1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIInstrInfo.h"
24 #include "SIMachineFunctionInfo.h"
25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/MathExtras.h"
36 using namespace llvm;
37 
38 #include "AMDGPUGenCallingConv.inc"
39 
40 static cl::opt<bool> AMDGPUBypassSlowDiv(
41   "amdgpu-bypass-slow-div",
42   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
43   cl::init(true));
44 
45 // Find a larger type to do a load / store of a vector with.
46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
47   unsigned StoreSize = VT.getStoreSizeInBits();
48   if (StoreSize <= 32)
49     return EVT::getIntegerVT(Ctx, StoreSize);
50 
51   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
52   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
53 }
54 
55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
56   EVT VT = Op.getValueType();
57   KnownBits Known = DAG.computeKnownBits(Op);
58   return VT.getSizeInBits() - Known.countMinLeadingZeros();
59 }
60 
61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
62   EVT VT = Op.getValueType();
63 
64   // In order for this to be a signed 24-bit value, bit 23, must
65   // be a sign bit.
66   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
67 }
68 
69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
70                                            const AMDGPUSubtarget &STI)
71     : TargetLowering(TM), Subtarget(&STI) {
72   // Lower floating point store/load to integer store/load to reduce the number
73   // of patterns in tablegen.
74   setOperationAction(ISD::LOAD, MVT::f32, Promote);
75   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
76 
77   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
78   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
79 
80   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
81   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
82 
83   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
84   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
85 
86   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
87   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
88 
89   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
90   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
91 
92   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
93   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
94 
95   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
96   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
97 
98   setOperationAction(ISD::LOAD, MVT::i64, Promote);
99   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
100 
101   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
102   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
103 
104   setOperationAction(ISD::LOAD, MVT::f64, Promote);
105   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
106 
107   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
108   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
109 
110   setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
111   AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
112 
113   setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
114   AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
115 
116   setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
117   AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
118 
119   setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
120   AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
121 
122   setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
123   AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
124 
125   setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
126   AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
127 
128   // There are no 64-bit extloads. These should be done as a 32-bit extload and
129   // an extension to 64-bit.
130   for (MVT VT : MVT::integer_valuetypes()) {
131     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
132     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
133     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
134   }
135 
136   for (MVT VT : MVT::integer_valuetypes()) {
137     if (VT == MVT::i64)
138       continue;
139 
140     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
141     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
143     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
144 
145     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
147     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
148     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
149 
150     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
151     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
152     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
153     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
154   }
155 
156   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
157     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
159     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
160     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
161     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
162     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
163     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
164     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
165     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
166     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
168     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
169     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
171     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
172   }
173 
174   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
175   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
176   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
177   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
178   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
179   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
180   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
181 
182   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
183   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
184   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
185   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
186   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
187 
188   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
189   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
190   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
191   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
192   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
193 
194   setOperationAction(ISD::STORE, MVT::f32, Promote);
195   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
196 
197   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
198   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
199 
200   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
201   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
202 
203   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
204   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
205 
206   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
207   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
208 
209   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
210   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
211 
212   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
213   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
214 
215   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
216   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
217 
218   setOperationAction(ISD::STORE, MVT::i64, Promote);
219   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
220 
221   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
222   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
223 
224   setOperationAction(ISD::STORE, MVT::f64, Promote);
225   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
226 
227   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
228   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
229 
230   setOperationAction(ISD::STORE, MVT::v4i64, Promote);
231   AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
232 
233   setOperationAction(ISD::STORE, MVT::v4f64, Promote);
234   AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
235 
236   setOperationAction(ISD::STORE, MVT::v8i64, Promote);
237   AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
238 
239   setOperationAction(ISD::STORE, MVT::v8f64, Promote);
240   AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
241 
242   setOperationAction(ISD::STORE, MVT::v16i64, Promote);
243   AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
244 
245   setOperationAction(ISD::STORE, MVT::v16f64, Promote);
246   AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
247 
248   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
249   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
250   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
251   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
252 
253   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
254   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
255   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
256   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
257 
258   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
259   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
260   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
261   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
262   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
263   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
264   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
265 
266   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
267   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
268 
269   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
270   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
271 
272   setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
273   setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
274   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
275   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
276 
277   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
278   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
279 
280   setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
281   setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
282   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
283   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
284   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
285   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
286   setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
287 
288   setOperationAction(ISD::Constant, MVT::i32, Legal);
289   setOperationAction(ISD::Constant, MVT::i64, Legal);
290   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
291   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
292 
293   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
294   setOperationAction(ISD::BRIND, MVT::Other, Expand);
295 
296   // This is totally unsupported, just custom lower to produce an error.
297   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
298 
299   // Library functions.  These default to Expand, but we have instructions
300   // for them.
301   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
302   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
303   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
304   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
305   setOperationAction(ISD::FABS,   MVT::f32, Legal);
306   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
307   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
308   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
309   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
310   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
311 
312   setOperationAction(ISD::FROUND, MVT::f32, Custom);
313   setOperationAction(ISD::FROUND, MVT::f64, Custom);
314 
315   setOperationAction(ISD::FLOG, MVT::f32, Custom);
316   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
317   setOperationAction(ISD::FEXP, MVT::f32, Custom);
318 
319 
320   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
321   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
322 
323   setOperationAction(ISD::FREM, MVT::f16, Custom);
324   setOperationAction(ISD::FREM, MVT::f32, Custom);
325   setOperationAction(ISD::FREM, MVT::f64, Custom);
326 
327   // Expand to fneg + fadd.
328   setOperationAction(ISD::FSUB, MVT::f64, Expand);
329 
330   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
331   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
332   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
333   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
334   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
335   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
336   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
337   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
338   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
339   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
340   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
341   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
342   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
343   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
344   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
345   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
346   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
347   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
348   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
349   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
350   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
351   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
352   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
353   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
354   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
355   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
356   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
357   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
358   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
359   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
360 
361   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
362   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
363   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
364 
365   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
366   for (MVT VT : ScalarIntVTs) {
367     // These should use [SU]DIVREM, so set them to expand
368     setOperationAction(ISD::SDIV, VT, Expand);
369     setOperationAction(ISD::UDIV, VT, Expand);
370     setOperationAction(ISD::SREM, VT, Expand);
371     setOperationAction(ISD::UREM, VT, Expand);
372 
373     // GPU does not have divrem function for signed or unsigned.
374     setOperationAction(ISD::SDIVREM, VT, Custom);
375     setOperationAction(ISD::UDIVREM, VT, Custom);
376 
377     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
378     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
379     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
380 
381     setOperationAction(ISD::BSWAP, VT, Expand);
382     setOperationAction(ISD::CTTZ, VT, Expand);
383     setOperationAction(ISD::CTLZ, VT, Expand);
384 
385     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
386     setOperationAction(ISD::ADDC, VT, Legal);
387     setOperationAction(ISD::SUBC, VT, Legal);
388     setOperationAction(ISD::ADDE, VT, Legal);
389     setOperationAction(ISD::SUBE, VT, Legal);
390   }
391 
392   // The hardware supports 32-bit FSHR, but not FSHL.
393   setOperationAction(ISD::FSHR, MVT::i32, Legal);
394 
395   // The hardware supports 32-bit ROTR, but not ROTL.
396   setOperationAction(ISD::ROTL, MVT::i32, Expand);
397   setOperationAction(ISD::ROTL, MVT::i64, Expand);
398   setOperationAction(ISD::ROTR, MVT::i64, Expand);
399 
400   setOperationAction(ISD::MUL, MVT::i64, Expand);
401   setOperationAction(ISD::MULHU, MVT::i64, Expand);
402   setOperationAction(ISD::MULHS, MVT::i64, Expand);
403   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
404   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
405   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
406   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
407   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
408 
409   setOperationAction(ISD::SMIN, MVT::i32, Legal);
410   setOperationAction(ISD::UMIN, MVT::i32, Legal);
411   setOperationAction(ISD::SMAX, MVT::i32, Legal);
412   setOperationAction(ISD::UMAX, MVT::i32, Legal);
413 
414   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
415   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
416   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
417   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418 
419   static const MVT::SimpleValueType VectorIntTypes[] = {
420     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
421   };
422 
423   for (MVT VT : VectorIntTypes) {
424     // Expand the following operations for the current type by default.
425     setOperationAction(ISD::ADD,  VT, Expand);
426     setOperationAction(ISD::AND,  VT, Expand);
427     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
428     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
429     setOperationAction(ISD::MUL,  VT, Expand);
430     setOperationAction(ISD::MULHU, VT, Expand);
431     setOperationAction(ISD::MULHS, VT, Expand);
432     setOperationAction(ISD::OR,   VT, Expand);
433     setOperationAction(ISD::SHL,  VT, Expand);
434     setOperationAction(ISD::SRA,  VT, Expand);
435     setOperationAction(ISD::SRL,  VT, Expand);
436     setOperationAction(ISD::ROTL, VT, Expand);
437     setOperationAction(ISD::ROTR, VT, Expand);
438     setOperationAction(ISD::SUB,  VT, Expand);
439     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
440     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
441     setOperationAction(ISD::SDIV, VT, Expand);
442     setOperationAction(ISD::UDIV, VT, Expand);
443     setOperationAction(ISD::SREM, VT, Expand);
444     setOperationAction(ISD::UREM, VT, Expand);
445     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
446     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
447     setOperationAction(ISD::SDIVREM, VT, Expand);
448     setOperationAction(ISD::UDIVREM, VT, Expand);
449     setOperationAction(ISD::SELECT, VT, Expand);
450     setOperationAction(ISD::VSELECT, VT, Expand);
451     setOperationAction(ISD::SELECT_CC, VT, Expand);
452     setOperationAction(ISD::XOR,  VT, Expand);
453     setOperationAction(ISD::BSWAP, VT, Expand);
454     setOperationAction(ISD::CTPOP, VT, Expand);
455     setOperationAction(ISD::CTTZ, VT, Expand);
456     setOperationAction(ISD::CTLZ, VT, Expand);
457     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
458     setOperationAction(ISD::SETCC, VT, Expand);
459   }
460 
461   static const MVT::SimpleValueType FloatVectorTypes[] = {
462      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
463   };
464 
465   for (MVT VT : FloatVectorTypes) {
466     setOperationAction(ISD::FABS, VT, Expand);
467     setOperationAction(ISD::FMINNUM, VT, Expand);
468     setOperationAction(ISD::FMAXNUM, VT, Expand);
469     setOperationAction(ISD::FADD, VT, Expand);
470     setOperationAction(ISD::FCEIL, VT, Expand);
471     setOperationAction(ISD::FCOS, VT, Expand);
472     setOperationAction(ISD::FDIV, VT, Expand);
473     setOperationAction(ISD::FEXP2, VT, Expand);
474     setOperationAction(ISD::FEXP, VT, Expand);
475     setOperationAction(ISD::FLOG2, VT, Expand);
476     setOperationAction(ISD::FREM, VT, Expand);
477     setOperationAction(ISD::FLOG, VT, Expand);
478     setOperationAction(ISD::FLOG10, VT, Expand);
479     setOperationAction(ISD::FPOW, VT, Expand);
480     setOperationAction(ISD::FFLOOR, VT, Expand);
481     setOperationAction(ISD::FTRUNC, VT, Expand);
482     setOperationAction(ISD::FMUL, VT, Expand);
483     setOperationAction(ISD::FMA, VT, Expand);
484     setOperationAction(ISD::FRINT, VT, Expand);
485     setOperationAction(ISD::FNEARBYINT, VT, Expand);
486     setOperationAction(ISD::FSQRT, VT, Expand);
487     setOperationAction(ISD::FSIN, VT, Expand);
488     setOperationAction(ISD::FSUB, VT, Expand);
489     setOperationAction(ISD::FNEG, VT, Expand);
490     setOperationAction(ISD::VSELECT, VT, Expand);
491     setOperationAction(ISD::SELECT_CC, VT, Expand);
492     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
493     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
494     setOperationAction(ISD::SETCC, VT, Expand);
495     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
496   }
497 
498   // This causes using an unrolled select operation rather than expansion with
499   // bit operations. This is in general better, but the alternative using BFI
500   // instructions may be better if the select sources are SGPRs.
501   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
502   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
503 
504   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
505   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
506 
507   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
508   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
509 
510   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
511   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
512 
513   // There are no libcalls of any kind.
514   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
515     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
516 
517   setSchedulingPreference(Sched::RegPressure);
518   setJumpIsExpensive(true);
519 
520   // FIXME: This is only partially true. If we have to do vector compares, any
521   // SGPR pair can be a condition register. If we have a uniform condition, we
522   // are better off doing SALU operations, where there is only one SCC. For now,
523   // we don't have a way of knowing during instruction selection if a condition
524   // will be uniform and we always use vector compares. Assume we are using
525   // vector compares until that is fixed.
526   setHasMultipleConditionRegisters(true);
527 
528   setMinCmpXchgSizeInBits(32);
529   setSupportsUnalignedAtomics(false);
530 
531   PredictableSelectIsExpensive = false;
532 
533   // We want to find all load dependencies for long chains of stores to enable
534   // merging into very wide vectors. The problem is with vectors with > 4
535   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
536   // vectors are a legal type, even though we have to split the loads
537   // usually. When we can more precisely specify load legality per address
538   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
539   // smarter so that they can figure out what to do in 2 iterations without all
540   // N > 4 stores on the same chain.
541   GatherAllAliasesMaxDepth = 16;
542 
543   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
544   // about these during lowering.
545   MaxStoresPerMemcpy  = 0xffffffff;
546   MaxStoresPerMemmove = 0xffffffff;
547   MaxStoresPerMemset  = 0xffffffff;
548 
549   // The expansion for 64-bit division is enormous.
550   if (AMDGPUBypassSlowDiv)
551     addBypassSlowDiv(64, 32);
552 
553   setTargetDAGCombine(ISD::BITCAST);
554   setTargetDAGCombine(ISD::SHL);
555   setTargetDAGCombine(ISD::SRA);
556   setTargetDAGCombine(ISD::SRL);
557   setTargetDAGCombine(ISD::TRUNCATE);
558   setTargetDAGCombine(ISD::MUL);
559   setTargetDAGCombine(ISD::MULHU);
560   setTargetDAGCombine(ISD::MULHS);
561   setTargetDAGCombine(ISD::SELECT);
562   setTargetDAGCombine(ISD::SELECT_CC);
563   setTargetDAGCombine(ISD::STORE);
564   setTargetDAGCombine(ISD::FADD);
565   setTargetDAGCombine(ISD::FSUB);
566   setTargetDAGCombine(ISD::FNEG);
567   setTargetDAGCombine(ISD::FABS);
568   setTargetDAGCombine(ISD::AssertZext);
569   setTargetDAGCombine(ISD::AssertSext);
570   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
571 }
572 
573 //===----------------------------------------------------------------------===//
574 // Target Information
575 //===----------------------------------------------------------------------===//
576 
577 LLVM_READNONE
578 static bool fnegFoldsIntoOp(unsigned Opc) {
579   switch (Opc) {
580   case ISD::FADD:
581   case ISD::FSUB:
582   case ISD::FMUL:
583   case ISD::FMA:
584   case ISD::FMAD:
585   case ISD::FMINNUM:
586   case ISD::FMAXNUM:
587   case ISD::FMINNUM_IEEE:
588   case ISD::FMAXNUM_IEEE:
589   case ISD::FSIN:
590   case ISD::FTRUNC:
591   case ISD::FRINT:
592   case ISD::FNEARBYINT:
593   case ISD::FCANONICALIZE:
594   case AMDGPUISD::RCP:
595   case AMDGPUISD::RCP_LEGACY:
596   case AMDGPUISD::RCP_IFLAG:
597   case AMDGPUISD::SIN_HW:
598   case AMDGPUISD::FMUL_LEGACY:
599   case AMDGPUISD::FMIN_LEGACY:
600   case AMDGPUISD::FMAX_LEGACY:
601   case AMDGPUISD::FMED3:
602     return true;
603   default:
604     return false;
605   }
606 }
607 
608 /// \p returns true if the operation will definitely need to use a 64-bit
609 /// encoding, and thus will use a VOP3 encoding regardless of the source
610 /// modifiers.
611 LLVM_READONLY
612 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
613   return N->getNumOperands() > 2 || VT == MVT::f64;
614 }
615 
616 // Most FP instructions support source modifiers, but this could be refined
617 // slightly.
618 LLVM_READONLY
619 static bool hasSourceMods(const SDNode *N) {
620   if (isa<MemSDNode>(N))
621     return false;
622 
623   switch (N->getOpcode()) {
624   case ISD::CopyToReg:
625   case ISD::SELECT:
626   case ISD::FDIV:
627   case ISD::FREM:
628   case ISD::INLINEASM:
629   case ISD::INLINEASM_BR:
630   case AMDGPUISD::DIV_SCALE:
631   case ISD::INTRINSIC_W_CHAIN:
632 
633   // TODO: Should really be looking at the users of the bitcast. These are
634   // problematic because bitcasts are used to legalize all stores to integer
635   // types.
636   case ISD::BITCAST:
637     return false;
638   case ISD::INTRINSIC_WO_CHAIN: {
639     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
640     case Intrinsic::amdgcn_interp_p1:
641     case Intrinsic::amdgcn_interp_p2:
642     case Intrinsic::amdgcn_interp_mov:
643     case Intrinsic::amdgcn_interp_p1_f16:
644     case Intrinsic::amdgcn_interp_p2_f16:
645       return false;
646     default:
647       return true;
648     }
649   }
650   default:
651     return true;
652   }
653 }
654 
655 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
656                                                  unsigned CostThreshold) {
657   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
658   // it is truly free to use a source modifier in all cases. If there are
659   // multiple users but for each one will necessitate using VOP3, there will be
660   // a code size increase. Try to avoid increasing code size unless we know it
661   // will save on the instruction count.
662   unsigned NumMayIncreaseSize = 0;
663   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
664 
665   // XXX - Should this limit number of uses to check?
666   for (const SDNode *U : N->uses()) {
667     if (!hasSourceMods(U))
668       return false;
669 
670     if (!opMustUseVOP3Encoding(U, VT)) {
671       if (++NumMayIncreaseSize > CostThreshold)
672         return false;
673     }
674   }
675 
676   return true;
677 }
678 
679 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
680                                               ISD::NodeType ExtendKind) const {
681   assert(!VT.isVector() && "only scalar expected");
682 
683   // Round to the next multiple of 32-bits.
684   unsigned Size = VT.getSizeInBits();
685   if (Size <= 32)
686     return MVT::i32;
687   return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
688 }
689 
690 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
691   return MVT::i32;
692 }
693 
694 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
695   return true;
696 }
697 
698 // The backend supports 32 and 64 bit floating point immediates.
699 // FIXME: Why are we reporting vectors of FP immediates as legal?
700 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
701                                         bool ForCodeSize) const {
702   EVT ScalarVT = VT.getScalarType();
703   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
704          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
705 }
706 
707 // We don't want to shrink f64 / f32 constants.
708 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
709   EVT ScalarVT = VT.getScalarType();
710   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
711 }
712 
713 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
714                                                  ISD::LoadExtType ExtTy,
715                                                  EVT NewVT) const {
716   // TODO: This may be worth removing. Check regression tests for diffs.
717   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
718     return false;
719 
720   unsigned NewSize = NewVT.getStoreSizeInBits();
721 
722   // If we are reducing to a 32-bit load or a smaller multi-dword load,
723   // this is always better.
724   if (NewSize >= 32)
725     return true;
726 
727   EVT OldVT = N->getValueType(0);
728   unsigned OldSize = OldVT.getStoreSizeInBits();
729 
730   MemSDNode *MN = cast<MemSDNode>(N);
731   unsigned AS = MN->getAddressSpace();
732   // Do not shrink an aligned scalar load to sub-dword.
733   // Scalar engine cannot do sub-dword loads.
734   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
735       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
736        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
737        (isa<LoadSDNode>(N) &&
738         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
739       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
740     return false;
741 
742   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
743   // extloads, so doing one requires using a buffer_load. In cases where we
744   // still couldn't use a scalar load, using the wider load shouldn't really
745   // hurt anything.
746 
747   // If the old size already had to be an extload, there's no harm in continuing
748   // to reduce the width.
749   return (OldSize < 32);
750 }
751 
752 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
753                                                    const SelectionDAG &DAG,
754                                                    const MachineMemOperand &MMO) const {
755 
756   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
757 
758   if (LoadTy.getScalarType() == MVT::i32)
759     return false;
760 
761   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
762   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
763 
764   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
765     return false;
766 
767   bool Fast = false;
768   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
769                                         CastTy, MMO, &Fast) &&
770          Fast;
771 }
772 
773 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
774 // profitable with the expansion for 64-bit since it's generally good to
775 // speculate things.
776 // FIXME: These should really have the size as a parameter.
777 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
778   return true;
779 }
780 
781 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
782   return true;
783 }
784 
785 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
786   switch (N->getOpcode()) {
787     default:
788     return false;
789     case ISD::EntryToken:
790     case ISD::TokenFactor:
791       return true;
792     case ISD::INTRINSIC_WO_CHAIN:
793     {
794       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
795       switch (IntrID) {
796         default:
797         return false;
798         case Intrinsic::amdgcn_readfirstlane:
799         case Intrinsic::amdgcn_readlane:
800           return true;
801       }
802     }
803     break;
804     case ISD::LOAD:
805     {
806       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
807           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
808         return true;
809       return false;
810     }
811     break;
812   }
813 }
814 
815 SDValue AMDGPUTargetLowering::getNegatedExpression(
816     SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
817     NegatibleCost &Cost, unsigned Depth) const {
818 
819   switch (Op.getOpcode()) {
820   case ISD::FMA:
821   case ISD::FMAD: {
822     // Negating a fma is not free if it has users without source mods.
823     if (!allUsesHaveSourceMods(Op.getNode()))
824       return SDValue();
825     break;
826   }
827   default:
828     break;
829   }
830 
831   return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
832                                               ForCodeSize, Cost, Depth);
833 }
834 
835 //===---------------------------------------------------------------------===//
836 // Target Properties
837 //===---------------------------------------------------------------------===//
838 
839 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
840   assert(VT.isFloatingPoint());
841 
842   // Packed operations do not have a fabs modifier.
843   return VT == MVT::f32 || VT == MVT::f64 ||
844          (Subtarget->has16BitInsts() && VT == MVT::f16);
845 }
846 
847 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
848   assert(VT.isFloatingPoint());
849   return VT == MVT::f32 || VT == MVT::f64 ||
850          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
851          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
852 }
853 
854 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
855                                                          unsigned NumElem,
856                                                          unsigned AS) const {
857   return true;
858 }
859 
860 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
861   // There are few operations which truly have vector input operands. Any vector
862   // operation is going to involve operations on each component, and a
863   // build_vector will be a copy per element, so it always makes sense to use a
864   // build_vector input in place of the extracted element to avoid a copy into a
865   // super register.
866   //
867   // We should probably only do this if all users are extracts only, but this
868   // should be the common case.
869   return true;
870 }
871 
872 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
873   // Truncate is just accessing a subregister.
874 
875   unsigned SrcSize = Source.getSizeInBits();
876   unsigned DestSize = Dest.getSizeInBits();
877 
878   return DestSize < SrcSize && DestSize % 32 == 0 ;
879 }
880 
881 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
882   // Truncate is just accessing a subregister.
883 
884   unsigned SrcSize = Source->getScalarSizeInBits();
885   unsigned DestSize = Dest->getScalarSizeInBits();
886 
887   if (DestSize== 16 && Subtarget->has16BitInsts())
888     return SrcSize >= 32;
889 
890   return DestSize < SrcSize && DestSize % 32 == 0;
891 }
892 
893 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
894   unsigned SrcSize = Src->getScalarSizeInBits();
895   unsigned DestSize = Dest->getScalarSizeInBits();
896 
897   if (SrcSize == 16 && Subtarget->has16BitInsts())
898     return DestSize >= 32;
899 
900   return SrcSize == 32 && DestSize == 64;
901 }
902 
903 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
904   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
905   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
906   // this will enable reducing 64-bit operations the 32-bit, which is always
907   // good.
908 
909   if (Src == MVT::i16)
910     return Dest == MVT::i32 ||Dest == MVT::i64 ;
911 
912   return Src == MVT::i32 && Dest == MVT::i64;
913 }
914 
915 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
916   return isZExtFree(Val.getValueType(), VT2);
917 }
918 
919 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
920   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
921   // limited number of native 64-bit operations. Shrinking an operation to fit
922   // in a single 32-bit register should always be helpful. As currently used,
923   // this is much less general than the name suggests, and is only used in
924   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
925   // not profitable, and may actually be harmful.
926   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
927 }
928 
929 //===---------------------------------------------------------------------===//
930 // TargetLowering Callbacks
931 //===---------------------------------------------------------------------===//
932 
933 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
934                                                   bool IsVarArg) {
935   switch (CC) {
936   case CallingConv::AMDGPU_VS:
937   case CallingConv::AMDGPU_GS:
938   case CallingConv::AMDGPU_PS:
939   case CallingConv::AMDGPU_CS:
940   case CallingConv::AMDGPU_HS:
941   case CallingConv::AMDGPU_ES:
942   case CallingConv::AMDGPU_LS:
943     return CC_AMDGPU;
944   case CallingConv::C:
945   case CallingConv::Fast:
946   case CallingConv::Cold:
947     return CC_AMDGPU_Func;
948   case CallingConv::AMDGPU_KERNEL:
949   case CallingConv::SPIR_KERNEL:
950   default:
951     report_fatal_error("Unsupported calling convention for call");
952   }
953 }
954 
955 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
956                                                     bool IsVarArg) {
957   switch (CC) {
958   case CallingConv::AMDGPU_KERNEL:
959   case CallingConv::SPIR_KERNEL:
960     llvm_unreachable("kernels should not be handled here");
961   case CallingConv::AMDGPU_VS:
962   case CallingConv::AMDGPU_GS:
963   case CallingConv::AMDGPU_PS:
964   case CallingConv::AMDGPU_CS:
965   case CallingConv::AMDGPU_HS:
966   case CallingConv::AMDGPU_ES:
967   case CallingConv::AMDGPU_LS:
968     return RetCC_SI_Shader;
969   case CallingConv::C:
970   case CallingConv::Fast:
971   case CallingConv::Cold:
972     return RetCC_AMDGPU_Func;
973   default:
974     report_fatal_error("Unsupported calling convention.");
975   }
976 }
977 
978 /// The SelectionDAGBuilder will automatically promote function arguments
979 /// with illegal types.  However, this does not work for the AMDGPU targets
980 /// since the function arguments are stored in memory as these illegal types.
981 /// In order to handle this properly we need to get the original types sizes
982 /// from the LLVM IR Function and fixup the ISD:InputArg values before
983 /// passing them to AnalyzeFormalArguments()
984 
985 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
986 /// input values across multiple registers.  Each item in the Ins array
987 /// represents a single value that will be stored in registers.  Ins[x].VT is
988 /// the value type of the value that will be stored in the register, so
989 /// whatever SDNode we lower the argument to needs to be this type.
990 ///
991 /// In order to correctly lower the arguments we need to know the size of each
992 /// argument.  Since Ins[x].VT gives us the size of the register that will
993 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
994 /// for the orignal function argument so that we can deduce the correct memory
995 /// type to use for Ins[x].  In most cases the correct memory type will be
996 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
997 /// we have a kernel argument of type v8i8, this argument will be split into
998 /// 8 parts and each part will be represented by its own item in the Ins array.
999 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1000 /// the argument before it was split.  From this, we deduce that the memory type
1001 /// for each individual part is i8.  We pass the memory type as LocVT to the
1002 /// calling convention analysis function and the register type (Ins[x].VT) as
1003 /// the ValVT.
1004 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1005   CCState &State,
1006   const SmallVectorImpl<ISD::InputArg> &Ins) const {
1007   const MachineFunction &MF = State.getMachineFunction();
1008   const Function &Fn = MF.getFunction();
1009   LLVMContext &Ctx = Fn.getParent()->getContext();
1010   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1011   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1012   CallingConv::ID CC = Fn.getCallingConv();
1013 
1014   Align MaxAlign = Align(1);
1015   uint64_t ExplicitArgOffset = 0;
1016   const DataLayout &DL = Fn.getParent()->getDataLayout();
1017 
1018   unsigned InIndex = 0;
1019 
1020   for (const Argument &Arg : Fn.args()) {
1021     const bool IsByRef = Arg.hasByRefAttr();
1022     Type *BaseArgTy = Arg.getType();
1023     Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1024     MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
1025     if (!Alignment)
1026       Alignment = DL.getABITypeAlign(MemArgTy);
1027     MaxAlign = max(Alignment, MaxAlign);
1028     uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1029 
1030     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1031     ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1032 
1033     // We're basically throwing away everything passed into us and starting over
1034     // to get accurate in-memory offsets. The "PartOffset" is completely useless
1035     // to us as computed in Ins.
1036     //
1037     // We also need to figure out what type legalization is trying to do to get
1038     // the correct memory offsets.
1039 
1040     SmallVector<EVT, 16> ValueVTs;
1041     SmallVector<uint64_t, 16> Offsets;
1042     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1043 
1044     for (unsigned Value = 0, NumValues = ValueVTs.size();
1045          Value != NumValues; ++Value) {
1046       uint64_t BasePartOffset = Offsets[Value];
1047 
1048       EVT ArgVT = ValueVTs[Value];
1049       EVT MemVT = ArgVT;
1050       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1051       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1052 
1053       if (NumRegs == 1) {
1054         // This argument is not split, so the IR type is the memory type.
1055         if (ArgVT.isExtended()) {
1056           // We have an extended type, like i24, so we should just use the
1057           // register type.
1058           MemVT = RegisterVT;
1059         } else {
1060           MemVT = ArgVT;
1061         }
1062       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1063                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1064         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1065         // We have a vector value which has been split into a vector with
1066         // the same scalar type, but fewer elements.  This should handle
1067         // all the floating-point vector types.
1068         MemVT = RegisterVT;
1069       } else if (ArgVT.isVector() &&
1070                  ArgVT.getVectorNumElements() == NumRegs) {
1071         // This arg has been split so that each element is stored in a separate
1072         // register.
1073         MemVT = ArgVT.getScalarType();
1074       } else if (ArgVT.isExtended()) {
1075         // We have an extended type, like i65.
1076         MemVT = RegisterVT;
1077       } else {
1078         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1079         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1080         if (RegisterVT.isInteger()) {
1081           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1082         } else if (RegisterVT.isVector()) {
1083           assert(!RegisterVT.getScalarType().isFloatingPoint());
1084           unsigned NumElements = RegisterVT.getVectorNumElements();
1085           assert(MemoryBits % NumElements == 0);
1086           // This vector type has been split into another vector type with
1087           // a different elements size.
1088           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1089                                            MemoryBits / NumElements);
1090           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1091         } else {
1092           llvm_unreachable("cannot deduce memory type.");
1093         }
1094       }
1095 
1096       // Convert one element vectors to scalar.
1097       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1098         MemVT = MemVT.getScalarType();
1099 
1100       // Round up vec3/vec5 argument.
1101       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1102         assert(MemVT.getVectorNumElements() == 3 ||
1103                MemVT.getVectorNumElements() == 5);
1104         MemVT = MemVT.getPow2VectorType(State.getContext());
1105       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1106         MemVT = MemVT.getRoundIntegerType(State.getContext());
1107       }
1108 
1109       unsigned PartOffset = 0;
1110       for (unsigned i = 0; i != NumRegs; ++i) {
1111         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1112                                                BasePartOffset + PartOffset,
1113                                                MemVT.getSimpleVT(),
1114                                                CCValAssign::Full));
1115         PartOffset += MemVT.getStoreSize();
1116       }
1117     }
1118   }
1119 }
1120 
1121 SDValue AMDGPUTargetLowering::LowerReturn(
1122   SDValue Chain, CallingConv::ID CallConv,
1123   bool isVarArg,
1124   const SmallVectorImpl<ISD::OutputArg> &Outs,
1125   const SmallVectorImpl<SDValue> &OutVals,
1126   const SDLoc &DL, SelectionDAG &DAG) const {
1127   // FIXME: Fails for r600 tests
1128   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1129   // "wave terminate should not have return values");
1130   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1131 }
1132 
1133 //===---------------------------------------------------------------------===//
1134 // Target specific lowering
1135 //===---------------------------------------------------------------------===//
1136 
1137 /// Selects the correct CCAssignFn for a given CallingConvention value.
1138 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1139                                                     bool IsVarArg) {
1140   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1141 }
1142 
1143 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1144                                                       bool IsVarArg) {
1145   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1146 }
1147 
1148 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1149                                                   SelectionDAG &DAG,
1150                                                   MachineFrameInfo &MFI,
1151                                                   int ClobberedFI) const {
1152   SmallVector<SDValue, 8> ArgChains;
1153   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1154   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1155 
1156   // Include the original chain at the beginning of the list. When this is
1157   // used by target LowerCall hooks, this helps legalize find the
1158   // CALLSEQ_BEGIN node.
1159   ArgChains.push_back(Chain);
1160 
1161   // Add a chain value for each stack argument corresponding
1162   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1163                             UE = DAG.getEntryNode().getNode()->use_end();
1164        U != UE; ++U) {
1165     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1166       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1167         if (FI->getIndex() < 0) {
1168           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1169           int64_t InLastByte = InFirstByte;
1170           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1171 
1172           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1173               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1174             ArgChains.push_back(SDValue(L, 1));
1175         }
1176       }
1177     }
1178   }
1179 
1180   // Build a tokenfactor for all the chains.
1181   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1182 }
1183 
1184 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1185                                                  SmallVectorImpl<SDValue> &InVals,
1186                                                  StringRef Reason) const {
1187   SDValue Callee = CLI.Callee;
1188   SelectionDAG &DAG = CLI.DAG;
1189 
1190   const Function &Fn = DAG.getMachineFunction().getFunction();
1191 
1192   StringRef FuncName("<unknown>");
1193 
1194   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1195     FuncName = G->getSymbol();
1196   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1197     FuncName = G->getGlobal()->getName();
1198 
1199   DiagnosticInfoUnsupported NoCalls(
1200     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1201   DAG.getContext()->diagnose(NoCalls);
1202 
1203   if (!CLI.IsTailCall) {
1204     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1205       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1206   }
1207 
1208   return DAG.getEntryNode();
1209 }
1210 
1211 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1212                                         SmallVectorImpl<SDValue> &InVals) const {
1213   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1214 }
1215 
1216 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1217                                                       SelectionDAG &DAG) const {
1218   const Function &Fn = DAG.getMachineFunction().getFunction();
1219 
1220   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1221                                             SDLoc(Op).getDebugLoc());
1222   DAG.getContext()->diagnose(NoDynamicAlloca);
1223   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1224   return DAG.getMergeValues(Ops, SDLoc());
1225 }
1226 
1227 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1228                                              SelectionDAG &DAG) const {
1229   switch (Op.getOpcode()) {
1230   default:
1231     Op->print(errs(), &DAG);
1232     llvm_unreachable("Custom lowering code for this "
1233                      "instruction is not implemented yet!");
1234     break;
1235   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1236   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1237   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1238   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1239   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1240   case ISD::FREM: return LowerFREM(Op, DAG);
1241   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1242   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1243   case ISD::FRINT: return LowerFRINT(Op, DAG);
1244   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1245   case ISD::FROUND: return LowerFROUND(Op, DAG);
1246   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1247   case ISD::FLOG:
1248     return LowerFLOG(Op, DAG, numbers::ln2f);
1249   case ISD::FLOG10:
1250     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1251   case ISD::FEXP:
1252     return lowerFEXP(Op, DAG);
1253   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1254   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1255   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1256   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1257   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1258   case ISD::CTTZ:
1259   case ISD::CTTZ_ZERO_UNDEF:
1260   case ISD::CTLZ:
1261   case ISD::CTLZ_ZERO_UNDEF:
1262     return LowerCTLZ_CTTZ(Op, DAG);
1263   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1264   }
1265   return Op;
1266 }
1267 
1268 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1269                                               SmallVectorImpl<SDValue> &Results,
1270                                               SelectionDAG &DAG) const {
1271   switch (N->getOpcode()) {
1272   case ISD::SIGN_EXTEND_INREG:
1273     // Different parts of legalization seem to interpret which type of
1274     // sign_extend_inreg is the one to check for custom lowering. The extended
1275     // from type is what really matters, but some places check for custom
1276     // lowering of the result type. This results in trying to use
1277     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1278     // nothing here and let the illegal result integer be handled normally.
1279     return;
1280   default:
1281     return;
1282   }
1283 }
1284 
1285 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1286   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1287   if (!GVar || !GVar->hasInitializer())
1288     return false;
1289 
1290   return !isa<UndefValue>(GVar->getInitializer());
1291 }
1292 
1293 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1294                                                  SDValue Op,
1295                                                  SelectionDAG &DAG) const {
1296 
1297   const DataLayout &DL = DAG.getDataLayout();
1298   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1299   const GlobalValue *GV = G->getGlobal();
1300 
1301   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1302       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1303     if (!MFI->isEntryFunction()) {
1304       SDLoc DL(Op);
1305       const Function &Fn = DAG.getMachineFunction().getFunction();
1306       DiagnosticInfoUnsupported BadLDSDecl(
1307         Fn, "local memory global used by non-kernel function",
1308         DL.getDebugLoc(), DS_Warning);
1309       DAG.getContext()->diagnose(BadLDSDecl);
1310 
1311       // We currently don't have a way to correctly allocate LDS objects that
1312       // aren't directly associated with a kernel. We do force inlining of
1313       // functions that use local objects. However, if these dead functions are
1314       // not eliminated, we don't want a compile time error. Just emit a warning
1315       // and a trap, since there should be no callable path here.
1316       SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1317       SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1318                                         Trap, DAG.getRoot());
1319       DAG.setRoot(OutputChain);
1320       return DAG.getUNDEF(Op.getValueType());
1321     }
1322 
1323     // XXX: What does the value of G->getOffset() mean?
1324     assert(G->getOffset() == 0 &&
1325          "Do not know what to do with an non-zero offset");
1326 
1327     // TODO: We could emit code to handle the initialization somewhere.
1328     if (!hasDefinedInitializer(GV)) {
1329       unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1330       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1331     }
1332   }
1333 
1334   const Function &Fn = DAG.getMachineFunction().getFunction();
1335   DiagnosticInfoUnsupported BadInit(
1336       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1337   DAG.getContext()->diagnose(BadInit);
1338   return SDValue();
1339 }
1340 
1341 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1342                                                   SelectionDAG &DAG) const {
1343   SmallVector<SDValue, 8> Args;
1344 
1345   EVT VT = Op.getValueType();
1346   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1347     SDLoc SL(Op);
1348     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1349     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1350 
1351     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1352     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1353   }
1354 
1355   for (const SDUse &U : Op->ops())
1356     DAG.ExtractVectorElements(U.get(), Args);
1357 
1358   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1359 }
1360 
1361 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1362                                                      SelectionDAG &DAG) const {
1363 
1364   SmallVector<SDValue, 8> Args;
1365   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1366   EVT VT = Op.getValueType();
1367   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1368                             VT.getVectorNumElements());
1369 
1370   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1371 }
1372 
1373 /// Generate Min/Max node
1374 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1375                                                    SDValue LHS, SDValue RHS,
1376                                                    SDValue True, SDValue False,
1377                                                    SDValue CC,
1378                                                    DAGCombinerInfo &DCI) const {
1379   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1380     return SDValue();
1381 
1382   SelectionDAG &DAG = DCI.DAG;
1383   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1384   switch (CCOpcode) {
1385   case ISD::SETOEQ:
1386   case ISD::SETONE:
1387   case ISD::SETUNE:
1388   case ISD::SETNE:
1389   case ISD::SETUEQ:
1390   case ISD::SETEQ:
1391   case ISD::SETFALSE:
1392   case ISD::SETFALSE2:
1393   case ISD::SETTRUE:
1394   case ISD::SETTRUE2:
1395   case ISD::SETUO:
1396   case ISD::SETO:
1397     break;
1398   case ISD::SETULE:
1399   case ISD::SETULT: {
1400     if (LHS == True)
1401       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1402     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1403   }
1404   case ISD::SETOLE:
1405   case ISD::SETOLT:
1406   case ISD::SETLE:
1407   case ISD::SETLT: {
1408     // Ordered. Assume ordered for undefined.
1409 
1410     // Only do this after legalization to avoid interfering with other combines
1411     // which might occur.
1412     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1413         !DCI.isCalledByLegalizer())
1414       return SDValue();
1415 
1416     // We need to permute the operands to get the correct NaN behavior. The
1417     // selected operand is the second one based on the failing compare with NaN,
1418     // so permute it based on the compare type the hardware uses.
1419     if (LHS == True)
1420       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1421     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1422   }
1423   case ISD::SETUGE:
1424   case ISD::SETUGT: {
1425     if (LHS == True)
1426       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1427     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1428   }
1429   case ISD::SETGT:
1430   case ISD::SETGE:
1431   case ISD::SETOGE:
1432   case ISD::SETOGT: {
1433     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1434         !DCI.isCalledByLegalizer())
1435       return SDValue();
1436 
1437     if (LHS == True)
1438       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1439     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1440   }
1441   case ISD::SETCC_INVALID:
1442     llvm_unreachable("Invalid setcc condcode!");
1443   }
1444   return SDValue();
1445 }
1446 
1447 std::pair<SDValue, SDValue>
1448 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1449   SDLoc SL(Op);
1450 
1451   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1452 
1453   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1454   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1455 
1456   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1457   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1458 
1459   return std::make_pair(Lo, Hi);
1460 }
1461 
1462 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1463   SDLoc SL(Op);
1464 
1465   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1466   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1467   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1468 }
1469 
1470 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1471   SDLoc SL(Op);
1472 
1473   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1474   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1475   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1476 }
1477 
1478 // Split a vector type into two parts. The first part is a power of two vector.
1479 // The second part is whatever is left over, and is a scalar if it would
1480 // otherwise be a 1-vector.
1481 std::pair<EVT, EVT>
1482 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1483   EVT LoVT, HiVT;
1484   EVT EltVT = VT.getVectorElementType();
1485   unsigned NumElts = VT.getVectorNumElements();
1486   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1487   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1488   HiVT = NumElts - LoNumElts == 1
1489              ? EltVT
1490              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1491   return std::make_pair(LoVT, HiVT);
1492 }
1493 
1494 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1495 // scalar.
1496 std::pair<SDValue, SDValue>
1497 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1498                                   const EVT &LoVT, const EVT &HiVT,
1499                                   SelectionDAG &DAG) const {
1500   assert(LoVT.getVectorNumElements() +
1501                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1502              N.getValueType().getVectorNumElements() &&
1503          "More vector elements requested than available!");
1504   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1505                            DAG.getVectorIdxConstant(0, DL));
1506   SDValue Hi = DAG.getNode(
1507       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1508       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1509   return std::make_pair(Lo, Hi);
1510 }
1511 
1512 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1513                                               SelectionDAG &DAG) const {
1514   LoadSDNode *Load = cast<LoadSDNode>(Op);
1515   EVT VT = Op.getValueType();
1516   SDLoc SL(Op);
1517 
1518 
1519   // If this is a 2 element vector, we really want to scalarize and not create
1520   // weird 1 element vectors.
1521   if (VT.getVectorNumElements() == 2) {
1522     SDValue Ops[2];
1523     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1524     return DAG.getMergeValues(Ops, SL);
1525   }
1526 
1527   SDValue BasePtr = Load->getBasePtr();
1528   EVT MemVT = Load->getMemoryVT();
1529 
1530   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1531 
1532   EVT LoVT, HiVT;
1533   EVT LoMemVT, HiMemVT;
1534   SDValue Lo, Hi;
1535 
1536   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1537   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1538   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1539 
1540   unsigned Size = LoMemVT.getStoreSize();
1541   unsigned BaseAlign = Load->getAlignment();
1542   unsigned HiAlign = MinAlign(BaseAlign, Size);
1543 
1544   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1545                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1546                                   BaseAlign, Load->getMemOperand()->getFlags());
1547   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1548   SDValue HiLoad =
1549       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1550                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1551                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1552 
1553   SDValue Join;
1554   if (LoVT == HiVT) {
1555     // This is the case that the vector is power of two so was evenly split.
1556     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1557   } else {
1558     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1559                        DAG.getVectorIdxConstant(0, SL));
1560     Join = DAG.getNode(
1561         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1562         VT, Join, HiLoad,
1563         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1564   }
1565 
1566   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1567                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1568 
1569   return DAG.getMergeValues(Ops, SL);
1570 }
1571 
1572 // Widen a vector load from vec3 to vec4.
1573 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1574                                               SelectionDAG &DAG) const {
1575   LoadSDNode *Load = cast<LoadSDNode>(Op);
1576   EVT VT = Op.getValueType();
1577   assert(VT.getVectorNumElements() == 3);
1578   SDValue BasePtr = Load->getBasePtr();
1579   EVT MemVT = Load->getMemoryVT();
1580   SDLoc SL(Op);
1581   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1582   unsigned BaseAlign = Load->getAlignment();
1583 
1584   EVT WideVT =
1585       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1586   EVT WideMemVT =
1587       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1588   SDValue WideLoad = DAG.getExtLoad(
1589       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1590       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1591   return DAG.getMergeValues(
1592       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1593                    DAG.getVectorIdxConstant(0, SL)),
1594        WideLoad.getValue(1)},
1595       SL);
1596 }
1597 
1598 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1599                                                SelectionDAG &DAG) const {
1600   StoreSDNode *Store = cast<StoreSDNode>(Op);
1601   SDValue Val = Store->getValue();
1602   EVT VT = Val.getValueType();
1603 
1604   // If this is a 2 element vector, we really want to scalarize and not create
1605   // weird 1 element vectors.
1606   if (VT.getVectorNumElements() == 2)
1607     return scalarizeVectorStore(Store, DAG);
1608 
1609   EVT MemVT = Store->getMemoryVT();
1610   SDValue Chain = Store->getChain();
1611   SDValue BasePtr = Store->getBasePtr();
1612   SDLoc SL(Op);
1613 
1614   EVT LoVT, HiVT;
1615   EVT LoMemVT, HiMemVT;
1616   SDValue Lo, Hi;
1617 
1618   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1619   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1620   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1621 
1622   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1623 
1624   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1625   unsigned BaseAlign = Store->getAlignment();
1626   unsigned Size = LoMemVT.getStoreSize();
1627   unsigned HiAlign = MinAlign(BaseAlign, Size);
1628 
1629   SDValue LoStore =
1630       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1631                         Store->getMemOperand()->getFlags());
1632   SDValue HiStore =
1633       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1634                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1635 
1636   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1637 }
1638 
1639 // This is a shortcut for integer division because we have fast i32<->f32
1640 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1641 // float is enough to accurately represent up to a 24-bit signed integer.
1642 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1643                                             bool Sign) const {
1644   SDLoc DL(Op);
1645   EVT VT = Op.getValueType();
1646   SDValue LHS = Op.getOperand(0);
1647   SDValue RHS = Op.getOperand(1);
1648   MVT IntVT = MVT::i32;
1649   MVT FltVT = MVT::f32;
1650 
1651   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1652   if (LHSSignBits < 9)
1653     return SDValue();
1654 
1655   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1656   if (RHSSignBits < 9)
1657     return SDValue();
1658 
1659   unsigned BitSize = VT.getSizeInBits();
1660   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1661   unsigned DivBits = BitSize - SignBits;
1662   if (Sign)
1663     ++DivBits;
1664 
1665   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1666   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1667 
1668   SDValue jq = DAG.getConstant(1, DL, IntVT);
1669 
1670   if (Sign) {
1671     // char|short jq = ia ^ ib;
1672     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1673 
1674     // jq = jq >> (bitsize - 2)
1675     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1676                      DAG.getConstant(BitSize - 2, DL, VT));
1677 
1678     // jq = jq | 0x1
1679     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1680   }
1681 
1682   // int ia = (int)LHS;
1683   SDValue ia = LHS;
1684 
1685   // int ib, (int)RHS;
1686   SDValue ib = RHS;
1687 
1688   // float fa = (float)ia;
1689   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1690 
1691   // float fb = (float)ib;
1692   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1693 
1694   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1695                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1696 
1697   // fq = trunc(fq);
1698   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1699 
1700   // float fqneg = -fq;
1701   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1702 
1703   MachineFunction &MF = DAG.getMachineFunction();
1704   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1705 
1706   // float fr = mad(fqneg, fb, fa);
1707   unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1708                     (unsigned)ISD::FMA :
1709                     !MFI->getMode().allFP32Denormals() ?
1710                     (unsigned)ISD::FMAD :
1711                     (unsigned)AMDGPUISD::FMAD_FTZ;
1712   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1713 
1714   // int iq = (int)fq;
1715   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1716 
1717   // fr = fabs(fr);
1718   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1719 
1720   // fb = fabs(fb);
1721   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1722 
1723   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1724 
1725   // int cv = fr >= fb;
1726   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1727 
1728   // jq = (cv ? jq : 0);
1729   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1730 
1731   // dst = iq + jq;
1732   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1733 
1734   // Rem needs compensation, it's easier to recompute it
1735   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1736   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1737 
1738   // Truncate to number of bits this divide really is.
1739   if (Sign) {
1740     SDValue InRegSize
1741       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1742     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1743     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1744   } else {
1745     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1746     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1747     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1748   }
1749 
1750   return DAG.getMergeValues({ Div, Rem }, DL);
1751 }
1752 
1753 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1754                                       SelectionDAG &DAG,
1755                                       SmallVectorImpl<SDValue> &Results) const {
1756   SDLoc DL(Op);
1757   EVT VT = Op.getValueType();
1758 
1759   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1760 
1761   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1762 
1763   SDValue One = DAG.getConstant(1, DL, HalfVT);
1764   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1765 
1766   //HiLo split
1767   SDValue LHS = Op.getOperand(0);
1768   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1769   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1770 
1771   SDValue RHS = Op.getOperand(1);
1772   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1773   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1774 
1775   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1776       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1777 
1778     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1779                               LHS_Lo, RHS_Lo);
1780 
1781     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1782     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1783 
1784     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1785     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1786     return;
1787   }
1788 
1789   if (isTypeLegal(MVT::i64)) {
1790     MachineFunction &MF = DAG.getMachineFunction();
1791     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1792 
1793     // Compute denominator reciprocal.
1794     unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1795                     (unsigned)ISD::FMA :
1796                     !MFI->getMode().allFP32Denormals() ?
1797                     (unsigned)ISD::FMAD :
1798                     (unsigned)AMDGPUISD::FMAD_FTZ;
1799 
1800     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1801     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1802     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1803       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1804       Cvt_Lo);
1805     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1806     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1807       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1808     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1809       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1810     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1811     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1812       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1813       Mul1);
1814     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1815     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1816     SDValue Rcp64 = DAG.getBitcast(VT,
1817                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1818 
1819     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1820     SDValue One64  = DAG.getConstant(1, DL, VT);
1821     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1822     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1823 
1824     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1825     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1826     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1827     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1828                                     Zero);
1829     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1830                                     One);
1831 
1832     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1833                                   Mulhi1_Lo, Zero1);
1834     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1835                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1836     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1837     SDValue Add1 = DAG.getBitcast(VT,
1838                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1839 
1840     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1841     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1842     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1843                                     Zero);
1844     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1845                                     One);
1846 
1847     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1848                                   Mulhi2_Lo, Zero1);
1849     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1850                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1851     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1852                                   Zero, Add2_Lo.getValue(1));
1853     SDValue Add2 = DAG.getBitcast(VT,
1854                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1855     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1856 
1857     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1858 
1859     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1860     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1861     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1862                                   Mul3_Lo, Zero1);
1863     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1864                                   Mul3_Hi, Sub1_Lo.getValue(1));
1865     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1866     SDValue Sub1 = DAG.getBitcast(VT,
1867                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1868 
1869     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1870     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1871                                  ISD::SETUGE);
1872     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1873                                  ISD::SETUGE);
1874     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1875 
1876     // TODO: Here and below portions of the code can be enclosed into if/endif.
1877     // Currently control flow is unconditional and we have 4 selects after
1878     // potential endif to substitute PHIs.
1879 
1880     // if C3 != 0 ...
1881     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1882                                   RHS_Lo, Zero1);
1883     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1884                                   RHS_Hi, Sub1_Lo.getValue(1));
1885     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1886                                   Zero, Sub2_Lo.getValue(1));
1887     SDValue Sub2 = DAG.getBitcast(VT,
1888                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1889 
1890     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1891 
1892     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1893                                  ISD::SETUGE);
1894     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1895                                  ISD::SETUGE);
1896     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1897 
1898     // if (C6 != 0)
1899     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1900 
1901     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1902                                   RHS_Lo, Zero1);
1903     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1904                                   RHS_Hi, Sub2_Lo.getValue(1));
1905     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1906                                   Zero, Sub3_Lo.getValue(1));
1907     SDValue Sub3 = DAG.getBitcast(VT,
1908                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1909 
1910     // endif C6
1911     // endif C3
1912 
1913     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1914     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1915 
1916     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1917     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1918 
1919     Results.push_back(Div);
1920     Results.push_back(Rem);
1921 
1922     return;
1923   }
1924 
1925   // r600 expandion.
1926   // Get Speculative values
1927   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1928   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1929 
1930   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1931   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1932   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1933 
1934   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1935   SDValue DIV_Lo = Zero;
1936 
1937   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1938 
1939   for (unsigned i = 0; i < halfBitWidth; ++i) {
1940     const unsigned bitPos = halfBitWidth - i - 1;
1941     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1942     // Get value of high bit
1943     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1944     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1945     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1946 
1947     // Shift
1948     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1949     // Add LHS high bit
1950     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1951 
1952     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1953     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1954 
1955     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1956 
1957     // Update REM
1958     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1959     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1960   }
1961 
1962   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1963   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1964   Results.push_back(DIV);
1965   Results.push_back(REM);
1966 }
1967 
1968 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1969                                            SelectionDAG &DAG) const {
1970   SDLoc DL(Op);
1971   EVT VT = Op.getValueType();
1972 
1973   if (VT == MVT::i64) {
1974     SmallVector<SDValue, 2> Results;
1975     LowerUDIVREM64(Op, DAG, Results);
1976     return DAG.getMergeValues(Results, DL);
1977   }
1978 
1979   if (VT == MVT::i32) {
1980     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1981       return Res;
1982   }
1983 
1984   SDValue X = Op.getOperand(0);
1985   SDValue Y = Op.getOperand(1);
1986 
1987   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
1988   // algorithm used here.
1989 
1990   // Initial estimate of inv(y).
1991   SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
1992 
1993   // One round of UNR.
1994   SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
1995   SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
1996   Z = DAG.getNode(ISD::ADD, DL, VT, Z,
1997                   DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
1998 
1999   // Quotient/remainder estimate.
2000   SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2001   SDValue R =
2002       DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2003 
2004   // First quotient/remainder refinement.
2005   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2006   SDValue One = DAG.getConstant(1, DL, VT);
2007   SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2008   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2009                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2010   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2011                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2012 
2013   // Second quotient/remainder refinement.
2014   Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2015   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2016                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2017   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2018                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2019 
2020   return DAG.getMergeValues({Q, R}, DL);
2021 }
2022 
2023 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2024                                            SelectionDAG &DAG) const {
2025   SDLoc DL(Op);
2026   EVT VT = Op.getValueType();
2027 
2028   SDValue LHS = Op.getOperand(0);
2029   SDValue RHS = Op.getOperand(1);
2030 
2031   SDValue Zero = DAG.getConstant(0, DL, VT);
2032   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2033 
2034   if (VT == MVT::i32) {
2035     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2036       return Res;
2037   }
2038 
2039   if (VT == MVT::i64 &&
2040       DAG.ComputeNumSignBits(LHS) > 32 &&
2041       DAG.ComputeNumSignBits(RHS) > 32) {
2042     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2043 
2044     //HiLo split
2045     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2046     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2047     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2048                                  LHS_Lo, RHS_Lo);
2049     SDValue Res[2] = {
2050       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2051       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2052     };
2053     return DAG.getMergeValues(Res, DL);
2054   }
2055 
2056   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2057   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2058   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2059   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2060 
2061   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2062   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2063 
2064   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2065   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2066 
2067   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2068   SDValue Rem = Div.getValue(1);
2069 
2070   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2071   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2072 
2073   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2074   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2075 
2076   SDValue Res[2] = {
2077     Div,
2078     Rem
2079   };
2080   return DAG.getMergeValues(Res, DL);
2081 }
2082 
2083 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2084 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2085   SDLoc SL(Op);
2086   EVT VT = Op.getValueType();
2087   auto Flags = Op->getFlags();
2088   SDValue X = Op.getOperand(0);
2089   SDValue Y = Op.getOperand(1);
2090 
2091   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2092   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2093   SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2094   // TODO: For f32 use FMAD instead if !hasFastFMA32?
2095   return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2096 }
2097 
2098 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2099   SDLoc SL(Op);
2100   SDValue Src = Op.getOperand(0);
2101 
2102   // result = trunc(src)
2103   // if (src > 0.0 && src != result)
2104   //   result += 1.0
2105 
2106   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2107 
2108   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2109   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2110 
2111   EVT SetCCVT =
2112       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2113 
2114   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2115   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2116   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2117 
2118   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2119   // TODO: Should this propagate fast-math-flags?
2120   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2121 }
2122 
2123 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2124                                   SelectionDAG &DAG) {
2125   const unsigned FractBits = 52;
2126   const unsigned ExpBits = 11;
2127 
2128   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2129                                 Hi,
2130                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2131                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2132   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2133                             DAG.getConstant(1023, SL, MVT::i32));
2134 
2135   return Exp;
2136 }
2137 
2138 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2139   SDLoc SL(Op);
2140   SDValue Src = Op.getOperand(0);
2141 
2142   assert(Op.getValueType() == MVT::f64);
2143 
2144   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2145   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2146 
2147   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2148 
2149   // Extract the upper half, since this is where we will find the sign and
2150   // exponent.
2151   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2152 
2153   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2154 
2155   const unsigned FractBits = 52;
2156 
2157   // Extract the sign bit.
2158   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2159   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2160 
2161   // Extend back to 64-bits.
2162   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2163   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2164 
2165   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2166   const SDValue FractMask
2167     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2168 
2169   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2170   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2171   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2172 
2173   EVT SetCCVT =
2174       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2175 
2176   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2177 
2178   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2179   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2180 
2181   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2182   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2183 
2184   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2185 }
2186 
2187 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2188   SDLoc SL(Op);
2189   SDValue Src = Op.getOperand(0);
2190 
2191   assert(Op.getValueType() == MVT::f64);
2192 
2193   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2194   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2195   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2196 
2197   // TODO: Should this propagate fast-math-flags?
2198 
2199   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2200   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2201 
2202   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2203 
2204   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2205   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2206 
2207   EVT SetCCVT =
2208       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2209   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2210 
2211   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2212 }
2213 
2214 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2215   // FNEARBYINT and FRINT are the same, except in their handling of FP
2216   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2217   // rint, so just treat them as equivalent.
2218   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2219 }
2220 
2221 // XXX - May require not supporting f32 denormals?
2222 
2223 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2224 // compare and vselect end up producing worse code than scalarizing the whole
2225 // operation.
2226 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2227   SDLoc SL(Op);
2228   SDValue X = Op.getOperand(0);
2229   EVT VT = Op.getValueType();
2230 
2231   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2232 
2233   // TODO: Should this propagate fast-math-flags?
2234 
2235   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2236 
2237   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2238 
2239   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2240   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2241   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2242 
2243   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2244 
2245   EVT SetCCVT =
2246       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2247 
2248   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2249 
2250   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2251 
2252   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2253 }
2254 
2255 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2256   SDLoc SL(Op);
2257   SDValue Src = Op.getOperand(0);
2258 
2259   // result = trunc(src);
2260   // if (src < 0.0 && src != result)
2261   //   result += -1.0.
2262 
2263   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2264 
2265   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2266   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2267 
2268   EVT SetCCVT =
2269       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2270 
2271   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2272   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2273   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2274 
2275   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2276   // TODO: Should this propagate fast-math-flags?
2277   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2278 }
2279 
2280 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2281                                         double Log2BaseInverted) const {
2282   EVT VT = Op.getValueType();
2283 
2284   SDLoc SL(Op);
2285   SDValue Operand = Op.getOperand(0);
2286   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2287   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2288 
2289   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2290 }
2291 
2292 // exp2(M_LOG2E_F * f);
2293 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2294   EVT VT = Op.getValueType();
2295   SDLoc SL(Op);
2296   SDValue Src = Op.getOperand(0);
2297 
2298   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2299   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2300   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2301 }
2302 
2303 static bool isCtlzOpc(unsigned Opc) {
2304   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2305 }
2306 
2307 static bool isCttzOpc(unsigned Opc) {
2308   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2309 }
2310 
2311 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2312   SDLoc SL(Op);
2313   SDValue Src = Op.getOperand(0);
2314   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2315                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2316 
2317   unsigned ISDOpc, NewOpc;
2318   if (isCtlzOpc(Op.getOpcode())) {
2319     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2320     NewOpc = AMDGPUISD::FFBH_U32;
2321   } else if (isCttzOpc(Op.getOpcode())) {
2322     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2323     NewOpc = AMDGPUISD::FFBL_B32;
2324   } else
2325     llvm_unreachable("Unexpected OPCode!!!");
2326 
2327 
2328   if (ZeroUndef && Src.getValueType() == MVT::i32)
2329     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2330 
2331   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2332 
2333   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2334   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2335 
2336   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2337   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2338 
2339   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2340                                    *DAG.getContext(), MVT::i32);
2341 
2342   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2343   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2344 
2345   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2346   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2347 
2348   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2349   SDValue Add, NewOpr;
2350   if (isCtlzOpc(Op.getOpcode())) {
2351     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2352     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2353     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2354   } else {
2355     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2356     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2357     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2358   }
2359 
2360   if (!ZeroUndef) {
2361     // Test if the full 64-bit input is zero.
2362 
2363     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2364     // which we probably don't want.
2365     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2366     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2367     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2368 
2369     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2370     // with the same cycles, otherwise it is slower.
2371     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2372     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2373 
2374     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2375 
2376     // The instruction returns -1 for 0 input, but the defined intrinsic
2377     // behavior is to return the number of bits.
2378     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2379                          SrcIsZero, Bits32, NewOpr);
2380   }
2381 
2382   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2383 }
2384 
2385 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2386                                                bool Signed) const {
2387   // Unsigned
2388   // cul2f(ulong u)
2389   //{
2390   //  uint lz = clz(u);
2391   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2392   //  u = (u << lz) & 0x7fffffffffffffffUL;
2393   //  ulong t = u & 0xffffffffffUL;
2394   //  uint v = (e << 23) | (uint)(u >> 40);
2395   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2396   //  return as_float(v + r);
2397   //}
2398   // Signed
2399   // cl2f(long l)
2400   //{
2401   //  long s = l >> 63;
2402   //  float r = cul2f((l + s) ^ s);
2403   //  return s ? -r : r;
2404   //}
2405 
2406   SDLoc SL(Op);
2407   SDValue Src = Op.getOperand(0);
2408   SDValue L = Src;
2409 
2410   SDValue S;
2411   if (Signed) {
2412     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2413     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2414 
2415     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2416     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2417   }
2418 
2419   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2420                                    *DAG.getContext(), MVT::f32);
2421 
2422 
2423   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2424   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2425   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2426   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2427 
2428   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2429   SDValue E = DAG.getSelect(SL, MVT::i32,
2430     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2431     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2432     ZeroI32);
2433 
2434   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2435     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2436     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2437 
2438   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2439                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2440 
2441   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2442                              U, DAG.getConstant(40, SL, MVT::i64));
2443 
2444   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2445     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2446     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2447 
2448   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2449   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2450   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2451 
2452   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2453 
2454   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2455 
2456   SDValue R = DAG.getSelect(SL, MVT::i32,
2457     RCmp,
2458     One,
2459     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2460   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2461   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2462 
2463   if (!Signed)
2464     return R;
2465 
2466   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2467   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2468 }
2469 
2470 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2471                                                bool Signed) const {
2472   SDLoc SL(Op);
2473   SDValue Src = Op.getOperand(0);
2474 
2475   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2476 
2477   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2478                            DAG.getConstant(0, SL, MVT::i32));
2479   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2480                            DAG.getConstant(1, SL, MVT::i32));
2481 
2482   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2483                               SL, MVT::f64, Hi);
2484 
2485   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2486 
2487   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2488                               DAG.getConstant(32, SL, MVT::i32));
2489   // TODO: Should this propagate fast-math-flags?
2490   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2491 }
2492 
2493 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2494                                                SelectionDAG &DAG) const {
2495   // TODO: Factor out code common with LowerSINT_TO_FP.
2496   EVT DestVT = Op.getValueType();
2497   SDValue Src = Op.getOperand(0);
2498   EVT SrcVT = Src.getValueType();
2499 
2500   if (SrcVT == MVT::i16) {
2501     if (DestVT == MVT::f16)
2502       return Op;
2503     SDLoc DL(Op);
2504 
2505     // Promote src to i32
2506     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2507     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2508   }
2509 
2510   assert(SrcVT == MVT::i64 && "operation should be legal");
2511 
2512   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2513     SDLoc DL(Op);
2514 
2515     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2516     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2517     SDValue FPRound =
2518         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2519 
2520     return FPRound;
2521   }
2522 
2523   if (DestVT == MVT::f32)
2524     return LowerINT_TO_FP32(Op, DAG, false);
2525 
2526   assert(DestVT == MVT::f64);
2527   return LowerINT_TO_FP64(Op, DAG, false);
2528 }
2529 
2530 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2531                                               SelectionDAG &DAG) const {
2532   EVT DestVT = Op.getValueType();
2533 
2534   SDValue Src = Op.getOperand(0);
2535   EVT SrcVT = Src.getValueType();
2536 
2537   if (SrcVT == MVT::i16) {
2538     if (DestVT == MVT::f16)
2539       return Op;
2540 
2541     SDLoc DL(Op);
2542     // Promote src to i32
2543     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2544     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2545   }
2546 
2547   assert(SrcVT == MVT::i64 && "operation should be legal");
2548 
2549   // TODO: Factor out code common with LowerUINT_TO_FP.
2550 
2551   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2552     SDLoc DL(Op);
2553     SDValue Src = Op.getOperand(0);
2554 
2555     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2556     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2557     SDValue FPRound =
2558         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2559 
2560     return FPRound;
2561   }
2562 
2563   if (DestVT == MVT::f32)
2564     return LowerINT_TO_FP32(Op, DAG, true);
2565 
2566   assert(DestVT == MVT::f64);
2567   return LowerINT_TO_FP64(Op, DAG, true);
2568 }
2569 
2570 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2571                                                bool Signed) const {
2572   SDLoc SL(Op);
2573 
2574   SDValue Src = Op.getOperand(0);
2575 
2576   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2577 
2578   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2579                                  MVT::f64);
2580   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2581                                  MVT::f64);
2582   // TODO: Should this propagate fast-math-flags?
2583   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2584 
2585   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2586 
2587 
2588   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2589 
2590   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2591                            MVT::i32, FloorMul);
2592   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2593 
2594   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2595 
2596   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2597 }
2598 
2599 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2600   SDLoc DL(Op);
2601   SDValue N0 = Op.getOperand(0);
2602 
2603   // Convert to target node to get known bits
2604   if (N0.getValueType() == MVT::f32)
2605     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2606 
2607   if (getTargetMachine().Options.UnsafeFPMath) {
2608     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2609     return SDValue();
2610   }
2611 
2612   assert(N0.getSimpleValueType() == MVT::f64);
2613 
2614   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2615   const unsigned ExpMask = 0x7ff;
2616   const unsigned ExpBiasf64 = 1023;
2617   const unsigned ExpBiasf16 = 15;
2618   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2619   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2620   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2621   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2622                            DAG.getConstant(32, DL, MVT::i64));
2623   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2624   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2625   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2626                           DAG.getConstant(20, DL, MVT::i64));
2627   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2628                   DAG.getConstant(ExpMask, DL, MVT::i32));
2629   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2630   // add the f16 bias (15) to get the biased exponent for the f16 format.
2631   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2632                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2633 
2634   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2635                           DAG.getConstant(8, DL, MVT::i32));
2636   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2637                   DAG.getConstant(0xffe, DL, MVT::i32));
2638 
2639   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2640                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2641   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2642 
2643   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2644   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2645 
2646   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2647   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2648       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2649                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2650 
2651   // N = M | (E << 12);
2652   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2653       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2654                   DAG.getConstant(12, DL, MVT::i32)));
2655 
2656   // B = clamp(1-E, 0, 13);
2657   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2658                                   One, E);
2659   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2660   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2661                   DAG.getConstant(13, DL, MVT::i32));
2662 
2663   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2664                                    DAG.getConstant(0x1000, DL, MVT::i32));
2665 
2666   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2667   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2668   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2669   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2670 
2671   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2672   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2673                               DAG.getConstant(0x7, DL, MVT::i32));
2674   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2675                   DAG.getConstant(2, DL, MVT::i32));
2676   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2677                                One, Zero, ISD::SETEQ);
2678   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2679                                One, Zero, ISD::SETGT);
2680   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2681   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2682 
2683   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2684                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2685   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2686                       I, V, ISD::SETEQ);
2687 
2688   // Extract the sign bit.
2689   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2690                             DAG.getConstant(16, DL, MVT::i32));
2691   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2692                      DAG.getConstant(0x8000, DL, MVT::i32));
2693 
2694   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2695   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2696 }
2697 
2698 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2699                                               SelectionDAG &DAG) const {
2700   SDValue Src = Op.getOperand(0);
2701 
2702   // TODO: Factor out code common with LowerFP_TO_UINT.
2703 
2704   EVT SrcVT = Src.getValueType();
2705   if (SrcVT == MVT::f16 ||
2706       (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2707     SDLoc DL(Op);
2708 
2709     SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src);
2710     return DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, FpToInt32);
2711   }
2712 
2713   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2714     return LowerFP64_TO_INT(Op, DAG, true);
2715 
2716   return SDValue();
2717 }
2718 
2719 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2720                                               SelectionDAG &DAG) const {
2721   SDValue Src = Op.getOperand(0);
2722 
2723   // TODO: Factor out code common with LowerFP_TO_SINT.
2724 
2725   EVT SrcVT = Src.getValueType();
2726   if (SrcVT == MVT::f16 ||
2727       (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2728     SDLoc DL(Op);
2729 
2730     SDValue FpToUInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src);
2731     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, FpToUInt32);
2732   }
2733 
2734   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2735     return LowerFP64_TO_INT(Op, DAG, false);
2736 
2737   return SDValue();
2738 }
2739 
2740 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2741                                                      SelectionDAG &DAG) const {
2742   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2743   MVT VT = Op.getSimpleValueType();
2744   MVT ScalarVT = VT.getScalarType();
2745 
2746   assert(VT.isVector());
2747 
2748   SDValue Src = Op.getOperand(0);
2749   SDLoc DL(Op);
2750 
2751   // TODO: Don't scalarize on Evergreen?
2752   unsigned NElts = VT.getVectorNumElements();
2753   SmallVector<SDValue, 8> Args;
2754   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2755 
2756   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2757   for (unsigned I = 0; I < NElts; ++I)
2758     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2759 
2760   return DAG.getBuildVector(VT, DL, Args);
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 // Custom DAG optimizations
2765 //===----------------------------------------------------------------------===//
2766 
2767 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2768   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2769 }
2770 
2771 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2772   EVT VT = Op.getValueType();
2773   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2774                                      // as unsigned 24-bit values.
2775     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2776 }
2777 
2778 static SDValue simplifyI24(SDNode *Node24,
2779                            TargetLowering::DAGCombinerInfo &DCI) {
2780   SelectionDAG &DAG = DCI.DAG;
2781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2782   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2783 
2784   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2785   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2786   unsigned NewOpcode = Node24->getOpcode();
2787   if (IsIntrin) {
2788     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2789     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2790       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2791   }
2792 
2793   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2794 
2795   // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2796   // the operands to have other uses, but will only perform simplifications that
2797   // involve bypassing some nodes for this user.
2798   SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2799   SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2800   if (DemandedLHS || DemandedRHS)
2801     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2802                        DemandedLHS ? DemandedLHS : LHS,
2803                        DemandedRHS ? DemandedRHS : RHS);
2804 
2805   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2806   // operands if this node is the only user.
2807   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2808     return SDValue(Node24, 0);
2809   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2810     return SDValue(Node24, 0);
2811 
2812   return SDValue();
2813 }
2814 
2815 template <typename IntTy>
2816 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2817                                uint32_t Width, const SDLoc &DL) {
2818   if (Width + Offset < 32) {
2819     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2820     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2821     return DAG.getConstant(Result, DL, MVT::i32);
2822   }
2823 
2824   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2825 }
2826 
2827 static bool hasVolatileUser(SDNode *Val) {
2828   for (SDNode *U : Val->uses()) {
2829     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2830       if (M->isVolatile())
2831         return true;
2832     }
2833   }
2834 
2835   return false;
2836 }
2837 
2838 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2839   // i32 vectors are the canonical memory type.
2840   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2841     return false;
2842 
2843   if (!VT.isByteSized())
2844     return false;
2845 
2846   unsigned Size = VT.getStoreSize();
2847 
2848   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2849     return false;
2850 
2851   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2852     return false;
2853 
2854   return true;
2855 }
2856 
2857 // Replace load of an illegal type with a store of a bitcast to a friendlier
2858 // type.
2859 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2860                                                  DAGCombinerInfo &DCI) const {
2861   if (!DCI.isBeforeLegalize())
2862     return SDValue();
2863 
2864   LoadSDNode *LN = cast<LoadSDNode>(N);
2865   if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2866     return SDValue();
2867 
2868   SDLoc SL(N);
2869   SelectionDAG &DAG = DCI.DAG;
2870   EVT VT = LN->getMemoryVT();
2871 
2872   unsigned Size = VT.getStoreSize();
2873   Align Alignment = LN->getAlign();
2874   if (Alignment < Size && isTypeLegal(VT)) {
2875     bool IsFast;
2876     unsigned AS = LN->getAddressSpace();
2877 
2878     // Expand unaligned loads earlier than legalization. Due to visitation order
2879     // problems during legalization, the emitted instructions to pack and unpack
2880     // the bytes again are not eliminated in the case of an unaligned copy.
2881     if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(),
2882                                         LN->getMemOperand()->getFlags(),
2883                                         &IsFast)) {
2884       SDValue Ops[2];
2885 
2886       if (VT.isVector())
2887         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2888       else
2889         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2890 
2891       return DAG.getMergeValues(Ops, SDLoc(N));
2892     }
2893 
2894     if (!IsFast)
2895       return SDValue();
2896   }
2897 
2898   if (!shouldCombineMemoryType(VT))
2899     return SDValue();
2900 
2901   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2902 
2903   SDValue NewLoad
2904     = DAG.getLoad(NewVT, SL, LN->getChain(),
2905                   LN->getBasePtr(), LN->getMemOperand());
2906 
2907   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2908   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2909   return SDValue(N, 0);
2910 }
2911 
2912 // Replace store of an illegal type with a store of a bitcast to a friendlier
2913 // type.
2914 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2915                                                   DAGCombinerInfo &DCI) const {
2916   if (!DCI.isBeforeLegalize())
2917     return SDValue();
2918 
2919   StoreSDNode *SN = cast<StoreSDNode>(N);
2920   if (!SN->isSimple() || !ISD::isNormalStore(SN))
2921     return SDValue();
2922 
2923   EVT VT = SN->getMemoryVT();
2924   unsigned Size = VT.getStoreSize();
2925 
2926   SDLoc SL(N);
2927   SelectionDAG &DAG = DCI.DAG;
2928   Align Alignment = SN->getAlign();
2929   if (Alignment < Size && isTypeLegal(VT)) {
2930     bool IsFast;
2931     unsigned AS = SN->getAddressSpace();
2932 
2933     // Expand unaligned stores earlier than legalization. Due to visitation
2934     // order problems during legalization, the emitted instructions to pack and
2935     // unpack the bytes again are not eliminated in the case of an unaligned
2936     // copy.
2937     if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(),
2938                                         SN->getMemOperand()->getFlags(),
2939                                         &IsFast)) {
2940       if (VT.isVector())
2941         return scalarizeVectorStore(SN, DAG);
2942 
2943       return expandUnalignedStore(SN, DAG);
2944     }
2945 
2946     if (!IsFast)
2947       return SDValue();
2948   }
2949 
2950   if (!shouldCombineMemoryType(VT))
2951     return SDValue();
2952 
2953   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2954   SDValue Val = SN->getValue();
2955 
2956   //DCI.AddToWorklist(Val.getNode());
2957 
2958   bool OtherUses = !Val.hasOneUse();
2959   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2960   if (OtherUses) {
2961     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2962     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2963   }
2964 
2965   return DAG.getStore(SN->getChain(), SL, CastVal,
2966                       SN->getBasePtr(), SN->getMemOperand());
2967 }
2968 
2969 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2970 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2971 // issues.
2972 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2973                                                         DAGCombinerInfo &DCI) const {
2974   SelectionDAG &DAG = DCI.DAG;
2975   SDValue N0 = N->getOperand(0);
2976 
2977   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2978   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2979   if (N0.getOpcode() == ISD::TRUNCATE) {
2980     SDValue N1 = N->getOperand(1);
2981     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2982     SDLoc SL(N);
2983 
2984     SDValue Src = N0.getOperand(0);
2985     EVT SrcVT = Src.getValueType();
2986     if (SrcVT.bitsGE(ExtVT)) {
2987       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2988       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2989     }
2990   }
2991 
2992   return SDValue();
2993 }
2994 
2995 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
2996   SDNode *N, DAGCombinerInfo &DCI) const {
2997   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2998   switch (IID) {
2999   case Intrinsic::amdgcn_mul_i24:
3000   case Intrinsic::amdgcn_mul_u24:
3001     return simplifyI24(N, DCI);
3002   case Intrinsic::amdgcn_fract:
3003   case Intrinsic::amdgcn_rsq:
3004   case Intrinsic::amdgcn_rcp_legacy:
3005   case Intrinsic::amdgcn_rsq_legacy:
3006   case Intrinsic::amdgcn_rsq_clamp:
3007   case Intrinsic::amdgcn_ldexp: {
3008     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3009     SDValue Src = N->getOperand(1);
3010     return Src.isUndef() ? Src : SDValue();
3011   }
3012   default:
3013     return SDValue();
3014   }
3015 }
3016 
3017 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3018 /// binary operation \p Opc to it with the corresponding constant operands.
3019 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3020   DAGCombinerInfo &DCI, const SDLoc &SL,
3021   unsigned Opc, SDValue LHS,
3022   uint32_t ValLo, uint32_t ValHi) const {
3023   SelectionDAG &DAG = DCI.DAG;
3024   SDValue Lo, Hi;
3025   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3026 
3027   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3028   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3029 
3030   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3031   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3032 
3033   // Re-visit the ands. It's possible we eliminated one of them and it could
3034   // simplify the vector.
3035   DCI.AddToWorklist(Lo.getNode());
3036   DCI.AddToWorklist(Hi.getNode());
3037 
3038   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3039   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3040 }
3041 
3042 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3043                                                 DAGCombinerInfo &DCI) const {
3044   EVT VT = N->getValueType(0);
3045 
3046   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3047   if (!RHS)
3048     return SDValue();
3049 
3050   SDValue LHS = N->getOperand(0);
3051   unsigned RHSVal = RHS->getZExtValue();
3052   if (!RHSVal)
3053     return LHS;
3054 
3055   SDLoc SL(N);
3056   SelectionDAG &DAG = DCI.DAG;
3057 
3058   switch (LHS->getOpcode()) {
3059   default:
3060     break;
3061   case ISD::ZERO_EXTEND:
3062   case ISD::SIGN_EXTEND:
3063   case ISD::ANY_EXTEND: {
3064     SDValue X = LHS->getOperand(0);
3065 
3066     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3067         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3068       // Prefer build_vector as the canonical form if packed types are legal.
3069       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3070       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3071        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3072       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3073     }
3074 
3075     // shl (ext x) => zext (shl x), if shift does not overflow int
3076     if (VT != MVT::i64)
3077       break;
3078     KnownBits Known = DAG.computeKnownBits(X);
3079     unsigned LZ = Known.countMinLeadingZeros();
3080     if (LZ < RHSVal)
3081       break;
3082     EVT XVT = X.getValueType();
3083     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3084     return DAG.getZExtOrTrunc(Shl, SL, VT);
3085   }
3086   }
3087 
3088   if (VT != MVT::i64)
3089     return SDValue();
3090 
3091   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3092 
3093   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3094   // common case, splitting this into a move and a 32-bit shift is faster and
3095   // the same code size.
3096   if (RHSVal < 32)
3097     return SDValue();
3098 
3099   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3100 
3101   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3102   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3103 
3104   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3105 
3106   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3107   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3108 }
3109 
3110 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3111                                                 DAGCombinerInfo &DCI) const {
3112   if (N->getValueType(0) != MVT::i64)
3113     return SDValue();
3114 
3115   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3116   if (!RHS)
3117     return SDValue();
3118 
3119   SelectionDAG &DAG = DCI.DAG;
3120   SDLoc SL(N);
3121   unsigned RHSVal = RHS->getZExtValue();
3122 
3123   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3124   if (RHSVal == 32) {
3125     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3126     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3127                                    DAG.getConstant(31, SL, MVT::i32));
3128 
3129     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3130     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3131   }
3132 
3133   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3134   if (RHSVal == 63) {
3135     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3136     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3137                                    DAG.getConstant(31, SL, MVT::i32));
3138     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3139     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3140   }
3141 
3142   return SDValue();
3143 }
3144 
3145 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3146                                                 DAGCombinerInfo &DCI) const {
3147   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3148   if (!RHS)
3149     return SDValue();
3150 
3151   EVT VT = N->getValueType(0);
3152   SDValue LHS = N->getOperand(0);
3153   unsigned ShiftAmt = RHS->getZExtValue();
3154   SelectionDAG &DAG = DCI.DAG;
3155   SDLoc SL(N);
3156 
3157   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3158   // this improves the ability to match BFE patterns in isel.
3159   if (LHS.getOpcode() == ISD::AND) {
3160     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3161       if (Mask->getAPIntValue().isShiftedMask() &&
3162           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3163         return DAG.getNode(
3164             ISD::AND, SL, VT,
3165             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3166             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3167       }
3168     }
3169   }
3170 
3171   if (VT != MVT::i64)
3172     return SDValue();
3173 
3174   if (ShiftAmt < 32)
3175     return SDValue();
3176 
3177   // srl i64:x, C for C >= 32
3178   // =>
3179   //   build_pair (srl hi_32(x), C - 32), 0
3180   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3181   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3182 
3183   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3184   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3185 
3186   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3187   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3188 
3189   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3190 
3191   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3192 }
3193 
3194 SDValue AMDGPUTargetLowering::performTruncateCombine(
3195   SDNode *N, DAGCombinerInfo &DCI) const {
3196   SDLoc SL(N);
3197   SelectionDAG &DAG = DCI.DAG;
3198   EVT VT = N->getValueType(0);
3199   SDValue Src = N->getOperand(0);
3200 
3201   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3202   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3203     SDValue Vec = Src.getOperand(0);
3204     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3205       SDValue Elt0 = Vec.getOperand(0);
3206       EVT EltVT = Elt0.getValueType();
3207       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3208         if (EltVT.isFloatingPoint()) {
3209           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3210                              EltVT.changeTypeToInteger(), Elt0);
3211         }
3212 
3213         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3214       }
3215     }
3216   }
3217 
3218   // Equivalent of above for accessing the high element of a vector as an
3219   // integer operation.
3220   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3221   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3222     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3223       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3224         SDValue BV = stripBitcast(Src.getOperand(0));
3225         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3226             BV.getValueType().getVectorNumElements() == 2) {
3227           SDValue SrcElt = BV.getOperand(1);
3228           EVT SrcEltVT = SrcElt.getValueType();
3229           if (SrcEltVT.isFloatingPoint()) {
3230             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3231                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3232           }
3233 
3234           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3235         }
3236       }
3237     }
3238   }
3239 
3240   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3241   //
3242   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3243   //     i16 (trunc (srl (i32 (trunc x), K)))
3244   if (VT.getScalarSizeInBits() < 32) {
3245     EVT SrcVT = Src.getValueType();
3246     if (SrcVT.getScalarSizeInBits() > 32 &&
3247         (Src.getOpcode() == ISD::SRL ||
3248          Src.getOpcode() == ISD::SRA ||
3249          Src.getOpcode() == ISD::SHL)) {
3250       SDValue Amt = Src.getOperand(1);
3251       KnownBits Known = DAG.computeKnownBits(Amt);
3252       unsigned Size = VT.getScalarSizeInBits();
3253       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3254           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3255         EVT MidVT = VT.isVector() ?
3256           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3257                            VT.getVectorNumElements()) : MVT::i32;
3258 
3259         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3260         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3261                                     Src.getOperand(0));
3262         DCI.AddToWorklist(Trunc.getNode());
3263 
3264         if (Amt.getValueType() != NewShiftVT) {
3265           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3266           DCI.AddToWorklist(Amt.getNode());
3267         }
3268 
3269         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3270                                           Trunc, Amt);
3271         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3272       }
3273     }
3274   }
3275 
3276   return SDValue();
3277 }
3278 
3279 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3280 // instructions. If we only match on the legalized i64 mul expansion,
3281 // SimplifyDemandedBits will be unable to remove them because there will be
3282 // multiple uses due to the separate mul + mulh[su].
3283 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3284                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3285   if (Size <= 32) {
3286     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3287     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3288   }
3289 
3290   // Because we want to eliminate extension instructions before the
3291   // operation, we need to create a single user here (i.e. not the separate
3292   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3293 
3294   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3295 
3296   SDValue Mul = DAG.getNode(MulOpc, SL,
3297                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3298 
3299   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3300                      Mul.getValue(0), Mul.getValue(1));
3301 }
3302 
3303 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3304                                                 DAGCombinerInfo &DCI) const {
3305   EVT VT = N->getValueType(0);
3306 
3307   unsigned Size = VT.getSizeInBits();
3308   if (VT.isVector() || Size > 64)
3309     return SDValue();
3310 
3311   // There are i16 integer mul/mad.
3312   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3313     return SDValue();
3314 
3315   SelectionDAG &DAG = DCI.DAG;
3316   SDLoc DL(N);
3317 
3318   SDValue N0 = N->getOperand(0);
3319   SDValue N1 = N->getOperand(1);
3320 
3321   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3322   // in the source into any_extends if the result of the mul is truncated. Since
3323   // we can assume the high bits are whatever we want, use the underlying value
3324   // to avoid the unknown high bits from interfering.
3325   if (N0.getOpcode() == ISD::ANY_EXTEND)
3326     N0 = N0.getOperand(0);
3327 
3328   if (N1.getOpcode() == ISD::ANY_EXTEND)
3329     N1 = N1.getOperand(0);
3330 
3331   SDValue Mul;
3332 
3333   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3334     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3335     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3336     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3337   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3338     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3339     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3340     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3341   } else {
3342     return SDValue();
3343   }
3344 
3345   // We need to use sext even for MUL_U24, because MUL_U24 is used
3346   // for signed multiply of 8 and 16-bit types.
3347   return DAG.getSExtOrTrunc(Mul, DL, VT);
3348 }
3349 
3350 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3351                                                   DAGCombinerInfo &DCI) const {
3352   EVT VT = N->getValueType(0);
3353 
3354   if (!Subtarget->hasMulI24() || VT.isVector())
3355     return SDValue();
3356 
3357   SelectionDAG &DAG = DCI.DAG;
3358   SDLoc DL(N);
3359 
3360   SDValue N0 = N->getOperand(0);
3361   SDValue N1 = N->getOperand(1);
3362 
3363   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3364     return SDValue();
3365 
3366   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3367   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3368 
3369   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3370   DCI.AddToWorklist(Mulhi.getNode());
3371   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3372 }
3373 
3374 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3375                                                   DAGCombinerInfo &DCI) const {
3376   EVT VT = N->getValueType(0);
3377 
3378   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3379     return SDValue();
3380 
3381   SelectionDAG &DAG = DCI.DAG;
3382   SDLoc DL(N);
3383 
3384   SDValue N0 = N->getOperand(0);
3385   SDValue N1 = N->getOperand(1);
3386 
3387   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3388     return SDValue();
3389 
3390   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3391   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3392 
3393   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3394   DCI.AddToWorklist(Mulhi.getNode());
3395   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3396 }
3397 
3398 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3399   SDNode *N, DAGCombinerInfo &DCI) const {
3400   SelectionDAG &DAG = DCI.DAG;
3401 
3402   // Simplify demanded bits before splitting into multiple users.
3403   if (SDValue V = simplifyI24(N, DCI))
3404     return V;
3405 
3406   SDValue N0 = N->getOperand(0);
3407   SDValue N1 = N->getOperand(1);
3408 
3409   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3410 
3411   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3412   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3413 
3414   SDLoc SL(N);
3415 
3416   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3417   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3418   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3419 }
3420 
3421 static bool isNegativeOne(SDValue Val) {
3422   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3423     return C->isAllOnesValue();
3424   return false;
3425 }
3426 
3427 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3428                                           SDValue Op,
3429                                           const SDLoc &DL,
3430                                           unsigned Opc) const {
3431   EVT VT = Op.getValueType();
3432   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3433   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3434                               LegalVT != MVT::i16))
3435     return SDValue();
3436 
3437   if (VT != MVT::i32)
3438     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3439 
3440   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3441   if (VT != MVT::i32)
3442     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3443 
3444   return FFBX;
3445 }
3446 
3447 // The native instructions return -1 on 0 input. Optimize out a select that
3448 // produces -1 on 0.
3449 //
3450 // TODO: If zero is not undef, we could also do this if the output is compared
3451 // against the bitwidth.
3452 //
3453 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3454 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3455                                                  SDValue LHS, SDValue RHS,
3456                                                  DAGCombinerInfo &DCI) const {
3457   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3458   if (!CmpRhs || !CmpRhs->isNullValue())
3459     return SDValue();
3460 
3461   SelectionDAG &DAG = DCI.DAG;
3462   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3463   SDValue CmpLHS = Cond.getOperand(0);
3464 
3465   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3466   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3467   if (CCOpcode == ISD::SETEQ &&
3468       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3469       RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3470     unsigned Opc =
3471         isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3472     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3473   }
3474 
3475   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3476   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3477   if (CCOpcode == ISD::SETNE &&
3478       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3479       LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3480     unsigned Opc =
3481         isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3482 
3483     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3484   }
3485 
3486   return SDValue();
3487 }
3488 
3489 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3490                                          unsigned Op,
3491                                          const SDLoc &SL,
3492                                          SDValue Cond,
3493                                          SDValue N1,
3494                                          SDValue N2) {
3495   SelectionDAG &DAG = DCI.DAG;
3496   EVT VT = N1.getValueType();
3497 
3498   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3499                                   N1.getOperand(0), N2.getOperand(0));
3500   DCI.AddToWorklist(NewSelect.getNode());
3501   return DAG.getNode(Op, SL, VT, NewSelect);
3502 }
3503 
3504 // Pull a free FP operation out of a select so it may fold into uses.
3505 //
3506 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3507 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3508 //
3509 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3510 // select c, (fabs x), +k -> fabs (select c, x, k)
3511 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3512                                     SDValue N) {
3513   SelectionDAG &DAG = DCI.DAG;
3514   SDValue Cond = N.getOperand(0);
3515   SDValue LHS = N.getOperand(1);
3516   SDValue RHS = N.getOperand(2);
3517 
3518   EVT VT = N.getValueType();
3519   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3520       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3521     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3522                                      SDLoc(N), Cond, LHS, RHS);
3523   }
3524 
3525   bool Inv = false;
3526   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3527     std::swap(LHS, RHS);
3528     Inv = true;
3529   }
3530 
3531   // TODO: Support vector constants.
3532   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3533   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3534     SDLoc SL(N);
3535     // If one side is an fneg/fabs and the other is a constant, we can push the
3536     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3537     SDValue NewLHS = LHS.getOperand(0);
3538     SDValue NewRHS = RHS;
3539 
3540     // Careful: if the neg can be folded up, don't try to pull it back down.
3541     bool ShouldFoldNeg = true;
3542 
3543     if (NewLHS.hasOneUse()) {
3544       unsigned Opc = NewLHS.getOpcode();
3545       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3546         ShouldFoldNeg = false;
3547       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3548         ShouldFoldNeg = false;
3549     }
3550 
3551     if (ShouldFoldNeg) {
3552       if (LHS.getOpcode() == ISD::FNEG)
3553         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3554       else if (CRHS->isNegative())
3555         return SDValue();
3556 
3557       if (Inv)
3558         std::swap(NewLHS, NewRHS);
3559 
3560       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3561                                       Cond, NewLHS, NewRHS);
3562       DCI.AddToWorklist(NewSelect.getNode());
3563       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3564     }
3565   }
3566 
3567   return SDValue();
3568 }
3569 
3570 
3571 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3572                                                    DAGCombinerInfo &DCI) const {
3573   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3574     return Folded;
3575 
3576   SDValue Cond = N->getOperand(0);
3577   if (Cond.getOpcode() != ISD::SETCC)
3578     return SDValue();
3579 
3580   EVT VT = N->getValueType(0);
3581   SDValue LHS = Cond.getOperand(0);
3582   SDValue RHS = Cond.getOperand(1);
3583   SDValue CC = Cond.getOperand(2);
3584 
3585   SDValue True = N->getOperand(1);
3586   SDValue False = N->getOperand(2);
3587 
3588   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3589     SelectionDAG &DAG = DCI.DAG;
3590     if (DAG.isConstantValueOfAnyType(True) &&
3591         !DAG.isConstantValueOfAnyType(False)) {
3592       // Swap cmp + select pair to move constant to false input.
3593       // This will allow using VOPC cndmasks more often.
3594       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3595 
3596       SDLoc SL(N);
3597       ISD::CondCode NewCC =
3598           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3599 
3600       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3601       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3602     }
3603 
3604     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3605       SDValue MinMax
3606         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3607       // Revisit this node so we can catch min3/max3/med3 patterns.
3608       //DCI.AddToWorklist(MinMax.getNode());
3609       return MinMax;
3610     }
3611   }
3612 
3613   // There's no reason to not do this if the condition has other uses.
3614   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3615 }
3616 
3617 static bool isInv2Pi(const APFloat &APF) {
3618   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3619   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3620   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3621 
3622   return APF.bitwiseIsEqual(KF16) ||
3623          APF.bitwiseIsEqual(KF32) ||
3624          APF.bitwiseIsEqual(KF64);
3625 }
3626 
3627 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3628 // additional cost to negate them.
3629 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3630   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3631     if (C->isZero() && !C->isNegative())
3632       return true;
3633 
3634     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3635       return true;
3636   }
3637 
3638   return false;
3639 }
3640 
3641 static unsigned inverseMinMax(unsigned Opc) {
3642   switch (Opc) {
3643   case ISD::FMAXNUM:
3644     return ISD::FMINNUM;
3645   case ISD::FMINNUM:
3646     return ISD::FMAXNUM;
3647   case ISD::FMAXNUM_IEEE:
3648     return ISD::FMINNUM_IEEE;
3649   case ISD::FMINNUM_IEEE:
3650     return ISD::FMAXNUM_IEEE;
3651   case AMDGPUISD::FMAX_LEGACY:
3652     return AMDGPUISD::FMIN_LEGACY;
3653   case AMDGPUISD::FMIN_LEGACY:
3654     return  AMDGPUISD::FMAX_LEGACY;
3655   default:
3656     llvm_unreachable("invalid min/max opcode");
3657   }
3658 }
3659 
3660 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3661                                                  DAGCombinerInfo &DCI) const {
3662   SelectionDAG &DAG = DCI.DAG;
3663   SDValue N0 = N->getOperand(0);
3664   EVT VT = N->getValueType(0);
3665 
3666   unsigned Opc = N0.getOpcode();
3667 
3668   // If the input has multiple uses and we can either fold the negate down, or
3669   // the other uses cannot, give up. This both prevents unprofitable
3670   // transformations and infinite loops: we won't repeatedly try to fold around
3671   // a negate that has no 'good' form.
3672   if (N0.hasOneUse()) {
3673     // This may be able to fold into the source, but at a code size cost. Don't
3674     // fold if the fold into the user is free.
3675     if (allUsesHaveSourceMods(N, 0))
3676       return SDValue();
3677   } else {
3678     if (fnegFoldsIntoOp(Opc) &&
3679         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3680       return SDValue();
3681   }
3682 
3683   SDLoc SL(N);
3684   switch (Opc) {
3685   case ISD::FADD: {
3686     if (!mayIgnoreSignedZero(N0))
3687       return SDValue();
3688 
3689     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3690     SDValue LHS = N0.getOperand(0);
3691     SDValue RHS = N0.getOperand(1);
3692 
3693     if (LHS.getOpcode() != ISD::FNEG)
3694       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3695     else
3696       LHS = LHS.getOperand(0);
3697 
3698     if (RHS.getOpcode() != ISD::FNEG)
3699       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3700     else
3701       RHS = RHS.getOperand(0);
3702 
3703     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3704     if (Res.getOpcode() != ISD::FADD)
3705       return SDValue(); // Op got folded away.
3706     if (!N0.hasOneUse())
3707       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3708     return Res;
3709   }
3710   case ISD::FMUL:
3711   case AMDGPUISD::FMUL_LEGACY: {
3712     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3713     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3714     SDValue LHS = N0.getOperand(0);
3715     SDValue RHS = N0.getOperand(1);
3716 
3717     if (LHS.getOpcode() == ISD::FNEG)
3718       LHS = LHS.getOperand(0);
3719     else if (RHS.getOpcode() == ISD::FNEG)
3720       RHS = RHS.getOperand(0);
3721     else
3722       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3723 
3724     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3725     if (Res.getOpcode() != Opc)
3726       return SDValue(); // Op got folded away.
3727     if (!N0.hasOneUse())
3728       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3729     return Res;
3730   }
3731   case ISD::FMA:
3732   case ISD::FMAD: {
3733     if (!mayIgnoreSignedZero(N0))
3734       return SDValue();
3735 
3736     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3737     SDValue LHS = N0.getOperand(0);
3738     SDValue MHS = N0.getOperand(1);
3739     SDValue RHS = N0.getOperand(2);
3740 
3741     if (LHS.getOpcode() == ISD::FNEG)
3742       LHS = LHS.getOperand(0);
3743     else if (MHS.getOpcode() == ISD::FNEG)
3744       MHS = MHS.getOperand(0);
3745     else
3746       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3747 
3748     if (RHS.getOpcode() != ISD::FNEG)
3749       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3750     else
3751       RHS = RHS.getOperand(0);
3752 
3753     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3754     if (Res.getOpcode() != Opc)
3755       return SDValue(); // Op got folded away.
3756     if (!N0.hasOneUse())
3757       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3758     return Res;
3759   }
3760   case ISD::FMAXNUM:
3761   case ISD::FMINNUM:
3762   case ISD::FMAXNUM_IEEE:
3763   case ISD::FMINNUM_IEEE:
3764   case AMDGPUISD::FMAX_LEGACY:
3765   case AMDGPUISD::FMIN_LEGACY: {
3766     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3767     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3768     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3769     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3770 
3771     SDValue LHS = N0.getOperand(0);
3772     SDValue RHS = N0.getOperand(1);
3773 
3774     // 0 doesn't have a negated inline immediate.
3775     // TODO: This constant check should be generalized to other operations.
3776     if (isConstantCostlierToNegate(RHS))
3777       return SDValue();
3778 
3779     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3780     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3781     unsigned Opposite = inverseMinMax(Opc);
3782 
3783     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3784     if (Res.getOpcode() != Opposite)
3785       return SDValue(); // Op got folded away.
3786     if (!N0.hasOneUse())
3787       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3788     return Res;
3789   }
3790   case AMDGPUISD::FMED3: {
3791     SDValue Ops[3];
3792     for (unsigned I = 0; I < 3; ++I)
3793       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3794 
3795     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3796     if (Res.getOpcode() != AMDGPUISD::FMED3)
3797       return SDValue(); // Op got folded away.
3798 
3799     if (!N0.hasOneUse()) {
3800       SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3801       DAG.ReplaceAllUsesWith(N0, Neg);
3802 
3803       for (SDNode *U : Neg->uses())
3804         DCI.AddToWorklist(U);
3805     }
3806 
3807     return Res;
3808   }
3809   case ISD::FP_EXTEND:
3810   case ISD::FTRUNC:
3811   case ISD::FRINT:
3812   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3813   case ISD::FSIN:
3814   case ISD::FCANONICALIZE:
3815   case AMDGPUISD::RCP:
3816   case AMDGPUISD::RCP_LEGACY:
3817   case AMDGPUISD::RCP_IFLAG:
3818   case AMDGPUISD::SIN_HW: {
3819     SDValue CvtSrc = N0.getOperand(0);
3820     if (CvtSrc.getOpcode() == ISD::FNEG) {
3821       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3822       // (fneg (rcp (fneg x))) -> (rcp x)
3823       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3824     }
3825 
3826     if (!N0.hasOneUse())
3827       return SDValue();
3828 
3829     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3830     // (fneg (rcp x)) -> (rcp (fneg x))
3831     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3832     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3833   }
3834   case ISD::FP_ROUND: {
3835     SDValue CvtSrc = N0.getOperand(0);
3836 
3837     if (CvtSrc.getOpcode() == ISD::FNEG) {
3838       // (fneg (fp_round (fneg x))) -> (fp_round x)
3839       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3840                          CvtSrc.getOperand(0), N0.getOperand(1));
3841     }
3842 
3843     if (!N0.hasOneUse())
3844       return SDValue();
3845 
3846     // (fneg (fp_round x)) -> (fp_round (fneg x))
3847     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3848     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3849   }
3850   case ISD::FP16_TO_FP: {
3851     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3852     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3853     // Put the fneg back as a legal source operation that can be matched later.
3854     SDLoc SL(N);
3855 
3856     SDValue Src = N0.getOperand(0);
3857     EVT SrcVT = Src.getValueType();
3858 
3859     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3860     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3861                                   DAG.getConstant(0x8000, SL, SrcVT));
3862     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3863   }
3864   default:
3865     return SDValue();
3866   }
3867 }
3868 
3869 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3870                                                  DAGCombinerInfo &DCI) const {
3871   SelectionDAG &DAG = DCI.DAG;
3872   SDValue N0 = N->getOperand(0);
3873 
3874   if (!N0.hasOneUse())
3875     return SDValue();
3876 
3877   switch (N0.getOpcode()) {
3878   case ISD::FP16_TO_FP: {
3879     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3880     SDLoc SL(N);
3881     SDValue Src = N0.getOperand(0);
3882     EVT SrcVT = Src.getValueType();
3883 
3884     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3885     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3886                                   DAG.getConstant(0x7fff, SL, SrcVT));
3887     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3888   }
3889   default:
3890     return SDValue();
3891   }
3892 }
3893 
3894 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3895                                                 DAGCombinerInfo &DCI) const {
3896   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3897   if (!CFP)
3898     return SDValue();
3899 
3900   // XXX - Should this flush denormals?
3901   const APFloat &Val = CFP->getValueAPF();
3902   APFloat One(Val.getSemantics(), "1.0");
3903   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3904 }
3905 
3906 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3907                                                 DAGCombinerInfo &DCI) const {
3908   SelectionDAG &DAG = DCI.DAG;
3909   SDLoc DL(N);
3910 
3911   switch(N->getOpcode()) {
3912   default:
3913     break;
3914   case ISD::BITCAST: {
3915     EVT DestVT = N->getValueType(0);
3916 
3917     // Push casts through vector builds. This helps avoid emitting a large
3918     // number of copies when materializing floating point vector constants.
3919     //
3920     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3921     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3922     if (DestVT.isVector()) {
3923       SDValue Src = N->getOperand(0);
3924       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3925         EVT SrcVT = Src.getValueType();
3926         unsigned NElts = DestVT.getVectorNumElements();
3927 
3928         if (SrcVT.getVectorNumElements() == NElts) {
3929           EVT DestEltVT = DestVT.getVectorElementType();
3930 
3931           SmallVector<SDValue, 8> CastedElts;
3932           SDLoc SL(N);
3933           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3934             SDValue Elt = Src.getOperand(I);
3935             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3936           }
3937 
3938           return DAG.getBuildVector(DestVT, SL, CastedElts);
3939         }
3940       }
3941     }
3942 
3943     if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
3944       break;
3945 
3946     // Fold bitcasts of constants.
3947     //
3948     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3949     // TODO: Generalize and move to DAGCombiner
3950     SDValue Src = N->getOperand(0);
3951     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3952       SDLoc SL(N);
3953       uint64_t CVal = C->getZExtValue();
3954       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3955                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3956                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3957       return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3958     }
3959 
3960     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3961       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3962       SDLoc SL(N);
3963       uint64_t CVal = Val.getZExtValue();
3964       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3965                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3966                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3967 
3968       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3969     }
3970 
3971     break;
3972   }
3973   case ISD::SHL: {
3974     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3975       break;
3976 
3977     return performShlCombine(N, DCI);
3978   }
3979   case ISD::SRL: {
3980     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3981       break;
3982 
3983     return performSrlCombine(N, DCI);
3984   }
3985   case ISD::SRA: {
3986     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3987       break;
3988 
3989     return performSraCombine(N, DCI);
3990   }
3991   case ISD::TRUNCATE:
3992     return performTruncateCombine(N, DCI);
3993   case ISD::MUL:
3994     return performMulCombine(N, DCI);
3995   case ISD::MULHS:
3996     return performMulhsCombine(N, DCI);
3997   case ISD::MULHU:
3998     return performMulhuCombine(N, DCI);
3999   case AMDGPUISD::MUL_I24:
4000   case AMDGPUISD::MUL_U24:
4001   case AMDGPUISD::MULHI_I24:
4002   case AMDGPUISD::MULHI_U24: {
4003     if (SDValue V = simplifyI24(N, DCI))
4004       return V;
4005     return SDValue();
4006   }
4007   case AMDGPUISD::MUL_LOHI_I24:
4008   case AMDGPUISD::MUL_LOHI_U24:
4009     return performMulLoHi24Combine(N, DCI);
4010   case ISD::SELECT:
4011     return performSelectCombine(N, DCI);
4012   case ISD::FNEG:
4013     return performFNegCombine(N, DCI);
4014   case ISD::FABS:
4015     return performFAbsCombine(N, DCI);
4016   case AMDGPUISD::BFE_I32:
4017   case AMDGPUISD::BFE_U32: {
4018     assert(!N->getValueType(0).isVector() &&
4019            "Vector handling of BFE not implemented");
4020     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4021     if (!Width)
4022       break;
4023 
4024     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4025     if (WidthVal == 0)
4026       return DAG.getConstant(0, DL, MVT::i32);
4027 
4028     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4029     if (!Offset)
4030       break;
4031 
4032     SDValue BitsFrom = N->getOperand(0);
4033     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4034 
4035     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4036 
4037     if (OffsetVal == 0) {
4038       // This is already sign / zero extended, so try to fold away extra BFEs.
4039       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4040 
4041       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4042       if (OpSignBits >= SignBits)
4043         return BitsFrom;
4044 
4045       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4046       if (Signed) {
4047         // This is a sign_extend_inreg. Replace it to take advantage of existing
4048         // DAG Combines. If not eliminated, we will match back to BFE during
4049         // selection.
4050 
4051         // TODO: The sext_inreg of extended types ends, although we can could
4052         // handle them in a single BFE.
4053         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4054                            DAG.getValueType(SmallVT));
4055       }
4056 
4057       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4058     }
4059 
4060     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4061       if (Signed) {
4062         return constantFoldBFE<int32_t>(DAG,
4063                                         CVal->getSExtValue(),
4064                                         OffsetVal,
4065                                         WidthVal,
4066                                         DL);
4067       }
4068 
4069       return constantFoldBFE<uint32_t>(DAG,
4070                                        CVal->getZExtValue(),
4071                                        OffsetVal,
4072                                        WidthVal,
4073                                        DL);
4074     }
4075 
4076     if ((OffsetVal + WidthVal) >= 32 &&
4077         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4078       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4079       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4080                          BitsFrom, ShiftVal);
4081     }
4082 
4083     if (BitsFrom.hasOneUse()) {
4084       APInt Demanded = APInt::getBitsSet(32,
4085                                          OffsetVal,
4086                                          OffsetVal + WidthVal);
4087 
4088       KnownBits Known;
4089       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4090                                             !DCI.isBeforeLegalizeOps());
4091       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4092       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4093           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4094         DCI.CommitTargetLoweringOpt(TLO);
4095       }
4096     }
4097 
4098     break;
4099   }
4100   case ISD::LOAD:
4101     return performLoadCombine(N, DCI);
4102   case ISD::STORE:
4103     return performStoreCombine(N, DCI);
4104   case AMDGPUISD::RCP:
4105   case AMDGPUISD::RCP_IFLAG:
4106     return performRcpCombine(N, DCI);
4107   case ISD::AssertZext:
4108   case ISD::AssertSext:
4109     return performAssertSZExtCombine(N, DCI);
4110   case ISD::INTRINSIC_WO_CHAIN:
4111     return performIntrinsicWOChainCombine(N, DCI);
4112   }
4113   return SDValue();
4114 }
4115 
4116 //===----------------------------------------------------------------------===//
4117 // Helper functions
4118 //===----------------------------------------------------------------------===//
4119 
4120 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4121                                                    const TargetRegisterClass *RC,
4122                                                    Register Reg, EVT VT,
4123                                                    const SDLoc &SL,
4124                                                    bool RawReg) const {
4125   MachineFunction &MF = DAG.getMachineFunction();
4126   MachineRegisterInfo &MRI = MF.getRegInfo();
4127   Register VReg;
4128 
4129   if (!MRI.isLiveIn(Reg)) {
4130     VReg = MRI.createVirtualRegister(RC);
4131     MRI.addLiveIn(Reg, VReg);
4132   } else {
4133     VReg = MRI.getLiveInVirtReg(Reg);
4134   }
4135 
4136   if (RawReg)
4137     return DAG.getRegister(VReg, VT);
4138 
4139   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4140 }
4141 
4142 // This may be called multiple times, and nothing prevents creating multiple
4143 // objects at the same offset. See if we already defined this object.
4144 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4145                                        int64_t Offset) {
4146   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4147     if (MFI.getObjectOffset(I) == Offset) {
4148       assert(MFI.getObjectSize(I) == Size);
4149       return I;
4150     }
4151   }
4152 
4153   return MFI.CreateFixedObject(Size, Offset, true);
4154 }
4155 
4156 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4157                                                   EVT VT,
4158                                                   const SDLoc &SL,
4159                                                   int64_t Offset) const {
4160   MachineFunction &MF = DAG.getMachineFunction();
4161   MachineFrameInfo &MFI = MF.getFrameInfo();
4162   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4163 
4164   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4165   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4166 
4167   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4168                      MachineMemOperand::MODereferenceable |
4169                          MachineMemOperand::MOInvariant);
4170 }
4171 
4172 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4173                                                    const SDLoc &SL,
4174                                                    SDValue Chain,
4175                                                    SDValue ArgVal,
4176                                                    int64_t Offset) const {
4177   MachineFunction &MF = DAG.getMachineFunction();
4178   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4179 
4180   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4181   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4182                                MachineMemOperand::MODereferenceable);
4183   return Store;
4184 }
4185 
4186 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4187                                              const TargetRegisterClass *RC,
4188                                              EVT VT, const SDLoc &SL,
4189                                              const ArgDescriptor &Arg) const {
4190   assert(Arg && "Attempting to load missing argument");
4191 
4192   SDValue V = Arg.isRegister() ?
4193     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4194     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4195 
4196   if (!Arg.isMasked())
4197     return V;
4198 
4199   unsigned Mask = Arg.getMask();
4200   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4201   V = DAG.getNode(ISD::SRL, SL, VT, V,
4202                   DAG.getShiftAmountConstant(Shift, VT, SL));
4203   return DAG.getNode(ISD::AND, SL, VT, V,
4204                      DAG.getConstant(Mask >> Shift, SL, VT));
4205 }
4206 
4207 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4208     const MachineFunction &MF, const ImplicitParameter Param) const {
4209   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4210   const AMDGPUSubtarget &ST =
4211       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4212   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4213   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4214   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4215                        ExplicitArgOffset;
4216   switch (Param) {
4217   case GRID_DIM:
4218     return ArgOffset;
4219   case GRID_OFFSET:
4220     return ArgOffset + 4;
4221   }
4222   llvm_unreachable("unexpected implicit parameter type");
4223 }
4224 
4225 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4226 
4227 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4228   switch ((AMDGPUISD::NodeType)Opcode) {
4229   case AMDGPUISD::FIRST_NUMBER: break;
4230   // AMDIL DAG nodes
4231   NODE_NAME_CASE(UMUL);
4232   NODE_NAME_CASE(BRANCH_COND);
4233 
4234   // AMDGPU DAG nodes
4235   NODE_NAME_CASE(IF)
4236   NODE_NAME_CASE(ELSE)
4237   NODE_NAME_CASE(LOOP)
4238   NODE_NAME_CASE(CALL)
4239   NODE_NAME_CASE(TC_RETURN)
4240   NODE_NAME_CASE(TRAP)
4241   NODE_NAME_CASE(RET_FLAG)
4242   NODE_NAME_CASE(RETURN_TO_EPILOG)
4243   NODE_NAME_CASE(ENDPGM)
4244   NODE_NAME_CASE(DWORDADDR)
4245   NODE_NAME_CASE(FRACT)
4246   NODE_NAME_CASE(SETCC)
4247   NODE_NAME_CASE(SETREG)
4248   NODE_NAME_CASE(DENORM_MODE)
4249   NODE_NAME_CASE(FMA_W_CHAIN)
4250   NODE_NAME_CASE(FMUL_W_CHAIN)
4251   NODE_NAME_CASE(CLAMP)
4252   NODE_NAME_CASE(COS_HW)
4253   NODE_NAME_CASE(SIN_HW)
4254   NODE_NAME_CASE(FMAX_LEGACY)
4255   NODE_NAME_CASE(FMIN_LEGACY)
4256   NODE_NAME_CASE(FMAX3)
4257   NODE_NAME_CASE(SMAX3)
4258   NODE_NAME_CASE(UMAX3)
4259   NODE_NAME_CASE(FMIN3)
4260   NODE_NAME_CASE(SMIN3)
4261   NODE_NAME_CASE(UMIN3)
4262   NODE_NAME_CASE(FMED3)
4263   NODE_NAME_CASE(SMED3)
4264   NODE_NAME_CASE(UMED3)
4265   NODE_NAME_CASE(FDOT2)
4266   NODE_NAME_CASE(URECIP)
4267   NODE_NAME_CASE(DIV_SCALE)
4268   NODE_NAME_CASE(DIV_FMAS)
4269   NODE_NAME_CASE(DIV_FIXUP)
4270   NODE_NAME_CASE(FMAD_FTZ)
4271   NODE_NAME_CASE(RCP)
4272   NODE_NAME_CASE(RSQ)
4273   NODE_NAME_CASE(RCP_LEGACY)
4274   NODE_NAME_CASE(RCP_IFLAG)
4275   NODE_NAME_CASE(FMUL_LEGACY)
4276   NODE_NAME_CASE(RSQ_CLAMP)
4277   NODE_NAME_CASE(LDEXP)
4278   NODE_NAME_CASE(FP_CLASS)
4279   NODE_NAME_CASE(DOT4)
4280   NODE_NAME_CASE(CARRY)
4281   NODE_NAME_CASE(BORROW)
4282   NODE_NAME_CASE(BFE_U32)
4283   NODE_NAME_CASE(BFE_I32)
4284   NODE_NAME_CASE(BFI)
4285   NODE_NAME_CASE(BFM)
4286   NODE_NAME_CASE(FFBH_U32)
4287   NODE_NAME_CASE(FFBH_I32)
4288   NODE_NAME_CASE(FFBL_B32)
4289   NODE_NAME_CASE(MUL_U24)
4290   NODE_NAME_CASE(MUL_I24)
4291   NODE_NAME_CASE(MULHI_U24)
4292   NODE_NAME_CASE(MULHI_I24)
4293   NODE_NAME_CASE(MUL_LOHI_U24)
4294   NODE_NAME_CASE(MUL_LOHI_I24)
4295   NODE_NAME_CASE(MAD_U24)
4296   NODE_NAME_CASE(MAD_I24)
4297   NODE_NAME_CASE(MAD_I64_I32)
4298   NODE_NAME_CASE(MAD_U64_U32)
4299   NODE_NAME_CASE(PERM)
4300   NODE_NAME_CASE(TEXTURE_FETCH)
4301   NODE_NAME_CASE(R600_EXPORT)
4302   NODE_NAME_CASE(CONST_ADDRESS)
4303   NODE_NAME_CASE(REGISTER_LOAD)
4304   NODE_NAME_CASE(REGISTER_STORE)
4305   NODE_NAME_CASE(SAMPLE)
4306   NODE_NAME_CASE(SAMPLEB)
4307   NODE_NAME_CASE(SAMPLED)
4308   NODE_NAME_CASE(SAMPLEL)
4309   NODE_NAME_CASE(CVT_F32_UBYTE0)
4310   NODE_NAME_CASE(CVT_F32_UBYTE1)
4311   NODE_NAME_CASE(CVT_F32_UBYTE2)
4312   NODE_NAME_CASE(CVT_F32_UBYTE3)
4313   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4314   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4315   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4316   NODE_NAME_CASE(CVT_PK_I16_I32)
4317   NODE_NAME_CASE(CVT_PK_U16_U32)
4318   NODE_NAME_CASE(FP_TO_FP16)
4319   NODE_NAME_CASE(FP16_ZEXT)
4320   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4321   NODE_NAME_CASE(CONST_DATA_PTR)
4322   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4323   NODE_NAME_CASE(LDS)
4324   NODE_NAME_CASE(DUMMY_CHAIN)
4325   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4326   NODE_NAME_CASE(LOAD_D16_HI)
4327   NODE_NAME_CASE(LOAD_D16_LO)
4328   NODE_NAME_CASE(LOAD_D16_HI_I8)
4329   NODE_NAME_CASE(LOAD_D16_HI_U8)
4330   NODE_NAME_CASE(LOAD_D16_LO_I8)
4331   NODE_NAME_CASE(LOAD_D16_LO_U8)
4332   NODE_NAME_CASE(STORE_MSKOR)
4333   NODE_NAME_CASE(LOAD_CONSTANT)
4334   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4335   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4336   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4337   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4338   NODE_NAME_CASE(DS_ORDERED_COUNT)
4339   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4340   NODE_NAME_CASE(ATOMIC_INC)
4341   NODE_NAME_CASE(ATOMIC_DEC)
4342   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4343   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4344   NODE_NAME_CASE(BUFFER_LOAD)
4345   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4346   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4347   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4348   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4349   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4350   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4351   NODE_NAME_CASE(SBUFFER_LOAD)
4352   NODE_NAME_CASE(BUFFER_STORE)
4353   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4354   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4355   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4356   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4357   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4358   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4359   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4360   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4361   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4362   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4363   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4364   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4365   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4366   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4367   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4368   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4369   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4370   NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4371   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4372 
4373   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4374   }
4375   return nullptr;
4376 }
4377 
4378 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4379                                               SelectionDAG &DAG, int Enabled,
4380                                               int &RefinementSteps,
4381                                               bool &UseOneConstNR,
4382                                               bool Reciprocal) const {
4383   EVT VT = Operand.getValueType();
4384 
4385   if (VT == MVT::f32) {
4386     RefinementSteps = 0;
4387     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4388   }
4389 
4390   // TODO: There is also f64 rsq instruction, but the documentation is less
4391   // clear on its precision.
4392 
4393   return SDValue();
4394 }
4395 
4396 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4397                                                SelectionDAG &DAG, int Enabled,
4398                                                int &RefinementSteps) const {
4399   EVT VT = Operand.getValueType();
4400 
4401   if (VT == MVT::f32) {
4402     // Reciprocal, < 1 ulp error.
4403     //
4404     // This reciprocal approximation converges to < 0.5 ulp error with one
4405     // newton rhapson performed with two fused multiple adds (FMAs).
4406 
4407     RefinementSteps = 0;
4408     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4409   }
4410 
4411   // TODO: There is also f64 rcp instruction, but the documentation is less
4412   // clear on its precision.
4413 
4414   return SDValue();
4415 }
4416 
4417 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4418     const SDValue Op, KnownBits &Known,
4419     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4420 
4421   Known.resetAll(); // Don't know anything.
4422 
4423   unsigned Opc = Op.getOpcode();
4424 
4425   switch (Opc) {
4426   default:
4427     break;
4428   case AMDGPUISD::CARRY:
4429   case AMDGPUISD::BORROW: {
4430     Known.Zero = APInt::getHighBitsSet(32, 31);
4431     break;
4432   }
4433 
4434   case AMDGPUISD::BFE_I32:
4435   case AMDGPUISD::BFE_U32: {
4436     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4437     if (!CWidth)
4438       return;
4439 
4440     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4441 
4442     if (Opc == AMDGPUISD::BFE_U32)
4443       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4444 
4445     break;
4446   }
4447   case AMDGPUISD::FP_TO_FP16:
4448   case AMDGPUISD::FP16_ZEXT: {
4449     unsigned BitWidth = Known.getBitWidth();
4450 
4451     // High bits are zero.
4452     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4453     break;
4454   }
4455   case AMDGPUISD::MUL_U24:
4456   case AMDGPUISD::MUL_I24: {
4457     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4458     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4459     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4460                       RHSKnown.countMinTrailingZeros();
4461     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4462     // Skip extra check if all bits are known zeros.
4463     if (TrailZ >= 32)
4464       break;
4465 
4466     // Truncate to 24 bits.
4467     LHSKnown = LHSKnown.trunc(24);
4468     RHSKnown = RHSKnown.trunc(24);
4469 
4470     if (Opc == AMDGPUISD::MUL_I24) {
4471       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4472       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4473       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4474       if (MaxValBits >= 32)
4475         break;
4476       bool LHSNegative = LHSKnown.isNegative();
4477       bool LHSNonNegative = LHSKnown.isNonNegative();
4478       bool LHSPositive = LHSKnown.isStrictlyPositive();
4479       bool RHSNegative = RHSKnown.isNegative();
4480       bool RHSNonNegative = RHSKnown.isNonNegative();
4481       bool RHSPositive = RHSKnown.isStrictlyPositive();
4482 
4483       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4484         Known.Zero.setHighBits(32 - MaxValBits);
4485       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4486         Known.One.setHighBits(32 - MaxValBits);
4487     } else {
4488       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4489       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4490       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4491       if (MaxValBits >= 32)
4492         break;
4493       Known.Zero.setHighBits(32 - MaxValBits);
4494     }
4495     break;
4496   }
4497   case AMDGPUISD::PERM: {
4498     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4499     if (!CMask)
4500       return;
4501 
4502     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4503     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4504     unsigned Sel = CMask->getZExtValue();
4505 
4506     for (unsigned I = 0; I < 32; I += 8) {
4507       unsigned SelBits = Sel & 0xff;
4508       if (SelBits < 4) {
4509         SelBits *= 8;
4510         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4511         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4512       } else if (SelBits < 7) {
4513         SelBits = (SelBits & 3) * 8;
4514         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4515         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4516       } else if (SelBits == 0x0c) {
4517         Known.Zero |= 0xFFull << I;
4518       } else if (SelBits > 0x0c) {
4519         Known.One |= 0xFFull << I;
4520       }
4521       Sel >>= 8;
4522     }
4523     break;
4524   }
4525   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4526     Known.Zero.setHighBits(24);
4527     break;
4528   }
4529   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4530     Known.Zero.setHighBits(16);
4531     break;
4532   }
4533   case AMDGPUISD::LDS: {
4534     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4535     Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4536 
4537     Known.Zero.setHighBits(16);
4538     Known.Zero.setLowBits(Log2(Alignment));
4539     break;
4540   }
4541   case ISD::INTRINSIC_WO_CHAIN: {
4542     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4543     switch (IID) {
4544     case Intrinsic::amdgcn_mbcnt_lo:
4545     case Intrinsic::amdgcn_mbcnt_hi: {
4546       const GCNSubtarget &ST =
4547           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4548       // These return at most the wavefront size - 1.
4549       unsigned Size = Op.getValueType().getSizeInBits();
4550       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4551       break;
4552     }
4553     default:
4554       break;
4555     }
4556   }
4557   }
4558 }
4559 
4560 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4561     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4562     unsigned Depth) const {
4563   switch (Op.getOpcode()) {
4564   case AMDGPUISD::BFE_I32: {
4565     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4566     if (!Width)
4567       return 1;
4568 
4569     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4570     if (!isNullConstant(Op.getOperand(1)))
4571       return SignBits;
4572 
4573     // TODO: Could probably figure something out with non-0 offsets.
4574     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4575     return std::max(SignBits, Op0SignBits);
4576   }
4577 
4578   case AMDGPUISD::BFE_U32: {
4579     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4580     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4581   }
4582 
4583   case AMDGPUISD::CARRY:
4584   case AMDGPUISD::BORROW:
4585     return 31;
4586   case AMDGPUISD::BUFFER_LOAD_BYTE:
4587     return 25;
4588   case AMDGPUISD::BUFFER_LOAD_SHORT:
4589     return 17;
4590   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4591     return 24;
4592   case AMDGPUISD::BUFFER_LOAD_USHORT:
4593     return 16;
4594   case AMDGPUISD::FP_TO_FP16:
4595   case AMDGPUISD::FP16_ZEXT:
4596     return 16;
4597   default:
4598     return 1;
4599   }
4600 }
4601 
4602 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4603   GISelKnownBits &Analysis, Register R,
4604   const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4605   unsigned Depth) const {
4606   const MachineInstr *MI = MRI.getVRegDef(R);
4607   if (!MI)
4608     return 1;
4609 
4610   // TODO: Check range metadata on MMO.
4611   switch (MI->getOpcode()) {
4612   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4613     return 25;
4614   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4615     return 17;
4616   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4617     return 24;
4618   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4619     return 16;
4620   default:
4621     return 1;
4622   }
4623 }
4624 
4625 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4626                                                         const SelectionDAG &DAG,
4627                                                         bool SNaN,
4628                                                         unsigned Depth) const {
4629   unsigned Opcode = Op.getOpcode();
4630   switch (Opcode) {
4631   case AMDGPUISD::FMIN_LEGACY:
4632   case AMDGPUISD::FMAX_LEGACY: {
4633     if (SNaN)
4634       return true;
4635 
4636     // TODO: Can check no nans on one of the operands for each one, but which
4637     // one?
4638     return false;
4639   }
4640   case AMDGPUISD::FMUL_LEGACY:
4641   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4642     if (SNaN)
4643       return true;
4644     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4645            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4646   }
4647   case AMDGPUISD::FMED3:
4648   case AMDGPUISD::FMIN3:
4649   case AMDGPUISD::FMAX3:
4650   case AMDGPUISD::FMAD_FTZ: {
4651     if (SNaN)
4652       return true;
4653     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4654            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4655            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4656   }
4657   case AMDGPUISD::CVT_F32_UBYTE0:
4658   case AMDGPUISD::CVT_F32_UBYTE1:
4659   case AMDGPUISD::CVT_F32_UBYTE2:
4660   case AMDGPUISD::CVT_F32_UBYTE3:
4661     return true;
4662 
4663   case AMDGPUISD::RCP:
4664   case AMDGPUISD::RSQ:
4665   case AMDGPUISD::RCP_LEGACY:
4666   case AMDGPUISD::RSQ_CLAMP: {
4667     if (SNaN)
4668       return true;
4669 
4670     // TODO: Need is known positive check.
4671     return false;
4672   }
4673   case AMDGPUISD::LDEXP:
4674   case AMDGPUISD::FRACT: {
4675     if (SNaN)
4676       return true;
4677     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4678   }
4679   case AMDGPUISD::DIV_SCALE:
4680   case AMDGPUISD::DIV_FMAS:
4681   case AMDGPUISD::DIV_FIXUP:
4682     // TODO: Refine on operands.
4683     return SNaN;
4684   case AMDGPUISD::SIN_HW:
4685   case AMDGPUISD::COS_HW: {
4686     // TODO: Need check for infinity
4687     return SNaN;
4688   }
4689   case ISD::INTRINSIC_WO_CHAIN: {
4690     unsigned IntrinsicID
4691       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4692     // TODO: Handle more intrinsics
4693     switch (IntrinsicID) {
4694     case Intrinsic::amdgcn_cubeid:
4695       return true;
4696 
4697     case Intrinsic::amdgcn_frexp_mant: {
4698       if (SNaN)
4699         return true;
4700       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4701     }
4702     case Intrinsic::amdgcn_cvt_pkrtz: {
4703       if (SNaN)
4704         return true;
4705       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4706              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4707     }
4708     case Intrinsic::amdgcn_rcp:
4709     case Intrinsic::amdgcn_rsq:
4710     case Intrinsic::amdgcn_rcp_legacy:
4711     case Intrinsic::amdgcn_rsq_legacy:
4712     case Intrinsic::amdgcn_rsq_clamp: {
4713       if (SNaN)
4714         return true;
4715 
4716       // TODO: Need is known positive check.
4717       return false;
4718     }
4719     case Intrinsic::amdgcn_trig_preop:
4720     case Intrinsic::amdgcn_fdot2:
4721       // TODO: Refine on operand
4722       return SNaN;
4723     default:
4724       return false;
4725     }
4726   }
4727   default:
4728     return false;
4729   }
4730 }
4731 
4732 TargetLowering::AtomicExpansionKind
4733 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4734   switch (RMW->getOperation()) {
4735   case AtomicRMWInst::Nand:
4736   case AtomicRMWInst::FAdd:
4737   case AtomicRMWInst::FSub:
4738     return AtomicExpansionKind::CmpXChg;
4739   default:
4740     return AtomicExpansionKind::None;
4741   }
4742 }
4743