1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 287 else 288 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 289 290 if (!Subtarget->hasFFBL()) 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 292 293 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 294 295 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 296 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 297 298 // We only really have 32-bit BFE instructions (and 16-bit on VI). 299 // 300 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 301 // effort to match them now. We want this to be false for i64 cases when the 302 // extraction isn't restricted to the upper or lower half. Ideally we would 303 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 304 // span the midpoint are probably relatively rare, so don't worry about them 305 // for now. 306 if (Subtarget->hasBFE()) 307 setHasExtractBitsInsn(true); 308 309 static const MVT::SimpleValueType VectorIntTypes[] = { 310 MVT::v2i32, MVT::v4i32 311 }; 312 313 for (MVT VT : VectorIntTypes) { 314 // Expand the following operations for the current type by default. 315 setOperationAction(ISD::ADD, VT, Expand); 316 setOperationAction(ISD::AND, VT, Expand); 317 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 318 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 319 setOperationAction(ISD::MUL, VT, Expand); 320 setOperationAction(ISD::OR, VT, Expand); 321 setOperationAction(ISD::SHL, VT, Expand); 322 setOperationAction(ISD::SRA, VT, Expand); 323 setOperationAction(ISD::SRL, VT, Expand); 324 setOperationAction(ISD::ROTL, VT, Expand); 325 setOperationAction(ISD::ROTR, VT, Expand); 326 setOperationAction(ISD::SUB, VT, Expand); 327 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 328 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 329 setOperationAction(ISD::SDIV, VT, Expand); 330 setOperationAction(ISD::UDIV, VT, Expand); 331 setOperationAction(ISD::SREM, VT, Expand); 332 setOperationAction(ISD::UREM, VT, Expand); 333 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 334 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 335 setOperationAction(ISD::SDIVREM, VT, Custom); 336 setOperationAction(ISD::UDIVREM, VT, Expand); 337 setOperationAction(ISD::ADDC, VT, Expand); 338 setOperationAction(ISD::SUBC, VT, Expand); 339 setOperationAction(ISD::ADDE, VT, Expand); 340 setOperationAction(ISD::SUBE, VT, Expand); 341 setOperationAction(ISD::SELECT, VT, Expand); 342 setOperationAction(ISD::VSELECT, VT, Expand); 343 setOperationAction(ISD::SELECT_CC, VT, Expand); 344 setOperationAction(ISD::XOR, VT, Expand); 345 setOperationAction(ISD::BSWAP, VT, Expand); 346 setOperationAction(ISD::CTPOP, VT, Expand); 347 setOperationAction(ISD::CTTZ, VT, Expand); 348 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 349 setOperationAction(ISD::CTLZ, VT, Expand); 350 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 351 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 352 } 353 354 static const MVT::SimpleValueType FloatVectorTypes[] = { 355 MVT::v2f32, MVT::v4f32 356 }; 357 358 for (MVT VT : FloatVectorTypes) { 359 setOperationAction(ISD::FABS, VT, Expand); 360 setOperationAction(ISD::FMINNUM, VT, Expand); 361 setOperationAction(ISD::FMAXNUM, VT, Expand); 362 setOperationAction(ISD::FADD, VT, Expand); 363 setOperationAction(ISD::FCEIL, VT, Expand); 364 setOperationAction(ISD::FCOS, VT, Expand); 365 setOperationAction(ISD::FDIV, VT, Expand); 366 setOperationAction(ISD::FEXP2, VT, Expand); 367 setOperationAction(ISD::FLOG2, VT, Expand); 368 setOperationAction(ISD::FREM, VT, Expand); 369 setOperationAction(ISD::FPOW, VT, Expand); 370 setOperationAction(ISD::FFLOOR, VT, Expand); 371 setOperationAction(ISD::FTRUNC, VT, Expand); 372 setOperationAction(ISD::FMUL, VT, Expand); 373 setOperationAction(ISD::FMA, VT, Expand); 374 setOperationAction(ISD::FRINT, VT, Expand); 375 setOperationAction(ISD::FNEARBYINT, VT, Expand); 376 setOperationAction(ISD::FSQRT, VT, Expand); 377 setOperationAction(ISD::FSIN, VT, Expand); 378 setOperationAction(ISD::FSUB, VT, Expand); 379 setOperationAction(ISD::FNEG, VT, Expand); 380 setOperationAction(ISD::SELECT, VT, Expand); 381 setOperationAction(ISD::VSELECT, VT, Expand); 382 setOperationAction(ISD::SELECT_CC, VT, Expand); 383 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 384 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 385 } 386 387 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 388 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 389 390 setTargetDAGCombine(ISD::AND); 391 setTargetDAGCombine(ISD::SHL); 392 setTargetDAGCombine(ISD::SRA); 393 setTargetDAGCombine(ISD::SRL); 394 setTargetDAGCombine(ISD::MUL); 395 setTargetDAGCombine(ISD::SELECT); 396 setTargetDAGCombine(ISD::SELECT_CC); 397 setTargetDAGCombine(ISD::STORE); 398 399 setTargetDAGCombine(ISD::FADD); 400 setTargetDAGCombine(ISD::FSUB); 401 402 setBooleanContents(ZeroOrNegativeOneBooleanContent); 403 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 404 405 setSchedulingPreference(Sched::RegPressure); 406 setJumpIsExpensive(true); 407 408 // SI at least has hardware support for floating point exceptions, but no way 409 // of using or handling them is implemented. They are also optional in OpenCL 410 // (Section 7.3) 411 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 412 413 setSelectIsExpensive(false); 414 PredictableSelectIsExpensive = false; 415 416 setFsqrtIsCheap(true); 417 418 // We want to find all load dependencies for long chains of stores to enable 419 // merging into very wide vectors. The problem is with vectors with > 4 420 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 421 // vectors are a legal type, even though we have to split the loads 422 // usually. When we can more precisely specify load legality per address 423 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 424 // smarter so that they can figure out what to do in 2 iterations without all 425 // N > 4 stores on the same chain. 426 GatherAllAliasesMaxDepth = 16; 427 428 // FIXME: Need to really handle these. 429 MaxStoresPerMemcpy = 4096; 430 MaxStoresPerMemmove = 4096; 431 MaxStoresPerMemset = 4096; 432 } 433 434 //===----------------------------------------------------------------------===// 435 // Target Information 436 //===----------------------------------------------------------------------===// 437 438 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 439 return MVT::i32; 440 } 441 442 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 443 return true; 444 } 445 446 // The backend supports 32 and 64 bit floating point immediates. 447 // FIXME: Why are we reporting vectors of FP immediates as legal? 448 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 449 EVT ScalarVT = VT.getScalarType(); 450 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 451 } 452 453 // We don't want to shrink f64 / f32 constants. 454 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 455 EVT ScalarVT = VT.getScalarType(); 456 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 457 } 458 459 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 460 ISD::LoadExtType, 461 EVT NewVT) const { 462 463 unsigned NewSize = NewVT.getStoreSizeInBits(); 464 465 // If we are reducing to a 32-bit load, this is always better. 466 if (NewSize == 32) 467 return true; 468 469 EVT OldVT = N->getValueType(0); 470 unsigned OldSize = OldVT.getStoreSizeInBits(); 471 472 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 473 // extloads, so doing one requires using a buffer_load. In cases where we 474 // still couldn't use a scalar load, using the wider load shouldn't really 475 // hurt anything. 476 477 // If the old size already had to be an extload, there's no harm in continuing 478 // to reduce the width. 479 return (OldSize < 32); 480 } 481 482 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 483 EVT CastTy) const { 484 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 485 return true; 486 487 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 488 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 489 490 return ((LScalarSize <= CastScalarSize) || 491 (CastScalarSize >= 32) || 492 (LScalarSize < 32)); 493 } 494 495 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 496 // profitable with the expansion for 64-bit since it's generally good to 497 // speculate things. 498 // FIXME: These should really have the size as a parameter. 499 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 500 return true; 501 } 502 503 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 504 return true; 505 } 506 507 //===---------------------------------------------------------------------===// 508 // Target Properties 509 //===---------------------------------------------------------------------===// 510 511 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 512 assert(VT.isFloatingPoint()); 513 return VT == MVT::f32 || VT == MVT::f64; 514 } 515 516 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 517 assert(VT.isFloatingPoint()); 518 return VT == MVT::f32 || VT == MVT::f64; 519 } 520 521 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 522 unsigned NumElem, 523 unsigned AS) const { 524 return true; 525 } 526 527 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 528 // There are few operations which truly have vector input operands. Any vector 529 // operation is going to involve operations on each component, and a 530 // build_vector will be a copy per element, so it always makes sense to use a 531 // build_vector input in place of the extracted element to avoid a copy into a 532 // super register. 533 // 534 // We should probably only do this if all users are extracts only, but this 535 // should be the common case. 536 return true; 537 } 538 539 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 540 // Truncate is just accessing a subregister. 541 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 542 } 543 544 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 545 // Truncate is just accessing a subregister. 546 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 547 (Dest->getPrimitiveSizeInBits() % 32 == 0); 548 } 549 550 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 551 unsigned SrcSize = Src->getScalarSizeInBits(); 552 unsigned DestSize = Dest->getScalarSizeInBits(); 553 554 return SrcSize == 32 && DestSize == 64; 555 } 556 557 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 558 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 559 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 560 // this will enable reducing 64-bit operations the 32-bit, which is always 561 // good. 562 return Src == MVT::i32 && Dest == MVT::i64; 563 } 564 565 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 566 return isZExtFree(Val.getValueType(), VT2); 567 } 568 569 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 570 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 571 // limited number of native 64-bit operations. Shrinking an operation to fit 572 // in a single 32-bit register should always be helpful. As currently used, 573 // this is much less general than the name suggests, and is only used in 574 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 575 // not profitable, and may actually be harmful. 576 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 577 } 578 579 //===---------------------------------------------------------------------===// 580 // TargetLowering Callbacks 581 //===---------------------------------------------------------------------===// 582 583 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 584 const SmallVectorImpl<ISD::InputArg> &Ins) const { 585 586 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 587 } 588 589 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 590 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 591 592 State.AnalyzeReturn(Outs, RetCC_SI); 593 } 594 595 SDValue AMDGPUTargetLowering::LowerReturn( 596 SDValue Chain, 597 CallingConv::ID CallConv, 598 bool isVarArg, 599 const SmallVectorImpl<ISD::OutputArg> &Outs, 600 const SmallVectorImpl<SDValue> &OutVals, 601 SDLoc DL, SelectionDAG &DAG) const { 602 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 603 } 604 605 //===---------------------------------------------------------------------===// 606 // Target specific lowering 607 //===---------------------------------------------------------------------===// 608 609 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 610 SmallVectorImpl<SDValue> &InVals) const { 611 SDValue Callee = CLI.Callee; 612 SelectionDAG &DAG = CLI.DAG; 613 614 const Function &Fn = *DAG.getMachineFunction().getFunction(); 615 616 StringRef FuncName("<unknown>"); 617 618 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 619 FuncName = G->getSymbol(); 620 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 621 FuncName = G->getGlobal()->getName(); 622 623 DiagnosticInfoUnsupported NoCalls( 624 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 625 DAG.getContext()->diagnose(NoCalls); 626 return SDValue(); 627 } 628 629 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 630 SelectionDAG &DAG) const { 631 const Function &Fn = *DAG.getMachineFunction().getFunction(); 632 633 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 634 SDLoc(Op).getDebugLoc()); 635 DAG.getContext()->diagnose(NoDynamicAlloca); 636 return SDValue(); 637 } 638 639 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 640 SelectionDAG &DAG) const { 641 switch (Op.getOpcode()) { 642 default: 643 Op.getNode()->dump(); 644 llvm_unreachable("Custom lowering code for this" 645 "instruction is not implemented yet!"); 646 break; 647 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 648 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 649 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 650 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 651 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 652 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 653 case ISD::FREM: return LowerFREM(Op, DAG); 654 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 655 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 656 case ISD::FRINT: return LowerFRINT(Op, DAG); 657 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 658 case ISD::FROUND: return LowerFROUND(Op, DAG); 659 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 660 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 661 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 662 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 663 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 664 case ISD::CTLZ: 665 case ISD::CTLZ_ZERO_UNDEF: 666 return LowerCTLZ(Op, DAG); 667 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 668 } 669 return Op; 670 } 671 672 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 673 SmallVectorImpl<SDValue> &Results, 674 SelectionDAG &DAG) const { 675 switch (N->getOpcode()) { 676 case ISD::SIGN_EXTEND_INREG: 677 // Different parts of legalization seem to interpret which type of 678 // sign_extend_inreg is the one to check for custom lowering. The extended 679 // from type is what really matters, but some places check for custom 680 // lowering of the result type. This results in trying to use 681 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 682 // nothing here and let the illegal result integer be handled normally. 683 return; 684 default: 685 return; 686 } 687 } 688 689 // FIXME: This implements accesses to initialized globals in the constant 690 // address space by copying them to private and accessing that. It does not 691 // properly handle illegal types or vectors. The private vector loads are not 692 // scalarized, and the illegal scalars hit an assertion. This technique will not 693 // work well with large initializers, and this should eventually be 694 // removed. Initialized globals should be placed into a data section that the 695 // runtime will load into a buffer before the kernel is executed. Uses of the 696 // global need to be replaced with a pointer loaded from an implicit kernel 697 // argument into this buffer holding the copy of the data, which will remove the 698 // need for any of this. 699 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 700 const GlobalValue *GV, 701 const SDValue &InitPtr, 702 SDValue Chain, 703 SelectionDAG &DAG) const { 704 const DataLayout &TD = DAG.getDataLayout(); 705 SDLoc DL(InitPtr); 706 Type *InitTy = Init->getType(); 707 708 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 709 EVT VT = EVT::getEVT(InitTy); 710 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 711 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 712 MachinePointerInfo(UndefValue::get(PtrTy)), false, 713 false, TD.getPrefTypeAlignment(InitTy)); 714 } 715 716 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 717 EVT VT = EVT::getEVT(CFP->getType()); 718 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 719 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 720 MachinePointerInfo(UndefValue::get(PtrTy)), false, 721 false, TD.getPrefTypeAlignment(CFP->getType())); 722 } 723 724 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 725 const StructLayout *SL = TD.getStructLayout(ST); 726 727 EVT PtrVT = InitPtr.getValueType(); 728 SmallVector<SDValue, 8> Chains; 729 730 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 731 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 732 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 733 734 Constant *Elt = Init->getAggregateElement(I); 735 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 736 } 737 738 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 739 } 740 741 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 742 EVT PtrVT = InitPtr.getValueType(); 743 744 unsigned NumElements; 745 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 746 NumElements = AT->getNumElements(); 747 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 748 NumElements = VT->getNumElements(); 749 else 750 llvm_unreachable("Unexpected type"); 751 752 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 753 SmallVector<SDValue, 8> Chains; 754 for (unsigned i = 0; i < NumElements; ++i) { 755 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 756 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 757 758 Constant *Elt = Init->getAggregateElement(i); 759 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 760 } 761 762 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 763 } 764 765 if (isa<UndefValue>(Init)) { 766 EVT VT = EVT::getEVT(InitTy); 767 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 768 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 769 MachinePointerInfo(UndefValue::get(PtrTy)), false, 770 false, TD.getPrefTypeAlignment(InitTy)); 771 } 772 773 Init->dump(); 774 llvm_unreachable("Unhandled constant initializer"); 775 } 776 777 static bool hasDefinedInitializer(const GlobalValue *GV) { 778 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 779 if (!GVar || !GVar->hasInitializer()) 780 return false; 781 782 return !isa<UndefValue>(GVar->getInitializer()); 783 } 784 785 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 786 SDValue Op, 787 SelectionDAG &DAG) const { 788 789 const DataLayout &DL = DAG.getDataLayout(); 790 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 791 const GlobalValue *GV = G->getGlobal(); 792 793 switch (G->getAddressSpace()) { 794 case AMDGPUAS::LOCAL_ADDRESS: { 795 // XXX: What does the value of G->getOffset() mean? 796 assert(G->getOffset() == 0 && 797 "Do not know what to do with an non-zero offset"); 798 799 // TODO: We could emit code to handle the initialization somewhere. 800 if (hasDefinedInitializer(GV)) 801 break; 802 803 unsigned Offset; 804 if (MFI->LocalMemoryObjects.count(GV) == 0) { 805 unsigned Align = GV->getAlignment(); 806 if (Align == 0) 807 Align = DL.getABITypeAlignment(GV->getValueType()); 808 809 /// TODO: We should sort these to minimize wasted space due to alignment 810 /// padding. Currently the padding is decided by the first encountered use 811 /// during lowering. 812 Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align); 813 MFI->LocalMemoryObjects[GV] = Offset; 814 MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType()); 815 } else { 816 Offset = MFI->LocalMemoryObjects[GV]; 817 } 818 819 return DAG.getConstant(Offset, SDLoc(Op), 820 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 821 } 822 case AMDGPUAS::CONSTANT_ADDRESS: { 823 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 824 Type *EltType = GV->getValueType(); 825 unsigned Size = DL.getTypeAllocSize(EltType); 826 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 827 828 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 829 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 830 831 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 832 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 833 834 const GlobalVariable *Var = cast<GlobalVariable>(GV); 835 if (!Var->hasInitializer()) { 836 // This has no use, but bugpoint will hit it. 837 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 838 } 839 840 const Constant *Init = Var->getInitializer(); 841 SmallVector<SDNode*, 8> WorkList; 842 843 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 844 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 845 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 846 continue; 847 WorkList.push_back(*I); 848 } 849 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 850 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 851 E = WorkList.end(); I != E; ++I) { 852 SmallVector<SDValue, 8> Ops; 853 Ops.push_back(Chain); 854 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 855 Ops.push_back((*I)->getOperand(i)); 856 } 857 DAG.UpdateNodeOperands(*I, Ops); 858 } 859 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 860 } 861 } 862 863 const Function &Fn = *DAG.getMachineFunction().getFunction(); 864 DiagnosticInfoUnsupported BadInit( 865 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 866 DAG.getContext()->diagnose(BadInit); 867 return SDValue(); 868 } 869 870 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 871 SelectionDAG &DAG) const { 872 SmallVector<SDValue, 8> Args; 873 874 for (const SDUse &U : Op->ops()) 875 DAG.ExtractVectorElements(U.get(), Args); 876 877 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 878 } 879 880 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 881 SelectionDAG &DAG) const { 882 883 SmallVector<SDValue, 8> Args; 884 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 885 EVT VT = Op.getValueType(); 886 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 887 VT.getVectorNumElements()); 888 889 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 890 } 891 892 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 893 SelectionDAG &DAG) const { 894 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 895 SDLoc DL(Op); 896 EVT VT = Op.getValueType(); 897 898 switch (IntrinsicID) { 899 default: return Op; 900 case AMDGPUIntrinsic::AMDGPU_clamp: 901 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 902 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 903 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 904 905 case Intrinsic::AMDGPU_ldexp: // Legacy name 906 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 907 Op.getOperand(2)); 908 909 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 910 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 911 Op.getOperand(1), 912 Op.getOperand(2), 913 Op.getOperand(3)); 914 915 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 916 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 917 Op.getOperand(1), 918 Op.getOperand(2), 919 Op.getOperand(3)); 920 921 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 922 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 923 924 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 925 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 926 } 927 } 928 929 /// \brief Generate Min/Max node 930 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 931 EVT VT, 932 SDValue LHS, 933 SDValue RHS, 934 SDValue True, 935 SDValue False, 936 SDValue CC, 937 DAGCombinerInfo &DCI) const { 938 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 939 return SDValue(); 940 941 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 942 return SDValue(); 943 944 SelectionDAG &DAG = DCI.DAG; 945 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 946 switch (CCOpcode) { 947 case ISD::SETOEQ: 948 case ISD::SETONE: 949 case ISD::SETUNE: 950 case ISD::SETNE: 951 case ISD::SETUEQ: 952 case ISD::SETEQ: 953 case ISD::SETFALSE: 954 case ISD::SETFALSE2: 955 case ISD::SETTRUE: 956 case ISD::SETTRUE2: 957 case ISD::SETUO: 958 case ISD::SETO: 959 break; 960 case ISD::SETULE: 961 case ISD::SETULT: { 962 if (LHS == True) 963 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 964 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 965 } 966 case ISD::SETOLE: 967 case ISD::SETOLT: 968 case ISD::SETLE: 969 case ISD::SETLT: { 970 // Ordered. Assume ordered for undefined. 971 972 // Only do this after legalization to avoid interfering with other combines 973 // which might occur. 974 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 975 !DCI.isCalledByLegalizer()) 976 return SDValue(); 977 978 // We need to permute the operands to get the correct NaN behavior. The 979 // selected operand is the second one based on the failing compare with NaN, 980 // so permute it based on the compare type the hardware uses. 981 if (LHS == True) 982 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 983 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 984 } 985 case ISD::SETUGE: 986 case ISD::SETUGT: { 987 if (LHS == True) 988 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 989 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 990 } 991 case ISD::SETGT: 992 case ISD::SETGE: 993 case ISD::SETOGE: 994 case ISD::SETOGT: { 995 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 996 !DCI.isCalledByLegalizer()) 997 return SDValue(); 998 999 if (LHS == True) 1000 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1001 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1002 } 1003 case ISD::SETCC_INVALID: 1004 llvm_unreachable("Invalid setcc condcode!"); 1005 } 1006 return SDValue(); 1007 } 1008 1009 std::pair<SDValue, SDValue> 1010 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1011 SDLoc SL(Op); 1012 1013 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1014 1015 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1016 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1017 1018 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1019 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1020 1021 return std::make_pair(Lo, Hi); 1022 } 1023 1024 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1025 SDLoc SL(Op); 1026 1027 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1028 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1029 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1030 } 1031 1032 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1033 SDLoc SL(Op); 1034 1035 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1036 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1037 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1038 } 1039 1040 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1041 SelectionDAG &DAG) const { 1042 LoadSDNode *Load = cast<LoadSDNode>(Op); 1043 EVT MemVT = Load->getMemoryVT(); 1044 EVT MemEltVT = MemVT.getVectorElementType(); 1045 1046 EVT LoadVT = Op.getValueType(); 1047 EVT EltVT = LoadVT.getVectorElementType(); 1048 EVT PtrVT = Load->getBasePtr().getValueType(); 1049 1050 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1051 SmallVector<SDValue, 8> Loads; 1052 SmallVector<SDValue, 8> Chains; 1053 1054 SDLoc SL(Op); 1055 unsigned BaseAlign = Load->getAlignment(); 1056 unsigned MemEltSize = MemEltVT.getStoreSize(); 1057 1058 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1059 1060 for (unsigned i = 0; i < NumElts; ++i) { 1061 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1062 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1063 1064 SDValue NewLoad 1065 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1066 Load->getChain(), Ptr, 1067 SrcValue.getWithOffset(i * MemEltSize), 1068 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1069 Load->isInvariant(), MinAlign(BaseAlign, i * MemEltSize)); 1070 Loads.push_back(NewLoad.getValue(0)); 1071 Chains.push_back(NewLoad.getValue(1)); 1072 } 1073 1074 SDValue Ops[] = { 1075 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1076 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1077 }; 1078 1079 return DAG.getMergeValues(Ops, SL); 1080 } 1081 1082 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1083 SelectionDAG &DAG) const { 1084 EVT VT = Op.getValueType(); 1085 1086 // If this is a 2 element vector, we really want to scalarize and not create 1087 // weird 1 element vectors. 1088 if (VT.getVectorNumElements() == 2) 1089 return ScalarizeVectorLoad(Op, DAG); 1090 1091 LoadSDNode *Load = cast<LoadSDNode>(Op); 1092 SDValue BasePtr = Load->getBasePtr(); 1093 EVT PtrVT = BasePtr.getValueType(); 1094 EVT MemVT = Load->getMemoryVT(); 1095 SDLoc SL(Op); 1096 1097 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1098 1099 EVT LoVT, HiVT; 1100 EVT LoMemVT, HiMemVT; 1101 SDValue Lo, Hi; 1102 1103 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1104 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1105 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1106 1107 unsigned Size = LoMemVT.getStoreSize(); 1108 unsigned BaseAlign = Load->getAlignment(); 1109 unsigned HiAlign = MinAlign(BaseAlign, Size); 1110 1111 SDValue LoLoad 1112 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1113 Load->getChain(), BasePtr, 1114 SrcValue, 1115 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1116 Load->isInvariant(), BaseAlign); 1117 1118 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1119 DAG.getConstant(Size, SL, PtrVT)); 1120 1121 SDValue HiLoad 1122 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1123 Load->getChain(), HiPtr, 1124 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1125 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1126 Load->isInvariant(), HiAlign); 1127 1128 SDValue Ops[] = { 1129 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1130 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1131 LoLoad.getValue(1), HiLoad.getValue(1)) 1132 }; 1133 1134 return DAG.getMergeValues(Ops, SL); 1135 } 1136 1137 // FIXME: This isn't doing anything for SI. This should be used in a target 1138 // combine during type legalization. 1139 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1140 SelectionDAG &DAG) const { 1141 StoreSDNode *Store = cast<StoreSDNode>(Op); 1142 EVT MemVT = Store->getMemoryVT(); 1143 unsigned MemBits = MemVT.getSizeInBits(); 1144 1145 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1146 // truncating store into an i32 store. 1147 // XXX: We could also handle optimize other vector bitwidths. 1148 if (!MemVT.isVector() || MemBits > 32) { 1149 return SDValue(); 1150 } 1151 1152 SDLoc DL(Op); 1153 SDValue Value = Store->getValue(); 1154 EVT VT = Value.getValueType(); 1155 EVT ElemVT = VT.getVectorElementType(); 1156 SDValue Ptr = Store->getBasePtr(); 1157 EVT MemEltVT = MemVT.getVectorElementType(); 1158 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1159 unsigned MemNumElements = MemVT.getVectorNumElements(); 1160 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1161 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1162 1163 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1164 1165 SDValue PackedValue; 1166 for (unsigned i = 0; i < MemNumElements; ++i) { 1167 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1168 DAG.getConstant(i, DL, MVT::i32)); 1169 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1170 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1171 1172 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1173 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1174 1175 if (i == 0) { 1176 PackedValue = Elt; 1177 } else { 1178 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1179 } 1180 } 1181 1182 if (PackedSize < 32) { 1183 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1184 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1185 Store->getMemOperand()->getPointerInfo(), 1186 PackedVT, 1187 Store->isNonTemporal(), Store->isVolatile(), 1188 Store->getAlignment()); 1189 } 1190 1191 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1192 Store->getMemOperand()->getPointerInfo(), 1193 Store->isVolatile(), Store->isNonTemporal(), 1194 Store->getAlignment()); 1195 } 1196 1197 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1198 SelectionDAG &DAG) const { 1199 StoreSDNode *Store = cast<StoreSDNode>(Op); 1200 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1201 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1202 EVT PtrVT = Store->getBasePtr().getValueType(); 1203 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1204 SDLoc SL(Op); 1205 1206 SmallVector<SDValue, 8> Chains; 1207 1208 unsigned BaseAlign = Store->getAlignment(); 1209 unsigned EltSize = MemEltVT.getStoreSize(); 1210 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1211 1212 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1213 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1214 Store->getValue(), 1215 DAG.getConstant(i, SL, MVT::i32)); 1216 1217 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1218 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1219 SDValue NewStore = 1220 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1221 SrcValue.getWithOffset(i * EltSize), 1222 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1223 MinAlign(BaseAlign, i * EltSize)); 1224 Chains.push_back(NewStore); 1225 } 1226 1227 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1228 } 1229 1230 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1231 SelectionDAG &DAG) const { 1232 StoreSDNode *Store = cast<StoreSDNode>(Op); 1233 SDValue Val = Store->getValue(); 1234 EVT VT = Val.getValueType(); 1235 1236 // If this is a 2 element vector, we really want to scalarize and not create 1237 // weird 1 element vectors. 1238 if (VT.getVectorNumElements() == 2) 1239 return ScalarizeVectorStore(Op, DAG); 1240 1241 EVT MemVT = Store->getMemoryVT(); 1242 SDValue Chain = Store->getChain(); 1243 SDValue BasePtr = Store->getBasePtr(); 1244 SDLoc SL(Op); 1245 1246 EVT LoVT, HiVT; 1247 EVT LoMemVT, HiMemVT; 1248 SDValue Lo, Hi; 1249 1250 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1251 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1252 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1253 1254 EVT PtrVT = BasePtr.getValueType(); 1255 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1256 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1257 PtrVT)); 1258 1259 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1260 unsigned BaseAlign = Store->getAlignment(); 1261 unsigned Size = LoMemVT.getStoreSize(); 1262 unsigned HiAlign = MinAlign(BaseAlign, Size); 1263 1264 SDValue LoStore 1265 = DAG.getTruncStore(Chain, SL, Lo, 1266 BasePtr, 1267 SrcValue, 1268 LoMemVT, 1269 Store->isNonTemporal(), 1270 Store->isVolatile(), 1271 BaseAlign); 1272 SDValue HiStore 1273 = DAG.getTruncStore(Chain, SL, Hi, 1274 HiPtr, 1275 SrcValue.getWithOffset(Size), 1276 HiMemVT, 1277 Store->isNonTemporal(), 1278 Store->isVolatile(), 1279 HiAlign); 1280 1281 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1282 } 1283 1284 // This is a shortcut for integer division because we have fast i32<->f32 1285 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1286 // float is enough to accurately represent up to a 24-bit integer. 1287 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1288 SDLoc DL(Op); 1289 EVT VT = Op.getValueType(); 1290 SDValue LHS = Op.getOperand(0); 1291 SDValue RHS = Op.getOperand(1); 1292 MVT IntVT = MVT::i32; 1293 MVT FltVT = MVT::f32; 1294 1295 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1296 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1297 1298 if (VT.isVector()) { 1299 unsigned NElts = VT.getVectorNumElements(); 1300 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1301 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1302 } 1303 1304 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1305 1306 SDValue jq = DAG.getConstant(1, DL, IntVT); 1307 1308 if (sign) { 1309 // char|short jq = ia ^ ib; 1310 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1311 1312 // jq = jq >> (bitsize - 2) 1313 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1314 DAG.getConstant(BitSize - 2, DL, VT)); 1315 1316 // jq = jq | 0x1 1317 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1318 1319 // jq = (int)jq 1320 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1321 } 1322 1323 // int ia = (int)LHS; 1324 SDValue ia = sign ? 1325 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1326 1327 // int ib, (int)RHS; 1328 SDValue ib = sign ? 1329 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1330 1331 // float fa = (float)ia; 1332 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1333 1334 // float fb = (float)ib; 1335 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1336 1337 // TODO: Should this propagate fast-math-flags? 1338 // float fq = native_divide(fa, fb); 1339 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1340 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1341 1342 // fq = trunc(fq); 1343 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1344 1345 // float fqneg = -fq; 1346 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1347 1348 // float fr = mad(fqneg, fb, fa); 1349 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1350 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1351 1352 // int iq = (int)fq; 1353 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1354 1355 // fr = fabs(fr); 1356 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1357 1358 // fb = fabs(fb); 1359 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1360 1361 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1362 1363 // int cv = fr >= fb; 1364 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1365 1366 // jq = (cv ? jq : 0); 1367 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1368 1369 // dst = trunc/extend to legal type 1370 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1371 1372 // dst = iq + jq; 1373 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1374 1375 // Rem needs compensation, it's easier to recompute it 1376 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1377 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1378 1379 SDValue Res[2] = { 1380 Div, 1381 Rem 1382 }; 1383 return DAG.getMergeValues(Res, DL); 1384 } 1385 1386 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1387 SelectionDAG &DAG, 1388 SmallVectorImpl<SDValue> &Results) const { 1389 assert(Op.getValueType() == MVT::i64); 1390 1391 SDLoc DL(Op); 1392 EVT VT = Op.getValueType(); 1393 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1394 1395 SDValue one = DAG.getConstant(1, DL, HalfVT); 1396 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1397 1398 //HiLo split 1399 SDValue LHS = Op.getOperand(0); 1400 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1401 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1402 1403 SDValue RHS = Op.getOperand(1); 1404 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1405 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1406 1407 if (VT == MVT::i64 && 1408 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1409 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1410 1411 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1412 LHS_Lo, RHS_Lo); 1413 1414 SDValue DIV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, 1415 Res.getValue(0), zero); 1416 SDValue REM = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, 1417 Res.getValue(1), zero); 1418 1419 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1420 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1421 return; 1422 } 1423 1424 // Get Speculative values 1425 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1426 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1427 1428 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1429 SDValue REM = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, REM_Lo, zero); 1430 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1431 1432 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1433 SDValue DIV_Lo = zero; 1434 1435 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1436 1437 for (unsigned i = 0; i < halfBitWidth; ++i) { 1438 const unsigned bitPos = halfBitWidth - i - 1; 1439 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1440 // Get value of high bit 1441 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1442 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1443 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1444 1445 // Shift 1446 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1447 // Add LHS high bit 1448 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1449 1450 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1451 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1452 1453 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1454 1455 // Update REM 1456 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1457 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1458 } 1459 1460 SDValue DIV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, DIV_Lo, DIV_Hi); 1461 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1462 Results.push_back(DIV); 1463 Results.push_back(REM); 1464 } 1465 1466 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1467 SelectionDAG &DAG) const { 1468 SDLoc DL(Op); 1469 EVT VT = Op.getValueType(); 1470 1471 if (VT == MVT::i64) { 1472 SmallVector<SDValue, 2> Results; 1473 LowerUDIVREM64(Op, DAG, Results); 1474 return DAG.getMergeValues(Results, DL); 1475 } 1476 1477 SDValue Num = Op.getOperand(0); 1478 SDValue Den = Op.getOperand(1); 1479 1480 if (VT == MVT::i32) { 1481 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1482 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1483 // TODO: We technically could do this for i64, but shouldn't that just be 1484 // handled by something generally reducing 64-bit division on 32-bit 1485 // values to 32-bit? 1486 return LowerDIVREM24(Op, DAG, false); 1487 } 1488 } 1489 1490 // RCP = URECIP(Den) = 2^32 / Den + e 1491 // e is rounding error. 1492 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1493 1494 // RCP_LO = mul(RCP, Den) */ 1495 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1496 1497 // RCP_HI = mulhu (RCP, Den) */ 1498 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1499 1500 // NEG_RCP_LO = -RCP_LO 1501 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1502 RCP_LO); 1503 1504 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1505 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1506 NEG_RCP_LO, RCP_LO, 1507 ISD::SETEQ); 1508 // Calculate the rounding error from the URECIP instruction 1509 // E = mulhu(ABS_RCP_LO, RCP) 1510 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1511 1512 // RCP_A_E = RCP + E 1513 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1514 1515 // RCP_S_E = RCP - E 1516 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1517 1518 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1519 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1520 RCP_A_E, RCP_S_E, 1521 ISD::SETEQ); 1522 // Quotient = mulhu(Tmp0, Num) 1523 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1524 1525 // Num_S_Remainder = Quotient * Den 1526 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1527 1528 // Remainder = Num - Num_S_Remainder 1529 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1530 1531 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1532 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1533 DAG.getConstant(-1, DL, VT), 1534 DAG.getConstant(0, DL, VT), 1535 ISD::SETUGE); 1536 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1537 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1538 Num_S_Remainder, 1539 DAG.getConstant(-1, DL, VT), 1540 DAG.getConstant(0, DL, VT), 1541 ISD::SETUGE); 1542 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1543 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1544 Remainder_GE_Zero); 1545 1546 // Calculate Division result: 1547 1548 // Quotient_A_One = Quotient + 1 1549 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1550 DAG.getConstant(1, DL, VT)); 1551 1552 // Quotient_S_One = Quotient - 1 1553 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1554 DAG.getConstant(1, DL, VT)); 1555 1556 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1557 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1558 Quotient, Quotient_A_One, ISD::SETEQ); 1559 1560 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1561 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1562 Quotient_S_One, Div, ISD::SETEQ); 1563 1564 // Calculate Rem result: 1565 1566 // Remainder_S_Den = Remainder - Den 1567 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1568 1569 // Remainder_A_Den = Remainder + Den 1570 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1571 1572 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1573 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1574 Remainder, Remainder_S_Den, ISD::SETEQ); 1575 1576 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1577 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1578 Remainder_A_Den, Rem, ISD::SETEQ); 1579 SDValue Ops[2] = { 1580 Div, 1581 Rem 1582 }; 1583 return DAG.getMergeValues(Ops, DL); 1584 } 1585 1586 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1587 SelectionDAG &DAG) const { 1588 SDLoc DL(Op); 1589 EVT VT = Op.getValueType(); 1590 1591 SDValue LHS = Op.getOperand(0); 1592 SDValue RHS = Op.getOperand(1); 1593 1594 SDValue Zero = DAG.getConstant(0, DL, VT); 1595 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1596 1597 if (VT == MVT::i32 && 1598 DAG.ComputeNumSignBits(LHS) > 8 && 1599 DAG.ComputeNumSignBits(RHS) > 8) { 1600 return LowerDIVREM24(Op, DAG, true); 1601 } 1602 if (VT == MVT::i64 && 1603 DAG.ComputeNumSignBits(LHS) > 32 && 1604 DAG.ComputeNumSignBits(RHS) > 32) { 1605 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1606 1607 //HiLo split 1608 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1609 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1610 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1611 LHS_Lo, RHS_Lo); 1612 SDValue Res[2] = { 1613 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1614 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1615 }; 1616 return DAG.getMergeValues(Res, DL); 1617 } 1618 1619 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1620 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1621 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1622 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1623 1624 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1625 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1626 1627 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1628 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1629 1630 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1631 SDValue Rem = Div.getValue(1); 1632 1633 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1634 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1635 1636 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1637 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1638 1639 SDValue Res[2] = { 1640 Div, 1641 Rem 1642 }; 1643 return DAG.getMergeValues(Res, DL); 1644 } 1645 1646 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1647 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1648 SDLoc SL(Op); 1649 EVT VT = Op.getValueType(); 1650 SDValue X = Op.getOperand(0); 1651 SDValue Y = Op.getOperand(1); 1652 1653 // TODO: Should this propagate fast-math-flags? 1654 1655 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1656 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1657 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1658 1659 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1660 } 1661 1662 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1663 SDLoc SL(Op); 1664 SDValue Src = Op.getOperand(0); 1665 1666 // result = trunc(src) 1667 // if (src > 0.0 && src != result) 1668 // result += 1.0 1669 1670 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1671 1672 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1673 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1674 1675 EVT SetCCVT = 1676 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1677 1678 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1679 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1680 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1681 1682 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1683 // TODO: Should this propagate fast-math-flags? 1684 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1685 } 1686 1687 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1688 const unsigned FractBits = 52; 1689 const unsigned ExpBits = 11; 1690 1691 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1692 Hi, 1693 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1694 DAG.getConstant(ExpBits, SL, MVT::i32)); 1695 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1696 DAG.getConstant(1023, SL, MVT::i32)); 1697 1698 return Exp; 1699 } 1700 1701 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1702 SDLoc SL(Op); 1703 SDValue Src = Op.getOperand(0); 1704 1705 assert(Op.getValueType() == MVT::f64); 1706 1707 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1708 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1709 1710 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1711 1712 // Extract the upper half, since this is where we will find the sign and 1713 // exponent. 1714 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1715 1716 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1717 1718 const unsigned FractBits = 52; 1719 1720 // Extract the sign bit. 1721 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1722 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1723 1724 // Extend back to to 64-bits. 1725 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1726 Zero, SignBit); 1727 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1728 1729 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1730 const SDValue FractMask 1731 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1732 1733 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1734 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1735 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1736 1737 EVT SetCCVT = 1738 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1739 1740 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1741 1742 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1743 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1744 1745 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1746 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1747 1748 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1749 } 1750 1751 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1752 SDLoc SL(Op); 1753 SDValue Src = Op.getOperand(0); 1754 1755 assert(Op.getValueType() == MVT::f64); 1756 1757 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1758 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1759 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1760 1761 // TODO: Should this propagate fast-math-flags? 1762 1763 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1764 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1765 1766 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1767 1768 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1769 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1770 1771 EVT SetCCVT = 1772 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1773 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1774 1775 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1776 } 1777 1778 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1779 // FNEARBYINT and FRINT are the same, except in their handling of FP 1780 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1781 // rint, so just treat them as equivalent. 1782 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1783 } 1784 1785 // XXX - May require not supporting f32 denormals? 1786 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1787 SDLoc SL(Op); 1788 SDValue X = Op.getOperand(0); 1789 1790 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1791 1792 // TODO: Should this propagate fast-math-flags? 1793 1794 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1795 1796 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1797 1798 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1799 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1800 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1801 1802 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1803 1804 EVT SetCCVT = 1805 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1806 1807 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1808 1809 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1810 1811 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1812 } 1813 1814 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1815 SDLoc SL(Op); 1816 SDValue X = Op.getOperand(0); 1817 1818 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1819 1820 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1821 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1822 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1823 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1824 EVT SetCCVT = 1825 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1826 1827 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1828 1829 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1830 1831 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1832 1833 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1834 MVT::i64); 1835 1836 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1837 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1838 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1839 MVT::i64), 1840 Exp); 1841 1842 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1843 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1844 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1845 ISD::SETNE); 1846 1847 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1848 D, DAG.getConstant(0, SL, MVT::i64)); 1849 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1850 1851 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1852 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1853 1854 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1855 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1856 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1857 1858 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1859 ExpEqNegOne, 1860 DAG.getConstantFP(1.0, SL, MVT::f64), 1861 DAG.getConstantFP(0.0, SL, MVT::f64)); 1862 1863 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1864 1865 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1866 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1867 1868 return K; 1869 } 1870 1871 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1872 EVT VT = Op.getValueType(); 1873 1874 if (VT == MVT::f32) 1875 return LowerFROUND32(Op, DAG); 1876 1877 if (VT == MVT::f64) 1878 return LowerFROUND64(Op, DAG); 1879 1880 llvm_unreachable("unhandled type"); 1881 } 1882 1883 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1884 SDLoc SL(Op); 1885 SDValue Src = Op.getOperand(0); 1886 1887 // result = trunc(src); 1888 // if (src < 0.0 && src != result) 1889 // result += -1.0. 1890 1891 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1892 1893 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1894 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1895 1896 EVT SetCCVT = 1897 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1898 1899 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1900 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1901 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1902 1903 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1904 // TODO: Should this propagate fast-math-flags? 1905 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1906 } 1907 1908 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1909 SDLoc SL(Op); 1910 SDValue Src = Op.getOperand(0); 1911 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1912 1913 if (ZeroUndef && Src.getValueType() == MVT::i32) 1914 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1915 1916 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1917 1918 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1919 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1920 1921 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1922 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1923 1924 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1925 *DAG.getContext(), MVT::i32); 1926 1927 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1928 1929 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1930 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1931 1932 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1933 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1934 1935 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1936 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1937 1938 if (!ZeroUndef) { 1939 // Test if the full 64-bit input is zero. 1940 1941 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1942 // which we probably don't want. 1943 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1944 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1945 1946 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1947 // with the same cycles, otherwise it is slower. 1948 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1949 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1950 1951 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1952 1953 // The instruction returns -1 for 0 input, but the defined intrinsic 1954 // behavior is to return the number of bits. 1955 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1956 SrcIsZero, Bits32, NewCtlz); 1957 } 1958 1959 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1960 } 1961 1962 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1963 bool Signed) const { 1964 // Unsigned 1965 // cul2f(ulong u) 1966 //{ 1967 // uint lz = clz(u); 1968 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1969 // u = (u << lz) & 0x7fffffffffffffffUL; 1970 // ulong t = u & 0xffffffffffUL; 1971 // uint v = (e << 23) | (uint)(u >> 40); 1972 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1973 // return as_float(v + r); 1974 //} 1975 // Signed 1976 // cl2f(long l) 1977 //{ 1978 // long s = l >> 63; 1979 // float r = cul2f((l + s) ^ s); 1980 // return s ? -r : r; 1981 //} 1982 1983 SDLoc SL(Op); 1984 SDValue Src = Op.getOperand(0); 1985 SDValue L = Src; 1986 1987 SDValue S; 1988 if (Signed) { 1989 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1990 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1991 1992 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1993 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1994 } 1995 1996 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1997 *DAG.getContext(), MVT::f32); 1998 1999 2000 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2001 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2002 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2003 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2004 2005 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2006 SDValue E = DAG.getSelect(SL, MVT::i32, 2007 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2008 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2009 ZeroI32); 2010 2011 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2012 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2013 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2014 2015 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2016 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2017 2018 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2019 U, DAG.getConstant(40, SL, MVT::i64)); 2020 2021 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2022 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2023 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2024 2025 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2026 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2027 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2028 2029 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2030 2031 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2032 2033 SDValue R = DAG.getSelect(SL, MVT::i32, 2034 RCmp, 2035 One, 2036 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2037 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2038 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2039 2040 if (!Signed) 2041 return R; 2042 2043 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2044 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2045 } 2046 2047 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2048 bool Signed) const { 2049 SDLoc SL(Op); 2050 SDValue Src = Op.getOperand(0); 2051 2052 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2053 2054 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2055 DAG.getConstant(0, SL, MVT::i32)); 2056 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2057 DAG.getConstant(1, SL, MVT::i32)); 2058 2059 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2060 SL, MVT::f64, Hi); 2061 2062 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2063 2064 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2065 DAG.getConstant(32, SL, MVT::i32)); 2066 // TODO: Should this propagate fast-math-flags? 2067 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2068 } 2069 2070 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2071 SelectionDAG &DAG) const { 2072 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2073 "operation should be legal"); 2074 2075 EVT DestVT = Op.getValueType(); 2076 if (DestVT == MVT::f64) 2077 return LowerINT_TO_FP64(Op, DAG, false); 2078 2079 if (DestVT == MVT::f32) 2080 return LowerINT_TO_FP32(Op, DAG, false); 2081 2082 return SDValue(); 2083 } 2084 2085 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2086 SelectionDAG &DAG) const { 2087 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2088 "operation should be legal"); 2089 2090 EVT DestVT = Op.getValueType(); 2091 if (DestVT == MVT::f32) 2092 return LowerINT_TO_FP32(Op, DAG, true); 2093 2094 if (DestVT == MVT::f64) 2095 return LowerINT_TO_FP64(Op, DAG, true); 2096 2097 return SDValue(); 2098 } 2099 2100 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2101 bool Signed) const { 2102 SDLoc SL(Op); 2103 2104 SDValue Src = Op.getOperand(0); 2105 2106 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2107 2108 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2109 MVT::f64); 2110 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2111 MVT::f64); 2112 // TODO: Should this propagate fast-math-flags? 2113 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2114 2115 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2116 2117 2118 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2119 2120 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2121 MVT::i32, FloorMul); 2122 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2123 2124 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2125 2126 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2127 } 2128 2129 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2130 SelectionDAG &DAG) const { 2131 SDValue Src = Op.getOperand(0); 2132 2133 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2134 return LowerFP64_TO_INT(Op, DAG, true); 2135 2136 return SDValue(); 2137 } 2138 2139 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2140 SelectionDAG &DAG) const { 2141 SDValue Src = Op.getOperand(0); 2142 2143 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2144 return LowerFP64_TO_INT(Op, DAG, false); 2145 2146 return SDValue(); 2147 } 2148 2149 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2150 SelectionDAG &DAG) const { 2151 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2152 MVT VT = Op.getSimpleValueType(); 2153 MVT ScalarVT = VT.getScalarType(); 2154 2155 if (!VT.isVector()) 2156 return SDValue(); 2157 2158 SDValue Src = Op.getOperand(0); 2159 SDLoc DL(Op); 2160 2161 // TODO: Don't scalarize on Evergreen? 2162 unsigned NElts = VT.getVectorNumElements(); 2163 SmallVector<SDValue, 8> Args; 2164 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2165 2166 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2167 for (unsigned I = 0; I < NElts; ++I) 2168 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2169 2170 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // Custom DAG optimizations 2175 //===----------------------------------------------------------------------===// 2176 2177 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2178 APInt KnownZero, KnownOne; 2179 EVT VT = Op.getValueType(); 2180 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2181 2182 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2183 } 2184 2185 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2186 EVT VT = Op.getValueType(); 2187 2188 // In order for this to be a signed 24-bit value, bit 23, must 2189 // be a sign bit. 2190 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2191 // as unsigned 24-bit values. 2192 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2193 } 2194 2195 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2196 2197 SelectionDAG &DAG = DCI.DAG; 2198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2199 EVT VT = Op.getValueType(); 2200 2201 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2202 APInt KnownZero, KnownOne; 2203 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2204 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2205 DCI.CommitTargetLoweringOpt(TLO); 2206 } 2207 2208 template <typename IntTy> 2209 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2210 uint32_t Offset, uint32_t Width, SDLoc DL) { 2211 if (Width + Offset < 32) { 2212 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2213 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2214 return DAG.getConstant(Result, DL, MVT::i32); 2215 } 2216 2217 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2218 } 2219 2220 static bool usesAllNormalStores(SDNode *LoadVal) { 2221 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2222 if (!ISD::isNormalStore(*I)) 2223 return false; 2224 } 2225 2226 return true; 2227 } 2228 2229 // If we have a copy of an illegal type, replace it with a load / store of an 2230 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2231 // instructions emitted when handling extloads and truncstores. Ideally we could 2232 // recognize the pack / unpack pattern to eliminate it. 2233 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2234 DAGCombinerInfo &DCI) const { 2235 if (!DCI.isBeforeLegalize()) 2236 return SDValue(); 2237 2238 StoreSDNode *SN = cast<StoreSDNode>(N); 2239 SDValue Value = SN->getValue(); 2240 EVT VT = Value.getValueType(); 2241 2242 if (isTypeLegal(VT) || SN->isVolatile() || 2243 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2244 return SDValue(); 2245 2246 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2247 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2248 return SDValue(); 2249 2250 EVT MemVT = LoadVal->getMemoryVT(); 2251 2252 SDLoc SL(N); 2253 SelectionDAG &DAG = DCI.DAG; 2254 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2255 2256 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2257 LoadVT, SL, 2258 LoadVal->getChain(), 2259 LoadVal->getBasePtr(), 2260 LoadVal->getOffset(), 2261 LoadVT, 2262 LoadVal->getMemOperand()); 2263 2264 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2265 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2266 2267 return DAG.getStore(SN->getChain(), SL, NewLoad, 2268 SN->getBasePtr(), SN->getMemOperand()); 2269 } 2270 2271 // TODO: Should repeat for other bit ops. 2272 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2273 DAGCombinerInfo &DCI) const { 2274 if (N->getValueType(0) != MVT::i64) 2275 return SDValue(); 2276 2277 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2278 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2279 // combine opportunities since most 64-bit operations are decomposed this way. 2280 // TODO: We won't want this for SALU especially if it is an inline immediate. 2281 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2282 if (!RHS) 2283 return SDValue(); 2284 2285 uint64_t Val = RHS->getZExtValue(); 2286 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2287 // If either half of the constant is 0, this is really a 32-bit and, so 2288 // split it. If we can re-use the full materialized constant, keep it. 2289 return SDValue(); 2290 } 2291 2292 SDLoc SL(N); 2293 SelectionDAG &DAG = DCI.DAG; 2294 2295 SDValue Lo, Hi; 2296 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2297 2298 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2299 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2300 2301 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2302 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2303 2304 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LoAnd, HiAnd); 2305 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2306 } 2307 2308 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2309 DAGCombinerInfo &DCI) const { 2310 if (N->getValueType(0) != MVT::i64) 2311 return SDValue(); 2312 2313 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2314 2315 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2316 // common case, splitting this into a move and a 32-bit shift is faster and 2317 // the same code size. 2318 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2319 if (!RHS) 2320 return SDValue(); 2321 2322 unsigned RHSVal = RHS->getZExtValue(); 2323 if (RHSVal < 32) 2324 return SDValue(); 2325 2326 SDValue LHS = N->getOperand(0); 2327 2328 SDLoc SL(N); 2329 SelectionDAG &DAG = DCI.DAG; 2330 2331 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2332 2333 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2334 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2335 2336 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2337 2338 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Zero, NewShift); 2339 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2340 } 2341 2342 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2343 DAGCombinerInfo &DCI) const { 2344 if (N->getValueType(0) != MVT::i64) 2345 return SDValue(); 2346 2347 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2348 if (!RHS) 2349 return SDValue(); 2350 2351 SelectionDAG &DAG = DCI.DAG; 2352 SDLoc SL(N); 2353 unsigned RHSVal = RHS->getZExtValue(); 2354 2355 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2356 if (RHSVal == 32) { 2357 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2358 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2359 DAG.getConstant(31, SL, MVT::i32)); 2360 2361 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2362 Hi, NewShift); 2363 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2364 } 2365 2366 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2367 if (RHSVal == 63) { 2368 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2369 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2370 DAG.getConstant(31, SL, MVT::i32)); 2371 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2372 NewShift, NewShift); 2373 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2374 } 2375 2376 return SDValue(); 2377 } 2378 2379 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2380 DAGCombinerInfo &DCI) const { 2381 if (N->getValueType(0) != MVT::i64) 2382 return SDValue(); 2383 2384 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2385 if (!RHS) 2386 return SDValue(); 2387 2388 unsigned ShiftAmt = RHS->getZExtValue(); 2389 if (ShiftAmt < 32) 2390 return SDValue(); 2391 2392 // srl i64:x, C for C >= 32 2393 // => 2394 // build_pair (srl hi_32(x), C - 32), 0 2395 2396 SelectionDAG &DAG = DCI.DAG; 2397 SDLoc SL(N); 2398 2399 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2400 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2401 2402 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2403 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2404 VecOp, One); 2405 2406 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2407 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2408 2409 SDValue BuildPair = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2410 NewShift, Zero); 2411 2412 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2413 } 2414 2415 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2416 DAGCombinerInfo &DCI) const { 2417 EVT VT = N->getValueType(0); 2418 2419 if (VT.isVector() || VT.getSizeInBits() > 32) 2420 return SDValue(); 2421 2422 SelectionDAG &DAG = DCI.DAG; 2423 SDLoc DL(N); 2424 2425 SDValue N0 = N->getOperand(0); 2426 SDValue N1 = N->getOperand(1); 2427 SDValue Mul; 2428 2429 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2430 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2431 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2432 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2433 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2434 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2435 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2436 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2437 } else { 2438 return SDValue(); 2439 } 2440 2441 // We need to use sext even for MUL_U24, because MUL_U24 is used 2442 // for signed multiply of 8 and 16-bit types. 2443 return DAG.getSExtOrTrunc(Mul, DL, VT); 2444 } 2445 2446 static bool isNegativeOne(SDValue Val) { 2447 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2448 return C->isAllOnesValue(); 2449 return false; 2450 } 2451 2452 static bool isCtlzOpc(unsigned Opc) { 2453 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2454 } 2455 2456 // Get FFBH node if the incoming op may have been type legalized from a smaller 2457 // type VT. 2458 // Need to match pre-legalized type because the generic legalization inserts the 2459 // add/sub between the select and compare. 2460 static SDValue getFFBH_U32(const TargetLowering &TLI, 2461 SelectionDAG &DAG, SDLoc SL, SDValue Op) { 2462 EVT VT = Op.getValueType(); 2463 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2464 if (LegalVT != MVT::i32) 2465 return SDValue(); 2466 2467 if (VT != MVT::i32) 2468 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2469 2470 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2471 if (VT != MVT::i32) 2472 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2473 2474 return FFBH; 2475 } 2476 2477 // The native instructions return -1 on 0 input. Optimize out a select that 2478 // produces -1 on 0. 2479 // 2480 // TODO: If zero is not undef, we could also do this if the output is compared 2481 // against the bitwidth. 2482 // 2483 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2484 SDValue AMDGPUTargetLowering::performCtlzCombine(SDLoc SL, 2485 SDValue Cond, 2486 SDValue LHS, 2487 SDValue RHS, 2488 DAGCombinerInfo &DCI) const { 2489 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2490 if (!CmpRhs || !CmpRhs->isNullValue()) 2491 return SDValue(); 2492 2493 SelectionDAG &DAG = DCI.DAG; 2494 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2495 SDValue CmpLHS = Cond.getOperand(0); 2496 2497 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2498 if (CCOpcode == ISD::SETEQ && 2499 isCtlzOpc(RHS.getOpcode()) && 2500 RHS.getOperand(0) == CmpLHS && 2501 isNegativeOne(LHS)) { 2502 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2503 } 2504 2505 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2506 if (CCOpcode == ISD::SETNE && 2507 isCtlzOpc(LHS.getOpcode()) && 2508 LHS.getOperand(0) == CmpLHS && 2509 isNegativeOne(RHS)) { 2510 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2511 } 2512 2513 return SDValue(); 2514 } 2515 2516 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2517 DAGCombinerInfo &DCI) const { 2518 SDValue Cond = N->getOperand(0); 2519 if (Cond.getOpcode() != ISD::SETCC) 2520 return SDValue(); 2521 2522 EVT VT = N->getValueType(0); 2523 SDValue LHS = Cond.getOperand(0); 2524 SDValue RHS = Cond.getOperand(1); 2525 SDValue CC = Cond.getOperand(2); 2526 2527 SDValue True = N->getOperand(1); 2528 SDValue False = N->getOperand(2); 2529 2530 if (VT == MVT::f32 && Cond.hasOneUse()) { 2531 SDValue MinMax 2532 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2533 // Revisit this node so we can catch min3/max3/med3 patterns. 2534 //DCI.AddToWorklist(MinMax.getNode()); 2535 return MinMax; 2536 } 2537 2538 // There's no reason to not do this if the condition has other uses. 2539 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2540 } 2541 2542 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2543 DAGCombinerInfo &DCI) const { 2544 SelectionDAG &DAG = DCI.DAG; 2545 SDLoc DL(N); 2546 2547 switch(N->getOpcode()) { 2548 default: 2549 break; 2550 case ISD::SHL: { 2551 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2552 break; 2553 2554 return performShlCombine(N, DCI); 2555 } 2556 case ISD::SRL: { 2557 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2558 break; 2559 2560 return performSrlCombine(N, DCI); 2561 } 2562 case ISD::SRA: { 2563 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2564 break; 2565 2566 return performSraCombine(N, DCI); 2567 } 2568 case ISD::AND: { 2569 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2570 break; 2571 2572 return performAndCombine(N, DCI); 2573 } 2574 case ISD::MUL: 2575 return performMulCombine(N, DCI); 2576 case AMDGPUISD::MUL_I24: 2577 case AMDGPUISD::MUL_U24: { 2578 SDValue N0 = N->getOperand(0); 2579 SDValue N1 = N->getOperand(1); 2580 simplifyI24(N0, DCI); 2581 simplifyI24(N1, DCI); 2582 return SDValue(); 2583 } 2584 case ISD::SELECT: 2585 return performSelectCombine(N, DCI); 2586 case AMDGPUISD::BFE_I32: 2587 case AMDGPUISD::BFE_U32: { 2588 assert(!N->getValueType(0).isVector() && 2589 "Vector handling of BFE not implemented"); 2590 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2591 if (!Width) 2592 break; 2593 2594 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2595 if (WidthVal == 0) 2596 return DAG.getConstant(0, DL, MVT::i32); 2597 2598 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2599 if (!Offset) 2600 break; 2601 2602 SDValue BitsFrom = N->getOperand(0); 2603 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2604 2605 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2606 2607 if (OffsetVal == 0) { 2608 // This is already sign / zero extended, so try to fold away extra BFEs. 2609 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2610 2611 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2612 if (OpSignBits >= SignBits) 2613 return BitsFrom; 2614 2615 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2616 if (Signed) { 2617 // This is a sign_extend_inreg. Replace it to take advantage of existing 2618 // DAG Combines. If not eliminated, we will match back to BFE during 2619 // selection. 2620 2621 // TODO: The sext_inreg of extended types ends, although we can could 2622 // handle them in a single BFE. 2623 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2624 DAG.getValueType(SmallVT)); 2625 } 2626 2627 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2628 } 2629 2630 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2631 if (Signed) { 2632 return constantFoldBFE<int32_t>(DAG, 2633 CVal->getSExtValue(), 2634 OffsetVal, 2635 WidthVal, 2636 DL); 2637 } 2638 2639 return constantFoldBFE<uint32_t>(DAG, 2640 CVal->getZExtValue(), 2641 OffsetVal, 2642 WidthVal, 2643 DL); 2644 } 2645 2646 if ((OffsetVal + WidthVal) >= 32) { 2647 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2648 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2649 BitsFrom, ShiftVal); 2650 } 2651 2652 if (BitsFrom.hasOneUse()) { 2653 APInt Demanded = APInt::getBitsSet(32, 2654 OffsetVal, 2655 OffsetVal + WidthVal); 2656 2657 APInt KnownZero, KnownOne; 2658 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2659 !DCI.isBeforeLegalizeOps()); 2660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2661 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2662 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2663 KnownZero, KnownOne, TLO)) { 2664 DCI.CommitTargetLoweringOpt(TLO); 2665 } 2666 } 2667 2668 break; 2669 } 2670 2671 case ISD::STORE: 2672 return performStoreCombine(N, DCI); 2673 } 2674 return SDValue(); 2675 } 2676 2677 //===----------------------------------------------------------------------===// 2678 // Helper functions 2679 //===----------------------------------------------------------------------===// 2680 2681 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2682 SelectionDAG &DAG, 2683 const Function *F, 2684 const SmallVectorImpl<ISD::InputArg> &Ins, 2685 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2686 2687 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2688 if (Ins[i].ArgVT == Ins[i].VT) { 2689 OrigIns.push_back(Ins[i]); 2690 continue; 2691 } 2692 2693 EVT VT; 2694 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2695 // Vector has been split into scalars. 2696 VT = Ins[i].ArgVT.getVectorElementType(); 2697 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2698 Ins[i].ArgVT.getVectorElementType() != 2699 Ins[i].VT.getVectorElementType()) { 2700 // Vector elements have been promoted 2701 VT = Ins[i].ArgVT; 2702 } else { 2703 // Vector has been spilt into smaller vectors. 2704 VT = Ins[i].VT; 2705 } 2706 2707 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2708 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2709 OrigIns.push_back(Arg); 2710 } 2711 } 2712 2713 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2714 const TargetRegisterClass *RC, 2715 unsigned Reg, EVT VT) const { 2716 MachineFunction &MF = DAG.getMachineFunction(); 2717 MachineRegisterInfo &MRI = MF.getRegInfo(); 2718 unsigned VirtualRegister; 2719 if (!MRI.isLiveIn(Reg)) { 2720 VirtualRegister = MRI.createVirtualRegister(RC); 2721 MRI.addLiveIn(Reg, VirtualRegister); 2722 } else { 2723 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2724 } 2725 return DAG.getRegister(VirtualRegister, VT); 2726 } 2727 2728 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2729 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2730 uint64_t ArgOffset = MFI->ABIArgOffset; 2731 switch (Param) { 2732 case GRID_DIM: 2733 return ArgOffset; 2734 case GRID_OFFSET: 2735 return ArgOffset + 4; 2736 } 2737 llvm_unreachable("unexpected implicit parameter type"); 2738 } 2739 2740 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2741 2742 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2743 switch ((AMDGPUISD::NodeType)Opcode) { 2744 case AMDGPUISD::FIRST_NUMBER: break; 2745 // AMDIL DAG nodes 2746 NODE_NAME_CASE(CALL); 2747 NODE_NAME_CASE(UMUL); 2748 NODE_NAME_CASE(RET_FLAG); 2749 NODE_NAME_CASE(BRANCH_COND); 2750 2751 // AMDGPU DAG nodes 2752 NODE_NAME_CASE(DWORDADDR) 2753 NODE_NAME_CASE(FRACT) 2754 NODE_NAME_CASE(CLAMP) 2755 NODE_NAME_CASE(COS_HW) 2756 NODE_NAME_CASE(SIN_HW) 2757 NODE_NAME_CASE(FMAX_LEGACY) 2758 NODE_NAME_CASE(FMIN_LEGACY) 2759 NODE_NAME_CASE(FMAX3) 2760 NODE_NAME_CASE(SMAX3) 2761 NODE_NAME_CASE(UMAX3) 2762 NODE_NAME_CASE(FMIN3) 2763 NODE_NAME_CASE(SMIN3) 2764 NODE_NAME_CASE(UMIN3) 2765 NODE_NAME_CASE(FMED3) 2766 NODE_NAME_CASE(SMED3) 2767 NODE_NAME_CASE(UMED3) 2768 NODE_NAME_CASE(URECIP) 2769 NODE_NAME_CASE(DIV_SCALE) 2770 NODE_NAME_CASE(DIV_FMAS) 2771 NODE_NAME_CASE(DIV_FIXUP) 2772 NODE_NAME_CASE(TRIG_PREOP) 2773 NODE_NAME_CASE(RCP) 2774 NODE_NAME_CASE(RSQ) 2775 NODE_NAME_CASE(RSQ_LEGACY) 2776 NODE_NAME_CASE(RSQ_CLAMP) 2777 NODE_NAME_CASE(LDEXP) 2778 NODE_NAME_CASE(FP_CLASS) 2779 NODE_NAME_CASE(DOT4) 2780 NODE_NAME_CASE(CARRY) 2781 NODE_NAME_CASE(BORROW) 2782 NODE_NAME_CASE(BFE_U32) 2783 NODE_NAME_CASE(BFE_I32) 2784 NODE_NAME_CASE(BFI) 2785 NODE_NAME_CASE(BFM) 2786 NODE_NAME_CASE(FFBH_U32) 2787 NODE_NAME_CASE(MUL_U24) 2788 NODE_NAME_CASE(MUL_I24) 2789 NODE_NAME_CASE(MAD_U24) 2790 NODE_NAME_CASE(MAD_I24) 2791 NODE_NAME_CASE(TEXTURE_FETCH) 2792 NODE_NAME_CASE(EXPORT) 2793 NODE_NAME_CASE(CONST_ADDRESS) 2794 NODE_NAME_CASE(REGISTER_LOAD) 2795 NODE_NAME_CASE(REGISTER_STORE) 2796 NODE_NAME_CASE(LOAD_CONSTANT) 2797 NODE_NAME_CASE(LOAD_INPUT) 2798 NODE_NAME_CASE(SAMPLE) 2799 NODE_NAME_CASE(SAMPLEB) 2800 NODE_NAME_CASE(SAMPLED) 2801 NODE_NAME_CASE(SAMPLEL) 2802 NODE_NAME_CASE(CVT_F32_UBYTE0) 2803 NODE_NAME_CASE(CVT_F32_UBYTE1) 2804 NODE_NAME_CASE(CVT_F32_UBYTE2) 2805 NODE_NAME_CASE(CVT_F32_UBYTE3) 2806 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2807 NODE_NAME_CASE(CONST_DATA_PTR) 2808 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2809 NODE_NAME_CASE(SENDMSG) 2810 NODE_NAME_CASE(INTERP_MOV) 2811 NODE_NAME_CASE(INTERP_P1) 2812 NODE_NAME_CASE(INTERP_P2) 2813 NODE_NAME_CASE(STORE_MSKOR) 2814 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2815 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 2816 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2817 } 2818 return nullptr; 2819 } 2820 2821 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2822 DAGCombinerInfo &DCI, 2823 unsigned &RefinementSteps, 2824 bool &UseOneConstNR) const { 2825 SelectionDAG &DAG = DCI.DAG; 2826 EVT VT = Operand.getValueType(); 2827 2828 if (VT == MVT::f32) { 2829 RefinementSteps = 0; 2830 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2831 } 2832 2833 // TODO: There is also f64 rsq instruction, but the documentation is less 2834 // clear on its precision. 2835 2836 return SDValue(); 2837 } 2838 2839 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2840 DAGCombinerInfo &DCI, 2841 unsigned &RefinementSteps) const { 2842 SelectionDAG &DAG = DCI.DAG; 2843 EVT VT = Operand.getValueType(); 2844 2845 if (VT == MVT::f32) { 2846 // Reciprocal, < 1 ulp error. 2847 // 2848 // This reciprocal approximation converges to < 0.5 ulp error with one 2849 // newton rhapson performed with two fused multiple adds (FMAs). 2850 2851 RefinementSteps = 0; 2852 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2853 } 2854 2855 // TODO: There is also f64 rcp instruction, but the documentation is less 2856 // clear on its precision. 2857 2858 return SDValue(); 2859 } 2860 2861 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2862 const SDValue Op, 2863 APInt &KnownZero, 2864 APInt &KnownOne, 2865 const SelectionDAG &DAG, 2866 unsigned Depth) const { 2867 2868 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2869 2870 APInt KnownZero2; 2871 APInt KnownOne2; 2872 unsigned Opc = Op.getOpcode(); 2873 2874 switch (Opc) { 2875 default: 2876 break; 2877 case AMDGPUISD::CARRY: 2878 case AMDGPUISD::BORROW: { 2879 KnownZero = APInt::getHighBitsSet(32, 31); 2880 break; 2881 } 2882 2883 case AMDGPUISD::BFE_I32: 2884 case AMDGPUISD::BFE_U32: { 2885 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2886 if (!CWidth) 2887 return; 2888 2889 unsigned BitWidth = 32; 2890 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2891 2892 if (Opc == AMDGPUISD::BFE_U32) 2893 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2894 2895 break; 2896 } 2897 } 2898 } 2899 2900 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2901 SDValue Op, 2902 const SelectionDAG &DAG, 2903 unsigned Depth) const { 2904 switch (Op.getOpcode()) { 2905 case AMDGPUISD::BFE_I32: { 2906 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2907 if (!Width) 2908 return 1; 2909 2910 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2911 if (!isNullConstant(Op.getOperand(1))) 2912 return SignBits; 2913 2914 // TODO: Could probably figure something out with non-0 offsets. 2915 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2916 return std::max(SignBits, Op0SignBits); 2917 } 2918 2919 case AMDGPUISD::BFE_U32: { 2920 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2921 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2922 } 2923 2924 case AMDGPUISD::CARRY: 2925 case AMDGPUISD::BORROW: 2926 return 31; 2927 2928 default: 2929 return 1; 2930 } 2931 } 2932