1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f16, Custom); 324 setOperationAction(ISD::FREM, MVT::f32, Custom); 325 setOperationAction(ISD::FREM, MVT::f64, Custom); 326 327 // Expand to fneg + fadd. 328 setOperationAction(ISD::FSUB, MVT::f64, Expand); 329 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 337 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 359 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 360 361 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 363 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 364 365 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 366 for (MVT VT : ScalarIntVTs) { 367 // These should use [SU]DIVREM, so set them to expand 368 setOperationAction(ISD::SDIV, VT, Expand); 369 setOperationAction(ISD::UDIV, VT, Expand); 370 setOperationAction(ISD::SREM, VT, Expand); 371 setOperationAction(ISD::UREM, VT, Expand); 372 373 // GPU does not have divrem function for signed or unsigned. 374 setOperationAction(ISD::SDIVREM, VT, Custom); 375 setOperationAction(ISD::UDIVREM, VT, Custom); 376 377 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 378 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 379 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 380 381 setOperationAction(ISD::BSWAP, VT, Expand); 382 setOperationAction(ISD::CTTZ, VT, Expand); 383 setOperationAction(ISD::CTLZ, VT, Expand); 384 385 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 386 setOperationAction(ISD::ADDC, VT, Legal); 387 setOperationAction(ISD::SUBC, VT, Legal); 388 setOperationAction(ISD::ADDE, VT, Legal); 389 setOperationAction(ISD::SUBE, VT, Legal); 390 } 391 392 // The hardware supports 32-bit FSHR, but not FSHL. 393 setOperationAction(ISD::FSHR, MVT::i32, Legal); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MUL, MVT::i64, Expand); 401 setOperationAction(ISD::MULHU, MVT::i64, Expand); 402 setOperationAction(ISD::MULHS, MVT::i64, Expand); 403 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 404 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 405 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 406 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 407 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 408 409 setOperationAction(ISD::SMIN, MVT::i32, Legal); 410 setOperationAction(ISD::UMIN, MVT::i32, Legal); 411 setOperationAction(ISD::SMAX, MVT::i32, Legal); 412 setOperationAction(ISD::UMAX, MVT::i32, Legal); 413 414 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 415 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 416 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 418 419 static const MVT::SimpleValueType VectorIntTypes[] = { 420 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 421 }; 422 423 for (MVT VT : VectorIntTypes) { 424 // Expand the following operations for the current type by default. 425 setOperationAction(ISD::ADD, VT, Expand); 426 setOperationAction(ISD::AND, VT, Expand); 427 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 428 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 429 setOperationAction(ISD::MUL, VT, Expand); 430 setOperationAction(ISD::MULHU, VT, Expand); 431 setOperationAction(ISD::MULHS, VT, Expand); 432 setOperationAction(ISD::OR, VT, Expand); 433 setOperationAction(ISD::SHL, VT, Expand); 434 setOperationAction(ISD::SRA, VT, Expand); 435 setOperationAction(ISD::SRL, VT, Expand); 436 setOperationAction(ISD::ROTL, VT, Expand); 437 setOperationAction(ISD::ROTR, VT, Expand); 438 setOperationAction(ISD::SUB, VT, Expand); 439 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 440 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 441 setOperationAction(ISD::SDIV, VT, Expand); 442 setOperationAction(ISD::UDIV, VT, Expand); 443 setOperationAction(ISD::SREM, VT, Expand); 444 setOperationAction(ISD::UREM, VT, Expand); 445 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 446 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 447 setOperationAction(ISD::SDIVREM, VT, Expand); 448 setOperationAction(ISD::UDIVREM, VT, Expand); 449 setOperationAction(ISD::SELECT, VT, Expand); 450 setOperationAction(ISD::VSELECT, VT, Expand); 451 setOperationAction(ISD::SELECT_CC, VT, Expand); 452 setOperationAction(ISD::XOR, VT, Expand); 453 setOperationAction(ISD::BSWAP, VT, Expand); 454 setOperationAction(ISD::CTPOP, VT, Expand); 455 setOperationAction(ISD::CTTZ, VT, Expand); 456 setOperationAction(ISD::CTLZ, VT, Expand); 457 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 458 setOperationAction(ISD::SETCC, VT, Expand); 459 } 460 461 static const MVT::SimpleValueType FloatVectorTypes[] = { 462 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 463 }; 464 465 for (MVT VT : FloatVectorTypes) { 466 setOperationAction(ISD::FABS, VT, Expand); 467 setOperationAction(ISD::FMINNUM, VT, Expand); 468 setOperationAction(ISD::FMAXNUM, VT, Expand); 469 setOperationAction(ISD::FADD, VT, Expand); 470 setOperationAction(ISD::FCEIL, VT, Expand); 471 setOperationAction(ISD::FCOS, VT, Expand); 472 setOperationAction(ISD::FDIV, VT, Expand); 473 setOperationAction(ISD::FEXP2, VT, Expand); 474 setOperationAction(ISD::FEXP, VT, Expand); 475 setOperationAction(ISD::FLOG2, VT, Expand); 476 setOperationAction(ISD::FREM, VT, Expand); 477 setOperationAction(ISD::FLOG, VT, Expand); 478 setOperationAction(ISD::FLOG10, VT, Expand); 479 setOperationAction(ISD::FPOW, VT, Expand); 480 setOperationAction(ISD::FFLOOR, VT, Expand); 481 setOperationAction(ISD::FTRUNC, VT, Expand); 482 setOperationAction(ISD::FMUL, VT, Expand); 483 setOperationAction(ISD::FMA, VT, Expand); 484 setOperationAction(ISD::FRINT, VT, Expand); 485 setOperationAction(ISD::FNEARBYINT, VT, Expand); 486 setOperationAction(ISD::FSQRT, VT, Expand); 487 setOperationAction(ISD::FSIN, VT, Expand); 488 setOperationAction(ISD::FSUB, VT, Expand); 489 setOperationAction(ISD::FNEG, VT, Expand); 490 setOperationAction(ISD::VSELECT, VT, Expand); 491 setOperationAction(ISD::SELECT_CC, VT, Expand); 492 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 493 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 494 setOperationAction(ISD::SETCC, VT, Expand); 495 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 496 } 497 498 // This causes using an unrolled select operation rather than expansion with 499 // bit operations. This is in general better, but the alternative using BFI 500 // instructions may be better if the select sources are SGPRs. 501 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 502 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 503 504 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 505 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 506 507 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 508 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 509 510 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 511 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 512 513 // There are no libcalls of any kind. 514 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 515 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 516 517 setSchedulingPreference(Sched::RegPressure); 518 setJumpIsExpensive(true); 519 520 // FIXME: This is only partially true. If we have to do vector compares, any 521 // SGPR pair can be a condition register. If we have a uniform condition, we 522 // are better off doing SALU operations, where there is only one SCC. For now, 523 // we don't have a way of knowing during instruction selection if a condition 524 // will be uniform and we always use vector compares. Assume we are using 525 // vector compares until that is fixed. 526 setHasMultipleConditionRegisters(true); 527 528 setMinCmpXchgSizeInBits(32); 529 setSupportsUnalignedAtomics(false); 530 531 PredictableSelectIsExpensive = false; 532 533 // We want to find all load dependencies for long chains of stores to enable 534 // merging into very wide vectors. The problem is with vectors with > 4 535 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 536 // vectors are a legal type, even though we have to split the loads 537 // usually. When we can more precisely specify load legality per address 538 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 539 // smarter so that they can figure out what to do in 2 iterations without all 540 // N > 4 stores on the same chain. 541 GatherAllAliasesMaxDepth = 16; 542 543 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 544 // about these during lowering. 545 MaxStoresPerMemcpy = 0xffffffff; 546 MaxStoresPerMemmove = 0xffffffff; 547 MaxStoresPerMemset = 0xffffffff; 548 549 // The expansion for 64-bit division is enormous. 550 if (AMDGPUBypassSlowDiv) 551 addBypassSlowDiv(64, 32); 552 553 setTargetDAGCombine(ISD::BITCAST); 554 setTargetDAGCombine(ISD::SHL); 555 setTargetDAGCombine(ISD::SRA); 556 setTargetDAGCombine(ISD::SRL); 557 setTargetDAGCombine(ISD::TRUNCATE); 558 setTargetDAGCombine(ISD::MUL); 559 setTargetDAGCombine(ISD::MULHU); 560 setTargetDAGCombine(ISD::MULHS); 561 setTargetDAGCombine(ISD::SELECT); 562 setTargetDAGCombine(ISD::SELECT_CC); 563 setTargetDAGCombine(ISD::STORE); 564 setTargetDAGCombine(ISD::FADD); 565 setTargetDAGCombine(ISD::FSUB); 566 setTargetDAGCombine(ISD::FNEG); 567 setTargetDAGCombine(ISD::FABS); 568 setTargetDAGCombine(ISD::AssertZext); 569 setTargetDAGCombine(ISD::AssertSext); 570 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 571 } 572 573 //===----------------------------------------------------------------------===// 574 // Target Information 575 //===----------------------------------------------------------------------===// 576 577 LLVM_READNONE 578 static bool fnegFoldsIntoOp(unsigned Opc) { 579 switch (Opc) { 580 case ISD::FADD: 581 case ISD::FSUB: 582 case ISD::FMUL: 583 case ISD::FMA: 584 case ISD::FMAD: 585 case ISD::FMINNUM: 586 case ISD::FMAXNUM: 587 case ISD::FMINNUM_IEEE: 588 case ISD::FMAXNUM_IEEE: 589 case ISD::FSIN: 590 case ISD::FTRUNC: 591 case ISD::FRINT: 592 case ISD::FNEARBYINT: 593 case ISD::FCANONICALIZE: 594 case AMDGPUISD::RCP: 595 case AMDGPUISD::RCP_LEGACY: 596 case AMDGPUISD::RCP_IFLAG: 597 case AMDGPUISD::SIN_HW: 598 case AMDGPUISD::FMUL_LEGACY: 599 case AMDGPUISD::FMIN_LEGACY: 600 case AMDGPUISD::FMAX_LEGACY: 601 case AMDGPUISD::FMED3: 602 return true; 603 default: 604 return false; 605 } 606 } 607 608 /// \p returns true if the operation will definitely need to use a 64-bit 609 /// encoding, and thus will use a VOP3 encoding regardless of the source 610 /// modifiers. 611 LLVM_READONLY 612 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 613 return N->getNumOperands() > 2 || VT == MVT::f64; 614 } 615 616 // Most FP instructions support source modifiers, but this could be refined 617 // slightly. 618 LLVM_READONLY 619 static bool hasSourceMods(const SDNode *N) { 620 if (isa<MemSDNode>(N)) 621 return false; 622 623 switch (N->getOpcode()) { 624 case ISD::CopyToReg: 625 case ISD::SELECT: 626 case ISD::FDIV: 627 case ISD::FREM: 628 case ISD::INLINEASM: 629 case ISD::INLINEASM_BR: 630 case AMDGPUISD::DIV_SCALE: 631 case ISD::INTRINSIC_W_CHAIN: 632 633 // TODO: Should really be looking at the users of the bitcast. These are 634 // problematic because bitcasts are used to legalize all stores to integer 635 // types. 636 case ISD::BITCAST: 637 return false; 638 case ISD::INTRINSIC_WO_CHAIN: { 639 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 640 case Intrinsic::amdgcn_interp_p1: 641 case Intrinsic::amdgcn_interp_p2: 642 case Intrinsic::amdgcn_interp_mov: 643 case Intrinsic::amdgcn_interp_p1_f16: 644 case Intrinsic::amdgcn_interp_p2_f16: 645 return false; 646 default: 647 return true; 648 } 649 } 650 default: 651 return true; 652 } 653 } 654 655 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 656 unsigned CostThreshold) { 657 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 658 // it is truly free to use a source modifier in all cases. If there are 659 // multiple users but for each one will necessitate using VOP3, there will be 660 // a code size increase. Try to avoid increasing code size unless we know it 661 // will save on the instruction count. 662 unsigned NumMayIncreaseSize = 0; 663 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 664 665 // XXX - Should this limit number of uses to check? 666 for (const SDNode *U : N->uses()) { 667 if (!hasSourceMods(U)) 668 return false; 669 670 if (!opMustUseVOP3Encoding(U, VT)) { 671 if (++NumMayIncreaseSize > CostThreshold) 672 return false; 673 } 674 } 675 676 return true; 677 } 678 679 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 680 ISD::NodeType ExtendKind) const { 681 assert(!VT.isVector() && "only scalar expected"); 682 683 // Round to the next multiple of 32-bits. 684 unsigned Size = VT.getSizeInBits(); 685 if (Size <= 32) 686 return MVT::i32; 687 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 688 } 689 690 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 691 return MVT::i32; 692 } 693 694 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 695 return true; 696 } 697 698 // The backend supports 32 and 64 bit floating point immediates. 699 // FIXME: Why are we reporting vectors of FP immediates as legal? 700 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 701 bool ForCodeSize) const { 702 EVT ScalarVT = VT.getScalarType(); 703 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 704 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 705 } 706 707 // We don't want to shrink f64 / f32 constants. 708 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 709 EVT ScalarVT = VT.getScalarType(); 710 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 711 } 712 713 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 714 ISD::LoadExtType ExtTy, 715 EVT NewVT) const { 716 // TODO: This may be worth removing. Check regression tests for diffs. 717 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 718 return false; 719 720 unsigned NewSize = NewVT.getStoreSizeInBits(); 721 722 // If we are reducing to a 32-bit load or a smaller multi-dword load, 723 // this is always better. 724 if (NewSize >= 32) 725 return true; 726 727 EVT OldVT = N->getValueType(0); 728 unsigned OldSize = OldVT.getStoreSizeInBits(); 729 730 MemSDNode *MN = cast<MemSDNode>(N); 731 unsigned AS = MN->getAddressSpace(); 732 // Do not shrink an aligned scalar load to sub-dword. 733 // Scalar engine cannot do sub-dword loads. 734 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 735 (AS == AMDGPUAS::CONSTANT_ADDRESS || 736 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 737 (isa<LoadSDNode>(N) && 738 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 739 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 740 return false; 741 742 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 743 // extloads, so doing one requires using a buffer_load. In cases where we 744 // still couldn't use a scalar load, using the wider load shouldn't really 745 // hurt anything. 746 747 // If the old size already had to be an extload, there's no harm in continuing 748 // to reduce the width. 749 return (OldSize < 32); 750 } 751 752 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 753 const SelectionDAG &DAG, 754 const MachineMemOperand &MMO) const { 755 756 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 757 758 if (LoadTy.getScalarType() == MVT::i32) 759 return false; 760 761 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 762 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 763 764 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 765 return false; 766 767 bool Fast = false; 768 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 769 CastTy, MMO, &Fast) && 770 Fast; 771 } 772 773 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 774 // profitable with the expansion for 64-bit since it's generally good to 775 // speculate things. 776 // FIXME: These should really have the size as a parameter. 777 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 778 return true; 779 } 780 781 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 782 return true; 783 } 784 785 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 786 switch (N->getOpcode()) { 787 default: 788 return false; 789 case ISD::EntryToken: 790 case ISD::TokenFactor: 791 return true; 792 case ISD::INTRINSIC_WO_CHAIN: 793 { 794 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 795 switch (IntrID) { 796 default: 797 return false; 798 case Intrinsic::amdgcn_readfirstlane: 799 case Intrinsic::amdgcn_readlane: 800 return true; 801 } 802 } 803 break; 804 case ISD::LOAD: 805 { 806 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 807 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 808 return true; 809 return false; 810 } 811 break; 812 } 813 } 814 815 SDValue AMDGPUTargetLowering::getNegatedExpression( 816 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 817 NegatibleCost &Cost, unsigned Depth) const { 818 819 switch (Op.getOpcode()) { 820 case ISD::FMA: 821 case ISD::FMAD: { 822 // Negating a fma is not free if it has users without source mods. 823 if (!allUsesHaveSourceMods(Op.getNode())) 824 return SDValue(); 825 break; 826 } 827 default: 828 break; 829 } 830 831 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 832 ForCodeSize, Cost, Depth); 833 } 834 835 //===---------------------------------------------------------------------===// 836 // Target Properties 837 //===---------------------------------------------------------------------===// 838 839 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 840 assert(VT.isFloatingPoint()); 841 842 // Packed operations do not have a fabs modifier. 843 return VT == MVT::f32 || VT == MVT::f64 || 844 (Subtarget->has16BitInsts() && VT == MVT::f16); 845 } 846 847 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 848 assert(VT.isFloatingPoint()); 849 return VT == MVT::f32 || VT == MVT::f64 || 850 (Subtarget->has16BitInsts() && VT == MVT::f16) || 851 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 852 } 853 854 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 855 unsigned NumElem, 856 unsigned AS) const { 857 return true; 858 } 859 860 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 861 // There are few operations which truly have vector input operands. Any vector 862 // operation is going to involve operations on each component, and a 863 // build_vector will be a copy per element, so it always makes sense to use a 864 // build_vector input in place of the extracted element to avoid a copy into a 865 // super register. 866 // 867 // We should probably only do this if all users are extracts only, but this 868 // should be the common case. 869 return true; 870 } 871 872 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 873 // Truncate is just accessing a subregister. 874 875 unsigned SrcSize = Source.getSizeInBits(); 876 unsigned DestSize = Dest.getSizeInBits(); 877 878 return DestSize < SrcSize && DestSize % 32 == 0 ; 879 } 880 881 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 882 // Truncate is just accessing a subregister. 883 884 unsigned SrcSize = Source->getScalarSizeInBits(); 885 unsigned DestSize = Dest->getScalarSizeInBits(); 886 887 if (DestSize== 16 && Subtarget->has16BitInsts()) 888 return SrcSize >= 32; 889 890 return DestSize < SrcSize && DestSize % 32 == 0; 891 } 892 893 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 894 unsigned SrcSize = Src->getScalarSizeInBits(); 895 unsigned DestSize = Dest->getScalarSizeInBits(); 896 897 if (SrcSize == 16 && Subtarget->has16BitInsts()) 898 return DestSize >= 32; 899 900 return SrcSize == 32 && DestSize == 64; 901 } 902 903 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 904 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 905 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 906 // this will enable reducing 64-bit operations the 32-bit, which is always 907 // good. 908 909 if (Src == MVT::i16) 910 return Dest == MVT::i32 ||Dest == MVT::i64 ; 911 912 return Src == MVT::i32 && Dest == MVT::i64; 913 } 914 915 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 916 return isZExtFree(Val.getValueType(), VT2); 917 } 918 919 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 920 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 921 // limited number of native 64-bit operations. Shrinking an operation to fit 922 // in a single 32-bit register should always be helpful. As currently used, 923 // this is much less general than the name suggests, and is only used in 924 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 925 // not profitable, and may actually be harmful. 926 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 927 } 928 929 //===---------------------------------------------------------------------===// 930 // TargetLowering Callbacks 931 //===---------------------------------------------------------------------===// 932 933 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 934 bool IsVarArg) { 935 switch (CC) { 936 case CallingConv::AMDGPU_VS: 937 case CallingConv::AMDGPU_GS: 938 case CallingConv::AMDGPU_PS: 939 case CallingConv::AMDGPU_CS: 940 case CallingConv::AMDGPU_HS: 941 case CallingConv::AMDGPU_ES: 942 case CallingConv::AMDGPU_LS: 943 return CC_AMDGPU; 944 case CallingConv::C: 945 case CallingConv::Fast: 946 case CallingConv::Cold: 947 return CC_AMDGPU_Func; 948 case CallingConv::AMDGPU_KERNEL: 949 case CallingConv::SPIR_KERNEL: 950 default: 951 report_fatal_error("Unsupported calling convention for call"); 952 } 953 } 954 955 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 956 bool IsVarArg) { 957 switch (CC) { 958 case CallingConv::AMDGPU_KERNEL: 959 case CallingConv::SPIR_KERNEL: 960 llvm_unreachable("kernels should not be handled here"); 961 case CallingConv::AMDGPU_VS: 962 case CallingConv::AMDGPU_GS: 963 case CallingConv::AMDGPU_PS: 964 case CallingConv::AMDGPU_CS: 965 case CallingConv::AMDGPU_HS: 966 case CallingConv::AMDGPU_ES: 967 case CallingConv::AMDGPU_LS: 968 return RetCC_SI_Shader; 969 case CallingConv::C: 970 case CallingConv::Fast: 971 case CallingConv::Cold: 972 return RetCC_AMDGPU_Func; 973 default: 974 report_fatal_error("Unsupported calling convention."); 975 } 976 } 977 978 /// The SelectionDAGBuilder will automatically promote function arguments 979 /// with illegal types. However, this does not work for the AMDGPU targets 980 /// since the function arguments are stored in memory as these illegal types. 981 /// In order to handle this properly we need to get the original types sizes 982 /// from the LLVM IR Function and fixup the ISD:InputArg values before 983 /// passing them to AnalyzeFormalArguments() 984 985 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 986 /// input values across multiple registers. Each item in the Ins array 987 /// represents a single value that will be stored in registers. Ins[x].VT is 988 /// the value type of the value that will be stored in the register, so 989 /// whatever SDNode we lower the argument to needs to be this type. 990 /// 991 /// In order to correctly lower the arguments we need to know the size of each 992 /// argument. Since Ins[x].VT gives us the size of the register that will 993 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 994 /// for the orignal function argument so that we can deduce the correct memory 995 /// type to use for Ins[x]. In most cases the correct memory type will be 996 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 997 /// we have a kernel argument of type v8i8, this argument will be split into 998 /// 8 parts and each part will be represented by its own item in the Ins array. 999 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1000 /// the argument before it was split. From this, we deduce that the memory type 1001 /// for each individual part is i8. We pass the memory type as LocVT to the 1002 /// calling convention analysis function and the register type (Ins[x].VT) as 1003 /// the ValVT. 1004 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1005 CCState &State, 1006 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1007 const MachineFunction &MF = State.getMachineFunction(); 1008 const Function &Fn = MF.getFunction(); 1009 LLVMContext &Ctx = Fn.getParent()->getContext(); 1010 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1011 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1012 CallingConv::ID CC = Fn.getCallingConv(); 1013 1014 Align MaxAlign = Align(1); 1015 uint64_t ExplicitArgOffset = 0; 1016 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1017 1018 unsigned InIndex = 0; 1019 1020 for (const Argument &Arg : Fn.args()) { 1021 const bool IsByRef = Arg.hasByRefAttr(); 1022 Type *BaseArgTy = Arg.getType(); 1023 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1024 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1025 if (!Alignment) 1026 Alignment = DL.getABITypeAlign(MemArgTy); 1027 MaxAlign = max(Alignment, MaxAlign); 1028 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1029 1030 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1031 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1032 1033 // We're basically throwing away everything passed into us and starting over 1034 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1035 // to us as computed in Ins. 1036 // 1037 // We also need to figure out what type legalization is trying to do to get 1038 // the correct memory offsets. 1039 1040 SmallVector<EVT, 16> ValueVTs; 1041 SmallVector<uint64_t, 16> Offsets; 1042 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1043 1044 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1045 Value != NumValues; ++Value) { 1046 uint64_t BasePartOffset = Offsets[Value]; 1047 1048 EVT ArgVT = ValueVTs[Value]; 1049 EVT MemVT = ArgVT; 1050 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1051 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1052 1053 if (NumRegs == 1) { 1054 // This argument is not split, so the IR type is the memory type. 1055 if (ArgVT.isExtended()) { 1056 // We have an extended type, like i24, so we should just use the 1057 // register type. 1058 MemVT = RegisterVT; 1059 } else { 1060 MemVT = ArgVT; 1061 } 1062 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1063 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1064 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1065 // We have a vector value which has been split into a vector with 1066 // the same scalar type, but fewer elements. This should handle 1067 // all the floating-point vector types. 1068 MemVT = RegisterVT; 1069 } else if (ArgVT.isVector() && 1070 ArgVT.getVectorNumElements() == NumRegs) { 1071 // This arg has been split so that each element is stored in a separate 1072 // register. 1073 MemVT = ArgVT.getScalarType(); 1074 } else if (ArgVT.isExtended()) { 1075 // We have an extended type, like i65. 1076 MemVT = RegisterVT; 1077 } else { 1078 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1079 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1080 if (RegisterVT.isInteger()) { 1081 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1082 } else if (RegisterVT.isVector()) { 1083 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1084 unsigned NumElements = RegisterVT.getVectorNumElements(); 1085 assert(MemoryBits % NumElements == 0); 1086 // This vector type has been split into another vector type with 1087 // a different elements size. 1088 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1089 MemoryBits / NumElements); 1090 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1091 } else { 1092 llvm_unreachable("cannot deduce memory type."); 1093 } 1094 } 1095 1096 // Convert one element vectors to scalar. 1097 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1098 MemVT = MemVT.getScalarType(); 1099 1100 // Round up vec3/vec5 argument. 1101 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1102 assert(MemVT.getVectorNumElements() == 3 || 1103 MemVT.getVectorNumElements() == 5); 1104 MemVT = MemVT.getPow2VectorType(State.getContext()); 1105 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1106 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1107 } 1108 1109 unsigned PartOffset = 0; 1110 for (unsigned i = 0; i != NumRegs; ++i) { 1111 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1112 BasePartOffset + PartOffset, 1113 MemVT.getSimpleVT(), 1114 CCValAssign::Full)); 1115 PartOffset += MemVT.getStoreSize(); 1116 } 1117 } 1118 } 1119 } 1120 1121 SDValue AMDGPUTargetLowering::LowerReturn( 1122 SDValue Chain, CallingConv::ID CallConv, 1123 bool isVarArg, 1124 const SmallVectorImpl<ISD::OutputArg> &Outs, 1125 const SmallVectorImpl<SDValue> &OutVals, 1126 const SDLoc &DL, SelectionDAG &DAG) const { 1127 // FIXME: Fails for r600 tests 1128 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1129 // "wave terminate should not have return values"); 1130 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1131 } 1132 1133 //===---------------------------------------------------------------------===// 1134 // Target specific lowering 1135 //===---------------------------------------------------------------------===// 1136 1137 /// Selects the correct CCAssignFn for a given CallingConvention value. 1138 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1139 bool IsVarArg) { 1140 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1141 } 1142 1143 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1144 bool IsVarArg) { 1145 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1146 } 1147 1148 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1149 SelectionDAG &DAG, 1150 MachineFrameInfo &MFI, 1151 int ClobberedFI) const { 1152 SmallVector<SDValue, 8> ArgChains; 1153 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1154 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1155 1156 // Include the original chain at the beginning of the list. When this is 1157 // used by target LowerCall hooks, this helps legalize find the 1158 // CALLSEQ_BEGIN node. 1159 ArgChains.push_back(Chain); 1160 1161 // Add a chain value for each stack argument corresponding 1162 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1163 UE = DAG.getEntryNode().getNode()->use_end(); 1164 U != UE; ++U) { 1165 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1166 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1167 if (FI->getIndex() < 0) { 1168 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1169 int64_t InLastByte = InFirstByte; 1170 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1171 1172 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1173 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1174 ArgChains.push_back(SDValue(L, 1)); 1175 } 1176 } 1177 } 1178 } 1179 1180 // Build a tokenfactor for all the chains. 1181 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1182 } 1183 1184 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1185 SmallVectorImpl<SDValue> &InVals, 1186 StringRef Reason) const { 1187 SDValue Callee = CLI.Callee; 1188 SelectionDAG &DAG = CLI.DAG; 1189 1190 const Function &Fn = DAG.getMachineFunction().getFunction(); 1191 1192 StringRef FuncName("<unknown>"); 1193 1194 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1195 FuncName = G->getSymbol(); 1196 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1197 FuncName = G->getGlobal()->getName(); 1198 1199 DiagnosticInfoUnsupported NoCalls( 1200 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1201 DAG.getContext()->diagnose(NoCalls); 1202 1203 if (!CLI.IsTailCall) { 1204 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1205 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1206 } 1207 1208 return DAG.getEntryNode(); 1209 } 1210 1211 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1212 SmallVectorImpl<SDValue> &InVals) const { 1213 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1214 } 1215 1216 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1217 SelectionDAG &DAG) const { 1218 const Function &Fn = DAG.getMachineFunction().getFunction(); 1219 1220 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1221 SDLoc(Op).getDebugLoc()); 1222 DAG.getContext()->diagnose(NoDynamicAlloca); 1223 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1224 return DAG.getMergeValues(Ops, SDLoc()); 1225 } 1226 1227 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1228 SelectionDAG &DAG) const { 1229 switch (Op.getOpcode()) { 1230 default: 1231 Op->print(errs(), &DAG); 1232 llvm_unreachable("Custom lowering code for this " 1233 "instruction is not implemented yet!"); 1234 break; 1235 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1236 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1237 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1238 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1239 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1240 case ISD::FREM: return LowerFREM(Op, DAG); 1241 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1242 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1243 case ISD::FRINT: return LowerFRINT(Op, DAG); 1244 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1245 case ISD::FROUND: return LowerFROUND(Op, DAG); 1246 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1247 case ISD::FLOG: 1248 return LowerFLOG(Op, DAG, numbers::ln2f); 1249 case ISD::FLOG10: 1250 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1251 case ISD::FEXP: 1252 return lowerFEXP(Op, DAG); 1253 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1254 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1255 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1256 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1257 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1258 case ISD::CTTZ: 1259 case ISD::CTTZ_ZERO_UNDEF: 1260 case ISD::CTLZ: 1261 case ISD::CTLZ_ZERO_UNDEF: 1262 return LowerCTLZ_CTTZ(Op, DAG); 1263 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1264 } 1265 return Op; 1266 } 1267 1268 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1269 SmallVectorImpl<SDValue> &Results, 1270 SelectionDAG &DAG) const { 1271 switch (N->getOpcode()) { 1272 case ISD::SIGN_EXTEND_INREG: 1273 // Different parts of legalization seem to interpret which type of 1274 // sign_extend_inreg is the one to check for custom lowering. The extended 1275 // from type is what really matters, but some places check for custom 1276 // lowering of the result type. This results in trying to use 1277 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1278 // nothing here and let the illegal result integer be handled normally. 1279 return; 1280 default: 1281 return; 1282 } 1283 } 1284 1285 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1286 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1287 if (!GVar || !GVar->hasInitializer()) 1288 return false; 1289 1290 return !isa<UndefValue>(GVar->getInitializer()); 1291 } 1292 1293 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1294 SDValue Op, 1295 SelectionDAG &DAG) const { 1296 1297 const DataLayout &DL = DAG.getDataLayout(); 1298 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1299 const GlobalValue *GV = G->getGlobal(); 1300 1301 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1302 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1303 if (!MFI->isEntryFunction()) { 1304 SDLoc DL(Op); 1305 const Function &Fn = DAG.getMachineFunction().getFunction(); 1306 DiagnosticInfoUnsupported BadLDSDecl( 1307 Fn, "local memory global used by non-kernel function", 1308 DL.getDebugLoc(), DS_Warning); 1309 DAG.getContext()->diagnose(BadLDSDecl); 1310 1311 // We currently don't have a way to correctly allocate LDS objects that 1312 // aren't directly associated with a kernel. We do force inlining of 1313 // functions that use local objects. However, if these dead functions are 1314 // not eliminated, we don't want a compile time error. Just emit a warning 1315 // and a trap, since there should be no callable path here. 1316 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1317 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1318 Trap, DAG.getRoot()); 1319 DAG.setRoot(OutputChain); 1320 return DAG.getUNDEF(Op.getValueType()); 1321 } 1322 1323 // XXX: What does the value of G->getOffset() mean? 1324 assert(G->getOffset() == 0 && 1325 "Do not know what to do with an non-zero offset"); 1326 1327 // TODO: We could emit code to handle the initialization somewhere. 1328 if (!hasDefinedInitializer(GV)) { 1329 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1330 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1331 } 1332 } 1333 1334 const Function &Fn = DAG.getMachineFunction().getFunction(); 1335 DiagnosticInfoUnsupported BadInit( 1336 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1337 DAG.getContext()->diagnose(BadInit); 1338 return SDValue(); 1339 } 1340 1341 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1342 SelectionDAG &DAG) const { 1343 SmallVector<SDValue, 8> Args; 1344 1345 EVT VT = Op.getValueType(); 1346 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1347 SDLoc SL(Op); 1348 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1349 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1350 1351 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1352 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1353 } 1354 1355 for (const SDUse &U : Op->ops()) 1356 DAG.ExtractVectorElements(U.get(), Args); 1357 1358 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1359 } 1360 1361 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1362 SelectionDAG &DAG) const { 1363 1364 SmallVector<SDValue, 8> Args; 1365 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1366 EVT VT = Op.getValueType(); 1367 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1368 VT.getVectorNumElements()); 1369 1370 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1371 } 1372 1373 /// Generate Min/Max node 1374 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1375 SDValue LHS, SDValue RHS, 1376 SDValue True, SDValue False, 1377 SDValue CC, 1378 DAGCombinerInfo &DCI) const { 1379 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1380 return SDValue(); 1381 1382 SelectionDAG &DAG = DCI.DAG; 1383 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1384 switch (CCOpcode) { 1385 case ISD::SETOEQ: 1386 case ISD::SETONE: 1387 case ISD::SETUNE: 1388 case ISD::SETNE: 1389 case ISD::SETUEQ: 1390 case ISD::SETEQ: 1391 case ISD::SETFALSE: 1392 case ISD::SETFALSE2: 1393 case ISD::SETTRUE: 1394 case ISD::SETTRUE2: 1395 case ISD::SETUO: 1396 case ISD::SETO: 1397 break; 1398 case ISD::SETULE: 1399 case ISD::SETULT: { 1400 if (LHS == True) 1401 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1402 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1403 } 1404 case ISD::SETOLE: 1405 case ISD::SETOLT: 1406 case ISD::SETLE: 1407 case ISD::SETLT: { 1408 // Ordered. Assume ordered for undefined. 1409 1410 // Only do this after legalization to avoid interfering with other combines 1411 // which might occur. 1412 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1413 !DCI.isCalledByLegalizer()) 1414 return SDValue(); 1415 1416 // We need to permute the operands to get the correct NaN behavior. The 1417 // selected operand is the second one based on the failing compare with NaN, 1418 // so permute it based on the compare type the hardware uses. 1419 if (LHS == True) 1420 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1421 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1422 } 1423 case ISD::SETUGE: 1424 case ISD::SETUGT: { 1425 if (LHS == True) 1426 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1427 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1428 } 1429 case ISD::SETGT: 1430 case ISD::SETGE: 1431 case ISD::SETOGE: 1432 case ISD::SETOGT: { 1433 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1434 !DCI.isCalledByLegalizer()) 1435 return SDValue(); 1436 1437 if (LHS == True) 1438 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1439 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1440 } 1441 case ISD::SETCC_INVALID: 1442 llvm_unreachable("Invalid setcc condcode!"); 1443 } 1444 return SDValue(); 1445 } 1446 1447 std::pair<SDValue, SDValue> 1448 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1449 SDLoc SL(Op); 1450 1451 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1452 1453 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1454 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1455 1456 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1457 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1458 1459 return std::make_pair(Lo, Hi); 1460 } 1461 1462 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1463 SDLoc SL(Op); 1464 1465 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1466 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1467 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1468 } 1469 1470 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1471 SDLoc SL(Op); 1472 1473 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1474 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1475 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1476 } 1477 1478 // Split a vector type into two parts. The first part is a power of two vector. 1479 // The second part is whatever is left over, and is a scalar if it would 1480 // otherwise be a 1-vector. 1481 std::pair<EVT, EVT> 1482 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1483 EVT LoVT, HiVT; 1484 EVT EltVT = VT.getVectorElementType(); 1485 unsigned NumElts = VT.getVectorNumElements(); 1486 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1487 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1488 HiVT = NumElts - LoNumElts == 1 1489 ? EltVT 1490 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1491 return std::make_pair(LoVT, HiVT); 1492 } 1493 1494 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1495 // scalar. 1496 std::pair<SDValue, SDValue> 1497 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1498 const EVT &LoVT, const EVT &HiVT, 1499 SelectionDAG &DAG) const { 1500 assert(LoVT.getVectorNumElements() + 1501 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1502 N.getValueType().getVectorNumElements() && 1503 "More vector elements requested than available!"); 1504 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1505 DAG.getVectorIdxConstant(0, DL)); 1506 SDValue Hi = DAG.getNode( 1507 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1508 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1509 return std::make_pair(Lo, Hi); 1510 } 1511 1512 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1513 SelectionDAG &DAG) const { 1514 LoadSDNode *Load = cast<LoadSDNode>(Op); 1515 EVT VT = Op.getValueType(); 1516 SDLoc SL(Op); 1517 1518 1519 // If this is a 2 element vector, we really want to scalarize and not create 1520 // weird 1 element vectors. 1521 if (VT.getVectorNumElements() == 2) { 1522 SDValue Ops[2]; 1523 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1524 return DAG.getMergeValues(Ops, SL); 1525 } 1526 1527 SDValue BasePtr = Load->getBasePtr(); 1528 EVT MemVT = Load->getMemoryVT(); 1529 1530 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1531 1532 EVT LoVT, HiVT; 1533 EVT LoMemVT, HiMemVT; 1534 SDValue Lo, Hi; 1535 1536 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1537 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1538 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1539 1540 unsigned Size = LoMemVT.getStoreSize(); 1541 unsigned BaseAlign = Load->getAlignment(); 1542 unsigned HiAlign = MinAlign(BaseAlign, Size); 1543 1544 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1545 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1546 BaseAlign, Load->getMemOperand()->getFlags()); 1547 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1548 SDValue HiLoad = 1549 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1550 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1551 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1552 1553 SDValue Join; 1554 if (LoVT == HiVT) { 1555 // This is the case that the vector is power of two so was evenly split. 1556 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1557 } else { 1558 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1559 DAG.getVectorIdxConstant(0, SL)); 1560 Join = DAG.getNode( 1561 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1562 VT, Join, HiLoad, 1563 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1564 } 1565 1566 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1567 LoLoad.getValue(1), HiLoad.getValue(1))}; 1568 1569 return DAG.getMergeValues(Ops, SL); 1570 } 1571 1572 // Widen a vector load from vec3 to vec4. 1573 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1574 SelectionDAG &DAG) const { 1575 LoadSDNode *Load = cast<LoadSDNode>(Op); 1576 EVT VT = Op.getValueType(); 1577 assert(VT.getVectorNumElements() == 3); 1578 SDValue BasePtr = Load->getBasePtr(); 1579 EVT MemVT = Load->getMemoryVT(); 1580 SDLoc SL(Op); 1581 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1582 unsigned BaseAlign = Load->getAlignment(); 1583 1584 EVT WideVT = 1585 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1586 EVT WideMemVT = 1587 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1588 SDValue WideLoad = DAG.getExtLoad( 1589 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1590 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1591 return DAG.getMergeValues( 1592 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1593 DAG.getVectorIdxConstant(0, SL)), 1594 WideLoad.getValue(1)}, 1595 SL); 1596 } 1597 1598 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1599 SelectionDAG &DAG) const { 1600 StoreSDNode *Store = cast<StoreSDNode>(Op); 1601 SDValue Val = Store->getValue(); 1602 EVT VT = Val.getValueType(); 1603 1604 // If this is a 2 element vector, we really want to scalarize and not create 1605 // weird 1 element vectors. 1606 if (VT.getVectorNumElements() == 2) 1607 return scalarizeVectorStore(Store, DAG); 1608 1609 EVT MemVT = Store->getMemoryVT(); 1610 SDValue Chain = Store->getChain(); 1611 SDValue BasePtr = Store->getBasePtr(); 1612 SDLoc SL(Op); 1613 1614 EVT LoVT, HiVT; 1615 EVT LoMemVT, HiMemVT; 1616 SDValue Lo, Hi; 1617 1618 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1619 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1620 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1621 1622 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1623 1624 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1625 unsigned BaseAlign = Store->getAlignment(); 1626 unsigned Size = LoMemVT.getStoreSize(); 1627 unsigned HiAlign = MinAlign(BaseAlign, Size); 1628 1629 SDValue LoStore = 1630 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1631 Store->getMemOperand()->getFlags()); 1632 SDValue HiStore = 1633 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1634 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1635 1636 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1637 } 1638 1639 // This is a shortcut for integer division because we have fast i32<->f32 1640 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1641 // float is enough to accurately represent up to a 24-bit signed integer. 1642 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1643 bool Sign) const { 1644 SDLoc DL(Op); 1645 EVT VT = Op.getValueType(); 1646 SDValue LHS = Op.getOperand(0); 1647 SDValue RHS = Op.getOperand(1); 1648 MVT IntVT = MVT::i32; 1649 MVT FltVT = MVT::f32; 1650 1651 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1652 if (LHSSignBits < 9) 1653 return SDValue(); 1654 1655 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1656 if (RHSSignBits < 9) 1657 return SDValue(); 1658 1659 unsigned BitSize = VT.getSizeInBits(); 1660 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1661 unsigned DivBits = BitSize - SignBits; 1662 if (Sign) 1663 ++DivBits; 1664 1665 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1666 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1667 1668 SDValue jq = DAG.getConstant(1, DL, IntVT); 1669 1670 if (Sign) { 1671 // char|short jq = ia ^ ib; 1672 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1673 1674 // jq = jq >> (bitsize - 2) 1675 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1676 DAG.getConstant(BitSize - 2, DL, VT)); 1677 1678 // jq = jq | 0x1 1679 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1680 } 1681 1682 // int ia = (int)LHS; 1683 SDValue ia = LHS; 1684 1685 // int ib, (int)RHS; 1686 SDValue ib = RHS; 1687 1688 // float fa = (float)ia; 1689 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1690 1691 // float fb = (float)ib; 1692 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1693 1694 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1695 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1696 1697 // fq = trunc(fq); 1698 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1699 1700 // float fqneg = -fq; 1701 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1702 1703 MachineFunction &MF = DAG.getMachineFunction(); 1704 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1705 1706 // float fr = mad(fqneg, fb, fa); 1707 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1708 (unsigned)ISD::FMA : 1709 !MFI->getMode().allFP32Denormals() ? 1710 (unsigned)ISD::FMAD : 1711 (unsigned)AMDGPUISD::FMAD_FTZ; 1712 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1713 1714 // int iq = (int)fq; 1715 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1716 1717 // fr = fabs(fr); 1718 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1719 1720 // fb = fabs(fb); 1721 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1722 1723 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1724 1725 // int cv = fr >= fb; 1726 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1727 1728 // jq = (cv ? jq : 0); 1729 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1730 1731 // dst = iq + jq; 1732 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1733 1734 // Rem needs compensation, it's easier to recompute it 1735 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1736 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1737 1738 // Truncate to number of bits this divide really is. 1739 if (Sign) { 1740 SDValue InRegSize 1741 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1742 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1743 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1744 } else { 1745 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1746 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1747 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1748 } 1749 1750 return DAG.getMergeValues({ Div, Rem }, DL); 1751 } 1752 1753 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1754 SelectionDAG &DAG, 1755 SmallVectorImpl<SDValue> &Results) const { 1756 SDLoc DL(Op); 1757 EVT VT = Op.getValueType(); 1758 1759 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1760 1761 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1762 1763 SDValue One = DAG.getConstant(1, DL, HalfVT); 1764 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1765 1766 //HiLo split 1767 SDValue LHS = Op.getOperand(0); 1768 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1769 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1770 1771 SDValue RHS = Op.getOperand(1); 1772 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1773 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1774 1775 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1776 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1777 1778 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1779 LHS_Lo, RHS_Lo); 1780 1781 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1782 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1783 1784 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1785 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1786 return; 1787 } 1788 1789 if (isTypeLegal(MVT::i64)) { 1790 MachineFunction &MF = DAG.getMachineFunction(); 1791 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1792 1793 // Compute denominator reciprocal. 1794 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1795 (unsigned)ISD::FMA : 1796 !MFI->getMode().allFP32Denormals() ? 1797 (unsigned)ISD::FMAD : 1798 (unsigned)AMDGPUISD::FMAD_FTZ; 1799 1800 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1801 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1802 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1803 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1804 Cvt_Lo); 1805 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1806 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1807 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1808 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1809 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1810 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1811 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1812 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1813 Mul1); 1814 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1815 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1816 SDValue Rcp64 = DAG.getBitcast(VT, 1817 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1818 1819 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1820 SDValue One64 = DAG.getConstant(1, DL, VT); 1821 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1822 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1823 1824 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1825 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1826 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1827 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1828 Zero); 1829 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1830 One); 1831 1832 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1833 Mulhi1_Lo, Zero1); 1834 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1835 Mulhi1_Hi, Add1_Lo.getValue(1)); 1836 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1837 SDValue Add1 = DAG.getBitcast(VT, 1838 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1839 1840 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1841 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1842 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1843 Zero); 1844 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1845 One); 1846 1847 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1848 Mulhi2_Lo, Zero1); 1849 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1850 Mulhi2_Hi, Add1_Lo.getValue(1)); 1851 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1852 Zero, Add2_Lo.getValue(1)); 1853 SDValue Add2 = DAG.getBitcast(VT, 1854 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1855 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1856 1857 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1858 1859 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1860 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1861 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1862 Mul3_Lo, Zero1); 1863 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1864 Mul3_Hi, Sub1_Lo.getValue(1)); 1865 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1866 SDValue Sub1 = DAG.getBitcast(VT, 1867 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1868 1869 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1870 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1871 ISD::SETUGE); 1872 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1873 ISD::SETUGE); 1874 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1875 1876 // TODO: Here and below portions of the code can be enclosed into if/endif. 1877 // Currently control flow is unconditional and we have 4 selects after 1878 // potential endif to substitute PHIs. 1879 1880 // if C3 != 0 ... 1881 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1882 RHS_Lo, Zero1); 1883 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1884 RHS_Hi, Sub1_Lo.getValue(1)); 1885 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1886 Zero, Sub2_Lo.getValue(1)); 1887 SDValue Sub2 = DAG.getBitcast(VT, 1888 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1889 1890 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1891 1892 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1893 ISD::SETUGE); 1894 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1895 ISD::SETUGE); 1896 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1897 1898 // if (C6 != 0) 1899 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1900 1901 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1902 RHS_Lo, Zero1); 1903 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1904 RHS_Hi, Sub2_Lo.getValue(1)); 1905 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1906 Zero, Sub3_Lo.getValue(1)); 1907 SDValue Sub3 = DAG.getBitcast(VT, 1908 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1909 1910 // endif C6 1911 // endif C3 1912 1913 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1914 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1915 1916 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1917 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1918 1919 Results.push_back(Div); 1920 Results.push_back(Rem); 1921 1922 return; 1923 } 1924 1925 // r600 expandion. 1926 // Get Speculative values 1927 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1928 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1929 1930 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1931 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1932 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1933 1934 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1935 SDValue DIV_Lo = Zero; 1936 1937 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1938 1939 for (unsigned i = 0; i < halfBitWidth; ++i) { 1940 const unsigned bitPos = halfBitWidth - i - 1; 1941 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1942 // Get value of high bit 1943 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1944 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1945 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1946 1947 // Shift 1948 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1949 // Add LHS high bit 1950 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1951 1952 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1953 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1954 1955 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1956 1957 // Update REM 1958 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1959 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1960 } 1961 1962 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1963 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1964 Results.push_back(DIV); 1965 Results.push_back(REM); 1966 } 1967 1968 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1969 SelectionDAG &DAG) const { 1970 SDLoc DL(Op); 1971 EVT VT = Op.getValueType(); 1972 1973 if (VT == MVT::i64) { 1974 SmallVector<SDValue, 2> Results; 1975 LowerUDIVREM64(Op, DAG, Results); 1976 return DAG.getMergeValues(Results, DL); 1977 } 1978 1979 if (VT == MVT::i32) { 1980 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1981 return Res; 1982 } 1983 1984 SDValue X = Op.getOperand(0); 1985 SDValue Y = Op.getOperand(1); 1986 1987 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 1988 // algorithm used here. 1989 1990 // Initial estimate of inv(y). 1991 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 1992 1993 // One round of UNR. 1994 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 1995 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 1996 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 1997 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 1998 1999 // Quotient/remainder estimate. 2000 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2001 SDValue R = 2002 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2003 2004 // First quotient/remainder refinement. 2005 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2006 SDValue One = DAG.getConstant(1, DL, VT); 2007 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2008 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2009 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2010 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2011 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2012 2013 // Second quotient/remainder refinement. 2014 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2015 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2016 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2017 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2018 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2019 2020 return DAG.getMergeValues({Q, R}, DL); 2021 } 2022 2023 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2024 SelectionDAG &DAG) const { 2025 SDLoc DL(Op); 2026 EVT VT = Op.getValueType(); 2027 2028 SDValue LHS = Op.getOperand(0); 2029 SDValue RHS = Op.getOperand(1); 2030 2031 SDValue Zero = DAG.getConstant(0, DL, VT); 2032 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2033 2034 if (VT == MVT::i32) { 2035 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2036 return Res; 2037 } 2038 2039 if (VT == MVT::i64 && 2040 DAG.ComputeNumSignBits(LHS) > 32 && 2041 DAG.ComputeNumSignBits(RHS) > 32) { 2042 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2043 2044 //HiLo split 2045 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2046 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2047 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2048 LHS_Lo, RHS_Lo); 2049 SDValue Res[2] = { 2050 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2051 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2052 }; 2053 return DAG.getMergeValues(Res, DL); 2054 } 2055 2056 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2057 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2058 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2059 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2060 2061 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2062 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2063 2064 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2065 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2066 2067 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2068 SDValue Rem = Div.getValue(1); 2069 2070 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2071 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2072 2073 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2074 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2075 2076 SDValue Res[2] = { 2077 Div, 2078 Rem 2079 }; 2080 return DAG.getMergeValues(Res, DL); 2081 } 2082 2083 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2084 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2085 SDLoc SL(Op); 2086 EVT VT = Op.getValueType(); 2087 auto Flags = Op->getFlags(); 2088 SDValue X = Op.getOperand(0); 2089 SDValue Y = Op.getOperand(1); 2090 2091 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2092 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2093 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2094 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2095 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2096 } 2097 2098 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2099 SDLoc SL(Op); 2100 SDValue Src = Op.getOperand(0); 2101 2102 // result = trunc(src) 2103 // if (src > 0.0 && src != result) 2104 // result += 1.0 2105 2106 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2107 2108 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2109 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2110 2111 EVT SetCCVT = 2112 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2113 2114 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2115 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2116 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2117 2118 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2119 // TODO: Should this propagate fast-math-flags? 2120 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2121 } 2122 2123 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2124 SelectionDAG &DAG) { 2125 const unsigned FractBits = 52; 2126 const unsigned ExpBits = 11; 2127 2128 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2129 Hi, 2130 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2131 DAG.getConstant(ExpBits, SL, MVT::i32)); 2132 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2133 DAG.getConstant(1023, SL, MVT::i32)); 2134 2135 return Exp; 2136 } 2137 2138 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2139 SDLoc SL(Op); 2140 SDValue Src = Op.getOperand(0); 2141 2142 assert(Op.getValueType() == MVT::f64); 2143 2144 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2145 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2146 2147 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2148 2149 // Extract the upper half, since this is where we will find the sign and 2150 // exponent. 2151 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2152 2153 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2154 2155 const unsigned FractBits = 52; 2156 2157 // Extract the sign bit. 2158 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2159 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2160 2161 // Extend back to 64-bits. 2162 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2163 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2164 2165 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2166 const SDValue FractMask 2167 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2168 2169 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2170 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2171 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2172 2173 EVT SetCCVT = 2174 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2175 2176 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2177 2178 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2179 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2180 2181 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2182 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2183 2184 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2185 } 2186 2187 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2188 SDLoc SL(Op); 2189 SDValue Src = Op.getOperand(0); 2190 2191 assert(Op.getValueType() == MVT::f64); 2192 2193 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2194 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2195 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2196 2197 // TODO: Should this propagate fast-math-flags? 2198 2199 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2200 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2201 2202 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2203 2204 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2205 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2206 2207 EVT SetCCVT = 2208 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2209 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2210 2211 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2212 } 2213 2214 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2215 // FNEARBYINT and FRINT are the same, except in their handling of FP 2216 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2217 // rint, so just treat them as equivalent. 2218 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2219 } 2220 2221 // XXX - May require not supporting f32 denormals? 2222 2223 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2224 // compare and vselect end up producing worse code than scalarizing the whole 2225 // operation. 2226 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2227 SDLoc SL(Op); 2228 SDValue X = Op.getOperand(0); 2229 EVT VT = Op.getValueType(); 2230 2231 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2232 2233 // TODO: Should this propagate fast-math-flags? 2234 2235 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2236 2237 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2238 2239 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2240 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2241 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2242 2243 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2244 2245 EVT SetCCVT = 2246 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2247 2248 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2249 2250 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2251 2252 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2253 } 2254 2255 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2256 SDLoc SL(Op); 2257 SDValue Src = Op.getOperand(0); 2258 2259 // result = trunc(src); 2260 // if (src < 0.0 && src != result) 2261 // result += -1.0. 2262 2263 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2264 2265 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2266 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2267 2268 EVT SetCCVT = 2269 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2270 2271 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2272 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2273 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2274 2275 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2276 // TODO: Should this propagate fast-math-flags? 2277 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2278 } 2279 2280 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2281 double Log2BaseInverted) const { 2282 EVT VT = Op.getValueType(); 2283 2284 SDLoc SL(Op); 2285 SDValue Operand = Op.getOperand(0); 2286 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2287 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2288 2289 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2290 } 2291 2292 // exp2(M_LOG2E_F * f); 2293 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2294 EVT VT = Op.getValueType(); 2295 SDLoc SL(Op); 2296 SDValue Src = Op.getOperand(0); 2297 2298 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2299 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2300 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2301 } 2302 2303 static bool isCtlzOpc(unsigned Opc) { 2304 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2305 } 2306 2307 static bool isCttzOpc(unsigned Opc) { 2308 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2309 } 2310 2311 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2312 SDLoc SL(Op); 2313 SDValue Src = Op.getOperand(0); 2314 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2315 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2316 2317 unsigned ISDOpc, NewOpc; 2318 if (isCtlzOpc(Op.getOpcode())) { 2319 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2320 NewOpc = AMDGPUISD::FFBH_U32; 2321 } else if (isCttzOpc(Op.getOpcode())) { 2322 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2323 NewOpc = AMDGPUISD::FFBL_B32; 2324 } else 2325 llvm_unreachable("Unexpected OPCode!!!"); 2326 2327 2328 if (ZeroUndef && Src.getValueType() == MVT::i32) 2329 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2330 2331 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2332 2333 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2334 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2335 2336 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2337 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2338 2339 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2340 *DAG.getContext(), MVT::i32); 2341 2342 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2343 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2344 2345 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2346 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2347 2348 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2349 SDValue Add, NewOpr; 2350 if (isCtlzOpc(Op.getOpcode())) { 2351 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2352 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2353 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2354 } else { 2355 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2356 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2357 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2358 } 2359 2360 if (!ZeroUndef) { 2361 // Test if the full 64-bit input is zero. 2362 2363 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2364 // which we probably don't want. 2365 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2366 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2367 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2368 2369 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2370 // with the same cycles, otherwise it is slower. 2371 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2372 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2373 2374 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2375 2376 // The instruction returns -1 for 0 input, but the defined intrinsic 2377 // behavior is to return the number of bits. 2378 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2379 SrcIsZero, Bits32, NewOpr); 2380 } 2381 2382 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2383 } 2384 2385 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2386 bool Signed) const { 2387 // Unsigned 2388 // cul2f(ulong u) 2389 //{ 2390 // uint lz = clz(u); 2391 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2392 // u = (u << lz) & 0x7fffffffffffffffUL; 2393 // ulong t = u & 0xffffffffffUL; 2394 // uint v = (e << 23) | (uint)(u >> 40); 2395 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2396 // return as_float(v + r); 2397 //} 2398 // Signed 2399 // cl2f(long l) 2400 //{ 2401 // long s = l >> 63; 2402 // float r = cul2f((l + s) ^ s); 2403 // return s ? -r : r; 2404 //} 2405 2406 SDLoc SL(Op); 2407 SDValue Src = Op.getOperand(0); 2408 SDValue L = Src; 2409 2410 SDValue S; 2411 if (Signed) { 2412 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2413 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2414 2415 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2416 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2417 } 2418 2419 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2420 *DAG.getContext(), MVT::f32); 2421 2422 2423 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2424 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2425 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2426 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2427 2428 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2429 SDValue E = DAG.getSelect(SL, MVT::i32, 2430 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2431 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2432 ZeroI32); 2433 2434 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2435 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2436 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2437 2438 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2439 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2440 2441 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2442 U, DAG.getConstant(40, SL, MVT::i64)); 2443 2444 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2445 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2446 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2447 2448 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2449 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2450 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2451 2452 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2453 2454 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2455 2456 SDValue R = DAG.getSelect(SL, MVT::i32, 2457 RCmp, 2458 One, 2459 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2460 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2461 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2462 2463 if (!Signed) 2464 return R; 2465 2466 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2467 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2468 } 2469 2470 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2471 bool Signed) const { 2472 SDLoc SL(Op); 2473 SDValue Src = Op.getOperand(0); 2474 2475 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2476 2477 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2478 DAG.getConstant(0, SL, MVT::i32)); 2479 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2480 DAG.getConstant(1, SL, MVT::i32)); 2481 2482 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2483 SL, MVT::f64, Hi); 2484 2485 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2486 2487 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2488 DAG.getConstant(32, SL, MVT::i32)); 2489 // TODO: Should this propagate fast-math-flags? 2490 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2491 } 2492 2493 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2494 SelectionDAG &DAG) const { 2495 // TODO: Factor out code common with LowerSINT_TO_FP. 2496 EVT DestVT = Op.getValueType(); 2497 SDValue Src = Op.getOperand(0); 2498 EVT SrcVT = Src.getValueType(); 2499 2500 if (SrcVT == MVT::i16) { 2501 if (DestVT == MVT::f16) 2502 return Op; 2503 SDLoc DL(Op); 2504 2505 // Promote src to i32 2506 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2507 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2508 } 2509 2510 assert(SrcVT == MVT::i64 && "operation should be legal"); 2511 2512 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2513 SDLoc DL(Op); 2514 2515 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2516 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2517 SDValue FPRound = 2518 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2519 2520 return FPRound; 2521 } 2522 2523 if (DestVT == MVT::f32) 2524 return LowerINT_TO_FP32(Op, DAG, false); 2525 2526 assert(DestVT == MVT::f64); 2527 return LowerINT_TO_FP64(Op, DAG, false); 2528 } 2529 2530 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2531 SelectionDAG &DAG) const { 2532 EVT DestVT = Op.getValueType(); 2533 2534 SDValue Src = Op.getOperand(0); 2535 EVT SrcVT = Src.getValueType(); 2536 2537 if (SrcVT == MVT::i16) { 2538 if (DestVT == MVT::f16) 2539 return Op; 2540 2541 SDLoc DL(Op); 2542 // Promote src to i32 2543 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2544 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2545 } 2546 2547 assert(SrcVT == MVT::i64 && "operation should be legal"); 2548 2549 // TODO: Factor out code common with LowerUINT_TO_FP. 2550 2551 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2552 SDLoc DL(Op); 2553 SDValue Src = Op.getOperand(0); 2554 2555 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2556 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2557 SDValue FPRound = 2558 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2559 2560 return FPRound; 2561 } 2562 2563 if (DestVT == MVT::f32) 2564 return LowerINT_TO_FP32(Op, DAG, true); 2565 2566 assert(DestVT == MVT::f64); 2567 return LowerINT_TO_FP64(Op, DAG, true); 2568 } 2569 2570 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2571 bool Signed) const { 2572 SDLoc SL(Op); 2573 2574 SDValue Src = Op.getOperand(0); 2575 2576 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2577 2578 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2579 MVT::f64); 2580 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2581 MVT::f64); 2582 // TODO: Should this propagate fast-math-flags? 2583 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2584 2585 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2586 2587 2588 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2589 2590 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2591 MVT::i32, FloorMul); 2592 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2593 2594 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2595 2596 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2597 } 2598 2599 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2600 SDLoc DL(Op); 2601 SDValue N0 = Op.getOperand(0); 2602 2603 // Convert to target node to get known bits 2604 if (N0.getValueType() == MVT::f32) 2605 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2606 2607 if (getTargetMachine().Options.UnsafeFPMath) { 2608 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2609 return SDValue(); 2610 } 2611 2612 assert(N0.getSimpleValueType() == MVT::f64); 2613 2614 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2615 const unsigned ExpMask = 0x7ff; 2616 const unsigned ExpBiasf64 = 1023; 2617 const unsigned ExpBiasf16 = 15; 2618 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2619 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2620 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2621 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2622 DAG.getConstant(32, DL, MVT::i64)); 2623 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2624 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2625 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2626 DAG.getConstant(20, DL, MVT::i64)); 2627 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2628 DAG.getConstant(ExpMask, DL, MVT::i32)); 2629 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2630 // add the f16 bias (15) to get the biased exponent for the f16 format. 2631 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2632 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2633 2634 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2635 DAG.getConstant(8, DL, MVT::i32)); 2636 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2637 DAG.getConstant(0xffe, DL, MVT::i32)); 2638 2639 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2640 DAG.getConstant(0x1ff, DL, MVT::i32)); 2641 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2642 2643 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2644 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2645 2646 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2647 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2648 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2649 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2650 2651 // N = M | (E << 12); 2652 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2653 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2654 DAG.getConstant(12, DL, MVT::i32))); 2655 2656 // B = clamp(1-E, 0, 13); 2657 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2658 One, E); 2659 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2660 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2661 DAG.getConstant(13, DL, MVT::i32)); 2662 2663 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2664 DAG.getConstant(0x1000, DL, MVT::i32)); 2665 2666 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2667 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2668 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2669 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2670 2671 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2672 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2673 DAG.getConstant(0x7, DL, MVT::i32)); 2674 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2675 DAG.getConstant(2, DL, MVT::i32)); 2676 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2677 One, Zero, ISD::SETEQ); 2678 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2679 One, Zero, ISD::SETGT); 2680 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2681 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2682 2683 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2684 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2685 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2686 I, V, ISD::SETEQ); 2687 2688 // Extract the sign bit. 2689 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2690 DAG.getConstant(16, DL, MVT::i32)); 2691 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2692 DAG.getConstant(0x8000, DL, MVT::i32)); 2693 2694 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2695 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2696 } 2697 2698 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2699 SelectionDAG &DAG) const { 2700 SDValue Src = Op.getOperand(0); 2701 2702 // TODO: Factor out code common with LowerFP_TO_UINT. 2703 2704 EVT SrcVT = Src.getValueType(); 2705 if (SrcVT == MVT::f16 || 2706 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2707 SDLoc DL(Op); 2708 2709 SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2710 return DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, FpToInt32); 2711 } 2712 2713 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2714 return LowerFP64_TO_INT(Op, DAG, true); 2715 2716 return SDValue(); 2717 } 2718 2719 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2720 SelectionDAG &DAG) const { 2721 SDValue Src = Op.getOperand(0); 2722 2723 // TODO: Factor out code common with LowerFP_TO_SINT. 2724 2725 EVT SrcVT = Src.getValueType(); 2726 if (SrcVT == MVT::f16 || 2727 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2728 SDLoc DL(Op); 2729 2730 SDValue FpToUInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2731 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, FpToUInt32); 2732 } 2733 2734 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2735 return LowerFP64_TO_INT(Op, DAG, false); 2736 2737 return SDValue(); 2738 } 2739 2740 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2741 SelectionDAG &DAG) const { 2742 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2743 MVT VT = Op.getSimpleValueType(); 2744 MVT ScalarVT = VT.getScalarType(); 2745 2746 assert(VT.isVector()); 2747 2748 SDValue Src = Op.getOperand(0); 2749 SDLoc DL(Op); 2750 2751 // TODO: Don't scalarize on Evergreen? 2752 unsigned NElts = VT.getVectorNumElements(); 2753 SmallVector<SDValue, 8> Args; 2754 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2755 2756 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2757 for (unsigned I = 0; I < NElts; ++I) 2758 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2759 2760 return DAG.getBuildVector(VT, DL, Args); 2761 } 2762 2763 //===----------------------------------------------------------------------===// 2764 // Custom DAG optimizations 2765 //===----------------------------------------------------------------------===// 2766 2767 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2768 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2769 } 2770 2771 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2772 EVT VT = Op.getValueType(); 2773 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2774 // as unsigned 24-bit values. 2775 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2776 } 2777 2778 static SDValue simplifyI24(SDNode *Node24, 2779 TargetLowering::DAGCombinerInfo &DCI) { 2780 SelectionDAG &DAG = DCI.DAG; 2781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2782 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2783 2784 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2785 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2786 unsigned NewOpcode = Node24->getOpcode(); 2787 if (IsIntrin) { 2788 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2789 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2790 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2791 } 2792 2793 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2794 2795 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2796 // the operands to have other uses, but will only perform simplifications that 2797 // involve bypassing some nodes for this user. 2798 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2799 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2800 if (DemandedLHS || DemandedRHS) 2801 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2802 DemandedLHS ? DemandedLHS : LHS, 2803 DemandedRHS ? DemandedRHS : RHS); 2804 2805 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2806 // operands if this node is the only user. 2807 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2808 return SDValue(Node24, 0); 2809 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2810 return SDValue(Node24, 0); 2811 2812 return SDValue(); 2813 } 2814 2815 template <typename IntTy> 2816 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2817 uint32_t Width, const SDLoc &DL) { 2818 if (Width + Offset < 32) { 2819 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2820 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2821 return DAG.getConstant(Result, DL, MVT::i32); 2822 } 2823 2824 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2825 } 2826 2827 static bool hasVolatileUser(SDNode *Val) { 2828 for (SDNode *U : Val->uses()) { 2829 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2830 if (M->isVolatile()) 2831 return true; 2832 } 2833 } 2834 2835 return false; 2836 } 2837 2838 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2839 // i32 vectors are the canonical memory type. 2840 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2841 return false; 2842 2843 if (!VT.isByteSized()) 2844 return false; 2845 2846 unsigned Size = VT.getStoreSize(); 2847 2848 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2849 return false; 2850 2851 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2852 return false; 2853 2854 return true; 2855 } 2856 2857 // Replace load of an illegal type with a store of a bitcast to a friendlier 2858 // type. 2859 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2860 DAGCombinerInfo &DCI) const { 2861 if (!DCI.isBeforeLegalize()) 2862 return SDValue(); 2863 2864 LoadSDNode *LN = cast<LoadSDNode>(N); 2865 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2866 return SDValue(); 2867 2868 SDLoc SL(N); 2869 SelectionDAG &DAG = DCI.DAG; 2870 EVT VT = LN->getMemoryVT(); 2871 2872 unsigned Size = VT.getStoreSize(); 2873 Align Alignment = LN->getAlign(); 2874 if (Alignment < Size && isTypeLegal(VT)) { 2875 bool IsFast; 2876 unsigned AS = LN->getAddressSpace(); 2877 2878 // Expand unaligned loads earlier than legalization. Due to visitation order 2879 // problems during legalization, the emitted instructions to pack and unpack 2880 // the bytes again are not eliminated in the case of an unaligned copy. 2881 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2882 LN->getMemOperand()->getFlags(), 2883 &IsFast)) { 2884 SDValue Ops[2]; 2885 2886 if (VT.isVector()) 2887 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2888 else 2889 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2890 2891 return DAG.getMergeValues(Ops, SDLoc(N)); 2892 } 2893 2894 if (!IsFast) 2895 return SDValue(); 2896 } 2897 2898 if (!shouldCombineMemoryType(VT)) 2899 return SDValue(); 2900 2901 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2902 2903 SDValue NewLoad 2904 = DAG.getLoad(NewVT, SL, LN->getChain(), 2905 LN->getBasePtr(), LN->getMemOperand()); 2906 2907 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2908 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2909 return SDValue(N, 0); 2910 } 2911 2912 // Replace store of an illegal type with a store of a bitcast to a friendlier 2913 // type. 2914 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2915 DAGCombinerInfo &DCI) const { 2916 if (!DCI.isBeforeLegalize()) 2917 return SDValue(); 2918 2919 StoreSDNode *SN = cast<StoreSDNode>(N); 2920 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2921 return SDValue(); 2922 2923 EVT VT = SN->getMemoryVT(); 2924 unsigned Size = VT.getStoreSize(); 2925 2926 SDLoc SL(N); 2927 SelectionDAG &DAG = DCI.DAG; 2928 Align Alignment = SN->getAlign(); 2929 if (Alignment < Size && isTypeLegal(VT)) { 2930 bool IsFast; 2931 unsigned AS = SN->getAddressSpace(); 2932 2933 // Expand unaligned stores earlier than legalization. Due to visitation 2934 // order problems during legalization, the emitted instructions to pack and 2935 // unpack the bytes again are not eliminated in the case of an unaligned 2936 // copy. 2937 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2938 SN->getMemOperand()->getFlags(), 2939 &IsFast)) { 2940 if (VT.isVector()) 2941 return scalarizeVectorStore(SN, DAG); 2942 2943 return expandUnalignedStore(SN, DAG); 2944 } 2945 2946 if (!IsFast) 2947 return SDValue(); 2948 } 2949 2950 if (!shouldCombineMemoryType(VT)) 2951 return SDValue(); 2952 2953 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2954 SDValue Val = SN->getValue(); 2955 2956 //DCI.AddToWorklist(Val.getNode()); 2957 2958 bool OtherUses = !Val.hasOneUse(); 2959 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2960 if (OtherUses) { 2961 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2962 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2963 } 2964 2965 return DAG.getStore(SN->getChain(), SL, CastVal, 2966 SN->getBasePtr(), SN->getMemOperand()); 2967 } 2968 2969 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2970 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2971 // issues. 2972 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2973 DAGCombinerInfo &DCI) const { 2974 SelectionDAG &DAG = DCI.DAG; 2975 SDValue N0 = N->getOperand(0); 2976 2977 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2978 // (vt2 (truncate (assertzext vt0:x, vt1))) 2979 if (N0.getOpcode() == ISD::TRUNCATE) { 2980 SDValue N1 = N->getOperand(1); 2981 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2982 SDLoc SL(N); 2983 2984 SDValue Src = N0.getOperand(0); 2985 EVT SrcVT = Src.getValueType(); 2986 if (SrcVT.bitsGE(ExtVT)) { 2987 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2988 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2989 } 2990 } 2991 2992 return SDValue(); 2993 } 2994 2995 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2996 SDNode *N, DAGCombinerInfo &DCI) const { 2997 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2998 switch (IID) { 2999 case Intrinsic::amdgcn_mul_i24: 3000 case Intrinsic::amdgcn_mul_u24: 3001 return simplifyI24(N, DCI); 3002 case Intrinsic::amdgcn_fract: 3003 case Intrinsic::amdgcn_rsq: 3004 case Intrinsic::amdgcn_rcp_legacy: 3005 case Intrinsic::amdgcn_rsq_legacy: 3006 case Intrinsic::amdgcn_rsq_clamp: 3007 case Intrinsic::amdgcn_ldexp: { 3008 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3009 SDValue Src = N->getOperand(1); 3010 return Src.isUndef() ? Src : SDValue(); 3011 } 3012 default: 3013 return SDValue(); 3014 } 3015 } 3016 3017 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3018 /// binary operation \p Opc to it with the corresponding constant operands. 3019 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3020 DAGCombinerInfo &DCI, const SDLoc &SL, 3021 unsigned Opc, SDValue LHS, 3022 uint32_t ValLo, uint32_t ValHi) const { 3023 SelectionDAG &DAG = DCI.DAG; 3024 SDValue Lo, Hi; 3025 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3026 3027 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3028 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3029 3030 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3031 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3032 3033 // Re-visit the ands. It's possible we eliminated one of them and it could 3034 // simplify the vector. 3035 DCI.AddToWorklist(Lo.getNode()); 3036 DCI.AddToWorklist(Hi.getNode()); 3037 3038 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3039 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3040 } 3041 3042 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3043 DAGCombinerInfo &DCI) const { 3044 EVT VT = N->getValueType(0); 3045 3046 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3047 if (!RHS) 3048 return SDValue(); 3049 3050 SDValue LHS = N->getOperand(0); 3051 unsigned RHSVal = RHS->getZExtValue(); 3052 if (!RHSVal) 3053 return LHS; 3054 3055 SDLoc SL(N); 3056 SelectionDAG &DAG = DCI.DAG; 3057 3058 switch (LHS->getOpcode()) { 3059 default: 3060 break; 3061 case ISD::ZERO_EXTEND: 3062 case ISD::SIGN_EXTEND: 3063 case ISD::ANY_EXTEND: { 3064 SDValue X = LHS->getOperand(0); 3065 3066 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3067 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3068 // Prefer build_vector as the canonical form if packed types are legal. 3069 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3070 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3071 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3072 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3073 } 3074 3075 // shl (ext x) => zext (shl x), if shift does not overflow int 3076 if (VT != MVT::i64) 3077 break; 3078 KnownBits Known = DAG.computeKnownBits(X); 3079 unsigned LZ = Known.countMinLeadingZeros(); 3080 if (LZ < RHSVal) 3081 break; 3082 EVT XVT = X.getValueType(); 3083 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3084 return DAG.getZExtOrTrunc(Shl, SL, VT); 3085 } 3086 } 3087 3088 if (VT != MVT::i64) 3089 return SDValue(); 3090 3091 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3092 3093 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3094 // common case, splitting this into a move and a 32-bit shift is faster and 3095 // the same code size. 3096 if (RHSVal < 32) 3097 return SDValue(); 3098 3099 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3100 3101 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3102 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3103 3104 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3105 3106 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3107 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3108 } 3109 3110 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3111 DAGCombinerInfo &DCI) const { 3112 if (N->getValueType(0) != MVT::i64) 3113 return SDValue(); 3114 3115 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3116 if (!RHS) 3117 return SDValue(); 3118 3119 SelectionDAG &DAG = DCI.DAG; 3120 SDLoc SL(N); 3121 unsigned RHSVal = RHS->getZExtValue(); 3122 3123 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3124 if (RHSVal == 32) { 3125 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3126 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3127 DAG.getConstant(31, SL, MVT::i32)); 3128 3129 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3130 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3131 } 3132 3133 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3134 if (RHSVal == 63) { 3135 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3136 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3137 DAG.getConstant(31, SL, MVT::i32)); 3138 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3139 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3140 } 3141 3142 return SDValue(); 3143 } 3144 3145 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3146 DAGCombinerInfo &DCI) const { 3147 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3148 if (!RHS) 3149 return SDValue(); 3150 3151 EVT VT = N->getValueType(0); 3152 SDValue LHS = N->getOperand(0); 3153 unsigned ShiftAmt = RHS->getZExtValue(); 3154 SelectionDAG &DAG = DCI.DAG; 3155 SDLoc SL(N); 3156 3157 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3158 // this improves the ability to match BFE patterns in isel. 3159 if (LHS.getOpcode() == ISD::AND) { 3160 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3161 if (Mask->getAPIntValue().isShiftedMask() && 3162 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3163 return DAG.getNode( 3164 ISD::AND, SL, VT, 3165 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3166 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3167 } 3168 } 3169 } 3170 3171 if (VT != MVT::i64) 3172 return SDValue(); 3173 3174 if (ShiftAmt < 32) 3175 return SDValue(); 3176 3177 // srl i64:x, C for C >= 32 3178 // => 3179 // build_pair (srl hi_32(x), C - 32), 0 3180 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3181 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3182 3183 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3184 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3185 3186 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3187 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3188 3189 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3190 3191 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3192 } 3193 3194 SDValue AMDGPUTargetLowering::performTruncateCombine( 3195 SDNode *N, DAGCombinerInfo &DCI) const { 3196 SDLoc SL(N); 3197 SelectionDAG &DAG = DCI.DAG; 3198 EVT VT = N->getValueType(0); 3199 SDValue Src = N->getOperand(0); 3200 3201 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3202 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3203 SDValue Vec = Src.getOperand(0); 3204 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3205 SDValue Elt0 = Vec.getOperand(0); 3206 EVT EltVT = Elt0.getValueType(); 3207 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3208 if (EltVT.isFloatingPoint()) { 3209 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3210 EltVT.changeTypeToInteger(), Elt0); 3211 } 3212 3213 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3214 } 3215 } 3216 } 3217 3218 // Equivalent of above for accessing the high element of a vector as an 3219 // integer operation. 3220 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3221 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3222 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3223 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3224 SDValue BV = stripBitcast(Src.getOperand(0)); 3225 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3226 BV.getValueType().getVectorNumElements() == 2) { 3227 SDValue SrcElt = BV.getOperand(1); 3228 EVT SrcEltVT = SrcElt.getValueType(); 3229 if (SrcEltVT.isFloatingPoint()) { 3230 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3231 SrcEltVT.changeTypeToInteger(), SrcElt); 3232 } 3233 3234 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3235 } 3236 } 3237 } 3238 } 3239 3240 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3241 // 3242 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3243 // i16 (trunc (srl (i32 (trunc x), K))) 3244 if (VT.getScalarSizeInBits() < 32) { 3245 EVT SrcVT = Src.getValueType(); 3246 if (SrcVT.getScalarSizeInBits() > 32 && 3247 (Src.getOpcode() == ISD::SRL || 3248 Src.getOpcode() == ISD::SRA || 3249 Src.getOpcode() == ISD::SHL)) { 3250 SDValue Amt = Src.getOperand(1); 3251 KnownBits Known = DAG.computeKnownBits(Amt); 3252 unsigned Size = VT.getScalarSizeInBits(); 3253 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3254 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3255 EVT MidVT = VT.isVector() ? 3256 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3257 VT.getVectorNumElements()) : MVT::i32; 3258 3259 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3260 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3261 Src.getOperand(0)); 3262 DCI.AddToWorklist(Trunc.getNode()); 3263 3264 if (Amt.getValueType() != NewShiftVT) { 3265 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3266 DCI.AddToWorklist(Amt.getNode()); 3267 } 3268 3269 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3270 Trunc, Amt); 3271 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3272 } 3273 } 3274 } 3275 3276 return SDValue(); 3277 } 3278 3279 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3280 // instructions. If we only match on the legalized i64 mul expansion, 3281 // SimplifyDemandedBits will be unable to remove them because there will be 3282 // multiple uses due to the separate mul + mulh[su]. 3283 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3284 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3285 if (Size <= 32) { 3286 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3287 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3288 } 3289 3290 // Because we want to eliminate extension instructions before the 3291 // operation, we need to create a single user here (i.e. not the separate 3292 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3293 3294 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3295 3296 SDValue Mul = DAG.getNode(MulOpc, SL, 3297 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3298 3299 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3300 Mul.getValue(0), Mul.getValue(1)); 3301 } 3302 3303 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3304 DAGCombinerInfo &DCI) const { 3305 EVT VT = N->getValueType(0); 3306 3307 unsigned Size = VT.getSizeInBits(); 3308 if (VT.isVector() || Size > 64) 3309 return SDValue(); 3310 3311 // There are i16 integer mul/mad. 3312 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3313 return SDValue(); 3314 3315 SelectionDAG &DAG = DCI.DAG; 3316 SDLoc DL(N); 3317 3318 SDValue N0 = N->getOperand(0); 3319 SDValue N1 = N->getOperand(1); 3320 3321 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3322 // in the source into any_extends if the result of the mul is truncated. Since 3323 // we can assume the high bits are whatever we want, use the underlying value 3324 // to avoid the unknown high bits from interfering. 3325 if (N0.getOpcode() == ISD::ANY_EXTEND) 3326 N0 = N0.getOperand(0); 3327 3328 if (N1.getOpcode() == ISD::ANY_EXTEND) 3329 N1 = N1.getOperand(0); 3330 3331 SDValue Mul; 3332 3333 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3334 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3335 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3336 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3337 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3338 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3339 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3340 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3341 } else { 3342 return SDValue(); 3343 } 3344 3345 // We need to use sext even for MUL_U24, because MUL_U24 is used 3346 // for signed multiply of 8 and 16-bit types. 3347 return DAG.getSExtOrTrunc(Mul, DL, VT); 3348 } 3349 3350 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3351 DAGCombinerInfo &DCI) const { 3352 EVT VT = N->getValueType(0); 3353 3354 if (!Subtarget->hasMulI24() || VT.isVector()) 3355 return SDValue(); 3356 3357 SelectionDAG &DAG = DCI.DAG; 3358 SDLoc DL(N); 3359 3360 SDValue N0 = N->getOperand(0); 3361 SDValue N1 = N->getOperand(1); 3362 3363 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3364 return SDValue(); 3365 3366 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3367 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3368 3369 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3370 DCI.AddToWorklist(Mulhi.getNode()); 3371 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3372 } 3373 3374 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3375 DAGCombinerInfo &DCI) const { 3376 EVT VT = N->getValueType(0); 3377 3378 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3379 return SDValue(); 3380 3381 SelectionDAG &DAG = DCI.DAG; 3382 SDLoc DL(N); 3383 3384 SDValue N0 = N->getOperand(0); 3385 SDValue N1 = N->getOperand(1); 3386 3387 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3388 return SDValue(); 3389 3390 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3391 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3392 3393 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3394 DCI.AddToWorklist(Mulhi.getNode()); 3395 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3396 } 3397 3398 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3399 SDNode *N, DAGCombinerInfo &DCI) const { 3400 SelectionDAG &DAG = DCI.DAG; 3401 3402 // Simplify demanded bits before splitting into multiple users. 3403 if (SDValue V = simplifyI24(N, DCI)) 3404 return V; 3405 3406 SDValue N0 = N->getOperand(0); 3407 SDValue N1 = N->getOperand(1); 3408 3409 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3410 3411 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3412 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3413 3414 SDLoc SL(N); 3415 3416 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3417 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3418 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3419 } 3420 3421 static bool isNegativeOne(SDValue Val) { 3422 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3423 return C->isAllOnesValue(); 3424 return false; 3425 } 3426 3427 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3428 SDValue Op, 3429 const SDLoc &DL, 3430 unsigned Opc) const { 3431 EVT VT = Op.getValueType(); 3432 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3433 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3434 LegalVT != MVT::i16)) 3435 return SDValue(); 3436 3437 if (VT != MVT::i32) 3438 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3439 3440 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3441 if (VT != MVT::i32) 3442 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3443 3444 return FFBX; 3445 } 3446 3447 // The native instructions return -1 on 0 input. Optimize out a select that 3448 // produces -1 on 0. 3449 // 3450 // TODO: If zero is not undef, we could also do this if the output is compared 3451 // against the bitwidth. 3452 // 3453 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3454 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3455 SDValue LHS, SDValue RHS, 3456 DAGCombinerInfo &DCI) const { 3457 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3458 if (!CmpRhs || !CmpRhs->isNullValue()) 3459 return SDValue(); 3460 3461 SelectionDAG &DAG = DCI.DAG; 3462 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3463 SDValue CmpLHS = Cond.getOperand(0); 3464 3465 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3466 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3467 if (CCOpcode == ISD::SETEQ && 3468 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3469 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3470 unsigned Opc = 3471 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3472 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3473 } 3474 3475 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3476 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3477 if (CCOpcode == ISD::SETNE && 3478 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3479 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3480 unsigned Opc = 3481 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3482 3483 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3484 } 3485 3486 return SDValue(); 3487 } 3488 3489 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3490 unsigned Op, 3491 const SDLoc &SL, 3492 SDValue Cond, 3493 SDValue N1, 3494 SDValue N2) { 3495 SelectionDAG &DAG = DCI.DAG; 3496 EVT VT = N1.getValueType(); 3497 3498 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3499 N1.getOperand(0), N2.getOperand(0)); 3500 DCI.AddToWorklist(NewSelect.getNode()); 3501 return DAG.getNode(Op, SL, VT, NewSelect); 3502 } 3503 3504 // Pull a free FP operation out of a select so it may fold into uses. 3505 // 3506 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3507 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3508 // 3509 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3510 // select c, (fabs x), +k -> fabs (select c, x, k) 3511 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3512 SDValue N) { 3513 SelectionDAG &DAG = DCI.DAG; 3514 SDValue Cond = N.getOperand(0); 3515 SDValue LHS = N.getOperand(1); 3516 SDValue RHS = N.getOperand(2); 3517 3518 EVT VT = N.getValueType(); 3519 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3520 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3521 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3522 SDLoc(N), Cond, LHS, RHS); 3523 } 3524 3525 bool Inv = false; 3526 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3527 std::swap(LHS, RHS); 3528 Inv = true; 3529 } 3530 3531 // TODO: Support vector constants. 3532 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3533 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3534 SDLoc SL(N); 3535 // If one side is an fneg/fabs and the other is a constant, we can push the 3536 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3537 SDValue NewLHS = LHS.getOperand(0); 3538 SDValue NewRHS = RHS; 3539 3540 // Careful: if the neg can be folded up, don't try to pull it back down. 3541 bool ShouldFoldNeg = true; 3542 3543 if (NewLHS.hasOneUse()) { 3544 unsigned Opc = NewLHS.getOpcode(); 3545 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3546 ShouldFoldNeg = false; 3547 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3548 ShouldFoldNeg = false; 3549 } 3550 3551 if (ShouldFoldNeg) { 3552 if (LHS.getOpcode() == ISD::FNEG) 3553 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3554 else if (CRHS->isNegative()) 3555 return SDValue(); 3556 3557 if (Inv) 3558 std::swap(NewLHS, NewRHS); 3559 3560 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3561 Cond, NewLHS, NewRHS); 3562 DCI.AddToWorklist(NewSelect.getNode()); 3563 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3564 } 3565 } 3566 3567 return SDValue(); 3568 } 3569 3570 3571 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3572 DAGCombinerInfo &DCI) const { 3573 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3574 return Folded; 3575 3576 SDValue Cond = N->getOperand(0); 3577 if (Cond.getOpcode() != ISD::SETCC) 3578 return SDValue(); 3579 3580 EVT VT = N->getValueType(0); 3581 SDValue LHS = Cond.getOperand(0); 3582 SDValue RHS = Cond.getOperand(1); 3583 SDValue CC = Cond.getOperand(2); 3584 3585 SDValue True = N->getOperand(1); 3586 SDValue False = N->getOperand(2); 3587 3588 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3589 SelectionDAG &DAG = DCI.DAG; 3590 if (DAG.isConstantValueOfAnyType(True) && 3591 !DAG.isConstantValueOfAnyType(False)) { 3592 // Swap cmp + select pair to move constant to false input. 3593 // This will allow using VOPC cndmasks more often. 3594 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3595 3596 SDLoc SL(N); 3597 ISD::CondCode NewCC = 3598 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3599 3600 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3601 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3602 } 3603 3604 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3605 SDValue MinMax 3606 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3607 // Revisit this node so we can catch min3/max3/med3 patterns. 3608 //DCI.AddToWorklist(MinMax.getNode()); 3609 return MinMax; 3610 } 3611 } 3612 3613 // There's no reason to not do this if the condition has other uses. 3614 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3615 } 3616 3617 static bool isInv2Pi(const APFloat &APF) { 3618 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3619 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3620 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3621 3622 return APF.bitwiseIsEqual(KF16) || 3623 APF.bitwiseIsEqual(KF32) || 3624 APF.bitwiseIsEqual(KF64); 3625 } 3626 3627 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3628 // additional cost to negate them. 3629 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3630 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3631 if (C->isZero() && !C->isNegative()) 3632 return true; 3633 3634 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3635 return true; 3636 } 3637 3638 return false; 3639 } 3640 3641 static unsigned inverseMinMax(unsigned Opc) { 3642 switch (Opc) { 3643 case ISD::FMAXNUM: 3644 return ISD::FMINNUM; 3645 case ISD::FMINNUM: 3646 return ISD::FMAXNUM; 3647 case ISD::FMAXNUM_IEEE: 3648 return ISD::FMINNUM_IEEE; 3649 case ISD::FMINNUM_IEEE: 3650 return ISD::FMAXNUM_IEEE; 3651 case AMDGPUISD::FMAX_LEGACY: 3652 return AMDGPUISD::FMIN_LEGACY; 3653 case AMDGPUISD::FMIN_LEGACY: 3654 return AMDGPUISD::FMAX_LEGACY; 3655 default: 3656 llvm_unreachable("invalid min/max opcode"); 3657 } 3658 } 3659 3660 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3661 DAGCombinerInfo &DCI) const { 3662 SelectionDAG &DAG = DCI.DAG; 3663 SDValue N0 = N->getOperand(0); 3664 EVT VT = N->getValueType(0); 3665 3666 unsigned Opc = N0.getOpcode(); 3667 3668 // If the input has multiple uses and we can either fold the negate down, or 3669 // the other uses cannot, give up. This both prevents unprofitable 3670 // transformations and infinite loops: we won't repeatedly try to fold around 3671 // a negate that has no 'good' form. 3672 if (N0.hasOneUse()) { 3673 // This may be able to fold into the source, but at a code size cost. Don't 3674 // fold if the fold into the user is free. 3675 if (allUsesHaveSourceMods(N, 0)) 3676 return SDValue(); 3677 } else { 3678 if (fnegFoldsIntoOp(Opc) && 3679 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3680 return SDValue(); 3681 } 3682 3683 SDLoc SL(N); 3684 switch (Opc) { 3685 case ISD::FADD: { 3686 if (!mayIgnoreSignedZero(N0)) 3687 return SDValue(); 3688 3689 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3690 SDValue LHS = N0.getOperand(0); 3691 SDValue RHS = N0.getOperand(1); 3692 3693 if (LHS.getOpcode() != ISD::FNEG) 3694 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3695 else 3696 LHS = LHS.getOperand(0); 3697 3698 if (RHS.getOpcode() != ISD::FNEG) 3699 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3700 else 3701 RHS = RHS.getOperand(0); 3702 3703 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3704 if (Res.getOpcode() != ISD::FADD) 3705 return SDValue(); // Op got folded away. 3706 if (!N0.hasOneUse()) 3707 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3708 return Res; 3709 } 3710 case ISD::FMUL: 3711 case AMDGPUISD::FMUL_LEGACY: { 3712 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3713 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3714 SDValue LHS = N0.getOperand(0); 3715 SDValue RHS = N0.getOperand(1); 3716 3717 if (LHS.getOpcode() == ISD::FNEG) 3718 LHS = LHS.getOperand(0); 3719 else if (RHS.getOpcode() == ISD::FNEG) 3720 RHS = RHS.getOperand(0); 3721 else 3722 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3723 3724 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3725 if (Res.getOpcode() != Opc) 3726 return SDValue(); // Op got folded away. 3727 if (!N0.hasOneUse()) 3728 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3729 return Res; 3730 } 3731 case ISD::FMA: 3732 case ISD::FMAD: { 3733 if (!mayIgnoreSignedZero(N0)) 3734 return SDValue(); 3735 3736 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3737 SDValue LHS = N0.getOperand(0); 3738 SDValue MHS = N0.getOperand(1); 3739 SDValue RHS = N0.getOperand(2); 3740 3741 if (LHS.getOpcode() == ISD::FNEG) 3742 LHS = LHS.getOperand(0); 3743 else if (MHS.getOpcode() == ISD::FNEG) 3744 MHS = MHS.getOperand(0); 3745 else 3746 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3747 3748 if (RHS.getOpcode() != ISD::FNEG) 3749 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3750 else 3751 RHS = RHS.getOperand(0); 3752 3753 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3754 if (Res.getOpcode() != Opc) 3755 return SDValue(); // Op got folded away. 3756 if (!N0.hasOneUse()) 3757 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3758 return Res; 3759 } 3760 case ISD::FMAXNUM: 3761 case ISD::FMINNUM: 3762 case ISD::FMAXNUM_IEEE: 3763 case ISD::FMINNUM_IEEE: 3764 case AMDGPUISD::FMAX_LEGACY: 3765 case AMDGPUISD::FMIN_LEGACY: { 3766 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3767 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3768 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3769 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3770 3771 SDValue LHS = N0.getOperand(0); 3772 SDValue RHS = N0.getOperand(1); 3773 3774 // 0 doesn't have a negated inline immediate. 3775 // TODO: This constant check should be generalized to other operations. 3776 if (isConstantCostlierToNegate(RHS)) 3777 return SDValue(); 3778 3779 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3780 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3781 unsigned Opposite = inverseMinMax(Opc); 3782 3783 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3784 if (Res.getOpcode() != Opposite) 3785 return SDValue(); // Op got folded away. 3786 if (!N0.hasOneUse()) 3787 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3788 return Res; 3789 } 3790 case AMDGPUISD::FMED3: { 3791 SDValue Ops[3]; 3792 for (unsigned I = 0; I < 3; ++I) 3793 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3794 3795 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3796 if (Res.getOpcode() != AMDGPUISD::FMED3) 3797 return SDValue(); // Op got folded away. 3798 3799 if (!N0.hasOneUse()) { 3800 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3801 DAG.ReplaceAllUsesWith(N0, Neg); 3802 3803 for (SDNode *U : Neg->uses()) 3804 DCI.AddToWorklist(U); 3805 } 3806 3807 return Res; 3808 } 3809 case ISD::FP_EXTEND: 3810 case ISD::FTRUNC: 3811 case ISD::FRINT: 3812 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3813 case ISD::FSIN: 3814 case ISD::FCANONICALIZE: 3815 case AMDGPUISD::RCP: 3816 case AMDGPUISD::RCP_LEGACY: 3817 case AMDGPUISD::RCP_IFLAG: 3818 case AMDGPUISD::SIN_HW: { 3819 SDValue CvtSrc = N0.getOperand(0); 3820 if (CvtSrc.getOpcode() == ISD::FNEG) { 3821 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3822 // (fneg (rcp (fneg x))) -> (rcp x) 3823 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3824 } 3825 3826 if (!N0.hasOneUse()) 3827 return SDValue(); 3828 3829 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3830 // (fneg (rcp x)) -> (rcp (fneg x)) 3831 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3832 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3833 } 3834 case ISD::FP_ROUND: { 3835 SDValue CvtSrc = N0.getOperand(0); 3836 3837 if (CvtSrc.getOpcode() == ISD::FNEG) { 3838 // (fneg (fp_round (fneg x))) -> (fp_round x) 3839 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3840 CvtSrc.getOperand(0), N0.getOperand(1)); 3841 } 3842 3843 if (!N0.hasOneUse()) 3844 return SDValue(); 3845 3846 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3847 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3848 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3849 } 3850 case ISD::FP16_TO_FP: { 3851 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3852 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3853 // Put the fneg back as a legal source operation that can be matched later. 3854 SDLoc SL(N); 3855 3856 SDValue Src = N0.getOperand(0); 3857 EVT SrcVT = Src.getValueType(); 3858 3859 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3860 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3861 DAG.getConstant(0x8000, SL, SrcVT)); 3862 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3863 } 3864 default: 3865 return SDValue(); 3866 } 3867 } 3868 3869 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3870 DAGCombinerInfo &DCI) const { 3871 SelectionDAG &DAG = DCI.DAG; 3872 SDValue N0 = N->getOperand(0); 3873 3874 if (!N0.hasOneUse()) 3875 return SDValue(); 3876 3877 switch (N0.getOpcode()) { 3878 case ISD::FP16_TO_FP: { 3879 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3880 SDLoc SL(N); 3881 SDValue Src = N0.getOperand(0); 3882 EVT SrcVT = Src.getValueType(); 3883 3884 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3885 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3886 DAG.getConstant(0x7fff, SL, SrcVT)); 3887 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3888 } 3889 default: 3890 return SDValue(); 3891 } 3892 } 3893 3894 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3895 DAGCombinerInfo &DCI) const { 3896 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3897 if (!CFP) 3898 return SDValue(); 3899 3900 // XXX - Should this flush denormals? 3901 const APFloat &Val = CFP->getValueAPF(); 3902 APFloat One(Val.getSemantics(), "1.0"); 3903 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3904 } 3905 3906 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3907 DAGCombinerInfo &DCI) const { 3908 SelectionDAG &DAG = DCI.DAG; 3909 SDLoc DL(N); 3910 3911 switch(N->getOpcode()) { 3912 default: 3913 break; 3914 case ISD::BITCAST: { 3915 EVT DestVT = N->getValueType(0); 3916 3917 // Push casts through vector builds. This helps avoid emitting a large 3918 // number of copies when materializing floating point vector constants. 3919 // 3920 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3921 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3922 if (DestVT.isVector()) { 3923 SDValue Src = N->getOperand(0); 3924 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3925 EVT SrcVT = Src.getValueType(); 3926 unsigned NElts = DestVT.getVectorNumElements(); 3927 3928 if (SrcVT.getVectorNumElements() == NElts) { 3929 EVT DestEltVT = DestVT.getVectorElementType(); 3930 3931 SmallVector<SDValue, 8> CastedElts; 3932 SDLoc SL(N); 3933 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3934 SDValue Elt = Src.getOperand(I); 3935 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3936 } 3937 3938 return DAG.getBuildVector(DestVT, SL, CastedElts); 3939 } 3940 } 3941 } 3942 3943 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 3944 break; 3945 3946 // Fold bitcasts of constants. 3947 // 3948 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3949 // TODO: Generalize and move to DAGCombiner 3950 SDValue Src = N->getOperand(0); 3951 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3952 SDLoc SL(N); 3953 uint64_t CVal = C->getZExtValue(); 3954 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3955 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3956 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3957 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3958 } 3959 3960 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3961 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3962 SDLoc SL(N); 3963 uint64_t CVal = Val.getZExtValue(); 3964 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3965 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3966 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3967 3968 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3969 } 3970 3971 break; 3972 } 3973 case ISD::SHL: { 3974 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3975 break; 3976 3977 return performShlCombine(N, DCI); 3978 } 3979 case ISD::SRL: { 3980 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3981 break; 3982 3983 return performSrlCombine(N, DCI); 3984 } 3985 case ISD::SRA: { 3986 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3987 break; 3988 3989 return performSraCombine(N, DCI); 3990 } 3991 case ISD::TRUNCATE: 3992 return performTruncateCombine(N, DCI); 3993 case ISD::MUL: 3994 return performMulCombine(N, DCI); 3995 case ISD::MULHS: 3996 return performMulhsCombine(N, DCI); 3997 case ISD::MULHU: 3998 return performMulhuCombine(N, DCI); 3999 case AMDGPUISD::MUL_I24: 4000 case AMDGPUISD::MUL_U24: 4001 case AMDGPUISD::MULHI_I24: 4002 case AMDGPUISD::MULHI_U24: { 4003 if (SDValue V = simplifyI24(N, DCI)) 4004 return V; 4005 return SDValue(); 4006 } 4007 case AMDGPUISD::MUL_LOHI_I24: 4008 case AMDGPUISD::MUL_LOHI_U24: 4009 return performMulLoHi24Combine(N, DCI); 4010 case ISD::SELECT: 4011 return performSelectCombine(N, DCI); 4012 case ISD::FNEG: 4013 return performFNegCombine(N, DCI); 4014 case ISD::FABS: 4015 return performFAbsCombine(N, DCI); 4016 case AMDGPUISD::BFE_I32: 4017 case AMDGPUISD::BFE_U32: { 4018 assert(!N->getValueType(0).isVector() && 4019 "Vector handling of BFE not implemented"); 4020 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4021 if (!Width) 4022 break; 4023 4024 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4025 if (WidthVal == 0) 4026 return DAG.getConstant(0, DL, MVT::i32); 4027 4028 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4029 if (!Offset) 4030 break; 4031 4032 SDValue BitsFrom = N->getOperand(0); 4033 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4034 4035 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4036 4037 if (OffsetVal == 0) { 4038 // This is already sign / zero extended, so try to fold away extra BFEs. 4039 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4040 4041 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4042 if (OpSignBits >= SignBits) 4043 return BitsFrom; 4044 4045 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4046 if (Signed) { 4047 // This is a sign_extend_inreg. Replace it to take advantage of existing 4048 // DAG Combines. If not eliminated, we will match back to BFE during 4049 // selection. 4050 4051 // TODO: The sext_inreg of extended types ends, although we can could 4052 // handle them in a single BFE. 4053 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4054 DAG.getValueType(SmallVT)); 4055 } 4056 4057 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4058 } 4059 4060 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4061 if (Signed) { 4062 return constantFoldBFE<int32_t>(DAG, 4063 CVal->getSExtValue(), 4064 OffsetVal, 4065 WidthVal, 4066 DL); 4067 } 4068 4069 return constantFoldBFE<uint32_t>(DAG, 4070 CVal->getZExtValue(), 4071 OffsetVal, 4072 WidthVal, 4073 DL); 4074 } 4075 4076 if ((OffsetVal + WidthVal) >= 32 && 4077 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4078 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4079 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4080 BitsFrom, ShiftVal); 4081 } 4082 4083 if (BitsFrom.hasOneUse()) { 4084 APInt Demanded = APInt::getBitsSet(32, 4085 OffsetVal, 4086 OffsetVal + WidthVal); 4087 4088 KnownBits Known; 4089 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4090 !DCI.isBeforeLegalizeOps()); 4091 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4092 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4093 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4094 DCI.CommitTargetLoweringOpt(TLO); 4095 } 4096 } 4097 4098 break; 4099 } 4100 case ISD::LOAD: 4101 return performLoadCombine(N, DCI); 4102 case ISD::STORE: 4103 return performStoreCombine(N, DCI); 4104 case AMDGPUISD::RCP: 4105 case AMDGPUISD::RCP_IFLAG: 4106 return performRcpCombine(N, DCI); 4107 case ISD::AssertZext: 4108 case ISD::AssertSext: 4109 return performAssertSZExtCombine(N, DCI); 4110 case ISD::INTRINSIC_WO_CHAIN: 4111 return performIntrinsicWOChainCombine(N, DCI); 4112 } 4113 return SDValue(); 4114 } 4115 4116 //===----------------------------------------------------------------------===// 4117 // Helper functions 4118 //===----------------------------------------------------------------------===// 4119 4120 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4121 const TargetRegisterClass *RC, 4122 Register Reg, EVT VT, 4123 const SDLoc &SL, 4124 bool RawReg) const { 4125 MachineFunction &MF = DAG.getMachineFunction(); 4126 MachineRegisterInfo &MRI = MF.getRegInfo(); 4127 Register VReg; 4128 4129 if (!MRI.isLiveIn(Reg)) { 4130 VReg = MRI.createVirtualRegister(RC); 4131 MRI.addLiveIn(Reg, VReg); 4132 } else { 4133 VReg = MRI.getLiveInVirtReg(Reg); 4134 } 4135 4136 if (RawReg) 4137 return DAG.getRegister(VReg, VT); 4138 4139 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4140 } 4141 4142 // This may be called multiple times, and nothing prevents creating multiple 4143 // objects at the same offset. See if we already defined this object. 4144 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4145 int64_t Offset) { 4146 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4147 if (MFI.getObjectOffset(I) == Offset) { 4148 assert(MFI.getObjectSize(I) == Size); 4149 return I; 4150 } 4151 } 4152 4153 return MFI.CreateFixedObject(Size, Offset, true); 4154 } 4155 4156 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4157 EVT VT, 4158 const SDLoc &SL, 4159 int64_t Offset) const { 4160 MachineFunction &MF = DAG.getMachineFunction(); 4161 MachineFrameInfo &MFI = MF.getFrameInfo(); 4162 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4163 4164 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4165 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4166 4167 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4168 MachineMemOperand::MODereferenceable | 4169 MachineMemOperand::MOInvariant); 4170 } 4171 4172 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4173 const SDLoc &SL, 4174 SDValue Chain, 4175 SDValue ArgVal, 4176 int64_t Offset) const { 4177 MachineFunction &MF = DAG.getMachineFunction(); 4178 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4179 4180 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4181 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4182 MachineMemOperand::MODereferenceable); 4183 return Store; 4184 } 4185 4186 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4187 const TargetRegisterClass *RC, 4188 EVT VT, const SDLoc &SL, 4189 const ArgDescriptor &Arg) const { 4190 assert(Arg && "Attempting to load missing argument"); 4191 4192 SDValue V = Arg.isRegister() ? 4193 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4194 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4195 4196 if (!Arg.isMasked()) 4197 return V; 4198 4199 unsigned Mask = Arg.getMask(); 4200 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4201 V = DAG.getNode(ISD::SRL, SL, VT, V, 4202 DAG.getShiftAmountConstant(Shift, VT, SL)); 4203 return DAG.getNode(ISD::AND, SL, VT, V, 4204 DAG.getConstant(Mask >> Shift, SL, VT)); 4205 } 4206 4207 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4208 const MachineFunction &MF, const ImplicitParameter Param) const { 4209 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4210 const AMDGPUSubtarget &ST = 4211 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4212 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4213 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4214 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4215 ExplicitArgOffset; 4216 switch (Param) { 4217 case GRID_DIM: 4218 return ArgOffset; 4219 case GRID_OFFSET: 4220 return ArgOffset + 4; 4221 } 4222 llvm_unreachable("unexpected implicit parameter type"); 4223 } 4224 4225 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4226 4227 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4228 switch ((AMDGPUISD::NodeType)Opcode) { 4229 case AMDGPUISD::FIRST_NUMBER: break; 4230 // AMDIL DAG nodes 4231 NODE_NAME_CASE(UMUL); 4232 NODE_NAME_CASE(BRANCH_COND); 4233 4234 // AMDGPU DAG nodes 4235 NODE_NAME_CASE(IF) 4236 NODE_NAME_CASE(ELSE) 4237 NODE_NAME_CASE(LOOP) 4238 NODE_NAME_CASE(CALL) 4239 NODE_NAME_CASE(TC_RETURN) 4240 NODE_NAME_CASE(TRAP) 4241 NODE_NAME_CASE(RET_FLAG) 4242 NODE_NAME_CASE(RETURN_TO_EPILOG) 4243 NODE_NAME_CASE(ENDPGM) 4244 NODE_NAME_CASE(DWORDADDR) 4245 NODE_NAME_CASE(FRACT) 4246 NODE_NAME_CASE(SETCC) 4247 NODE_NAME_CASE(SETREG) 4248 NODE_NAME_CASE(DENORM_MODE) 4249 NODE_NAME_CASE(FMA_W_CHAIN) 4250 NODE_NAME_CASE(FMUL_W_CHAIN) 4251 NODE_NAME_CASE(CLAMP) 4252 NODE_NAME_CASE(COS_HW) 4253 NODE_NAME_CASE(SIN_HW) 4254 NODE_NAME_CASE(FMAX_LEGACY) 4255 NODE_NAME_CASE(FMIN_LEGACY) 4256 NODE_NAME_CASE(FMAX3) 4257 NODE_NAME_CASE(SMAX3) 4258 NODE_NAME_CASE(UMAX3) 4259 NODE_NAME_CASE(FMIN3) 4260 NODE_NAME_CASE(SMIN3) 4261 NODE_NAME_CASE(UMIN3) 4262 NODE_NAME_CASE(FMED3) 4263 NODE_NAME_CASE(SMED3) 4264 NODE_NAME_CASE(UMED3) 4265 NODE_NAME_CASE(FDOT2) 4266 NODE_NAME_CASE(URECIP) 4267 NODE_NAME_CASE(DIV_SCALE) 4268 NODE_NAME_CASE(DIV_FMAS) 4269 NODE_NAME_CASE(DIV_FIXUP) 4270 NODE_NAME_CASE(FMAD_FTZ) 4271 NODE_NAME_CASE(RCP) 4272 NODE_NAME_CASE(RSQ) 4273 NODE_NAME_CASE(RCP_LEGACY) 4274 NODE_NAME_CASE(RCP_IFLAG) 4275 NODE_NAME_CASE(FMUL_LEGACY) 4276 NODE_NAME_CASE(RSQ_CLAMP) 4277 NODE_NAME_CASE(LDEXP) 4278 NODE_NAME_CASE(FP_CLASS) 4279 NODE_NAME_CASE(DOT4) 4280 NODE_NAME_CASE(CARRY) 4281 NODE_NAME_CASE(BORROW) 4282 NODE_NAME_CASE(BFE_U32) 4283 NODE_NAME_CASE(BFE_I32) 4284 NODE_NAME_CASE(BFI) 4285 NODE_NAME_CASE(BFM) 4286 NODE_NAME_CASE(FFBH_U32) 4287 NODE_NAME_CASE(FFBH_I32) 4288 NODE_NAME_CASE(FFBL_B32) 4289 NODE_NAME_CASE(MUL_U24) 4290 NODE_NAME_CASE(MUL_I24) 4291 NODE_NAME_CASE(MULHI_U24) 4292 NODE_NAME_CASE(MULHI_I24) 4293 NODE_NAME_CASE(MUL_LOHI_U24) 4294 NODE_NAME_CASE(MUL_LOHI_I24) 4295 NODE_NAME_CASE(MAD_U24) 4296 NODE_NAME_CASE(MAD_I24) 4297 NODE_NAME_CASE(MAD_I64_I32) 4298 NODE_NAME_CASE(MAD_U64_U32) 4299 NODE_NAME_CASE(PERM) 4300 NODE_NAME_CASE(TEXTURE_FETCH) 4301 NODE_NAME_CASE(R600_EXPORT) 4302 NODE_NAME_CASE(CONST_ADDRESS) 4303 NODE_NAME_CASE(REGISTER_LOAD) 4304 NODE_NAME_CASE(REGISTER_STORE) 4305 NODE_NAME_CASE(SAMPLE) 4306 NODE_NAME_CASE(SAMPLEB) 4307 NODE_NAME_CASE(SAMPLED) 4308 NODE_NAME_CASE(SAMPLEL) 4309 NODE_NAME_CASE(CVT_F32_UBYTE0) 4310 NODE_NAME_CASE(CVT_F32_UBYTE1) 4311 NODE_NAME_CASE(CVT_F32_UBYTE2) 4312 NODE_NAME_CASE(CVT_F32_UBYTE3) 4313 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4314 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4315 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4316 NODE_NAME_CASE(CVT_PK_I16_I32) 4317 NODE_NAME_CASE(CVT_PK_U16_U32) 4318 NODE_NAME_CASE(FP_TO_FP16) 4319 NODE_NAME_CASE(FP16_ZEXT) 4320 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4321 NODE_NAME_CASE(CONST_DATA_PTR) 4322 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4323 NODE_NAME_CASE(LDS) 4324 NODE_NAME_CASE(DUMMY_CHAIN) 4325 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4326 NODE_NAME_CASE(LOAD_D16_HI) 4327 NODE_NAME_CASE(LOAD_D16_LO) 4328 NODE_NAME_CASE(LOAD_D16_HI_I8) 4329 NODE_NAME_CASE(LOAD_D16_HI_U8) 4330 NODE_NAME_CASE(LOAD_D16_LO_I8) 4331 NODE_NAME_CASE(LOAD_D16_LO_U8) 4332 NODE_NAME_CASE(STORE_MSKOR) 4333 NODE_NAME_CASE(LOAD_CONSTANT) 4334 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4335 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4336 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4337 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4338 NODE_NAME_CASE(DS_ORDERED_COUNT) 4339 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4340 NODE_NAME_CASE(ATOMIC_INC) 4341 NODE_NAME_CASE(ATOMIC_DEC) 4342 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4343 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4344 NODE_NAME_CASE(BUFFER_LOAD) 4345 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4346 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4347 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4348 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4349 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4350 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4351 NODE_NAME_CASE(SBUFFER_LOAD) 4352 NODE_NAME_CASE(BUFFER_STORE) 4353 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4354 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4355 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4356 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4357 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4358 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4359 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4360 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4361 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4362 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4363 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4364 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4365 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4366 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4367 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4368 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4369 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4370 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4371 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4372 4373 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4374 } 4375 return nullptr; 4376 } 4377 4378 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4379 SelectionDAG &DAG, int Enabled, 4380 int &RefinementSteps, 4381 bool &UseOneConstNR, 4382 bool Reciprocal) const { 4383 EVT VT = Operand.getValueType(); 4384 4385 if (VT == MVT::f32) { 4386 RefinementSteps = 0; 4387 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4388 } 4389 4390 // TODO: There is also f64 rsq instruction, but the documentation is less 4391 // clear on its precision. 4392 4393 return SDValue(); 4394 } 4395 4396 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4397 SelectionDAG &DAG, int Enabled, 4398 int &RefinementSteps) const { 4399 EVT VT = Operand.getValueType(); 4400 4401 if (VT == MVT::f32) { 4402 // Reciprocal, < 1 ulp error. 4403 // 4404 // This reciprocal approximation converges to < 0.5 ulp error with one 4405 // newton rhapson performed with two fused multiple adds (FMAs). 4406 4407 RefinementSteps = 0; 4408 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4409 } 4410 4411 // TODO: There is also f64 rcp instruction, but the documentation is less 4412 // clear on its precision. 4413 4414 return SDValue(); 4415 } 4416 4417 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4418 const SDValue Op, KnownBits &Known, 4419 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4420 4421 Known.resetAll(); // Don't know anything. 4422 4423 unsigned Opc = Op.getOpcode(); 4424 4425 switch (Opc) { 4426 default: 4427 break; 4428 case AMDGPUISD::CARRY: 4429 case AMDGPUISD::BORROW: { 4430 Known.Zero = APInt::getHighBitsSet(32, 31); 4431 break; 4432 } 4433 4434 case AMDGPUISD::BFE_I32: 4435 case AMDGPUISD::BFE_U32: { 4436 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4437 if (!CWidth) 4438 return; 4439 4440 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4441 4442 if (Opc == AMDGPUISD::BFE_U32) 4443 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4444 4445 break; 4446 } 4447 case AMDGPUISD::FP_TO_FP16: 4448 case AMDGPUISD::FP16_ZEXT: { 4449 unsigned BitWidth = Known.getBitWidth(); 4450 4451 // High bits are zero. 4452 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4453 break; 4454 } 4455 case AMDGPUISD::MUL_U24: 4456 case AMDGPUISD::MUL_I24: { 4457 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4458 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4459 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4460 RHSKnown.countMinTrailingZeros(); 4461 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4462 // Skip extra check if all bits are known zeros. 4463 if (TrailZ >= 32) 4464 break; 4465 4466 // Truncate to 24 bits. 4467 LHSKnown = LHSKnown.trunc(24); 4468 RHSKnown = RHSKnown.trunc(24); 4469 4470 if (Opc == AMDGPUISD::MUL_I24) { 4471 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4472 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4473 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4474 if (MaxValBits >= 32) 4475 break; 4476 bool LHSNegative = LHSKnown.isNegative(); 4477 bool LHSNonNegative = LHSKnown.isNonNegative(); 4478 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4479 bool RHSNegative = RHSKnown.isNegative(); 4480 bool RHSNonNegative = RHSKnown.isNonNegative(); 4481 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4482 4483 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4484 Known.Zero.setHighBits(32 - MaxValBits); 4485 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4486 Known.One.setHighBits(32 - MaxValBits); 4487 } else { 4488 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4489 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4490 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4491 if (MaxValBits >= 32) 4492 break; 4493 Known.Zero.setHighBits(32 - MaxValBits); 4494 } 4495 break; 4496 } 4497 case AMDGPUISD::PERM: { 4498 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4499 if (!CMask) 4500 return; 4501 4502 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4503 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4504 unsigned Sel = CMask->getZExtValue(); 4505 4506 for (unsigned I = 0; I < 32; I += 8) { 4507 unsigned SelBits = Sel & 0xff; 4508 if (SelBits < 4) { 4509 SelBits *= 8; 4510 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4511 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4512 } else if (SelBits < 7) { 4513 SelBits = (SelBits & 3) * 8; 4514 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4515 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4516 } else if (SelBits == 0x0c) { 4517 Known.Zero |= 0xFFull << I; 4518 } else if (SelBits > 0x0c) { 4519 Known.One |= 0xFFull << I; 4520 } 4521 Sel >>= 8; 4522 } 4523 break; 4524 } 4525 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4526 Known.Zero.setHighBits(24); 4527 break; 4528 } 4529 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4530 Known.Zero.setHighBits(16); 4531 break; 4532 } 4533 case AMDGPUISD::LDS: { 4534 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4535 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4536 4537 Known.Zero.setHighBits(16); 4538 Known.Zero.setLowBits(Log2(Alignment)); 4539 break; 4540 } 4541 case ISD::INTRINSIC_WO_CHAIN: { 4542 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4543 switch (IID) { 4544 case Intrinsic::amdgcn_mbcnt_lo: 4545 case Intrinsic::amdgcn_mbcnt_hi: { 4546 const GCNSubtarget &ST = 4547 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4548 // These return at most the wavefront size - 1. 4549 unsigned Size = Op.getValueType().getSizeInBits(); 4550 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4551 break; 4552 } 4553 default: 4554 break; 4555 } 4556 } 4557 } 4558 } 4559 4560 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4561 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4562 unsigned Depth) const { 4563 switch (Op.getOpcode()) { 4564 case AMDGPUISD::BFE_I32: { 4565 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4566 if (!Width) 4567 return 1; 4568 4569 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4570 if (!isNullConstant(Op.getOperand(1))) 4571 return SignBits; 4572 4573 // TODO: Could probably figure something out with non-0 offsets. 4574 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4575 return std::max(SignBits, Op0SignBits); 4576 } 4577 4578 case AMDGPUISD::BFE_U32: { 4579 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4580 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4581 } 4582 4583 case AMDGPUISD::CARRY: 4584 case AMDGPUISD::BORROW: 4585 return 31; 4586 case AMDGPUISD::BUFFER_LOAD_BYTE: 4587 return 25; 4588 case AMDGPUISD::BUFFER_LOAD_SHORT: 4589 return 17; 4590 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4591 return 24; 4592 case AMDGPUISD::BUFFER_LOAD_USHORT: 4593 return 16; 4594 case AMDGPUISD::FP_TO_FP16: 4595 case AMDGPUISD::FP16_ZEXT: 4596 return 16; 4597 default: 4598 return 1; 4599 } 4600 } 4601 4602 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4603 GISelKnownBits &Analysis, Register R, 4604 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4605 unsigned Depth) const { 4606 const MachineInstr *MI = MRI.getVRegDef(R); 4607 if (!MI) 4608 return 1; 4609 4610 // TODO: Check range metadata on MMO. 4611 switch (MI->getOpcode()) { 4612 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4613 return 25; 4614 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4615 return 17; 4616 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4617 return 24; 4618 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4619 return 16; 4620 default: 4621 return 1; 4622 } 4623 } 4624 4625 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4626 const SelectionDAG &DAG, 4627 bool SNaN, 4628 unsigned Depth) const { 4629 unsigned Opcode = Op.getOpcode(); 4630 switch (Opcode) { 4631 case AMDGPUISD::FMIN_LEGACY: 4632 case AMDGPUISD::FMAX_LEGACY: { 4633 if (SNaN) 4634 return true; 4635 4636 // TODO: Can check no nans on one of the operands for each one, but which 4637 // one? 4638 return false; 4639 } 4640 case AMDGPUISD::FMUL_LEGACY: 4641 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4642 if (SNaN) 4643 return true; 4644 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4645 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4646 } 4647 case AMDGPUISD::FMED3: 4648 case AMDGPUISD::FMIN3: 4649 case AMDGPUISD::FMAX3: 4650 case AMDGPUISD::FMAD_FTZ: { 4651 if (SNaN) 4652 return true; 4653 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4654 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4655 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4656 } 4657 case AMDGPUISD::CVT_F32_UBYTE0: 4658 case AMDGPUISD::CVT_F32_UBYTE1: 4659 case AMDGPUISD::CVT_F32_UBYTE2: 4660 case AMDGPUISD::CVT_F32_UBYTE3: 4661 return true; 4662 4663 case AMDGPUISD::RCP: 4664 case AMDGPUISD::RSQ: 4665 case AMDGPUISD::RCP_LEGACY: 4666 case AMDGPUISD::RSQ_CLAMP: { 4667 if (SNaN) 4668 return true; 4669 4670 // TODO: Need is known positive check. 4671 return false; 4672 } 4673 case AMDGPUISD::LDEXP: 4674 case AMDGPUISD::FRACT: { 4675 if (SNaN) 4676 return true; 4677 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4678 } 4679 case AMDGPUISD::DIV_SCALE: 4680 case AMDGPUISD::DIV_FMAS: 4681 case AMDGPUISD::DIV_FIXUP: 4682 // TODO: Refine on operands. 4683 return SNaN; 4684 case AMDGPUISD::SIN_HW: 4685 case AMDGPUISD::COS_HW: { 4686 // TODO: Need check for infinity 4687 return SNaN; 4688 } 4689 case ISD::INTRINSIC_WO_CHAIN: { 4690 unsigned IntrinsicID 4691 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4692 // TODO: Handle more intrinsics 4693 switch (IntrinsicID) { 4694 case Intrinsic::amdgcn_cubeid: 4695 return true; 4696 4697 case Intrinsic::amdgcn_frexp_mant: { 4698 if (SNaN) 4699 return true; 4700 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4701 } 4702 case Intrinsic::amdgcn_cvt_pkrtz: { 4703 if (SNaN) 4704 return true; 4705 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4706 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4707 } 4708 case Intrinsic::amdgcn_rcp: 4709 case Intrinsic::amdgcn_rsq: 4710 case Intrinsic::amdgcn_rcp_legacy: 4711 case Intrinsic::amdgcn_rsq_legacy: 4712 case Intrinsic::amdgcn_rsq_clamp: { 4713 if (SNaN) 4714 return true; 4715 4716 // TODO: Need is known positive check. 4717 return false; 4718 } 4719 case Intrinsic::amdgcn_trig_preop: 4720 case Intrinsic::amdgcn_fdot2: 4721 // TODO: Refine on operand 4722 return SNaN; 4723 default: 4724 return false; 4725 } 4726 } 4727 default: 4728 return false; 4729 } 4730 } 4731 4732 TargetLowering::AtomicExpansionKind 4733 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4734 switch (RMW->getOperation()) { 4735 case AtomicRMWInst::Nand: 4736 case AtomicRMWInst::FAdd: 4737 case AtomicRMWInst::FSub: 4738 return AtomicExpansionKind::CmpXChg; 4739 default: 4740 return AtomicExpansionKind::None; 4741 } 4742 } 4743