1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUCallLowering.h"
19 #include "AMDGPUFrameLowering.h"
20 #include "AMDGPUIntrinsicInfo.h"
21 #include "AMDGPURegisterInfo.h"
22 #include "AMDGPUSubtarget.h"
23 #include "AMDGPUTargetMachine.h"
24 #include "R600MachineFunctionInfo.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/Support/KnownBits.h"
35 using namespace llvm;
36 
37 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
38                             CCValAssign::LocInfo LocInfo,
39                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
40   MachineFunction &MF = State.getMachineFunction();
41   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
42 
43   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
44                                          ArgFlags.getOrigAlign());
45   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
46   return true;
47 }
48 
49 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
50                            CCValAssign::LocInfo LocInfo,
51                            ISD::ArgFlagsTy ArgFlags, CCState &State,
52                            const TargetRegisterClass *RC,
53                            unsigned NumRegs) {
54   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
55   unsigned RegResult = State.AllocateReg(RegList);
56   if (RegResult == AMDGPU::NoRegister)
57     return false;
58 
59   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
60   return true;
61 }
62 
63 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
64                               CCValAssign::LocInfo LocInfo,
65                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
66   switch (LocVT.SimpleTy) {
67   case MVT::i64:
68   case MVT::f64:
69   case MVT::v2i32:
70   case MVT::v2f32: {
71     // Up to SGPR0-SGPR39
72     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
73                           &AMDGPU::SGPR_64RegClass, 20);
74   }
75   default:
76     return false;
77   }
78 }
79 
80 // Allocate up to VGPR31.
81 //
82 // TODO: Since there are no VGPR alignent requirements would it be better to
83 // split into individual scalar registers?
84 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
85                               CCValAssign::LocInfo LocInfo,
86                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
87   switch (LocVT.SimpleTy) {
88   case MVT::i64:
89   case MVT::f64:
90   case MVT::v2i32:
91   case MVT::v2f32: {
92     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
93                           &AMDGPU::VReg_64RegClass, 31);
94   }
95   case MVT::v4i32:
96   case MVT::v4f32:
97   case MVT::v2i64:
98   case MVT::v2f64: {
99     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
100                           &AMDGPU::VReg_128RegClass, 29);
101   }
102   case MVT::v8i32:
103   case MVT::v8f32: {
104     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
105                           &AMDGPU::VReg_256RegClass, 25);
106 
107   }
108   case MVT::v16i32:
109   case MVT::v16f32: {
110     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
111                           &AMDGPU::VReg_512RegClass, 17);
112 
113   }
114   default:
115     return false;
116   }
117 }
118 
119 #include "AMDGPUGenCallingConv.inc"
120 
121 // Find a larger type to do a load / store of a vector with.
122 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
123   unsigned StoreSize = VT.getStoreSizeInBits();
124   if (StoreSize <= 32)
125     return EVT::getIntegerVT(Ctx, StoreSize);
126 
127   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
128   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
129 }
130 
131 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
132   KnownBits Known;
133   EVT VT = Op.getValueType();
134   DAG.computeKnownBits(Op, Known);
135 
136   return VT.getSizeInBits() - Known.countMinLeadingZeros();
137 }
138 
139 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
140   EVT VT = Op.getValueType();
141 
142   // In order for this to be a signed 24-bit value, bit 23, must
143   // be a sign bit.
144   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
145 }
146 
147 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
148                                            const AMDGPUSubtarget &STI)
149     : TargetLowering(TM), Subtarget(&STI) {
150   AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
151   // Lower floating point store/load to integer store/load to reduce the number
152   // of patterns in tablegen.
153   setOperationAction(ISD::LOAD, MVT::f32, Promote);
154   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
155 
156   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
157   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
158 
159   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
160   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
161 
162   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
163   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
164 
165   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
166   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
167 
168   setOperationAction(ISD::LOAD, MVT::i64, Promote);
169   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
170 
171   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
172   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
173 
174   setOperationAction(ISD::LOAD, MVT::f64, Promote);
175   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
176 
177   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
178   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
179 
180   // There are no 64-bit extloads. These should be done as a 32-bit extload and
181   // an extension to 64-bit.
182   for (MVT VT : MVT::integer_valuetypes()) {
183     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
184     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
185     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
186   }
187 
188   for (MVT VT : MVT::integer_valuetypes()) {
189     if (VT == MVT::i64)
190       continue;
191 
192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
193     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
194     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
195     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
196 
197     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
198     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
199     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
200     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
201 
202     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
203     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
204     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
205     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
206   }
207 
208   for (MVT VT : MVT::integer_vector_valuetypes()) {
209     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
210     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
211     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
212     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
213     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
214     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
215     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
216     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
217     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
218     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
219     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
220     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
221   }
222 
223   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
224   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
225   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
226   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
227 
228   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
229   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
230   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
231   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
232 
233   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
234   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
235   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
236   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
237 
238   setOperationAction(ISD::STORE, MVT::f32, Promote);
239   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
240 
241   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
242   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
243 
244   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
245   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
246 
247   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
248   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
249 
250   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
251   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
252 
253   setOperationAction(ISD::STORE, MVT::i64, Promote);
254   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
255 
256   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
257   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
258 
259   setOperationAction(ISD::STORE, MVT::f64, Promote);
260   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
261 
262   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
263   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
264 
265   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
266   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
267   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
268   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
269 
270   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
271   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
272   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
273   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
274 
275   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
276   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
277   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
278   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
279 
280   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
281   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
282 
283   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
284   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
285 
286   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
287   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
288 
289   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
290   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
291 
292 
293   setOperationAction(ISD::Constant, MVT::i32, Legal);
294   setOperationAction(ISD::Constant, MVT::i64, Legal);
295   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
296   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
297 
298   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
299   setOperationAction(ISD::BRIND, MVT::Other, Expand);
300 
301   // This is totally unsupported, just custom lower to produce an error.
302   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
303 
304   // Library functions.  These default to Expand, but we have instructions
305   // for them.
306   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
307   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
308   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
309   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
310   setOperationAction(ISD::FABS,   MVT::f32, Legal);
311   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
312   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
313   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
314   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
315   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
316 
317   setOperationAction(ISD::FROUND, MVT::f32, Custom);
318   setOperationAction(ISD::FROUND, MVT::f64, Custom);
319 
320   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
321   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
322 
323   setOperationAction(ISD::FREM, MVT::f32, Custom);
324   setOperationAction(ISD::FREM, MVT::f64, Custom);
325 
326   // v_mad_f32 does not support denormals according to some sources.
327   if (!Subtarget->hasFP32Denormals())
328     setOperationAction(ISD::FMAD, MVT::f32, Legal);
329 
330   // Expand to fneg + fadd.
331   setOperationAction(ISD::FSUB, MVT::f64, Expand);
332 
333   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
334   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
335   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
336   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
337   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
338   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
339   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
340   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
341   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
342   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
343 
344   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
345     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
346     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
347     setOperationAction(ISD::FRINT, MVT::f64, Custom);
348     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
349   }
350 
351   if (!Subtarget->hasBFI()) {
352     // fcopysign can be done in a single instruction with BFI.
353     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
354     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
355   }
356 
357   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
358   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
359   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
360 
361   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
362   for (MVT VT : ScalarIntVTs) {
363     // These should use [SU]DIVREM, so set them to expand
364     setOperationAction(ISD::SDIV, VT, Expand);
365     setOperationAction(ISD::UDIV, VT, Expand);
366     setOperationAction(ISD::SREM, VT, Expand);
367     setOperationAction(ISD::UREM, VT, Expand);
368 
369     // GPU does not have divrem function for signed or unsigned.
370     setOperationAction(ISD::SDIVREM, VT, Custom);
371     setOperationAction(ISD::UDIVREM, VT, Custom);
372 
373     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
374     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
375     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
376 
377     setOperationAction(ISD::BSWAP, VT, Expand);
378     setOperationAction(ISD::CTTZ, VT, Expand);
379     setOperationAction(ISD::CTLZ, VT, Expand);
380   }
381 
382   if (!Subtarget->hasBCNT(32))
383     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
384 
385   if (!Subtarget->hasBCNT(64))
386     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
387 
388   // The hardware supports 32-bit ROTR, but not ROTL.
389   setOperationAction(ISD::ROTL, MVT::i32, Expand);
390   setOperationAction(ISD::ROTL, MVT::i64, Expand);
391   setOperationAction(ISD::ROTR, MVT::i64, Expand);
392 
393   setOperationAction(ISD::MUL, MVT::i64, Expand);
394   setOperationAction(ISD::MULHU, MVT::i64, Expand);
395   setOperationAction(ISD::MULHS, MVT::i64, Expand);
396   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
397   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
398   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
399   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
400   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
401 
402   setOperationAction(ISD::SMIN, MVT::i32, Legal);
403   setOperationAction(ISD::UMIN, MVT::i32, Legal);
404   setOperationAction(ISD::SMAX, MVT::i32, Legal);
405   setOperationAction(ISD::UMAX, MVT::i32, Legal);
406 
407   if (Subtarget->hasFFBH())
408     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
409 
410   if (Subtarget->hasFFBL())
411     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
412 
413   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
414   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
415   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
416   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
417 
418   // We only really have 32-bit BFE instructions (and 16-bit on VI).
419   //
420   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
421   // effort to match them now. We want this to be false for i64 cases when the
422   // extraction isn't restricted to the upper or lower half. Ideally we would
423   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
424   // span the midpoint are probably relatively rare, so don't worry about them
425   // for now.
426   if (Subtarget->hasBFE())
427     setHasExtractBitsInsn(true);
428 
429   static const MVT::SimpleValueType VectorIntTypes[] = {
430     MVT::v2i32, MVT::v4i32
431   };
432 
433   for (MVT VT : VectorIntTypes) {
434     // Expand the following operations for the current type by default.
435     setOperationAction(ISD::ADD,  VT, Expand);
436     setOperationAction(ISD::AND,  VT, Expand);
437     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
438     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
439     setOperationAction(ISD::MUL,  VT, Expand);
440     setOperationAction(ISD::MULHU, VT, Expand);
441     setOperationAction(ISD::MULHS, VT, Expand);
442     setOperationAction(ISD::OR,   VT, Expand);
443     setOperationAction(ISD::SHL,  VT, Expand);
444     setOperationAction(ISD::SRA,  VT, Expand);
445     setOperationAction(ISD::SRL,  VT, Expand);
446     setOperationAction(ISD::ROTL, VT, Expand);
447     setOperationAction(ISD::ROTR, VT, Expand);
448     setOperationAction(ISD::SUB,  VT, Expand);
449     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
450     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
451     setOperationAction(ISD::SDIV, VT, Expand);
452     setOperationAction(ISD::UDIV, VT, Expand);
453     setOperationAction(ISD::SREM, VT, Expand);
454     setOperationAction(ISD::UREM, VT, Expand);
455     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
456     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
457     setOperationAction(ISD::SDIVREM, VT, Custom);
458     setOperationAction(ISD::UDIVREM, VT, Expand);
459     setOperationAction(ISD::ADDC, VT, Expand);
460     setOperationAction(ISD::SUBC, VT, Expand);
461     setOperationAction(ISD::ADDE, VT, Expand);
462     setOperationAction(ISD::SUBE, VT, Expand);
463     setOperationAction(ISD::SELECT, VT, Expand);
464     setOperationAction(ISD::VSELECT, VT, Expand);
465     setOperationAction(ISD::SELECT_CC, VT, Expand);
466     setOperationAction(ISD::XOR,  VT, Expand);
467     setOperationAction(ISD::BSWAP, VT, Expand);
468     setOperationAction(ISD::CTPOP, VT, Expand);
469     setOperationAction(ISD::CTTZ, VT, Expand);
470     setOperationAction(ISD::CTLZ, VT, Expand);
471     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
472     setOperationAction(ISD::SETCC, VT, Expand);
473   }
474 
475   static const MVT::SimpleValueType FloatVectorTypes[] = {
476     MVT::v2f32, MVT::v4f32
477   };
478 
479   for (MVT VT : FloatVectorTypes) {
480     setOperationAction(ISD::FABS, VT, Expand);
481     setOperationAction(ISD::FMINNUM, VT, Expand);
482     setOperationAction(ISD::FMAXNUM, VT, Expand);
483     setOperationAction(ISD::FADD, VT, Expand);
484     setOperationAction(ISD::FCEIL, VT, Expand);
485     setOperationAction(ISD::FCOS, VT, Expand);
486     setOperationAction(ISD::FDIV, VT, Expand);
487     setOperationAction(ISD::FEXP2, VT, Expand);
488     setOperationAction(ISD::FLOG2, VT, Expand);
489     setOperationAction(ISD::FREM, VT, Expand);
490     setOperationAction(ISD::FPOW, VT, Expand);
491     setOperationAction(ISD::FFLOOR, VT, Expand);
492     setOperationAction(ISD::FTRUNC, VT, Expand);
493     setOperationAction(ISD::FMUL, VT, Expand);
494     setOperationAction(ISD::FMA, VT, Expand);
495     setOperationAction(ISD::FRINT, VT, Expand);
496     setOperationAction(ISD::FNEARBYINT, VT, Expand);
497     setOperationAction(ISD::FSQRT, VT, Expand);
498     setOperationAction(ISD::FSIN, VT, Expand);
499     setOperationAction(ISD::FSUB, VT, Expand);
500     setOperationAction(ISD::FNEG, VT, Expand);
501     setOperationAction(ISD::VSELECT, VT, Expand);
502     setOperationAction(ISD::SELECT_CC, VT, Expand);
503     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
504     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
505     setOperationAction(ISD::SETCC, VT, Expand);
506   }
507 
508   // This causes using an unrolled select operation rather than expansion with
509   // bit operations. This is in general better, but the alternative using BFI
510   // instructions may be better if the select sources are SGPRs.
511   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
512   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
513 
514   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
515   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
516 
517   // There are no libcalls of any kind.
518   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
519     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
520 
521   setBooleanContents(ZeroOrNegativeOneBooleanContent);
522   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
523 
524   setSchedulingPreference(Sched::RegPressure);
525   setJumpIsExpensive(true);
526 
527   // FIXME: This is only partially true. If we have to do vector compares, any
528   // SGPR pair can be a condition register. If we have a uniform condition, we
529   // are better off doing SALU operations, where there is only one SCC. For now,
530   // we don't have a way of knowing during instruction selection if a condition
531   // will be uniform and we always use vector compares. Assume we are using
532   // vector compares until that is fixed.
533   setHasMultipleConditionRegisters(true);
534 
535   // SI at least has hardware support for floating point exceptions, but no way
536   // of using or handling them is implemented. They are also optional in OpenCL
537   // (Section 7.3)
538   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
539 
540   PredictableSelectIsExpensive = false;
541 
542   // We want to find all load dependencies for long chains of stores to enable
543   // merging into very wide vectors. The problem is with vectors with > 4
544   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
545   // vectors are a legal type, even though we have to split the loads
546   // usually. When we can more precisely specify load legality per address
547   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
548   // smarter so that they can figure out what to do in 2 iterations without all
549   // N > 4 stores on the same chain.
550   GatherAllAliasesMaxDepth = 16;
551 
552   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
553   // about these during lowering.
554   MaxStoresPerMemcpy  = 0xffffffff;
555   MaxStoresPerMemmove = 0xffffffff;
556   MaxStoresPerMemset  = 0xffffffff;
557 
558   setTargetDAGCombine(ISD::BITCAST);
559   setTargetDAGCombine(ISD::SHL);
560   setTargetDAGCombine(ISD::SRA);
561   setTargetDAGCombine(ISD::SRL);
562   setTargetDAGCombine(ISD::MUL);
563   setTargetDAGCombine(ISD::MULHU);
564   setTargetDAGCombine(ISD::MULHS);
565   setTargetDAGCombine(ISD::SELECT);
566   setTargetDAGCombine(ISD::SELECT_CC);
567   setTargetDAGCombine(ISD::STORE);
568   setTargetDAGCombine(ISD::FADD);
569   setTargetDAGCombine(ISD::FSUB);
570   setTargetDAGCombine(ISD::FNEG);
571   setTargetDAGCombine(ISD::FABS);
572   setTargetDAGCombine(ISD::AssertZext);
573   setTargetDAGCombine(ISD::AssertSext);
574 }
575 
576 //===----------------------------------------------------------------------===//
577 // Target Information
578 //===----------------------------------------------------------------------===//
579 
580 LLVM_READNONE
581 static bool fnegFoldsIntoOp(unsigned Opc) {
582   switch (Opc) {
583   case ISD::FADD:
584   case ISD::FSUB:
585   case ISD::FMUL:
586   case ISD::FMA:
587   case ISD::FMAD:
588   case ISD::FMINNUM:
589   case ISD::FMAXNUM:
590   case ISD::FSIN:
591   case ISD::FTRUNC:
592   case ISD::FRINT:
593   case ISD::FNEARBYINT:
594   case AMDGPUISD::RCP:
595   case AMDGPUISD::RCP_LEGACY:
596   case AMDGPUISD::SIN_HW:
597   case AMDGPUISD::FMUL_LEGACY:
598   case AMDGPUISD::FMIN_LEGACY:
599   case AMDGPUISD::FMAX_LEGACY:
600     return true;
601   default:
602     return false;
603   }
604 }
605 
606 /// \p returns true if the operation will definitely need to use a 64-bit
607 /// encoding, and thus will use a VOP3 encoding regardless of the source
608 /// modifiers.
609 LLVM_READONLY
610 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
611   return N->getNumOperands() > 2 || VT == MVT::f64;
612 }
613 
614 // Most FP instructions support source modifiers, but this could be refined
615 // slightly.
616 LLVM_READONLY
617 static bool hasSourceMods(const SDNode *N) {
618   if (isa<MemSDNode>(N))
619     return false;
620 
621   switch (N->getOpcode()) {
622   case ISD::CopyToReg:
623   case ISD::SELECT:
624   case ISD::FDIV:
625   case ISD::FREM:
626   case ISD::INLINEASM:
627   case AMDGPUISD::INTERP_P1:
628   case AMDGPUISD::INTERP_P2:
629   case AMDGPUISD::DIV_SCALE:
630 
631   // TODO: Should really be looking at the users of the bitcast. These are
632   // problematic because bitcasts are used to legalize all stores to integer
633   // types.
634   case ISD::BITCAST:
635     return false;
636   default:
637     return true;
638   }
639 }
640 
641 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
642                                                  unsigned CostThreshold) {
643   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
644   // it is truly free to use a source modifier in all cases. If there are
645   // multiple users but for each one will necessitate using VOP3, there will be
646   // a code size increase. Try to avoid increasing code size unless we know it
647   // will save on the instruction count.
648   unsigned NumMayIncreaseSize = 0;
649   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
650 
651   // XXX - Should this limit number of uses to check?
652   for (const SDNode *U : N->uses()) {
653     if (!hasSourceMods(U))
654       return false;
655 
656     if (!opMustUseVOP3Encoding(U, VT)) {
657       if (++NumMayIncreaseSize > CostThreshold)
658         return false;
659     }
660   }
661 
662   return true;
663 }
664 
665 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
666   return MVT::i32;
667 }
668 
669 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
670   return true;
671 }
672 
673 // The backend supports 32 and 64 bit floating point immediates.
674 // FIXME: Why are we reporting vectors of FP immediates as legal?
675 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
676   EVT ScalarVT = VT.getScalarType();
677   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
678          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
679 }
680 
681 // We don't want to shrink f64 / f32 constants.
682 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
683   EVT ScalarVT = VT.getScalarType();
684   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
685 }
686 
687 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
688                                                  ISD::LoadExtType,
689                                                  EVT NewVT) const {
690 
691   unsigned NewSize = NewVT.getStoreSizeInBits();
692 
693   // If we are reducing to a 32-bit load, this is always better.
694   if (NewSize == 32)
695     return true;
696 
697   EVT OldVT = N->getValueType(0);
698   unsigned OldSize = OldVT.getStoreSizeInBits();
699 
700   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
701   // extloads, so doing one requires using a buffer_load. In cases where we
702   // still couldn't use a scalar load, using the wider load shouldn't really
703   // hurt anything.
704 
705   // If the old size already had to be an extload, there's no harm in continuing
706   // to reduce the width.
707   return (OldSize < 32);
708 }
709 
710 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
711                                                    EVT CastTy) const {
712 
713   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
714 
715   if (LoadTy.getScalarType() == MVT::i32)
716     return false;
717 
718   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
719   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
720 
721   return (LScalarSize < CastScalarSize) ||
722          (CastScalarSize >= 32);
723 }
724 
725 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
726 // profitable with the expansion for 64-bit since it's generally good to
727 // speculate things.
728 // FIXME: These should really have the size as a parameter.
729 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
730   return true;
731 }
732 
733 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
734   return true;
735 }
736 
737 //===---------------------------------------------------------------------===//
738 // Target Properties
739 //===---------------------------------------------------------------------===//
740 
741 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
742   assert(VT.isFloatingPoint());
743 
744   // Packed operations do not have a fabs modifier.
745   return VT == MVT::f32 || VT == MVT::f64 ||
746          (Subtarget->has16BitInsts() && VT == MVT::f16);
747 }
748 
749 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
750   assert(VT.isFloatingPoint());
751   return VT == MVT::f32 || VT == MVT::f64 ||
752          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
753          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
754 }
755 
756 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
757                                                          unsigned NumElem,
758                                                          unsigned AS) const {
759   return true;
760 }
761 
762 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
763   // There are few operations which truly have vector input operands. Any vector
764   // operation is going to involve operations on each component, and a
765   // build_vector will be a copy per element, so it always makes sense to use a
766   // build_vector input in place of the extracted element to avoid a copy into a
767   // super register.
768   //
769   // We should probably only do this if all users are extracts only, but this
770   // should be the common case.
771   return true;
772 }
773 
774 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
775   // Truncate is just accessing a subregister.
776 
777   unsigned SrcSize = Source.getSizeInBits();
778   unsigned DestSize = Dest.getSizeInBits();
779 
780   return DestSize < SrcSize && DestSize % 32 == 0 ;
781 }
782 
783 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
784   // Truncate is just accessing a subregister.
785 
786   unsigned SrcSize = Source->getScalarSizeInBits();
787   unsigned DestSize = Dest->getScalarSizeInBits();
788 
789   if (DestSize== 16 && Subtarget->has16BitInsts())
790     return SrcSize >= 32;
791 
792   return DestSize < SrcSize && DestSize % 32 == 0;
793 }
794 
795 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
796   unsigned SrcSize = Src->getScalarSizeInBits();
797   unsigned DestSize = Dest->getScalarSizeInBits();
798 
799   if (SrcSize == 16 && Subtarget->has16BitInsts())
800     return DestSize >= 32;
801 
802   return SrcSize == 32 && DestSize == 64;
803 }
804 
805 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
806   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
807   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
808   // this will enable reducing 64-bit operations the 32-bit, which is always
809   // good.
810 
811   if (Src == MVT::i16)
812     return Dest == MVT::i32 ||Dest == MVT::i64 ;
813 
814   return Src == MVT::i32 && Dest == MVT::i64;
815 }
816 
817 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
818   return isZExtFree(Val.getValueType(), VT2);
819 }
820 
821 // v_mad_mix* support a conversion from f16 to f32.
822 //
823 // There is only one special case when denormals are enabled we don't currently,
824 // where this is OK to use.
825 bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode,
826                                            EVT DestVT, EVT SrcVT) const {
827   return Opcode == ISD::FMAD && Subtarget->hasMadMixInsts() &&
828          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
829          SrcVT.getScalarType() == MVT::f16;
830 }
831 
832 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
833   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
834   // limited number of native 64-bit operations. Shrinking an operation to fit
835   // in a single 32-bit register should always be helpful. As currently used,
836   // this is much less general than the name suggests, and is only used in
837   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
838   // not profitable, and may actually be harmful.
839   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
840 }
841 
842 //===---------------------------------------------------------------------===//
843 // TargetLowering Callbacks
844 //===---------------------------------------------------------------------===//
845 
846 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
847                                                   bool IsVarArg) {
848   switch (CC) {
849   case CallingConv::AMDGPU_KERNEL:
850   case CallingConv::SPIR_KERNEL:
851     return CC_AMDGPU_Kernel;
852   case CallingConv::AMDGPU_VS:
853   case CallingConv::AMDGPU_GS:
854   case CallingConv::AMDGPU_PS:
855   case CallingConv::AMDGPU_CS:
856   case CallingConv::AMDGPU_HS:
857   case CallingConv::AMDGPU_ES:
858   case CallingConv::AMDGPU_LS:
859     return CC_AMDGPU;
860   case CallingConv::C:
861   case CallingConv::Fast:
862   case CallingConv::Cold:
863     return CC_AMDGPU_Func;
864   default:
865     report_fatal_error("Unsupported calling convention.");
866   }
867 }
868 
869 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
870                                                     bool IsVarArg) {
871   switch (CC) {
872   case CallingConv::AMDGPU_KERNEL:
873   case CallingConv::SPIR_KERNEL:
874     return CC_AMDGPU_Kernel;
875   case CallingConv::AMDGPU_VS:
876   case CallingConv::AMDGPU_GS:
877   case CallingConv::AMDGPU_PS:
878   case CallingConv::AMDGPU_CS:
879   case CallingConv::AMDGPU_HS:
880   case CallingConv::AMDGPU_ES:
881   case CallingConv::AMDGPU_LS:
882     return RetCC_SI_Shader;
883   case CallingConv::C:
884   case CallingConv::Fast:
885   case CallingConv::Cold:
886     return RetCC_AMDGPU_Func;
887   default:
888     report_fatal_error("Unsupported calling convention.");
889   }
890 }
891 
892 /// The SelectionDAGBuilder will automatically promote function arguments
893 /// with illegal types.  However, this does not work for the AMDGPU targets
894 /// since the function arguments are stored in memory as these illegal types.
895 /// In order to handle this properly we need to get the original types sizes
896 /// from the LLVM IR Function and fixup the ISD:InputArg values before
897 /// passing them to AnalyzeFormalArguments()
898 
899 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
900 /// input values across multiple registers.  Each item in the Ins array
901 /// represents a single value that will be stored in registers.  Ins[x].VT is
902 /// the value type of the value that will be stored in the register, so
903 /// whatever SDNode we lower the argument to needs to be this type.
904 ///
905 /// In order to correctly lower the arguments we need to know the size of each
906 /// argument.  Since Ins[x].VT gives us the size of the register that will
907 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
908 /// for the orignal function argument so that we can deduce the correct memory
909 /// type to use for Ins[x].  In most cases the correct memory type will be
910 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
911 /// we have a kernel argument of type v8i8, this argument will be split into
912 /// 8 parts and each part will be represented by its own item in the Ins array.
913 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
914 /// the argument before it was split.  From this, we deduce that the memory type
915 /// for each individual part is i8.  We pass the memory type as LocVT to the
916 /// calling convention analysis function and the register type (Ins[x].VT) as
917 /// the ValVT.
918 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
919                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
920   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
921     const ISD::InputArg &In = Ins[i];
922     EVT MemVT;
923 
924     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
925 
926     if (!Subtarget->isAmdHsaOS() &&
927         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
928       // The ABI says the caller will extend these values to 32-bits.
929       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
930     } else if (NumRegs == 1) {
931       // This argument is not split, so the IR type is the memory type.
932       assert(!In.Flags.isSplit());
933       if (In.ArgVT.isExtended()) {
934         // We have an extended type, like i24, so we should just use the register type
935         MemVT = In.VT;
936       } else {
937         MemVT = In.ArgVT;
938       }
939     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
940                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
941       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
942       // We have a vector value which has been split into a vector with
943       // the same scalar type, but fewer elements.  This should handle
944       // all the floating-point vector types.
945       MemVT = In.VT;
946     } else if (In.ArgVT.isVector() &&
947                In.ArgVT.getVectorNumElements() == NumRegs) {
948       // This arg has been split so that each element is stored in a separate
949       // register.
950       MemVT = In.ArgVT.getScalarType();
951     } else if (In.ArgVT.isExtended()) {
952       // We have an extended type, like i65.
953       MemVT = In.VT;
954     } else {
955       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
956       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
957       if (In.VT.isInteger()) {
958         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
959       } else if (In.VT.isVector()) {
960         assert(!In.VT.getScalarType().isFloatingPoint());
961         unsigned NumElements = In.VT.getVectorNumElements();
962         assert(MemoryBits % NumElements == 0);
963         // This vector type has been split into another vector type with
964         // a different elements size.
965         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
966                                          MemoryBits / NumElements);
967         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
968       } else {
969         llvm_unreachable("cannot deduce memory type.");
970       }
971     }
972 
973     // Convert one element vectors to scalar.
974     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
975       MemVT = MemVT.getScalarType();
976 
977     if (MemVT.isExtended()) {
978       // This should really only happen if we have vec3 arguments
979       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
980       MemVT = MemVT.getPow2VectorType(State.getContext());
981     }
982 
983     assert(MemVT.isSimple());
984     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
985                     State);
986   }
987 }
988 
989 SDValue AMDGPUTargetLowering::LowerReturn(
990   SDValue Chain, CallingConv::ID CallConv,
991   bool isVarArg,
992   const SmallVectorImpl<ISD::OutputArg> &Outs,
993   const SmallVectorImpl<SDValue> &OutVals,
994   const SDLoc &DL, SelectionDAG &DAG) const {
995   // FIXME: Fails for r600 tests
996   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
997   // "wave terminate should not have return values");
998   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
999 }
1000 
1001 //===---------------------------------------------------------------------===//
1002 // Target specific lowering
1003 //===---------------------------------------------------------------------===//
1004 
1005 /// Selects the correct CCAssignFn for a given CallingConvention value.
1006 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1007                                                     bool IsVarArg) {
1008   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1009 }
1010 
1011 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1012                                                       bool IsVarArg) {
1013   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1014 }
1015 
1016 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1017                                                   SelectionDAG &DAG,
1018                                                   MachineFrameInfo &MFI,
1019                                                   int ClobberedFI) const {
1020   SmallVector<SDValue, 8> ArgChains;
1021   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1022   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1023 
1024   // Include the original chain at the beginning of the list. When this is
1025   // used by target LowerCall hooks, this helps legalize find the
1026   // CALLSEQ_BEGIN node.
1027   ArgChains.push_back(Chain);
1028 
1029   // Add a chain value for each stack argument corresponding
1030   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1031                             UE = DAG.getEntryNode().getNode()->use_end();
1032        U != UE; ++U) {
1033     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1034       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1035         if (FI->getIndex() < 0) {
1036           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1037           int64_t InLastByte = InFirstByte;
1038           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1039 
1040           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1041               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1042             ArgChains.push_back(SDValue(L, 1));
1043         }
1044       }
1045     }
1046   }
1047 
1048   // Build a tokenfactor for all the chains.
1049   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1050 }
1051 
1052 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1053                                                  SmallVectorImpl<SDValue> &InVals,
1054                                                  StringRef Reason) const {
1055   SDValue Callee = CLI.Callee;
1056   SelectionDAG &DAG = CLI.DAG;
1057 
1058   const Function &Fn = *DAG.getMachineFunction().getFunction();
1059 
1060   StringRef FuncName("<unknown>");
1061 
1062   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1063     FuncName = G->getSymbol();
1064   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1065     FuncName = G->getGlobal()->getName();
1066 
1067   DiagnosticInfoUnsupported NoCalls(
1068     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1069   DAG.getContext()->diagnose(NoCalls);
1070 
1071   if (!CLI.IsTailCall) {
1072     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1073       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1074   }
1075 
1076   return DAG.getEntryNode();
1077 }
1078 
1079 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1080                                         SmallVectorImpl<SDValue> &InVals) const {
1081   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1082 }
1083 
1084 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1085                                                       SelectionDAG &DAG) const {
1086   const Function &Fn = *DAG.getMachineFunction().getFunction();
1087 
1088   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1089                                             SDLoc(Op).getDebugLoc());
1090   DAG.getContext()->diagnose(NoDynamicAlloca);
1091   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1092   return DAG.getMergeValues(Ops, SDLoc());
1093 }
1094 
1095 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1096                                              SelectionDAG &DAG) const {
1097   switch (Op.getOpcode()) {
1098   default:
1099     Op->print(errs(), &DAG);
1100     llvm_unreachable("Custom lowering code for this"
1101                      "instruction is not implemented yet!");
1102     break;
1103   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1104   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1105   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1106   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1107   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1108   case ISD::FREM: return LowerFREM(Op, DAG);
1109   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1110   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1111   case ISD::FRINT: return LowerFRINT(Op, DAG);
1112   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1113   case ISD::FROUND: return LowerFROUND(Op, DAG);
1114   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1115   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1116   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1117   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1118   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1119   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1120   case ISD::CTTZ:
1121   case ISD::CTTZ_ZERO_UNDEF:
1122   case ISD::CTLZ:
1123   case ISD::CTLZ_ZERO_UNDEF:
1124     return LowerCTLZ_CTTZ(Op, DAG);
1125   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1126   }
1127   return Op;
1128 }
1129 
1130 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1131                                               SmallVectorImpl<SDValue> &Results,
1132                                               SelectionDAG &DAG) const {
1133   switch (N->getOpcode()) {
1134   case ISD::SIGN_EXTEND_INREG:
1135     // Different parts of legalization seem to interpret which type of
1136     // sign_extend_inreg is the one to check for custom lowering. The extended
1137     // from type is what really matters, but some places check for custom
1138     // lowering of the result type. This results in trying to use
1139     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1140     // nothing here and let the illegal result integer be handled normally.
1141     return;
1142   default:
1143     return;
1144   }
1145 }
1146 
1147 static bool hasDefinedInitializer(const GlobalValue *GV) {
1148   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1149   if (!GVar || !GVar->hasInitializer())
1150     return false;
1151 
1152   return !isa<UndefValue>(GVar->getInitializer());
1153 }
1154 
1155 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1156                                                  SDValue Op,
1157                                                  SelectionDAG &DAG) const {
1158 
1159   const DataLayout &DL = DAG.getDataLayout();
1160   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1161   const GlobalValue *GV = G->getGlobal();
1162 
1163   if  (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) {
1164     // XXX: What does the value of G->getOffset() mean?
1165     assert(G->getOffset() == 0 &&
1166          "Do not know what to do with an non-zero offset");
1167 
1168     // TODO: We could emit code to handle the initialization somewhere.
1169     if (!hasDefinedInitializer(GV)) {
1170       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1171       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1172     }
1173   }
1174 
1175   const Function &Fn = *DAG.getMachineFunction().getFunction();
1176   DiagnosticInfoUnsupported BadInit(
1177       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1178   DAG.getContext()->diagnose(BadInit);
1179   return SDValue();
1180 }
1181 
1182 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1183                                                   SelectionDAG &DAG) const {
1184   SmallVector<SDValue, 8> Args;
1185 
1186   for (const SDUse &U : Op->ops())
1187     DAG.ExtractVectorElements(U.get(), Args);
1188 
1189   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1190 }
1191 
1192 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1193                                                      SelectionDAG &DAG) const {
1194 
1195   SmallVector<SDValue, 8> Args;
1196   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1197   EVT VT = Op.getValueType();
1198   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1199                             VT.getVectorNumElements());
1200 
1201   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1202 }
1203 
1204 /// \brief Generate Min/Max node
1205 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1206                                                    SDValue LHS, SDValue RHS,
1207                                                    SDValue True, SDValue False,
1208                                                    SDValue CC,
1209                                                    DAGCombinerInfo &DCI) const {
1210   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1211     return SDValue();
1212 
1213   SelectionDAG &DAG = DCI.DAG;
1214   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1215   switch (CCOpcode) {
1216   case ISD::SETOEQ:
1217   case ISD::SETONE:
1218   case ISD::SETUNE:
1219   case ISD::SETNE:
1220   case ISD::SETUEQ:
1221   case ISD::SETEQ:
1222   case ISD::SETFALSE:
1223   case ISD::SETFALSE2:
1224   case ISD::SETTRUE:
1225   case ISD::SETTRUE2:
1226   case ISD::SETUO:
1227   case ISD::SETO:
1228     break;
1229   case ISD::SETULE:
1230   case ISD::SETULT: {
1231     if (LHS == True)
1232       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1233     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1234   }
1235   case ISD::SETOLE:
1236   case ISD::SETOLT:
1237   case ISD::SETLE:
1238   case ISD::SETLT: {
1239     // Ordered. Assume ordered for undefined.
1240 
1241     // Only do this after legalization to avoid interfering with other combines
1242     // which might occur.
1243     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1244         !DCI.isCalledByLegalizer())
1245       return SDValue();
1246 
1247     // We need to permute the operands to get the correct NaN behavior. The
1248     // selected operand is the second one based on the failing compare with NaN,
1249     // so permute it based on the compare type the hardware uses.
1250     if (LHS == True)
1251       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1252     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1253   }
1254   case ISD::SETUGE:
1255   case ISD::SETUGT: {
1256     if (LHS == True)
1257       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1258     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1259   }
1260   case ISD::SETGT:
1261   case ISD::SETGE:
1262   case ISD::SETOGE:
1263   case ISD::SETOGT: {
1264     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1265         !DCI.isCalledByLegalizer())
1266       return SDValue();
1267 
1268     if (LHS == True)
1269       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1270     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1271   }
1272   case ISD::SETCC_INVALID:
1273     llvm_unreachable("Invalid setcc condcode!");
1274   }
1275   return SDValue();
1276 }
1277 
1278 std::pair<SDValue, SDValue>
1279 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1280   SDLoc SL(Op);
1281 
1282   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1283 
1284   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1285   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1286 
1287   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1288   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1289 
1290   return std::make_pair(Lo, Hi);
1291 }
1292 
1293 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1294   SDLoc SL(Op);
1295 
1296   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1297   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1298   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1299 }
1300 
1301 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1302   SDLoc SL(Op);
1303 
1304   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1305   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1306   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1307 }
1308 
1309 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1310                                               SelectionDAG &DAG) const {
1311   LoadSDNode *Load = cast<LoadSDNode>(Op);
1312   EVT VT = Op.getValueType();
1313 
1314 
1315   // If this is a 2 element vector, we really want to scalarize and not create
1316   // weird 1 element vectors.
1317   if (VT.getVectorNumElements() == 2)
1318     return scalarizeVectorLoad(Load, DAG);
1319 
1320   SDValue BasePtr = Load->getBasePtr();
1321   EVT PtrVT = BasePtr.getValueType();
1322   EVT MemVT = Load->getMemoryVT();
1323   SDLoc SL(Op);
1324 
1325   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1326 
1327   EVT LoVT, HiVT;
1328   EVT LoMemVT, HiMemVT;
1329   SDValue Lo, Hi;
1330 
1331   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1332   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1333   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1334 
1335   unsigned Size = LoMemVT.getStoreSize();
1336   unsigned BaseAlign = Load->getAlignment();
1337   unsigned HiAlign = MinAlign(BaseAlign, Size);
1338 
1339   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1340                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1341                                   BaseAlign, Load->getMemOperand()->getFlags());
1342   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1343                               DAG.getConstant(Size, SL, PtrVT));
1344   SDValue HiLoad =
1345       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1346                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1347                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1348 
1349   SDValue Ops[] = {
1350     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1351     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1352                 LoLoad.getValue(1), HiLoad.getValue(1))
1353   };
1354 
1355   return DAG.getMergeValues(Ops, SL);
1356 }
1357 
1358 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1359                                                SelectionDAG &DAG) const {
1360   StoreSDNode *Store = cast<StoreSDNode>(Op);
1361   SDValue Val = Store->getValue();
1362   EVT VT = Val.getValueType();
1363 
1364   // If this is a 2 element vector, we really want to scalarize and not create
1365   // weird 1 element vectors.
1366   if (VT.getVectorNumElements() == 2)
1367     return scalarizeVectorStore(Store, DAG);
1368 
1369   EVT MemVT = Store->getMemoryVT();
1370   SDValue Chain = Store->getChain();
1371   SDValue BasePtr = Store->getBasePtr();
1372   SDLoc SL(Op);
1373 
1374   EVT LoVT, HiVT;
1375   EVT LoMemVT, HiMemVT;
1376   SDValue Lo, Hi;
1377 
1378   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1379   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1380   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1381 
1382   EVT PtrVT = BasePtr.getValueType();
1383   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1384                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1385                                               PtrVT));
1386 
1387   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1388   unsigned BaseAlign = Store->getAlignment();
1389   unsigned Size = LoMemVT.getStoreSize();
1390   unsigned HiAlign = MinAlign(BaseAlign, Size);
1391 
1392   SDValue LoStore =
1393       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1394                         Store->getMemOperand()->getFlags());
1395   SDValue HiStore =
1396       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1397                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1398 
1399   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1400 }
1401 
1402 // This is a shortcut for integer division because we have fast i32<->f32
1403 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1404 // float is enough to accurately represent up to a 24-bit signed integer.
1405 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1406                                             bool Sign) const {
1407   SDLoc DL(Op);
1408   EVT VT = Op.getValueType();
1409   SDValue LHS = Op.getOperand(0);
1410   SDValue RHS = Op.getOperand(1);
1411   MVT IntVT = MVT::i32;
1412   MVT FltVT = MVT::f32;
1413 
1414   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1415   if (LHSSignBits < 9)
1416     return SDValue();
1417 
1418   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1419   if (RHSSignBits < 9)
1420     return SDValue();
1421 
1422   unsigned BitSize = VT.getSizeInBits();
1423   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1424   unsigned DivBits = BitSize - SignBits;
1425   if (Sign)
1426     ++DivBits;
1427 
1428   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1429   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1430 
1431   SDValue jq = DAG.getConstant(1, DL, IntVT);
1432 
1433   if (Sign) {
1434     // char|short jq = ia ^ ib;
1435     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1436 
1437     // jq = jq >> (bitsize - 2)
1438     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1439                      DAG.getConstant(BitSize - 2, DL, VT));
1440 
1441     // jq = jq | 0x1
1442     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1443   }
1444 
1445   // int ia = (int)LHS;
1446   SDValue ia = LHS;
1447 
1448   // int ib, (int)RHS;
1449   SDValue ib = RHS;
1450 
1451   // float fa = (float)ia;
1452   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1453 
1454   // float fb = (float)ib;
1455   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1456 
1457   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1458                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1459 
1460   // fq = trunc(fq);
1461   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1462 
1463   // float fqneg = -fq;
1464   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1465 
1466   // float fr = mad(fqneg, fb, fa);
1467   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1468                     (unsigned)AMDGPUISD::FMAD_FTZ :
1469                     (unsigned)ISD::FMAD;
1470   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1471 
1472   // int iq = (int)fq;
1473   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1474 
1475   // fr = fabs(fr);
1476   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1477 
1478   // fb = fabs(fb);
1479   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1480 
1481   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1482 
1483   // int cv = fr >= fb;
1484   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1485 
1486   // jq = (cv ? jq : 0);
1487   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1488 
1489   // dst = iq + jq;
1490   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1491 
1492   // Rem needs compensation, it's easier to recompute it
1493   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1494   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1495 
1496   // Truncate to number of bits this divide really is.
1497   if (Sign) {
1498     SDValue InRegSize
1499       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1500     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1501     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1502   } else {
1503     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1504     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1505     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1506   }
1507 
1508   return DAG.getMergeValues({ Div, Rem }, DL);
1509 }
1510 
1511 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1512                                       SelectionDAG &DAG,
1513                                       SmallVectorImpl<SDValue> &Results) const {
1514   SDLoc DL(Op);
1515   EVT VT = Op.getValueType();
1516 
1517   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1518 
1519   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1520 
1521   SDValue One = DAG.getConstant(1, DL, HalfVT);
1522   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1523 
1524   //HiLo split
1525   SDValue LHS = Op.getOperand(0);
1526   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1527   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1528 
1529   SDValue RHS = Op.getOperand(1);
1530   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1531   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1532 
1533   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1534       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1535 
1536     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1537                               LHS_Lo, RHS_Lo);
1538 
1539     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1540     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1541 
1542     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1543     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1544     return;
1545   }
1546 
1547   if (isTypeLegal(MVT::i64)) {
1548     // Compute denominator reciprocal.
1549     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1550                     (unsigned)AMDGPUISD::FMAD_FTZ :
1551                     (unsigned)ISD::FMAD;
1552 
1553     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1554     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1555     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1556       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1557       Cvt_Lo);
1558     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1559     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1560       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1561     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1562       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1563     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1564     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1565       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1566       Mul1);
1567     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1568     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1569     SDValue Rcp64 = DAG.getBitcast(VT,
1570                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1571 
1572     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1573     SDValue One64  = DAG.getConstant(1, DL, VT);
1574     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1575     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1576 
1577     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1578     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1579     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1580     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1581                                     Zero);
1582     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1583                                     One);
1584 
1585     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1586                                   Mulhi1_Lo, Zero1);
1587     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1588                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1589     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1590     SDValue Add1 = DAG.getBitcast(VT,
1591                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1592 
1593     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1594     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1595     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1596                                     Zero);
1597     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1598                                     One);
1599 
1600     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1601                                   Mulhi2_Lo, Zero1);
1602     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1603                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1604     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1605                                   Zero, Add2_Lo.getValue(1));
1606     SDValue Add2 = DAG.getBitcast(VT,
1607                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1608     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1609 
1610     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1611 
1612     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1613     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1614     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1615                                   Mul3_Lo, Zero1);
1616     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1617                                   Mul3_Hi, Sub1_Lo.getValue(1));
1618     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1619     SDValue Sub1 = DAG.getBitcast(VT,
1620                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1621 
1622     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1623     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1624                                  ISD::SETUGE);
1625     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1626                                  ISD::SETUGE);
1627     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1628 
1629     // TODO: Here and below portions of the code can be enclosed into if/endif.
1630     // Currently control flow is unconditional and we have 4 selects after
1631     // potential endif to substitute PHIs.
1632 
1633     // if C3 != 0 ...
1634     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1635                                   RHS_Lo, Zero1);
1636     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1637                                   RHS_Hi, Sub1_Lo.getValue(1));
1638     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1639                                   Zero, Sub2_Lo.getValue(1));
1640     SDValue Sub2 = DAG.getBitcast(VT,
1641                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1642 
1643     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1644 
1645     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1646                                  ISD::SETUGE);
1647     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1648                                  ISD::SETUGE);
1649     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1650 
1651     // if (C6 != 0)
1652     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1653 
1654     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1655                                   RHS_Lo, Zero1);
1656     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1657                                   RHS_Hi, Sub2_Lo.getValue(1));
1658     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1659                                   Zero, Sub3_Lo.getValue(1));
1660     SDValue Sub3 = DAG.getBitcast(VT,
1661                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1662 
1663     // endif C6
1664     // endif C3
1665 
1666     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1667     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1668 
1669     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1670     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1671 
1672     Results.push_back(Div);
1673     Results.push_back(Rem);
1674 
1675     return;
1676   }
1677 
1678   // r600 expandion.
1679   // Get Speculative values
1680   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1681   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1682 
1683   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1684   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1685   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1686 
1687   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1688   SDValue DIV_Lo = Zero;
1689 
1690   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1691 
1692   for (unsigned i = 0; i < halfBitWidth; ++i) {
1693     const unsigned bitPos = halfBitWidth - i - 1;
1694     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1695     // Get value of high bit
1696     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1697     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1698     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1699 
1700     // Shift
1701     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1702     // Add LHS high bit
1703     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1704 
1705     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1706     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1707 
1708     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1709 
1710     // Update REM
1711     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1712     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1713   }
1714 
1715   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1716   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1717   Results.push_back(DIV);
1718   Results.push_back(REM);
1719 }
1720 
1721 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1722                                            SelectionDAG &DAG) const {
1723   SDLoc DL(Op);
1724   EVT VT = Op.getValueType();
1725 
1726   if (VT == MVT::i64) {
1727     SmallVector<SDValue, 2> Results;
1728     LowerUDIVREM64(Op, DAG, Results);
1729     return DAG.getMergeValues(Results, DL);
1730   }
1731 
1732   if (VT == MVT::i32) {
1733     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1734       return Res;
1735   }
1736 
1737   SDValue Num = Op.getOperand(0);
1738   SDValue Den = Op.getOperand(1);
1739 
1740   // RCP =  URECIP(Den) = 2^32 / Den + e
1741   // e is rounding error.
1742   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1743 
1744   // RCP_LO = mul(RCP, Den) */
1745   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1746 
1747   // RCP_HI = mulhu (RCP, Den) */
1748   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1749 
1750   // NEG_RCP_LO = -RCP_LO
1751   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1752                                                      RCP_LO);
1753 
1754   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1755   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1756                                            NEG_RCP_LO, RCP_LO,
1757                                            ISD::SETEQ);
1758   // Calculate the rounding error from the URECIP instruction
1759   // E = mulhu(ABS_RCP_LO, RCP)
1760   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1761 
1762   // RCP_A_E = RCP + E
1763   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1764 
1765   // RCP_S_E = RCP - E
1766   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1767 
1768   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1769   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1770                                      RCP_A_E, RCP_S_E,
1771                                      ISD::SETEQ);
1772   // Quotient = mulhu(Tmp0, Num)
1773   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1774 
1775   // Num_S_Remainder = Quotient * Den
1776   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1777 
1778   // Remainder = Num - Num_S_Remainder
1779   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1780 
1781   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1782   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1783                                                  DAG.getConstant(-1, DL, VT),
1784                                                  DAG.getConstant(0, DL, VT),
1785                                                  ISD::SETUGE);
1786   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1787   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1788                                                   Num_S_Remainder,
1789                                                   DAG.getConstant(-1, DL, VT),
1790                                                   DAG.getConstant(0, DL, VT),
1791                                                   ISD::SETUGE);
1792   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1793   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1794                                                Remainder_GE_Zero);
1795 
1796   // Calculate Division result:
1797 
1798   // Quotient_A_One = Quotient + 1
1799   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1800                                        DAG.getConstant(1, DL, VT));
1801 
1802   // Quotient_S_One = Quotient - 1
1803   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1804                                        DAG.getConstant(1, DL, VT));
1805 
1806   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1807   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1808                                      Quotient, Quotient_A_One, ISD::SETEQ);
1809 
1810   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1811   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1812                             Quotient_S_One, Div, ISD::SETEQ);
1813 
1814   // Calculate Rem result:
1815 
1816   // Remainder_S_Den = Remainder - Den
1817   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1818 
1819   // Remainder_A_Den = Remainder + Den
1820   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1821 
1822   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1823   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1824                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1825 
1826   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1827   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1828                             Remainder_A_Den, Rem, ISD::SETEQ);
1829   SDValue Ops[2] = {
1830     Div,
1831     Rem
1832   };
1833   return DAG.getMergeValues(Ops, DL);
1834 }
1835 
1836 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1837                                            SelectionDAG &DAG) const {
1838   SDLoc DL(Op);
1839   EVT VT = Op.getValueType();
1840 
1841   SDValue LHS = Op.getOperand(0);
1842   SDValue RHS = Op.getOperand(1);
1843 
1844   SDValue Zero = DAG.getConstant(0, DL, VT);
1845   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1846 
1847   if (VT == MVT::i32) {
1848     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1849       return Res;
1850   }
1851 
1852   if (VT == MVT::i64 &&
1853       DAG.ComputeNumSignBits(LHS) > 32 &&
1854       DAG.ComputeNumSignBits(RHS) > 32) {
1855     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1856 
1857     //HiLo split
1858     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1859     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1860     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1861                                  LHS_Lo, RHS_Lo);
1862     SDValue Res[2] = {
1863       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1864       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1865     };
1866     return DAG.getMergeValues(Res, DL);
1867   }
1868 
1869   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1870   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1871   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1872   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1873 
1874   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1875   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1876 
1877   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1878   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1879 
1880   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1881   SDValue Rem = Div.getValue(1);
1882 
1883   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1884   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1885 
1886   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1887   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1888 
1889   SDValue Res[2] = {
1890     Div,
1891     Rem
1892   };
1893   return DAG.getMergeValues(Res, DL);
1894 }
1895 
1896 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1897 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1898   SDLoc SL(Op);
1899   EVT VT = Op.getValueType();
1900   SDValue X = Op.getOperand(0);
1901   SDValue Y = Op.getOperand(1);
1902 
1903   // TODO: Should this propagate fast-math-flags?
1904 
1905   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1906   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1907   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1908 
1909   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1910 }
1911 
1912 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1913   SDLoc SL(Op);
1914   SDValue Src = Op.getOperand(0);
1915 
1916   // result = trunc(src)
1917   // if (src > 0.0 && src != result)
1918   //   result += 1.0
1919 
1920   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1921 
1922   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1923   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1924 
1925   EVT SetCCVT =
1926       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1927 
1928   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1929   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1930   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1931 
1932   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1933   // TODO: Should this propagate fast-math-flags?
1934   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1935 }
1936 
1937 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1938                                   SelectionDAG &DAG) {
1939   const unsigned FractBits = 52;
1940   const unsigned ExpBits = 11;
1941 
1942   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1943                                 Hi,
1944                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1945                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1946   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1947                             DAG.getConstant(1023, SL, MVT::i32));
1948 
1949   return Exp;
1950 }
1951 
1952 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1953   SDLoc SL(Op);
1954   SDValue Src = Op.getOperand(0);
1955 
1956   assert(Op.getValueType() == MVT::f64);
1957 
1958   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1959   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1960 
1961   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1962 
1963   // Extract the upper half, since this is where we will find the sign and
1964   // exponent.
1965   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1966 
1967   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1968 
1969   const unsigned FractBits = 52;
1970 
1971   // Extract the sign bit.
1972   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1973   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1974 
1975   // Extend back to to 64-bits.
1976   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1977   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1978 
1979   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1980   const SDValue FractMask
1981     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1982 
1983   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1984   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1985   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1986 
1987   EVT SetCCVT =
1988       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1989 
1990   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1991 
1992   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1993   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1994 
1995   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1996   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1997 
1998   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1999 }
2000 
2001 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2002   SDLoc SL(Op);
2003   SDValue Src = Op.getOperand(0);
2004 
2005   assert(Op.getValueType() == MVT::f64);
2006 
2007   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2008   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2009   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2010 
2011   // TODO: Should this propagate fast-math-flags?
2012 
2013   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2014   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2015 
2016   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2017 
2018   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2019   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2020 
2021   EVT SetCCVT =
2022       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2023   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2024 
2025   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2026 }
2027 
2028 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2029   // FNEARBYINT and FRINT are the same, except in their handling of FP
2030   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2031   // rint, so just treat them as equivalent.
2032   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2033 }
2034 
2035 // XXX - May require not supporting f32 denormals?
2036 
2037 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2038 // compare and vselect end up producing worse code than scalarizing the whole
2039 // operation.
2040 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2041   SDLoc SL(Op);
2042   SDValue X = Op.getOperand(0);
2043   EVT VT = Op.getValueType();
2044 
2045   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2046 
2047   // TODO: Should this propagate fast-math-flags?
2048 
2049   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2050 
2051   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2052 
2053   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2054   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2055   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2056 
2057   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2058 
2059   EVT SetCCVT =
2060       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2061 
2062   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2063 
2064   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2065 
2066   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2067 }
2068 
2069 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2070   SDLoc SL(Op);
2071   SDValue X = Op.getOperand(0);
2072 
2073   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2074 
2075   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2076   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2077   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2078   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2079   EVT SetCCVT =
2080       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2081 
2082   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2083 
2084   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2085 
2086   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2087 
2088   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2089                                        MVT::i64);
2090 
2091   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2092   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2093                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2094                                           MVT::i64),
2095                           Exp);
2096 
2097   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2098   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2099                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2100                               ISD::SETNE);
2101 
2102   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2103                              D, DAG.getConstant(0, SL, MVT::i64));
2104   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2105 
2106   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2107   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2108 
2109   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2110   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2111   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2112 
2113   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2114                             ExpEqNegOne,
2115                             DAG.getConstantFP(1.0, SL, MVT::f64),
2116                             DAG.getConstantFP(0.0, SL, MVT::f64));
2117 
2118   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2119 
2120   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2121   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2122 
2123   return K;
2124 }
2125 
2126 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2127   EVT VT = Op.getValueType();
2128 
2129   if (VT == MVT::f32 || VT == MVT::f16)
2130     return LowerFROUND32_16(Op, DAG);
2131 
2132   if (VT == MVT::f64)
2133     return LowerFROUND64(Op, DAG);
2134 
2135   llvm_unreachable("unhandled type");
2136 }
2137 
2138 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2139   SDLoc SL(Op);
2140   SDValue Src = Op.getOperand(0);
2141 
2142   // result = trunc(src);
2143   // if (src < 0.0 && src != result)
2144   //   result += -1.0.
2145 
2146   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2147 
2148   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2149   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2150 
2151   EVT SetCCVT =
2152       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2153 
2154   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2155   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2156   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2157 
2158   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2159   // TODO: Should this propagate fast-math-flags?
2160   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2161 }
2162 
2163 static bool isCtlzOpc(unsigned Opc) {
2164   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2165 }
2166 
2167 static bool isCttzOpc(unsigned Opc) {
2168   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2169 }
2170 
2171 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2172   SDLoc SL(Op);
2173   SDValue Src = Op.getOperand(0);
2174   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2175                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2176 
2177   unsigned ISDOpc, NewOpc;
2178   if (isCtlzOpc(Op.getOpcode())) {
2179     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2180     NewOpc = AMDGPUISD::FFBH_U32;
2181   } else if (isCttzOpc(Op.getOpcode())) {
2182     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2183     NewOpc = AMDGPUISD::FFBL_B32;
2184   } else
2185     llvm_unreachable("Unexpected OPCode!!!");
2186 
2187 
2188   if (ZeroUndef && Src.getValueType() == MVT::i32)
2189     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2190 
2191   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2192 
2193   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2194   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2195 
2196   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2197   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2198 
2199   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2200                                    *DAG.getContext(), MVT::i32);
2201 
2202   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2203   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2204 
2205   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2206   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2207 
2208   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2209   SDValue Add, NewOpr;
2210   if (isCtlzOpc(Op.getOpcode())) {
2211     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2212     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2213     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2214   } else {
2215     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2216     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2217     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2218   }
2219 
2220   if (!ZeroUndef) {
2221     // Test if the full 64-bit input is zero.
2222 
2223     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2224     // which we probably don't want.
2225     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2226     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2227     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2228 
2229     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2230     // with the same cycles, otherwise it is slower.
2231     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2232     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2233 
2234     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2235 
2236     // The instruction returns -1 for 0 input, but the defined intrinsic
2237     // behavior is to return the number of bits.
2238     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2239                          SrcIsZero, Bits32, NewOpr);
2240   }
2241 
2242   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2243 }
2244 
2245 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2246                                                bool Signed) const {
2247   // Unsigned
2248   // cul2f(ulong u)
2249   //{
2250   //  uint lz = clz(u);
2251   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2252   //  u = (u << lz) & 0x7fffffffffffffffUL;
2253   //  ulong t = u & 0xffffffffffUL;
2254   //  uint v = (e << 23) | (uint)(u >> 40);
2255   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2256   //  return as_float(v + r);
2257   //}
2258   // Signed
2259   // cl2f(long l)
2260   //{
2261   //  long s = l >> 63;
2262   //  float r = cul2f((l + s) ^ s);
2263   //  return s ? -r : r;
2264   //}
2265 
2266   SDLoc SL(Op);
2267   SDValue Src = Op.getOperand(0);
2268   SDValue L = Src;
2269 
2270   SDValue S;
2271   if (Signed) {
2272     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2273     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2274 
2275     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2276     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2277   }
2278 
2279   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2280                                    *DAG.getContext(), MVT::f32);
2281 
2282 
2283   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2284   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2285   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2286   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2287 
2288   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2289   SDValue E = DAG.getSelect(SL, MVT::i32,
2290     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2291     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2292     ZeroI32);
2293 
2294   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2295     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2296     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2297 
2298   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2299                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2300 
2301   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2302                              U, DAG.getConstant(40, SL, MVT::i64));
2303 
2304   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2305     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2306     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2307 
2308   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2309   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2310   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2311 
2312   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2313 
2314   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2315 
2316   SDValue R = DAG.getSelect(SL, MVT::i32,
2317     RCmp,
2318     One,
2319     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2320   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2321   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2322 
2323   if (!Signed)
2324     return R;
2325 
2326   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2327   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2328 }
2329 
2330 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2331                                                bool Signed) const {
2332   SDLoc SL(Op);
2333   SDValue Src = Op.getOperand(0);
2334 
2335   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2336 
2337   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2338                            DAG.getConstant(0, SL, MVT::i32));
2339   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2340                            DAG.getConstant(1, SL, MVT::i32));
2341 
2342   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2343                               SL, MVT::f64, Hi);
2344 
2345   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2346 
2347   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2348                               DAG.getConstant(32, SL, MVT::i32));
2349   // TODO: Should this propagate fast-math-flags?
2350   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2351 }
2352 
2353 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2354                                                SelectionDAG &DAG) const {
2355   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2356          "operation should be legal");
2357 
2358   // TODO: Factor out code common with LowerSINT_TO_FP.
2359 
2360   EVT DestVT = Op.getValueType();
2361   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2362     SDLoc DL(Op);
2363     SDValue Src = Op.getOperand(0);
2364 
2365     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2366     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2367     SDValue FPRound =
2368         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2369 
2370     return FPRound;
2371   }
2372 
2373   if (DestVT == MVT::f32)
2374     return LowerINT_TO_FP32(Op, DAG, false);
2375 
2376   assert(DestVT == MVT::f64);
2377   return LowerINT_TO_FP64(Op, DAG, false);
2378 }
2379 
2380 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2381                                               SelectionDAG &DAG) const {
2382   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2383          "operation should be legal");
2384 
2385   // TODO: Factor out code common with LowerUINT_TO_FP.
2386 
2387   EVT DestVT = Op.getValueType();
2388   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2389     SDLoc DL(Op);
2390     SDValue Src = Op.getOperand(0);
2391 
2392     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2393     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2394     SDValue FPRound =
2395         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2396 
2397     return FPRound;
2398   }
2399 
2400   if (DestVT == MVT::f32)
2401     return LowerINT_TO_FP32(Op, DAG, true);
2402 
2403   assert(DestVT == MVT::f64);
2404   return LowerINT_TO_FP64(Op, DAG, true);
2405 }
2406 
2407 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2408                                                bool Signed) const {
2409   SDLoc SL(Op);
2410 
2411   SDValue Src = Op.getOperand(0);
2412 
2413   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2414 
2415   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2416                                  MVT::f64);
2417   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2418                                  MVT::f64);
2419   // TODO: Should this propagate fast-math-flags?
2420   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2421 
2422   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2423 
2424 
2425   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2426 
2427   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2428                            MVT::i32, FloorMul);
2429   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2430 
2431   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2432 
2433   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2434 }
2435 
2436 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2437   SDLoc DL(Op);
2438   SDValue N0 = Op.getOperand(0);
2439 
2440   // Convert to target node to get known bits
2441   if (N0.getValueType() == MVT::f32)
2442     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2443 
2444   if (getTargetMachine().Options.UnsafeFPMath) {
2445     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2446     return SDValue();
2447   }
2448 
2449   assert(N0.getSimpleValueType() == MVT::f64);
2450 
2451   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2452   const unsigned ExpMask = 0x7ff;
2453   const unsigned ExpBiasf64 = 1023;
2454   const unsigned ExpBiasf16 = 15;
2455   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2456   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2457   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2458   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2459                            DAG.getConstant(32, DL, MVT::i64));
2460   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2461   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2462   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2463                           DAG.getConstant(20, DL, MVT::i64));
2464   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2465                   DAG.getConstant(ExpMask, DL, MVT::i32));
2466   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2467   // add the f16 bias (15) to get the biased exponent for the f16 format.
2468   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2469                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2470 
2471   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2472                           DAG.getConstant(8, DL, MVT::i32));
2473   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2474                   DAG.getConstant(0xffe, DL, MVT::i32));
2475 
2476   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2477                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2478   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2479 
2480   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2481   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2482 
2483   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2484   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2485       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2486                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2487 
2488   // N = M | (E << 12);
2489   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2490       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2491                   DAG.getConstant(12, DL, MVT::i32)));
2492 
2493   // B = clamp(1-E, 0, 13);
2494   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2495                                   One, E);
2496   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2497   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2498                   DAG.getConstant(13, DL, MVT::i32));
2499 
2500   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2501                                    DAG.getConstant(0x1000, DL, MVT::i32));
2502 
2503   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2504   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2505   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2506   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2507 
2508   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2509   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2510                               DAG.getConstant(0x7, DL, MVT::i32));
2511   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2512                   DAG.getConstant(2, DL, MVT::i32));
2513   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2514                                One, Zero, ISD::SETEQ);
2515   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2516                                One, Zero, ISD::SETGT);
2517   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2518   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2519 
2520   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2521                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2522   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2523                       I, V, ISD::SETEQ);
2524 
2525   // Extract the sign bit.
2526   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2527                             DAG.getConstant(16, DL, MVT::i32));
2528   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2529                      DAG.getConstant(0x8000, DL, MVT::i32));
2530 
2531   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2532   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2533 }
2534 
2535 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2536                                               SelectionDAG &DAG) const {
2537   SDValue Src = Op.getOperand(0);
2538 
2539   // TODO: Factor out code common with LowerFP_TO_UINT.
2540 
2541   EVT SrcVT = Src.getValueType();
2542   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2543     SDLoc DL(Op);
2544 
2545     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2546     SDValue FpToInt32 =
2547         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2548 
2549     return FpToInt32;
2550   }
2551 
2552   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2553     return LowerFP64_TO_INT(Op, DAG, true);
2554 
2555   return SDValue();
2556 }
2557 
2558 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2559                                               SelectionDAG &DAG) const {
2560   SDValue Src = Op.getOperand(0);
2561 
2562   // TODO: Factor out code common with LowerFP_TO_SINT.
2563 
2564   EVT SrcVT = Src.getValueType();
2565   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2566     SDLoc DL(Op);
2567 
2568     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2569     SDValue FpToInt32 =
2570         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2571 
2572     return FpToInt32;
2573   }
2574 
2575   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2576     return LowerFP64_TO_INT(Op, DAG, false);
2577 
2578   return SDValue();
2579 }
2580 
2581 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2582                                                      SelectionDAG &DAG) const {
2583   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2584   MVT VT = Op.getSimpleValueType();
2585   MVT ScalarVT = VT.getScalarType();
2586 
2587   assert(VT.isVector());
2588 
2589   SDValue Src = Op.getOperand(0);
2590   SDLoc DL(Op);
2591 
2592   // TODO: Don't scalarize on Evergreen?
2593   unsigned NElts = VT.getVectorNumElements();
2594   SmallVector<SDValue, 8> Args;
2595   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2596 
2597   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2598   for (unsigned I = 0; I < NElts; ++I)
2599     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2600 
2601   return DAG.getBuildVector(VT, DL, Args);
2602 }
2603 
2604 //===----------------------------------------------------------------------===//
2605 // Custom DAG optimizations
2606 //===----------------------------------------------------------------------===//
2607 
2608 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2609   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2610 }
2611 
2612 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2613   EVT VT = Op.getValueType();
2614   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2615                                      // as unsigned 24-bit values.
2616     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2617 }
2618 
2619 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2620                         TargetLowering::DAGCombinerInfo &DCI) {
2621 
2622   SelectionDAG &DAG = DCI.DAG;
2623   SDValue Op = Node24->getOperand(OpIdx);
2624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2625   EVT VT = Op.getValueType();
2626 
2627   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2628   APInt KnownZero, KnownOne;
2629   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2630   if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
2631     return true;
2632 
2633   return false;
2634 }
2635 
2636 template <typename IntTy>
2637 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2638                                uint32_t Width, const SDLoc &DL) {
2639   if (Width + Offset < 32) {
2640     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2641     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2642     return DAG.getConstant(Result, DL, MVT::i32);
2643   }
2644 
2645   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2646 }
2647 
2648 static bool hasVolatileUser(SDNode *Val) {
2649   for (SDNode *U : Val->uses()) {
2650     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2651       if (M->isVolatile())
2652         return true;
2653     }
2654   }
2655 
2656   return false;
2657 }
2658 
2659 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2660   // i32 vectors are the canonical memory type.
2661   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2662     return false;
2663 
2664   if (!VT.isByteSized())
2665     return false;
2666 
2667   unsigned Size = VT.getStoreSize();
2668 
2669   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2670     return false;
2671 
2672   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2673     return false;
2674 
2675   return true;
2676 }
2677 
2678 // Replace load of an illegal type with a store of a bitcast to a friendlier
2679 // type.
2680 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2681                                                  DAGCombinerInfo &DCI) const {
2682   if (!DCI.isBeforeLegalize())
2683     return SDValue();
2684 
2685   LoadSDNode *LN = cast<LoadSDNode>(N);
2686   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2687     return SDValue();
2688 
2689   SDLoc SL(N);
2690   SelectionDAG &DAG = DCI.DAG;
2691   EVT VT = LN->getMemoryVT();
2692 
2693   unsigned Size = VT.getStoreSize();
2694   unsigned Align = LN->getAlignment();
2695   if (Align < Size && isTypeLegal(VT)) {
2696     bool IsFast;
2697     unsigned AS = LN->getAddressSpace();
2698 
2699     // Expand unaligned loads earlier than legalization. Due to visitation order
2700     // problems during legalization, the emitted instructions to pack and unpack
2701     // the bytes again are not eliminated in the case of an unaligned copy.
2702     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2703       if (VT.isVector())
2704         return scalarizeVectorLoad(LN, DAG);
2705 
2706       SDValue Ops[2];
2707       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2708       return DAG.getMergeValues(Ops, SDLoc(N));
2709     }
2710 
2711     if (!IsFast)
2712       return SDValue();
2713   }
2714 
2715   if (!shouldCombineMemoryType(VT))
2716     return SDValue();
2717 
2718   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2719 
2720   SDValue NewLoad
2721     = DAG.getLoad(NewVT, SL, LN->getChain(),
2722                   LN->getBasePtr(), LN->getMemOperand());
2723 
2724   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2725   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2726   return SDValue(N, 0);
2727 }
2728 
2729 // Replace store of an illegal type with a store of a bitcast to a friendlier
2730 // type.
2731 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2732                                                   DAGCombinerInfo &DCI) const {
2733   if (!DCI.isBeforeLegalize())
2734     return SDValue();
2735 
2736   StoreSDNode *SN = cast<StoreSDNode>(N);
2737   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2738     return SDValue();
2739 
2740   EVT VT = SN->getMemoryVT();
2741   unsigned Size = VT.getStoreSize();
2742 
2743   SDLoc SL(N);
2744   SelectionDAG &DAG = DCI.DAG;
2745   unsigned Align = SN->getAlignment();
2746   if (Align < Size && isTypeLegal(VT)) {
2747     bool IsFast;
2748     unsigned AS = SN->getAddressSpace();
2749 
2750     // Expand unaligned stores earlier than legalization. Due to visitation
2751     // order problems during legalization, the emitted instructions to pack and
2752     // unpack the bytes again are not eliminated in the case of an unaligned
2753     // copy.
2754     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2755       if (VT.isVector())
2756         return scalarizeVectorStore(SN, DAG);
2757 
2758       return expandUnalignedStore(SN, DAG);
2759     }
2760 
2761     if (!IsFast)
2762       return SDValue();
2763   }
2764 
2765   if (!shouldCombineMemoryType(VT))
2766     return SDValue();
2767 
2768   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2769   SDValue Val = SN->getValue();
2770 
2771   //DCI.AddToWorklist(Val.getNode());
2772 
2773   bool OtherUses = !Val.hasOneUse();
2774   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2775   if (OtherUses) {
2776     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2777     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2778   }
2779 
2780   return DAG.getStore(SN->getChain(), SL, CastVal,
2781                       SN->getBasePtr(), SN->getMemOperand());
2782 }
2783 
2784 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N,
2785                                                   DAGCombinerInfo &DCI) const {
2786   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
2787   if (!CSrc)
2788     return SDValue();
2789 
2790   const APFloat &F = CSrc->getValueAPF();
2791   APFloat Zero = APFloat::getZero(F.getSemantics());
2792   APFloat::cmpResult Cmp0 = F.compare(Zero);
2793   if (Cmp0 == APFloat::cmpLessThan ||
2794       (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
2795     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
2796   }
2797 
2798   APFloat One(F.getSemantics(), "1.0");
2799   APFloat::cmpResult Cmp1 = F.compare(One);
2800   if (Cmp1 == APFloat::cmpGreaterThan)
2801     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
2802 
2803   return SDValue(CSrc, 0);
2804 }
2805 
2806 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2807 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2808 // issues.
2809 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2810                                                         DAGCombinerInfo &DCI) const {
2811   SelectionDAG &DAG = DCI.DAG;
2812   SDValue N0 = N->getOperand(0);
2813 
2814   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2815   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2816   if (N0.getOpcode() == ISD::TRUNCATE) {
2817     SDValue N1 = N->getOperand(1);
2818     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2819     SDLoc SL(N);
2820 
2821     SDValue Src = N0.getOperand(0);
2822     EVT SrcVT = Src.getValueType();
2823     if (SrcVT.bitsGE(ExtVT)) {
2824       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2825       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2826     }
2827   }
2828 
2829   return SDValue();
2830 }
2831 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2832 /// binary operation \p Opc to it with the corresponding constant operands.
2833 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2834   DAGCombinerInfo &DCI, const SDLoc &SL,
2835   unsigned Opc, SDValue LHS,
2836   uint32_t ValLo, uint32_t ValHi) const {
2837   SelectionDAG &DAG = DCI.DAG;
2838   SDValue Lo, Hi;
2839   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2840 
2841   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2842   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2843 
2844   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2845   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2846 
2847   // Re-visit the ands. It's possible we eliminated one of them and it could
2848   // simplify the vector.
2849   DCI.AddToWorklist(Lo.getNode());
2850   DCI.AddToWorklist(Hi.getNode());
2851 
2852   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2853   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2854 }
2855 
2856 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2857                                                 DAGCombinerInfo &DCI) const {
2858   EVT VT = N->getValueType(0);
2859 
2860   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2861   if (!RHS)
2862     return SDValue();
2863 
2864   SDValue LHS = N->getOperand(0);
2865   unsigned RHSVal = RHS->getZExtValue();
2866   if (!RHSVal)
2867     return LHS;
2868 
2869   SDLoc SL(N);
2870   SelectionDAG &DAG = DCI.DAG;
2871 
2872   switch (LHS->getOpcode()) {
2873   default:
2874     break;
2875   case ISD::ZERO_EXTEND:
2876   case ISD::SIGN_EXTEND:
2877   case ISD::ANY_EXTEND: {
2878     SDValue X = LHS->getOperand(0);
2879 
2880     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
2881         isTypeLegal(MVT::v2i16)) {
2882       // Prefer build_vector as the canonical form if packed types are legal.
2883       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
2884       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
2885        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
2886       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
2887     }
2888 
2889     // shl (ext x) => zext (shl x), if shift does not overflow int
2890     if (VT != MVT::i64)
2891       break;
2892     KnownBits Known;
2893     DAG.computeKnownBits(X, Known);
2894     unsigned LZ = Known.countMinLeadingZeros();
2895     if (LZ < RHSVal)
2896       break;
2897     EVT XVT = X.getValueType();
2898     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
2899     return DAG.getZExtOrTrunc(Shl, SL, VT);
2900   }
2901   }
2902 
2903   if (VT != MVT::i64)
2904     return SDValue();
2905 
2906   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2907 
2908   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2909   // common case, splitting this into a move and a 32-bit shift is faster and
2910   // the same code size.
2911   if (RHSVal < 32)
2912     return SDValue();
2913 
2914   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2915 
2916   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2917   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2918 
2919   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2920 
2921   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2922   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2923 }
2924 
2925 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2926                                                 DAGCombinerInfo &DCI) const {
2927   if (N->getValueType(0) != MVT::i64)
2928     return SDValue();
2929 
2930   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2931   if (!RHS)
2932     return SDValue();
2933 
2934   SelectionDAG &DAG = DCI.DAG;
2935   SDLoc SL(N);
2936   unsigned RHSVal = RHS->getZExtValue();
2937 
2938   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2939   if (RHSVal == 32) {
2940     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2941     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2942                                    DAG.getConstant(31, SL, MVT::i32));
2943 
2944     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2945     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2946   }
2947 
2948   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2949   if (RHSVal == 63) {
2950     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2951     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2952                                    DAG.getConstant(31, SL, MVT::i32));
2953     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2954     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2955   }
2956 
2957   return SDValue();
2958 }
2959 
2960 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2961                                                 DAGCombinerInfo &DCI) const {
2962   if (N->getValueType(0) != MVT::i64)
2963     return SDValue();
2964 
2965   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2966   if (!RHS)
2967     return SDValue();
2968 
2969   unsigned ShiftAmt = RHS->getZExtValue();
2970   if (ShiftAmt < 32)
2971     return SDValue();
2972 
2973   // srl i64:x, C for C >= 32
2974   // =>
2975   //   build_pair (srl hi_32(x), C - 32), 0
2976 
2977   SelectionDAG &DAG = DCI.DAG;
2978   SDLoc SL(N);
2979 
2980   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2981   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2982 
2983   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2984   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2985                            VecOp, One);
2986 
2987   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2988   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2989 
2990   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2991 
2992   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2993 }
2994 
2995 // We need to specifically handle i64 mul here to avoid unnecessary conversion
2996 // instructions. If we only match on the legalized i64 mul expansion,
2997 // SimplifyDemandedBits will be unable to remove them because there will be
2998 // multiple uses due to the separate mul + mulh[su].
2999 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3000                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3001   if (Size <= 32) {
3002     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3003     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3004   }
3005 
3006   // Because we want to eliminate extension instructions before the
3007   // operation, we need to create a single user here (i.e. not the separate
3008   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3009 
3010   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3011 
3012   SDValue Mul = DAG.getNode(MulOpc, SL,
3013                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3014 
3015   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3016                      Mul.getValue(0), Mul.getValue(1));
3017 }
3018 
3019 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3020                                                 DAGCombinerInfo &DCI) const {
3021   EVT VT = N->getValueType(0);
3022 
3023   unsigned Size = VT.getSizeInBits();
3024   if (VT.isVector() || Size > 64)
3025     return SDValue();
3026 
3027   // There are i16 integer mul/mad.
3028   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3029     return SDValue();
3030 
3031   SelectionDAG &DAG = DCI.DAG;
3032   SDLoc DL(N);
3033 
3034   SDValue N0 = N->getOperand(0);
3035   SDValue N1 = N->getOperand(1);
3036   SDValue Mul;
3037 
3038   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3039     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3040     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3041     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3042   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3043     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3044     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3045     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3046   } else {
3047     return SDValue();
3048   }
3049 
3050   // We need to use sext even for MUL_U24, because MUL_U24 is used
3051   // for signed multiply of 8 and 16-bit types.
3052   return DAG.getSExtOrTrunc(Mul, DL, VT);
3053 }
3054 
3055 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3056                                                   DAGCombinerInfo &DCI) const {
3057   EVT VT = N->getValueType(0);
3058 
3059   if (!Subtarget->hasMulI24() || VT.isVector())
3060     return SDValue();
3061 
3062   SelectionDAG &DAG = DCI.DAG;
3063   SDLoc DL(N);
3064 
3065   SDValue N0 = N->getOperand(0);
3066   SDValue N1 = N->getOperand(1);
3067 
3068   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3069     return SDValue();
3070 
3071   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3072   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3073 
3074   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3075   DCI.AddToWorklist(Mulhi.getNode());
3076   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3077 }
3078 
3079 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3080                                                   DAGCombinerInfo &DCI) const {
3081   EVT VT = N->getValueType(0);
3082 
3083   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3084     return SDValue();
3085 
3086   SelectionDAG &DAG = DCI.DAG;
3087   SDLoc DL(N);
3088 
3089   SDValue N0 = N->getOperand(0);
3090   SDValue N1 = N->getOperand(1);
3091 
3092   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3093     return SDValue();
3094 
3095   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3096   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3097 
3098   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3099   DCI.AddToWorklist(Mulhi.getNode());
3100   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3101 }
3102 
3103 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3104   SDNode *N, DAGCombinerInfo &DCI) const {
3105   SelectionDAG &DAG = DCI.DAG;
3106 
3107   // Simplify demanded bits before splitting into multiple users.
3108   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
3109     return SDValue();
3110 
3111   SDValue N0 = N->getOperand(0);
3112   SDValue N1 = N->getOperand(1);
3113 
3114   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3115 
3116   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3117   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3118 
3119   SDLoc SL(N);
3120 
3121   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3122   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3123   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3124 }
3125 
3126 static bool isNegativeOne(SDValue Val) {
3127   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3128     return C->isAllOnesValue();
3129   return false;
3130 }
3131 
3132 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3133                                           SDValue Op,
3134                                           const SDLoc &DL,
3135                                           unsigned Opc) const {
3136   EVT VT = Op.getValueType();
3137   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3138   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3139                               LegalVT != MVT::i16))
3140     return SDValue();
3141 
3142   if (VT != MVT::i32)
3143     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3144 
3145   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3146   if (VT != MVT::i32)
3147     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3148 
3149   return FFBX;
3150 }
3151 
3152 // The native instructions return -1 on 0 input. Optimize out a select that
3153 // produces -1 on 0.
3154 //
3155 // TODO: If zero is not undef, we could also do this if the output is compared
3156 // against the bitwidth.
3157 //
3158 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3159 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3160                                                  SDValue LHS, SDValue RHS,
3161                                                  DAGCombinerInfo &DCI) const {
3162   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3163   if (!CmpRhs || !CmpRhs->isNullValue())
3164     return SDValue();
3165 
3166   SelectionDAG &DAG = DCI.DAG;
3167   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3168   SDValue CmpLHS = Cond.getOperand(0);
3169 
3170   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3171                                            AMDGPUISD::FFBH_U32;
3172 
3173   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3174   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3175   if (CCOpcode == ISD::SETEQ &&
3176       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3177       RHS.getOperand(0) == CmpLHS &&
3178       isNegativeOne(LHS)) {
3179     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3180   }
3181 
3182   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3183   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3184   if (CCOpcode == ISD::SETNE &&
3185       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3186       LHS.getOperand(0) == CmpLHS &&
3187       isNegativeOne(RHS)) {
3188     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3189   }
3190 
3191   return SDValue();
3192 }
3193 
3194 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3195                                          unsigned Op,
3196                                          const SDLoc &SL,
3197                                          SDValue Cond,
3198                                          SDValue N1,
3199                                          SDValue N2) {
3200   SelectionDAG &DAG = DCI.DAG;
3201   EVT VT = N1.getValueType();
3202 
3203   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3204                                   N1.getOperand(0), N2.getOperand(0));
3205   DCI.AddToWorklist(NewSelect.getNode());
3206   return DAG.getNode(Op, SL, VT, NewSelect);
3207 }
3208 
3209 // Pull a free FP operation out of a select so it may fold into uses.
3210 //
3211 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3212 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3213 //
3214 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3215 // select c, (fabs x), +k -> fabs (select c, x, k)
3216 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3217                                     SDValue N) {
3218   SelectionDAG &DAG = DCI.DAG;
3219   SDValue Cond = N.getOperand(0);
3220   SDValue LHS = N.getOperand(1);
3221   SDValue RHS = N.getOperand(2);
3222 
3223   EVT VT = N.getValueType();
3224   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3225       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3226     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3227                                      SDLoc(N), Cond, LHS, RHS);
3228   }
3229 
3230   bool Inv = false;
3231   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3232     std::swap(LHS, RHS);
3233     Inv = true;
3234   }
3235 
3236   // TODO: Support vector constants.
3237   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3238   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3239     SDLoc SL(N);
3240     // If one side is an fneg/fabs and the other is a constant, we can push the
3241     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3242     SDValue NewLHS = LHS.getOperand(0);
3243     SDValue NewRHS = RHS;
3244 
3245     // Careful: if the neg can be folded up, don't try to pull it back down.
3246     bool ShouldFoldNeg = true;
3247 
3248     if (NewLHS.hasOneUse()) {
3249       unsigned Opc = NewLHS.getOpcode();
3250       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3251         ShouldFoldNeg = false;
3252       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3253         ShouldFoldNeg = false;
3254     }
3255 
3256     if (ShouldFoldNeg) {
3257       if (LHS.getOpcode() == ISD::FNEG)
3258         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3259       else if (CRHS->isNegative())
3260         return SDValue();
3261 
3262       if (Inv)
3263         std::swap(NewLHS, NewRHS);
3264 
3265       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3266                                       Cond, NewLHS, NewRHS);
3267       DCI.AddToWorklist(NewSelect.getNode());
3268       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3269     }
3270   }
3271 
3272   return SDValue();
3273 }
3274 
3275 
3276 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3277                                                    DAGCombinerInfo &DCI) const {
3278   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3279     return Folded;
3280 
3281   SDValue Cond = N->getOperand(0);
3282   if (Cond.getOpcode() != ISD::SETCC)
3283     return SDValue();
3284 
3285   EVT VT = N->getValueType(0);
3286   SDValue LHS = Cond.getOperand(0);
3287   SDValue RHS = Cond.getOperand(1);
3288   SDValue CC = Cond.getOperand(2);
3289 
3290   SDValue True = N->getOperand(1);
3291   SDValue False = N->getOperand(2);
3292 
3293   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3294     SelectionDAG &DAG = DCI.DAG;
3295     if ((DAG.isConstantValueOfAnyType(True) ||
3296          DAG.isConstantValueOfAnyType(True)) &&
3297         (!DAG.isConstantValueOfAnyType(False) &&
3298          !DAG.isConstantValueOfAnyType(False))) {
3299       // Swap cmp + select pair to move constant to false input.
3300       // This will allow using VOPC cndmasks more often.
3301       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3302 
3303       SDLoc SL(N);
3304       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3305                                             LHS.getValueType().isInteger());
3306 
3307       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3308       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3309     }
3310 
3311     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3312       SDValue MinMax
3313         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3314       // Revisit this node so we can catch min3/max3/med3 patterns.
3315       //DCI.AddToWorklist(MinMax.getNode());
3316       return MinMax;
3317     }
3318   }
3319 
3320   // There's no reason to not do this if the condition has other uses.
3321   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3322 }
3323 
3324 static bool isConstantFPZero(SDValue N) {
3325   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
3326     return C->isZero() && !C->isNegative();
3327   return false;
3328 }
3329 
3330 static unsigned inverseMinMax(unsigned Opc) {
3331   switch (Opc) {
3332   case ISD::FMAXNUM:
3333     return ISD::FMINNUM;
3334   case ISD::FMINNUM:
3335     return ISD::FMAXNUM;
3336   case AMDGPUISD::FMAX_LEGACY:
3337     return AMDGPUISD::FMIN_LEGACY;
3338   case AMDGPUISD::FMIN_LEGACY:
3339     return  AMDGPUISD::FMAX_LEGACY;
3340   default:
3341     llvm_unreachable("invalid min/max opcode");
3342   }
3343 }
3344 
3345 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3346                                                  DAGCombinerInfo &DCI) const {
3347   SelectionDAG &DAG = DCI.DAG;
3348   SDValue N0 = N->getOperand(0);
3349   EVT VT = N->getValueType(0);
3350 
3351   unsigned Opc = N0.getOpcode();
3352 
3353   // If the input has multiple uses and we can either fold the negate down, or
3354   // the other uses cannot, give up. This both prevents unprofitable
3355   // transformations and infinite loops: we won't repeatedly try to fold around
3356   // a negate that has no 'good' form.
3357   if (N0.hasOneUse()) {
3358     // This may be able to fold into the source, but at a code size cost. Don't
3359     // fold if the fold into the user is free.
3360     if (allUsesHaveSourceMods(N, 0))
3361       return SDValue();
3362   } else {
3363     if (fnegFoldsIntoOp(Opc) &&
3364         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3365       return SDValue();
3366   }
3367 
3368   SDLoc SL(N);
3369   switch (Opc) {
3370   case ISD::FADD: {
3371     if (!mayIgnoreSignedZero(N0))
3372       return SDValue();
3373 
3374     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3375     SDValue LHS = N0.getOperand(0);
3376     SDValue RHS = N0.getOperand(1);
3377 
3378     if (LHS.getOpcode() != ISD::FNEG)
3379       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3380     else
3381       LHS = LHS.getOperand(0);
3382 
3383     if (RHS.getOpcode() != ISD::FNEG)
3384       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3385     else
3386       RHS = RHS.getOperand(0);
3387 
3388     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3389     if (!N0.hasOneUse())
3390       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3391     return Res;
3392   }
3393   case ISD::FMUL:
3394   case AMDGPUISD::FMUL_LEGACY: {
3395     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3396     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3397     SDValue LHS = N0.getOperand(0);
3398     SDValue RHS = N0.getOperand(1);
3399 
3400     if (LHS.getOpcode() == ISD::FNEG)
3401       LHS = LHS.getOperand(0);
3402     else if (RHS.getOpcode() == ISD::FNEG)
3403       RHS = RHS.getOperand(0);
3404     else
3405       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3406 
3407     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3408     if (!N0.hasOneUse())
3409       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3410     return Res;
3411   }
3412   case ISD::FMA:
3413   case ISD::FMAD: {
3414     if (!mayIgnoreSignedZero(N0))
3415       return SDValue();
3416 
3417     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3418     SDValue LHS = N0.getOperand(0);
3419     SDValue MHS = N0.getOperand(1);
3420     SDValue RHS = N0.getOperand(2);
3421 
3422     if (LHS.getOpcode() == ISD::FNEG)
3423       LHS = LHS.getOperand(0);
3424     else if (MHS.getOpcode() == ISD::FNEG)
3425       MHS = MHS.getOperand(0);
3426     else
3427       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3428 
3429     if (RHS.getOpcode() != ISD::FNEG)
3430       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3431     else
3432       RHS = RHS.getOperand(0);
3433 
3434     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3435     if (!N0.hasOneUse())
3436       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3437     return Res;
3438   }
3439   case ISD::FMAXNUM:
3440   case ISD::FMINNUM:
3441   case AMDGPUISD::FMAX_LEGACY:
3442   case AMDGPUISD::FMIN_LEGACY: {
3443     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3444     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3445     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3446     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3447 
3448     SDValue LHS = N0.getOperand(0);
3449     SDValue RHS = N0.getOperand(1);
3450 
3451     // 0 doesn't have a negated inline immediate.
3452     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
3453     // operations.
3454     if (isConstantFPZero(RHS))
3455       return SDValue();
3456 
3457     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3458     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3459     unsigned Opposite = inverseMinMax(Opc);
3460 
3461     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3462     if (!N0.hasOneUse())
3463       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3464     return Res;
3465   }
3466   case ISD::FP_EXTEND:
3467   case ISD::FTRUNC:
3468   case ISD::FRINT:
3469   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3470   case ISD::FSIN:
3471   case AMDGPUISD::RCP:
3472   case AMDGPUISD::RCP_LEGACY:
3473   case AMDGPUISD::SIN_HW: {
3474     SDValue CvtSrc = N0.getOperand(0);
3475     if (CvtSrc.getOpcode() == ISD::FNEG) {
3476       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3477       // (fneg (rcp (fneg x))) -> (rcp x)
3478       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3479     }
3480 
3481     if (!N0.hasOneUse())
3482       return SDValue();
3483 
3484     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3485     // (fneg (rcp x)) -> (rcp (fneg x))
3486     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3487     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3488   }
3489   case ISD::FP_ROUND: {
3490     SDValue CvtSrc = N0.getOperand(0);
3491 
3492     if (CvtSrc.getOpcode() == ISD::FNEG) {
3493       // (fneg (fp_round (fneg x))) -> (fp_round x)
3494       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3495                          CvtSrc.getOperand(0), N0.getOperand(1));
3496     }
3497 
3498     if (!N0.hasOneUse())
3499       return SDValue();
3500 
3501     // (fneg (fp_round x)) -> (fp_round (fneg x))
3502     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3503     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3504   }
3505   case ISD::FP16_TO_FP: {
3506     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3507     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3508     // Put the fneg back as a legal source operation that can be matched later.
3509     SDLoc SL(N);
3510 
3511     SDValue Src = N0.getOperand(0);
3512     EVT SrcVT = Src.getValueType();
3513 
3514     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3515     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3516                                   DAG.getConstant(0x8000, SL, SrcVT));
3517     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3518   }
3519   default:
3520     return SDValue();
3521   }
3522 }
3523 
3524 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3525                                                  DAGCombinerInfo &DCI) const {
3526   SelectionDAG &DAG = DCI.DAG;
3527   SDValue N0 = N->getOperand(0);
3528 
3529   if (!N0.hasOneUse())
3530     return SDValue();
3531 
3532   switch (N0.getOpcode()) {
3533   case ISD::FP16_TO_FP: {
3534     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3535     SDLoc SL(N);
3536     SDValue Src = N0.getOperand(0);
3537     EVT SrcVT = Src.getValueType();
3538 
3539     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3540     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3541                                   DAG.getConstant(0x7fff, SL, SrcVT));
3542     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3543   }
3544   default:
3545     return SDValue();
3546   }
3547 }
3548 
3549 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3550                                                 DAGCombinerInfo &DCI) const {
3551   SelectionDAG &DAG = DCI.DAG;
3552   SDLoc DL(N);
3553 
3554   switch(N->getOpcode()) {
3555   default:
3556     break;
3557   case ISD::BITCAST: {
3558     EVT DestVT = N->getValueType(0);
3559 
3560     // Push casts through vector builds. This helps avoid emitting a large
3561     // number of copies when materializing floating point vector constants.
3562     //
3563     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3564     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3565     if (DestVT.isVector()) {
3566       SDValue Src = N->getOperand(0);
3567       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3568         EVT SrcVT = Src.getValueType();
3569         unsigned NElts = DestVT.getVectorNumElements();
3570 
3571         if (SrcVT.getVectorNumElements() == NElts) {
3572           EVT DestEltVT = DestVT.getVectorElementType();
3573 
3574           SmallVector<SDValue, 8> CastedElts;
3575           SDLoc SL(N);
3576           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3577             SDValue Elt = Src.getOperand(I);
3578             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3579           }
3580 
3581           return DAG.getBuildVector(DestVT, SL, CastedElts);
3582         }
3583       }
3584     }
3585 
3586     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3587       break;
3588 
3589     // Fold bitcasts of constants.
3590     //
3591     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3592     // TODO: Generalize and move to DAGCombiner
3593     SDValue Src = N->getOperand(0);
3594     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3595       assert(Src.getValueType() == MVT::i64);
3596       SDLoc SL(N);
3597       uint64_t CVal = C->getZExtValue();
3598       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3599                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3600                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3601     }
3602 
3603     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3604       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3605       SDLoc SL(N);
3606       uint64_t CVal = Val.getZExtValue();
3607       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3608                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3609                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3610 
3611       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3612     }
3613 
3614     break;
3615   }
3616   case ISD::SHL: {
3617     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3618       break;
3619 
3620     return performShlCombine(N, DCI);
3621   }
3622   case ISD::SRL: {
3623     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3624       break;
3625 
3626     return performSrlCombine(N, DCI);
3627   }
3628   case ISD::SRA: {
3629     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3630       break;
3631 
3632     return performSraCombine(N, DCI);
3633   }
3634   case ISD::MUL:
3635     return performMulCombine(N, DCI);
3636   case ISD::MULHS:
3637     return performMulhsCombine(N, DCI);
3638   case ISD::MULHU:
3639     return performMulhuCombine(N, DCI);
3640   case AMDGPUISD::MUL_I24:
3641   case AMDGPUISD::MUL_U24:
3642   case AMDGPUISD::MULHI_I24:
3643   case AMDGPUISD::MULHI_U24: {
3644     // If the first call to simplify is successfull, then N may end up being
3645     // deleted, so we shouldn't call simplifyI24 again.
3646     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3647     return SDValue();
3648   }
3649   case AMDGPUISD::MUL_LOHI_I24:
3650   case AMDGPUISD::MUL_LOHI_U24:
3651     return performMulLoHi24Combine(N, DCI);
3652   case ISD::SELECT:
3653     return performSelectCombine(N, DCI);
3654   case ISD::FNEG:
3655     return performFNegCombine(N, DCI);
3656   case ISD::FABS:
3657     return performFAbsCombine(N, DCI);
3658   case AMDGPUISD::BFE_I32:
3659   case AMDGPUISD::BFE_U32: {
3660     assert(!N->getValueType(0).isVector() &&
3661            "Vector handling of BFE not implemented");
3662     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3663     if (!Width)
3664       break;
3665 
3666     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3667     if (WidthVal == 0)
3668       return DAG.getConstant(0, DL, MVT::i32);
3669 
3670     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3671     if (!Offset)
3672       break;
3673 
3674     SDValue BitsFrom = N->getOperand(0);
3675     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3676 
3677     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3678 
3679     if (OffsetVal == 0) {
3680       // This is already sign / zero extended, so try to fold away extra BFEs.
3681       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3682 
3683       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3684       if (OpSignBits >= SignBits)
3685         return BitsFrom;
3686 
3687       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3688       if (Signed) {
3689         // This is a sign_extend_inreg. Replace it to take advantage of existing
3690         // DAG Combines. If not eliminated, we will match back to BFE during
3691         // selection.
3692 
3693         // TODO: The sext_inreg of extended types ends, although we can could
3694         // handle them in a single BFE.
3695         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3696                            DAG.getValueType(SmallVT));
3697       }
3698 
3699       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3700     }
3701 
3702     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3703       if (Signed) {
3704         return constantFoldBFE<int32_t>(DAG,
3705                                         CVal->getSExtValue(),
3706                                         OffsetVal,
3707                                         WidthVal,
3708                                         DL);
3709       }
3710 
3711       return constantFoldBFE<uint32_t>(DAG,
3712                                        CVal->getZExtValue(),
3713                                        OffsetVal,
3714                                        WidthVal,
3715                                        DL);
3716     }
3717 
3718     if ((OffsetVal + WidthVal) >= 32 &&
3719         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
3720       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3721       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3722                          BitsFrom, ShiftVal);
3723     }
3724 
3725     if (BitsFrom.hasOneUse()) {
3726       APInt Demanded = APInt::getBitsSet(32,
3727                                          OffsetVal,
3728                                          OffsetVal + WidthVal);
3729 
3730       KnownBits Known;
3731       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3732                                             !DCI.isBeforeLegalizeOps());
3733       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3734       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
3735           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
3736         DCI.CommitTargetLoweringOpt(TLO);
3737       }
3738     }
3739 
3740     break;
3741   }
3742   case ISD::LOAD:
3743     return performLoadCombine(N, DCI);
3744   case ISD::STORE:
3745     return performStoreCombine(N, DCI);
3746   case AMDGPUISD::CLAMP:
3747     return performClampCombine(N, DCI);
3748   case AMDGPUISD::RCP: {
3749     if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
3750       // XXX - Should this flush denormals?
3751       const APFloat &Val = CFP->getValueAPF();
3752       APFloat One(Val.getSemantics(), "1.0");
3753       return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3754     }
3755 
3756     break;
3757   }
3758   case ISD::AssertZext:
3759   case ISD::AssertSext:
3760     return performAssertSZExtCombine(N, DCI);
3761   }
3762   return SDValue();
3763 }
3764 
3765 //===----------------------------------------------------------------------===//
3766 // Helper functions
3767 //===----------------------------------------------------------------------===//
3768 
3769 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3770                                                    const TargetRegisterClass *RC,
3771                                                    unsigned Reg, EVT VT,
3772                                                    const SDLoc &SL,
3773                                                    bool RawReg) const {
3774   MachineFunction &MF = DAG.getMachineFunction();
3775   MachineRegisterInfo &MRI = MF.getRegInfo();
3776   unsigned VReg;
3777 
3778   if (!MRI.isLiveIn(Reg)) {
3779     VReg = MRI.createVirtualRegister(RC);
3780     MRI.addLiveIn(Reg, VReg);
3781   } else {
3782     VReg = MRI.getLiveInVirtReg(Reg);
3783   }
3784 
3785   if (RawReg)
3786     return DAG.getRegister(VReg, VT);
3787 
3788   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
3789 }
3790 
3791 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
3792                                                   EVT VT,
3793                                                   const SDLoc &SL,
3794                                                   int64_t Offset) const {
3795   MachineFunction &MF = DAG.getMachineFunction();
3796   MachineFrameInfo &MFI = MF.getFrameInfo();
3797 
3798   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
3799   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
3800   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
3801 
3802   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
3803                      MachineMemOperand::MODereferenceable |
3804                      MachineMemOperand::MOInvariant);
3805 }
3806 
3807 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
3808                                                    const SDLoc &SL,
3809                                                    SDValue Chain,
3810                                                    SDValue StackPtr,
3811                                                    SDValue ArgVal,
3812                                                    int64_t Offset) const {
3813   MachineFunction &MF = DAG.getMachineFunction();
3814   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
3815   SDValue PtrOffset = DAG.getConstant(Offset, SL, MVT::i32);
3816   SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, StackPtr, PtrOffset);
3817 
3818   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
3819                                MachineMemOperand::MODereferenceable);
3820   return Store;
3821 }
3822 
3823 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
3824                                              const TargetRegisterClass *RC,
3825                                              EVT VT, const SDLoc &SL,
3826                                              const ArgDescriptor &Arg) const {
3827   assert(Arg && "Attempting to load missing argument");
3828 
3829   if (Arg.isRegister())
3830     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
3831   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
3832 }
3833 
3834 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
3835     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
3836   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
3837   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
3838   switch (Param) {
3839   case GRID_DIM:
3840     return ArgOffset;
3841   case GRID_OFFSET:
3842     return ArgOffset + 4;
3843   }
3844   llvm_unreachable("unexpected implicit parameter type");
3845 }
3846 
3847 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
3848 
3849 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
3850   switch ((AMDGPUISD::NodeType)Opcode) {
3851   case AMDGPUISD::FIRST_NUMBER: break;
3852   // AMDIL DAG nodes
3853   NODE_NAME_CASE(UMUL);
3854   NODE_NAME_CASE(BRANCH_COND);
3855 
3856   // AMDGPU DAG nodes
3857   NODE_NAME_CASE(IF)
3858   NODE_NAME_CASE(ELSE)
3859   NODE_NAME_CASE(LOOP)
3860   NODE_NAME_CASE(CALL)
3861   NODE_NAME_CASE(TC_RETURN)
3862   NODE_NAME_CASE(TRAP)
3863   NODE_NAME_CASE(RET_FLAG)
3864   NODE_NAME_CASE(RETURN_TO_EPILOG)
3865   NODE_NAME_CASE(ENDPGM)
3866   NODE_NAME_CASE(DWORDADDR)
3867   NODE_NAME_CASE(FRACT)
3868   NODE_NAME_CASE(SETCC)
3869   NODE_NAME_CASE(SETREG)
3870   NODE_NAME_CASE(FMA_W_CHAIN)
3871   NODE_NAME_CASE(FMUL_W_CHAIN)
3872   NODE_NAME_CASE(CLAMP)
3873   NODE_NAME_CASE(COS_HW)
3874   NODE_NAME_CASE(SIN_HW)
3875   NODE_NAME_CASE(FMAX_LEGACY)
3876   NODE_NAME_CASE(FMIN_LEGACY)
3877   NODE_NAME_CASE(FMAX3)
3878   NODE_NAME_CASE(SMAX3)
3879   NODE_NAME_CASE(UMAX3)
3880   NODE_NAME_CASE(FMIN3)
3881   NODE_NAME_CASE(SMIN3)
3882   NODE_NAME_CASE(UMIN3)
3883   NODE_NAME_CASE(FMED3)
3884   NODE_NAME_CASE(SMED3)
3885   NODE_NAME_CASE(UMED3)
3886   NODE_NAME_CASE(URECIP)
3887   NODE_NAME_CASE(DIV_SCALE)
3888   NODE_NAME_CASE(DIV_FMAS)
3889   NODE_NAME_CASE(DIV_FIXUP)
3890   NODE_NAME_CASE(FMAD_FTZ)
3891   NODE_NAME_CASE(TRIG_PREOP)
3892   NODE_NAME_CASE(RCP)
3893   NODE_NAME_CASE(RSQ)
3894   NODE_NAME_CASE(RCP_LEGACY)
3895   NODE_NAME_CASE(RSQ_LEGACY)
3896   NODE_NAME_CASE(FMUL_LEGACY)
3897   NODE_NAME_CASE(RSQ_CLAMP)
3898   NODE_NAME_CASE(LDEXP)
3899   NODE_NAME_CASE(FP_CLASS)
3900   NODE_NAME_CASE(DOT4)
3901   NODE_NAME_CASE(CARRY)
3902   NODE_NAME_CASE(BORROW)
3903   NODE_NAME_CASE(BFE_U32)
3904   NODE_NAME_CASE(BFE_I32)
3905   NODE_NAME_CASE(BFI)
3906   NODE_NAME_CASE(BFM)
3907   NODE_NAME_CASE(FFBH_U32)
3908   NODE_NAME_CASE(FFBH_I32)
3909   NODE_NAME_CASE(FFBL_B32)
3910   NODE_NAME_CASE(MUL_U24)
3911   NODE_NAME_CASE(MUL_I24)
3912   NODE_NAME_CASE(MULHI_U24)
3913   NODE_NAME_CASE(MULHI_I24)
3914   NODE_NAME_CASE(MUL_LOHI_U24)
3915   NODE_NAME_CASE(MUL_LOHI_I24)
3916   NODE_NAME_CASE(MAD_U24)
3917   NODE_NAME_CASE(MAD_I24)
3918   NODE_NAME_CASE(MAD_I64_I32)
3919   NODE_NAME_CASE(MAD_U64_U32)
3920   NODE_NAME_CASE(TEXTURE_FETCH)
3921   NODE_NAME_CASE(EXPORT)
3922   NODE_NAME_CASE(EXPORT_DONE)
3923   NODE_NAME_CASE(R600_EXPORT)
3924   NODE_NAME_CASE(CONST_ADDRESS)
3925   NODE_NAME_CASE(REGISTER_LOAD)
3926   NODE_NAME_CASE(REGISTER_STORE)
3927   NODE_NAME_CASE(SAMPLE)
3928   NODE_NAME_CASE(SAMPLEB)
3929   NODE_NAME_CASE(SAMPLED)
3930   NODE_NAME_CASE(SAMPLEL)
3931   NODE_NAME_CASE(CVT_F32_UBYTE0)
3932   NODE_NAME_CASE(CVT_F32_UBYTE1)
3933   NODE_NAME_CASE(CVT_F32_UBYTE2)
3934   NODE_NAME_CASE(CVT_F32_UBYTE3)
3935   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
3936   NODE_NAME_CASE(FP_TO_FP16)
3937   NODE_NAME_CASE(FP16_ZEXT)
3938   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
3939   NODE_NAME_CASE(CONST_DATA_PTR)
3940   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
3941   NODE_NAME_CASE(KILL)
3942   NODE_NAME_CASE(DUMMY_CHAIN)
3943   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
3944   NODE_NAME_CASE(INIT_EXEC)
3945   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
3946   NODE_NAME_CASE(SENDMSG)
3947   NODE_NAME_CASE(SENDMSGHALT)
3948   NODE_NAME_CASE(INTERP_MOV)
3949   NODE_NAME_CASE(INTERP_P1)
3950   NODE_NAME_CASE(INTERP_P2)
3951   NODE_NAME_CASE(STORE_MSKOR)
3952   NODE_NAME_CASE(LOAD_CONSTANT)
3953   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
3954   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
3955   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
3956   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
3957   NODE_NAME_CASE(ATOMIC_INC)
3958   NODE_NAME_CASE(ATOMIC_DEC)
3959   NODE_NAME_CASE(BUFFER_LOAD)
3960   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
3961   NODE_NAME_CASE(BUFFER_STORE)
3962   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
3963   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
3964   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
3965   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
3966   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
3967   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
3968   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
3969   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
3970   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
3971   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
3972   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
3973   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
3974   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
3975   }
3976   return nullptr;
3977 }
3978 
3979 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
3980                                               SelectionDAG &DAG, int Enabled,
3981                                               int &RefinementSteps,
3982                                               bool &UseOneConstNR,
3983                                               bool Reciprocal) const {
3984   EVT VT = Operand.getValueType();
3985 
3986   if (VT == MVT::f32) {
3987     RefinementSteps = 0;
3988     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
3989   }
3990 
3991   // TODO: There is also f64 rsq instruction, but the documentation is less
3992   // clear on its precision.
3993 
3994   return SDValue();
3995 }
3996 
3997 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
3998                                                SelectionDAG &DAG, int Enabled,
3999                                                int &RefinementSteps) const {
4000   EVT VT = Operand.getValueType();
4001 
4002   if (VT == MVT::f32) {
4003     // Reciprocal, < 1 ulp error.
4004     //
4005     // This reciprocal approximation converges to < 0.5 ulp error with one
4006     // newton rhapson performed with two fused multiple adds (FMAs).
4007 
4008     RefinementSteps = 0;
4009     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4010   }
4011 
4012   // TODO: There is also f64 rcp instruction, but the documentation is less
4013   // clear on its precision.
4014 
4015   return SDValue();
4016 }
4017 
4018 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4019     const SDValue Op, KnownBits &Known,
4020     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4021 
4022   Known.resetAll(); // Don't know anything.
4023 
4024   unsigned Opc = Op.getOpcode();
4025 
4026   switch (Opc) {
4027   default:
4028     break;
4029   case AMDGPUISD::CARRY:
4030   case AMDGPUISD::BORROW: {
4031     Known.Zero = APInt::getHighBitsSet(32, 31);
4032     break;
4033   }
4034 
4035   case AMDGPUISD::BFE_I32:
4036   case AMDGPUISD::BFE_U32: {
4037     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4038     if (!CWidth)
4039       return;
4040 
4041     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4042 
4043     if (Opc == AMDGPUISD::BFE_U32)
4044       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4045 
4046     break;
4047   }
4048   case AMDGPUISD::FP_TO_FP16:
4049   case AMDGPUISD::FP16_ZEXT: {
4050     unsigned BitWidth = Known.getBitWidth();
4051 
4052     // High bits are zero.
4053     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4054     break;
4055   }
4056   case AMDGPUISD::MUL_U24:
4057   case AMDGPUISD::MUL_I24: {
4058     KnownBits LHSKnown, RHSKnown;
4059     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
4060     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
4061 
4062     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4063                       RHSKnown.countMinTrailingZeros();
4064     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4065 
4066     unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
4067     unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
4068     unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4069     if (MaxValBits >= 32)
4070       break;
4071     bool Negative = false;
4072     if (Opc == AMDGPUISD::MUL_I24) {
4073       bool LHSNegative = !!(LHSKnown.One  & (1 << 23));
4074       bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
4075       bool RHSNegative = !!(RHSKnown.One  & (1 << 23));
4076       bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
4077       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4078         break;
4079       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4080     }
4081     if (Negative)
4082       Known.One.setHighBits(32 - MaxValBits);
4083     else
4084       Known.Zero.setHighBits(32 - MaxValBits);
4085     break;
4086   }
4087   case ISD::INTRINSIC_WO_CHAIN: {
4088     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4089     switch (IID) {
4090     case Intrinsic::amdgcn_mbcnt_lo:
4091     case Intrinsic::amdgcn_mbcnt_hi: {
4092       // These return at most the wavefront size - 1.
4093       unsigned Size = Op.getValueType().getSizeInBits();
4094       Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2());
4095       break;
4096     }
4097     default:
4098       break;
4099     }
4100   }
4101   }
4102 }
4103 
4104 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4105     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4106     unsigned Depth) const {
4107   switch (Op.getOpcode()) {
4108   case AMDGPUISD::BFE_I32: {
4109     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4110     if (!Width)
4111       return 1;
4112 
4113     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4114     if (!isNullConstant(Op.getOperand(1)))
4115       return SignBits;
4116 
4117     // TODO: Could probably figure something out with non-0 offsets.
4118     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4119     return std::max(SignBits, Op0SignBits);
4120   }
4121 
4122   case AMDGPUISD::BFE_U32: {
4123     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4124     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4125   }
4126 
4127   case AMDGPUISD::CARRY:
4128   case AMDGPUISD::BORROW:
4129     return 31;
4130   case AMDGPUISD::FP_TO_FP16:
4131   case AMDGPUISD::FP16_ZEXT:
4132     return 16;
4133   default:
4134     return 1;
4135   }
4136 }
4137