1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "AMDGPUTargetMachine.h" 24 #include "R600MachineFunctionInfo.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 using namespace llvm; 36 37 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 38 CCValAssign::LocInfo LocInfo, 39 ISD::ArgFlagsTy ArgFlags, CCState &State) { 40 MachineFunction &MF = State.getMachineFunction(); 41 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 42 43 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 44 ArgFlags.getOrigAlign()); 45 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 46 return true; 47 } 48 49 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 50 CCValAssign::LocInfo LocInfo, 51 ISD::ArgFlagsTy ArgFlags, CCState &State, 52 const TargetRegisterClass *RC, 53 unsigned NumRegs) { 54 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 55 unsigned RegResult = State.AllocateReg(RegList); 56 if (RegResult == AMDGPU::NoRegister) 57 return false; 58 59 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 60 return true; 61 } 62 63 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 64 CCValAssign::LocInfo LocInfo, 65 ISD::ArgFlagsTy ArgFlags, CCState &State) { 66 switch (LocVT.SimpleTy) { 67 case MVT::i64: 68 case MVT::f64: 69 case MVT::v2i32: 70 case MVT::v2f32: { 71 // Up to SGPR0-SGPR39 72 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 73 &AMDGPU::SGPR_64RegClass, 20); 74 } 75 default: 76 return false; 77 } 78 } 79 80 // Allocate up to VGPR31. 81 // 82 // TODO: Since there are no VGPR alignent requirements would it be better to 83 // split into individual scalar registers? 84 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 85 CCValAssign::LocInfo LocInfo, 86 ISD::ArgFlagsTy ArgFlags, CCState &State) { 87 switch (LocVT.SimpleTy) { 88 case MVT::i64: 89 case MVT::f64: 90 case MVT::v2i32: 91 case MVT::v2f32: { 92 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 93 &AMDGPU::VReg_64RegClass, 31); 94 } 95 case MVT::v4i32: 96 case MVT::v4f32: 97 case MVT::v2i64: 98 case MVT::v2f64: { 99 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 100 &AMDGPU::VReg_128RegClass, 29); 101 } 102 case MVT::v8i32: 103 case MVT::v8f32: { 104 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 105 &AMDGPU::VReg_256RegClass, 25); 106 107 } 108 case MVT::v16i32: 109 case MVT::v16f32: { 110 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 111 &AMDGPU::VReg_512RegClass, 17); 112 113 } 114 default: 115 return false; 116 } 117 } 118 119 #include "AMDGPUGenCallingConv.inc" 120 121 // Find a larger type to do a load / store of a vector with. 122 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 123 unsigned StoreSize = VT.getStoreSizeInBits(); 124 if (StoreSize <= 32) 125 return EVT::getIntegerVT(Ctx, StoreSize); 126 127 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 128 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 129 } 130 131 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 132 KnownBits Known; 133 EVT VT = Op.getValueType(); 134 DAG.computeKnownBits(Op, Known); 135 136 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 137 } 138 139 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 140 EVT VT = Op.getValueType(); 141 142 // In order for this to be a signed 24-bit value, bit 23, must 143 // be a sign bit. 144 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 145 } 146 147 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 148 const AMDGPUSubtarget &STI) 149 : TargetLowering(TM), Subtarget(&STI) { 150 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 151 // Lower floating point store/load to integer store/load to reduce the number 152 // of patterns in tablegen. 153 setOperationAction(ISD::LOAD, MVT::f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 155 156 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 158 159 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 161 162 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 164 165 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 167 168 setOperationAction(ISD::LOAD, MVT::i64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 170 171 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 173 174 setOperationAction(ISD::LOAD, MVT::f64, Promote); 175 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 176 177 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 178 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 179 180 // There are no 64-bit extloads. These should be done as a 32-bit extload and 181 // an extension to 64-bit. 182 for (MVT VT : MVT::integer_valuetypes()) { 183 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 184 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 185 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 186 } 187 188 for (MVT VT : MVT::integer_valuetypes()) { 189 if (VT == MVT::i64) 190 continue; 191 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 193 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 194 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 196 197 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 198 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 200 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 201 202 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 204 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 205 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 206 } 207 208 for (MVT VT : MVT::integer_vector_valuetypes()) { 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 211 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 213 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 214 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 215 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 218 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 219 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 220 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 221 } 222 223 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 226 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 227 228 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 232 233 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 237 238 setOperationAction(ISD::STORE, MVT::f32, Promote); 239 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 240 241 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 243 244 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 246 247 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 249 250 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 252 253 setOperationAction(ISD::STORE, MVT::i64, Promote); 254 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 255 256 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 258 259 setOperationAction(ISD::STORE, MVT::f64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 261 262 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 263 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 264 265 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 266 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 267 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 268 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 269 270 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 271 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 272 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 273 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 274 275 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 276 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 277 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 278 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 281 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 282 283 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 284 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 285 286 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 287 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 288 289 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 290 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 291 292 293 setOperationAction(ISD::Constant, MVT::i32, Legal); 294 setOperationAction(ISD::Constant, MVT::i64, Legal); 295 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 296 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 297 298 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 299 setOperationAction(ISD::BRIND, MVT::Other, Expand); 300 301 // This is totally unsupported, just custom lower to produce an error. 302 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 303 304 // Library functions. These default to Expand, but we have instructions 305 // for them. 306 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 307 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 308 setOperationAction(ISD::FPOW, MVT::f32, Legal); 309 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 310 setOperationAction(ISD::FABS, MVT::f32, Legal); 311 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 312 setOperationAction(ISD::FRINT, MVT::f32, Legal); 313 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 314 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 315 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 316 317 setOperationAction(ISD::FROUND, MVT::f32, Custom); 318 setOperationAction(ISD::FROUND, MVT::f64, Custom); 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f32, Custom); 324 setOperationAction(ISD::FREM, MVT::f64, Custom); 325 326 // v_mad_f32 does not support denormals according to some sources. 327 if (!Subtarget->hasFP32Denormals()) 328 setOperationAction(ISD::FMAD, MVT::f32, Legal); 329 330 // Expand to fneg + fadd. 331 setOperationAction(ISD::FSUB, MVT::f64, Expand); 332 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 343 344 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 345 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 346 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 347 setOperationAction(ISD::FRINT, MVT::f64, Custom); 348 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 349 } 350 351 if (!Subtarget->hasBFI()) { 352 // fcopysign can be done in a single instruction with BFI. 353 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 354 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 355 } 356 357 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 358 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 359 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 360 361 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 362 for (MVT VT : ScalarIntVTs) { 363 // These should use [SU]DIVREM, so set them to expand 364 setOperationAction(ISD::SDIV, VT, Expand); 365 setOperationAction(ISD::UDIV, VT, Expand); 366 setOperationAction(ISD::SREM, VT, Expand); 367 setOperationAction(ISD::UREM, VT, Expand); 368 369 // GPU does not have divrem function for signed or unsigned. 370 setOperationAction(ISD::SDIVREM, VT, Custom); 371 setOperationAction(ISD::UDIVREM, VT, Custom); 372 373 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 374 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 375 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 376 377 setOperationAction(ISD::BSWAP, VT, Expand); 378 setOperationAction(ISD::CTTZ, VT, Expand); 379 setOperationAction(ISD::CTLZ, VT, Expand); 380 } 381 382 if (!Subtarget->hasBCNT(32)) 383 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 384 385 if (!Subtarget->hasBCNT(64)) 386 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 387 388 // The hardware supports 32-bit ROTR, but not ROTL. 389 setOperationAction(ISD::ROTL, MVT::i32, Expand); 390 setOperationAction(ISD::ROTL, MVT::i64, Expand); 391 setOperationAction(ISD::ROTR, MVT::i64, Expand); 392 393 setOperationAction(ISD::MUL, MVT::i64, Expand); 394 setOperationAction(ISD::MULHU, MVT::i64, Expand); 395 setOperationAction(ISD::MULHS, MVT::i64, Expand); 396 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 397 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 398 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 399 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 400 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 401 402 setOperationAction(ISD::SMIN, MVT::i32, Legal); 403 setOperationAction(ISD::UMIN, MVT::i32, Legal); 404 setOperationAction(ISD::SMAX, MVT::i32, Legal); 405 setOperationAction(ISD::UMAX, MVT::i32, Legal); 406 407 if (Subtarget->hasFFBH()) 408 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 409 410 if (Subtarget->hasFFBL()) 411 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 412 413 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 414 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 415 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 416 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 417 418 // We only really have 32-bit BFE instructions (and 16-bit on VI). 419 // 420 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 421 // effort to match them now. We want this to be false for i64 cases when the 422 // extraction isn't restricted to the upper or lower half. Ideally we would 423 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 424 // span the midpoint are probably relatively rare, so don't worry about them 425 // for now. 426 if (Subtarget->hasBFE()) 427 setHasExtractBitsInsn(true); 428 429 static const MVT::SimpleValueType VectorIntTypes[] = { 430 MVT::v2i32, MVT::v4i32 431 }; 432 433 for (MVT VT : VectorIntTypes) { 434 // Expand the following operations for the current type by default. 435 setOperationAction(ISD::ADD, VT, Expand); 436 setOperationAction(ISD::AND, VT, Expand); 437 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 438 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 439 setOperationAction(ISD::MUL, VT, Expand); 440 setOperationAction(ISD::MULHU, VT, Expand); 441 setOperationAction(ISD::MULHS, VT, Expand); 442 setOperationAction(ISD::OR, VT, Expand); 443 setOperationAction(ISD::SHL, VT, Expand); 444 setOperationAction(ISD::SRA, VT, Expand); 445 setOperationAction(ISD::SRL, VT, Expand); 446 setOperationAction(ISD::ROTL, VT, Expand); 447 setOperationAction(ISD::ROTR, VT, Expand); 448 setOperationAction(ISD::SUB, VT, Expand); 449 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 450 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 451 setOperationAction(ISD::SDIV, VT, Expand); 452 setOperationAction(ISD::UDIV, VT, Expand); 453 setOperationAction(ISD::SREM, VT, Expand); 454 setOperationAction(ISD::UREM, VT, Expand); 455 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 456 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 457 setOperationAction(ISD::SDIVREM, VT, Custom); 458 setOperationAction(ISD::UDIVREM, VT, Expand); 459 setOperationAction(ISD::ADDC, VT, Expand); 460 setOperationAction(ISD::SUBC, VT, Expand); 461 setOperationAction(ISD::ADDE, VT, Expand); 462 setOperationAction(ISD::SUBE, VT, Expand); 463 setOperationAction(ISD::SELECT, VT, Expand); 464 setOperationAction(ISD::VSELECT, VT, Expand); 465 setOperationAction(ISD::SELECT_CC, VT, Expand); 466 setOperationAction(ISD::XOR, VT, Expand); 467 setOperationAction(ISD::BSWAP, VT, Expand); 468 setOperationAction(ISD::CTPOP, VT, Expand); 469 setOperationAction(ISD::CTTZ, VT, Expand); 470 setOperationAction(ISD::CTLZ, VT, Expand); 471 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 472 setOperationAction(ISD::SETCC, VT, Expand); 473 } 474 475 static const MVT::SimpleValueType FloatVectorTypes[] = { 476 MVT::v2f32, MVT::v4f32 477 }; 478 479 for (MVT VT : FloatVectorTypes) { 480 setOperationAction(ISD::FABS, VT, Expand); 481 setOperationAction(ISD::FMINNUM, VT, Expand); 482 setOperationAction(ISD::FMAXNUM, VT, Expand); 483 setOperationAction(ISD::FADD, VT, Expand); 484 setOperationAction(ISD::FCEIL, VT, Expand); 485 setOperationAction(ISD::FCOS, VT, Expand); 486 setOperationAction(ISD::FDIV, VT, Expand); 487 setOperationAction(ISD::FEXP2, VT, Expand); 488 setOperationAction(ISD::FLOG2, VT, Expand); 489 setOperationAction(ISD::FREM, VT, Expand); 490 setOperationAction(ISD::FPOW, VT, Expand); 491 setOperationAction(ISD::FFLOOR, VT, Expand); 492 setOperationAction(ISD::FTRUNC, VT, Expand); 493 setOperationAction(ISD::FMUL, VT, Expand); 494 setOperationAction(ISD::FMA, VT, Expand); 495 setOperationAction(ISD::FRINT, VT, Expand); 496 setOperationAction(ISD::FNEARBYINT, VT, Expand); 497 setOperationAction(ISD::FSQRT, VT, Expand); 498 setOperationAction(ISD::FSIN, VT, Expand); 499 setOperationAction(ISD::FSUB, VT, Expand); 500 setOperationAction(ISD::FNEG, VT, Expand); 501 setOperationAction(ISD::VSELECT, VT, Expand); 502 setOperationAction(ISD::SELECT_CC, VT, Expand); 503 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 504 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 505 setOperationAction(ISD::SETCC, VT, Expand); 506 } 507 508 // This causes using an unrolled select operation rather than expansion with 509 // bit operations. This is in general better, but the alternative using BFI 510 // instructions may be better if the select sources are SGPRs. 511 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 512 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 513 514 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 515 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 516 517 // There are no libcalls of any kind. 518 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 519 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 520 521 setBooleanContents(ZeroOrNegativeOneBooleanContent); 522 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 523 524 setSchedulingPreference(Sched::RegPressure); 525 setJumpIsExpensive(true); 526 527 // FIXME: This is only partially true. If we have to do vector compares, any 528 // SGPR pair can be a condition register. If we have a uniform condition, we 529 // are better off doing SALU operations, where there is only one SCC. For now, 530 // we don't have a way of knowing during instruction selection if a condition 531 // will be uniform and we always use vector compares. Assume we are using 532 // vector compares until that is fixed. 533 setHasMultipleConditionRegisters(true); 534 535 // SI at least has hardware support for floating point exceptions, but no way 536 // of using or handling them is implemented. They are also optional in OpenCL 537 // (Section 7.3) 538 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 539 540 PredictableSelectIsExpensive = false; 541 542 // We want to find all load dependencies for long chains of stores to enable 543 // merging into very wide vectors. The problem is with vectors with > 4 544 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 545 // vectors are a legal type, even though we have to split the loads 546 // usually. When we can more precisely specify load legality per address 547 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 548 // smarter so that they can figure out what to do in 2 iterations without all 549 // N > 4 stores on the same chain. 550 GatherAllAliasesMaxDepth = 16; 551 552 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 553 // about these during lowering. 554 MaxStoresPerMemcpy = 0xffffffff; 555 MaxStoresPerMemmove = 0xffffffff; 556 MaxStoresPerMemset = 0xffffffff; 557 558 setTargetDAGCombine(ISD::BITCAST); 559 setTargetDAGCombine(ISD::SHL); 560 setTargetDAGCombine(ISD::SRA); 561 setTargetDAGCombine(ISD::SRL); 562 setTargetDAGCombine(ISD::MUL); 563 setTargetDAGCombine(ISD::MULHU); 564 setTargetDAGCombine(ISD::MULHS); 565 setTargetDAGCombine(ISD::SELECT); 566 setTargetDAGCombine(ISD::SELECT_CC); 567 setTargetDAGCombine(ISD::STORE); 568 setTargetDAGCombine(ISD::FADD); 569 setTargetDAGCombine(ISD::FSUB); 570 setTargetDAGCombine(ISD::FNEG); 571 setTargetDAGCombine(ISD::FABS); 572 setTargetDAGCombine(ISD::AssertZext); 573 setTargetDAGCombine(ISD::AssertSext); 574 } 575 576 //===----------------------------------------------------------------------===// 577 // Target Information 578 //===----------------------------------------------------------------------===// 579 580 LLVM_READNONE 581 static bool fnegFoldsIntoOp(unsigned Opc) { 582 switch (Opc) { 583 case ISD::FADD: 584 case ISD::FSUB: 585 case ISD::FMUL: 586 case ISD::FMA: 587 case ISD::FMAD: 588 case ISD::FMINNUM: 589 case ISD::FMAXNUM: 590 case ISD::FSIN: 591 case ISD::FTRUNC: 592 case ISD::FRINT: 593 case ISD::FNEARBYINT: 594 case AMDGPUISD::RCP: 595 case AMDGPUISD::RCP_LEGACY: 596 case AMDGPUISD::SIN_HW: 597 case AMDGPUISD::FMUL_LEGACY: 598 case AMDGPUISD::FMIN_LEGACY: 599 case AMDGPUISD::FMAX_LEGACY: 600 return true; 601 default: 602 return false; 603 } 604 } 605 606 /// \p returns true if the operation will definitely need to use a 64-bit 607 /// encoding, and thus will use a VOP3 encoding regardless of the source 608 /// modifiers. 609 LLVM_READONLY 610 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 611 return N->getNumOperands() > 2 || VT == MVT::f64; 612 } 613 614 // Most FP instructions support source modifiers, but this could be refined 615 // slightly. 616 LLVM_READONLY 617 static bool hasSourceMods(const SDNode *N) { 618 if (isa<MemSDNode>(N)) 619 return false; 620 621 switch (N->getOpcode()) { 622 case ISD::CopyToReg: 623 case ISD::SELECT: 624 case ISD::FDIV: 625 case ISD::FREM: 626 case ISD::INLINEASM: 627 case AMDGPUISD::INTERP_P1: 628 case AMDGPUISD::INTERP_P2: 629 case AMDGPUISD::DIV_SCALE: 630 631 // TODO: Should really be looking at the users of the bitcast. These are 632 // problematic because bitcasts are used to legalize all stores to integer 633 // types. 634 case ISD::BITCAST: 635 return false; 636 default: 637 return true; 638 } 639 } 640 641 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 642 unsigned CostThreshold) { 643 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 644 // it is truly free to use a source modifier in all cases. If there are 645 // multiple users but for each one will necessitate using VOP3, there will be 646 // a code size increase. Try to avoid increasing code size unless we know it 647 // will save on the instruction count. 648 unsigned NumMayIncreaseSize = 0; 649 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 650 651 // XXX - Should this limit number of uses to check? 652 for (const SDNode *U : N->uses()) { 653 if (!hasSourceMods(U)) 654 return false; 655 656 if (!opMustUseVOP3Encoding(U, VT)) { 657 if (++NumMayIncreaseSize > CostThreshold) 658 return false; 659 } 660 } 661 662 return true; 663 } 664 665 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 666 return MVT::i32; 667 } 668 669 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 670 return true; 671 } 672 673 // The backend supports 32 and 64 bit floating point immediates. 674 // FIXME: Why are we reporting vectors of FP immediates as legal? 675 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 676 EVT ScalarVT = VT.getScalarType(); 677 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 678 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 679 } 680 681 // We don't want to shrink f64 / f32 constants. 682 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 683 EVT ScalarVT = VT.getScalarType(); 684 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 685 } 686 687 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 688 ISD::LoadExtType, 689 EVT NewVT) const { 690 691 unsigned NewSize = NewVT.getStoreSizeInBits(); 692 693 // If we are reducing to a 32-bit load, this is always better. 694 if (NewSize == 32) 695 return true; 696 697 EVT OldVT = N->getValueType(0); 698 unsigned OldSize = OldVT.getStoreSizeInBits(); 699 700 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 701 // extloads, so doing one requires using a buffer_load. In cases where we 702 // still couldn't use a scalar load, using the wider load shouldn't really 703 // hurt anything. 704 705 // If the old size already had to be an extload, there's no harm in continuing 706 // to reduce the width. 707 return (OldSize < 32); 708 } 709 710 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 711 EVT CastTy) const { 712 713 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 714 715 if (LoadTy.getScalarType() == MVT::i32) 716 return false; 717 718 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 719 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 720 721 return (LScalarSize < CastScalarSize) || 722 (CastScalarSize >= 32); 723 } 724 725 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 726 // profitable with the expansion for 64-bit since it's generally good to 727 // speculate things. 728 // FIXME: These should really have the size as a parameter. 729 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 730 return true; 731 } 732 733 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 734 return true; 735 } 736 737 //===---------------------------------------------------------------------===// 738 // Target Properties 739 //===---------------------------------------------------------------------===// 740 741 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 742 assert(VT.isFloatingPoint()); 743 744 // Packed operations do not have a fabs modifier. 745 return VT == MVT::f32 || VT == MVT::f64 || 746 (Subtarget->has16BitInsts() && VT == MVT::f16); 747 } 748 749 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 750 assert(VT.isFloatingPoint()); 751 return VT == MVT::f32 || VT == MVT::f64 || 752 (Subtarget->has16BitInsts() && VT == MVT::f16) || 753 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 754 } 755 756 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 757 unsigned NumElem, 758 unsigned AS) const { 759 return true; 760 } 761 762 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 763 // There are few operations which truly have vector input operands. Any vector 764 // operation is going to involve operations on each component, and a 765 // build_vector will be a copy per element, so it always makes sense to use a 766 // build_vector input in place of the extracted element to avoid a copy into a 767 // super register. 768 // 769 // We should probably only do this if all users are extracts only, but this 770 // should be the common case. 771 return true; 772 } 773 774 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 775 // Truncate is just accessing a subregister. 776 777 unsigned SrcSize = Source.getSizeInBits(); 778 unsigned DestSize = Dest.getSizeInBits(); 779 780 return DestSize < SrcSize && DestSize % 32 == 0 ; 781 } 782 783 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 784 // Truncate is just accessing a subregister. 785 786 unsigned SrcSize = Source->getScalarSizeInBits(); 787 unsigned DestSize = Dest->getScalarSizeInBits(); 788 789 if (DestSize== 16 && Subtarget->has16BitInsts()) 790 return SrcSize >= 32; 791 792 return DestSize < SrcSize && DestSize % 32 == 0; 793 } 794 795 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 796 unsigned SrcSize = Src->getScalarSizeInBits(); 797 unsigned DestSize = Dest->getScalarSizeInBits(); 798 799 if (SrcSize == 16 && Subtarget->has16BitInsts()) 800 return DestSize >= 32; 801 802 return SrcSize == 32 && DestSize == 64; 803 } 804 805 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 806 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 807 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 808 // this will enable reducing 64-bit operations the 32-bit, which is always 809 // good. 810 811 if (Src == MVT::i16) 812 return Dest == MVT::i32 ||Dest == MVT::i64 ; 813 814 return Src == MVT::i32 && Dest == MVT::i64; 815 } 816 817 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 818 return isZExtFree(Val.getValueType(), VT2); 819 } 820 821 // v_mad_mix* support a conversion from f16 to f32. 822 // 823 // There is only one special case when denormals are enabled we don't currently, 824 // where this is OK to use. 825 bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode, 826 EVT DestVT, EVT SrcVT) const { 827 return Opcode == ISD::FMAD && Subtarget->hasMadMixInsts() && 828 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && 829 SrcVT.getScalarType() == MVT::f16; 830 } 831 832 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 833 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 834 // limited number of native 64-bit operations. Shrinking an operation to fit 835 // in a single 32-bit register should always be helpful. As currently used, 836 // this is much less general than the name suggests, and is only used in 837 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 838 // not profitable, and may actually be harmful. 839 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 840 } 841 842 //===---------------------------------------------------------------------===// 843 // TargetLowering Callbacks 844 //===---------------------------------------------------------------------===// 845 846 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 847 bool IsVarArg) { 848 switch (CC) { 849 case CallingConv::AMDGPU_KERNEL: 850 case CallingConv::SPIR_KERNEL: 851 return CC_AMDGPU_Kernel; 852 case CallingConv::AMDGPU_VS: 853 case CallingConv::AMDGPU_GS: 854 case CallingConv::AMDGPU_PS: 855 case CallingConv::AMDGPU_CS: 856 case CallingConv::AMDGPU_HS: 857 case CallingConv::AMDGPU_ES: 858 case CallingConv::AMDGPU_LS: 859 return CC_AMDGPU; 860 case CallingConv::C: 861 case CallingConv::Fast: 862 case CallingConv::Cold: 863 return CC_AMDGPU_Func; 864 default: 865 report_fatal_error("Unsupported calling convention."); 866 } 867 } 868 869 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 870 bool IsVarArg) { 871 switch (CC) { 872 case CallingConv::AMDGPU_KERNEL: 873 case CallingConv::SPIR_KERNEL: 874 return CC_AMDGPU_Kernel; 875 case CallingConv::AMDGPU_VS: 876 case CallingConv::AMDGPU_GS: 877 case CallingConv::AMDGPU_PS: 878 case CallingConv::AMDGPU_CS: 879 case CallingConv::AMDGPU_HS: 880 case CallingConv::AMDGPU_ES: 881 case CallingConv::AMDGPU_LS: 882 return RetCC_SI_Shader; 883 case CallingConv::C: 884 case CallingConv::Fast: 885 case CallingConv::Cold: 886 return RetCC_AMDGPU_Func; 887 default: 888 report_fatal_error("Unsupported calling convention."); 889 } 890 } 891 892 /// The SelectionDAGBuilder will automatically promote function arguments 893 /// with illegal types. However, this does not work for the AMDGPU targets 894 /// since the function arguments are stored in memory as these illegal types. 895 /// In order to handle this properly we need to get the original types sizes 896 /// from the LLVM IR Function and fixup the ISD:InputArg values before 897 /// passing them to AnalyzeFormalArguments() 898 899 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 900 /// input values across multiple registers. Each item in the Ins array 901 /// represents a single value that will be stored in registers. Ins[x].VT is 902 /// the value type of the value that will be stored in the register, so 903 /// whatever SDNode we lower the argument to needs to be this type. 904 /// 905 /// In order to correctly lower the arguments we need to know the size of each 906 /// argument. Since Ins[x].VT gives us the size of the register that will 907 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 908 /// for the orignal function argument so that we can deduce the correct memory 909 /// type to use for Ins[x]. In most cases the correct memory type will be 910 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 911 /// we have a kernel argument of type v8i8, this argument will be split into 912 /// 8 parts and each part will be represented by its own item in the Ins array. 913 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 914 /// the argument before it was split. From this, we deduce that the memory type 915 /// for each individual part is i8. We pass the memory type as LocVT to the 916 /// calling convention analysis function and the register type (Ins[x].VT) as 917 /// the ValVT. 918 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 919 const SmallVectorImpl<ISD::InputArg> &Ins) const { 920 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 921 const ISD::InputArg &In = Ins[i]; 922 EVT MemVT; 923 924 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 925 926 if (!Subtarget->isAmdHsaOS() && 927 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 928 // The ABI says the caller will extend these values to 32-bits. 929 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 930 } else if (NumRegs == 1) { 931 // This argument is not split, so the IR type is the memory type. 932 assert(!In.Flags.isSplit()); 933 if (In.ArgVT.isExtended()) { 934 // We have an extended type, like i24, so we should just use the register type 935 MemVT = In.VT; 936 } else { 937 MemVT = In.ArgVT; 938 } 939 } else if (In.ArgVT.isVector() && In.VT.isVector() && 940 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 941 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 942 // We have a vector value which has been split into a vector with 943 // the same scalar type, but fewer elements. This should handle 944 // all the floating-point vector types. 945 MemVT = In.VT; 946 } else if (In.ArgVT.isVector() && 947 In.ArgVT.getVectorNumElements() == NumRegs) { 948 // This arg has been split so that each element is stored in a separate 949 // register. 950 MemVT = In.ArgVT.getScalarType(); 951 } else if (In.ArgVT.isExtended()) { 952 // We have an extended type, like i65. 953 MemVT = In.VT; 954 } else { 955 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 956 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 957 if (In.VT.isInteger()) { 958 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 959 } else if (In.VT.isVector()) { 960 assert(!In.VT.getScalarType().isFloatingPoint()); 961 unsigned NumElements = In.VT.getVectorNumElements(); 962 assert(MemoryBits % NumElements == 0); 963 // This vector type has been split into another vector type with 964 // a different elements size. 965 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 966 MemoryBits / NumElements); 967 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 968 } else { 969 llvm_unreachable("cannot deduce memory type."); 970 } 971 } 972 973 // Convert one element vectors to scalar. 974 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 975 MemVT = MemVT.getScalarType(); 976 977 if (MemVT.isExtended()) { 978 // This should really only happen if we have vec3 arguments 979 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 980 MemVT = MemVT.getPow2VectorType(State.getContext()); 981 } 982 983 assert(MemVT.isSimple()); 984 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 985 State); 986 } 987 } 988 989 SDValue AMDGPUTargetLowering::LowerReturn( 990 SDValue Chain, CallingConv::ID CallConv, 991 bool isVarArg, 992 const SmallVectorImpl<ISD::OutputArg> &Outs, 993 const SmallVectorImpl<SDValue> &OutVals, 994 const SDLoc &DL, SelectionDAG &DAG) const { 995 // FIXME: Fails for r600 tests 996 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 997 // "wave terminate should not have return values"); 998 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 999 } 1000 1001 //===---------------------------------------------------------------------===// 1002 // Target specific lowering 1003 //===---------------------------------------------------------------------===// 1004 1005 /// Selects the correct CCAssignFn for a given CallingConvention value. 1006 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1007 bool IsVarArg) { 1008 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1009 } 1010 1011 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1012 bool IsVarArg) { 1013 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1014 } 1015 1016 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1017 SelectionDAG &DAG, 1018 MachineFrameInfo &MFI, 1019 int ClobberedFI) const { 1020 SmallVector<SDValue, 8> ArgChains; 1021 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1022 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1023 1024 // Include the original chain at the beginning of the list. When this is 1025 // used by target LowerCall hooks, this helps legalize find the 1026 // CALLSEQ_BEGIN node. 1027 ArgChains.push_back(Chain); 1028 1029 // Add a chain value for each stack argument corresponding 1030 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1031 UE = DAG.getEntryNode().getNode()->use_end(); 1032 U != UE; ++U) { 1033 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1034 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1035 if (FI->getIndex() < 0) { 1036 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1037 int64_t InLastByte = InFirstByte; 1038 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1039 1040 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1041 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1042 ArgChains.push_back(SDValue(L, 1)); 1043 } 1044 } 1045 } 1046 } 1047 1048 // Build a tokenfactor for all the chains. 1049 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1050 } 1051 1052 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1053 SmallVectorImpl<SDValue> &InVals, 1054 StringRef Reason) const { 1055 SDValue Callee = CLI.Callee; 1056 SelectionDAG &DAG = CLI.DAG; 1057 1058 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1059 1060 StringRef FuncName("<unknown>"); 1061 1062 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1063 FuncName = G->getSymbol(); 1064 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1065 FuncName = G->getGlobal()->getName(); 1066 1067 DiagnosticInfoUnsupported NoCalls( 1068 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1069 DAG.getContext()->diagnose(NoCalls); 1070 1071 if (!CLI.IsTailCall) { 1072 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1073 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1074 } 1075 1076 return DAG.getEntryNode(); 1077 } 1078 1079 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1080 SmallVectorImpl<SDValue> &InVals) const { 1081 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1082 } 1083 1084 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1085 SelectionDAG &DAG) const { 1086 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1087 1088 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1089 SDLoc(Op).getDebugLoc()); 1090 DAG.getContext()->diagnose(NoDynamicAlloca); 1091 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1092 return DAG.getMergeValues(Ops, SDLoc()); 1093 } 1094 1095 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1096 SelectionDAG &DAG) const { 1097 switch (Op.getOpcode()) { 1098 default: 1099 Op->print(errs(), &DAG); 1100 llvm_unreachable("Custom lowering code for this" 1101 "instruction is not implemented yet!"); 1102 break; 1103 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1104 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1105 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1106 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1107 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1108 case ISD::FREM: return LowerFREM(Op, DAG); 1109 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1110 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1111 case ISD::FRINT: return LowerFRINT(Op, DAG); 1112 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1113 case ISD::FROUND: return LowerFROUND(Op, DAG); 1114 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1115 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1116 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1117 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1118 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1119 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1120 case ISD::CTTZ: 1121 case ISD::CTTZ_ZERO_UNDEF: 1122 case ISD::CTLZ: 1123 case ISD::CTLZ_ZERO_UNDEF: 1124 return LowerCTLZ_CTTZ(Op, DAG); 1125 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1126 } 1127 return Op; 1128 } 1129 1130 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1131 SmallVectorImpl<SDValue> &Results, 1132 SelectionDAG &DAG) const { 1133 switch (N->getOpcode()) { 1134 case ISD::SIGN_EXTEND_INREG: 1135 // Different parts of legalization seem to interpret which type of 1136 // sign_extend_inreg is the one to check for custom lowering. The extended 1137 // from type is what really matters, but some places check for custom 1138 // lowering of the result type. This results in trying to use 1139 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1140 // nothing here and let the illegal result integer be handled normally. 1141 return; 1142 default: 1143 return; 1144 } 1145 } 1146 1147 static bool hasDefinedInitializer(const GlobalValue *GV) { 1148 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1149 if (!GVar || !GVar->hasInitializer()) 1150 return false; 1151 1152 return !isa<UndefValue>(GVar->getInitializer()); 1153 } 1154 1155 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1156 SDValue Op, 1157 SelectionDAG &DAG) const { 1158 1159 const DataLayout &DL = DAG.getDataLayout(); 1160 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1161 const GlobalValue *GV = G->getGlobal(); 1162 1163 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1164 // XXX: What does the value of G->getOffset() mean? 1165 assert(G->getOffset() == 0 && 1166 "Do not know what to do with an non-zero offset"); 1167 1168 // TODO: We could emit code to handle the initialization somewhere. 1169 if (!hasDefinedInitializer(GV)) { 1170 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1171 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1172 } 1173 } 1174 1175 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1176 DiagnosticInfoUnsupported BadInit( 1177 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1178 DAG.getContext()->diagnose(BadInit); 1179 return SDValue(); 1180 } 1181 1182 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1183 SelectionDAG &DAG) const { 1184 SmallVector<SDValue, 8> Args; 1185 1186 for (const SDUse &U : Op->ops()) 1187 DAG.ExtractVectorElements(U.get(), Args); 1188 1189 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1190 } 1191 1192 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1193 SelectionDAG &DAG) const { 1194 1195 SmallVector<SDValue, 8> Args; 1196 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1197 EVT VT = Op.getValueType(); 1198 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1199 VT.getVectorNumElements()); 1200 1201 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1202 } 1203 1204 /// \brief Generate Min/Max node 1205 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1206 SDValue LHS, SDValue RHS, 1207 SDValue True, SDValue False, 1208 SDValue CC, 1209 DAGCombinerInfo &DCI) const { 1210 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1211 return SDValue(); 1212 1213 SelectionDAG &DAG = DCI.DAG; 1214 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1215 switch (CCOpcode) { 1216 case ISD::SETOEQ: 1217 case ISD::SETONE: 1218 case ISD::SETUNE: 1219 case ISD::SETNE: 1220 case ISD::SETUEQ: 1221 case ISD::SETEQ: 1222 case ISD::SETFALSE: 1223 case ISD::SETFALSE2: 1224 case ISD::SETTRUE: 1225 case ISD::SETTRUE2: 1226 case ISD::SETUO: 1227 case ISD::SETO: 1228 break; 1229 case ISD::SETULE: 1230 case ISD::SETULT: { 1231 if (LHS == True) 1232 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1233 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1234 } 1235 case ISD::SETOLE: 1236 case ISD::SETOLT: 1237 case ISD::SETLE: 1238 case ISD::SETLT: { 1239 // Ordered. Assume ordered for undefined. 1240 1241 // Only do this after legalization to avoid interfering with other combines 1242 // which might occur. 1243 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1244 !DCI.isCalledByLegalizer()) 1245 return SDValue(); 1246 1247 // We need to permute the operands to get the correct NaN behavior. The 1248 // selected operand is the second one based on the failing compare with NaN, 1249 // so permute it based on the compare type the hardware uses. 1250 if (LHS == True) 1251 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1252 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1253 } 1254 case ISD::SETUGE: 1255 case ISD::SETUGT: { 1256 if (LHS == True) 1257 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1258 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1259 } 1260 case ISD::SETGT: 1261 case ISD::SETGE: 1262 case ISD::SETOGE: 1263 case ISD::SETOGT: { 1264 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1265 !DCI.isCalledByLegalizer()) 1266 return SDValue(); 1267 1268 if (LHS == True) 1269 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1270 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1271 } 1272 case ISD::SETCC_INVALID: 1273 llvm_unreachable("Invalid setcc condcode!"); 1274 } 1275 return SDValue(); 1276 } 1277 1278 std::pair<SDValue, SDValue> 1279 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1280 SDLoc SL(Op); 1281 1282 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1283 1284 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1285 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1286 1287 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1288 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1289 1290 return std::make_pair(Lo, Hi); 1291 } 1292 1293 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1294 SDLoc SL(Op); 1295 1296 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1297 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1298 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1299 } 1300 1301 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1302 SDLoc SL(Op); 1303 1304 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1305 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1306 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1307 } 1308 1309 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1310 SelectionDAG &DAG) const { 1311 LoadSDNode *Load = cast<LoadSDNode>(Op); 1312 EVT VT = Op.getValueType(); 1313 1314 1315 // If this is a 2 element vector, we really want to scalarize and not create 1316 // weird 1 element vectors. 1317 if (VT.getVectorNumElements() == 2) 1318 return scalarizeVectorLoad(Load, DAG); 1319 1320 SDValue BasePtr = Load->getBasePtr(); 1321 EVT PtrVT = BasePtr.getValueType(); 1322 EVT MemVT = Load->getMemoryVT(); 1323 SDLoc SL(Op); 1324 1325 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1326 1327 EVT LoVT, HiVT; 1328 EVT LoMemVT, HiMemVT; 1329 SDValue Lo, Hi; 1330 1331 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1332 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1333 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1334 1335 unsigned Size = LoMemVT.getStoreSize(); 1336 unsigned BaseAlign = Load->getAlignment(); 1337 unsigned HiAlign = MinAlign(BaseAlign, Size); 1338 1339 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1340 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1341 BaseAlign, Load->getMemOperand()->getFlags()); 1342 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1343 DAG.getConstant(Size, SL, PtrVT)); 1344 SDValue HiLoad = 1345 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1346 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1347 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1348 1349 SDValue Ops[] = { 1350 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1351 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1352 LoLoad.getValue(1), HiLoad.getValue(1)) 1353 }; 1354 1355 return DAG.getMergeValues(Ops, SL); 1356 } 1357 1358 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1359 SelectionDAG &DAG) const { 1360 StoreSDNode *Store = cast<StoreSDNode>(Op); 1361 SDValue Val = Store->getValue(); 1362 EVT VT = Val.getValueType(); 1363 1364 // If this is a 2 element vector, we really want to scalarize and not create 1365 // weird 1 element vectors. 1366 if (VT.getVectorNumElements() == 2) 1367 return scalarizeVectorStore(Store, DAG); 1368 1369 EVT MemVT = Store->getMemoryVT(); 1370 SDValue Chain = Store->getChain(); 1371 SDValue BasePtr = Store->getBasePtr(); 1372 SDLoc SL(Op); 1373 1374 EVT LoVT, HiVT; 1375 EVT LoMemVT, HiMemVT; 1376 SDValue Lo, Hi; 1377 1378 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1379 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1380 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1381 1382 EVT PtrVT = BasePtr.getValueType(); 1383 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1384 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1385 PtrVT)); 1386 1387 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1388 unsigned BaseAlign = Store->getAlignment(); 1389 unsigned Size = LoMemVT.getStoreSize(); 1390 unsigned HiAlign = MinAlign(BaseAlign, Size); 1391 1392 SDValue LoStore = 1393 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1394 Store->getMemOperand()->getFlags()); 1395 SDValue HiStore = 1396 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1397 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1398 1399 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1400 } 1401 1402 // This is a shortcut for integer division because we have fast i32<->f32 1403 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1404 // float is enough to accurately represent up to a 24-bit signed integer. 1405 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1406 bool Sign) const { 1407 SDLoc DL(Op); 1408 EVT VT = Op.getValueType(); 1409 SDValue LHS = Op.getOperand(0); 1410 SDValue RHS = Op.getOperand(1); 1411 MVT IntVT = MVT::i32; 1412 MVT FltVT = MVT::f32; 1413 1414 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1415 if (LHSSignBits < 9) 1416 return SDValue(); 1417 1418 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1419 if (RHSSignBits < 9) 1420 return SDValue(); 1421 1422 unsigned BitSize = VT.getSizeInBits(); 1423 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1424 unsigned DivBits = BitSize - SignBits; 1425 if (Sign) 1426 ++DivBits; 1427 1428 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1429 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1430 1431 SDValue jq = DAG.getConstant(1, DL, IntVT); 1432 1433 if (Sign) { 1434 // char|short jq = ia ^ ib; 1435 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1436 1437 // jq = jq >> (bitsize - 2) 1438 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1439 DAG.getConstant(BitSize - 2, DL, VT)); 1440 1441 // jq = jq | 0x1 1442 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1443 } 1444 1445 // int ia = (int)LHS; 1446 SDValue ia = LHS; 1447 1448 // int ib, (int)RHS; 1449 SDValue ib = RHS; 1450 1451 // float fa = (float)ia; 1452 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1453 1454 // float fb = (float)ib; 1455 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1456 1457 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1458 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1459 1460 // fq = trunc(fq); 1461 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1462 1463 // float fqneg = -fq; 1464 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1465 1466 // float fr = mad(fqneg, fb, fa); 1467 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1468 (unsigned)AMDGPUISD::FMAD_FTZ : 1469 (unsigned)ISD::FMAD; 1470 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1471 1472 // int iq = (int)fq; 1473 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1474 1475 // fr = fabs(fr); 1476 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1477 1478 // fb = fabs(fb); 1479 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1480 1481 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1482 1483 // int cv = fr >= fb; 1484 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1485 1486 // jq = (cv ? jq : 0); 1487 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1488 1489 // dst = iq + jq; 1490 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1491 1492 // Rem needs compensation, it's easier to recompute it 1493 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1494 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1495 1496 // Truncate to number of bits this divide really is. 1497 if (Sign) { 1498 SDValue InRegSize 1499 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1500 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1501 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1502 } else { 1503 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1504 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1505 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1506 } 1507 1508 return DAG.getMergeValues({ Div, Rem }, DL); 1509 } 1510 1511 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1512 SelectionDAG &DAG, 1513 SmallVectorImpl<SDValue> &Results) const { 1514 SDLoc DL(Op); 1515 EVT VT = Op.getValueType(); 1516 1517 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1518 1519 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1520 1521 SDValue One = DAG.getConstant(1, DL, HalfVT); 1522 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1523 1524 //HiLo split 1525 SDValue LHS = Op.getOperand(0); 1526 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1527 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1528 1529 SDValue RHS = Op.getOperand(1); 1530 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1531 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1532 1533 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1534 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1535 1536 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1537 LHS_Lo, RHS_Lo); 1538 1539 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1540 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1541 1542 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1543 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1544 return; 1545 } 1546 1547 if (isTypeLegal(MVT::i64)) { 1548 // Compute denominator reciprocal. 1549 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1550 (unsigned)AMDGPUISD::FMAD_FTZ : 1551 (unsigned)ISD::FMAD; 1552 1553 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1554 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1555 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1556 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1557 Cvt_Lo); 1558 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1559 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1560 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1561 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1562 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1563 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1564 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1565 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1566 Mul1); 1567 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1568 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1569 SDValue Rcp64 = DAG.getBitcast(VT, 1570 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1571 1572 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1573 SDValue One64 = DAG.getConstant(1, DL, VT); 1574 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1575 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1576 1577 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1578 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1579 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1580 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1581 Zero); 1582 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1583 One); 1584 1585 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1586 Mulhi1_Lo, Zero1); 1587 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1588 Mulhi1_Hi, Add1_Lo.getValue(1)); 1589 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1590 SDValue Add1 = DAG.getBitcast(VT, 1591 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1592 1593 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1594 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1595 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1596 Zero); 1597 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1598 One); 1599 1600 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1601 Mulhi2_Lo, Zero1); 1602 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1603 Mulhi2_Hi, Add1_Lo.getValue(1)); 1604 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1605 Zero, Add2_Lo.getValue(1)); 1606 SDValue Add2 = DAG.getBitcast(VT, 1607 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1608 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1609 1610 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1611 1612 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1613 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1614 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1615 Mul3_Lo, Zero1); 1616 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1617 Mul3_Hi, Sub1_Lo.getValue(1)); 1618 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1619 SDValue Sub1 = DAG.getBitcast(VT, 1620 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1621 1622 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1623 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1624 ISD::SETUGE); 1625 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1626 ISD::SETUGE); 1627 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1628 1629 // TODO: Here and below portions of the code can be enclosed into if/endif. 1630 // Currently control flow is unconditional and we have 4 selects after 1631 // potential endif to substitute PHIs. 1632 1633 // if C3 != 0 ... 1634 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1635 RHS_Lo, Zero1); 1636 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1637 RHS_Hi, Sub1_Lo.getValue(1)); 1638 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1639 Zero, Sub2_Lo.getValue(1)); 1640 SDValue Sub2 = DAG.getBitcast(VT, 1641 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1642 1643 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1644 1645 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1646 ISD::SETUGE); 1647 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1648 ISD::SETUGE); 1649 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1650 1651 // if (C6 != 0) 1652 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1653 1654 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1655 RHS_Lo, Zero1); 1656 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1657 RHS_Hi, Sub2_Lo.getValue(1)); 1658 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1659 Zero, Sub3_Lo.getValue(1)); 1660 SDValue Sub3 = DAG.getBitcast(VT, 1661 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1662 1663 // endif C6 1664 // endif C3 1665 1666 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1667 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1668 1669 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1670 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1671 1672 Results.push_back(Div); 1673 Results.push_back(Rem); 1674 1675 return; 1676 } 1677 1678 // r600 expandion. 1679 // Get Speculative values 1680 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1681 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1682 1683 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1684 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1685 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1686 1687 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1688 SDValue DIV_Lo = Zero; 1689 1690 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1691 1692 for (unsigned i = 0; i < halfBitWidth; ++i) { 1693 const unsigned bitPos = halfBitWidth - i - 1; 1694 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1695 // Get value of high bit 1696 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1697 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1698 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1699 1700 // Shift 1701 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1702 // Add LHS high bit 1703 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1704 1705 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1706 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1707 1708 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1709 1710 // Update REM 1711 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1712 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1713 } 1714 1715 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1716 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1717 Results.push_back(DIV); 1718 Results.push_back(REM); 1719 } 1720 1721 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1722 SelectionDAG &DAG) const { 1723 SDLoc DL(Op); 1724 EVT VT = Op.getValueType(); 1725 1726 if (VT == MVT::i64) { 1727 SmallVector<SDValue, 2> Results; 1728 LowerUDIVREM64(Op, DAG, Results); 1729 return DAG.getMergeValues(Results, DL); 1730 } 1731 1732 if (VT == MVT::i32) { 1733 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1734 return Res; 1735 } 1736 1737 SDValue Num = Op.getOperand(0); 1738 SDValue Den = Op.getOperand(1); 1739 1740 // RCP = URECIP(Den) = 2^32 / Den + e 1741 // e is rounding error. 1742 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1743 1744 // RCP_LO = mul(RCP, Den) */ 1745 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1746 1747 // RCP_HI = mulhu (RCP, Den) */ 1748 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1749 1750 // NEG_RCP_LO = -RCP_LO 1751 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1752 RCP_LO); 1753 1754 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1755 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1756 NEG_RCP_LO, RCP_LO, 1757 ISD::SETEQ); 1758 // Calculate the rounding error from the URECIP instruction 1759 // E = mulhu(ABS_RCP_LO, RCP) 1760 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1761 1762 // RCP_A_E = RCP + E 1763 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1764 1765 // RCP_S_E = RCP - E 1766 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1767 1768 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1769 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1770 RCP_A_E, RCP_S_E, 1771 ISD::SETEQ); 1772 // Quotient = mulhu(Tmp0, Num) 1773 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1774 1775 // Num_S_Remainder = Quotient * Den 1776 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1777 1778 // Remainder = Num - Num_S_Remainder 1779 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1780 1781 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1782 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1783 DAG.getConstant(-1, DL, VT), 1784 DAG.getConstant(0, DL, VT), 1785 ISD::SETUGE); 1786 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1787 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1788 Num_S_Remainder, 1789 DAG.getConstant(-1, DL, VT), 1790 DAG.getConstant(0, DL, VT), 1791 ISD::SETUGE); 1792 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1793 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1794 Remainder_GE_Zero); 1795 1796 // Calculate Division result: 1797 1798 // Quotient_A_One = Quotient + 1 1799 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1800 DAG.getConstant(1, DL, VT)); 1801 1802 // Quotient_S_One = Quotient - 1 1803 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1804 DAG.getConstant(1, DL, VT)); 1805 1806 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1807 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1808 Quotient, Quotient_A_One, ISD::SETEQ); 1809 1810 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1811 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1812 Quotient_S_One, Div, ISD::SETEQ); 1813 1814 // Calculate Rem result: 1815 1816 // Remainder_S_Den = Remainder - Den 1817 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1818 1819 // Remainder_A_Den = Remainder + Den 1820 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1821 1822 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1823 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1824 Remainder, Remainder_S_Den, ISD::SETEQ); 1825 1826 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1827 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1828 Remainder_A_Den, Rem, ISD::SETEQ); 1829 SDValue Ops[2] = { 1830 Div, 1831 Rem 1832 }; 1833 return DAG.getMergeValues(Ops, DL); 1834 } 1835 1836 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1837 SelectionDAG &DAG) const { 1838 SDLoc DL(Op); 1839 EVT VT = Op.getValueType(); 1840 1841 SDValue LHS = Op.getOperand(0); 1842 SDValue RHS = Op.getOperand(1); 1843 1844 SDValue Zero = DAG.getConstant(0, DL, VT); 1845 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1846 1847 if (VT == MVT::i32) { 1848 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1849 return Res; 1850 } 1851 1852 if (VT == MVT::i64 && 1853 DAG.ComputeNumSignBits(LHS) > 32 && 1854 DAG.ComputeNumSignBits(RHS) > 32) { 1855 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1856 1857 //HiLo split 1858 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1859 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1860 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1861 LHS_Lo, RHS_Lo); 1862 SDValue Res[2] = { 1863 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1864 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1865 }; 1866 return DAG.getMergeValues(Res, DL); 1867 } 1868 1869 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1870 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1871 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1872 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1873 1874 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1875 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1876 1877 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1878 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1879 1880 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1881 SDValue Rem = Div.getValue(1); 1882 1883 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1884 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1885 1886 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1887 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1888 1889 SDValue Res[2] = { 1890 Div, 1891 Rem 1892 }; 1893 return DAG.getMergeValues(Res, DL); 1894 } 1895 1896 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1897 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1898 SDLoc SL(Op); 1899 EVT VT = Op.getValueType(); 1900 SDValue X = Op.getOperand(0); 1901 SDValue Y = Op.getOperand(1); 1902 1903 // TODO: Should this propagate fast-math-flags? 1904 1905 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1906 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1907 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1908 1909 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1910 } 1911 1912 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1913 SDLoc SL(Op); 1914 SDValue Src = Op.getOperand(0); 1915 1916 // result = trunc(src) 1917 // if (src > 0.0 && src != result) 1918 // result += 1.0 1919 1920 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1921 1922 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1923 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1924 1925 EVT SetCCVT = 1926 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1927 1928 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1929 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1930 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1931 1932 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1933 // TODO: Should this propagate fast-math-flags? 1934 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1935 } 1936 1937 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1938 SelectionDAG &DAG) { 1939 const unsigned FractBits = 52; 1940 const unsigned ExpBits = 11; 1941 1942 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1943 Hi, 1944 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1945 DAG.getConstant(ExpBits, SL, MVT::i32)); 1946 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1947 DAG.getConstant(1023, SL, MVT::i32)); 1948 1949 return Exp; 1950 } 1951 1952 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1953 SDLoc SL(Op); 1954 SDValue Src = Op.getOperand(0); 1955 1956 assert(Op.getValueType() == MVT::f64); 1957 1958 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1959 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1960 1961 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1962 1963 // Extract the upper half, since this is where we will find the sign and 1964 // exponent. 1965 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1966 1967 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1968 1969 const unsigned FractBits = 52; 1970 1971 // Extract the sign bit. 1972 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1973 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1974 1975 // Extend back to to 64-bits. 1976 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1977 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1978 1979 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1980 const SDValue FractMask 1981 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1982 1983 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1984 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1985 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1986 1987 EVT SetCCVT = 1988 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1989 1990 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1991 1992 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1993 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1994 1995 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1996 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1997 1998 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1999 } 2000 2001 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2002 SDLoc SL(Op); 2003 SDValue Src = Op.getOperand(0); 2004 2005 assert(Op.getValueType() == MVT::f64); 2006 2007 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2008 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2009 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2010 2011 // TODO: Should this propagate fast-math-flags? 2012 2013 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2014 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2015 2016 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2017 2018 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2019 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2020 2021 EVT SetCCVT = 2022 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2023 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2024 2025 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2026 } 2027 2028 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2029 // FNEARBYINT and FRINT are the same, except in their handling of FP 2030 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2031 // rint, so just treat them as equivalent. 2032 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2033 } 2034 2035 // XXX - May require not supporting f32 denormals? 2036 2037 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2038 // compare and vselect end up producing worse code than scalarizing the whole 2039 // operation. 2040 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2041 SDLoc SL(Op); 2042 SDValue X = Op.getOperand(0); 2043 EVT VT = Op.getValueType(); 2044 2045 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2046 2047 // TODO: Should this propagate fast-math-flags? 2048 2049 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2050 2051 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2052 2053 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2054 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2055 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2056 2057 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2058 2059 EVT SetCCVT = 2060 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2061 2062 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2063 2064 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2065 2066 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2067 } 2068 2069 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2070 SDLoc SL(Op); 2071 SDValue X = Op.getOperand(0); 2072 2073 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2074 2075 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2076 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2077 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2078 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2079 EVT SetCCVT = 2080 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2081 2082 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2083 2084 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2085 2086 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2087 2088 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2089 MVT::i64); 2090 2091 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2092 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2093 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2094 MVT::i64), 2095 Exp); 2096 2097 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2098 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2099 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2100 ISD::SETNE); 2101 2102 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2103 D, DAG.getConstant(0, SL, MVT::i64)); 2104 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2105 2106 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2107 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2108 2109 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2110 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2111 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2112 2113 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2114 ExpEqNegOne, 2115 DAG.getConstantFP(1.0, SL, MVT::f64), 2116 DAG.getConstantFP(0.0, SL, MVT::f64)); 2117 2118 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2119 2120 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2121 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2122 2123 return K; 2124 } 2125 2126 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2127 EVT VT = Op.getValueType(); 2128 2129 if (VT == MVT::f32 || VT == MVT::f16) 2130 return LowerFROUND32_16(Op, DAG); 2131 2132 if (VT == MVT::f64) 2133 return LowerFROUND64(Op, DAG); 2134 2135 llvm_unreachable("unhandled type"); 2136 } 2137 2138 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2139 SDLoc SL(Op); 2140 SDValue Src = Op.getOperand(0); 2141 2142 // result = trunc(src); 2143 // if (src < 0.0 && src != result) 2144 // result += -1.0. 2145 2146 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2147 2148 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2149 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2150 2151 EVT SetCCVT = 2152 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2153 2154 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2155 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2156 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2157 2158 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2159 // TODO: Should this propagate fast-math-flags? 2160 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2161 } 2162 2163 static bool isCtlzOpc(unsigned Opc) { 2164 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2165 } 2166 2167 static bool isCttzOpc(unsigned Opc) { 2168 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2169 } 2170 2171 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2172 SDLoc SL(Op); 2173 SDValue Src = Op.getOperand(0); 2174 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2175 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2176 2177 unsigned ISDOpc, NewOpc; 2178 if (isCtlzOpc(Op.getOpcode())) { 2179 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2180 NewOpc = AMDGPUISD::FFBH_U32; 2181 } else if (isCttzOpc(Op.getOpcode())) { 2182 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2183 NewOpc = AMDGPUISD::FFBL_B32; 2184 } else 2185 llvm_unreachable("Unexpected OPCode!!!"); 2186 2187 2188 if (ZeroUndef && Src.getValueType() == MVT::i32) 2189 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2190 2191 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2192 2193 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2194 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2195 2196 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2197 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2198 2199 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2200 *DAG.getContext(), MVT::i32); 2201 2202 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2203 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2204 2205 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2206 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2207 2208 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2209 SDValue Add, NewOpr; 2210 if (isCtlzOpc(Op.getOpcode())) { 2211 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2212 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2213 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2214 } else { 2215 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2216 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2217 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2218 } 2219 2220 if (!ZeroUndef) { 2221 // Test if the full 64-bit input is zero. 2222 2223 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2224 // which we probably don't want. 2225 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2226 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2227 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2228 2229 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2230 // with the same cycles, otherwise it is slower. 2231 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2232 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2233 2234 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2235 2236 // The instruction returns -1 for 0 input, but the defined intrinsic 2237 // behavior is to return the number of bits. 2238 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2239 SrcIsZero, Bits32, NewOpr); 2240 } 2241 2242 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2243 } 2244 2245 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2246 bool Signed) const { 2247 // Unsigned 2248 // cul2f(ulong u) 2249 //{ 2250 // uint lz = clz(u); 2251 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2252 // u = (u << lz) & 0x7fffffffffffffffUL; 2253 // ulong t = u & 0xffffffffffUL; 2254 // uint v = (e << 23) | (uint)(u >> 40); 2255 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2256 // return as_float(v + r); 2257 //} 2258 // Signed 2259 // cl2f(long l) 2260 //{ 2261 // long s = l >> 63; 2262 // float r = cul2f((l + s) ^ s); 2263 // return s ? -r : r; 2264 //} 2265 2266 SDLoc SL(Op); 2267 SDValue Src = Op.getOperand(0); 2268 SDValue L = Src; 2269 2270 SDValue S; 2271 if (Signed) { 2272 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2273 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2274 2275 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2276 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2277 } 2278 2279 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2280 *DAG.getContext(), MVT::f32); 2281 2282 2283 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2284 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2285 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2286 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2287 2288 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2289 SDValue E = DAG.getSelect(SL, MVT::i32, 2290 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2291 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2292 ZeroI32); 2293 2294 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2295 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2296 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2297 2298 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2299 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2300 2301 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2302 U, DAG.getConstant(40, SL, MVT::i64)); 2303 2304 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2305 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2306 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2307 2308 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2309 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2310 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2311 2312 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2313 2314 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2315 2316 SDValue R = DAG.getSelect(SL, MVT::i32, 2317 RCmp, 2318 One, 2319 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2320 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2321 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2322 2323 if (!Signed) 2324 return R; 2325 2326 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2327 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2328 } 2329 2330 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2331 bool Signed) const { 2332 SDLoc SL(Op); 2333 SDValue Src = Op.getOperand(0); 2334 2335 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2336 2337 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2338 DAG.getConstant(0, SL, MVT::i32)); 2339 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2340 DAG.getConstant(1, SL, MVT::i32)); 2341 2342 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2343 SL, MVT::f64, Hi); 2344 2345 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2346 2347 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2348 DAG.getConstant(32, SL, MVT::i32)); 2349 // TODO: Should this propagate fast-math-flags? 2350 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2351 } 2352 2353 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2354 SelectionDAG &DAG) const { 2355 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2356 "operation should be legal"); 2357 2358 // TODO: Factor out code common with LowerSINT_TO_FP. 2359 2360 EVT DestVT = Op.getValueType(); 2361 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2362 SDLoc DL(Op); 2363 SDValue Src = Op.getOperand(0); 2364 2365 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2366 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2367 SDValue FPRound = 2368 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2369 2370 return FPRound; 2371 } 2372 2373 if (DestVT == MVT::f32) 2374 return LowerINT_TO_FP32(Op, DAG, false); 2375 2376 assert(DestVT == MVT::f64); 2377 return LowerINT_TO_FP64(Op, DAG, false); 2378 } 2379 2380 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2381 SelectionDAG &DAG) const { 2382 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2383 "operation should be legal"); 2384 2385 // TODO: Factor out code common with LowerUINT_TO_FP. 2386 2387 EVT DestVT = Op.getValueType(); 2388 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2389 SDLoc DL(Op); 2390 SDValue Src = Op.getOperand(0); 2391 2392 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2393 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2394 SDValue FPRound = 2395 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2396 2397 return FPRound; 2398 } 2399 2400 if (DestVT == MVT::f32) 2401 return LowerINT_TO_FP32(Op, DAG, true); 2402 2403 assert(DestVT == MVT::f64); 2404 return LowerINT_TO_FP64(Op, DAG, true); 2405 } 2406 2407 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2408 bool Signed) const { 2409 SDLoc SL(Op); 2410 2411 SDValue Src = Op.getOperand(0); 2412 2413 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2414 2415 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2416 MVT::f64); 2417 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2418 MVT::f64); 2419 // TODO: Should this propagate fast-math-flags? 2420 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2421 2422 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2423 2424 2425 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2426 2427 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2428 MVT::i32, FloorMul); 2429 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2430 2431 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2432 2433 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2434 } 2435 2436 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2437 SDLoc DL(Op); 2438 SDValue N0 = Op.getOperand(0); 2439 2440 // Convert to target node to get known bits 2441 if (N0.getValueType() == MVT::f32) 2442 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2443 2444 if (getTargetMachine().Options.UnsafeFPMath) { 2445 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2446 return SDValue(); 2447 } 2448 2449 assert(N0.getSimpleValueType() == MVT::f64); 2450 2451 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2452 const unsigned ExpMask = 0x7ff; 2453 const unsigned ExpBiasf64 = 1023; 2454 const unsigned ExpBiasf16 = 15; 2455 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2456 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2457 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2458 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2459 DAG.getConstant(32, DL, MVT::i64)); 2460 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2461 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2462 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2463 DAG.getConstant(20, DL, MVT::i64)); 2464 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2465 DAG.getConstant(ExpMask, DL, MVT::i32)); 2466 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2467 // add the f16 bias (15) to get the biased exponent for the f16 format. 2468 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2469 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2470 2471 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2472 DAG.getConstant(8, DL, MVT::i32)); 2473 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2474 DAG.getConstant(0xffe, DL, MVT::i32)); 2475 2476 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2477 DAG.getConstant(0x1ff, DL, MVT::i32)); 2478 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2479 2480 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2481 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2482 2483 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2484 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2485 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2486 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2487 2488 // N = M | (E << 12); 2489 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2490 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2491 DAG.getConstant(12, DL, MVT::i32))); 2492 2493 // B = clamp(1-E, 0, 13); 2494 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2495 One, E); 2496 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2497 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2498 DAG.getConstant(13, DL, MVT::i32)); 2499 2500 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2501 DAG.getConstant(0x1000, DL, MVT::i32)); 2502 2503 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2504 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2505 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2506 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2507 2508 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2509 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2510 DAG.getConstant(0x7, DL, MVT::i32)); 2511 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2512 DAG.getConstant(2, DL, MVT::i32)); 2513 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2514 One, Zero, ISD::SETEQ); 2515 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2516 One, Zero, ISD::SETGT); 2517 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2518 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2519 2520 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2521 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2522 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2523 I, V, ISD::SETEQ); 2524 2525 // Extract the sign bit. 2526 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2527 DAG.getConstant(16, DL, MVT::i32)); 2528 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2529 DAG.getConstant(0x8000, DL, MVT::i32)); 2530 2531 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2532 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2533 } 2534 2535 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2536 SelectionDAG &DAG) const { 2537 SDValue Src = Op.getOperand(0); 2538 2539 // TODO: Factor out code common with LowerFP_TO_UINT. 2540 2541 EVT SrcVT = Src.getValueType(); 2542 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2543 SDLoc DL(Op); 2544 2545 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2546 SDValue FpToInt32 = 2547 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2548 2549 return FpToInt32; 2550 } 2551 2552 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2553 return LowerFP64_TO_INT(Op, DAG, true); 2554 2555 return SDValue(); 2556 } 2557 2558 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2559 SelectionDAG &DAG) const { 2560 SDValue Src = Op.getOperand(0); 2561 2562 // TODO: Factor out code common with LowerFP_TO_SINT. 2563 2564 EVT SrcVT = Src.getValueType(); 2565 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2566 SDLoc DL(Op); 2567 2568 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2569 SDValue FpToInt32 = 2570 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2571 2572 return FpToInt32; 2573 } 2574 2575 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2576 return LowerFP64_TO_INT(Op, DAG, false); 2577 2578 return SDValue(); 2579 } 2580 2581 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2582 SelectionDAG &DAG) const { 2583 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2584 MVT VT = Op.getSimpleValueType(); 2585 MVT ScalarVT = VT.getScalarType(); 2586 2587 assert(VT.isVector()); 2588 2589 SDValue Src = Op.getOperand(0); 2590 SDLoc DL(Op); 2591 2592 // TODO: Don't scalarize on Evergreen? 2593 unsigned NElts = VT.getVectorNumElements(); 2594 SmallVector<SDValue, 8> Args; 2595 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2596 2597 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2598 for (unsigned I = 0; I < NElts; ++I) 2599 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2600 2601 return DAG.getBuildVector(VT, DL, Args); 2602 } 2603 2604 //===----------------------------------------------------------------------===// 2605 // Custom DAG optimizations 2606 //===----------------------------------------------------------------------===// 2607 2608 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2609 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2610 } 2611 2612 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2613 EVT VT = Op.getValueType(); 2614 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2615 // as unsigned 24-bit values. 2616 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2617 } 2618 2619 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2620 TargetLowering::DAGCombinerInfo &DCI) { 2621 2622 SelectionDAG &DAG = DCI.DAG; 2623 SDValue Op = Node24->getOperand(OpIdx); 2624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2625 EVT VT = Op.getValueType(); 2626 2627 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2628 APInt KnownZero, KnownOne; 2629 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2630 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2631 return true; 2632 2633 return false; 2634 } 2635 2636 template <typename IntTy> 2637 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2638 uint32_t Width, const SDLoc &DL) { 2639 if (Width + Offset < 32) { 2640 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2641 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2642 return DAG.getConstant(Result, DL, MVT::i32); 2643 } 2644 2645 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2646 } 2647 2648 static bool hasVolatileUser(SDNode *Val) { 2649 for (SDNode *U : Val->uses()) { 2650 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2651 if (M->isVolatile()) 2652 return true; 2653 } 2654 } 2655 2656 return false; 2657 } 2658 2659 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2660 // i32 vectors are the canonical memory type. 2661 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2662 return false; 2663 2664 if (!VT.isByteSized()) 2665 return false; 2666 2667 unsigned Size = VT.getStoreSize(); 2668 2669 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2670 return false; 2671 2672 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2673 return false; 2674 2675 return true; 2676 } 2677 2678 // Replace load of an illegal type with a store of a bitcast to a friendlier 2679 // type. 2680 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2681 DAGCombinerInfo &DCI) const { 2682 if (!DCI.isBeforeLegalize()) 2683 return SDValue(); 2684 2685 LoadSDNode *LN = cast<LoadSDNode>(N); 2686 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2687 return SDValue(); 2688 2689 SDLoc SL(N); 2690 SelectionDAG &DAG = DCI.DAG; 2691 EVT VT = LN->getMemoryVT(); 2692 2693 unsigned Size = VT.getStoreSize(); 2694 unsigned Align = LN->getAlignment(); 2695 if (Align < Size && isTypeLegal(VT)) { 2696 bool IsFast; 2697 unsigned AS = LN->getAddressSpace(); 2698 2699 // Expand unaligned loads earlier than legalization. Due to visitation order 2700 // problems during legalization, the emitted instructions to pack and unpack 2701 // the bytes again are not eliminated in the case of an unaligned copy. 2702 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2703 if (VT.isVector()) 2704 return scalarizeVectorLoad(LN, DAG); 2705 2706 SDValue Ops[2]; 2707 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2708 return DAG.getMergeValues(Ops, SDLoc(N)); 2709 } 2710 2711 if (!IsFast) 2712 return SDValue(); 2713 } 2714 2715 if (!shouldCombineMemoryType(VT)) 2716 return SDValue(); 2717 2718 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2719 2720 SDValue NewLoad 2721 = DAG.getLoad(NewVT, SL, LN->getChain(), 2722 LN->getBasePtr(), LN->getMemOperand()); 2723 2724 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2725 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2726 return SDValue(N, 0); 2727 } 2728 2729 // Replace store of an illegal type with a store of a bitcast to a friendlier 2730 // type. 2731 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2732 DAGCombinerInfo &DCI) const { 2733 if (!DCI.isBeforeLegalize()) 2734 return SDValue(); 2735 2736 StoreSDNode *SN = cast<StoreSDNode>(N); 2737 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2738 return SDValue(); 2739 2740 EVT VT = SN->getMemoryVT(); 2741 unsigned Size = VT.getStoreSize(); 2742 2743 SDLoc SL(N); 2744 SelectionDAG &DAG = DCI.DAG; 2745 unsigned Align = SN->getAlignment(); 2746 if (Align < Size && isTypeLegal(VT)) { 2747 bool IsFast; 2748 unsigned AS = SN->getAddressSpace(); 2749 2750 // Expand unaligned stores earlier than legalization. Due to visitation 2751 // order problems during legalization, the emitted instructions to pack and 2752 // unpack the bytes again are not eliminated in the case of an unaligned 2753 // copy. 2754 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2755 if (VT.isVector()) 2756 return scalarizeVectorStore(SN, DAG); 2757 2758 return expandUnalignedStore(SN, DAG); 2759 } 2760 2761 if (!IsFast) 2762 return SDValue(); 2763 } 2764 2765 if (!shouldCombineMemoryType(VT)) 2766 return SDValue(); 2767 2768 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2769 SDValue Val = SN->getValue(); 2770 2771 //DCI.AddToWorklist(Val.getNode()); 2772 2773 bool OtherUses = !Val.hasOneUse(); 2774 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2775 if (OtherUses) { 2776 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2777 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2778 } 2779 2780 return DAG.getStore(SN->getChain(), SL, CastVal, 2781 SN->getBasePtr(), SN->getMemOperand()); 2782 } 2783 2784 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2785 DAGCombinerInfo &DCI) const { 2786 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2787 if (!CSrc) 2788 return SDValue(); 2789 2790 const APFloat &F = CSrc->getValueAPF(); 2791 APFloat Zero = APFloat::getZero(F.getSemantics()); 2792 APFloat::cmpResult Cmp0 = F.compare(Zero); 2793 if (Cmp0 == APFloat::cmpLessThan || 2794 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2795 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2796 } 2797 2798 APFloat One(F.getSemantics(), "1.0"); 2799 APFloat::cmpResult Cmp1 = F.compare(One); 2800 if (Cmp1 == APFloat::cmpGreaterThan) 2801 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2802 2803 return SDValue(CSrc, 0); 2804 } 2805 2806 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2807 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2808 // issues. 2809 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2810 DAGCombinerInfo &DCI) const { 2811 SelectionDAG &DAG = DCI.DAG; 2812 SDValue N0 = N->getOperand(0); 2813 2814 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2815 // (vt2 (truncate (assertzext vt0:x, vt1))) 2816 if (N0.getOpcode() == ISD::TRUNCATE) { 2817 SDValue N1 = N->getOperand(1); 2818 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2819 SDLoc SL(N); 2820 2821 SDValue Src = N0.getOperand(0); 2822 EVT SrcVT = Src.getValueType(); 2823 if (SrcVT.bitsGE(ExtVT)) { 2824 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2825 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2826 } 2827 } 2828 2829 return SDValue(); 2830 } 2831 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2832 /// binary operation \p Opc to it with the corresponding constant operands. 2833 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2834 DAGCombinerInfo &DCI, const SDLoc &SL, 2835 unsigned Opc, SDValue LHS, 2836 uint32_t ValLo, uint32_t ValHi) const { 2837 SelectionDAG &DAG = DCI.DAG; 2838 SDValue Lo, Hi; 2839 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2840 2841 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2842 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2843 2844 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2845 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2846 2847 // Re-visit the ands. It's possible we eliminated one of them and it could 2848 // simplify the vector. 2849 DCI.AddToWorklist(Lo.getNode()); 2850 DCI.AddToWorklist(Hi.getNode()); 2851 2852 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2853 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2854 } 2855 2856 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2857 DAGCombinerInfo &DCI) const { 2858 EVT VT = N->getValueType(0); 2859 2860 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2861 if (!RHS) 2862 return SDValue(); 2863 2864 SDValue LHS = N->getOperand(0); 2865 unsigned RHSVal = RHS->getZExtValue(); 2866 if (!RHSVal) 2867 return LHS; 2868 2869 SDLoc SL(N); 2870 SelectionDAG &DAG = DCI.DAG; 2871 2872 switch (LHS->getOpcode()) { 2873 default: 2874 break; 2875 case ISD::ZERO_EXTEND: 2876 case ISD::SIGN_EXTEND: 2877 case ISD::ANY_EXTEND: { 2878 SDValue X = LHS->getOperand(0); 2879 2880 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2881 isTypeLegal(MVT::v2i16)) { 2882 // Prefer build_vector as the canonical form if packed types are legal. 2883 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2884 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2885 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2886 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2887 } 2888 2889 // shl (ext x) => zext (shl x), if shift does not overflow int 2890 if (VT != MVT::i64) 2891 break; 2892 KnownBits Known; 2893 DAG.computeKnownBits(X, Known); 2894 unsigned LZ = Known.countMinLeadingZeros(); 2895 if (LZ < RHSVal) 2896 break; 2897 EVT XVT = X.getValueType(); 2898 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2899 return DAG.getZExtOrTrunc(Shl, SL, VT); 2900 } 2901 } 2902 2903 if (VT != MVT::i64) 2904 return SDValue(); 2905 2906 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2907 2908 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2909 // common case, splitting this into a move and a 32-bit shift is faster and 2910 // the same code size. 2911 if (RHSVal < 32) 2912 return SDValue(); 2913 2914 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2915 2916 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2917 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2918 2919 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2920 2921 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2922 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2923 } 2924 2925 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2926 DAGCombinerInfo &DCI) const { 2927 if (N->getValueType(0) != MVT::i64) 2928 return SDValue(); 2929 2930 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2931 if (!RHS) 2932 return SDValue(); 2933 2934 SelectionDAG &DAG = DCI.DAG; 2935 SDLoc SL(N); 2936 unsigned RHSVal = RHS->getZExtValue(); 2937 2938 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2939 if (RHSVal == 32) { 2940 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2941 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2942 DAG.getConstant(31, SL, MVT::i32)); 2943 2944 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2945 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2946 } 2947 2948 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2949 if (RHSVal == 63) { 2950 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2951 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2952 DAG.getConstant(31, SL, MVT::i32)); 2953 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2954 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2955 } 2956 2957 return SDValue(); 2958 } 2959 2960 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2961 DAGCombinerInfo &DCI) const { 2962 if (N->getValueType(0) != MVT::i64) 2963 return SDValue(); 2964 2965 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2966 if (!RHS) 2967 return SDValue(); 2968 2969 unsigned ShiftAmt = RHS->getZExtValue(); 2970 if (ShiftAmt < 32) 2971 return SDValue(); 2972 2973 // srl i64:x, C for C >= 32 2974 // => 2975 // build_pair (srl hi_32(x), C - 32), 0 2976 2977 SelectionDAG &DAG = DCI.DAG; 2978 SDLoc SL(N); 2979 2980 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2981 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2982 2983 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2984 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2985 VecOp, One); 2986 2987 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2988 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2989 2990 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2991 2992 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2993 } 2994 2995 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2996 // instructions. If we only match on the legalized i64 mul expansion, 2997 // SimplifyDemandedBits will be unable to remove them because there will be 2998 // multiple uses due to the separate mul + mulh[su]. 2999 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3000 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3001 if (Size <= 32) { 3002 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3003 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3004 } 3005 3006 // Because we want to eliminate extension instructions before the 3007 // operation, we need to create a single user here (i.e. not the separate 3008 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3009 3010 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3011 3012 SDValue Mul = DAG.getNode(MulOpc, SL, 3013 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3014 3015 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3016 Mul.getValue(0), Mul.getValue(1)); 3017 } 3018 3019 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3020 DAGCombinerInfo &DCI) const { 3021 EVT VT = N->getValueType(0); 3022 3023 unsigned Size = VT.getSizeInBits(); 3024 if (VT.isVector() || Size > 64) 3025 return SDValue(); 3026 3027 // There are i16 integer mul/mad. 3028 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3029 return SDValue(); 3030 3031 SelectionDAG &DAG = DCI.DAG; 3032 SDLoc DL(N); 3033 3034 SDValue N0 = N->getOperand(0); 3035 SDValue N1 = N->getOperand(1); 3036 SDValue Mul; 3037 3038 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3039 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3040 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3041 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3042 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3043 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3044 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3045 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3046 } else { 3047 return SDValue(); 3048 } 3049 3050 // We need to use sext even for MUL_U24, because MUL_U24 is used 3051 // for signed multiply of 8 and 16-bit types. 3052 return DAG.getSExtOrTrunc(Mul, DL, VT); 3053 } 3054 3055 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3056 DAGCombinerInfo &DCI) const { 3057 EVT VT = N->getValueType(0); 3058 3059 if (!Subtarget->hasMulI24() || VT.isVector()) 3060 return SDValue(); 3061 3062 SelectionDAG &DAG = DCI.DAG; 3063 SDLoc DL(N); 3064 3065 SDValue N0 = N->getOperand(0); 3066 SDValue N1 = N->getOperand(1); 3067 3068 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3069 return SDValue(); 3070 3071 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3072 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3073 3074 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3075 DCI.AddToWorklist(Mulhi.getNode()); 3076 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3077 } 3078 3079 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3080 DAGCombinerInfo &DCI) const { 3081 EVT VT = N->getValueType(0); 3082 3083 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3084 return SDValue(); 3085 3086 SelectionDAG &DAG = DCI.DAG; 3087 SDLoc DL(N); 3088 3089 SDValue N0 = N->getOperand(0); 3090 SDValue N1 = N->getOperand(1); 3091 3092 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3093 return SDValue(); 3094 3095 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3096 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3097 3098 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3099 DCI.AddToWorklist(Mulhi.getNode()); 3100 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3101 } 3102 3103 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3104 SDNode *N, DAGCombinerInfo &DCI) const { 3105 SelectionDAG &DAG = DCI.DAG; 3106 3107 // Simplify demanded bits before splitting into multiple users. 3108 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 3109 return SDValue(); 3110 3111 SDValue N0 = N->getOperand(0); 3112 SDValue N1 = N->getOperand(1); 3113 3114 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3115 3116 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3117 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3118 3119 SDLoc SL(N); 3120 3121 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3122 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3123 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3124 } 3125 3126 static bool isNegativeOne(SDValue Val) { 3127 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3128 return C->isAllOnesValue(); 3129 return false; 3130 } 3131 3132 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3133 SDValue Op, 3134 const SDLoc &DL, 3135 unsigned Opc) const { 3136 EVT VT = Op.getValueType(); 3137 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3138 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3139 LegalVT != MVT::i16)) 3140 return SDValue(); 3141 3142 if (VT != MVT::i32) 3143 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3144 3145 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3146 if (VT != MVT::i32) 3147 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3148 3149 return FFBX; 3150 } 3151 3152 // The native instructions return -1 on 0 input. Optimize out a select that 3153 // produces -1 on 0. 3154 // 3155 // TODO: If zero is not undef, we could also do this if the output is compared 3156 // against the bitwidth. 3157 // 3158 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3159 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3160 SDValue LHS, SDValue RHS, 3161 DAGCombinerInfo &DCI) const { 3162 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3163 if (!CmpRhs || !CmpRhs->isNullValue()) 3164 return SDValue(); 3165 3166 SelectionDAG &DAG = DCI.DAG; 3167 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3168 SDValue CmpLHS = Cond.getOperand(0); 3169 3170 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3171 AMDGPUISD::FFBH_U32; 3172 3173 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3174 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3175 if (CCOpcode == ISD::SETEQ && 3176 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3177 RHS.getOperand(0) == CmpLHS && 3178 isNegativeOne(LHS)) { 3179 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3180 } 3181 3182 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3183 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3184 if (CCOpcode == ISD::SETNE && 3185 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3186 LHS.getOperand(0) == CmpLHS && 3187 isNegativeOne(RHS)) { 3188 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3189 } 3190 3191 return SDValue(); 3192 } 3193 3194 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3195 unsigned Op, 3196 const SDLoc &SL, 3197 SDValue Cond, 3198 SDValue N1, 3199 SDValue N2) { 3200 SelectionDAG &DAG = DCI.DAG; 3201 EVT VT = N1.getValueType(); 3202 3203 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3204 N1.getOperand(0), N2.getOperand(0)); 3205 DCI.AddToWorklist(NewSelect.getNode()); 3206 return DAG.getNode(Op, SL, VT, NewSelect); 3207 } 3208 3209 // Pull a free FP operation out of a select so it may fold into uses. 3210 // 3211 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3212 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3213 // 3214 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3215 // select c, (fabs x), +k -> fabs (select c, x, k) 3216 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3217 SDValue N) { 3218 SelectionDAG &DAG = DCI.DAG; 3219 SDValue Cond = N.getOperand(0); 3220 SDValue LHS = N.getOperand(1); 3221 SDValue RHS = N.getOperand(2); 3222 3223 EVT VT = N.getValueType(); 3224 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3225 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3226 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3227 SDLoc(N), Cond, LHS, RHS); 3228 } 3229 3230 bool Inv = false; 3231 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3232 std::swap(LHS, RHS); 3233 Inv = true; 3234 } 3235 3236 // TODO: Support vector constants. 3237 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3238 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3239 SDLoc SL(N); 3240 // If one side is an fneg/fabs and the other is a constant, we can push the 3241 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3242 SDValue NewLHS = LHS.getOperand(0); 3243 SDValue NewRHS = RHS; 3244 3245 // Careful: if the neg can be folded up, don't try to pull it back down. 3246 bool ShouldFoldNeg = true; 3247 3248 if (NewLHS.hasOneUse()) { 3249 unsigned Opc = NewLHS.getOpcode(); 3250 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3251 ShouldFoldNeg = false; 3252 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3253 ShouldFoldNeg = false; 3254 } 3255 3256 if (ShouldFoldNeg) { 3257 if (LHS.getOpcode() == ISD::FNEG) 3258 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3259 else if (CRHS->isNegative()) 3260 return SDValue(); 3261 3262 if (Inv) 3263 std::swap(NewLHS, NewRHS); 3264 3265 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3266 Cond, NewLHS, NewRHS); 3267 DCI.AddToWorklist(NewSelect.getNode()); 3268 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3269 } 3270 } 3271 3272 return SDValue(); 3273 } 3274 3275 3276 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3277 DAGCombinerInfo &DCI) const { 3278 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3279 return Folded; 3280 3281 SDValue Cond = N->getOperand(0); 3282 if (Cond.getOpcode() != ISD::SETCC) 3283 return SDValue(); 3284 3285 EVT VT = N->getValueType(0); 3286 SDValue LHS = Cond.getOperand(0); 3287 SDValue RHS = Cond.getOperand(1); 3288 SDValue CC = Cond.getOperand(2); 3289 3290 SDValue True = N->getOperand(1); 3291 SDValue False = N->getOperand(2); 3292 3293 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3294 SelectionDAG &DAG = DCI.DAG; 3295 if ((DAG.isConstantValueOfAnyType(True) || 3296 DAG.isConstantValueOfAnyType(True)) && 3297 (!DAG.isConstantValueOfAnyType(False) && 3298 !DAG.isConstantValueOfAnyType(False))) { 3299 // Swap cmp + select pair to move constant to false input. 3300 // This will allow using VOPC cndmasks more often. 3301 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3302 3303 SDLoc SL(N); 3304 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3305 LHS.getValueType().isInteger()); 3306 3307 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3308 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3309 } 3310 3311 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3312 SDValue MinMax 3313 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3314 // Revisit this node so we can catch min3/max3/med3 patterns. 3315 //DCI.AddToWorklist(MinMax.getNode()); 3316 return MinMax; 3317 } 3318 } 3319 3320 // There's no reason to not do this if the condition has other uses. 3321 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3322 } 3323 3324 static bool isConstantFPZero(SDValue N) { 3325 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3326 return C->isZero() && !C->isNegative(); 3327 return false; 3328 } 3329 3330 static unsigned inverseMinMax(unsigned Opc) { 3331 switch (Opc) { 3332 case ISD::FMAXNUM: 3333 return ISD::FMINNUM; 3334 case ISD::FMINNUM: 3335 return ISD::FMAXNUM; 3336 case AMDGPUISD::FMAX_LEGACY: 3337 return AMDGPUISD::FMIN_LEGACY; 3338 case AMDGPUISD::FMIN_LEGACY: 3339 return AMDGPUISD::FMAX_LEGACY; 3340 default: 3341 llvm_unreachable("invalid min/max opcode"); 3342 } 3343 } 3344 3345 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3346 DAGCombinerInfo &DCI) const { 3347 SelectionDAG &DAG = DCI.DAG; 3348 SDValue N0 = N->getOperand(0); 3349 EVT VT = N->getValueType(0); 3350 3351 unsigned Opc = N0.getOpcode(); 3352 3353 // If the input has multiple uses and we can either fold the negate down, or 3354 // the other uses cannot, give up. This both prevents unprofitable 3355 // transformations and infinite loops: we won't repeatedly try to fold around 3356 // a negate that has no 'good' form. 3357 if (N0.hasOneUse()) { 3358 // This may be able to fold into the source, but at a code size cost. Don't 3359 // fold if the fold into the user is free. 3360 if (allUsesHaveSourceMods(N, 0)) 3361 return SDValue(); 3362 } else { 3363 if (fnegFoldsIntoOp(Opc) && 3364 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3365 return SDValue(); 3366 } 3367 3368 SDLoc SL(N); 3369 switch (Opc) { 3370 case ISD::FADD: { 3371 if (!mayIgnoreSignedZero(N0)) 3372 return SDValue(); 3373 3374 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3375 SDValue LHS = N0.getOperand(0); 3376 SDValue RHS = N0.getOperand(1); 3377 3378 if (LHS.getOpcode() != ISD::FNEG) 3379 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3380 else 3381 LHS = LHS.getOperand(0); 3382 3383 if (RHS.getOpcode() != ISD::FNEG) 3384 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3385 else 3386 RHS = RHS.getOperand(0); 3387 3388 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3389 if (!N0.hasOneUse()) 3390 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3391 return Res; 3392 } 3393 case ISD::FMUL: 3394 case AMDGPUISD::FMUL_LEGACY: { 3395 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3396 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3397 SDValue LHS = N0.getOperand(0); 3398 SDValue RHS = N0.getOperand(1); 3399 3400 if (LHS.getOpcode() == ISD::FNEG) 3401 LHS = LHS.getOperand(0); 3402 else if (RHS.getOpcode() == ISD::FNEG) 3403 RHS = RHS.getOperand(0); 3404 else 3405 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3406 3407 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3408 if (!N0.hasOneUse()) 3409 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3410 return Res; 3411 } 3412 case ISD::FMA: 3413 case ISD::FMAD: { 3414 if (!mayIgnoreSignedZero(N0)) 3415 return SDValue(); 3416 3417 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3418 SDValue LHS = N0.getOperand(0); 3419 SDValue MHS = N0.getOperand(1); 3420 SDValue RHS = N0.getOperand(2); 3421 3422 if (LHS.getOpcode() == ISD::FNEG) 3423 LHS = LHS.getOperand(0); 3424 else if (MHS.getOpcode() == ISD::FNEG) 3425 MHS = MHS.getOperand(0); 3426 else 3427 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3428 3429 if (RHS.getOpcode() != ISD::FNEG) 3430 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3431 else 3432 RHS = RHS.getOperand(0); 3433 3434 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3435 if (!N0.hasOneUse()) 3436 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3437 return Res; 3438 } 3439 case ISD::FMAXNUM: 3440 case ISD::FMINNUM: 3441 case AMDGPUISD::FMAX_LEGACY: 3442 case AMDGPUISD::FMIN_LEGACY: { 3443 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3444 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3445 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3446 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3447 3448 SDValue LHS = N0.getOperand(0); 3449 SDValue RHS = N0.getOperand(1); 3450 3451 // 0 doesn't have a negated inline immediate. 3452 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3453 // operations. 3454 if (isConstantFPZero(RHS)) 3455 return SDValue(); 3456 3457 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3458 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3459 unsigned Opposite = inverseMinMax(Opc); 3460 3461 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3462 if (!N0.hasOneUse()) 3463 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3464 return Res; 3465 } 3466 case ISD::FP_EXTEND: 3467 case ISD::FTRUNC: 3468 case ISD::FRINT: 3469 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3470 case ISD::FSIN: 3471 case AMDGPUISD::RCP: 3472 case AMDGPUISD::RCP_LEGACY: 3473 case AMDGPUISD::SIN_HW: { 3474 SDValue CvtSrc = N0.getOperand(0); 3475 if (CvtSrc.getOpcode() == ISD::FNEG) { 3476 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3477 // (fneg (rcp (fneg x))) -> (rcp x) 3478 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3479 } 3480 3481 if (!N0.hasOneUse()) 3482 return SDValue(); 3483 3484 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3485 // (fneg (rcp x)) -> (rcp (fneg x)) 3486 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3487 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3488 } 3489 case ISD::FP_ROUND: { 3490 SDValue CvtSrc = N0.getOperand(0); 3491 3492 if (CvtSrc.getOpcode() == ISD::FNEG) { 3493 // (fneg (fp_round (fneg x))) -> (fp_round x) 3494 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3495 CvtSrc.getOperand(0), N0.getOperand(1)); 3496 } 3497 3498 if (!N0.hasOneUse()) 3499 return SDValue(); 3500 3501 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3502 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3503 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3504 } 3505 case ISD::FP16_TO_FP: { 3506 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3507 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3508 // Put the fneg back as a legal source operation that can be matched later. 3509 SDLoc SL(N); 3510 3511 SDValue Src = N0.getOperand(0); 3512 EVT SrcVT = Src.getValueType(); 3513 3514 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3515 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3516 DAG.getConstant(0x8000, SL, SrcVT)); 3517 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3518 } 3519 default: 3520 return SDValue(); 3521 } 3522 } 3523 3524 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3525 DAGCombinerInfo &DCI) const { 3526 SelectionDAG &DAG = DCI.DAG; 3527 SDValue N0 = N->getOperand(0); 3528 3529 if (!N0.hasOneUse()) 3530 return SDValue(); 3531 3532 switch (N0.getOpcode()) { 3533 case ISD::FP16_TO_FP: { 3534 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3535 SDLoc SL(N); 3536 SDValue Src = N0.getOperand(0); 3537 EVT SrcVT = Src.getValueType(); 3538 3539 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3540 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3541 DAG.getConstant(0x7fff, SL, SrcVT)); 3542 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3543 } 3544 default: 3545 return SDValue(); 3546 } 3547 } 3548 3549 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3550 DAGCombinerInfo &DCI) const { 3551 SelectionDAG &DAG = DCI.DAG; 3552 SDLoc DL(N); 3553 3554 switch(N->getOpcode()) { 3555 default: 3556 break; 3557 case ISD::BITCAST: { 3558 EVT DestVT = N->getValueType(0); 3559 3560 // Push casts through vector builds. This helps avoid emitting a large 3561 // number of copies when materializing floating point vector constants. 3562 // 3563 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3564 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3565 if (DestVT.isVector()) { 3566 SDValue Src = N->getOperand(0); 3567 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3568 EVT SrcVT = Src.getValueType(); 3569 unsigned NElts = DestVT.getVectorNumElements(); 3570 3571 if (SrcVT.getVectorNumElements() == NElts) { 3572 EVT DestEltVT = DestVT.getVectorElementType(); 3573 3574 SmallVector<SDValue, 8> CastedElts; 3575 SDLoc SL(N); 3576 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3577 SDValue Elt = Src.getOperand(I); 3578 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3579 } 3580 3581 return DAG.getBuildVector(DestVT, SL, CastedElts); 3582 } 3583 } 3584 } 3585 3586 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3587 break; 3588 3589 // Fold bitcasts of constants. 3590 // 3591 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3592 // TODO: Generalize and move to DAGCombiner 3593 SDValue Src = N->getOperand(0); 3594 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3595 assert(Src.getValueType() == MVT::i64); 3596 SDLoc SL(N); 3597 uint64_t CVal = C->getZExtValue(); 3598 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3599 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3600 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3601 } 3602 3603 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3604 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3605 SDLoc SL(N); 3606 uint64_t CVal = Val.getZExtValue(); 3607 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3608 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3609 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3610 3611 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3612 } 3613 3614 break; 3615 } 3616 case ISD::SHL: { 3617 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3618 break; 3619 3620 return performShlCombine(N, DCI); 3621 } 3622 case ISD::SRL: { 3623 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3624 break; 3625 3626 return performSrlCombine(N, DCI); 3627 } 3628 case ISD::SRA: { 3629 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3630 break; 3631 3632 return performSraCombine(N, DCI); 3633 } 3634 case ISD::MUL: 3635 return performMulCombine(N, DCI); 3636 case ISD::MULHS: 3637 return performMulhsCombine(N, DCI); 3638 case ISD::MULHU: 3639 return performMulhuCombine(N, DCI); 3640 case AMDGPUISD::MUL_I24: 3641 case AMDGPUISD::MUL_U24: 3642 case AMDGPUISD::MULHI_I24: 3643 case AMDGPUISD::MULHI_U24: { 3644 // If the first call to simplify is successfull, then N may end up being 3645 // deleted, so we shouldn't call simplifyI24 again. 3646 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3647 return SDValue(); 3648 } 3649 case AMDGPUISD::MUL_LOHI_I24: 3650 case AMDGPUISD::MUL_LOHI_U24: 3651 return performMulLoHi24Combine(N, DCI); 3652 case ISD::SELECT: 3653 return performSelectCombine(N, DCI); 3654 case ISD::FNEG: 3655 return performFNegCombine(N, DCI); 3656 case ISD::FABS: 3657 return performFAbsCombine(N, DCI); 3658 case AMDGPUISD::BFE_I32: 3659 case AMDGPUISD::BFE_U32: { 3660 assert(!N->getValueType(0).isVector() && 3661 "Vector handling of BFE not implemented"); 3662 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3663 if (!Width) 3664 break; 3665 3666 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3667 if (WidthVal == 0) 3668 return DAG.getConstant(0, DL, MVT::i32); 3669 3670 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3671 if (!Offset) 3672 break; 3673 3674 SDValue BitsFrom = N->getOperand(0); 3675 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3676 3677 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3678 3679 if (OffsetVal == 0) { 3680 // This is already sign / zero extended, so try to fold away extra BFEs. 3681 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3682 3683 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3684 if (OpSignBits >= SignBits) 3685 return BitsFrom; 3686 3687 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3688 if (Signed) { 3689 // This is a sign_extend_inreg. Replace it to take advantage of existing 3690 // DAG Combines. If not eliminated, we will match back to BFE during 3691 // selection. 3692 3693 // TODO: The sext_inreg of extended types ends, although we can could 3694 // handle them in a single BFE. 3695 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3696 DAG.getValueType(SmallVT)); 3697 } 3698 3699 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3700 } 3701 3702 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3703 if (Signed) { 3704 return constantFoldBFE<int32_t>(DAG, 3705 CVal->getSExtValue(), 3706 OffsetVal, 3707 WidthVal, 3708 DL); 3709 } 3710 3711 return constantFoldBFE<uint32_t>(DAG, 3712 CVal->getZExtValue(), 3713 OffsetVal, 3714 WidthVal, 3715 DL); 3716 } 3717 3718 if ((OffsetVal + WidthVal) >= 32 && 3719 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3720 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3721 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3722 BitsFrom, ShiftVal); 3723 } 3724 3725 if (BitsFrom.hasOneUse()) { 3726 APInt Demanded = APInt::getBitsSet(32, 3727 OffsetVal, 3728 OffsetVal + WidthVal); 3729 3730 KnownBits Known; 3731 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3732 !DCI.isBeforeLegalizeOps()); 3733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3734 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3735 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3736 DCI.CommitTargetLoweringOpt(TLO); 3737 } 3738 } 3739 3740 break; 3741 } 3742 case ISD::LOAD: 3743 return performLoadCombine(N, DCI); 3744 case ISD::STORE: 3745 return performStoreCombine(N, DCI); 3746 case AMDGPUISD::CLAMP: 3747 return performClampCombine(N, DCI); 3748 case AMDGPUISD::RCP: { 3749 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3750 // XXX - Should this flush denormals? 3751 const APFloat &Val = CFP->getValueAPF(); 3752 APFloat One(Val.getSemantics(), "1.0"); 3753 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3754 } 3755 3756 break; 3757 } 3758 case ISD::AssertZext: 3759 case ISD::AssertSext: 3760 return performAssertSZExtCombine(N, DCI); 3761 } 3762 return SDValue(); 3763 } 3764 3765 //===----------------------------------------------------------------------===// 3766 // Helper functions 3767 //===----------------------------------------------------------------------===// 3768 3769 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3770 const TargetRegisterClass *RC, 3771 unsigned Reg, EVT VT, 3772 const SDLoc &SL, 3773 bool RawReg) const { 3774 MachineFunction &MF = DAG.getMachineFunction(); 3775 MachineRegisterInfo &MRI = MF.getRegInfo(); 3776 unsigned VReg; 3777 3778 if (!MRI.isLiveIn(Reg)) { 3779 VReg = MRI.createVirtualRegister(RC); 3780 MRI.addLiveIn(Reg, VReg); 3781 } else { 3782 VReg = MRI.getLiveInVirtReg(Reg); 3783 } 3784 3785 if (RawReg) 3786 return DAG.getRegister(VReg, VT); 3787 3788 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3789 } 3790 3791 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3792 EVT VT, 3793 const SDLoc &SL, 3794 int64_t Offset) const { 3795 MachineFunction &MF = DAG.getMachineFunction(); 3796 MachineFrameInfo &MFI = MF.getFrameInfo(); 3797 3798 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 3799 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 3800 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 3801 3802 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 3803 MachineMemOperand::MODereferenceable | 3804 MachineMemOperand::MOInvariant); 3805 } 3806 3807 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 3808 const SDLoc &SL, 3809 SDValue Chain, 3810 SDValue StackPtr, 3811 SDValue ArgVal, 3812 int64_t Offset) const { 3813 MachineFunction &MF = DAG.getMachineFunction(); 3814 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 3815 SDValue PtrOffset = DAG.getConstant(Offset, SL, MVT::i32); 3816 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, StackPtr, PtrOffset); 3817 3818 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 3819 MachineMemOperand::MODereferenceable); 3820 return Store; 3821 } 3822 3823 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 3824 const TargetRegisterClass *RC, 3825 EVT VT, const SDLoc &SL, 3826 const ArgDescriptor &Arg) const { 3827 assert(Arg && "Attempting to load missing argument"); 3828 3829 if (Arg.isRegister()) 3830 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 3831 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 3832 } 3833 3834 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3835 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3836 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3837 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3838 switch (Param) { 3839 case GRID_DIM: 3840 return ArgOffset; 3841 case GRID_OFFSET: 3842 return ArgOffset + 4; 3843 } 3844 llvm_unreachable("unexpected implicit parameter type"); 3845 } 3846 3847 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3848 3849 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3850 switch ((AMDGPUISD::NodeType)Opcode) { 3851 case AMDGPUISD::FIRST_NUMBER: break; 3852 // AMDIL DAG nodes 3853 NODE_NAME_CASE(UMUL); 3854 NODE_NAME_CASE(BRANCH_COND); 3855 3856 // AMDGPU DAG nodes 3857 NODE_NAME_CASE(IF) 3858 NODE_NAME_CASE(ELSE) 3859 NODE_NAME_CASE(LOOP) 3860 NODE_NAME_CASE(CALL) 3861 NODE_NAME_CASE(TC_RETURN) 3862 NODE_NAME_CASE(TRAP) 3863 NODE_NAME_CASE(RET_FLAG) 3864 NODE_NAME_CASE(RETURN_TO_EPILOG) 3865 NODE_NAME_CASE(ENDPGM) 3866 NODE_NAME_CASE(DWORDADDR) 3867 NODE_NAME_CASE(FRACT) 3868 NODE_NAME_CASE(SETCC) 3869 NODE_NAME_CASE(SETREG) 3870 NODE_NAME_CASE(FMA_W_CHAIN) 3871 NODE_NAME_CASE(FMUL_W_CHAIN) 3872 NODE_NAME_CASE(CLAMP) 3873 NODE_NAME_CASE(COS_HW) 3874 NODE_NAME_CASE(SIN_HW) 3875 NODE_NAME_CASE(FMAX_LEGACY) 3876 NODE_NAME_CASE(FMIN_LEGACY) 3877 NODE_NAME_CASE(FMAX3) 3878 NODE_NAME_CASE(SMAX3) 3879 NODE_NAME_CASE(UMAX3) 3880 NODE_NAME_CASE(FMIN3) 3881 NODE_NAME_CASE(SMIN3) 3882 NODE_NAME_CASE(UMIN3) 3883 NODE_NAME_CASE(FMED3) 3884 NODE_NAME_CASE(SMED3) 3885 NODE_NAME_CASE(UMED3) 3886 NODE_NAME_CASE(URECIP) 3887 NODE_NAME_CASE(DIV_SCALE) 3888 NODE_NAME_CASE(DIV_FMAS) 3889 NODE_NAME_CASE(DIV_FIXUP) 3890 NODE_NAME_CASE(FMAD_FTZ) 3891 NODE_NAME_CASE(TRIG_PREOP) 3892 NODE_NAME_CASE(RCP) 3893 NODE_NAME_CASE(RSQ) 3894 NODE_NAME_CASE(RCP_LEGACY) 3895 NODE_NAME_CASE(RSQ_LEGACY) 3896 NODE_NAME_CASE(FMUL_LEGACY) 3897 NODE_NAME_CASE(RSQ_CLAMP) 3898 NODE_NAME_CASE(LDEXP) 3899 NODE_NAME_CASE(FP_CLASS) 3900 NODE_NAME_CASE(DOT4) 3901 NODE_NAME_CASE(CARRY) 3902 NODE_NAME_CASE(BORROW) 3903 NODE_NAME_CASE(BFE_U32) 3904 NODE_NAME_CASE(BFE_I32) 3905 NODE_NAME_CASE(BFI) 3906 NODE_NAME_CASE(BFM) 3907 NODE_NAME_CASE(FFBH_U32) 3908 NODE_NAME_CASE(FFBH_I32) 3909 NODE_NAME_CASE(FFBL_B32) 3910 NODE_NAME_CASE(MUL_U24) 3911 NODE_NAME_CASE(MUL_I24) 3912 NODE_NAME_CASE(MULHI_U24) 3913 NODE_NAME_CASE(MULHI_I24) 3914 NODE_NAME_CASE(MUL_LOHI_U24) 3915 NODE_NAME_CASE(MUL_LOHI_I24) 3916 NODE_NAME_CASE(MAD_U24) 3917 NODE_NAME_CASE(MAD_I24) 3918 NODE_NAME_CASE(MAD_I64_I32) 3919 NODE_NAME_CASE(MAD_U64_U32) 3920 NODE_NAME_CASE(TEXTURE_FETCH) 3921 NODE_NAME_CASE(EXPORT) 3922 NODE_NAME_CASE(EXPORT_DONE) 3923 NODE_NAME_CASE(R600_EXPORT) 3924 NODE_NAME_CASE(CONST_ADDRESS) 3925 NODE_NAME_CASE(REGISTER_LOAD) 3926 NODE_NAME_CASE(REGISTER_STORE) 3927 NODE_NAME_CASE(SAMPLE) 3928 NODE_NAME_CASE(SAMPLEB) 3929 NODE_NAME_CASE(SAMPLED) 3930 NODE_NAME_CASE(SAMPLEL) 3931 NODE_NAME_CASE(CVT_F32_UBYTE0) 3932 NODE_NAME_CASE(CVT_F32_UBYTE1) 3933 NODE_NAME_CASE(CVT_F32_UBYTE2) 3934 NODE_NAME_CASE(CVT_F32_UBYTE3) 3935 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3936 NODE_NAME_CASE(FP_TO_FP16) 3937 NODE_NAME_CASE(FP16_ZEXT) 3938 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3939 NODE_NAME_CASE(CONST_DATA_PTR) 3940 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3941 NODE_NAME_CASE(KILL) 3942 NODE_NAME_CASE(DUMMY_CHAIN) 3943 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3944 NODE_NAME_CASE(INIT_EXEC) 3945 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 3946 NODE_NAME_CASE(SENDMSG) 3947 NODE_NAME_CASE(SENDMSGHALT) 3948 NODE_NAME_CASE(INTERP_MOV) 3949 NODE_NAME_CASE(INTERP_P1) 3950 NODE_NAME_CASE(INTERP_P2) 3951 NODE_NAME_CASE(STORE_MSKOR) 3952 NODE_NAME_CASE(LOAD_CONSTANT) 3953 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3954 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 3955 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 3956 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3957 NODE_NAME_CASE(ATOMIC_INC) 3958 NODE_NAME_CASE(ATOMIC_DEC) 3959 NODE_NAME_CASE(BUFFER_LOAD) 3960 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3961 NODE_NAME_CASE(BUFFER_STORE) 3962 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 3963 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 3964 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 3965 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 3966 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 3967 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 3968 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 3969 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 3970 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 3971 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 3972 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 3973 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 3974 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3975 } 3976 return nullptr; 3977 } 3978 3979 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3980 SelectionDAG &DAG, int Enabled, 3981 int &RefinementSteps, 3982 bool &UseOneConstNR, 3983 bool Reciprocal) const { 3984 EVT VT = Operand.getValueType(); 3985 3986 if (VT == MVT::f32) { 3987 RefinementSteps = 0; 3988 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3989 } 3990 3991 // TODO: There is also f64 rsq instruction, but the documentation is less 3992 // clear on its precision. 3993 3994 return SDValue(); 3995 } 3996 3997 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3998 SelectionDAG &DAG, int Enabled, 3999 int &RefinementSteps) const { 4000 EVT VT = Operand.getValueType(); 4001 4002 if (VT == MVT::f32) { 4003 // Reciprocal, < 1 ulp error. 4004 // 4005 // This reciprocal approximation converges to < 0.5 ulp error with one 4006 // newton rhapson performed with two fused multiple adds (FMAs). 4007 4008 RefinementSteps = 0; 4009 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4010 } 4011 4012 // TODO: There is also f64 rcp instruction, but the documentation is less 4013 // clear on its precision. 4014 4015 return SDValue(); 4016 } 4017 4018 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4019 const SDValue Op, KnownBits &Known, 4020 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4021 4022 Known.resetAll(); // Don't know anything. 4023 4024 unsigned Opc = Op.getOpcode(); 4025 4026 switch (Opc) { 4027 default: 4028 break; 4029 case AMDGPUISD::CARRY: 4030 case AMDGPUISD::BORROW: { 4031 Known.Zero = APInt::getHighBitsSet(32, 31); 4032 break; 4033 } 4034 4035 case AMDGPUISD::BFE_I32: 4036 case AMDGPUISD::BFE_U32: { 4037 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4038 if (!CWidth) 4039 return; 4040 4041 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4042 4043 if (Opc == AMDGPUISD::BFE_U32) 4044 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4045 4046 break; 4047 } 4048 case AMDGPUISD::FP_TO_FP16: 4049 case AMDGPUISD::FP16_ZEXT: { 4050 unsigned BitWidth = Known.getBitWidth(); 4051 4052 // High bits are zero. 4053 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4054 break; 4055 } 4056 case AMDGPUISD::MUL_U24: 4057 case AMDGPUISD::MUL_I24: { 4058 KnownBits LHSKnown, RHSKnown; 4059 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 4060 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 4061 4062 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4063 RHSKnown.countMinTrailingZeros(); 4064 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4065 4066 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 4067 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 4068 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4069 if (MaxValBits >= 32) 4070 break; 4071 bool Negative = false; 4072 if (Opc == AMDGPUISD::MUL_I24) { 4073 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 4074 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 4075 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 4076 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 4077 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4078 break; 4079 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4080 } 4081 if (Negative) 4082 Known.One.setHighBits(32 - MaxValBits); 4083 else 4084 Known.Zero.setHighBits(32 - MaxValBits); 4085 break; 4086 } 4087 case ISD::INTRINSIC_WO_CHAIN: { 4088 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4089 switch (IID) { 4090 case Intrinsic::amdgcn_mbcnt_lo: 4091 case Intrinsic::amdgcn_mbcnt_hi: { 4092 // These return at most the wavefront size - 1. 4093 unsigned Size = Op.getValueType().getSizeInBits(); 4094 Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2()); 4095 break; 4096 } 4097 default: 4098 break; 4099 } 4100 } 4101 } 4102 } 4103 4104 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4105 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4106 unsigned Depth) const { 4107 switch (Op.getOpcode()) { 4108 case AMDGPUISD::BFE_I32: { 4109 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4110 if (!Width) 4111 return 1; 4112 4113 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4114 if (!isNullConstant(Op.getOperand(1))) 4115 return SignBits; 4116 4117 // TODO: Could probably figure something out with non-0 offsets. 4118 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4119 return std::max(SignBits, Op0SignBits); 4120 } 4121 4122 case AMDGPUISD::BFE_U32: { 4123 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4124 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4125 } 4126 4127 case AMDGPUISD::CARRY: 4128 case AMDGPUISD::BORROW: 4129 return 31; 4130 case AMDGPUISD::FP_TO_FP16: 4131 case AMDGPUISD::FP16_ZEXT: 4132 return 16; 4133 default: 4134 return 1; 4135 } 4136 } 4137