1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 using namespace llvm; 38 39 #include "AMDGPUGenCallingConv.inc" 40 41 // Find a larger type to do a load / store of a vector with. 42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 43 unsigned StoreSize = VT.getStoreSizeInBits(); 44 if (StoreSize <= 32) 45 return EVT::getIntegerVT(Ctx, StoreSize); 46 47 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 48 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 KnownBits Known = DAG.computeKnownBits(Op); 54 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 55 } 56 57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 58 EVT VT = Op.getValueType(); 59 60 // In order for this to be a signed 24-bit value, bit 23, must 61 // be a sign bit. 62 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 78 79 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 81 82 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 // There are no 64-bit extloads. These should be done as a 32-bit extload and 107 // an extension to 64-bit. 108 for (MVT VT : MVT::integer_valuetypes()) { 109 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 110 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 111 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 112 } 113 114 for (MVT VT : MVT::integer_valuetypes()) { 115 if (VT == MVT::i64) 116 continue; 117 118 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 119 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 122 123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 127 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 132 } 133 134 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 159 160 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 162 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 164 165 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 169 170 setOperationAction(ISD::STORE, MVT::f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 175 176 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 178 179 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 181 182 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 184 185 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 187 188 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 190 191 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 193 194 setOperationAction(ISD::STORE, MVT::i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 196 197 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 199 200 setOperationAction(ISD::STORE, MVT::f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 205 206 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 207 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 208 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 210 211 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 212 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 215 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 218 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 219 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 220 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 221 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 222 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FLOG, MVT::f32, Custom); 265 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 266 setOperationAction(ISD::FEXP, MVT::f32, Custom); 267 268 269 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 270 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 271 272 setOperationAction(ISD::FREM, MVT::f32, Custom); 273 setOperationAction(ISD::FREM, MVT::f64, Custom); 274 275 // Expand to fneg + fadd. 276 setOperationAction(ISD::FSUB, MVT::f64, Expand); 277 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 326 setOperationAction(ISD::ADDC, VT, Legal); 327 setOperationAction(ISD::SUBC, VT, Legal); 328 setOperationAction(ISD::ADDE, VT, Legal); 329 setOperationAction(ISD::SUBE, VT, Legal); 330 } 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 344 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 345 346 setOperationAction(ISD::SMIN, MVT::i32, Legal); 347 setOperationAction(ISD::UMIN, MVT::i32, Legal); 348 setOperationAction(ISD::SMAX, MVT::i32, Legal); 349 setOperationAction(ISD::UMAX, MVT::i32, Legal); 350 351 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 352 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 353 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 355 356 static const MVT::SimpleValueType VectorIntTypes[] = { 357 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 358 }; 359 360 for (MVT VT : VectorIntTypes) { 361 // Expand the following operations for the current type by default. 362 setOperationAction(ISD::ADD, VT, Expand); 363 setOperationAction(ISD::AND, VT, Expand); 364 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 365 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 366 setOperationAction(ISD::MUL, VT, Expand); 367 setOperationAction(ISD::MULHU, VT, Expand); 368 setOperationAction(ISD::MULHS, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 setOperationAction(ISD::SETCC, VT, Expand); 396 } 397 398 static const MVT::SimpleValueType FloatVectorTypes[] = { 399 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 400 }; 401 402 for (MVT VT : FloatVectorTypes) { 403 setOperationAction(ISD::FABS, VT, Expand); 404 setOperationAction(ISD::FMINNUM, VT, Expand); 405 setOperationAction(ISD::FMAXNUM, VT, Expand); 406 setOperationAction(ISD::FADD, VT, Expand); 407 setOperationAction(ISD::FCEIL, VT, Expand); 408 setOperationAction(ISD::FCOS, VT, Expand); 409 setOperationAction(ISD::FDIV, VT, Expand); 410 setOperationAction(ISD::FEXP2, VT, Expand); 411 setOperationAction(ISD::FEXP, VT, Expand); 412 setOperationAction(ISD::FLOG2, VT, Expand); 413 setOperationAction(ISD::FREM, VT, Expand); 414 setOperationAction(ISD::FLOG, VT, Expand); 415 setOperationAction(ISD::FLOG10, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 setOperationAction(ISD::SETCC, VT, Expand); 432 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 443 444 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 446 447 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 449 450 // There are no libcalls of any kind. 451 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 452 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 453 454 setBooleanContents(ZeroOrNegativeOneBooleanContent); 455 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 456 457 setSchedulingPreference(Sched::RegPressure); 458 setJumpIsExpensive(true); 459 460 // FIXME: This is only partially true. If we have to do vector compares, any 461 // SGPR pair can be a condition register. If we have a uniform condition, we 462 // are better off doing SALU operations, where there is only one SCC. For now, 463 // we don't have a way of knowing during instruction selection if a condition 464 // will be uniform and we always use vector compares. Assume we are using 465 // vector compares until that is fixed. 466 setHasMultipleConditionRegisters(true); 467 468 setMinCmpXchgSizeInBits(32); 469 setSupportsUnalignedAtomics(false); 470 471 PredictableSelectIsExpensive = false; 472 473 // We want to find all load dependencies for long chains of stores to enable 474 // merging into very wide vectors. The problem is with vectors with > 4 475 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 476 // vectors are a legal type, even though we have to split the loads 477 // usually. When we can more precisely specify load legality per address 478 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 479 // smarter so that they can figure out what to do in 2 iterations without all 480 // N > 4 stores on the same chain. 481 GatherAllAliasesMaxDepth = 16; 482 483 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 484 // about these during lowering. 485 MaxStoresPerMemcpy = 0xffffffff; 486 MaxStoresPerMemmove = 0xffffffff; 487 MaxStoresPerMemset = 0xffffffff; 488 489 setTargetDAGCombine(ISD::BITCAST); 490 setTargetDAGCombine(ISD::SHL); 491 setTargetDAGCombine(ISD::SRA); 492 setTargetDAGCombine(ISD::SRL); 493 setTargetDAGCombine(ISD::TRUNCATE); 494 setTargetDAGCombine(ISD::MUL); 495 setTargetDAGCombine(ISD::MULHU); 496 setTargetDAGCombine(ISD::MULHS); 497 setTargetDAGCombine(ISD::SELECT); 498 setTargetDAGCombine(ISD::SELECT_CC); 499 setTargetDAGCombine(ISD::STORE); 500 setTargetDAGCombine(ISD::FADD); 501 setTargetDAGCombine(ISD::FSUB); 502 setTargetDAGCombine(ISD::FNEG); 503 setTargetDAGCombine(ISD::FABS); 504 setTargetDAGCombine(ISD::AssertZext); 505 setTargetDAGCombine(ISD::AssertSext); 506 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 507 } 508 509 //===----------------------------------------------------------------------===// 510 // Target Information 511 //===----------------------------------------------------------------------===// 512 513 LLVM_READNONE 514 static bool fnegFoldsIntoOp(unsigned Opc) { 515 switch (Opc) { 516 case ISD::FADD: 517 case ISD::FSUB: 518 case ISD::FMUL: 519 case ISD::FMA: 520 case ISD::FMAD: 521 case ISD::FMINNUM: 522 case ISD::FMAXNUM: 523 case ISD::FMINNUM_IEEE: 524 case ISD::FMAXNUM_IEEE: 525 case ISD::FSIN: 526 case ISD::FTRUNC: 527 case ISD::FRINT: 528 case ISD::FNEARBYINT: 529 case ISD::FCANONICALIZE: 530 case AMDGPUISD::RCP: 531 case AMDGPUISD::RCP_LEGACY: 532 case AMDGPUISD::RCP_IFLAG: 533 case AMDGPUISD::SIN_HW: 534 case AMDGPUISD::FMUL_LEGACY: 535 case AMDGPUISD::FMIN_LEGACY: 536 case AMDGPUISD::FMAX_LEGACY: 537 case AMDGPUISD::FMED3: 538 return true; 539 default: 540 return false; 541 } 542 } 543 544 /// \p returns true if the operation will definitely need to use a 64-bit 545 /// encoding, and thus will use a VOP3 encoding regardless of the source 546 /// modifiers. 547 LLVM_READONLY 548 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 549 return N->getNumOperands() > 2 || VT == MVT::f64; 550 } 551 552 // Most FP instructions support source modifiers, but this could be refined 553 // slightly. 554 LLVM_READONLY 555 static bool hasSourceMods(const SDNode *N) { 556 if (isa<MemSDNode>(N)) 557 return false; 558 559 switch (N->getOpcode()) { 560 case ISD::CopyToReg: 561 case ISD::SELECT: 562 case ISD::FDIV: 563 case ISD::FREM: 564 case ISD::INLINEASM: 565 case ISD::INLINEASM_BR: 566 case AMDGPUISD::INTERP_P1: 567 case AMDGPUISD::INTERP_P2: 568 case AMDGPUISD::DIV_SCALE: 569 570 // TODO: Should really be looking at the users of the bitcast. These are 571 // problematic because bitcasts are used to legalize all stores to integer 572 // types. 573 case ISD::BITCAST: 574 return false; 575 default: 576 return true; 577 } 578 } 579 580 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 581 unsigned CostThreshold) { 582 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 583 // it is truly free to use a source modifier in all cases. If there are 584 // multiple users but for each one will necessitate using VOP3, there will be 585 // a code size increase. Try to avoid increasing code size unless we know it 586 // will save on the instruction count. 587 unsigned NumMayIncreaseSize = 0; 588 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 589 590 // XXX - Should this limit number of uses to check? 591 for (const SDNode *U : N->uses()) { 592 if (!hasSourceMods(U)) 593 return false; 594 595 if (!opMustUseVOP3Encoding(U, VT)) { 596 if (++NumMayIncreaseSize > CostThreshold) 597 return false; 598 } 599 } 600 601 return true; 602 } 603 604 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 605 return MVT::i32; 606 } 607 608 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 609 return true; 610 } 611 612 // The backend supports 32 and 64 bit floating point immediates. 613 // FIXME: Why are we reporting vectors of FP immediates as legal? 614 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 615 bool ForCodeSize) const { 616 EVT ScalarVT = VT.getScalarType(); 617 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 618 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 619 } 620 621 // We don't want to shrink f64 / f32 constants. 622 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 623 EVT ScalarVT = VT.getScalarType(); 624 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 625 } 626 627 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 628 ISD::LoadExtType ExtTy, 629 EVT NewVT) const { 630 // TODO: This may be worth removing. Check regression tests for diffs. 631 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 632 return false; 633 634 unsigned NewSize = NewVT.getStoreSizeInBits(); 635 636 // If we are reducing to a 32-bit load, this is always better. 637 if (NewSize == 32) 638 return true; 639 640 EVT OldVT = N->getValueType(0); 641 unsigned OldSize = OldVT.getStoreSizeInBits(); 642 643 MemSDNode *MN = cast<MemSDNode>(N); 644 unsigned AS = MN->getAddressSpace(); 645 // Do not shrink an aligned scalar load to sub-dword. 646 // Scalar engine cannot do sub-dword loads. 647 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 648 (AS == AMDGPUAS::CONSTANT_ADDRESS || 649 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 650 (isa<LoadSDNode>(N) && 651 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 652 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 653 return false; 654 655 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 656 // extloads, so doing one requires using a buffer_load. In cases where we 657 // still couldn't use a scalar load, using the wider load shouldn't really 658 // hurt anything. 659 660 // If the old size already had to be an extload, there's no harm in continuing 661 // to reduce the width. 662 return (OldSize < 32); 663 } 664 665 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 666 const SelectionDAG &DAG, 667 const MachineMemOperand &MMO) const { 668 669 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 670 671 if (LoadTy.getScalarType() == MVT::i32) 672 return false; 673 674 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 675 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 676 677 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 678 return false; 679 680 bool Fast = false; 681 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 682 CastTy, MMO, &Fast) && 683 Fast; 684 } 685 686 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 687 // profitable with the expansion for 64-bit since it's generally good to 688 // speculate things. 689 // FIXME: These should really have the size as a parameter. 690 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 691 return true; 692 } 693 694 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 695 return true; 696 } 697 698 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 699 switch (N->getOpcode()) { 700 default: 701 return false; 702 case ISD::EntryToken: 703 case ISD::TokenFactor: 704 return true; 705 case ISD::INTRINSIC_WO_CHAIN: 706 { 707 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 708 switch (IntrID) { 709 default: 710 return false; 711 case Intrinsic::amdgcn_readfirstlane: 712 case Intrinsic::amdgcn_readlane: 713 return true; 714 } 715 } 716 break; 717 case ISD::LOAD: 718 { 719 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 720 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 721 return true; 722 return false; 723 } 724 break; 725 } 726 } 727 728 //===---------------------------------------------------------------------===// 729 // Target Properties 730 //===---------------------------------------------------------------------===// 731 732 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 733 assert(VT.isFloatingPoint()); 734 735 // Packed operations do not have a fabs modifier. 736 return VT == MVT::f32 || VT == MVT::f64 || 737 (Subtarget->has16BitInsts() && VT == MVT::f16); 738 } 739 740 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 741 assert(VT.isFloatingPoint()); 742 return VT == MVT::f32 || VT == MVT::f64 || 743 (Subtarget->has16BitInsts() && VT == MVT::f16) || 744 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 745 } 746 747 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 748 unsigned NumElem, 749 unsigned AS) const { 750 return true; 751 } 752 753 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 754 // There are few operations which truly have vector input operands. Any vector 755 // operation is going to involve operations on each component, and a 756 // build_vector will be a copy per element, so it always makes sense to use a 757 // build_vector input in place of the extracted element to avoid a copy into a 758 // super register. 759 // 760 // We should probably only do this if all users are extracts only, but this 761 // should be the common case. 762 return true; 763 } 764 765 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 766 // Truncate is just accessing a subregister. 767 768 unsigned SrcSize = Source.getSizeInBits(); 769 unsigned DestSize = Dest.getSizeInBits(); 770 771 return DestSize < SrcSize && DestSize % 32 == 0 ; 772 } 773 774 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 775 // Truncate is just accessing a subregister. 776 777 unsigned SrcSize = Source->getScalarSizeInBits(); 778 unsigned DestSize = Dest->getScalarSizeInBits(); 779 780 if (DestSize== 16 && Subtarget->has16BitInsts()) 781 return SrcSize >= 32; 782 783 return DestSize < SrcSize && DestSize % 32 == 0; 784 } 785 786 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 787 unsigned SrcSize = Src->getScalarSizeInBits(); 788 unsigned DestSize = Dest->getScalarSizeInBits(); 789 790 if (SrcSize == 16 && Subtarget->has16BitInsts()) 791 return DestSize >= 32; 792 793 return SrcSize == 32 && DestSize == 64; 794 } 795 796 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 797 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 798 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 799 // this will enable reducing 64-bit operations the 32-bit, which is always 800 // good. 801 802 if (Src == MVT::i16) 803 return Dest == MVT::i32 ||Dest == MVT::i64 ; 804 805 return Src == MVT::i32 && Dest == MVT::i64; 806 } 807 808 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 809 return isZExtFree(Val.getValueType(), VT2); 810 } 811 812 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 813 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 814 // limited number of native 64-bit operations. Shrinking an operation to fit 815 // in a single 32-bit register should always be helpful. As currently used, 816 // this is much less general than the name suggests, and is only used in 817 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 818 // not profitable, and may actually be harmful. 819 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 820 } 821 822 //===---------------------------------------------------------------------===// 823 // TargetLowering Callbacks 824 //===---------------------------------------------------------------------===// 825 826 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 827 bool IsVarArg) { 828 switch (CC) { 829 case CallingConv::AMDGPU_VS: 830 case CallingConv::AMDGPU_GS: 831 case CallingConv::AMDGPU_PS: 832 case CallingConv::AMDGPU_CS: 833 case CallingConv::AMDGPU_HS: 834 case CallingConv::AMDGPU_ES: 835 case CallingConv::AMDGPU_LS: 836 return CC_AMDGPU; 837 case CallingConv::C: 838 case CallingConv::Fast: 839 case CallingConv::Cold: 840 return CC_AMDGPU_Func; 841 case CallingConv::AMDGPU_KERNEL: 842 case CallingConv::SPIR_KERNEL: 843 default: 844 report_fatal_error("Unsupported calling convention for call"); 845 } 846 } 847 848 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 849 bool IsVarArg) { 850 switch (CC) { 851 case CallingConv::AMDGPU_KERNEL: 852 case CallingConv::SPIR_KERNEL: 853 llvm_unreachable("kernels should not be handled here"); 854 case CallingConv::AMDGPU_VS: 855 case CallingConv::AMDGPU_GS: 856 case CallingConv::AMDGPU_PS: 857 case CallingConv::AMDGPU_CS: 858 case CallingConv::AMDGPU_HS: 859 case CallingConv::AMDGPU_ES: 860 case CallingConv::AMDGPU_LS: 861 return RetCC_SI_Shader; 862 case CallingConv::C: 863 case CallingConv::Fast: 864 case CallingConv::Cold: 865 return RetCC_AMDGPU_Func; 866 default: 867 report_fatal_error("Unsupported calling convention."); 868 } 869 } 870 871 /// The SelectionDAGBuilder will automatically promote function arguments 872 /// with illegal types. However, this does not work for the AMDGPU targets 873 /// since the function arguments are stored in memory as these illegal types. 874 /// In order to handle this properly we need to get the original types sizes 875 /// from the LLVM IR Function and fixup the ISD:InputArg values before 876 /// passing them to AnalyzeFormalArguments() 877 878 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 879 /// input values across multiple registers. Each item in the Ins array 880 /// represents a single value that will be stored in registers. Ins[x].VT is 881 /// the value type of the value that will be stored in the register, so 882 /// whatever SDNode we lower the argument to needs to be this type. 883 /// 884 /// In order to correctly lower the arguments we need to know the size of each 885 /// argument. Since Ins[x].VT gives us the size of the register that will 886 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 887 /// for the orignal function argument so that we can deduce the correct memory 888 /// type to use for Ins[x]. In most cases the correct memory type will be 889 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 890 /// we have a kernel argument of type v8i8, this argument will be split into 891 /// 8 parts and each part will be represented by its own item in the Ins array. 892 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 893 /// the argument before it was split. From this, we deduce that the memory type 894 /// for each individual part is i8. We pass the memory type as LocVT to the 895 /// calling convention analysis function and the register type (Ins[x].VT) as 896 /// the ValVT. 897 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 898 CCState &State, 899 const SmallVectorImpl<ISD::InputArg> &Ins) const { 900 const MachineFunction &MF = State.getMachineFunction(); 901 const Function &Fn = MF.getFunction(); 902 LLVMContext &Ctx = Fn.getParent()->getContext(); 903 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 904 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 905 CallingConv::ID CC = Fn.getCallingConv(); 906 907 unsigned MaxAlign = 1; 908 uint64_t ExplicitArgOffset = 0; 909 const DataLayout &DL = Fn.getParent()->getDataLayout(); 910 911 unsigned InIndex = 0; 912 913 for (const Argument &Arg : Fn.args()) { 914 Type *BaseArgTy = Arg.getType(); 915 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 916 MaxAlign = std::max(Align, MaxAlign); 917 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 918 919 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 920 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 921 922 // We're basically throwing away everything passed into us and starting over 923 // to get accurate in-memory offsets. The "PartOffset" is completely useless 924 // to us as computed in Ins. 925 // 926 // We also need to figure out what type legalization is trying to do to get 927 // the correct memory offsets. 928 929 SmallVector<EVT, 16> ValueVTs; 930 SmallVector<uint64_t, 16> Offsets; 931 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 932 933 for (unsigned Value = 0, NumValues = ValueVTs.size(); 934 Value != NumValues; ++Value) { 935 uint64_t BasePartOffset = Offsets[Value]; 936 937 EVT ArgVT = ValueVTs[Value]; 938 EVT MemVT = ArgVT; 939 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 940 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 941 942 if (NumRegs == 1) { 943 // This argument is not split, so the IR type is the memory type. 944 if (ArgVT.isExtended()) { 945 // We have an extended type, like i24, so we should just use the 946 // register type. 947 MemVT = RegisterVT; 948 } else { 949 MemVT = ArgVT; 950 } 951 } else if (ArgVT.isVector() && RegisterVT.isVector() && 952 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 953 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 954 // We have a vector value which has been split into a vector with 955 // the same scalar type, but fewer elements. This should handle 956 // all the floating-point vector types. 957 MemVT = RegisterVT; 958 } else if (ArgVT.isVector() && 959 ArgVT.getVectorNumElements() == NumRegs) { 960 // This arg has been split so that each element is stored in a separate 961 // register. 962 MemVT = ArgVT.getScalarType(); 963 } else if (ArgVT.isExtended()) { 964 // We have an extended type, like i65. 965 MemVT = RegisterVT; 966 } else { 967 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 968 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 969 if (RegisterVT.isInteger()) { 970 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 971 } else if (RegisterVT.isVector()) { 972 assert(!RegisterVT.getScalarType().isFloatingPoint()); 973 unsigned NumElements = RegisterVT.getVectorNumElements(); 974 assert(MemoryBits % NumElements == 0); 975 // This vector type has been split into another vector type with 976 // a different elements size. 977 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 978 MemoryBits / NumElements); 979 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 980 } else { 981 llvm_unreachable("cannot deduce memory type."); 982 } 983 } 984 985 // Convert one element vectors to scalar. 986 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 987 MemVT = MemVT.getScalarType(); 988 989 // Round up vec3/vec5 argument. 990 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 991 assert(MemVT.getVectorNumElements() == 3 || 992 MemVT.getVectorNumElements() == 5); 993 MemVT = MemVT.getPow2VectorType(State.getContext()); 994 } 995 996 unsigned PartOffset = 0; 997 for (unsigned i = 0; i != NumRegs; ++i) { 998 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 999 BasePartOffset + PartOffset, 1000 MemVT.getSimpleVT(), 1001 CCValAssign::Full)); 1002 PartOffset += MemVT.getStoreSize(); 1003 } 1004 } 1005 } 1006 } 1007 1008 SDValue AMDGPUTargetLowering::LowerReturn( 1009 SDValue Chain, CallingConv::ID CallConv, 1010 bool isVarArg, 1011 const SmallVectorImpl<ISD::OutputArg> &Outs, 1012 const SmallVectorImpl<SDValue> &OutVals, 1013 const SDLoc &DL, SelectionDAG &DAG) const { 1014 // FIXME: Fails for r600 tests 1015 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1016 // "wave terminate should not have return values"); 1017 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1018 } 1019 1020 //===---------------------------------------------------------------------===// 1021 // Target specific lowering 1022 //===---------------------------------------------------------------------===// 1023 1024 /// Selects the correct CCAssignFn for a given CallingConvention value. 1025 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1026 bool IsVarArg) { 1027 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1028 } 1029 1030 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1031 bool IsVarArg) { 1032 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1033 } 1034 1035 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1036 SelectionDAG &DAG, 1037 MachineFrameInfo &MFI, 1038 int ClobberedFI) const { 1039 SmallVector<SDValue, 8> ArgChains; 1040 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1041 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1042 1043 // Include the original chain at the beginning of the list. When this is 1044 // used by target LowerCall hooks, this helps legalize find the 1045 // CALLSEQ_BEGIN node. 1046 ArgChains.push_back(Chain); 1047 1048 // Add a chain value for each stack argument corresponding 1049 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1050 UE = DAG.getEntryNode().getNode()->use_end(); 1051 U != UE; ++U) { 1052 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1053 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1054 if (FI->getIndex() < 0) { 1055 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1056 int64_t InLastByte = InFirstByte; 1057 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1058 1059 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1060 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1061 ArgChains.push_back(SDValue(L, 1)); 1062 } 1063 } 1064 } 1065 } 1066 1067 // Build a tokenfactor for all the chains. 1068 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1069 } 1070 1071 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1072 SmallVectorImpl<SDValue> &InVals, 1073 StringRef Reason) const { 1074 SDValue Callee = CLI.Callee; 1075 SelectionDAG &DAG = CLI.DAG; 1076 1077 const Function &Fn = DAG.getMachineFunction().getFunction(); 1078 1079 StringRef FuncName("<unknown>"); 1080 1081 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1082 FuncName = G->getSymbol(); 1083 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1084 FuncName = G->getGlobal()->getName(); 1085 1086 DiagnosticInfoUnsupported NoCalls( 1087 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1088 DAG.getContext()->diagnose(NoCalls); 1089 1090 if (!CLI.IsTailCall) { 1091 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1092 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1093 } 1094 1095 return DAG.getEntryNode(); 1096 } 1097 1098 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1099 SmallVectorImpl<SDValue> &InVals) const { 1100 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1101 } 1102 1103 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1104 SelectionDAG &DAG) const { 1105 const Function &Fn = DAG.getMachineFunction().getFunction(); 1106 1107 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1108 SDLoc(Op).getDebugLoc()); 1109 DAG.getContext()->diagnose(NoDynamicAlloca); 1110 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1111 return DAG.getMergeValues(Ops, SDLoc()); 1112 } 1113 1114 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1115 SelectionDAG &DAG) const { 1116 switch (Op.getOpcode()) { 1117 default: 1118 Op->print(errs(), &DAG); 1119 llvm_unreachable("Custom lowering code for this" 1120 "instruction is not implemented yet!"); 1121 break; 1122 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1123 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1124 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1125 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1126 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1127 case ISD::FREM: return LowerFREM(Op, DAG); 1128 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1129 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1130 case ISD::FRINT: return LowerFRINT(Op, DAG); 1131 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1132 case ISD::FROUND: return LowerFROUND(Op, DAG); 1133 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1134 case ISD::FLOG: 1135 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1136 case ISD::FLOG10: 1137 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1138 case ISD::FEXP: 1139 return lowerFEXP(Op, DAG); 1140 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1141 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1142 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1143 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1144 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1145 case ISD::CTTZ: 1146 case ISD::CTTZ_ZERO_UNDEF: 1147 case ISD::CTLZ: 1148 case ISD::CTLZ_ZERO_UNDEF: 1149 return LowerCTLZ_CTTZ(Op, DAG); 1150 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1151 } 1152 return Op; 1153 } 1154 1155 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1156 SmallVectorImpl<SDValue> &Results, 1157 SelectionDAG &DAG) const { 1158 switch (N->getOpcode()) { 1159 case ISD::SIGN_EXTEND_INREG: 1160 // Different parts of legalization seem to interpret which type of 1161 // sign_extend_inreg is the one to check for custom lowering. The extended 1162 // from type is what really matters, but some places check for custom 1163 // lowering of the result type. This results in trying to use 1164 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1165 // nothing here and let the illegal result integer be handled normally. 1166 return; 1167 default: 1168 return; 1169 } 1170 } 1171 1172 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1173 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1174 if (!GVar || !GVar->hasInitializer()) 1175 return false; 1176 1177 return !isa<UndefValue>(GVar->getInitializer()); 1178 } 1179 1180 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1181 SDValue Op, 1182 SelectionDAG &DAG) const { 1183 1184 const DataLayout &DL = DAG.getDataLayout(); 1185 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1186 const GlobalValue *GV = G->getGlobal(); 1187 1188 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1189 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1190 if (!MFI->isEntryFunction()) { 1191 const Function &Fn = DAG.getMachineFunction().getFunction(); 1192 DiagnosticInfoUnsupported BadLDSDecl( 1193 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1194 DAG.getContext()->diagnose(BadLDSDecl); 1195 } 1196 1197 // XXX: What does the value of G->getOffset() mean? 1198 assert(G->getOffset() == 0 && 1199 "Do not know what to do with an non-zero offset"); 1200 1201 // TODO: We could emit code to handle the initialization somewhere. 1202 if (!hasDefinedInitializer(GV)) { 1203 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1204 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1205 } 1206 } 1207 1208 const Function &Fn = DAG.getMachineFunction().getFunction(); 1209 DiagnosticInfoUnsupported BadInit( 1210 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1211 DAG.getContext()->diagnose(BadInit); 1212 return SDValue(); 1213 } 1214 1215 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1216 SelectionDAG &DAG) const { 1217 SmallVector<SDValue, 8> Args; 1218 1219 EVT VT = Op.getValueType(); 1220 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1221 SDLoc SL(Op); 1222 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1223 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1224 1225 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1226 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1227 } 1228 1229 for (const SDUse &U : Op->ops()) 1230 DAG.ExtractVectorElements(U.get(), Args); 1231 1232 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1233 } 1234 1235 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1236 SelectionDAG &DAG) const { 1237 1238 SmallVector<SDValue, 8> Args; 1239 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1240 EVT VT = Op.getValueType(); 1241 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1242 VT.getVectorNumElements()); 1243 1244 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1245 } 1246 1247 /// Generate Min/Max node 1248 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1249 SDValue LHS, SDValue RHS, 1250 SDValue True, SDValue False, 1251 SDValue CC, 1252 DAGCombinerInfo &DCI) const { 1253 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1254 return SDValue(); 1255 1256 SelectionDAG &DAG = DCI.DAG; 1257 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1258 switch (CCOpcode) { 1259 case ISD::SETOEQ: 1260 case ISD::SETONE: 1261 case ISD::SETUNE: 1262 case ISD::SETNE: 1263 case ISD::SETUEQ: 1264 case ISD::SETEQ: 1265 case ISD::SETFALSE: 1266 case ISD::SETFALSE2: 1267 case ISD::SETTRUE: 1268 case ISD::SETTRUE2: 1269 case ISD::SETUO: 1270 case ISD::SETO: 1271 break; 1272 case ISD::SETULE: 1273 case ISD::SETULT: { 1274 if (LHS == True) 1275 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1276 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1277 } 1278 case ISD::SETOLE: 1279 case ISD::SETOLT: 1280 case ISD::SETLE: 1281 case ISD::SETLT: { 1282 // Ordered. Assume ordered for undefined. 1283 1284 // Only do this after legalization to avoid interfering with other combines 1285 // which might occur. 1286 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1287 !DCI.isCalledByLegalizer()) 1288 return SDValue(); 1289 1290 // We need to permute the operands to get the correct NaN behavior. The 1291 // selected operand is the second one based on the failing compare with NaN, 1292 // so permute it based on the compare type the hardware uses. 1293 if (LHS == True) 1294 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1295 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1296 } 1297 case ISD::SETUGE: 1298 case ISD::SETUGT: { 1299 if (LHS == True) 1300 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1301 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1302 } 1303 case ISD::SETGT: 1304 case ISD::SETGE: 1305 case ISD::SETOGE: 1306 case ISD::SETOGT: { 1307 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1308 !DCI.isCalledByLegalizer()) 1309 return SDValue(); 1310 1311 if (LHS == True) 1312 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1313 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1314 } 1315 case ISD::SETCC_INVALID: 1316 llvm_unreachable("Invalid setcc condcode!"); 1317 } 1318 return SDValue(); 1319 } 1320 1321 std::pair<SDValue, SDValue> 1322 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1323 SDLoc SL(Op); 1324 1325 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1326 1327 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1328 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1329 1330 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1331 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1332 1333 return std::make_pair(Lo, Hi); 1334 } 1335 1336 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1337 SDLoc SL(Op); 1338 1339 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1340 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1341 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1345 SDLoc SL(Op); 1346 1347 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1348 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1349 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1350 } 1351 1352 // Split a vector type into two parts. The first part is a power of two vector. 1353 // The second part is whatever is left over, and is a scalar if it would 1354 // otherwise be a 1-vector. 1355 std::pair<EVT, EVT> 1356 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1357 EVT LoVT, HiVT; 1358 EVT EltVT = VT.getVectorElementType(); 1359 unsigned NumElts = VT.getVectorNumElements(); 1360 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1361 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1362 HiVT = NumElts - LoNumElts == 1 1363 ? EltVT 1364 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1365 return std::make_pair(LoVT, HiVT); 1366 } 1367 1368 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1369 // scalar. 1370 std::pair<SDValue, SDValue> 1371 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1372 const EVT &LoVT, const EVT &HiVT, 1373 SelectionDAG &DAG) const { 1374 assert(LoVT.getVectorNumElements() + 1375 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1376 N.getValueType().getVectorNumElements() && 1377 "More vector elements requested than available!"); 1378 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1379 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1380 DAG.getConstant(0, DL, IdxTy)); 1381 SDValue Hi = DAG.getNode( 1382 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1383 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1384 return std::make_pair(Lo, Hi); 1385 } 1386 1387 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1388 SelectionDAG &DAG) const { 1389 LoadSDNode *Load = cast<LoadSDNode>(Op); 1390 EVT VT = Op.getValueType(); 1391 1392 1393 // If this is a 2 element vector, we really want to scalarize and not create 1394 // weird 1 element vectors. 1395 if (VT.getVectorNumElements() == 2) 1396 return scalarizeVectorLoad(Load, DAG); 1397 1398 SDValue BasePtr = Load->getBasePtr(); 1399 EVT MemVT = Load->getMemoryVT(); 1400 SDLoc SL(Op); 1401 1402 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1403 1404 EVT LoVT, HiVT; 1405 EVT LoMemVT, HiMemVT; 1406 SDValue Lo, Hi; 1407 1408 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1409 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1410 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1411 1412 unsigned Size = LoMemVT.getStoreSize(); 1413 unsigned BaseAlign = Load->getAlignment(); 1414 unsigned HiAlign = MinAlign(BaseAlign, Size); 1415 1416 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1417 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1418 BaseAlign, Load->getMemOperand()->getFlags()); 1419 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1420 SDValue HiLoad = 1421 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1422 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1423 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1424 1425 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1426 SDValue Join; 1427 if (LoVT == HiVT) { 1428 // This is the case that the vector is power of two so was evenly split. 1429 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1430 } else { 1431 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1432 DAG.getConstant(0, SL, IdxTy)); 1433 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1434 : ISD::INSERT_VECTOR_ELT, 1435 SL, VT, Join, HiLoad, 1436 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1437 } 1438 1439 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1440 LoLoad.getValue(1), HiLoad.getValue(1))}; 1441 1442 return DAG.getMergeValues(Ops, SL); 1443 } 1444 1445 // Widen a vector load from vec3 to vec4. 1446 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1447 SelectionDAG &DAG) const { 1448 LoadSDNode *Load = cast<LoadSDNode>(Op); 1449 EVT VT = Op.getValueType(); 1450 assert(VT.getVectorNumElements() == 3); 1451 SDValue BasePtr = Load->getBasePtr(); 1452 EVT MemVT = Load->getMemoryVT(); 1453 SDLoc SL(Op); 1454 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1455 unsigned BaseAlign = Load->getAlignment(); 1456 1457 EVT WideVT = 1458 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1459 EVT WideMemVT = 1460 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1461 SDValue WideLoad = DAG.getExtLoad( 1462 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1463 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1464 return DAG.getMergeValues( 1465 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1466 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1467 WideLoad.getValue(1)}, 1468 SL); 1469 } 1470 1471 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1472 SelectionDAG &DAG) const { 1473 StoreSDNode *Store = cast<StoreSDNode>(Op); 1474 SDValue Val = Store->getValue(); 1475 EVT VT = Val.getValueType(); 1476 1477 // If this is a 2 element vector, we really want to scalarize and not create 1478 // weird 1 element vectors. 1479 if (VT.getVectorNumElements() == 2) 1480 return scalarizeVectorStore(Store, DAG); 1481 1482 EVT MemVT = Store->getMemoryVT(); 1483 SDValue Chain = Store->getChain(); 1484 SDValue BasePtr = Store->getBasePtr(); 1485 SDLoc SL(Op); 1486 1487 EVT LoVT, HiVT; 1488 EVT LoMemVT, HiMemVT; 1489 SDValue Lo, Hi; 1490 1491 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1492 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1493 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1494 1495 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1496 1497 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1498 unsigned BaseAlign = Store->getAlignment(); 1499 unsigned Size = LoMemVT.getStoreSize(); 1500 unsigned HiAlign = MinAlign(BaseAlign, Size); 1501 1502 SDValue LoStore = 1503 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1504 Store->getMemOperand()->getFlags()); 1505 SDValue HiStore = 1506 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1507 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1508 1509 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1510 } 1511 1512 // This is a shortcut for integer division because we have fast i32<->f32 1513 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1514 // float is enough to accurately represent up to a 24-bit signed integer. 1515 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1516 bool Sign) const { 1517 SDLoc DL(Op); 1518 EVT VT = Op.getValueType(); 1519 SDValue LHS = Op.getOperand(0); 1520 SDValue RHS = Op.getOperand(1); 1521 MVT IntVT = MVT::i32; 1522 MVT FltVT = MVT::f32; 1523 1524 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1525 if (LHSSignBits < 9) 1526 return SDValue(); 1527 1528 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1529 if (RHSSignBits < 9) 1530 return SDValue(); 1531 1532 unsigned BitSize = VT.getSizeInBits(); 1533 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1534 unsigned DivBits = BitSize - SignBits; 1535 if (Sign) 1536 ++DivBits; 1537 1538 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1539 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1540 1541 SDValue jq = DAG.getConstant(1, DL, IntVT); 1542 1543 if (Sign) { 1544 // char|short jq = ia ^ ib; 1545 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1546 1547 // jq = jq >> (bitsize - 2) 1548 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1549 DAG.getConstant(BitSize - 2, DL, VT)); 1550 1551 // jq = jq | 0x1 1552 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1553 } 1554 1555 // int ia = (int)LHS; 1556 SDValue ia = LHS; 1557 1558 // int ib, (int)RHS; 1559 SDValue ib = RHS; 1560 1561 // float fa = (float)ia; 1562 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1563 1564 // float fb = (float)ib; 1565 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1566 1567 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1568 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1569 1570 // fq = trunc(fq); 1571 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1572 1573 // float fqneg = -fq; 1574 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1575 1576 // float fr = mad(fqneg, fb, fa); 1577 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1578 (unsigned)AMDGPUISD::FMAD_FTZ : 1579 (unsigned)ISD::FMAD; 1580 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1581 1582 // int iq = (int)fq; 1583 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1584 1585 // fr = fabs(fr); 1586 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1587 1588 // fb = fabs(fb); 1589 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1590 1591 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1592 1593 // int cv = fr >= fb; 1594 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1595 1596 // jq = (cv ? jq : 0); 1597 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1598 1599 // dst = iq + jq; 1600 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1601 1602 // Rem needs compensation, it's easier to recompute it 1603 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1604 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1605 1606 // Truncate to number of bits this divide really is. 1607 if (Sign) { 1608 SDValue InRegSize 1609 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1610 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1611 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1612 } else { 1613 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1614 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1615 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1616 } 1617 1618 return DAG.getMergeValues({ Div, Rem }, DL); 1619 } 1620 1621 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1622 SelectionDAG &DAG, 1623 SmallVectorImpl<SDValue> &Results) const { 1624 SDLoc DL(Op); 1625 EVT VT = Op.getValueType(); 1626 1627 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1628 1629 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1630 1631 SDValue One = DAG.getConstant(1, DL, HalfVT); 1632 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1633 1634 //HiLo split 1635 SDValue LHS = Op.getOperand(0); 1636 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1637 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1638 1639 SDValue RHS = Op.getOperand(1); 1640 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1641 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1642 1643 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1644 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1645 1646 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1647 LHS_Lo, RHS_Lo); 1648 1649 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1650 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1651 1652 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1653 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1654 return; 1655 } 1656 1657 if (isTypeLegal(MVT::i64)) { 1658 // Compute denominator reciprocal. 1659 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1660 (unsigned)AMDGPUISD::FMAD_FTZ : 1661 (unsigned)ISD::FMAD; 1662 1663 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1664 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1665 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1666 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1667 Cvt_Lo); 1668 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1669 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1670 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1671 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1672 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1673 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1674 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1675 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1676 Mul1); 1677 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1678 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1679 SDValue Rcp64 = DAG.getBitcast(VT, 1680 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1681 1682 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1683 SDValue One64 = DAG.getConstant(1, DL, VT); 1684 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1685 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1686 1687 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1688 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1689 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1690 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1691 Zero); 1692 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1693 One); 1694 1695 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1696 Mulhi1_Lo, Zero1); 1697 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1698 Mulhi1_Hi, Add1_Lo.getValue(1)); 1699 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1700 SDValue Add1 = DAG.getBitcast(VT, 1701 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1702 1703 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1704 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1705 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1706 Zero); 1707 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1708 One); 1709 1710 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1711 Mulhi2_Lo, Zero1); 1712 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1713 Mulhi2_Hi, Add1_Lo.getValue(1)); 1714 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1715 Zero, Add2_Lo.getValue(1)); 1716 SDValue Add2 = DAG.getBitcast(VT, 1717 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1718 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1719 1720 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1721 1722 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1723 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1724 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1725 Mul3_Lo, Zero1); 1726 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1727 Mul3_Hi, Sub1_Lo.getValue(1)); 1728 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1729 SDValue Sub1 = DAG.getBitcast(VT, 1730 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1731 1732 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1733 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1734 ISD::SETUGE); 1735 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1736 ISD::SETUGE); 1737 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1738 1739 // TODO: Here and below portions of the code can be enclosed into if/endif. 1740 // Currently control flow is unconditional and we have 4 selects after 1741 // potential endif to substitute PHIs. 1742 1743 // if C3 != 0 ... 1744 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1745 RHS_Lo, Zero1); 1746 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1747 RHS_Hi, Sub1_Lo.getValue(1)); 1748 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1749 Zero, Sub2_Lo.getValue(1)); 1750 SDValue Sub2 = DAG.getBitcast(VT, 1751 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1752 1753 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1754 1755 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1756 ISD::SETUGE); 1757 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1758 ISD::SETUGE); 1759 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1760 1761 // if (C6 != 0) 1762 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1763 1764 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1765 RHS_Lo, Zero1); 1766 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1767 RHS_Hi, Sub2_Lo.getValue(1)); 1768 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1769 Zero, Sub3_Lo.getValue(1)); 1770 SDValue Sub3 = DAG.getBitcast(VT, 1771 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1772 1773 // endif C6 1774 // endif C3 1775 1776 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1777 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1778 1779 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1780 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1781 1782 Results.push_back(Div); 1783 Results.push_back(Rem); 1784 1785 return; 1786 } 1787 1788 // r600 expandion. 1789 // Get Speculative values 1790 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1791 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1792 1793 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1794 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1795 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1796 1797 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1798 SDValue DIV_Lo = Zero; 1799 1800 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1801 1802 for (unsigned i = 0; i < halfBitWidth; ++i) { 1803 const unsigned bitPos = halfBitWidth - i - 1; 1804 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1805 // Get value of high bit 1806 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1807 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1808 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1809 1810 // Shift 1811 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1812 // Add LHS high bit 1813 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1814 1815 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1816 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1817 1818 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1819 1820 // Update REM 1821 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1822 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1823 } 1824 1825 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1826 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1827 Results.push_back(DIV); 1828 Results.push_back(REM); 1829 } 1830 1831 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1832 SelectionDAG &DAG) const { 1833 SDLoc DL(Op); 1834 EVT VT = Op.getValueType(); 1835 1836 if (VT == MVT::i64) { 1837 SmallVector<SDValue, 2> Results; 1838 LowerUDIVREM64(Op, DAG, Results); 1839 return DAG.getMergeValues(Results, DL); 1840 } 1841 1842 if (VT == MVT::i32) { 1843 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1844 return Res; 1845 } 1846 1847 SDValue Num = Op.getOperand(0); 1848 SDValue Den = Op.getOperand(1); 1849 1850 // RCP = URECIP(Den) = 2^32 / Den + e 1851 // e is rounding error. 1852 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1853 1854 // RCP_LO = mul(RCP, Den) */ 1855 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1856 1857 // RCP_HI = mulhu (RCP, Den) */ 1858 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1859 1860 // NEG_RCP_LO = -RCP_LO 1861 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1862 RCP_LO); 1863 1864 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1865 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1866 NEG_RCP_LO, RCP_LO, 1867 ISD::SETEQ); 1868 // Calculate the rounding error from the URECIP instruction 1869 // E = mulhu(ABS_RCP_LO, RCP) 1870 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1871 1872 // RCP_A_E = RCP + E 1873 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1874 1875 // RCP_S_E = RCP - E 1876 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1877 1878 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1879 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1880 RCP_A_E, RCP_S_E, 1881 ISD::SETEQ); 1882 // Quotient = mulhu(Tmp0, Num) 1883 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1884 1885 // Num_S_Remainder = Quotient * Den 1886 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1887 1888 // Remainder = Num - Num_S_Remainder 1889 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1890 1891 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1892 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1893 DAG.getConstant(-1, DL, VT), 1894 DAG.getConstant(0, DL, VT), 1895 ISD::SETUGE); 1896 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1897 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1898 Num_S_Remainder, 1899 DAG.getConstant(-1, DL, VT), 1900 DAG.getConstant(0, DL, VT), 1901 ISD::SETUGE); 1902 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1903 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1904 Remainder_GE_Zero); 1905 1906 // Calculate Division result: 1907 1908 // Quotient_A_One = Quotient + 1 1909 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1910 DAG.getConstant(1, DL, VT)); 1911 1912 // Quotient_S_One = Quotient - 1 1913 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1914 DAG.getConstant(1, DL, VT)); 1915 1916 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1917 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1918 Quotient, Quotient_A_One, ISD::SETEQ); 1919 1920 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1921 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1922 Quotient_S_One, Div, ISD::SETEQ); 1923 1924 // Calculate Rem result: 1925 1926 // Remainder_S_Den = Remainder - Den 1927 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1928 1929 // Remainder_A_Den = Remainder + Den 1930 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1931 1932 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1933 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1934 Remainder, Remainder_S_Den, ISD::SETEQ); 1935 1936 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1937 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1938 Remainder_A_Den, Rem, ISD::SETEQ); 1939 SDValue Ops[2] = { 1940 Div, 1941 Rem 1942 }; 1943 return DAG.getMergeValues(Ops, DL); 1944 } 1945 1946 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1947 SelectionDAG &DAG) const { 1948 SDLoc DL(Op); 1949 EVT VT = Op.getValueType(); 1950 1951 SDValue LHS = Op.getOperand(0); 1952 SDValue RHS = Op.getOperand(1); 1953 1954 SDValue Zero = DAG.getConstant(0, DL, VT); 1955 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1956 1957 if (VT == MVT::i32) { 1958 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1959 return Res; 1960 } 1961 1962 if (VT == MVT::i64 && 1963 DAG.ComputeNumSignBits(LHS) > 32 && 1964 DAG.ComputeNumSignBits(RHS) > 32) { 1965 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1966 1967 //HiLo split 1968 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1969 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1970 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1971 LHS_Lo, RHS_Lo); 1972 SDValue Res[2] = { 1973 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1974 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1975 }; 1976 return DAG.getMergeValues(Res, DL); 1977 } 1978 1979 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1980 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1981 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1982 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1983 1984 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1985 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1986 1987 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1988 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1989 1990 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1991 SDValue Rem = Div.getValue(1); 1992 1993 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1994 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1995 1996 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1997 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1998 1999 SDValue Res[2] = { 2000 Div, 2001 Rem 2002 }; 2003 return DAG.getMergeValues(Res, DL); 2004 } 2005 2006 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2007 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2008 SDLoc SL(Op); 2009 EVT VT = Op.getValueType(); 2010 SDValue X = Op.getOperand(0); 2011 SDValue Y = Op.getOperand(1); 2012 2013 // TODO: Should this propagate fast-math-flags? 2014 2015 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2016 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2017 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2018 2019 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2020 } 2021 2022 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2023 SDLoc SL(Op); 2024 SDValue Src = Op.getOperand(0); 2025 2026 // result = trunc(src) 2027 // if (src > 0.0 && src != result) 2028 // result += 1.0 2029 2030 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2031 2032 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2033 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2034 2035 EVT SetCCVT = 2036 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2037 2038 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2039 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2040 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2041 2042 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2043 // TODO: Should this propagate fast-math-flags? 2044 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2045 } 2046 2047 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2048 SelectionDAG &DAG) { 2049 const unsigned FractBits = 52; 2050 const unsigned ExpBits = 11; 2051 2052 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2053 Hi, 2054 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2055 DAG.getConstant(ExpBits, SL, MVT::i32)); 2056 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2057 DAG.getConstant(1023, SL, MVT::i32)); 2058 2059 return Exp; 2060 } 2061 2062 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2063 SDLoc SL(Op); 2064 SDValue Src = Op.getOperand(0); 2065 2066 assert(Op.getValueType() == MVT::f64); 2067 2068 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2069 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2070 2071 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2072 2073 // Extract the upper half, since this is where we will find the sign and 2074 // exponent. 2075 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2076 2077 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2078 2079 const unsigned FractBits = 52; 2080 2081 // Extract the sign bit. 2082 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2083 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2084 2085 // Extend back to 64-bits. 2086 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2087 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2088 2089 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2090 const SDValue FractMask 2091 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2092 2093 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2094 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2095 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2096 2097 EVT SetCCVT = 2098 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2099 2100 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2101 2102 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2103 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2104 2105 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2106 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2107 2108 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2109 } 2110 2111 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2112 SDLoc SL(Op); 2113 SDValue Src = Op.getOperand(0); 2114 2115 assert(Op.getValueType() == MVT::f64); 2116 2117 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2118 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2119 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2120 2121 // TODO: Should this propagate fast-math-flags? 2122 2123 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2124 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2125 2126 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2127 2128 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2129 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2130 2131 EVT SetCCVT = 2132 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2133 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2134 2135 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2136 } 2137 2138 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2139 // FNEARBYINT and FRINT are the same, except in their handling of FP 2140 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2141 // rint, so just treat them as equivalent. 2142 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2143 } 2144 2145 // XXX - May require not supporting f32 denormals? 2146 2147 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2148 // compare and vselect end up producing worse code than scalarizing the whole 2149 // operation. 2150 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2151 SDLoc SL(Op); 2152 SDValue X = Op.getOperand(0); 2153 EVT VT = Op.getValueType(); 2154 2155 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2156 2157 // TODO: Should this propagate fast-math-flags? 2158 2159 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2160 2161 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2162 2163 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2164 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2165 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2166 2167 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2168 2169 EVT SetCCVT = 2170 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2171 2172 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2173 2174 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2175 2176 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2177 } 2178 2179 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2180 SDLoc SL(Op); 2181 SDValue X = Op.getOperand(0); 2182 2183 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2184 2185 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2186 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2187 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2188 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2189 EVT SetCCVT = 2190 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2191 2192 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2193 2194 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2195 2196 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2197 2198 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2199 MVT::i64); 2200 2201 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2202 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2203 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2204 MVT::i64), 2205 Exp); 2206 2207 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2208 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2209 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2210 ISD::SETNE); 2211 2212 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2213 D, DAG.getConstant(0, SL, MVT::i64)); 2214 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2215 2216 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2217 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2218 2219 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2220 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2221 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2222 2223 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2224 ExpEqNegOne, 2225 DAG.getConstantFP(1.0, SL, MVT::f64), 2226 DAG.getConstantFP(0.0, SL, MVT::f64)); 2227 2228 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2229 2230 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2231 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2232 2233 return K; 2234 } 2235 2236 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2237 EVT VT = Op.getValueType(); 2238 2239 if (VT == MVT::f32 || VT == MVT::f16) 2240 return LowerFROUND32_16(Op, DAG); 2241 2242 if (VT == MVT::f64) 2243 return LowerFROUND64(Op, DAG); 2244 2245 llvm_unreachable("unhandled type"); 2246 } 2247 2248 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2249 SDLoc SL(Op); 2250 SDValue Src = Op.getOperand(0); 2251 2252 // result = trunc(src); 2253 // if (src < 0.0 && src != result) 2254 // result += -1.0. 2255 2256 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2257 2258 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2259 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2260 2261 EVT SetCCVT = 2262 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2263 2264 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2265 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2266 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2267 2268 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2269 // TODO: Should this propagate fast-math-flags? 2270 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2271 } 2272 2273 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2274 double Log2BaseInverted) const { 2275 EVT VT = Op.getValueType(); 2276 2277 SDLoc SL(Op); 2278 SDValue Operand = Op.getOperand(0); 2279 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2280 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2281 2282 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2283 } 2284 2285 // exp2(M_LOG2E_F * f); 2286 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2287 EVT VT = Op.getValueType(); 2288 SDLoc SL(Op); 2289 SDValue Src = Op.getOperand(0); 2290 2291 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2292 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2293 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2294 } 2295 2296 static bool isCtlzOpc(unsigned Opc) { 2297 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2298 } 2299 2300 static bool isCttzOpc(unsigned Opc) { 2301 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2302 } 2303 2304 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2305 SDLoc SL(Op); 2306 SDValue Src = Op.getOperand(0); 2307 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2308 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2309 2310 unsigned ISDOpc, NewOpc; 2311 if (isCtlzOpc(Op.getOpcode())) { 2312 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2313 NewOpc = AMDGPUISD::FFBH_U32; 2314 } else if (isCttzOpc(Op.getOpcode())) { 2315 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2316 NewOpc = AMDGPUISD::FFBL_B32; 2317 } else 2318 llvm_unreachable("Unexpected OPCode!!!"); 2319 2320 2321 if (ZeroUndef && Src.getValueType() == MVT::i32) 2322 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2323 2324 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2325 2326 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2327 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2328 2329 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2330 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2331 2332 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2333 *DAG.getContext(), MVT::i32); 2334 2335 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2336 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2337 2338 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2339 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2340 2341 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2342 SDValue Add, NewOpr; 2343 if (isCtlzOpc(Op.getOpcode())) { 2344 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2345 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2346 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2347 } else { 2348 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2349 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2350 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2351 } 2352 2353 if (!ZeroUndef) { 2354 // Test if the full 64-bit input is zero. 2355 2356 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2357 // which we probably don't want. 2358 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2359 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2360 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2361 2362 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2363 // with the same cycles, otherwise it is slower. 2364 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2365 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2366 2367 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2368 2369 // The instruction returns -1 for 0 input, but the defined intrinsic 2370 // behavior is to return the number of bits. 2371 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2372 SrcIsZero, Bits32, NewOpr); 2373 } 2374 2375 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2376 } 2377 2378 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2379 bool Signed) const { 2380 // Unsigned 2381 // cul2f(ulong u) 2382 //{ 2383 // uint lz = clz(u); 2384 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2385 // u = (u << lz) & 0x7fffffffffffffffUL; 2386 // ulong t = u & 0xffffffffffUL; 2387 // uint v = (e << 23) | (uint)(u >> 40); 2388 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2389 // return as_float(v + r); 2390 //} 2391 // Signed 2392 // cl2f(long l) 2393 //{ 2394 // long s = l >> 63; 2395 // float r = cul2f((l + s) ^ s); 2396 // return s ? -r : r; 2397 //} 2398 2399 SDLoc SL(Op); 2400 SDValue Src = Op.getOperand(0); 2401 SDValue L = Src; 2402 2403 SDValue S; 2404 if (Signed) { 2405 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2406 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2407 2408 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2409 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2410 } 2411 2412 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2413 *DAG.getContext(), MVT::f32); 2414 2415 2416 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2417 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2418 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2419 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2420 2421 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2422 SDValue E = DAG.getSelect(SL, MVT::i32, 2423 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2424 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2425 ZeroI32); 2426 2427 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2428 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2429 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2430 2431 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2432 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2433 2434 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2435 U, DAG.getConstant(40, SL, MVT::i64)); 2436 2437 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2438 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2439 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2440 2441 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2442 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2443 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2444 2445 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2446 2447 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2448 2449 SDValue R = DAG.getSelect(SL, MVT::i32, 2450 RCmp, 2451 One, 2452 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2453 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2454 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2455 2456 if (!Signed) 2457 return R; 2458 2459 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2460 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2461 } 2462 2463 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2464 bool Signed) const { 2465 SDLoc SL(Op); 2466 SDValue Src = Op.getOperand(0); 2467 2468 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2469 2470 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2471 DAG.getConstant(0, SL, MVT::i32)); 2472 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2473 DAG.getConstant(1, SL, MVT::i32)); 2474 2475 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2476 SL, MVT::f64, Hi); 2477 2478 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2479 2480 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2481 DAG.getConstant(32, SL, MVT::i32)); 2482 // TODO: Should this propagate fast-math-flags? 2483 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2484 } 2485 2486 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2487 SelectionDAG &DAG) const { 2488 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2489 "operation should be legal"); 2490 2491 // TODO: Factor out code common with LowerSINT_TO_FP. 2492 2493 EVT DestVT = Op.getValueType(); 2494 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2495 SDLoc DL(Op); 2496 SDValue Src = Op.getOperand(0); 2497 2498 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2499 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2500 SDValue FPRound = 2501 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2502 2503 return FPRound; 2504 } 2505 2506 if (DestVT == MVT::f32) 2507 return LowerINT_TO_FP32(Op, DAG, false); 2508 2509 assert(DestVT == MVT::f64); 2510 return LowerINT_TO_FP64(Op, DAG, false); 2511 } 2512 2513 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2514 SelectionDAG &DAG) const { 2515 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2516 "operation should be legal"); 2517 2518 // TODO: Factor out code common with LowerUINT_TO_FP. 2519 2520 EVT DestVT = Op.getValueType(); 2521 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2522 SDLoc DL(Op); 2523 SDValue Src = Op.getOperand(0); 2524 2525 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2526 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2527 SDValue FPRound = 2528 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2529 2530 return FPRound; 2531 } 2532 2533 if (DestVT == MVT::f32) 2534 return LowerINT_TO_FP32(Op, DAG, true); 2535 2536 assert(DestVT == MVT::f64); 2537 return LowerINT_TO_FP64(Op, DAG, true); 2538 } 2539 2540 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2541 bool Signed) const { 2542 SDLoc SL(Op); 2543 2544 SDValue Src = Op.getOperand(0); 2545 2546 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2547 2548 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2549 MVT::f64); 2550 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2551 MVT::f64); 2552 // TODO: Should this propagate fast-math-flags? 2553 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2554 2555 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2556 2557 2558 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2559 2560 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2561 MVT::i32, FloorMul); 2562 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2563 2564 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2565 2566 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2567 } 2568 2569 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2570 SDLoc DL(Op); 2571 SDValue N0 = Op.getOperand(0); 2572 2573 // Convert to target node to get known bits 2574 if (N0.getValueType() == MVT::f32) 2575 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2576 2577 if (getTargetMachine().Options.UnsafeFPMath) { 2578 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2579 return SDValue(); 2580 } 2581 2582 assert(N0.getSimpleValueType() == MVT::f64); 2583 2584 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2585 const unsigned ExpMask = 0x7ff; 2586 const unsigned ExpBiasf64 = 1023; 2587 const unsigned ExpBiasf16 = 15; 2588 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2589 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2590 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2591 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2592 DAG.getConstant(32, DL, MVT::i64)); 2593 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2594 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2595 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2596 DAG.getConstant(20, DL, MVT::i64)); 2597 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2598 DAG.getConstant(ExpMask, DL, MVT::i32)); 2599 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2600 // add the f16 bias (15) to get the biased exponent for the f16 format. 2601 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2602 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2603 2604 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2605 DAG.getConstant(8, DL, MVT::i32)); 2606 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2607 DAG.getConstant(0xffe, DL, MVT::i32)); 2608 2609 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2610 DAG.getConstant(0x1ff, DL, MVT::i32)); 2611 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2612 2613 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2614 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2615 2616 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2617 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2618 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2619 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2620 2621 // N = M | (E << 12); 2622 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2623 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2624 DAG.getConstant(12, DL, MVT::i32))); 2625 2626 // B = clamp(1-E, 0, 13); 2627 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2628 One, E); 2629 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2630 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2631 DAG.getConstant(13, DL, MVT::i32)); 2632 2633 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2634 DAG.getConstant(0x1000, DL, MVT::i32)); 2635 2636 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2637 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2638 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2639 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2640 2641 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2642 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2643 DAG.getConstant(0x7, DL, MVT::i32)); 2644 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2645 DAG.getConstant(2, DL, MVT::i32)); 2646 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2647 One, Zero, ISD::SETEQ); 2648 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2649 One, Zero, ISD::SETGT); 2650 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2651 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2652 2653 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2654 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2655 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2656 I, V, ISD::SETEQ); 2657 2658 // Extract the sign bit. 2659 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2660 DAG.getConstant(16, DL, MVT::i32)); 2661 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2662 DAG.getConstant(0x8000, DL, MVT::i32)); 2663 2664 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2665 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2666 } 2667 2668 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2669 SelectionDAG &DAG) const { 2670 SDValue Src = Op.getOperand(0); 2671 2672 // TODO: Factor out code common with LowerFP_TO_UINT. 2673 2674 EVT SrcVT = Src.getValueType(); 2675 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2676 SDLoc DL(Op); 2677 2678 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2679 SDValue FpToInt32 = 2680 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2681 2682 return FpToInt32; 2683 } 2684 2685 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2686 return LowerFP64_TO_INT(Op, DAG, true); 2687 2688 return SDValue(); 2689 } 2690 2691 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2692 SelectionDAG &DAG) const { 2693 SDValue Src = Op.getOperand(0); 2694 2695 // TODO: Factor out code common with LowerFP_TO_SINT. 2696 2697 EVT SrcVT = Src.getValueType(); 2698 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2699 SDLoc DL(Op); 2700 2701 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2702 SDValue FpToInt32 = 2703 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2704 2705 return FpToInt32; 2706 } 2707 2708 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2709 return LowerFP64_TO_INT(Op, DAG, false); 2710 2711 return SDValue(); 2712 } 2713 2714 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2715 SelectionDAG &DAG) const { 2716 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2717 MVT VT = Op.getSimpleValueType(); 2718 MVT ScalarVT = VT.getScalarType(); 2719 2720 assert(VT.isVector()); 2721 2722 SDValue Src = Op.getOperand(0); 2723 SDLoc DL(Op); 2724 2725 // TODO: Don't scalarize on Evergreen? 2726 unsigned NElts = VT.getVectorNumElements(); 2727 SmallVector<SDValue, 8> Args; 2728 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2729 2730 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2731 for (unsigned I = 0; I < NElts; ++I) 2732 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2733 2734 return DAG.getBuildVector(VT, DL, Args); 2735 } 2736 2737 //===----------------------------------------------------------------------===// 2738 // Custom DAG optimizations 2739 //===----------------------------------------------------------------------===// 2740 2741 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2742 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2743 } 2744 2745 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2746 EVT VT = Op.getValueType(); 2747 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2748 // as unsigned 24-bit values. 2749 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2750 } 2751 2752 static SDValue simplifyI24(SDNode *Node24, 2753 TargetLowering::DAGCombinerInfo &DCI) { 2754 SelectionDAG &DAG = DCI.DAG; 2755 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2756 2757 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2758 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2759 unsigned NewOpcode = Node24->getOpcode(); 2760 if (IsIntrin) { 2761 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2762 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2763 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2764 } 2765 2766 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2767 2768 // First try to simplify using GetDemandedBits which allows the operands to 2769 // have other uses, but will only perform simplifications that involve 2770 // bypassing some nodes for this user. 2771 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2772 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2773 if (DemandedLHS || DemandedRHS) 2774 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2775 DemandedLHS ? DemandedLHS : LHS, 2776 DemandedRHS ? DemandedRHS : RHS); 2777 2778 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2779 // operands if this node is the only user. 2780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2781 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2782 return SDValue(Node24, 0); 2783 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2784 return SDValue(Node24, 0); 2785 2786 return SDValue(); 2787 } 2788 2789 template <typename IntTy> 2790 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2791 uint32_t Width, const SDLoc &DL) { 2792 if (Width + Offset < 32) { 2793 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2794 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2795 return DAG.getConstant(Result, DL, MVT::i32); 2796 } 2797 2798 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2799 } 2800 2801 static bool hasVolatileUser(SDNode *Val) { 2802 for (SDNode *U : Val->uses()) { 2803 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2804 if (M->isVolatile()) 2805 return true; 2806 } 2807 } 2808 2809 return false; 2810 } 2811 2812 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2813 // i32 vectors are the canonical memory type. 2814 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2815 return false; 2816 2817 if (!VT.isByteSized()) 2818 return false; 2819 2820 unsigned Size = VT.getStoreSize(); 2821 2822 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2823 return false; 2824 2825 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2826 return false; 2827 2828 return true; 2829 } 2830 2831 // Find a load or store from corresponding pattern root. 2832 // Roots may be build_vector, bitconvert or their combinations. 2833 static MemSDNode* findMemSDNode(SDNode *N) { 2834 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 2835 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 2836 return MN; 2837 assert(isa<BuildVectorSDNode>(N)); 2838 for (SDValue V : N->op_values()) 2839 if (MemSDNode *MN = 2840 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 2841 return MN; 2842 llvm_unreachable("cannot find MemSDNode in the pattern!"); 2843 } 2844 2845 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned, 2846 SelectionDAG &DAG, 2847 SDNode *N, 2848 SDValue Addr, 2849 SDValue &VAddr, 2850 SDValue &Offset, 2851 SDValue &SLC) const { 2852 const GCNSubtarget &ST = 2853 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 2854 int64_t OffsetVal = 0; 2855 2856 if (ST.hasFlatInstOffsets() && 2857 (!ST.hasFlatSegmentOffsetBug() || 2858 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) && 2859 DAG.isBaseWithConstantOffset(Addr)) { 2860 SDValue N0 = Addr.getOperand(0); 2861 SDValue N1 = Addr.getOperand(1); 2862 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 2863 2864 const SIInstrInfo *TII = ST.getInstrInfo(); 2865 if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(), 2866 IsSigned)) { 2867 Addr = N0; 2868 OffsetVal = COffsetVal; 2869 } 2870 } 2871 2872 VAddr = Addr; 2873 Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 2874 SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1); 2875 2876 return true; 2877 } 2878 2879 // Replace load of an illegal type with a store of a bitcast to a friendlier 2880 // type. 2881 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2882 DAGCombinerInfo &DCI) const { 2883 if (!DCI.isBeforeLegalize()) 2884 return SDValue(); 2885 2886 LoadSDNode *LN = cast<LoadSDNode>(N); 2887 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2888 return SDValue(); 2889 2890 SDLoc SL(N); 2891 SelectionDAG &DAG = DCI.DAG; 2892 EVT VT = LN->getMemoryVT(); 2893 2894 unsigned Size = VT.getStoreSize(); 2895 unsigned Align = LN->getAlignment(); 2896 if (Align < Size && isTypeLegal(VT)) { 2897 bool IsFast; 2898 unsigned AS = LN->getAddressSpace(); 2899 2900 // Expand unaligned loads earlier than legalization. Due to visitation order 2901 // problems during legalization, the emitted instructions to pack and unpack 2902 // the bytes again are not eliminated in the case of an unaligned copy. 2903 if (!allowsMisalignedMemoryAccesses( 2904 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2905 if (VT.isVector()) 2906 return scalarizeVectorLoad(LN, DAG); 2907 2908 SDValue Ops[2]; 2909 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2910 return DAG.getMergeValues(Ops, SDLoc(N)); 2911 } 2912 2913 if (!IsFast) 2914 return SDValue(); 2915 } 2916 2917 if (!shouldCombineMemoryType(VT)) 2918 return SDValue(); 2919 2920 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2921 2922 SDValue NewLoad 2923 = DAG.getLoad(NewVT, SL, LN->getChain(), 2924 LN->getBasePtr(), LN->getMemOperand()); 2925 2926 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2927 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2928 return SDValue(N, 0); 2929 } 2930 2931 // Replace store of an illegal type with a store of a bitcast to a friendlier 2932 // type. 2933 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2934 DAGCombinerInfo &DCI) const { 2935 if (!DCI.isBeforeLegalize()) 2936 return SDValue(); 2937 2938 StoreSDNode *SN = cast<StoreSDNode>(N); 2939 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2940 return SDValue(); 2941 2942 EVT VT = SN->getMemoryVT(); 2943 unsigned Size = VT.getStoreSize(); 2944 2945 SDLoc SL(N); 2946 SelectionDAG &DAG = DCI.DAG; 2947 unsigned Align = SN->getAlignment(); 2948 if (Align < Size && isTypeLegal(VT)) { 2949 bool IsFast; 2950 unsigned AS = SN->getAddressSpace(); 2951 2952 // Expand unaligned stores earlier than legalization. Due to visitation 2953 // order problems during legalization, the emitted instructions to pack and 2954 // unpack the bytes again are not eliminated in the case of an unaligned 2955 // copy. 2956 if (!allowsMisalignedMemoryAccesses( 2957 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2958 if (VT.isVector()) 2959 return scalarizeVectorStore(SN, DAG); 2960 2961 return expandUnalignedStore(SN, DAG); 2962 } 2963 2964 if (!IsFast) 2965 return SDValue(); 2966 } 2967 2968 if (!shouldCombineMemoryType(VT)) 2969 return SDValue(); 2970 2971 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2972 SDValue Val = SN->getValue(); 2973 2974 //DCI.AddToWorklist(Val.getNode()); 2975 2976 bool OtherUses = !Val.hasOneUse(); 2977 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2978 if (OtherUses) { 2979 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2980 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2981 } 2982 2983 return DAG.getStore(SN->getChain(), SL, CastVal, 2984 SN->getBasePtr(), SN->getMemOperand()); 2985 } 2986 2987 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2988 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2989 // issues. 2990 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2991 DAGCombinerInfo &DCI) const { 2992 SelectionDAG &DAG = DCI.DAG; 2993 SDValue N0 = N->getOperand(0); 2994 2995 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2996 // (vt2 (truncate (assertzext vt0:x, vt1))) 2997 if (N0.getOpcode() == ISD::TRUNCATE) { 2998 SDValue N1 = N->getOperand(1); 2999 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3000 SDLoc SL(N); 3001 3002 SDValue Src = N0.getOperand(0); 3003 EVT SrcVT = Src.getValueType(); 3004 if (SrcVT.bitsGE(ExtVT)) { 3005 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3006 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3007 } 3008 } 3009 3010 return SDValue(); 3011 } 3012 3013 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3014 SDNode *N, DAGCombinerInfo &DCI) const { 3015 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3016 switch (IID) { 3017 case Intrinsic::amdgcn_mul_i24: 3018 case Intrinsic::amdgcn_mul_u24: 3019 return simplifyI24(N, DCI); 3020 default: 3021 return SDValue(); 3022 } 3023 } 3024 3025 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3026 /// binary operation \p Opc to it with the corresponding constant operands. 3027 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3028 DAGCombinerInfo &DCI, const SDLoc &SL, 3029 unsigned Opc, SDValue LHS, 3030 uint32_t ValLo, uint32_t ValHi) const { 3031 SelectionDAG &DAG = DCI.DAG; 3032 SDValue Lo, Hi; 3033 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3034 3035 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3036 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3037 3038 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3039 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3040 3041 // Re-visit the ands. It's possible we eliminated one of them and it could 3042 // simplify the vector. 3043 DCI.AddToWorklist(Lo.getNode()); 3044 DCI.AddToWorklist(Hi.getNode()); 3045 3046 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3047 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3048 } 3049 3050 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3051 DAGCombinerInfo &DCI) const { 3052 EVT VT = N->getValueType(0); 3053 3054 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3055 if (!RHS) 3056 return SDValue(); 3057 3058 SDValue LHS = N->getOperand(0); 3059 unsigned RHSVal = RHS->getZExtValue(); 3060 if (!RHSVal) 3061 return LHS; 3062 3063 SDLoc SL(N); 3064 SelectionDAG &DAG = DCI.DAG; 3065 3066 switch (LHS->getOpcode()) { 3067 default: 3068 break; 3069 case ISD::ZERO_EXTEND: 3070 case ISD::SIGN_EXTEND: 3071 case ISD::ANY_EXTEND: { 3072 SDValue X = LHS->getOperand(0); 3073 3074 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3075 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3076 // Prefer build_vector as the canonical form if packed types are legal. 3077 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3078 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3079 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3080 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3081 } 3082 3083 // shl (ext x) => zext (shl x), if shift does not overflow int 3084 if (VT != MVT::i64) 3085 break; 3086 KnownBits Known = DAG.computeKnownBits(X); 3087 unsigned LZ = Known.countMinLeadingZeros(); 3088 if (LZ < RHSVal) 3089 break; 3090 EVT XVT = X.getValueType(); 3091 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3092 return DAG.getZExtOrTrunc(Shl, SL, VT); 3093 } 3094 } 3095 3096 if (VT != MVT::i64) 3097 return SDValue(); 3098 3099 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3100 3101 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3102 // common case, splitting this into a move and a 32-bit shift is faster and 3103 // the same code size. 3104 if (RHSVal < 32) 3105 return SDValue(); 3106 3107 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3108 3109 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3110 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3111 3112 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3113 3114 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3115 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3116 } 3117 3118 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3119 DAGCombinerInfo &DCI) const { 3120 if (N->getValueType(0) != MVT::i64) 3121 return SDValue(); 3122 3123 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3124 if (!RHS) 3125 return SDValue(); 3126 3127 SelectionDAG &DAG = DCI.DAG; 3128 SDLoc SL(N); 3129 unsigned RHSVal = RHS->getZExtValue(); 3130 3131 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3132 if (RHSVal == 32) { 3133 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3134 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3135 DAG.getConstant(31, SL, MVT::i32)); 3136 3137 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3138 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3139 } 3140 3141 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3142 if (RHSVal == 63) { 3143 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3144 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3145 DAG.getConstant(31, SL, MVT::i32)); 3146 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3147 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3148 } 3149 3150 return SDValue(); 3151 } 3152 3153 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3154 DAGCombinerInfo &DCI) const { 3155 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3156 if (!RHS) 3157 return SDValue(); 3158 3159 EVT VT = N->getValueType(0); 3160 SDValue LHS = N->getOperand(0); 3161 unsigned ShiftAmt = RHS->getZExtValue(); 3162 SelectionDAG &DAG = DCI.DAG; 3163 SDLoc SL(N); 3164 3165 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3166 // this improves the ability to match BFE patterns in isel. 3167 if (LHS.getOpcode() == ISD::AND) { 3168 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3169 if (Mask->getAPIntValue().isShiftedMask() && 3170 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3171 return DAG.getNode( 3172 ISD::AND, SL, VT, 3173 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3174 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3175 } 3176 } 3177 } 3178 3179 if (VT != MVT::i64) 3180 return SDValue(); 3181 3182 if (ShiftAmt < 32) 3183 return SDValue(); 3184 3185 // srl i64:x, C for C >= 32 3186 // => 3187 // build_pair (srl hi_32(x), C - 32), 0 3188 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3189 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3190 3191 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3192 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3193 3194 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3195 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3196 3197 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3198 3199 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3200 } 3201 3202 SDValue AMDGPUTargetLowering::performTruncateCombine( 3203 SDNode *N, DAGCombinerInfo &DCI) const { 3204 SDLoc SL(N); 3205 SelectionDAG &DAG = DCI.DAG; 3206 EVT VT = N->getValueType(0); 3207 SDValue Src = N->getOperand(0); 3208 3209 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3210 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3211 SDValue Vec = Src.getOperand(0); 3212 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3213 SDValue Elt0 = Vec.getOperand(0); 3214 EVT EltVT = Elt0.getValueType(); 3215 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3216 if (EltVT.isFloatingPoint()) { 3217 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3218 EltVT.changeTypeToInteger(), Elt0); 3219 } 3220 3221 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3222 } 3223 } 3224 } 3225 3226 // Equivalent of above for accessing the high element of a vector as an 3227 // integer operation. 3228 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3229 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3230 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3231 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3232 SDValue BV = stripBitcast(Src.getOperand(0)); 3233 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3234 BV.getValueType().getVectorNumElements() == 2) { 3235 SDValue SrcElt = BV.getOperand(1); 3236 EVT SrcEltVT = SrcElt.getValueType(); 3237 if (SrcEltVT.isFloatingPoint()) { 3238 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3239 SrcEltVT.changeTypeToInteger(), SrcElt); 3240 } 3241 3242 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3243 } 3244 } 3245 } 3246 } 3247 3248 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3249 // 3250 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3251 // i16 (trunc (srl (i32 (trunc x), K))) 3252 if (VT.getScalarSizeInBits() < 32) { 3253 EVT SrcVT = Src.getValueType(); 3254 if (SrcVT.getScalarSizeInBits() > 32 && 3255 (Src.getOpcode() == ISD::SRL || 3256 Src.getOpcode() == ISD::SRA || 3257 Src.getOpcode() == ISD::SHL)) { 3258 SDValue Amt = Src.getOperand(1); 3259 KnownBits Known = DAG.computeKnownBits(Amt); 3260 unsigned Size = VT.getScalarSizeInBits(); 3261 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3262 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3263 EVT MidVT = VT.isVector() ? 3264 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3265 VT.getVectorNumElements()) : MVT::i32; 3266 3267 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3268 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3269 Src.getOperand(0)); 3270 DCI.AddToWorklist(Trunc.getNode()); 3271 3272 if (Amt.getValueType() != NewShiftVT) { 3273 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3274 DCI.AddToWorklist(Amt.getNode()); 3275 } 3276 3277 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3278 Trunc, Amt); 3279 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3280 } 3281 } 3282 } 3283 3284 return SDValue(); 3285 } 3286 3287 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3288 // instructions. If we only match on the legalized i64 mul expansion, 3289 // SimplifyDemandedBits will be unable to remove them because there will be 3290 // multiple uses due to the separate mul + mulh[su]. 3291 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3292 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3293 if (Size <= 32) { 3294 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3295 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3296 } 3297 3298 // Because we want to eliminate extension instructions before the 3299 // operation, we need to create a single user here (i.e. not the separate 3300 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3301 3302 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3303 3304 SDValue Mul = DAG.getNode(MulOpc, SL, 3305 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3306 3307 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3308 Mul.getValue(0), Mul.getValue(1)); 3309 } 3310 3311 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3312 DAGCombinerInfo &DCI) const { 3313 EVT VT = N->getValueType(0); 3314 3315 unsigned Size = VT.getSizeInBits(); 3316 if (VT.isVector() || Size > 64) 3317 return SDValue(); 3318 3319 // There are i16 integer mul/mad. 3320 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3321 return SDValue(); 3322 3323 SelectionDAG &DAG = DCI.DAG; 3324 SDLoc DL(N); 3325 3326 SDValue N0 = N->getOperand(0); 3327 SDValue N1 = N->getOperand(1); 3328 3329 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3330 // in the source into any_extends if the result of the mul is truncated. Since 3331 // we can assume the high bits are whatever we want, use the underlying value 3332 // to avoid the unknown high bits from interfering. 3333 if (N0.getOpcode() == ISD::ANY_EXTEND) 3334 N0 = N0.getOperand(0); 3335 3336 if (N1.getOpcode() == ISD::ANY_EXTEND) 3337 N1 = N1.getOperand(0); 3338 3339 SDValue Mul; 3340 3341 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3342 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3343 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3344 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3345 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3346 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3347 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3348 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3349 } else { 3350 return SDValue(); 3351 } 3352 3353 // We need to use sext even for MUL_U24, because MUL_U24 is used 3354 // for signed multiply of 8 and 16-bit types. 3355 return DAG.getSExtOrTrunc(Mul, DL, VT); 3356 } 3357 3358 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3359 DAGCombinerInfo &DCI) const { 3360 EVT VT = N->getValueType(0); 3361 3362 if (!Subtarget->hasMulI24() || VT.isVector()) 3363 return SDValue(); 3364 3365 SelectionDAG &DAG = DCI.DAG; 3366 SDLoc DL(N); 3367 3368 SDValue N0 = N->getOperand(0); 3369 SDValue N1 = N->getOperand(1); 3370 3371 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3372 return SDValue(); 3373 3374 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3375 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3376 3377 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3378 DCI.AddToWorklist(Mulhi.getNode()); 3379 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3380 } 3381 3382 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3383 DAGCombinerInfo &DCI) const { 3384 EVT VT = N->getValueType(0); 3385 3386 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3387 return SDValue(); 3388 3389 SelectionDAG &DAG = DCI.DAG; 3390 SDLoc DL(N); 3391 3392 SDValue N0 = N->getOperand(0); 3393 SDValue N1 = N->getOperand(1); 3394 3395 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3396 return SDValue(); 3397 3398 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3399 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3400 3401 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3402 DCI.AddToWorklist(Mulhi.getNode()); 3403 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3404 } 3405 3406 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3407 SDNode *N, DAGCombinerInfo &DCI) const { 3408 SelectionDAG &DAG = DCI.DAG; 3409 3410 // Simplify demanded bits before splitting into multiple users. 3411 if (SDValue V = simplifyI24(N, DCI)) 3412 return V; 3413 3414 SDValue N0 = N->getOperand(0); 3415 SDValue N1 = N->getOperand(1); 3416 3417 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3418 3419 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3420 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3421 3422 SDLoc SL(N); 3423 3424 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3425 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3426 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3427 } 3428 3429 static bool isNegativeOne(SDValue Val) { 3430 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3431 return C->isAllOnesValue(); 3432 return false; 3433 } 3434 3435 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3436 SDValue Op, 3437 const SDLoc &DL, 3438 unsigned Opc) const { 3439 EVT VT = Op.getValueType(); 3440 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3441 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3442 LegalVT != MVT::i16)) 3443 return SDValue(); 3444 3445 if (VT != MVT::i32) 3446 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3447 3448 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3449 if (VT != MVT::i32) 3450 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3451 3452 return FFBX; 3453 } 3454 3455 // The native instructions return -1 on 0 input. Optimize out a select that 3456 // produces -1 on 0. 3457 // 3458 // TODO: If zero is not undef, we could also do this if the output is compared 3459 // against the bitwidth. 3460 // 3461 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3462 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3463 SDValue LHS, SDValue RHS, 3464 DAGCombinerInfo &DCI) const { 3465 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3466 if (!CmpRhs || !CmpRhs->isNullValue()) 3467 return SDValue(); 3468 3469 SelectionDAG &DAG = DCI.DAG; 3470 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3471 SDValue CmpLHS = Cond.getOperand(0); 3472 3473 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3474 AMDGPUISD::FFBH_U32; 3475 3476 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3477 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3478 if (CCOpcode == ISD::SETEQ && 3479 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3480 RHS.getOperand(0) == CmpLHS && 3481 isNegativeOne(LHS)) { 3482 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3483 } 3484 3485 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3486 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3487 if (CCOpcode == ISD::SETNE && 3488 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3489 LHS.getOperand(0) == CmpLHS && 3490 isNegativeOne(RHS)) { 3491 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3492 } 3493 3494 return SDValue(); 3495 } 3496 3497 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3498 unsigned Op, 3499 const SDLoc &SL, 3500 SDValue Cond, 3501 SDValue N1, 3502 SDValue N2) { 3503 SelectionDAG &DAG = DCI.DAG; 3504 EVT VT = N1.getValueType(); 3505 3506 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3507 N1.getOperand(0), N2.getOperand(0)); 3508 DCI.AddToWorklist(NewSelect.getNode()); 3509 return DAG.getNode(Op, SL, VT, NewSelect); 3510 } 3511 3512 // Pull a free FP operation out of a select so it may fold into uses. 3513 // 3514 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3515 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3516 // 3517 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3518 // select c, (fabs x), +k -> fabs (select c, x, k) 3519 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3520 SDValue N) { 3521 SelectionDAG &DAG = DCI.DAG; 3522 SDValue Cond = N.getOperand(0); 3523 SDValue LHS = N.getOperand(1); 3524 SDValue RHS = N.getOperand(2); 3525 3526 EVT VT = N.getValueType(); 3527 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3528 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3529 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3530 SDLoc(N), Cond, LHS, RHS); 3531 } 3532 3533 bool Inv = false; 3534 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3535 std::swap(LHS, RHS); 3536 Inv = true; 3537 } 3538 3539 // TODO: Support vector constants. 3540 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3541 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3542 SDLoc SL(N); 3543 // If one side is an fneg/fabs and the other is a constant, we can push the 3544 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3545 SDValue NewLHS = LHS.getOperand(0); 3546 SDValue NewRHS = RHS; 3547 3548 // Careful: if the neg can be folded up, don't try to pull it back down. 3549 bool ShouldFoldNeg = true; 3550 3551 if (NewLHS.hasOneUse()) { 3552 unsigned Opc = NewLHS.getOpcode(); 3553 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3554 ShouldFoldNeg = false; 3555 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3556 ShouldFoldNeg = false; 3557 } 3558 3559 if (ShouldFoldNeg) { 3560 if (LHS.getOpcode() == ISD::FNEG) 3561 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3562 else if (CRHS->isNegative()) 3563 return SDValue(); 3564 3565 if (Inv) 3566 std::swap(NewLHS, NewRHS); 3567 3568 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3569 Cond, NewLHS, NewRHS); 3570 DCI.AddToWorklist(NewSelect.getNode()); 3571 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3572 } 3573 } 3574 3575 return SDValue(); 3576 } 3577 3578 3579 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3580 DAGCombinerInfo &DCI) const { 3581 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3582 return Folded; 3583 3584 SDValue Cond = N->getOperand(0); 3585 if (Cond.getOpcode() != ISD::SETCC) 3586 return SDValue(); 3587 3588 EVT VT = N->getValueType(0); 3589 SDValue LHS = Cond.getOperand(0); 3590 SDValue RHS = Cond.getOperand(1); 3591 SDValue CC = Cond.getOperand(2); 3592 3593 SDValue True = N->getOperand(1); 3594 SDValue False = N->getOperand(2); 3595 3596 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3597 SelectionDAG &DAG = DCI.DAG; 3598 if (DAG.isConstantValueOfAnyType(True) && 3599 !DAG.isConstantValueOfAnyType(False)) { 3600 // Swap cmp + select pair to move constant to false input. 3601 // This will allow using VOPC cndmasks more often. 3602 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3603 3604 SDLoc SL(N); 3605 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3606 LHS.getValueType().isInteger()); 3607 3608 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3609 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3610 } 3611 3612 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3613 SDValue MinMax 3614 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3615 // Revisit this node so we can catch min3/max3/med3 patterns. 3616 //DCI.AddToWorklist(MinMax.getNode()); 3617 return MinMax; 3618 } 3619 } 3620 3621 // There's no reason to not do this if the condition has other uses. 3622 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3623 } 3624 3625 static bool isInv2Pi(const APFloat &APF) { 3626 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3627 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3628 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3629 3630 return APF.bitwiseIsEqual(KF16) || 3631 APF.bitwiseIsEqual(KF32) || 3632 APF.bitwiseIsEqual(KF64); 3633 } 3634 3635 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3636 // additional cost to negate them. 3637 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3638 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3639 if (C->isZero() && !C->isNegative()) 3640 return true; 3641 3642 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3643 return true; 3644 } 3645 3646 return false; 3647 } 3648 3649 static unsigned inverseMinMax(unsigned Opc) { 3650 switch (Opc) { 3651 case ISD::FMAXNUM: 3652 return ISD::FMINNUM; 3653 case ISD::FMINNUM: 3654 return ISD::FMAXNUM; 3655 case ISD::FMAXNUM_IEEE: 3656 return ISD::FMINNUM_IEEE; 3657 case ISD::FMINNUM_IEEE: 3658 return ISD::FMAXNUM_IEEE; 3659 case AMDGPUISD::FMAX_LEGACY: 3660 return AMDGPUISD::FMIN_LEGACY; 3661 case AMDGPUISD::FMIN_LEGACY: 3662 return AMDGPUISD::FMAX_LEGACY; 3663 default: 3664 llvm_unreachable("invalid min/max opcode"); 3665 } 3666 } 3667 3668 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3669 DAGCombinerInfo &DCI) const { 3670 SelectionDAG &DAG = DCI.DAG; 3671 SDValue N0 = N->getOperand(0); 3672 EVT VT = N->getValueType(0); 3673 3674 unsigned Opc = N0.getOpcode(); 3675 3676 // If the input has multiple uses and we can either fold the negate down, or 3677 // the other uses cannot, give up. This both prevents unprofitable 3678 // transformations and infinite loops: we won't repeatedly try to fold around 3679 // a negate that has no 'good' form. 3680 if (N0.hasOneUse()) { 3681 // This may be able to fold into the source, but at a code size cost. Don't 3682 // fold if the fold into the user is free. 3683 if (allUsesHaveSourceMods(N, 0)) 3684 return SDValue(); 3685 } else { 3686 if (fnegFoldsIntoOp(Opc) && 3687 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3688 return SDValue(); 3689 } 3690 3691 SDLoc SL(N); 3692 switch (Opc) { 3693 case ISD::FADD: { 3694 if (!mayIgnoreSignedZero(N0)) 3695 return SDValue(); 3696 3697 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3698 SDValue LHS = N0.getOperand(0); 3699 SDValue RHS = N0.getOperand(1); 3700 3701 if (LHS.getOpcode() != ISD::FNEG) 3702 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3703 else 3704 LHS = LHS.getOperand(0); 3705 3706 if (RHS.getOpcode() != ISD::FNEG) 3707 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3708 else 3709 RHS = RHS.getOperand(0); 3710 3711 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3712 if (Res.getOpcode() != ISD::FADD) 3713 return SDValue(); // Op got folded away. 3714 if (!N0.hasOneUse()) 3715 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3716 return Res; 3717 } 3718 case ISD::FMUL: 3719 case AMDGPUISD::FMUL_LEGACY: { 3720 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3721 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3722 SDValue LHS = N0.getOperand(0); 3723 SDValue RHS = N0.getOperand(1); 3724 3725 if (LHS.getOpcode() == ISD::FNEG) 3726 LHS = LHS.getOperand(0); 3727 else if (RHS.getOpcode() == ISD::FNEG) 3728 RHS = RHS.getOperand(0); 3729 else 3730 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3731 3732 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3733 if (Res.getOpcode() != Opc) 3734 return SDValue(); // Op got folded away. 3735 if (!N0.hasOneUse()) 3736 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3737 return Res; 3738 } 3739 case ISD::FMA: 3740 case ISD::FMAD: { 3741 if (!mayIgnoreSignedZero(N0)) 3742 return SDValue(); 3743 3744 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3745 SDValue LHS = N0.getOperand(0); 3746 SDValue MHS = N0.getOperand(1); 3747 SDValue RHS = N0.getOperand(2); 3748 3749 if (LHS.getOpcode() == ISD::FNEG) 3750 LHS = LHS.getOperand(0); 3751 else if (MHS.getOpcode() == ISD::FNEG) 3752 MHS = MHS.getOperand(0); 3753 else 3754 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3755 3756 if (RHS.getOpcode() != ISD::FNEG) 3757 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3758 else 3759 RHS = RHS.getOperand(0); 3760 3761 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3762 if (Res.getOpcode() != Opc) 3763 return SDValue(); // Op got folded away. 3764 if (!N0.hasOneUse()) 3765 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3766 return Res; 3767 } 3768 case ISD::FMAXNUM: 3769 case ISD::FMINNUM: 3770 case ISD::FMAXNUM_IEEE: 3771 case ISD::FMINNUM_IEEE: 3772 case AMDGPUISD::FMAX_LEGACY: 3773 case AMDGPUISD::FMIN_LEGACY: { 3774 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3775 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3776 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3777 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3778 3779 SDValue LHS = N0.getOperand(0); 3780 SDValue RHS = N0.getOperand(1); 3781 3782 // 0 doesn't have a negated inline immediate. 3783 // TODO: This constant check should be generalized to other operations. 3784 if (isConstantCostlierToNegate(RHS)) 3785 return SDValue(); 3786 3787 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3788 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3789 unsigned Opposite = inverseMinMax(Opc); 3790 3791 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3792 if (Res.getOpcode() != Opposite) 3793 return SDValue(); // Op got folded away. 3794 if (!N0.hasOneUse()) 3795 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3796 return Res; 3797 } 3798 case AMDGPUISD::FMED3: { 3799 SDValue Ops[3]; 3800 for (unsigned I = 0; I < 3; ++I) 3801 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3802 3803 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3804 if (Res.getOpcode() != AMDGPUISD::FMED3) 3805 return SDValue(); // Op got folded away. 3806 if (!N0.hasOneUse()) 3807 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3808 return Res; 3809 } 3810 case ISD::FP_EXTEND: 3811 case ISD::FTRUNC: 3812 case ISD::FRINT: 3813 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3814 case ISD::FSIN: 3815 case ISD::FCANONICALIZE: 3816 case AMDGPUISD::RCP: 3817 case AMDGPUISD::RCP_LEGACY: 3818 case AMDGPUISD::RCP_IFLAG: 3819 case AMDGPUISD::SIN_HW: { 3820 SDValue CvtSrc = N0.getOperand(0); 3821 if (CvtSrc.getOpcode() == ISD::FNEG) { 3822 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3823 // (fneg (rcp (fneg x))) -> (rcp x) 3824 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3825 } 3826 3827 if (!N0.hasOneUse()) 3828 return SDValue(); 3829 3830 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3831 // (fneg (rcp x)) -> (rcp (fneg x)) 3832 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3833 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3834 } 3835 case ISD::FP_ROUND: { 3836 SDValue CvtSrc = N0.getOperand(0); 3837 3838 if (CvtSrc.getOpcode() == ISD::FNEG) { 3839 // (fneg (fp_round (fneg x))) -> (fp_round x) 3840 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3841 CvtSrc.getOperand(0), N0.getOperand(1)); 3842 } 3843 3844 if (!N0.hasOneUse()) 3845 return SDValue(); 3846 3847 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3848 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3849 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3850 } 3851 case ISD::FP16_TO_FP: { 3852 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3853 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3854 // Put the fneg back as a legal source operation that can be matched later. 3855 SDLoc SL(N); 3856 3857 SDValue Src = N0.getOperand(0); 3858 EVT SrcVT = Src.getValueType(); 3859 3860 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3861 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3862 DAG.getConstant(0x8000, SL, SrcVT)); 3863 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3864 } 3865 default: 3866 return SDValue(); 3867 } 3868 } 3869 3870 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3871 DAGCombinerInfo &DCI) const { 3872 SelectionDAG &DAG = DCI.DAG; 3873 SDValue N0 = N->getOperand(0); 3874 3875 if (!N0.hasOneUse()) 3876 return SDValue(); 3877 3878 switch (N0.getOpcode()) { 3879 case ISD::FP16_TO_FP: { 3880 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3881 SDLoc SL(N); 3882 SDValue Src = N0.getOperand(0); 3883 EVT SrcVT = Src.getValueType(); 3884 3885 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3886 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3887 DAG.getConstant(0x7fff, SL, SrcVT)); 3888 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3889 } 3890 default: 3891 return SDValue(); 3892 } 3893 } 3894 3895 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3896 DAGCombinerInfo &DCI) const { 3897 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3898 if (!CFP) 3899 return SDValue(); 3900 3901 // XXX - Should this flush denormals? 3902 const APFloat &Val = CFP->getValueAPF(); 3903 APFloat One(Val.getSemantics(), "1.0"); 3904 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3905 } 3906 3907 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3908 DAGCombinerInfo &DCI) const { 3909 SelectionDAG &DAG = DCI.DAG; 3910 SDLoc DL(N); 3911 3912 switch(N->getOpcode()) { 3913 default: 3914 break; 3915 case ISD::BITCAST: { 3916 EVT DestVT = N->getValueType(0); 3917 3918 // Push casts through vector builds. This helps avoid emitting a large 3919 // number of copies when materializing floating point vector constants. 3920 // 3921 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3922 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3923 if (DestVT.isVector()) { 3924 SDValue Src = N->getOperand(0); 3925 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3926 EVT SrcVT = Src.getValueType(); 3927 unsigned NElts = DestVT.getVectorNumElements(); 3928 3929 if (SrcVT.getVectorNumElements() == NElts) { 3930 EVT DestEltVT = DestVT.getVectorElementType(); 3931 3932 SmallVector<SDValue, 8> CastedElts; 3933 SDLoc SL(N); 3934 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3935 SDValue Elt = Src.getOperand(I); 3936 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3937 } 3938 3939 return DAG.getBuildVector(DestVT, SL, CastedElts); 3940 } 3941 } 3942 } 3943 3944 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3945 break; 3946 3947 // Fold bitcasts of constants. 3948 // 3949 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3950 // TODO: Generalize and move to DAGCombiner 3951 SDValue Src = N->getOperand(0); 3952 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3953 if (Src.getValueType() == MVT::i64) { 3954 SDLoc SL(N); 3955 uint64_t CVal = C->getZExtValue(); 3956 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3957 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3958 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3959 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3960 } 3961 } 3962 3963 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3964 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3965 SDLoc SL(N); 3966 uint64_t CVal = Val.getZExtValue(); 3967 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3968 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3969 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3970 3971 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3972 } 3973 3974 break; 3975 } 3976 case ISD::SHL: { 3977 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3978 break; 3979 3980 return performShlCombine(N, DCI); 3981 } 3982 case ISD::SRL: { 3983 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3984 break; 3985 3986 return performSrlCombine(N, DCI); 3987 } 3988 case ISD::SRA: { 3989 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3990 break; 3991 3992 return performSraCombine(N, DCI); 3993 } 3994 case ISD::TRUNCATE: 3995 return performTruncateCombine(N, DCI); 3996 case ISD::MUL: 3997 return performMulCombine(N, DCI); 3998 case ISD::MULHS: 3999 return performMulhsCombine(N, DCI); 4000 case ISD::MULHU: 4001 return performMulhuCombine(N, DCI); 4002 case AMDGPUISD::MUL_I24: 4003 case AMDGPUISD::MUL_U24: 4004 case AMDGPUISD::MULHI_I24: 4005 case AMDGPUISD::MULHI_U24: { 4006 if (SDValue V = simplifyI24(N, DCI)) 4007 return V; 4008 return SDValue(); 4009 } 4010 case AMDGPUISD::MUL_LOHI_I24: 4011 case AMDGPUISD::MUL_LOHI_U24: 4012 return performMulLoHi24Combine(N, DCI); 4013 case ISD::SELECT: 4014 return performSelectCombine(N, DCI); 4015 case ISD::FNEG: 4016 return performFNegCombine(N, DCI); 4017 case ISD::FABS: 4018 return performFAbsCombine(N, DCI); 4019 case AMDGPUISD::BFE_I32: 4020 case AMDGPUISD::BFE_U32: { 4021 assert(!N->getValueType(0).isVector() && 4022 "Vector handling of BFE not implemented"); 4023 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4024 if (!Width) 4025 break; 4026 4027 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4028 if (WidthVal == 0) 4029 return DAG.getConstant(0, DL, MVT::i32); 4030 4031 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4032 if (!Offset) 4033 break; 4034 4035 SDValue BitsFrom = N->getOperand(0); 4036 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4037 4038 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4039 4040 if (OffsetVal == 0) { 4041 // This is already sign / zero extended, so try to fold away extra BFEs. 4042 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4043 4044 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4045 if (OpSignBits >= SignBits) 4046 return BitsFrom; 4047 4048 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4049 if (Signed) { 4050 // This is a sign_extend_inreg. Replace it to take advantage of existing 4051 // DAG Combines. If not eliminated, we will match back to BFE during 4052 // selection. 4053 4054 // TODO: The sext_inreg of extended types ends, although we can could 4055 // handle them in a single BFE. 4056 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4057 DAG.getValueType(SmallVT)); 4058 } 4059 4060 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4061 } 4062 4063 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4064 if (Signed) { 4065 return constantFoldBFE<int32_t>(DAG, 4066 CVal->getSExtValue(), 4067 OffsetVal, 4068 WidthVal, 4069 DL); 4070 } 4071 4072 return constantFoldBFE<uint32_t>(DAG, 4073 CVal->getZExtValue(), 4074 OffsetVal, 4075 WidthVal, 4076 DL); 4077 } 4078 4079 if ((OffsetVal + WidthVal) >= 32 && 4080 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4081 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4082 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4083 BitsFrom, ShiftVal); 4084 } 4085 4086 if (BitsFrom.hasOneUse()) { 4087 APInt Demanded = APInt::getBitsSet(32, 4088 OffsetVal, 4089 OffsetVal + WidthVal); 4090 4091 KnownBits Known; 4092 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4093 !DCI.isBeforeLegalizeOps()); 4094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4095 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4096 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4097 DCI.CommitTargetLoweringOpt(TLO); 4098 } 4099 } 4100 4101 break; 4102 } 4103 case ISD::LOAD: 4104 return performLoadCombine(N, DCI); 4105 case ISD::STORE: 4106 return performStoreCombine(N, DCI); 4107 case AMDGPUISD::RCP: 4108 case AMDGPUISD::RCP_IFLAG: 4109 return performRcpCombine(N, DCI); 4110 case ISD::AssertZext: 4111 case ISD::AssertSext: 4112 return performAssertSZExtCombine(N, DCI); 4113 case ISD::INTRINSIC_WO_CHAIN: 4114 return performIntrinsicWOChainCombine(N, DCI); 4115 } 4116 return SDValue(); 4117 } 4118 4119 //===----------------------------------------------------------------------===// 4120 // Helper functions 4121 //===----------------------------------------------------------------------===// 4122 4123 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4124 const TargetRegisterClass *RC, 4125 unsigned Reg, EVT VT, 4126 const SDLoc &SL, 4127 bool RawReg) const { 4128 MachineFunction &MF = DAG.getMachineFunction(); 4129 MachineRegisterInfo &MRI = MF.getRegInfo(); 4130 unsigned VReg; 4131 4132 if (!MRI.isLiveIn(Reg)) { 4133 VReg = MRI.createVirtualRegister(RC); 4134 MRI.addLiveIn(Reg, VReg); 4135 } else { 4136 VReg = MRI.getLiveInVirtReg(Reg); 4137 } 4138 4139 if (RawReg) 4140 return DAG.getRegister(VReg, VT); 4141 4142 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4143 } 4144 4145 // This may be called multiple times, and nothing prevents creating multiple 4146 // objects at the same offset. See if we already defined this object. 4147 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4148 int64_t Offset) { 4149 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4150 if (MFI.getObjectOffset(I) == Offset) { 4151 assert(MFI.getObjectSize(I) == Size); 4152 return I; 4153 } 4154 } 4155 4156 return MFI.CreateFixedObject(Size, Offset, true); 4157 } 4158 4159 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4160 EVT VT, 4161 const SDLoc &SL, 4162 int64_t Offset) const { 4163 MachineFunction &MF = DAG.getMachineFunction(); 4164 MachineFrameInfo &MFI = MF.getFrameInfo(); 4165 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4166 4167 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4168 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4169 4170 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4171 MachineMemOperand::MODereferenceable | 4172 MachineMemOperand::MOInvariant); 4173 } 4174 4175 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4176 const SDLoc &SL, 4177 SDValue Chain, 4178 SDValue ArgVal, 4179 int64_t Offset) const { 4180 MachineFunction &MF = DAG.getMachineFunction(); 4181 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4182 4183 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4184 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4185 MachineMemOperand::MODereferenceable); 4186 return Store; 4187 } 4188 4189 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4190 const TargetRegisterClass *RC, 4191 EVT VT, const SDLoc &SL, 4192 const ArgDescriptor &Arg) const { 4193 assert(Arg && "Attempting to load missing argument"); 4194 4195 SDValue V = Arg.isRegister() ? 4196 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4197 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4198 4199 if (!Arg.isMasked()) 4200 return V; 4201 4202 unsigned Mask = Arg.getMask(); 4203 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4204 V = DAG.getNode(ISD::SRL, SL, VT, V, 4205 DAG.getShiftAmountConstant(Shift, VT, SL)); 4206 return DAG.getNode(ISD::AND, SL, VT, V, 4207 DAG.getConstant(Mask >> Shift, SL, VT)); 4208 } 4209 4210 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4211 const MachineFunction &MF, const ImplicitParameter Param) const { 4212 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4213 const AMDGPUSubtarget &ST = 4214 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4215 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4216 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4217 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4218 ExplicitArgOffset; 4219 switch (Param) { 4220 case GRID_DIM: 4221 return ArgOffset; 4222 case GRID_OFFSET: 4223 return ArgOffset + 4; 4224 } 4225 llvm_unreachable("unexpected implicit parameter type"); 4226 } 4227 4228 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4229 4230 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4231 switch ((AMDGPUISD::NodeType)Opcode) { 4232 case AMDGPUISD::FIRST_NUMBER: break; 4233 // AMDIL DAG nodes 4234 NODE_NAME_CASE(UMUL); 4235 NODE_NAME_CASE(BRANCH_COND); 4236 4237 // AMDGPU DAG nodes 4238 NODE_NAME_CASE(IF) 4239 NODE_NAME_CASE(ELSE) 4240 NODE_NAME_CASE(LOOP) 4241 NODE_NAME_CASE(CALL) 4242 NODE_NAME_CASE(TC_RETURN) 4243 NODE_NAME_CASE(TRAP) 4244 NODE_NAME_CASE(RET_FLAG) 4245 NODE_NAME_CASE(RETURN_TO_EPILOG) 4246 NODE_NAME_CASE(ENDPGM) 4247 NODE_NAME_CASE(DWORDADDR) 4248 NODE_NAME_CASE(FRACT) 4249 NODE_NAME_CASE(SETCC) 4250 NODE_NAME_CASE(SETREG) 4251 NODE_NAME_CASE(DENORM_MODE) 4252 NODE_NAME_CASE(FMA_W_CHAIN) 4253 NODE_NAME_CASE(FMUL_W_CHAIN) 4254 NODE_NAME_CASE(CLAMP) 4255 NODE_NAME_CASE(COS_HW) 4256 NODE_NAME_CASE(SIN_HW) 4257 NODE_NAME_CASE(FMAX_LEGACY) 4258 NODE_NAME_CASE(FMIN_LEGACY) 4259 NODE_NAME_CASE(FMAX3) 4260 NODE_NAME_CASE(SMAX3) 4261 NODE_NAME_CASE(UMAX3) 4262 NODE_NAME_CASE(FMIN3) 4263 NODE_NAME_CASE(SMIN3) 4264 NODE_NAME_CASE(UMIN3) 4265 NODE_NAME_CASE(FMED3) 4266 NODE_NAME_CASE(SMED3) 4267 NODE_NAME_CASE(UMED3) 4268 NODE_NAME_CASE(FDOT2) 4269 NODE_NAME_CASE(URECIP) 4270 NODE_NAME_CASE(DIV_SCALE) 4271 NODE_NAME_CASE(DIV_FMAS) 4272 NODE_NAME_CASE(DIV_FIXUP) 4273 NODE_NAME_CASE(FMAD_FTZ) 4274 NODE_NAME_CASE(TRIG_PREOP) 4275 NODE_NAME_CASE(RCP) 4276 NODE_NAME_CASE(RSQ) 4277 NODE_NAME_CASE(RCP_LEGACY) 4278 NODE_NAME_CASE(RSQ_LEGACY) 4279 NODE_NAME_CASE(RCP_IFLAG) 4280 NODE_NAME_CASE(FMUL_LEGACY) 4281 NODE_NAME_CASE(RSQ_CLAMP) 4282 NODE_NAME_CASE(LDEXP) 4283 NODE_NAME_CASE(FP_CLASS) 4284 NODE_NAME_CASE(DOT4) 4285 NODE_NAME_CASE(CARRY) 4286 NODE_NAME_CASE(BORROW) 4287 NODE_NAME_CASE(BFE_U32) 4288 NODE_NAME_CASE(BFE_I32) 4289 NODE_NAME_CASE(BFI) 4290 NODE_NAME_CASE(BFM) 4291 NODE_NAME_CASE(FFBH_U32) 4292 NODE_NAME_CASE(FFBH_I32) 4293 NODE_NAME_CASE(FFBL_B32) 4294 NODE_NAME_CASE(MUL_U24) 4295 NODE_NAME_CASE(MUL_I24) 4296 NODE_NAME_CASE(MULHI_U24) 4297 NODE_NAME_CASE(MULHI_I24) 4298 NODE_NAME_CASE(MUL_LOHI_U24) 4299 NODE_NAME_CASE(MUL_LOHI_I24) 4300 NODE_NAME_CASE(MAD_U24) 4301 NODE_NAME_CASE(MAD_I24) 4302 NODE_NAME_CASE(MAD_I64_I32) 4303 NODE_NAME_CASE(MAD_U64_U32) 4304 NODE_NAME_CASE(PERM) 4305 NODE_NAME_CASE(TEXTURE_FETCH) 4306 NODE_NAME_CASE(EXPORT) 4307 NODE_NAME_CASE(EXPORT_DONE) 4308 NODE_NAME_CASE(R600_EXPORT) 4309 NODE_NAME_CASE(CONST_ADDRESS) 4310 NODE_NAME_CASE(REGISTER_LOAD) 4311 NODE_NAME_CASE(REGISTER_STORE) 4312 NODE_NAME_CASE(SAMPLE) 4313 NODE_NAME_CASE(SAMPLEB) 4314 NODE_NAME_CASE(SAMPLED) 4315 NODE_NAME_CASE(SAMPLEL) 4316 NODE_NAME_CASE(CVT_F32_UBYTE0) 4317 NODE_NAME_CASE(CVT_F32_UBYTE1) 4318 NODE_NAME_CASE(CVT_F32_UBYTE2) 4319 NODE_NAME_CASE(CVT_F32_UBYTE3) 4320 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4321 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4322 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4323 NODE_NAME_CASE(CVT_PK_I16_I32) 4324 NODE_NAME_CASE(CVT_PK_U16_U32) 4325 NODE_NAME_CASE(FP_TO_FP16) 4326 NODE_NAME_CASE(FP16_ZEXT) 4327 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4328 NODE_NAME_CASE(CONST_DATA_PTR) 4329 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4330 NODE_NAME_CASE(LDS) 4331 NODE_NAME_CASE(KILL) 4332 NODE_NAME_CASE(DUMMY_CHAIN) 4333 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4334 NODE_NAME_CASE(INTERP_MOV) 4335 NODE_NAME_CASE(INTERP_P1) 4336 NODE_NAME_CASE(INTERP_P2) 4337 NODE_NAME_CASE(INTERP_P1LL_F16) 4338 NODE_NAME_CASE(INTERP_P1LV_F16) 4339 NODE_NAME_CASE(INTERP_P2_F16) 4340 NODE_NAME_CASE(LOAD_D16_HI) 4341 NODE_NAME_CASE(LOAD_D16_LO) 4342 NODE_NAME_CASE(LOAD_D16_HI_I8) 4343 NODE_NAME_CASE(LOAD_D16_HI_U8) 4344 NODE_NAME_CASE(LOAD_D16_LO_I8) 4345 NODE_NAME_CASE(LOAD_D16_LO_U8) 4346 NODE_NAME_CASE(STORE_MSKOR) 4347 NODE_NAME_CASE(LOAD_CONSTANT) 4348 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4349 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4350 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4351 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4352 NODE_NAME_CASE(DS_ORDERED_COUNT) 4353 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4354 NODE_NAME_CASE(ATOMIC_INC) 4355 NODE_NAME_CASE(ATOMIC_DEC) 4356 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4357 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4358 NODE_NAME_CASE(BUFFER_LOAD) 4359 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4360 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4361 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4362 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4363 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4364 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4365 NODE_NAME_CASE(SBUFFER_LOAD) 4366 NODE_NAME_CASE(BUFFER_STORE) 4367 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4368 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4369 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4370 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4371 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4372 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4373 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4374 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4375 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4376 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4377 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4378 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4379 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4380 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4381 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4382 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4383 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4384 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4385 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4386 NODE_NAME_CASE(ATOMIC_FADD) 4387 NODE_NAME_CASE(ATOMIC_PK_FADD) 4388 4389 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4390 } 4391 return nullptr; 4392 } 4393 4394 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4395 SelectionDAG &DAG, int Enabled, 4396 int &RefinementSteps, 4397 bool &UseOneConstNR, 4398 bool Reciprocal) const { 4399 EVT VT = Operand.getValueType(); 4400 4401 if (VT == MVT::f32) { 4402 RefinementSteps = 0; 4403 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4404 } 4405 4406 // TODO: There is also f64 rsq instruction, but the documentation is less 4407 // clear on its precision. 4408 4409 return SDValue(); 4410 } 4411 4412 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4413 SelectionDAG &DAG, int Enabled, 4414 int &RefinementSteps) const { 4415 EVT VT = Operand.getValueType(); 4416 4417 if (VT == MVT::f32) { 4418 // Reciprocal, < 1 ulp error. 4419 // 4420 // This reciprocal approximation converges to < 0.5 ulp error with one 4421 // newton rhapson performed with two fused multiple adds (FMAs). 4422 4423 RefinementSteps = 0; 4424 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4425 } 4426 4427 // TODO: There is also f64 rcp instruction, but the documentation is less 4428 // clear on its precision. 4429 4430 return SDValue(); 4431 } 4432 4433 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4434 const SDValue Op, KnownBits &Known, 4435 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4436 4437 Known.resetAll(); // Don't know anything. 4438 4439 unsigned Opc = Op.getOpcode(); 4440 4441 switch (Opc) { 4442 default: 4443 break; 4444 case AMDGPUISD::CARRY: 4445 case AMDGPUISD::BORROW: { 4446 Known.Zero = APInt::getHighBitsSet(32, 31); 4447 break; 4448 } 4449 4450 case AMDGPUISD::BFE_I32: 4451 case AMDGPUISD::BFE_U32: { 4452 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4453 if (!CWidth) 4454 return; 4455 4456 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4457 4458 if (Opc == AMDGPUISD::BFE_U32) 4459 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4460 4461 break; 4462 } 4463 case AMDGPUISD::FP_TO_FP16: 4464 case AMDGPUISD::FP16_ZEXT: { 4465 unsigned BitWidth = Known.getBitWidth(); 4466 4467 // High bits are zero. 4468 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4469 break; 4470 } 4471 case AMDGPUISD::MUL_U24: 4472 case AMDGPUISD::MUL_I24: { 4473 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4474 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4475 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4476 RHSKnown.countMinTrailingZeros(); 4477 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4478 4479 // Truncate to 24 bits. 4480 LHSKnown = LHSKnown.trunc(24); 4481 RHSKnown = RHSKnown.trunc(24); 4482 4483 bool Negative = false; 4484 if (Opc == AMDGPUISD::MUL_I24) { 4485 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4486 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4487 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4488 if (MaxValBits >= 32) 4489 break; 4490 bool LHSNegative = LHSKnown.isNegative(); 4491 bool LHSPositive = LHSKnown.isNonNegative(); 4492 bool RHSNegative = RHSKnown.isNegative(); 4493 bool RHSPositive = RHSKnown.isNonNegative(); 4494 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4495 break; 4496 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4497 if (Negative) 4498 Known.One.setHighBits(32 - MaxValBits); 4499 else 4500 Known.Zero.setHighBits(32 - MaxValBits); 4501 } else { 4502 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4503 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4504 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4505 if (MaxValBits >= 32) 4506 break; 4507 Known.Zero.setHighBits(32 - MaxValBits); 4508 } 4509 break; 4510 } 4511 case AMDGPUISD::PERM: { 4512 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4513 if (!CMask) 4514 return; 4515 4516 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4517 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4518 unsigned Sel = CMask->getZExtValue(); 4519 4520 for (unsigned I = 0; I < 32; I += 8) { 4521 unsigned SelBits = Sel & 0xff; 4522 if (SelBits < 4) { 4523 SelBits *= 8; 4524 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4525 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4526 } else if (SelBits < 7) { 4527 SelBits = (SelBits & 3) * 8; 4528 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4529 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4530 } else if (SelBits == 0x0c) { 4531 Known.Zero |= 0xFFull << I; 4532 } else if (SelBits > 0x0c) { 4533 Known.One |= 0xFFull << I; 4534 } 4535 Sel >>= 8; 4536 } 4537 break; 4538 } 4539 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4540 Known.Zero.setHighBits(24); 4541 break; 4542 } 4543 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4544 Known.Zero.setHighBits(16); 4545 break; 4546 } 4547 case AMDGPUISD::LDS: { 4548 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4549 unsigned Align = GA->getGlobal()->getAlignment(); 4550 4551 Known.Zero.setHighBits(16); 4552 if (Align) 4553 Known.Zero.setLowBits(Log2_32(Align)); 4554 break; 4555 } 4556 case ISD::INTRINSIC_WO_CHAIN: { 4557 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4558 switch (IID) { 4559 case Intrinsic::amdgcn_mbcnt_lo: 4560 case Intrinsic::amdgcn_mbcnt_hi: { 4561 const GCNSubtarget &ST = 4562 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4563 // These return at most the wavefront size - 1. 4564 unsigned Size = Op.getValueType().getSizeInBits(); 4565 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4566 break; 4567 } 4568 default: 4569 break; 4570 } 4571 } 4572 } 4573 } 4574 4575 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4576 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4577 unsigned Depth) const { 4578 switch (Op.getOpcode()) { 4579 case AMDGPUISD::BFE_I32: { 4580 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4581 if (!Width) 4582 return 1; 4583 4584 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4585 if (!isNullConstant(Op.getOperand(1))) 4586 return SignBits; 4587 4588 // TODO: Could probably figure something out with non-0 offsets. 4589 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4590 return std::max(SignBits, Op0SignBits); 4591 } 4592 4593 case AMDGPUISD::BFE_U32: { 4594 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4595 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4596 } 4597 4598 case AMDGPUISD::CARRY: 4599 case AMDGPUISD::BORROW: 4600 return 31; 4601 case AMDGPUISD::BUFFER_LOAD_BYTE: 4602 return 25; 4603 case AMDGPUISD::BUFFER_LOAD_SHORT: 4604 return 17; 4605 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4606 return 24; 4607 case AMDGPUISD::BUFFER_LOAD_USHORT: 4608 return 16; 4609 case AMDGPUISD::FP_TO_FP16: 4610 case AMDGPUISD::FP16_ZEXT: 4611 return 16; 4612 default: 4613 return 1; 4614 } 4615 } 4616 4617 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4618 const SelectionDAG &DAG, 4619 bool SNaN, 4620 unsigned Depth) const { 4621 unsigned Opcode = Op.getOpcode(); 4622 switch (Opcode) { 4623 case AMDGPUISD::FMIN_LEGACY: 4624 case AMDGPUISD::FMAX_LEGACY: { 4625 if (SNaN) 4626 return true; 4627 4628 // TODO: Can check no nans on one of the operands for each one, but which 4629 // one? 4630 return false; 4631 } 4632 case AMDGPUISD::FMUL_LEGACY: 4633 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4634 if (SNaN) 4635 return true; 4636 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4637 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4638 } 4639 case AMDGPUISD::FMED3: 4640 case AMDGPUISD::FMIN3: 4641 case AMDGPUISD::FMAX3: 4642 case AMDGPUISD::FMAD_FTZ: { 4643 if (SNaN) 4644 return true; 4645 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4646 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4647 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4648 } 4649 case AMDGPUISD::CVT_F32_UBYTE0: 4650 case AMDGPUISD::CVT_F32_UBYTE1: 4651 case AMDGPUISD::CVT_F32_UBYTE2: 4652 case AMDGPUISD::CVT_F32_UBYTE3: 4653 return true; 4654 4655 case AMDGPUISD::RCP: 4656 case AMDGPUISD::RSQ: 4657 case AMDGPUISD::RCP_LEGACY: 4658 case AMDGPUISD::RSQ_LEGACY: 4659 case AMDGPUISD::RSQ_CLAMP: { 4660 if (SNaN) 4661 return true; 4662 4663 // TODO: Need is known positive check. 4664 return false; 4665 } 4666 case AMDGPUISD::LDEXP: 4667 case AMDGPUISD::FRACT: { 4668 if (SNaN) 4669 return true; 4670 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4671 } 4672 case AMDGPUISD::DIV_SCALE: 4673 case AMDGPUISD::DIV_FMAS: 4674 case AMDGPUISD::DIV_FIXUP: 4675 case AMDGPUISD::TRIG_PREOP: 4676 // TODO: Refine on operands. 4677 return SNaN; 4678 case AMDGPUISD::SIN_HW: 4679 case AMDGPUISD::COS_HW: { 4680 // TODO: Need check for infinity 4681 return SNaN; 4682 } 4683 case ISD::INTRINSIC_WO_CHAIN: { 4684 unsigned IntrinsicID 4685 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4686 // TODO: Handle more intrinsics 4687 switch (IntrinsicID) { 4688 case Intrinsic::amdgcn_cubeid: 4689 return true; 4690 4691 case Intrinsic::amdgcn_frexp_mant: { 4692 if (SNaN) 4693 return true; 4694 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4695 } 4696 case Intrinsic::amdgcn_cvt_pkrtz: { 4697 if (SNaN) 4698 return true; 4699 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4700 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4701 } 4702 case Intrinsic::amdgcn_fdot2: 4703 // TODO: Refine on operand 4704 return SNaN; 4705 default: 4706 return false; 4707 } 4708 } 4709 default: 4710 return false; 4711 } 4712 } 4713 4714 TargetLowering::AtomicExpansionKind 4715 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4716 switch (RMW->getOperation()) { 4717 case AtomicRMWInst::Nand: 4718 case AtomicRMWInst::FAdd: 4719 case AtomicRMWInst::FSub: 4720 return AtomicExpansionKind::CmpXChg; 4721 default: 4722 return AtomicExpansionKind::None; 4723 } 4724 } 4725