372 NODE_NAME_CASE(SMIN3) 4373 NODE_NAME_CASE(UMIN3) 4374 NODE_NAME_CASE(FMED3) 4375 NODE_NAME_CASE(SMED3) 4376 NODE_NAME_CASE(UMED3) 4377 NODE_NAME_CASE(FDOT2) 4378 NODE_NAME_CASE(URECIP) 4379 NODE_NAME_CASE(DIV_SCALE) 4380 NODE_NAME_CASE(DIV_FMAS) 4381 NODE_NAME_CASE(DIV_FIXUP) 4382 NODE_NAME_CASE(FMAD_FTZ) 4383 NODE_NAME_CASE(RCP) 4384 NODE_NAME_CASE(RSQ) 4385 NODE_NAME_CASE(RCP_LEGACY) 4386 NODE_NAME_CASE(RCP_IFLAG) 4387 NODE_NAME_CASE(FMUL_LEGACY) 4388 NODE_NAME_CASE(RSQ_CLAMP) 4389 NODE_NAME_CASE(LDEXP) 4390 NODE_NAME_CASE(FP_CLASS) 4391 NODE_NAME_CASE(DOT4) 4392 NODE_NAME_CASE(CARRY) 4393 NODE_NAME_CASE(BORROW) 4394 NODE_NAME_CASE(BFE_U32) 4395 NODE_NAME_CASE(BFE_I32) 4396 NODE_NAME_CASE(BFI) 4397 NODE_NAME_CASE(BFM) 4398 NODE_NAME_CASE(FFBH_U32) 4399 NODE_NAME_CASE(FFBH_I32) 4400 NODE_NAME_CASE(FFBL_B32) 4401 NODE_NAME_CASE(MUL_U24) 4402 NODE_NAME_CASE(MUL_I24) 4403 NODE_NAME_CASE(MULHI_U24) 4404 NODE_NAME_CASE(MULHI_I24) 4405 NODE_NAME_CASE(MAD_U24) 4406 NODE_NAME_CASE(MAD_I24) 4407 NODE_NAME_CASE(MAD_I64_I32) 4408 NODE_NAME_CASE(MAD_U64_U32) 4409 NODE_NAME_CASE(PERM) 4410 NODE_NAME_CASE(TEXTURE_FETCH) 4411 NODE_NAME_CASE(R600_EXPORT) 4412 NODE_NAME_CASE(CONST_ADDRESS) 4413 NODE_NAME_CASE(REGISTER_LOAD) 4414 NODE_NAME_CASE(REGISTER_STORE) 4415 NODE_NAME_CASE(SAMPLE) 4416 NODE_NAME_CASE(SAMPLEB) 4417 NODE_NAME_CASE(SAMPLED) 4418 NODE_NAME_CASE(SAMPLEL) 4419 NODE_NAME_CASE(CVT_F32_UBYTE0) 4420 NODE_NAME_CASE(CVT_F32_UBYTE1) 4421 NODE_NAME_CASE(CVT_F32_UBYTE2) 4422 NODE_NAME_CASE(CVT_F32_UBYTE3) 4423 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4424 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4425 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4426 NODE_NAME_CASE(CVT_PK_I16_I32) 4427 NODE_NAME_CASE(CVT_PK_U16_U32) 4428 NODE_NAME_CASE(FP_TO_FP16) 4429 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4430 NODE_NAME_CASE(CONST_DATA_PTR) 4431 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4432 NODE_NAME_CASE(LDS) 4433 NODE_NAME_CASE(DUMMY_CHAIN) 4434 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4435 NODE_NAME_CASE(LOAD_D16_HI) 4436 NODE_NAME_CASE(LOAD_D16_LO) 4437 NODE_NAME_CASE(LOAD_D16_HI_I8) 4438 NODE_NAME_CASE(LOAD_D16_HI_U8) 4439 NODE_NAME_CASE(LOAD_D16_LO_I8) 4440 NODE_NAME_CASE(LOAD_D16_LO_U8) 4441 NODE_NAME_CASE(STORE_MSKOR) 4442 NODE_NAME_CASE(LOAD_CONSTANT) 4443 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4444 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4445 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4446 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4447 NODE_NAME_CASE(DS_ORDERED_COUNT) 4448 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4449 NODE_NAME_CASE(ATOMIC_INC) 4450 NODE_NAME_CASE(ATOMIC_DEC) 4451 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4452 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4453 NODE_NAME_CASE(BUFFER_LOAD) 4454 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4455 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4456 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4457 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4458 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4459 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4460 NODE_NAME_CASE(SBUFFER_LOAD) 4461 NODE_NAME_CASE(BUFFER_STORE) 4462 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4463 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4464 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4465 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4466 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4467 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4468 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4469 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4470 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4471 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4472 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4473 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4474 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4475 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4476 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4477 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4478 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4479 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4480 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4481 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4482 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4483 4484 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4485 } 4486 return nullptr; 4487 } 4488 4489 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4490 SelectionDAG &DAG, int Enabled, 4491 int &RefinementSteps, 4492 bool &UseOneConstNR, 4493 bool Reciprocal) const { 4494 EVT VT = Operand.getValueType(); 4495 4496 if (VT == MVT::f32) { 4497 RefinementSteps = 0; 4498 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4499 } 4500 4501 // TODO: There is also f64 rsq instruction, but the documentation is less 4502 // clear on its precision. 4503 4504 return SDValue(); 4505 } 4506 4507 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4508 SelectionDAG &DAG, int Enabled, 4509 int &RefinementSteps) const { 4510 EVT VT = Operand.getValueType(); 4511 4512 if (VT == MVT::f32) { 4513 // Reciprocal, < 1 ulp error. 4514 // 4515 // This reciprocal approximation converges to < 0.5 ulp error with one 4516 // newton rhapson performed with two fused multiple adds (FMAs). 4517 4518 RefinementSteps = 0; 4519 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4520 } 4521 4522 // TODO: There is also f64 rcp instruction, but the documentation is less 4523 // clear on its precision. 4524 4525 return SDValue(); 4526 } 4527 4528 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4529 const SDValue Op, KnownBits &Known, 4530 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4531 4532 Known.resetAll(); // Don't know anything. 4533 4534 unsigned Opc = Op.getOpcode(); 4535 4536 switch (Opc) { 4537 default: 4538 break; 4539 case AMDGPUISD::CARRY: 4540 case AMDGPUISD::BORROW: { 4541 Known.Zero = APInt::getHighBitsSet(32, 31); 4542 break; 4543 } 4544 4545 case AMDGPUISD::BFE_I32: 4546 case AMDGPUISD::BFE_U32: { 4547 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4548 if (!CWidth) 4549 return; 4550 4551 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4552 4553 if (Opc == AMDGPUISD::BFE_U32) 4554 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4555 4556 break; 4557 } 4558 case AMDGPUISD::FP_TO_FP16: { 4559 unsigned BitWidth = Known.getBitWidth(); 4560 4561 // High bits are zero. 4562 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4563 break; 4564 } 4565 case AMDGPUISD::MUL_U24: 4566 case AMDGPUISD::MUL_I24: { 4567 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4568 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4569 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4570 RHSKnown.countMinTrailingZeros(); 4571 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4572 // Skip extra check if all bits are known zeros. 4573 if (TrailZ >= 32) 4574 break; 4575 4576 // Truncate to 24 bits. 4577 LHSKnown = LHSKnown.trunc(24); 4578 RHSKnown = RHSKnown.trunc(24); 4579 4580 if (Opc == AMDGPUISD::MUL_I24) { 4581 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4582 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4583 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4584 if (MaxValBits >= 32) 4585 break; 4586 bool LHSNegative = LHSKnown.isNegative(); 4587 bool LHSNonNegative = LHSKnown.isNonNegative(); 4588 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4589 bool RHSNegative = RHSKnown.isNegative(); 4590 bool RHSNonNegative = RHSKnown.isNonNegative(); 4591 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4592 4593 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4594 Known.Zero.setHighBits(32 - MaxValBits); 4595 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4596 Known.One.setHighBits(32 - MaxValBits); 4597 } else { 4598 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4599 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4600 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4601 if (MaxValBits >= 32) 4602 break; 4603 Known.Zero.setHighBits(32 - MaxValBits); 4604 } 4605 break; 4606 } 4607 case AMDGPUISD::PERM: { 4608 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4609 if (!CMask) 4610 return; 4611 4612 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4613 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4614 unsigned Sel = CMask->getZExtValue(); 4615 4616 for (unsigned I = 0; I < 32; I += 8) { 4617 unsigned SelBits = Sel & 0xff; 4618 if (SelBits < 4) { 4619 SelBits *= 8; 4620 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4621 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4622 } else if (SelBits < 7) { 4623 SelBits = (SelBits & 3) * 8; 4624 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4625 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4626 } else if (SelBits == 0x0c) { 4627 Known.Zero |= 0xFFull << I; 4628 } else if (SelBits > 0x0c) { 4629 Known.One |= 0xFFull << I; 4630 } 4631 Sel >>= 8; 4632 } 4633 break; 4634 } 4635 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4636 Known.Zero.setHighBits(24); 4637 break; 4638 } 4639 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4640 Known.Zero.setHighBits(16); 4641 break; 4642 } 4643 case AMDGPUISD::LDS: { 4644 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4645 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4646 4647 Known.Zero.setHighBits(16); 4648 Known.Zero.setLowBits(Log2(Alignment)); 4649 break; 4650 } 4651 case ISD::INTRINSIC_WO_CHAIN: { 4652 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4653 switch (IID) { 4654 case Intrinsic::amdgcn_mbcnt_lo: 4655 case Intrinsic::amdgcn_mbcnt_hi: { 4656 const GCNSubtarget &ST = 4657 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4658 // These return at most the wavefront size - 1. 4659 unsigned Size = Op.getValueType().getSizeInBits(); 4660 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4661 break; 4662 } 4663 default: 4664 break; 4665 } 4666 } 4667 } 4668 } 4669 4670 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4671 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4672 unsigned Depth) const { 4673 switch (Op.getOpcode()) { 4674 case AMDGPUISD::BFE_I32: { 4675 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4676 if (!Width) 4677 return 1; 4678 4679 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4680 if (!isNullConstant(Op.getOperand(1))) 4681 return SignBits; 4682 4683 // TODO: Could probably figure something out with non-0 offsets. 4684 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4685 return std::max(SignBits, Op0SignBits); 4686 } 4687 4688 case AMDGPUISD::BFE_U32: { 4689 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4690 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4691 } 4692 4693 case AMDGPUISD::CARRY: 4694 case AMDGPUISD::BORROW: 4695 return 31; 4696 case AMDGPUISD::BUFFER_LOAD_BYTE: 4697 return 25; 4698 case AMDGPUISD::BUFFER_LOAD_SHORT: 4699 return 17; 4700 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4701 return 24; 4702 case AMDGPUISD::BUFFER_LOAD_USHORT: 4703 return 16; 4704 case AMDGPUISD::FP_TO_FP16: 4705 return 16; 4706 default: 4707 return 1; 4708 } 4709 } 4710 4711 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4712 GISelKnownBits &Analysis, Register R, 4713 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4714 unsigned Depth) const { 4715 const MachineInstr *MI = MRI.getVRegDef(R); 4716 if (!MI) 4717 return 1; 4718 4719 // TODO: Check range metadata on MMO. 4720 switch (MI->getOpcode()) { 4721 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4722 return 25; 4723 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4724 return 17; 4725 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4726 return 24; 4727 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4728 return 16; 4729 default: 4730 return 1; 4731 } 4732 } 4733 4734 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4735 const SelectionDAG &DAG, 4736 bool SNaN, 4737 unsigned Depth) const { 4738 unsigned Opcode = Op.getOpcode(); 4739 switch (Opcode) { 4740 case AMDGPUISD::FMIN_LEGACY: 4741 case AMDGPUISD::FMAX_LEGACY: { 4742 if (SNaN) 4743 return true; 4744 4745 // TODO: Can check no nans on one of the operands for each one, but which 4746 // one? 4747 return false; 4748 } 4749 case AMDGPUISD::FMUL_LEGACY: 4750 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4751 if (SNaN) 4752 return true; 4753 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4754 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4755 } 4756 case AMDGPUISD::FMED3: 4757 case AMDGPUISD::FMIN3: 4758 case AMDGPUISD::FMAX3: 4759 case AMDGPUISD::FMAD_FTZ: { 4760 if (SNaN) 4761 return true; 4762 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4763 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4764 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4765 } 4766 case AMDGPUISD::CVT_F32_UBYTE0: 4767 case AMDGPUISD::CVT_F32_UBYTE1: 4768 case AMDGPUISD::CVT_F32_UBYTE2: 4769 case AMDGPUISD::CVT_F32_UBYTE3: 4770 return true; 4771 4772 case AMDGPUISD::RCP: 4773 case AMDGPUISD::RSQ: 4774 case AMDGPUISD::RCP_LEGACY: 4775 case AMDGPUISD::RSQ_CLAMP: { 4776 if (SNaN) 4777 return true; 4778 4779 // TODO: Need is known positive check. 4780 return false; 4781 } 4782 case AMDGPUISD::LDEXP: 4783 case AMDGPUISD::FRACT: { 4784 if (SNaN) 4785 return true; 4786 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4787 } 4788 case AMDGPUISD::DIV_SCALE: 4789 case AMDGPUISD::DIV_FMAS: 4790 case AMDGPUISD::DIV_FIXUP: 4791 // TODO: Refine on operands. 4792 return SNaN; 4793 case AMDGPUISD::SIN_HW: 4794 case AMDGPUISD::COS_HW: { 4795 // TODO: Need check for infinity 4796 return SNaN; 4797 } 4798 case ISD::INTRINSIC_WO_CHAIN: { 4799 unsigned IntrinsicID 4800 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4801 // TODO: Handle more intrinsics 4802 switch (IntrinsicID) { 4803 case Intrinsic::amdgcn_cubeid: 4804 return true; 4805 4806 case Intrinsic::amdgcn_frexp_mant: { 4807 if (SNaN) 4808 return true; 4809 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4810 } 4811 case Intrinsic::amdgcn_cvt_pkrtz: { 4812 if (SNaN) 4813 return true; 4814 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4815 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4816 } 4817 case Intrinsic::amdgcn_rcp: 4818 case Intrinsic::amdgcn_rsq: 4819 case Intrinsic::amdgcn_rcp_legacy: 4820 case Intrinsic::amdgcn_rsq_legacy: 4821 case Intrinsic::amdgcn_rsq_clamp: { 4822 if (SNaN) 4823 return true; 4824 4825 // TODO: Need is known positive check. 4826 return false; 4827 } 4828 case Intrinsic::amdgcn_trig_preop: 4829 case Intrinsic::amdgcn_fdot2: 4830 // TODO: Refine on operand 4831 return SNaN; 4832 case Intrinsic::amdgcn_fma_legacy: 4833 if (SNaN) 4834 return true; 4835 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4836 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4837 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4838 default: 4839 return false; 4840 } 4841 } 4842 default: 4843 return false; 4844 } 4845 } 4846 4847 TargetLowering::AtomicExpansionKind 4848 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4849 switch (RMW->getOperation()) { 4850 case AtomicRMWInst::Nand: 4851 case AtomicRMWInst::FAdd: 4852 case AtomicRMWInst::FSub: 4853 return AtomicExpansionKind::CmpXChg; 4854 default: 4855 return AtomicExpansionKind::None; 4856 } 4857 } 4858 4859 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal( 4860 unsigned Opc, LLT Ty1, LLT Ty2) const { 4861 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)); 4862 } 4863