1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 33 using namespace llvm; 34 35 namespace { 36 37 /// Diagnostic information for unimplemented or unsupported feature reporting. 38 class DiagnosticInfoUnsupported : public DiagnosticInfo { 39 private: 40 const Twine &Description; 41 const Function &Fn; 42 43 static int KindID; 44 45 static int getKindID() { 46 if (KindID == 0) 47 KindID = llvm::getNextAvailablePluginDiagnosticKind(); 48 return KindID; 49 } 50 51 public: 52 DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc, 53 DiagnosticSeverity Severity = DS_Error) 54 : DiagnosticInfo(getKindID(), Severity), 55 Description(Desc), 56 Fn(Fn) { } 57 58 const Function &getFunction() const { return Fn; } 59 const Twine &getDescription() const { return Description; } 60 61 void print(DiagnosticPrinter &DP) const override { 62 DP << "unsupported " << getDescription() << " in " << Fn.getName(); 63 } 64 65 static bool classof(const DiagnosticInfo *DI) { 66 return DI->getKind() == getKindID(); 67 } 68 }; 69 70 int DiagnosticInfoUnsupported::KindID = 0; 71 } 72 73 74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 75 CCValAssign::LocInfo LocInfo, 76 ISD::ArgFlagsTy ArgFlags, CCState &State) { 77 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 78 ArgFlags.getOrigAlign()); 79 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 80 81 return true; 82 } 83 84 #include "AMDGPUGenCallingConv.inc" 85 86 // Find a larger type to do a load / store of a vector with. 87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 88 unsigned StoreSize = VT.getStoreSizeInBits(); 89 if (StoreSize <= 32) 90 return EVT::getIntegerVT(Ctx, StoreSize); 91 92 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 93 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 94 } 95 96 // Type for a vector that will be loaded to. 97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 98 unsigned StoreSize = VT.getStoreSizeInBits(); 99 if (StoreSize <= 32) 100 return EVT::getIntegerVT(Ctx, 32); 101 102 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 103 } 104 105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 106 const AMDGPUSubtarget &STI) 107 : TargetLowering(TM), Subtarget(&STI) { 108 setOperationAction(ISD::Constant, MVT::i32, Legal); 109 setOperationAction(ISD::Constant, MVT::i64, Legal); 110 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 111 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 112 113 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 114 setOperationAction(ISD::BRIND, MVT::Other, Expand); 115 116 // This is totally unsupported, just custom lower to produce an error. 117 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 118 119 // We need to custom lower some of the intrinsics 120 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 121 122 // Library functions. These default to Expand, but we have instructions 123 // for them. 124 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 125 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 126 setOperationAction(ISD::FPOW, MVT::f32, Legal); 127 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 128 setOperationAction(ISD::FABS, MVT::f32, Legal); 129 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 130 setOperationAction(ISD::FRINT, MVT::f32, Legal); 131 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 132 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 133 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 134 135 setOperationAction(ISD::FROUND, MVT::f32, Custom); 136 setOperationAction(ISD::FROUND, MVT::f64, Custom); 137 138 setOperationAction(ISD::FREM, MVT::f32, Custom); 139 setOperationAction(ISD::FREM, MVT::f64, Custom); 140 141 // v_mad_f32 does not support denormals according to some sources. 142 if (!Subtarget->hasFP32Denormals()) 143 setOperationAction(ISD::FMAD, MVT::f32, Legal); 144 145 // Expand to fneg + fadd. 146 setOperationAction(ISD::FSUB, MVT::f64, Expand); 147 148 // Lower floating point store/load to integer store/load to reduce the number 149 // of patterns in tablegen. 150 setOperationAction(ISD::STORE, MVT::f32, Promote); 151 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::STORE, MVT::f64, Promote); 166 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 170 171 // Custom lowering of vector stores is required for local address space 172 // stores. 173 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 174 175 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 177 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 178 179 // XXX: This can be change to Custom, once ExpandVectorStores can 180 // handle 64-bit stores. 181 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 182 183 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 184 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 185 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 186 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 187 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 188 189 190 setOperationAction(ISD::LOAD, MVT::f32, Promote); 191 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 192 193 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 194 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 195 196 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 197 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 198 199 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 200 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 201 202 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 203 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 204 205 setOperationAction(ISD::LOAD, MVT::f64, Promote); 206 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 207 208 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 209 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 210 211 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 212 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 213 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 214 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 215 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 216 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 217 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 218 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 219 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 220 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 221 222 // There are no 64-bit extloads. These should be done as a 32-bit extload and 223 // an extension to 64-bit. 224 for (MVT VT : MVT::integer_valuetypes()) { 225 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 226 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 227 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 228 } 229 230 for (MVT VT : MVT::integer_vector_valuetypes()) { 231 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 232 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 233 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 234 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 235 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 236 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 237 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 240 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 243 } 244 245 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 246 247 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 248 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 249 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 250 setOperationAction(ISD::FRINT, MVT::f64, Custom); 251 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 252 } 253 254 if (!Subtarget->hasBFI()) { 255 // fcopysign can be done in a single instruction with BFI. 256 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 257 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 258 } 259 260 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 261 262 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 263 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 264 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 265 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 266 267 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 268 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 269 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 270 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 271 272 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 273 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 274 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 275 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 276 277 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 278 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 279 280 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 281 for (MVT VT : ScalarIntVTs) { 282 setOperationAction(ISD::SREM, VT, Expand); 283 setOperationAction(ISD::SDIV, VT, Expand); 284 285 // GPU does not have divrem function for signed or unsigned. 286 setOperationAction(ISD::SDIVREM, VT, Custom); 287 setOperationAction(ISD::UDIVREM, VT, Custom); 288 289 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 290 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 291 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 292 293 setOperationAction(ISD::BSWAP, VT, Expand); 294 setOperationAction(ISD::CTTZ, VT, Expand); 295 setOperationAction(ISD::CTLZ, VT, Expand); 296 } 297 298 if (!Subtarget->hasBCNT(32)) 299 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 300 301 if (!Subtarget->hasBCNT(64)) 302 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 303 304 // The hardware supports 32-bit ROTR, but not ROTL. 305 setOperationAction(ISD::ROTL, MVT::i32, Expand); 306 setOperationAction(ISD::ROTL, MVT::i64, Expand); 307 setOperationAction(ISD::ROTR, MVT::i64, Expand); 308 309 setOperationAction(ISD::MUL, MVT::i64, Expand); 310 setOperationAction(ISD::MULHU, MVT::i64, Expand); 311 setOperationAction(ISD::MULHS, MVT::i64, Expand); 312 setOperationAction(ISD::UDIV, MVT::i32, Expand); 313 setOperationAction(ISD::UREM, MVT::i32, Expand); 314 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 315 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 316 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 317 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 318 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 319 320 setOperationAction(ISD::SMIN, MVT::i32, Legal); 321 setOperationAction(ISD::UMIN, MVT::i32, Legal); 322 setOperationAction(ISD::SMAX, MVT::i32, Legal); 323 setOperationAction(ISD::UMAX, MVT::i32, Legal); 324 325 if (!Subtarget->hasFFBH()) 326 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 327 328 if (!Subtarget->hasFFBL()) 329 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 330 331 static const MVT::SimpleValueType VectorIntTypes[] = { 332 MVT::v2i32, MVT::v4i32 333 }; 334 335 for (MVT VT : VectorIntTypes) { 336 // Expand the following operations for the current type by default. 337 setOperationAction(ISD::ADD, VT, Expand); 338 setOperationAction(ISD::AND, VT, Expand); 339 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 340 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 341 setOperationAction(ISD::MUL, VT, Expand); 342 setOperationAction(ISD::OR, VT, Expand); 343 setOperationAction(ISD::SHL, VT, Expand); 344 setOperationAction(ISD::SRA, VT, Expand); 345 setOperationAction(ISD::SRL, VT, Expand); 346 setOperationAction(ISD::ROTL, VT, Expand); 347 setOperationAction(ISD::ROTR, VT, Expand); 348 setOperationAction(ISD::SUB, VT, Expand); 349 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 350 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 351 setOperationAction(ISD::SDIV, VT, Expand); 352 setOperationAction(ISD::UDIV, VT, Expand); 353 setOperationAction(ISD::SREM, VT, Expand); 354 setOperationAction(ISD::UREM, VT, Expand); 355 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 356 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 357 setOperationAction(ISD::SDIVREM, VT, Custom); 358 setOperationAction(ISD::UDIVREM, VT, Custom); 359 setOperationAction(ISD::ADDC, VT, Expand); 360 setOperationAction(ISD::SUBC, VT, Expand); 361 setOperationAction(ISD::ADDE, VT, Expand); 362 setOperationAction(ISD::SUBE, VT, Expand); 363 setOperationAction(ISD::SELECT, VT, Expand); 364 setOperationAction(ISD::VSELECT, VT, Expand); 365 setOperationAction(ISD::SELECT_CC, VT, Expand); 366 setOperationAction(ISD::XOR, VT, Expand); 367 setOperationAction(ISD::BSWAP, VT, Expand); 368 setOperationAction(ISD::CTPOP, VT, Expand); 369 setOperationAction(ISD::CTTZ, VT, Expand); 370 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 371 setOperationAction(ISD::CTLZ, VT, Expand); 372 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 373 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 374 } 375 376 static const MVT::SimpleValueType FloatVectorTypes[] = { 377 MVT::v2f32, MVT::v4f32 378 }; 379 380 for (MVT VT : FloatVectorTypes) { 381 setOperationAction(ISD::FABS, VT, Expand); 382 setOperationAction(ISD::FMINNUM, VT, Expand); 383 setOperationAction(ISD::FMAXNUM, VT, Expand); 384 setOperationAction(ISD::FADD, VT, Expand); 385 setOperationAction(ISD::FCEIL, VT, Expand); 386 setOperationAction(ISD::FCOS, VT, Expand); 387 setOperationAction(ISD::FDIV, VT, Expand); 388 setOperationAction(ISD::FEXP2, VT, Expand); 389 setOperationAction(ISD::FLOG2, VT, Expand); 390 setOperationAction(ISD::FREM, VT, Expand); 391 setOperationAction(ISD::FPOW, VT, Expand); 392 setOperationAction(ISD::FFLOOR, VT, Expand); 393 setOperationAction(ISD::FTRUNC, VT, Expand); 394 setOperationAction(ISD::FMUL, VT, Expand); 395 setOperationAction(ISD::FMA, VT, Expand); 396 setOperationAction(ISD::FRINT, VT, Expand); 397 setOperationAction(ISD::FNEARBYINT, VT, Expand); 398 setOperationAction(ISD::FSQRT, VT, Expand); 399 setOperationAction(ISD::FSIN, VT, Expand); 400 setOperationAction(ISD::FSUB, VT, Expand); 401 setOperationAction(ISD::FNEG, VT, Expand); 402 setOperationAction(ISD::SELECT, VT, Expand); 403 setOperationAction(ISD::VSELECT, VT, Expand); 404 setOperationAction(ISD::SELECT_CC, VT, Expand); 405 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 406 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 407 } 408 409 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 410 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 411 412 setTargetDAGCombine(ISD::SHL); 413 setTargetDAGCombine(ISD::MUL); 414 setTargetDAGCombine(ISD::SELECT); 415 setTargetDAGCombine(ISD::SELECT_CC); 416 setTargetDAGCombine(ISD::STORE); 417 418 setTargetDAGCombine(ISD::FADD); 419 setTargetDAGCombine(ISD::FSUB); 420 421 setBooleanContents(ZeroOrNegativeOneBooleanContent); 422 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 423 424 setSchedulingPreference(Sched::RegPressure); 425 setJumpIsExpensive(true); 426 427 // SI at least has hardware support for floating point exceptions, but no way 428 // of using or handling them is implemented. They are also optional in OpenCL 429 // (Section 7.3) 430 setHasFloatingPointExceptions(false); 431 432 setSelectIsExpensive(false); 433 PredictableSelectIsExpensive = false; 434 435 setFsqrtIsCheap(true); 436 437 // FIXME: Need to really handle these. 438 MaxStoresPerMemcpy = 4096; 439 MaxStoresPerMemmove = 4096; 440 MaxStoresPerMemset = 4096; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // Target Information 445 //===----------------------------------------------------------------------===// 446 447 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 448 return MVT::i32; 449 } 450 451 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 452 return true; 453 } 454 455 // The backend supports 32 and 64 bit floating point immediates. 456 // FIXME: Why are we reporting vectors of FP immediates as legal? 457 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 458 EVT ScalarVT = VT.getScalarType(); 459 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 460 } 461 462 // We don't want to shrink f64 / f32 constants. 463 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 464 EVT ScalarVT = VT.getScalarType(); 465 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 466 } 467 468 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 469 ISD::LoadExtType, 470 EVT NewVT) const { 471 472 unsigned NewSize = NewVT.getStoreSizeInBits(); 473 474 // If we are reducing to a 32-bit load, this is always better. 475 if (NewSize == 32) 476 return true; 477 478 EVT OldVT = N->getValueType(0); 479 unsigned OldSize = OldVT.getStoreSizeInBits(); 480 481 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 482 // extloads, so doing one requires using a buffer_load. In cases where we 483 // still couldn't use a scalar load, using the wider load shouldn't really 484 // hurt anything. 485 486 // If the old size already had to be an extload, there's no harm in continuing 487 // to reduce the width. 488 return (OldSize < 32); 489 } 490 491 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 492 EVT CastTy) const { 493 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 494 return true; 495 496 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 497 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 498 499 return ((LScalarSize <= CastScalarSize) || 500 (CastScalarSize >= 32) || 501 (LScalarSize < 32)); 502 } 503 504 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 505 // profitable with the expansion for 64-bit since it's generally good to 506 // speculate things. 507 // FIXME: These should really have the size as a parameter. 508 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 509 return true; 510 } 511 512 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 513 return true; 514 } 515 516 //===---------------------------------------------------------------------===// 517 // Target Properties 518 //===---------------------------------------------------------------------===// 519 520 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 521 assert(VT.isFloatingPoint()); 522 return VT == MVT::f32 || VT == MVT::f64; 523 } 524 525 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 526 assert(VT.isFloatingPoint()); 527 return VT == MVT::f32 || VT == MVT::f64; 528 } 529 530 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 531 unsigned NumElem, 532 unsigned AS) const { 533 return true; 534 } 535 536 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 537 // Truncate is just accessing a subregister. 538 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 539 } 540 541 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 542 // Truncate is just accessing a subregister. 543 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 544 (Dest->getPrimitiveSizeInBits() % 32 == 0); 545 } 546 547 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 548 unsigned SrcSize = Src->getScalarSizeInBits(); 549 unsigned DestSize = Dest->getScalarSizeInBits(); 550 551 return SrcSize == 32 && DestSize == 64; 552 } 553 554 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 555 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 556 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 557 // this will enable reducing 64-bit operations the 32-bit, which is always 558 // good. 559 return Src == MVT::i32 && Dest == MVT::i64; 560 } 561 562 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 563 return isZExtFree(Val.getValueType(), VT2); 564 } 565 566 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 567 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 568 // limited number of native 64-bit operations. Shrinking an operation to fit 569 // in a single 32-bit register should always be helpful. As currently used, 570 // this is much less general than the name suggests, and is only used in 571 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 572 // not profitable, and may actually be harmful. 573 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 574 } 575 576 //===---------------------------------------------------------------------===// 577 // TargetLowering Callbacks 578 //===---------------------------------------------------------------------===// 579 580 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 581 const SmallVectorImpl<ISD::InputArg> &Ins) const { 582 583 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 584 } 585 586 SDValue AMDGPUTargetLowering::LowerReturn( 587 SDValue Chain, 588 CallingConv::ID CallConv, 589 bool isVarArg, 590 const SmallVectorImpl<ISD::OutputArg> &Outs, 591 const SmallVectorImpl<SDValue> &OutVals, 592 SDLoc DL, SelectionDAG &DAG) const { 593 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 594 } 595 596 //===---------------------------------------------------------------------===// 597 // Target specific lowering 598 //===---------------------------------------------------------------------===// 599 600 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 601 SmallVectorImpl<SDValue> &InVals) const { 602 SDValue Callee = CLI.Callee; 603 SelectionDAG &DAG = CLI.DAG; 604 605 const Function &Fn = *DAG.getMachineFunction().getFunction(); 606 607 StringRef FuncName("<unknown>"); 608 609 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 610 FuncName = G->getSymbol(); 611 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 612 FuncName = G->getGlobal()->getName(); 613 614 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 615 DAG.getContext()->diagnose(NoCalls); 616 return SDValue(); 617 } 618 619 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 620 SelectionDAG &DAG) const { 621 const Function &Fn = *DAG.getMachineFunction().getFunction(); 622 623 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); 624 DAG.getContext()->diagnose(NoDynamicAlloca); 625 return SDValue(); 626 } 627 628 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 629 SelectionDAG &DAG) const { 630 switch (Op.getOpcode()) { 631 default: 632 Op.getNode()->dump(); 633 llvm_unreachable("Custom lowering code for this" 634 "instruction is not implemented yet!"); 635 break; 636 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 637 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 638 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 639 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 640 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 641 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 642 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 643 case ISD::FREM: return LowerFREM(Op, DAG); 644 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 645 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 646 case ISD::FRINT: return LowerFRINT(Op, DAG); 647 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 648 case ISD::FROUND: return LowerFROUND(Op, DAG); 649 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 650 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 651 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 652 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 653 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 654 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 655 } 656 return Op; 657 } 658 659 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 660 SmallVectorImpl<SDValue> &Results, 661 SelectionDAG &DAG) const { 662 switch (N->getOpcode()) { 663 case ISD::SIGN_EXTEND_INREG: 664 // Different parts of legalization seem to interpret which type of 665 // sign_extend_inreg is the one to check for custom lowering. The extended 666 // from type is what really matters, but some places check for custom 667 // lowering of the result type. This results in trying to use 668 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 669 // nothing here and let the illegal result integer be handled normally. 670 return; 671 case ISD::LOAD: { 672 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 673 if (!Node) 674 return; 675 676 Results.push_back(SDValue(Node, 0)); 677 Results.push_back(SDValue(Node, 1)); 678 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 679 // function 680 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 681 return; 682 } 683 case ISD::STORE: { 684 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 685 if (Lowered.getNode()) 686 Results.push_back(Lowered); 687 return; 688 } 689 default: 690 return; 691 } 692 } 693 694 // FIXME: This implements accesses to initialized globals in the constant 695 // address space by copying them to private and accessing that. It does not 696 // properly handle illegal types or vectors. The private vector loads are not 697 // scalarized, and the illegal scalars hit an assertion. This technique will not 698 // work well with large initializers, and this should eventually be 699 // removed. Initialized globals should be placed into a data section that the 700 // runtime will load into a buffer before the kernel is executed. Uses of the 701 // global need to be replaced with a pointer loaded from an implicit kernel 702 // argument into this buffer holding the copy of the data, which will remove the 703 // need for any of this. 704 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 705 const GlobalValue *GV, 706 const SDValue &InitPtr, 707 SDValue Chain, 708 SelectionDAG &DAG) const { 709 const DataLayout &TD = DAG.getDataLayout(); 710 SDLoc DL(InitPtr); 711 Type *InitTy = Init->getType(); 712 713 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 714 EVT VT = EVT::getEVT(InitTy); 715 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 716 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 717 MachinePointerInfo(UndefValue::get(PtrTy)), false, 718 false, TD.getPrefTypeAlignment(InitTy)); 719 } 720 721 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 722 EVT VT = EVT::getEVT(CFP->getType()); 723 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 724 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 725 MachinePointerInfo(UndefValue::get(PtrTy)), false, 726 false, TD.getPrefTypeAlignment(CFP->getType())); 727 } 728 729 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 730 const StructLayout *SL = TD.getStructLayout(ST); 731 732 EVT PtrVT = InitPtr.getValueType(); 733 SmallVector<SDValue, 8> Chains; 734 735 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 736 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 737 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 738 739 Constant *Elt = Init->getAggregateElement(I); 740 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 741 } 742 743 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 744 } 745 746 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 747 EVT PtrVT = InitPtr.getValueType(); 748 749 unsigned NumElements; 750 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 751 NumElements = AT->getNumElements(); 752 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 753 NumElements = VT->getNumElements(); 754 else 755 llvm_unreachable("Unexpected type"); 756 757 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 758 SmallVector<SDValue, 8> Chains; 759 for (unsigned i = 0; i < NumElements; ++i) { 760 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 761 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 762 763 Constant *Elt = Init->getAggregateElement(i); 764 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 765 } 766 767 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 768 } 769 770 if (isa<UndefValue>(Init)) { 771 EVT VT = EVT::getEVT(InitTy); 772 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 773 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 774 MachinePointerInfo(UndefValue::get(PtrTy)), false, 775 false, TD.getPrefTypeAlignment(InitTy)); 776 } 777 778 Init->dump(); 779 llvm_unreachable("Unhandled constant initializer"); 780 } 781 782 static bool hasDefinedInitializer(const GlobalValue *GV) { 783 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 784 if (!GVar || !GVar->hasInitializer()) 785 return false; 786 787 if (isa<UndefValue>(GVar->getInitializer())) 788 return false; 789 790 return true; 791 } 792 793 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 794 SDValue Op, 795 SelectionDAG &DAG) const { 796 797 const DataLayout &DL = DAG.getDataLayout(); 798 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 799 const GlobalValue *GV = G->getGlobal(); 800 801 switch (G->getAddressSpace()) { 802 case AMDGPUAS::LOCAL_ADDRESS: { 803 // XXX: What does the value of G->getOffset() mean? 804 assert(G->getOffset() == 0 && 805 "Do not know what to do with an non-zero offset"); 806 807 // TODO: We could emit code to handle the initialization somewhere. 808 if (hasDefinedInitializer(GV)) 809 break; 810 811 unsigned Offset; 812 if (MFI->LocalMemoryObjects.count(GV) == 0) { 813 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 814 Offset = MFI->LDSSize; 815 MFI->LocalMemoryObjects[GV] = Offset; 816 // XXX: Account for alignment? 817 MFI->LDSSize += Size; 818 } else { 819 Offset = MFI->LocalMemoryObjects[GV]; 820 } 821 822 return DAG.getConstant(Offset, SDLoc(Op), 823 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 824 } 825 case AMDGPUAS::CONSTANT_ADDRESS: { 826 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 827 Type *EltType = GV->getType()->getElementType(); 828 unsigned Size = DL.getTypeAllocSize(EltType); 829 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 830 831 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 832 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 833 834 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 835 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 836 837 const GlobalVariable *Var = cast<GlobalVariable>(GV); 838 if (!Var->hasInitializer()) { 839 // This has no use, but bugpoint will hit it. 840 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 841 } 842 843 const Constant *Init = Var->getInitializer(); 844 SmallVector<SDNode*, 8> WorkList; 845 846 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 847 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 848 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 849 continue; 850 WorkList.push_back(*I); 851 } 852 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 853 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 854 E = WorkList.end(); I != E; ++I) { 855 SmallVector<SDValue, 8> Ops; 856 Ops.push_back(Chain); 857 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 858 Ops.push_back((*I)->getOperand(i)); 859 } 860 DAG.UpdateNodeOperands(*I, Ops); 861 } 862 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 863 } 864 } 865 866 const Function &Fn = *DAG.getMachineFunction().getFunction(); 867 DiagnosticInfoUnsupported BadInit(Fn, 868 "initializer for address space"); 869 DAG.getContext()->diagnose(BadInit); 870 return SDValue(); 871 } 872 873 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 874 SelectionDAG &DAG) const { 875 SmallVector<SDValue, 8> Args; 876 877 for (const SDUse &U : Op->ops()) 878 DAG.ExtractVectorElements(U.get(), Args); 879 880 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 881 } 882 883 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 884 SelectionDAG &DAG) const { 885 886 SmallVector<SDValue, 8> Args; 887 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 888 EVT VT = Op.getValueType(); 889 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 890 VT.getVectorNumElements()); 891 892 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 893 } 894 895 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 896 SelectionDAG &DAG) const { 897 898 MachineFunction &MF = DAG.getMachineFunction(); 899 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 900 901 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 902 903 unsigned FrameIndex = FIN->getIndex(); 904 unsigned IgnoredFrameReg; 905 unsigned Offset = 906 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 907 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 908 Op.getValueType()); 909 } 910 911 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 912 SelectionDAG &DAG) const { 913 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 914 SDLoc DL(Op); 915 EVT VT = Op.getValueType(); 916 917 switch (IntrinsicID) { 918 default: return Op; 919 case AMDGPUIntrinsic::AMDGPU_abs: 920 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. 921 return LowerIntrinsicIABS(Op, DAG); 922 case AMDGPUIntrinsic::AMDGPU_lrp: 923 return LowerIntrinsicLRP(Op, DAG); 924 925 case AMDGPUIntrinsic::AMDGPU_clamp: 926 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 927 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 928 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 929 930 case Intrinsic::AMDGPU_div_scale: { 931 // 3rd parameter required to be a constant. 932 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 933 if (!Param) 934 return DAG.getUNDEF(VT); 935 936 // Translate to the operands expected by the machine instruction. The 937 // first parameter must be the same as the first instruction. 938 SDValue Numerator = Op.getOperand(1); 939 SDValue Denominator = Op.getOperand(2); 940 941 // Note this order is opposite of the machine instruction's operations, 942 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 943 // intrinsic has the numerator as the first operand to match a normal 944 // division operation. 945 946 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 947 948 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 949 Denominator, Numerator); 950 } 951 952 case Intrinsic::AMDGPU_div_fmas: 953 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 954 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 955 Op.getOperand(4)); 956 957 case Intrinsic::AMDGPU_div_fixup: 958 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 959 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 960 961 case Intrinsic::AMDGPU_trig_preop: 962 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 963 Op.getOperand(1), Op.getOperand(2)); 964 965 case Intrinsic::AMDGPU_rcp: 966 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 967 968 case Intrinsic::AMDGPU_rsq: 969 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 970 971 case AMDGPUIntrinsic::AMDGPU_legacy_rsq: 972 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 973 974 case Intrinsic::AMDGPU_rsq_clamped: 975 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 976 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 977 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 978 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 979 980 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 981 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 982 DAG.getConstantFP(Max, DL, VT)); 983 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 984 DAG.getConstantFP(Min, DL, VT)); 985 } else { 986 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 987 } 988 989 case Intrinsic::AMDGPU_ldexp: 990 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 991 Op.getOperand(2)); 992 993 case AMDGPUIntrinsic::AMDGPU_imax: 994 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), 995 Op.getOperand(2)); 996 case AMDGPUIntrinsic::AMDGPU_umax: 997 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), 998 Op.getOperand(2)); 999 case AMDGPUIntrinsic::AMDGPU_imin: 1000 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), 1001 Op.getOperand(2)); 1002 case AMDGPUIntrinsic::AMDGPU_umin: 1003 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), 1004 Op.getOperand(2)); 1005 1006 case AMDGPUIntrinsic::AMDGPU_umul24: 1007 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 1008 Op.getOperand(1), Op.getOperand(2)); 1009 1010 case AMDGPUIntrinsic::AMDGPU_imul24: 1011 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 1012 Op.getOperand(1), Op.getOperand(2)); 1013 1014 case AMDGPUIntrinsic::AMDGPU_umad24: 1015 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 1016 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1017 1018 case AMDGPUIntrinsic::AMDGPU_imad24: 1019 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 1020 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1021 1022 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: 1023 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); 1024 1025 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: 1026 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); 1027 1028 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: 1029 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); 1030 1031 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: 1032 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); 1033 1034 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1035 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1036 Op.getOperand(1), 1037 Op.getOperand(2), 1038 Op.getOperand(3)); 1039 1040 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1041 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1042 Op.getOperand(1), 1043 Op.getOperand(2), 1044 Op.getOperand(3)); 1045 1046 case AMDGPUIntrinsic::AMDGPU_bfi: 1047 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 1048 Op.getOperand(1), 1049 Op.getOperand(2), 1050 Op.getOperand(3)); 1051 1052 case AMDGPUIntrinsic::AMDGPU_bfm: 1053 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 1054 Op.getOperand(1), 1055 Op.getOperand(2)); 1056 1057 case AMDGPUIntrinsic::AMDGPU_brev: 1058 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1)); 1059 1060 case Intrinsic::AMDGPU_class: 1061 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 1062 Op.getOperand(1), Op.getOperand(2)); 1063 1064 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 1065 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 1066 1067 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. 1068 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); 1069 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. 1070 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); 1071 } 1072 } 1073 1074 ///IABS(a) = SMAX(sub(0, a), a) 1075 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, 1076 SelectionDAG &DAG) const { 1077 SDLoc DL(Op); 1078 EVT VT = Op.getValueType(); 1079 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1080 Op.getOperand(1)); 1081 1082 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); 1083 } 1084 1085 /// Linear Interpolation 1086 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c) 1087 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, 1088 SelectionDAG &DAG) const { 1089 SDLoc DL(Op); 1090 EVT VT = Op.getValueType(); 1091 // TODO: Should this propagate fast-math-flags? 1092 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, 1093 DAG.getConstantFP(1.0f, DL, MVT::f32), 1094 Op.getOperand(1)); 1095 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, 1096 Op.getOperand(3)); 1097 return DAG.getNode(ISD::FADD, DL, VT, 1098 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), 1099 OneSubAC); 1100 } 1101 1102 /// \brief Generate Min/Max node 1103 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 1104 EVT VT, 1105 SDValue LHS, 1106 SDValue RHS, 1107 SDValue True, 1108 SDValue False, 1109 SDValue CC, 1110 DAGCombinerInfo &DCI) const { 1111 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1112 return SDValue(); 1113 1114 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1115 return SDValue(); 1116 1117 SelectionDAG &DAG = DCI.DAG; 1118 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1119 switch (CCOpcode) { 1120 case ISD::SETOEQ: 1121 case ISD::SETONE: 1122 case ISD::SETUNE: 1123 case ISD::SETNE: 1124 case ISD::SETUEQ: 1125 case ISD::SETEQ: 1126 case ISD::SETFALSE: 1127 case ISD::SETFALSE2: 1128 case ISD::SETTRUE: 1129 case ISD::SETTRUE2: 1130 case ISD::SETUO: 1131 case ISD::SETO: 1132 break; 1133 case ISD::SETULE: 1134 case ISD::SETULT: { 1135 if (LHS == True) 1136 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1137 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1138 } 1139 case ISD::SETOLE: 1140 case ISD::SETOLT: 1141 case ISD::SETLE: 1142 case ISD::SETLT: { 1143 // Ordered. Assume ordered for undefined. 1144 1145 // Only do this after legalization to avoid interfering with other combines 1146 // which might occur. 1147 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1148 !DCI.isCalledByLegalizer()) 1149 return SDValue(); 1150 1151 // We need to permute the operands to get the correct NaN behavior. The 1152 // selected operand is the second one based on the failing compare with NaN, 1153 // so permute it based on the compare type the hardware uses. 1154 if (LHS == True) 1155 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1156 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1157 } 1158 case ISD::SETUGE: 1159 case ISD::SETUGT: { 1160 if (LHS == True) 1161 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1162 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1163 } 1164 case ISD::SETGT: 1165 case ISD::SETGE: 1166 case ISD::SETOGE: 1167 case ISD::SETOGT: { 1168 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1169 !DCI.isCalledByLegalizer()) 1170 return SDValue(); 1171 1172 if (LHS == True) 1173 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1174 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1175 } 1176 case ISD::SETCC_INVALID: 1177 llvm_unreachable("Invalid setcc condcode!"); 1178 } 1179 return SDValue(); 1180 } 1181 1182 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1183 SelectionDAG &DAG) const { 1184 LoadSDNode *Load = cast<LoadSDNode>(Op); 1185 EVT MemVT = Load->getMemoryVT(); 1186 EVT MemEltVT = MemVT.getVectorElementType(); 1187 1188 EVT LoadVT = Op.getValueType(); 1189 EVT EltVT = LoadVT.getVectorElementType(); 1190 EVT PtrVT = Load->getBasePtr().getValueType(); 1191 1192 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1193 SmallVector<SDValue, 8> Loads; 1194 SmallVector<SDValue, 8> Chains; 1195 1196 SDLoc SL(Op); 1197 unsigned MemEltSize = MemEltVT.getStoreSize(); 1198 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1199 1200 for (unsigned i = 0; i < NumElts; ++i) { 1201 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1202 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1203 1204 SDValue NewLoad 1205 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1206 Load->getChain(), Ptr, 1207 SrcValue.getWithOffset(i * MemEltSize), 1208 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1209 Load->isInvariant(), Load->getAlignment()); 1210 Loads.push_back(NewLoad.getValue(0)); 1211 Chains.push_back(NewLoad.getValue(1)); 1212 } 1213 1214 SDValue Ops[] = { 1215 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1216 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1217 }; 1218 1219 return DAG.getMergeValues(Ops, SL); 1220 } 1221 1222 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1223 SelectionDAG &DAG) const { 1224 EVT VT = Op.getValueType(); 1225 1226 // If this is a 2 element vector, we really want to scalarize and not create 1227 // weird 1 element vectors. 1228 if (VT.getVectorNumElements() == 2) 1229 return ScalarizeVectorLoad(Op, DAG); 1230 1231 LoadSDNode *Load = cast<LoadSDNode>(Op); 1232 SDValue BasePtr = Load->getBasePtr(); 1233 EVT PtrVT = BasePtr.getValueType(); 1234 EVT MemVT = Load->getMemoryVT(); 1235 SDLoc SL(Op); 1236 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1237 1238 EVT LoVT, HiVT; 1239 EVT LoMemVT, HiMemVT; 1240 SDValue Lo, Hi; 1241 1242 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1243 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1244 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1245 SDValue LoLoad 1246 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1247 Load->getChain(), BasePtr, 1248 SrcValue, 1249 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1250 Load->isInvariant(), Load->getAlignment()); 1251 1252 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1253 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1254 PtrVT)); 1255 1256 SDValue HiLoad 1257 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1258 Load->getChain(), HiPtr, 1259 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1260 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1261 Load->isInvariant(), Load->getAlignment()); 1262 1263 SDValue Ops[] = { 1264 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1265 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1266 LoLoad.getValue(1), HiLoad.getValue(1)) 1267 }; 1268 1269 return DAG.getMergeValues(Ops, SL); 1270 } 1271 1272 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1273 SelectionDAG &DAG) const { 1274 StoreSDNode *Store = cast<StoreSDNode>(Op); 1275 EVT MemVT = Store->getMemoryVT(); 1276 unsigned MemBits = MemVT.getSizeInBits(); 1277 1278 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1279 // truncating store into an i32 store. 1280 // XXX: We could also handle optimize other vector bitwidths. 1281 if (!MemVT.isVector() || MemBits > 32) { 1282 return SDValue(); 1283 } 1284 1285 SDLoc DL(Op); 1286 SDValue Value = Store->getValue(); 1287 EVT VT = Value.getValueType(); 1288 EVT ElemVT = VT.getVectorElementType(); 1289 SDValue Ptr = Store->getBasePtr(); 1290 EVT MemEltVT = MemVT.getVectorElementType(); 1291 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1292 unsigned MemNumElements = MemVT.getVectorNumElements(); 1293 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1294 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1295 1296 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1297 1298 SDValue PackedValue; 1299 for (unsigned i = 0; i < MemNumElements; ++i) { 1300 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1301 DAG.getConstant(i, DL, MVT::i32)); 1302 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1303 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1304 1305 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1306 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1307 1308 if (i == 0) { 1309 PackedValue = Elt; 1310 } else { 1311 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1312 } 1313 } 1314 1315 if (PackedSize < 32) { 1316 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1317 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1318 Store->getMemOperand()->getPointerInfo(), 1319 PackedVT, 1320 Store->isNonTemporal(), Store->isVolatile(), 1321 Store->getAlignment()); 1322 } 1323 1324 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1325 Store->getMemOperand()->getPointerInfo(), 1326 Store->isVolatile(), Store->isNonTemporal(), 1327 Store->getAlignment()); 1328 } 1329 1330 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1331 SelectionDAG &DAG) const { 1332 StoreSDNode *Store = cast<StoreSDNode>(Op); 1333 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1334 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1335 EVT PtrVT = Store->getBasePtr().getValueType(); 1336 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1337 SDLoc SL(Op); 1338 1339 SmallVector<SDValue, 8> Chains; 1340 1341 unsigned EltSize = MemEltVT.getStoreSize(); 1342 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1343 1344 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1345 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1346 Store->getValue(), 1347 DAG.getConstant(i, SL, MVT::i32)); 1348 1349 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1350 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1351 SDValue NewStore = 1352 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1353 SrcValue.getWithOffset(i * EltSize), 1354 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1355 Store->getAlignment()); 1356 Chains.push_back(NewStore); 1357 } 1358 1359 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1360 } 1361 1362 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1363 SelectionDAG &DAG) const { 1364 StoreSDNode *Store = cast<StoreSDNode>(Op); 1365 SDValue Val = Store->getValue(); 1366 EVT VT = Val.getValueType(); 1367 1368 // If this is a 2 element vector, we really want to scalarize and not create 1369 // weird 1 element vectors. 1370 if (VT.getVectorNumElements() == 2) 1371 return ScalarizeVectorStore(Op, DAG); 1372 1373 EVT MemVT = Store->getMemoryVT(); 1374 SDValue Chain = Store->getChain(); 1375 SDValue BasePtr = Store->getBasePtr(); 1376 SDLoc SL(Op); 1377 1378 EVT LoVT, HiVT; 1379 EVT LoMemVT, HiMemVT; 1380 SDValue Lo, Hi; 1381 1382 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1383 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1384 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1385 1386 EVT PtrVT = BasePtr.getValueType(); 1387 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1388 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1389 PtrVT)); 1390 1391 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1392 SDValue LoStore 1393 = DAG.getTruncStore(Chain, SL, Lo, 1394 BasePtr, 1395 SrcValue, 1396 LoMemVT, 1397 Store->isNonTemporal(), 1398 Store->isVolatile(), 1399 Store->getAlignment()); 1400 SDValue HiStore 1401 = DAG.getTruncStore(Chain, SL, Hi, 1402 HiPtr, 1403 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1404 HiMemVT, 1405 Store->isNonTemporal(), 1406 Store->isVolatile(), 1407 Store->getAlignment()); 1408 1409 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1410 } 1411 1412 1413 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1414 SDLoc DL(Op); 1415 LoadSDNode *Load = cast<LoadSDNode>(Op); 1416 ISD::LoadExtType ExtType = Load->getExtensionType(); 1417 EVT VT = Op.getValueType(); 1418 EVT MemVT = Load->getMemoryVT(); 1419 1420 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1421 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1422 // FIXME: Copied from PPC 1423 // First, load into 32 bits, then truncate to 1 bit. 1424 1425 SDValue Chain = Load->getChain(); 1426 SDValue BasePtr = Load->getBasePtr(); 1427 MachineMemOperand *MMO = Load->getMemOperand(); 1428 1429 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1430 BasePtr, MVT::i8, MMO); 1431 1432 SDValue Ops[] = { 1433 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1434 NewLD.getValue(1) 1435 }; 1436 1437 return DAG.getMergeValues(Ops, DL); 1438 } 1439 1440 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1441 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1442 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1443 return SDValue(); 1444 1445 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1446 // register (2-)byte extract. 1447 1448 // Get Register holding the target. 1449 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1450 DAG.getConstant(2, DL, MVT::i32)); 1451 // Load the Register. 1452 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1453 Load->getChain(), Ptr, 1454 DAG.getTargetConstant(0, DL, MVT::i32), 1455 Op.getOperand(2)); 1456 1457 // Get offset within the register. 1458 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1459 Load->getBasePtr(), 1460 DAG.getConstant(0x3, DL, MVT::i32)); 1461 1462 // Bit offset of target byte (byteIdx * 8). 1463 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1464 DAG.getConstant(3, DL, MVT::i32)); 1465 1466 // Shift to the right. 1467 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1468 1469 // Eliminate the upper bits by setting them to ... 1470 EVT MemEltVT = MemVT.getScalarType(); 1471 1472 // ... ones. 1473 if (ExtType == ISD::SEXTLOAD) { 1474 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1475 1476 SDValue Ops[] = { 1477 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1478 Load->getChain() 1479 }; 1480 1481 return DAG.getMergeValues(Ops, DL); 1482 } 1483 1484 // ... or zeros. 1485 SDValue Ops[] = { 1486 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1487 Load->getChain() 1488 }; 1489 1490 return DAG.getMergeValues(Ops, DL); 1491 } 1492 1493 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1494 SDLoc DL(Op); 1495 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1496 if (Result.getNode()) { 1497 return Result; 1498 } 1499 1500 StoreSDNode *Store = cast<StoreSDNode>(Op); 1501 SDValue Chain = Store->getChain(); 1502 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1503 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1504 Store->getValue().getValueType().isVector()) { 1505 return ScalarizeVectorStore(Op, DAG); 1506 } 1507 1508 EVT MemVT = Store->getMemoryVT(); 1509 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1510 MemVT.bitsLT(MVT::i32)) { 1511 unsigned Mask = 0; 1512 if (Store->getMemoryVT() == MVT::i8) { 1513 Mask = 0xff; 1514 } else if (Store->getMemoryVT() == MVT::i16) { 1515 Mask = 0xffff; 1516 } 1517 SDValue BasePtr = Store->getBasePtr(); 1518 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1519 DAG.getConstant(2, DL, MVT::i32)); 1520 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1521 Chain, Ptr, 1522 DAG.getTargetConstant(0, DL, MVT::i32)); 1523 1524 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1525 DAG.getConstant(0x3, DL, MVT::i32)); 1526 1527 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1528 DAG.getConstant(3, DL, MVT::i32)); 1529 1530 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1531 Store->getValue()); 1532 1533 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1534 1535 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1536 MaskedValue, ShiftAmt); 1537 1538 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1539 DAG.getConstant(Mask, DL, MVT::i32), 1540 ShiftAmt); 1541 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1542 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1543 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1544 1545 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1546 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1547 Chain, Value, Ptr, 1548 DAG.getTargetConstant(0, DL, MVT::i32)); 1549 } 1550 return SDValue(); 1551 } 1552 1553 // This is a shortcut for integer division because we have fast i32<->f32 1554 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1555 // float is enough to accurately represent up to a 24-bit integer. 1556 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1557 SDLoc DL(Op); 1558 EVT VT = Op.getValueType(); 1559 SDValue LHS = Op.getOperand(0); 1560 SDValue RHS = Op.getOperand(1); 1561 MVT IntVT = MVT::i32; 1562 MVT FltVT = MVT::f32; 1563 1564 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1565 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1566 1567 if (VT.isVector()) { 1568 unsigned NElts = VT.getVectorNumElements(); 1569 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1570 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1571 } 1572 1573 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1574 1575 SDValue jq = DAG.getConstant(1, DL, IntVT); 1576 1577 if (sign) { 1578 // char|short jq = ia ^ ib; 1579 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1580 1581 // jq = jq >> (bitsize - 2) 1582 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1583 DAG.getConstant(BitSize - 2, DL, VT)); 1584 1585 // jq = jq | 0x1 1586 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1587 1588 // jq = (int)jq 1589 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1590 } 1591 1592 // int ia = (int)LHS; 1593 SDValue ia = sign ? 1594 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1595 1596 // int ib, (int)RHS; 1597 SDValue ib = sign ? 1598 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1599 1600 // float fa = (float)ia; 1601 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1602 1603 // float fb = (float)ib; 1604 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1605 1606 // TODO: Should this propagate fast-math-flags? 1607 // float fq = native_divide(fa, fb); 1608 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1609 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1610 1611 // fq = trunc(fq); 1612 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1613 1614 // float fqneg = -fq; 1615 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1616 1617 // float fr = mad(fqneg, fb, fa); 1618 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1619 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1620 1621 // int iq = (int)fq; 1622 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1623 1624 // fr = fabs(fr); 1625 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1626 1627 // fb = fabs(fb); 1628 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1629 1630 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1631 1632 // int cv = fr >= fb; 1633 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1634 1635 // jq = (cv ? jq : 0); 1636 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1637 1638 // dst = trunc/extend to legal type 1639 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1640 1641 // dst = iq + jq; 1642 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1643 1644 // Rem needs compensation, it's easier to recompute it 1645 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1646 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1647 1648 SDValue Res[2] = { 1649 Div, 1650 Rem 1651 }; 1652 return DAG.getMergeValues(Res, DL); 1653 } 1654 1655 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1656 SelectionDAG &DAG, 1657 SmallVectorImpl<SDValue> &Results) const { 1658 assert(Op.getValueType() == MVT::i64); 1659 1660 SDLoc DL(Op); 1661 EVT VT = Op.getValueType(); 1662 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1663 1664 SDValue one = DAG.getConstant(1, DL, HalfVT); 1665 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1666 1667 //HiLo split 1668 SDValue LHS = Op.getOperand(0); 1669 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1670 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1671 1672 SDValue RHS = Op.getOperand(1); 1673 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1674 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1675 1676 if (VT == MVT::i64 && 1677 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1678 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1679 1680 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1681 LHS_Lo, RHS_Lo); 1682 1683 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1684 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1685 Results.push_back(DIV); 1686 Results.push_back(REM); 1687 return; 1688 } 1689 1690 // Get Speculative values 1691 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1692 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1693 1694 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1695 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1696 1697 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1698 SDValue DIV_Lo = zero; 1699 1700 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1701 1702 for (unsigned i = 0; i < halfBitWidth; ++i) { 1703 const unsigned bitPos = halfBitWidth - i - 1; 1704 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1705 // Get value of high bit 1706 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1707 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1708 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1709 1710 // Shift 1711 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1712 // Add LHS high bit 1713 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1714 1715 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1716 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1717 1718 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1719 1720 // Update REM 1721 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1722 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1723 } 1724 1725 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1726 Results.push_back(DIV); 1727 Results.push_back(REM); 1728 } 1729 1730 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1731 SelectionDAG &DAG) const { 1732 SDLoc DL(Op); 1733 EVT VT = Op.getValueType(); 1734 1735 if (VT == MVT::i64) { 1736 SmallVector<SDValue, 2> Results; 1737 LowerUDIVREM64(Op, DAG, Results); 1738 return DAG.getMergeValues(Results, DL); 1739 } 1740 1741 SDValue Num = Op.getOperand(0); 1742 SDValue Den = Op.getOperand(1); 1743 1744 if (VT == MVT::i32) { 1745 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1746 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1747 // TODO: We technically could do this for i64, but shouldn't that just be 1748 // handled by something generally reducing 64-bit division on 32-bit 1749 // values to 32-bit? 1750 return LowerDIVREM24(Op, DAG, false); 1751 } 1752 } 1753 1754 // RCP = URECIP(Den) = 2^32 / Den + e 1755 // e is rounding error. 1756 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1757 1758 // RCP_LO = mul(RCP, Den) */ 1759 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1760 1761 // RCP_HI = mulhu (RCP, Den) */ 1762 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1763 1764 // NEG_RCP_LO = -RCP_LO 1765 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1766 RCP_LO); 1767 1768 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1769 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1770 NEG_RCP_LO, RCP_LO, 1771 ISD::SETEQ); 1772 // Calculate the rounding error from the URECIP instruction 1773 // E = mulhu(ABS_RCP_LO, RCP) 1774 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1775 1776 // RCP_A_E = RCP + E 1777 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1778 1779 // RCP_S_E = RCP - E 1780 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1781 1782 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1783 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1784 RCP_A_E, RCP_S_E, 1785 ISD::SETEQ); 1786 // Quotient = mulhu(Tmp0, Num) 1787 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1788 1789 // Num_S_Remainder = Quotient * Den 1790 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1791 1792 // Remainder = Num - Num_S_Remainder 1793 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1794 1795 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1796 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1797 DAG.getConstant(-1, DL, VT), 1798 DAG.getConstant(0, DL, VT), 1799 ISD::SETUGE); 1800 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1801 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1802 Num_S_Remainder, 1803 DAG.getConstant(-1, DL, VT), 1804 DAG.getConstant(0, DL, VT), 1805 ISD::SETUGE); 1806 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1807 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1808 Remainder_GE_Zero); 1809 1810 // Calculate Division result: 1811 1812 // Quotient_A_One = Quotient + 1 1813 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1814 DAG.getConstant(1, DL, VT)); 1815 1816 // Quotient_S_One = Quotient - 1 1817 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1818 DAG.getConstant(1, DL, VT)); 1819 1820 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1821 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1822 Quotient, Quotient_A_One, ISD::SETEQ); 1823 1824 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1825 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1826 Quotient_S_One, Div, ISD::SETEQ); 1827 1828 // Calculate Rem result: 1829 1830 // Remainder_S_Den = Remainder - Den 1831 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1832 1833 // Remainder_A_Den = Remainder + Den 1834 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1835 1836 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1837 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1838 Remainder, Remainder_S_Den, ISD::SETEQ); 1839 1840 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1841 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1842 Remainder_A_Den, Rem, ISD::SETEQ); 1843 SDValue Ops[2] = { 1844 Div, 1845 Rem 1846 }; 1847 return DAG.getMergeValues(Ops, DL); 1848 } 1849 1850 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1851 SelectionDAG &DAG) const { 1852 SDLoc DL(Op); 1853 EVT VT = Op.getValueType(); 1854 1855 SDValue LHS = Op.getOperand(0); 1856 SDValue RHS = Op.getOperand(1); 1857 1858 SDValue Zero = DAG.getConstant(0, DL, VT); 1859 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1860 1861 if (VT == MVT::i32 && 1862 DAG.ComputeNumSignBits(LHS) > 8 && 1863 DAG.ComputeNumSignBits(RHS) > 8) { 1864 return LowerDIVREM24(Op, DAG, true); 1865 } 1866 if (VT == MVT::i64 && 1867 DAG.ComputeNumSignBits(LHS) > 32 && 1868 DAG.ComputeNumSignBits(RHS) > 32) { 1869 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1870 1871 //HiLo split 1872 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1873 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1874 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1875 LHS_Lo, RHS_Lo); 1876 SDValue Res[2] = { 1877 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1878 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1879 }; 1880 return DAG.getMergeValues(Res, DL); 1881 } 1882 1883 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1884 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1885 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1886 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1887 1888 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1889 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1890 1891 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1892 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1893 1894 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1895 SDValue Rem = Div.getValue(1); 1896 1897 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1898 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1899 1900 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1901 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1902 1903 SDValue Res[2] = { 1904 Div, 1905 Rem 1906 }; 1907 return DAG.getMergeValues(Res, DL); 1908 } 1909 1910 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1911 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1912 SDLoc SL(Op); 1913 EVT VT = Op.getValueType(); 1914 SDValue X = Op.getOperand(0); 1915 SDValue Y = Op.getOperand(1); 1916 1917 // TODO: Should this propagate fast-math-flags? 1918 1919 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1920 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1921 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1922 1923 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1924 } 1925 1926 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1927 SDLoc SL(Op); 1928 SDValue Src = Op.getOperand(0); 1929 1930 // result = trunc(src) 1931 // if (src > 0.0 && src != result) 1932 // result += 1.0 1933 1934 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1935 1936 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1937 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1938 1939 EVT SetCCVT = 1940 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1941 1942 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1943 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1944 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1945 1946 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1947 // TODO: Should this propagate fast-math-flags? 1948 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1949 } 1950 1951 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1952 const unsigned FractBits = 52; 1953 const unsigned ExpBits = 11; 1954 1955 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1956 Hi, 1957 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1958 DAG.getConstant(ExpBits, SL, MVT::i32)); 1959 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1960 DAG.getConstant(1023, SL, MVT::i32)); 1961 1962 return Exp; 1963 } 1964 1965 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1966 SDLoc SL(Op); 1967 SDValue Src = Op.getOperand(0); 1968 1969 assert(Op.getValueType() == MVT::f64); 1970 1971 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1972 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1973 1974 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1975 1976 // Extract the upper half, since this is where we will find the sign and 1977 // exponent. 1978 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1979 1980 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1981 1982 const unsigned FractBits = 52; 1983 1984 // Extract the sign bit. 1985 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1986 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1987 1988 // Extend back to to 64-bits. 1989 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1990 Zero, SignBit); 1991 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1992 1993 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1994 const SDValue FractMask 1995 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1996 1997 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1998 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1999 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2000 2001 EVT SetCCVT = 2002 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2003 2004 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2005 2006 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2007 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2008 2009 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2010 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2011 2012 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2013 } 2014 2015 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2016 SDLoc SL(Op); 2017 SDValue Src = Op.getOperand(0); 2018 2019 assert(Op.getValueType() == MVT::f64); 2020 2021 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 2022 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2023 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2024 2025 // TODO: Should this propagate fast-math-flags? 2026 2027 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2028 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2029 2030 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2031 2032 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 2033 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2034 2035 EVT SetCCVT = 2036 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2037 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2038 2039 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2040 } 2041 2042 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2043 // FNEARBYINT and FRINT are the same, except in their handling of FP 2044 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2045 // rint, so just treat them as equivalent. 2046 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2047 } 2048 2049 // XXX - May require not supporting f32 denormals? 2050 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 2051 SDLoc SL(Op); 2052 SDValue X = Op.getOperand(0); 2053 2054 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 2055 2056 // TODO: Should this propagate fast-math-flags? 2057 2058 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 2059 2060 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 2061 2062 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 2063 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 2064 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 2065 2066 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 2067 2068 EVT SetCCVT = 2069 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 2070 2071 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2072 2073 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 2074 2075 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 2076 } 2077 2078 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2079 SDLoc SL(Op); 2080 SDValue X = Op.getOperand(0); 2081 2082 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2083 2084 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2085 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2086 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2087 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2088 EVT SetCCVT = 2089 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2090 2091 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2092 2093 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2094 2095 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2096 2097 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2098 MVT::i64); 2099 2100 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2101 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2102 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2103 MVT::i64), 2104 Exp); 2105 2106 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2107 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2108 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2109 ISD::SETNE); 2110 2111 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2112 D, DAG.getConstant(0, SL, MVT::i64)); 2113 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2114 2115 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2116 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2117 2118 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2119 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2120 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2121 2122 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2123 ExpEqNegOne, 2124 DAG.getConstantFP(1.0, SL, MVT::f64), 2125 DAG.getConstantFP(0.0, SL, MVT::f64)); 2126 2127 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2128 2129 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2130 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2131 2132 return K; 2133 } 2134 2135 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2136 EVT VT = Op.getValueType(); 2137 2138 if (VT == MVT::f32) 2139 return LowerFROUND32(Op, DAG); 2140 2141 if (VT == MVT::f64) 2142 return LowerFROUND64(Op, DAG); 2143 2144 llvm_unreachable("unhandled type"); 2145 } 2146 2147 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2148 SDLoc SL(Op); 2149 SDValue Src = Op.getOperand(0); 2150 2151 // result = trunc(src); 2152 // if (src < 0.0 && src != result) 2153 // result += -1.0. 2154 2155 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2156 2157 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2158 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2159 2160 EVT SetCCVT = 2161 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2162 2163 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2164 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2165 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2166 2167 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2168 // TODO: Should this propagate fast-math-flags? 2169 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2170 } 2171 2172 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2173 bool Signed) const { 2174 SDLoc SL(Op); 2175 SDValue Src = Op.getOperand(0); 2176 2177 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2178 2179 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2180 DAG.getConstant(0, SL, MVT::i32)); 2181 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2182 DAG.getConstant(1, SL, MVT::i32)); 2183 2184 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2185 SL, MVT::f64, Hi); 2186 2187 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2188 2189 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2190 DAG.getConstant(32, SL, MVT::i32)); 2191 // TODO: Should this propagate fast-math-flags? 2192 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2193 } 2194 2195 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2196 SelectionDAG &DAG) const { 2197 SDValue S0 = Op.getOperand(0); 2198 if (S0.getValueType() != MVT::i64) 2199 return SDValue(); 2200 2201 EVT DestVT = Op.getValueType(); 2202 if (DestVT == MVT::f64) 2203 return LowerINT_TO_FP64(Op, DAG, false); 2204 2205 assert(DestVT == MVT::f32); 2206 2207 SDLoc DL(Op); 2208 2209 // f32 uint_to_fp i64 2210 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2211 DAG.getConstant(0, DL, MVT::i32)); 2212 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); 2213 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2214 DAG.getConstant(1, DL, MVT::i32)); 2215 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); 2216 // TODO: Should this propagate fast-math-flags? 2217 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, 2218 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 2219 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); 2220 } 2221 2222 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2223 SelectionDAG &DAG) const { 2224 SDValue Src = Op.getOperand(0); 2225 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) 2226 return LowerINT_TO_FP64(Op, DAG, true); 2227 2228 return SDValue(); 2229 } 2230 2231 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2232 bool Signed) const { 2233 SDLoc SL(Op); 2234 2235 SDValue Src = Op.getOperand(0); 2236 2237 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2238 2239 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2240 MVT::f64); 2241 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2242 MVT::f64); 2243 // TODO: Should this propagate fast-math-flags? 2244 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2245 2246 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2247 2248 2249 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2250 2251 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2252 MVT::i32, FloorMul); 2253 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2254 2255 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2256 2257 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2258 } 2259 2260 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2261 SelectionDAG &DAG) const { 2262 SDValue Src = Op.getOperand(0); 2263 2264 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2265 return LowerFP64_TO_INT(Op, DAG, true); 2266 2267 return SDValue(); 2268 } 2269 2270 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2271 SelectionDAG &DAG) const { 2272 SDValue Src = Op.getOperand(0); 2273 2274 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2275 return LowerFP64_TO_INT(Op, DAG, false); 2276 2277 return SDValue(); 2278 } 2279 2280 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2281 SelectionDAG &DAG) const { 2282 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2283 MVT VT = Op.getSimpleValueType(); 2284 MVT ScalarVT = VT.getScalarType(); 2285 2286 if (!VT.isVector()) 2287 return SDValue(); 2288 2289 SDValue Src = Op.getOperand(0); 2290 SDLoc DL(Op); 2291 2292 // TODO: Don't scalarize on Evergreen? 2293 unsigned NElts = VT.getVectorNumElements(); 2294 SmallVector<SDValue, 8> Args; 2295 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2296 2297 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2298 for (unsigned I = 0; I < NElts; ++I) 2299 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2300 2301 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2302 } 2303 2304 //===----------------------------------------------------------------------===// 2305 // Custom DAG optimizations 2306 //===----------------------------------------------------------------------===// 2307 2308 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2309 APInt KnownZero, KnownOne; 2310 EVT VT = Op.getValueType(); 2311 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2312 2313 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2314 } 2315 2316 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2317 EVT VT = Op.getValueType(); 2318 2319 // In order for this to be a signed 24-bit value, bit 23, must 2320 // be a sign bit. 2321 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2322 // as unsigned 24-bit values. 2323 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2324 } 2325 2326 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2327 2328 SelectionDAG &DAG = DCI.DAG; 2329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2330 EVT VT = Op.getValueType(); 2331 2332 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2333 APInt KnownZero, KnownOne; 2334 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2335 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2336 DCI.CommitTargetLoweringOpt(TLO); 2337 } 2338 2339 template <typename IntTy> 2340 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2341 uint32_t Offset, uint32_t Width, SDLoc DL) { 2342 if (Width + Offset < 32) { 2343 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2344 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2345 return DAG.getConstant(Result, DL, MVT::i32); 2346 } 2347 2348 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2349 } 2350 2351 static bool usesAllNormalStores(SDNode *LoadVal) { 2352 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2353 if (!ISD::isNormalStore(*I)) 2354 return false; 2355 } 2356 2357 return true; 2358 } 2359 2360 // If we have a copy of an illegal type, replace it with a load / store of an 2361 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2362 // instructions emitted when handling extloads and truncstores. Ideally we could 2363 // recognize the pack / unpack pattern to eliminate it. 2364 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2365 DAGCombinerInfo &DCI) const { 2366 if (!DCI.isBeforeLegalize()) 2367 return SDValue(); 2368 2369 StoreSDNode *SN = cast<StoreSDNode>(N); 2370 SDValue Value = SN->getValue(); 2371 EVT VT = Value.getValueType(); 2372 2373 if (isTypeLegal(VT) || SN->isVolatile() || 2374 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2375 return SDValue(); 2376 2377 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2378 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2379 return SDValue(); 2380 2381 EVT MemVT = LoadVal->getMemoryVT(); 2382 2383 SDLoc SL(N); 2384 SelectionDAG &DAG = DCI.DAG; 2385 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2386 2387 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2388 LoadVT, SL, 2389 LoadVal->getChain(), 2390 LoadVal->getBasePtr(), 2391 LoadVal->getOffset(), 2392 LoadVT, 2393 LoadVal->getMemOperand()); 2394 2395 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2396 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2397 2398 return DAG.getStore(SN->getChain(), SL, NewLoad, 2399 SN->getBasePtr(), SN->getMemOperand()); 2400 } 2401 2402 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2403 DAGCombinerInfo &DCI) const { 2404 if (N->getValueType(0) != MVT::i64) 2405 return SDValue(); 2406 2407 // i64 (shl x, 32) -> (build_pair 0, x) 2408 2409 // Doing this with moves theoretically helps MI optimizations that understand 2410 // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as 2411 // v_lshl_b64. In the SALU case, I think this is slightly worse since it 2412 // doubles the code size and I'm unsure about cycle count. 2413 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2414 if (!RHS || RHS->getZExtValue() != 32) 2415 return SDValue(); 2416 2417 SDValue LHS = N->getOperand(0); 2418 2419 SDLoc SL(N); 2420 SelectionDAG &DAG = DCI.DAG; 2421 2422 // Extract low 32-bits. 2423 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2424 2425 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2426 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo); 2427 } 2428 2429 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2430 DAGCombinerInfo &DCI) const { 2431 EVT VT = N->getValueType(0); 2432 2433 if (VT.isVector() || VT.getSizeInBits() > 32) 2434 return SDValue(); 2435 2436 SelectionDAG &DAG = DCI.DAG; 2437 SDLoc DL(N); 2438 2439 SDValue N0 = N->getOperand(0); 2440 SDValue N1 = N->getOperand(1); 2441 SDValue Mul; 2442 2443 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2444 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2445 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2446 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2447 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2448 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2449 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2450 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2451 } else { 2452 return SDValue(); 2453 } 2454 2455 // We need to use sext even for MUL_U24, because MUL_U24 is used 2456 // for signed multiply of 8 and 16-bit types. 2457 return DAG.getSExtOrTrunc(Mul, DL, VT); 2458 } 2459 2460 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2461 DAGCombinerInfo &DCI) const { 2462 SelectionDAG &DAG = DCI.DAG; 2463 SDLoc DL(N); 2464 2465 switch(N->getOpcode()) { 2466 default: 2467 break; 2468 case ISD::SHL: { 2469 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2470 break; 2471 2472 return performShlCombine(N, DCI); 2473 } 2474 case ISD::MUL: 2475 return performMulCombine(N, DCI); 2476 case AMDGPUISD::MUL_I24: 2477 case AMDGPUISD::MUL_U24: { 2478 SDValue N0 = N->getOperand(0); 2479 SDValue N1 = N->getOperand(1); 2480 simplifyI24(N0, DCI); 2481 simplifyI24(N1, DCI); 2482 return SDValue(); 2483 } 2484 case ISD::SELECT: { 2485 SDValue Cond = N->getOperand(0); 2486 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { 2487 EVT VT = N->getValueType(0); 2488 SDValue LHS = Cond.getOperand(0); 2489 SDValue RHS = Cond.getOperand(1); 2490 SDValue CC = Cond.getOperand(2); 2491 2492 SDValue True = N->getOperand(1); 2493 SDValue False = N->getOperand(2); 2494 2495 if (VT == MVT::f32) 2496 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 2497 } 2498 2499 break; 2500 } 2501 case AMDGPUISD::BFE_I32: 2502 case AMDGPUISD::BFE_U32: { 2503 assert(!N->getValueType(0).isVector() && 2504 "Vector handling of BFE not implemented"); 2505 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2506 if (!Width) 2507 break; 2508 2509 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2510 if (WidthVal == 0) 2511 return DAG.getConstant(0, DL, MVT::i32); 2512 2513 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2514 if (!Offset) 2515 break; 2516 2517 SDValue BitsFrom = N->getOperand(0); 2518 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2519 2520 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2521 2522 if (OffsetVal == 0) { 2523 // This is already sign / zero extended, so try to fold away extra BFEs. 2524 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2525 2526 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2527 if (OpSignBits >= SignBits) 2528 return BitsFrom; 2529 2530 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2531 if (Signed) { 2532 // This is a sign_extend_inreg. Replace it to take advantage of existing 2533 // DAG Combines. If not eliminated, we will match back to BFE during 2534 // selection. 2535 2536 // TODO: The sext_inreg of extended types ends, although we can could 2537 // handle them in a single BFE. 2538 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2539 DAG.getValueType(SmallVT)); 2540 } 2541 2542 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2543 } 2544 2545 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2546 if (Signed) { 2547 return constantFoldBFE<int32_t>(DAG, 2548 CVal->getSExtValue(), 2549 OffsetVal, 2550 WidthVal, 2551 DL); 2552 } 2553 2554 return constantFoldBFE<uint32_t>(DAG, 2555 CVal->getZExtValue(), 2556 OffsetVal, 2557 WidthVal, 2558 DL); 2559 } 2560 2561 if ((OffsetVal + WidthVal) >= 32) { 2562 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2563 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2564 BitsFrom, ShiftVal); 2565 } 2566 2567 if (BitsFrom.hasOneUse()) { 2568 APInt Demanded = APInt::getBitsSet(32, 2569 OffsetVal, 2570 OffsetVal + WidthVal); 2571 2572 APInt KnownZero, KnownOne; 2573 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2574 !DCI.isBeforeLegalizeOps()); 2575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2576 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2577 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2578 KnownZero, KnownOne, TLO)) { 2579 DCI.CommitTargetLoweringOpt(TLO); 2580 } 2581 } 2582 2583 break; 2584 } 2585 2586 case ISD::STORE: 2587 return performStoreCombine(N, DCI); 2588 } 2589 return SDValue(); 2590 } 2591 2592 //===----------------------------------------------------------------------===// 2593 // Helper functions 2594 //===----------------------------------------------------------------------===// 2595 2596 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2597 SelectionDAG &DAG, 2598 const Function *F, 2599 const SmallVectorImpl<ISD::InputArg> &Ins, 2600 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2601 2602 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2603 if (Ins[i].ArgVT == Ins[i].VT) { 2604 OrigIns.push_back(Ins[i]); 2605 continue; 2606 } 2607 2608 EVT VT; 2609 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2610 // Vector has been split into scalars. 2611 VT = Ins[i].ArgVT.getVectorElementType(); 2612 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2613 Ins[i].ArgVT.getVectorElementType() != 2614 Ins[i].VT.getVectorElementType()) { 2615 // Vector elements have been promoted 2616 VT = Ins[i].ArgVT; 2617 } else { 2618 // Vector has been spilt into smaller vectors. 2619 VT = Ins[i].VT; 2620 } 2621 2622 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2623 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2624 OrigIns.push_back(Arg); 2625 } 2626 } 2627 2628 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2629 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2630 return CFP->isExactlyValue(1.0); 2631 } 2632 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2633 return C->isAllOnesValue(); 2634 } 2635 return false; 2636 } 2637 2638 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2639 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2640 return CFP->getValueAPF().isZero(); 2641 } 2642 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2643 return C->isNullValue(); 2644 } 2645 return false; 2646 } 2647 2648 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2649 const TargetRegisterClass *RC, 2650 unsigned Reg, EVT VT) const { 2651 MachineFunction &MF = DAG.getMachineFunction(); 2652 MachineRegisterInfo &MRI = MF.getRegInfo(); 2653 unsigned VirtualRegister; 2654 if (!MRI.isLiveIn(Reg)) { 2655 VirtualRegister = MRI.createVirtualRegister(RC); 2656 MRI.addLiveIn(Reg, VirtualRegister); 2657 } else { 2658 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2659 } 2660 return DAG.getRegister(VirtualRegister, VT); 2661 } 2662 2663 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2664 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2665 uint64_t ArgOffset = MFI->ABIArgOffset; 2666 switch (Param) { 2667 case GRID_DIM: 2668 return ArgOffset; 2669 case GRID_OFFSET: 2670 return ArgOffset + 4; 2671 } 2672 llvm_unreachable("unexpected implicit parameter type"); 2673 } 2674 2675 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2676 2677 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2678 switch ((AMDGPUISD::NodeType)Opcode) { 2679 case AMDGPUISD::FIRST_NUMBER: break; 2680 // AMDIL DAG nodes 2681 NODE_NAME_CASE(CALL); 2682 NODE_NAME_CASE(UMUL); 2683 NODE_NAME_CASE(RET_FLAG); 2684 NODE_NAME_CASE(BRANCH_COND); 2685 2686 // AMDGPU DAG nodes 2687 NODE_NAME_CASE(DWORDADDR) 2688 NODE_NAME_CASE(FRACT) 2689 NODE_NAME_CASE(CLAMP) 2690 NODE_NAME_CASE(COS_HW) 2691 NODE_NAME_CASE(SIN_HW) 2692 NODE_NAME_CASE(FMAX_LEGACY) 2693 NODE_NAME_CASE(FMIN_LEGACY) 2694 NODE_NAME_CASE(FMAX3) 2695 NODE_NAME_CASE(SMAX3) 2696 NODE_NAME_CASE(UMAX3) 2697 NODE_NAME_CASE(FMIN3) 2698 NODE_NAME_CASE(SMIN3) 2699 NODE_NAME_CASE(UMIN3) 2700 NODE_NAME_CASE(URECIP) 2701 NODE_NAME_CASE(DIV_SCALE) 2702 NODE_NAME_CASE(DIV_FMAS) 2703 NODE_NAME_CASE(DIV_FIXUP) 2704 NODE_NAME_CASE(TRIG_PREOP) 2705 NODE_NAME_CASE(RCP) 2706 NODE_NAME_CASE(RSQ) 2707 NODE_NAME_CASE(RSQ_LEGACY) 2708 NODE_NAME_CASE(RSQ_CLAMPED) 2709 NODE_NAME_CASE(LDEXP) 2710 NODE_NAME_CASE(FP_CLASS) 2711 NODE_NAME_CASE(DOT4) 2712 NODE_NAME_CASE(CARRY) 2713 NODE_NAME_CASE(BORROW) 2714 NODE_NAME_CASE(BFE_U32) 2715 NODE_NAME_CASE(BFE_I32) 2716 NODE_NAME_CASE(BFI) 2717 NODE_NAME_CASE(BFM) 2718 NODE_NAME_CASE(BREV) 2719 NODE_NAME_CASE(MUL_U24) 2720 NODE_NAME_CASE(MUL_I24) 2721 NODE_NAME_CASE(MAD_U24) 2722 NODE_NAME_CASE(MAD_I24) 2723 NODE_NAME_CASE(TEXTURE_FETCH) 2724 NODE_NAME_CASE(EXPORT) 2725 NODE_NAME_CASE(CONST_ADDRESS) 2726 NODE_NAME_CASE(REGISTER_LOAD) 2727 NODE_NAME_CASE(REGISTER_STORE) 2728 NODE_NAME_CASE(LOAD_CONSTANT) 2729 NODE_NAME_CASE(LOAD_INPUT) 2730 NODE_NAME_CASE(SAMPLE) 2731 NODE_NAME_CASE(SAMPLEB) 2732 NODE_NAME_CASE(SAMPLED) 2733 NODE_NAME_CASE(SAMPLEL) 2734 NODE_NAME_CASE(CVT_F32_UBYTE0) 2735 NODE_NAME_CASE(CVT_F32_UBYTE1) 2736 NODE_NAME_CASE(CVT_F32_UBYTE2) 2737 NODE_NAME_CASE(CVT_F32_UBYTE3) 2738 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2739 NODE_NAME_CASE(CONST_DATA_PTR) 2740 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2741 NODE_NAME_CASE(SENDMSG) 2742 NODE_NAME_CASE(INTERP_MOV) 2743 NODE_NAME_CASE(INTERP_P1) 2744 NODE_NAME_CASE(INTERP_P2) 2745 NODE_NAME_CASE(STORE_MSKOR) 2746 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2747 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2748 } 2749 return nullptr; 2750 } 2751 2752 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2753 DAGCombinerInfo &DCI, 2754 unsigned &RefinementSteps, 2755 bool &UseOneConstNR) const { 2756 SelectionDAG &DAG = DCI.DAG; 2757 EVT VT = Operand.getValueType(); 2758 2759 if (VT == MVT::f32) { 2760 RefinementSteps = 0; 2761 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2762 } 2763 2764 // TODO: There is also f64 rsq instruction, but the documentation is less 2765 // clear on its precision. 2766 2767 return SDValue(); 2768 } 2769 2770 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2771 DAGCombinerInfo &DCI, 2772 unsigned &RefinementSteps) const { 2773 SelectionDAG &DAG = DCI.DAG; 2774 EVT VT = Operand.getValueType(); 2775 2776 if (VT == MVT::f32) { 2777 // Reciprocal, < 1 ulp error. 2778 // 2779 // This reciprocal approximation converges to < 0.5 ulp error with one 2780 // newton rhapson performed with two fused multiple adds (FMAs). 2781 2782 RefinementSteps = 0; 2783 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2784 } 2785 2786 // TODO: There is also f64 rcp instruction, but the documentation is less 2787 // clear on its precision. 2788 2789 return SDValue(); 2790 } 2791 2792 static void computeKnownBitsForMinMax(const SDValue Op0, 2793 const SDValue Op1, 2794 APInt &KnownZero, 2795 APInt &KnownOne, 2796 const SelectionDAG &DAG, 2797 unsigned Depth) { 2798 APInt Op0Zero, Op0One; 2799 APInt Op1Zero, Op1One; 2800 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); 2801 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); 2802 2803 KnownZero = Op0Zero & Op1Zero; 2804 KnownOne = Op0One & Op1One; 2805 } 2806 2807 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2808 const SDValue Op, 2809 APInt &KnownZero, 2810 APInt &KnownOne, 2811 const SelectionDAG &DAG, 2812 unsigned Depth) const { 2813 2814 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2815 2816 APInt KnownZero2; 2817 APInt KnownOne2; 2818 unsigned Opc = Op.getOpcode(); 2819 2820 switch (Opc) { 2821 default: 2822 break; 2823 case ISD::INTRINSIC_WO_CHAIN: { 2824 // FIXME: The intrinsic should just use the node. 2825 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 2826 case AMDGPUIntrinsic::AMDGPU_imax: 2827 case AMDGPUIntrinsic::AMDGPU_umax: 2828 case AMDGPUIntrinsic::AMDGPU_imin: 2829 case AMDGPUIntrinsic::AMDGPU_umin: 2830 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), 2831 KnownZero, KnownOne, DAG, Depth); 2832 break; 2833 default: 2834 break; 2835 } 2836 2837 break; 2838 } 2839 case AMDGPUISD::CARRY: 2840 case AMDGPUISD::BORROW: { 2841 KnownZero = APInt::getHighBitsSet(32, 31); 2842 break; 2843 } 2844 2845 case AMDGPUISD::BFE_I32: 2846 case AMDGPUISD::BFE_U32: { 2847 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2848 if (!CWidth) 2849 return; 2850 2851 unsigned BitWidth = 32; 2852 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2853 2854 if (Opc == AMDGPUISD::BFE_U32) 2855 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2856 2857 break; 2858 } 2859 } 2860 } 2861 2862 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2863 SDValue Op, 2864 const SelectionDAG &DAG, 2865 unsigned Depth) const { 2866 switch (Op.getOpcode()) { 2867 case AMDGPUISD::BFE_I32: { 2868 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2869 if (!Width) 2870 return 1; 2871 2872 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2873 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2874 if (!Offset || !Offset->isNullValue()) 2875 return SignBits; 2876 2877 // TODO: Could probably figure something out with non-0 offsets. 2878 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2879 return std::max(SignBits, Op0SignBits); 2880 } 2881 2882 case AMDGPUISD::BFE_U32: { 2883 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2884 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2885 } 2886 2887 case AMDGPUISD::CARRY: 2888 case AMDGPUISD::BORROW: 2889 return 31; 2890 2891 default: 2892 return 1; 2893 } 2894 } 2895