1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "R600MachineFunctionInfo.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 using namespace llvm;
38 
39 #include "AMDGPUGenCallingConv.inc"
40 
41 // Find a larger type to do a load / store of a vector with.
42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
43   unsigned StoreSize = VT.getStoreSizeInBits();
44   if (StoreSize <= 32)
45     return EVT::getIntegerVT(Ctx, StoreSize);
46 
47   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
48   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
49 }
50 
51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
52   EVT VT = Op.getValueType();
53   KnownBits Known = DAG.computeKnownBits(Op);
54   return VT.getSizeInBits() - Known.countMinLeadingZeros();
55 }
56 
57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
58   EVT VT = Op.getValueType();
59 
60   // In order for this to be a signed 24-bit value, bit 23, must
61   // be a sign bit.
62   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
63 }
64 
65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
66                                            const AMDGPUSubtarget &STI)
67     : TargetLowering(TM), Subtarget(&STI) {
68   // Lower floating point store/load to integer store/load to reduce the number
69   // of patterns in tablegen.
70   setOperationAction(ISD::LOAD, MVT::f32, Promote);
71   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
72 
73   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
74   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
75 
76   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
77   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
78 
79   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
80   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
81 
82   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
83   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
84 
85   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
86   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
87 
88   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
89   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
90 
91   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
92   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
93 
94   setOperationAction(ISD::LOAD, MVT::i64, Promote);
95   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
96 
97   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
98   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
99 
100   setOperationAction(ISD::LOAD, MVT::f64, Promote);
101   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
102 
103   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
104   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
105 
106   // There are no 64-bit extloads. These should be done as a 32-bit extload and
107   // an extension to 64-bit.
108   for (MVT VT : MVT::integer_valuetypes()) {
109     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
110     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
111     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
112   }
113 
114   for (MVT VT : MVT::integer_valuetypes()) {
115     if (VT == MVT::i64)
116       continue;
117 
118     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
119     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
121     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
122 
123     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
125     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
126     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
127 
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
129     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
130     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
131     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
132   }
133 
134   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
135     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
136     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
137     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
138     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
139     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
140     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
141     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
143     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
144     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
147     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
148     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
149     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
150   }
151 
152   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
153   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
154   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
155   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
156   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
157   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
158   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
159 
160   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
161   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
162   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
163   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
164 
165   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
166   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
167   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
168   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
169 
170   setOperationAction(ISD::STORE, MVT::f32, Promote);
171   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
172 
173   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
174   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
175 
176   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
177   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
178 
179   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
180   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
181 
182   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
183   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
184 
185   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
186   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
187 
188   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
189   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
190 
191   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
192   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
193 
194   setOperationAction(ISD::STORE, MVT::i64, Promote);
195   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
196 
197   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
198   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
199 
200   setOperationAction(ISD::STORE, MVT::f64, Promote);
201   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
202 
203   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
204   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
205 
206   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
207   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
208   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
209   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
210 
211   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
212   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
213   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
214   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
215 
216   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
217   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
218   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
219   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
220   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
221   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
222   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
223 
224   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
225   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
226 
227   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
228   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
229 
230   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
231   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
232 
233   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
234   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
235 
236 
237   setOperationAction(ISD::Constant, MVT::i32, Legal);
238   setOperationAction(ISD::Constant, MVT::i64, Legal);
239   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
240   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
241 
242   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
243   setOperationAction(ISD::BRIND, MVT::Other, Expand);
244 
245   // This is totally unsupported, just custom lower to produce an error.
246   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
247 
248   // Library functions.  These default to Expand, but we have instructions
249   // for them.
250   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
251   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
252   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
253   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
254   setOperationAction(ISD::FABS,   MVT::f32, Legal);
255   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
256   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
257   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
258   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
259   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
260 
261   setOperationAction(ISD::FROUND, MVT::f32, Custom);
262   setOperationAction(ISD::FROUND, MVT::f64, Custom);
263 
264   setOperationAction(ISD::FLOG, MVT::f32, Custom);
265   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
266   setOperationAction(ISD::FEXP, MVT::f32, Custom);
267 
268 
269   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
270   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
271 
272   setOperationAction(ISD::FREM, MVT::f32, Custom);
273   setOperationAction(ISD::FREM, MVT::f64, Custom);
274 
275   // Expand to fneg + fadd.
276   setOperationAction(ISD::FSUB, MVT::f64, Expand);
277 
278   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
279   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
280   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
281   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
282   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
283   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
284   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
285   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
286   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
287   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
288   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
289   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
290   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
291   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
292   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
293   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
294   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
295   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
296   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
297   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
298   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
299   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
300 
301   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
302   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
303   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
304 
305   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
306   for (MVT VT : ScalarIntVTs) {
307     // These should use [SU]DIVREM, so set them to expand
308     setOperationAction(ISD::SDIV, VT, Expand);
309     setOperationAction(ISD::UDIV, VT, Expand);
310     setOperationAction(ISD::SREM, VT, Expand);
311     setOperationAction(ISD::UREM, VT, Expand);
312 
313     // GPU does not have divrem function for signed or unsigned.
314     setOperationAction(ISD::SDIVREM, VT, Custom);
315     setOperationAction(ISD::UDIVREM, VT, Custom);
316 
317     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
318     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
319     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
320 
321     setOperationAction(ISD::BSWAP, VT, Expand);
322     setOperationAction(ISD::CTTZ, VT, Expand);
323     setOperationAction(ISD::CTLZ, VT, Expand);
324 
325     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
326     setOperationAction(ISD::ADDC, VT, Legal);
327     setOperationAction(ISD::SUBC, VT, Legal);
328     setOperationAction(ISD::ADDE, VT, Legal);
329     setOperationAction(ISD::SUBE, VT, Legal);
330   }
331 
332   // The hardware supports 32-bit ROTR, but not ROTL.
333   setOperationAction(ISD::ROTL, MVT::i32, Expand);
334   setOperationAction(ISD::ROTL, MVT::i64, Expand);
335   setOperationAction(ISD::ROTR, MVT::i64, Expand);
336 
337   setOperationAction(ISD::MUL, MVT::i64, Expand);
338   setOperationAction(ISD::MULHU, MVT::i64, Expand);
339   setOperationAction(ISD::MULHS, MVT::i64, Expand);
340   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
341   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
342   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
343   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
344   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
345 
346   setOperationAction(ISD::SMIN, MVT::i32, Legal);
347   setOperationAction(ISD::UMIN, MVT::i32, Legal);
348   setOperationAction(ISD::SMAX, MVT::i32, Legal);
349   setOperationAction(ISD::UMAX, MVT::i32, Legal);
350 
351   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
352   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
353   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
354   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
355 
356   static const MVT::SimpleValueType VectorIntTypes[] = {
357     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
358   };
359 
360   for (MVT VT : VectorIntTypes) {
361     // Expand the following operations for the current type by default.
362     setOperationAction(ISD::ADD,  VT, Expand);
363     setOperationAction(ISD::AND,  VT, Expand);
364     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
365     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
366     setOperationAction(ISD::MUL,  VT, Expand);
367     setOperationAction(ISD::MULHU, VT, Expand);
368     setOperationAction(ISD::MULHS, VT, Expand);
369     setOperationAction(ISD::OR,   VT, Expand);
370     setOperationAction(ISD::SHL,  VT, Expand);
371     setOperationAction(ISD::SRA,  VT, Expand);
372     setOperationAction(ISD::SRL,  VT, Expand);
373     setOperationAction(ISD::ROTL, VT, Expand);
374     setOperationAction(ISD::ROTR, VT, Expand);
375     setOperationAction(ISD::SUB,  VT, Expand);
376     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
377     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
378     setOperationAction(ISD::SDIV, VT, Expand);
379     setOperationAction(ISD::UDIV, VT, Expand);
380     setOperationAction(ISD::SREM, VT, Expand);
381     setOperationAction(ISD::UREM, VT, Expand);
382     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
383     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
384     setOperationAction(ISD::SDIVREM, VT, Custom);
385     setOperationAction(ISD::UDIVREM, VT, Expand);
386     setOperationAction(ISD::SELECT, VT, Expand);
387     setOperationAction(ISD::VSELECT, VT, Expand);
388     setOperationAction(ISD::SELECT_CC, VT, Expand);
389     setOperationAction(ISD::XOR,  VT, Expand);
390     setOperationAction(ISD::BSWAP, VT, Expand);
391     setOperationAction(ISD::CTPOP, VT, Expand);
392     setOperationAction(ISD::CTTZ, VT, Expand);
393     setOperationAction(ISD::CTLZ, VT, Expand);
394     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
395     setOperationAction(ISD::SETCC, VT, Expand);
396   }
397 
398   static const MVT::SimpleValueType FloatVectorTypes[] = {
399      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
400   };
401 
402   for (MVT VT : FloatVectorTypes) {
403     setOperationAction(ISD::FABS, VT, Expand);
404     setOperationAction(ISD::FMINNUM, VT, Expand);
405     setOperationAction(ISD::FMAXNUM, VT, Expand);
406     setOperationAction(ISD::FADD, VT, Expand);
407     setOperationAction(ISD::FCEIL, VT, Expand);
408     setOperationAction(ISD::FCOS, VT, Expand);
409     setOperationAction(ISD::FDIV, VT, Expand);
410     setOperationAction(ISD::FEXP2, VT, Expand);
411     setOperationAction(ISD::FEXP, VT, Expand);
412     setOperationAction(ISD::FLOG2, VT, Expand);
413     setOperationAction(ISD::FREM, VT, Expand);
414     setOperationAction(ISD::FLOG, VT, Expand);
415     setOperationAction(ISD::FLOG10, VT, Expand);
416     setOperationAction(ISD::FPOW, VT, Expand);
417     setOperationAction(ISD::FFLOOR, VT, Expand);
418     setOperationAction(ISD::FTRUNC, VT, Expand);
419     setOperationAction(ISD::FMUL, VT, Expand);
420     setOperationAction(ISD::FMA, VT, Expand);
421     setOperationAction(ISD::FRINT, VT, Expand);
422     setOperationAction(ISD::FNEARBYINT, VT, Expand);
423     setOperationAction(ISD::FSQRT, VT, Expand);
424     setOperationAction(ISD::FSIN, VT, Expand);
425     setOperationAction(ISD::FSUB, VT, Expand);
426     setOperationAction(ISD::FNEG, VT, Expand);
427     setOperationAction(ISD::VSELECT, VT, Expand);
428     setOperationAction(ISD::SELECT_CC, VT, Expand);
429     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
430     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
431     setOperationAction(ISD::SETCC, VT, Expand);
432     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
433   }
434 
435   // This causes using an unrolled select operation rather than expansion with
436   // bit operations. This is in general better, but the alternative using BFI
437   // instructions may be better if the select sources are SGPRs.
438   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
439   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
440 
441   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
442   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
443 
444   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
445   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
446 
447   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
448   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
449 
450   // There are no libcalls of any kind.
451   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
452     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
453 
454   setBooleanContents(ZeroOrNegativeOneBooleanContent);
455   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
456 
457   setSchedulingPreference(Sched::RegPressure);
458   setJumpIsExpensive(true);
459 
460   // FIXME: This is only partially true. If we have to do vector compares, any
461   // SGPR pair can be a condition register. If we have a uniform condition, we
462   // are better off doing SALU operations, where there is only one SCC. For now,
463   // we don't have a way of knowing during instruction selection if a condition
464   // will be uniform and we always use vector compares. Assume we are using
465   // vector compares until that is fixed.
466   setHasMultipleConditionRegisters(true);
467 
468   setMinCmpXchgSizeInBits(32);
469   setSupportsUnalignedAtomics(false);
470 
471   PredictableSelectIsExpensive = false;
472 
473   // We want to find all load dependencies for long chains of stores to enable
474   // merging into very wide vectors. The problem is with vectors with > 4
475   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
476   // vectors are a legal type, even though we have to split the loads
477   // usually. When we can more precisely specify load legality per address
478   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
479   // smarter so that they can figure out what to do in 2 iterations without all
480   // N > 4 stores on the same chain.
481   GatherAllAliasesMaxDepth = 16;
482 
483   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
484   // about these during lowering.
485   MaxStoresPerMemcpy  = 0xffffffff;
486   MaxStoresPerMemmove = 0xffffffff;
487   MaxStoresPerMemset  = 0xffffffff;
488 
489   setTargetDAGCombine(ISD::BITCAST);
490   setTargetDAGCombine(ISD::SHL);
491   setTargetDAGCombine(ISD::SRA);
492   setTargetDAGCombine(ISD::SRL);
493   setTargetDAGCombine(ISD::TRUNCATE);
494   setTargetDAGCombine(ISD::MUL);
495   setTargetDAGCombine(ISD::MULHU);
496   setTargetDAGCombine(ISD::MULHS);
497   setTargetDAGCombine(ISD::SELECT);
498   setTargetDAGCombine(ISD::SELECT_CC);
499   setTargetDAGCombine(ISD::STORE);
500   setTargetDAGCombine(ISD::FADD);
501   setTargetDAGCombine(ISD::FSUB);
502   setTargetDAGCombine(ISD::FNEG);
503   setTargetDAGCombine(ISD::FABS);
504   setTargetDAGCombine(ISD::AssertZext);
505   setTargetDAGCombine(ISD::AssertSext);
506   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
507 }
508 
509 //===----------------------------------------------------------------------===//
510 // Target Information
511 //===----------------------------------------------------------------------===//
512 
513 LLVM_READNONE
514 static bool fnegFoldsIntoOp(unsigned Opc) {
515   switch (Opc) {
516   case ISD::FADD:
517   case ISD::FSUB:
518   case ISD::FMUL:
519   case ISD::FMA:
520   case ISD::FMAD:
521   case ISD::FMINNUM:
522   case ISD::FMAXNUM:
523   case ISD::FMINNUM_IEEE:
524   case ISD::FMAXNUM_IEEE:
525   case ISD::FSIN:
526   case ISD::FTRUNC:
527   case ISD::FRINT:
528   case ISD::FNEARBYINT:
529   case ISD::FCANONICALIZE:
530   case AMDGPUISD::RCP:
531   case AMDGPUISD::RCP_LEGACY:
532   case AMDGPUISD::RCP_IFLAG:
533   case AMDGPUISD::SIN_HW:
534   case AMDGPUISD::FMUL_LEGACY:
535   case AMDGPUISD::FMIN_LEGACY:
536   case AMDGPUISD::FMAX_LEGACY:
537   case AMDGPUISD::FMED3:
538     return true;
539   default:
540     return false;
541   }
542 }
543 
544 /// \p returns true if the operation will definitely need to use a 64-bit
545 /// encoding, and thus will use a VOP3 encoding regardless of the source
546 /// modifiers.
547 LLVM_READONLY
548 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
549   return N->getNumOperands() > 2 || VT == MVT::f64;
550 }
551 
552 // Most FP instructions support source modifiers, but this could be refined
553 // slightly.
554 LLVM_READONLY
555 static bool hasSourceMods(const SDNode *N) {
556   if (isa<MemSDNode>(N))
557     return false;
558 
559   switch (N->getOpcode()) {
560   case ISD::CopyToReg:
561   case ISD::SELECT:
562   case ISD::FDIV:
563   case ISD::FREM:
564   case ISD::INLINEASM:
565   case ISD::INLINEASM_BR:
566   case AMDGPUISD::INTERP_P1:
567   case AMDGPUISD::INTERP_P2:
568   case AMDGPUISD::DIV_SCALE:
569 
570   // TODO: Should really be looking at the users of the bitcast. These are
571   // problematic because bitcasts are used to legalize all stores to integer
572   // types.
573   case ISD::BITCAST:
574     return false;
575   default:
576     return true;
577   }
578 }
579 
580 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
581                                                  unsigned CostThreshold) {
582   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
583   // it is truly free to use a source modifier in all cases. If there are
584   // multiple users but for each one will necessitate using VOP3, there will be
585   // a code size increase. Try to avoid increasing code size unless we know it
586   // will save on the instruction count.
587   unsigned NumMayIncreaseSize = 0;
588   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
589 
590   // XXX - Should this limit number of uses to check?
591   for (const SDNode *U : N->uses()) {
592     if (!hasSourceMods(U))
593       return false;
594 
595     if (!opMustUseVOP3Encoding(U, VT)) {
596       if (++NumMayIncreaseSize > CostThreshold)
597         return false;
598     }
599   }
600 
601   return true;
602 }
603 
604 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
605   return MVT::i32;
606 }
607 
608 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
609   return true;
610 }
611 
612 // The backend supports 32 and 64 bit floating point immediates.
613 // FIXME: Why are we reporting vectors of FP immediates as legal?
614 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
615                                         bool ForCodeSize) const {
616   EVT ScalarVT = VT.getScalarType();
617   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
618          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
619 }
620 
621 // We don't want to shrink f64 / f32 constants.
622 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
623   EVT ScalarVT = VT.getScalarType();
624   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
625 }
626 
627 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
628                                                  ISD::LoadExtType ExtTy,
629                                                  EVT NewVT) const {
630   // TODO: This may be worth removing. Check regression tests for diffs.
631   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
632     return false;
633 
634   unsigned NewSize = NewVT.getStoreSizeInBits();
635 
636   // If we are reducing to a 32-bit load, this is always better.
637   if (NewSize == 32)
638     return true;
639 
640   EVT OldVT = N->getValueType(0);
641   unsigned OldSize = OldVT.getStoreSizeInBits();
642 
643   MemSDNode *MN = cast<MemSDNode>(N);
644   unsigned AS = MN->getAddressSpace();
645   // Do not shrink an aligned scalar load to sub-dword.
646   // Scalar engine cannot do sub-dword loads.
647   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
648       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
649        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
650        (isa<LoadSDNode>(N) &&
651         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
652       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
653     return false;
654 
655   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
656   // extloads, so doing one requires using a buffer_load. In cases where we
657   // still couldn't use a scalar load, using the wider load shouldn't really
658   // hurt anything.
659 
660   // If the old size already had to be an extload, there's no harm in continuing
661   // to reduce the width.
662   return (OldSize < 32);
663 }
664 
665 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
666                                                    const SelectionDAG &DAG,
667                                                    const MachineMemOperand &MMO) const {
668 
669   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
670 
671   if (LoadTy.getScalarType() == MVT::i32)
672     return false;
673 
674   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
675   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
676 
677   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
678     return false;
679 
680   bool Fast = false;
681   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
682                                         CastTy, MMO, &Fast) &&
683          Fast;
684 }
685 
686 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
687 // profitable with the expansion for 64-bit since it's generally good to
688 // speculate things.
689 // FIXME: These should really have the size as a parameter.
690 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
691   return true;
692 }
693 
694 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
695   return true;
696 }
697 
698 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
699   switch (N->getOpcode()) {
700     default:
701     return false;
702     case ISD::EntryToken:
703     case ISD::TokenFactor:
704       return true;
705     case ISD::INTRINSIC_WO_CHAIN:
706     {
707       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
708       switch (IntrID) {
709         default:
710         return false;
711         case Intrinsic::amdgcn_readfirstlane:
712         case Intrinsic::amdgcn_readlane:
713           return true;
714       }
715     }
716     break;
717     case ISD::LOAD:
718     {
719       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
720           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
721         return true;
722       return false;
723     }
724     break;
725   }
726 }
727 
728 //===---------------------------------------------------------------------===//
729 // Target Properties
730 //===---------------------------------------------------------------------===//
731 
732 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
733   assert(VT.isFloatingPoint());
734 
735   // Packed operations do not have a fabs modifier.
736   return VT == MVT::f32 || VT == MVT::f64 ||
737          (Subtarget->has16BitInsts() && VT == MVT::f16);
738 }
739 
740 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
741   assert(VT.isFloatingPoint());
742   return VT == MVT::f32 || VT == MVT::f64 ||
743          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
744          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
745 }
746 
747 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
748                                                          unsigned NumElem,
749                                                          unsigned AS) const {
750   return true;
751 }
752 
753 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
754   // There are few operations which truly have vector input operands. Any vector
755   // operation is going to involve operations on each component, and a
756   // build_vector will be a copy per element, so it always makes sense to use a
757   // build_vector input in place of the extracted element to avoid a copy into a
758   // super register.
759   //
760   // We should probably only do this if all users are extracts only, but this
761   // should be the common case.
762   return true;
763 }
764 
765 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
766   // Truncate is just accessing a subregister.
767 
768   unsigned SrcSize = Source.getSizeInBits();
769   unsigned DestSize = Dest.getSizeInBits();
770 
771   return DestSize < SrcSize && DestSize % 32 == 0 ;
772 }
773 
774 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
775   // Truncate is just accessing a subregister.
776 
777   unsigned SrcSize = Source->getScalarSizeInBits();
778   unsigned DestSize = Dest->getScalarSizeInBits();
779 
780   if (DestSize== 16 && Subtarget->has16BitInsts())
781     return SrcSize >= 32;
782 
783   return DestSize < SrcSize && DestSize % 32 == 0;
784 }
785 
786 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
787   unsigned SrcSize = Src->getScalarSizeInBits();
788   unsigned DestSize = Dest->getScalarSizeInBits();
789 
790   if (SrcSize == 16 && Subtarget->has16BitInsts())
791     return DestSize >= 32;
792 
793   return SrcSize == 32 && DestSize == 64;
794 }
795 
796 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
797   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
798   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
799   // this will enable reducing 64-bit operations the 32-bit, which is always
800   // good.
801 
802   if (Src == MVT::i16)
803     return Dest == MVT::i32 ||Dest == MVT::i64 ;
804 
805   return Src == MVT::i32 && Dest == MVT::i64;
806 }
807 
808 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
809   return isZExtFree(Val.getValueType(), VT2);
810 }
811 
812 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
813   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
814   // limited number of native 64-bit operations. Shrinking an operation to fit
815   // in a single 32-bit register should always be helpful. As currently used,
816   // this is much less general than the name suggests, and is only used in
817   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
818   // not profitable, and may actually be harmful.
819   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
820 }
821 
822 //===---------------------------------------------------------------------===//
823 // TargetLowering Callbacks
824 //===---------------------------------------------------------------------===//
825 
826 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
827                                                   bool IsVarArg) {
828   switch (CC) {
829   case CallingConv::AMDGPU_VS:
830   case CallingConv::AMDGPU_GS:
831   case CallingConv::AMDGPU_PS:
832   case CallingConv::AMDGPU_CS:
833   case CallingConv::AMDGPU_HS:
834   case CallingConv::AMDGPU_ES:
835   case CallingConv::AMDGPU_LS:
836     return CC_AMDGPU;
837   case CallingConv::C:
838   case CallingConv::Fast:
839   case CallingConv::Cold:
840     return CC_AMDGPU_Func;
841   case CallingConv::AMDGPU_KERNEL:
842   case CallingConv::SPIR_KERNEL:
843   default:
844     report_fatal_error("Unsupported calling convention for call");
845   }
846 }
847 
848 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
849                                                     bool IsVarArg) {
850   switch (CC) {
851   case CallingConv::AMDGPU_KERNEL:
852   case CallingConv::SPIR_KERNEL:
853     llvm_unreachable("kernels should not be handled here");
854   case CallingConv::AMDGPU_VS:
855   case CallingConv::AMDGPU_GS:
856   case CallingConv::AMDGPU_PS:
857   case CallingConv::AMDGPU_CS:
858   case CallingConv::AMDGPU_HS:
859   case CallingConv::AMDGPU_ES:
860   case CallingConv::AMDGPU_LS:
861     return RetCC_SI_Shader;
862   case CallingConv::C:
863   case CallingConv::Fast:
864   case CallingConv::Cold:
865     return RetCC_AMDGPU_Func;
866   default:
867     report_fatal_error("Unsupported calling convention.");
868   }
869 }
870 
871 /// The SelectionDAGBuilder will automatically promote function arguments
872 /// with illegal types.  However, this does not work for the AMDGPU targets
873 /// since the function arguments are stored in memory as these illegal types.
874 /// In order to handle this properly we need to get the original types sizes
875 /// from the LLVM IR Function and fixup the ISD:InputArg values before
876 /// passing them to AnalyzeFormalArguments()
877 
878 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
879 /// input values across multiple registers.  Each item in the Ins array
880 /// represents a single value that will be stored in registers.  Ins[x].VT is
881 /// the value type of the value that will be stored in the register, so
882 /// whatever SDNode we lower the argument to needs to be this type.
883 ///
884 /// In order to correctly lower the arguments we need to know the size of each
885 /// argument.  Since Ins[x].VT gives us the size of the register that will
886 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
887 /// for the orignal function argument so that we can deduce the correct memory
888 /// type to use for Ins[x].  In most cases the correct memory type will be
889 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
890 /// we have a kernel argument of type v8i8, this argument will be split into
891 /// 8 parts and each part will be represented by its own item in the Ins array.
892 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
893 /// the argument before it was split.  From this, we deduce that the memory type
894 /// for each individual part is i8.  We pass the memory type as LocVT to the
895 /// calling convention analysis function and the register type (Ins[x].VT) as
896 /// the ValVT.
897 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
898   CCState &State,
899   const SmallVectorImpl<ISD::InputArg> &Ins) const {
900   const MachineFunction &MF = State.getMachineFunction();
901   const Function &Fn = MF.getFunction();
902   LLVMContext &Ctx = Fn.getParent()->getContext();
903   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
904   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
905   CallingConv::ID CC = Fn.getCallingConv();
906 
907   unsigned MaxAlign = 1;
908   uint64_t ExplicitArgOffset = 0;
909   const DataLayout &DL = Fn.getParent()->getDataLayout();
910 
911   unsigned InIndex = 0;
912 
913   for (const Argument &Arg : Fn.args()) {
914     Type *BaseArgTy = Arg.getType();
915     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
916     MaxAlign = std::max(Align, MaxAlign);
917     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
918 
919     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
920     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
921 
922     // We're basically throwing away everything passed into us and starting over
923     // to get accurate in-memory offsets. The "PartOffset" is completely useless
924     // to us as computed in Ins.
925     //
926     // We also need to figure out what type legalization is trying to do to get
927     // the correct memory offsets.
928 
929     SmallVector<EVT, 16> ValueVTs;
930     SmallVector<uint64_t, 16> Offsets;
931     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
932 
933     for (unsigned Value = 0, NumValues = ValueVTs.size();
934          Value != NumValues; ++Value) {
935       uint64_t BasePartOffset = Offsets[Value];
936 
937       EVT ArgVT = ValueVTs[Value];
938       EVT MemVT = ArgVT;
939       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
940       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
941 
942       if (NumRegs == 1) {
943         // This argument is not split, so the IR type is the memory type.
944         if (ArgVT.isExtended()) {
945           // We have an extended type, like i24, so we should just use the
946           // register type.
947           MemVT = RegisterVT;
948         } else {
949           MemVT = ArgVT;
950         }
951       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
952                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
953         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
954         // We have a vector value which has been split into a vector with
955         // the same scalar type, but fewer elements.  This should handle
956         // all the floating-point vector types.
957         MemVT = RegisterVT;
958       } else if (ArgVT.isVector() &&
959                  ArgVT.getVectorNumElements() == NumRegs) {
960         // This arg has been split so that each element is stored in a separate
961         // register.
962         MemVT = ArgVT.getScalarType();
963       } else if (ArgVT.isExtended()) {
964         // We have an extended type, like i65.
965         MemVT = RegisterVT;
966       } else {
967         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
968         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
969         if (RegisterVT.isInteger()) {
970           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
971         } else if (RegisterVT.isVector()) {
972           assert(!RegisterVT.getScalarType().isFloatingPoint());
973           unsigned NumElements = RegisterVT.getVectorNumElements();
974           assert(MemoryBits % NumElements == 0);
975           // This vector type has been split into another vector type with
976           // a different elements size.
977           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
978                                            MemoryBits / NumElements);
979           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
980         } else {
981           llvm_unreachable("cannot deduce memory type.");
982         }
983       }
984 
985       // Convert one element vectors to scalar.
986       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
987         MemVT = MemVT.getScalarType();
988 
989       // Round up vec3/vec5 argument.
990       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
991         assert(MemVT.getVectorNumElements() == 3 ||
992                MemVT.getVectorNumElements() == 5);
993         MemVT = MemVT.getPow2VectorType(State.getContext());
994       }
995 
996       unsigned PartOffset = 0;
997       for (unsigned i = 0; i != NumRegs; ++i) {
998         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
999                                                BasePartOffset + PartOffset,
1000                                                MemVT.getSimpleVT(),
1001                                                CCValAssign::Full));
1002         PartOffset += MemVT.getStoreSize();
1003       }
1004     }
1005   }
1006 }
1007 
1008 SDValue AMDGPUTargetLowering::LowerReturn(
1009   SDValue Chain, CallingConv::ID CallConv,
1010   bool isVarArg,
1011   const SmallVectorImpl<ISD::OutputArg> &Outs,
1012   const SmallVectorImpl<SDValue> &OutVals,
1013   const SDLoc &DL, SelectionDAG &DAG) const {
1014   // FIXME: Fails for r600 tests
1015   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1016   // "wave terminate should not have return values");
1017   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1018 }
1019 
1020 //===---------------------------------------------------------------------===//
1021 // Target specific lowering
1022 //===---------------------------------------------------------------------===//
1023 
1024 /// Selects the correct CCAssignFn for a given CallingConvention value.
1025 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1026                                                     bool IsVarArg) {
1027   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1028 }
1029 
1030 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1031                                                       bool IsVarArg) {
1032   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1033 }
1034 
1035 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1036                                                   SelectionDAG &DAG,
1037                                                   MachineFrameInfo &MFI,
1038                                                   int ClobberedFI) const {
1039   SmallVector<SDValue, 8> ArgChains;
1040   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1041   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1042 
1043   // Include the original chain at the beginning of the list. When this is
1044   // used by target LowerCall hooks, this helps legalize find the
1045   // CALLSEQ_BEGIN node.
1046   ArgChains.push_back(Chain);
1047 
1048   // Add a chain value for each stack argument corresponding
1049   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1050                             UE = DAG.getEntryNode().getNode()->use_end();
1051        U != UE; ++U) {
1052     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1053       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1054         if (FI->getIndex() < 0) {
1055           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1056           int64_t InLastByte = InFirstByte;
1057           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1058 
1059           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1060               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1061             ArgChains.push_back(SDValue(L, 1));
1062         }
1063       }
1064     }
1065   }
1066 
1067   // Build a tokenfactor for all the chains.
1068   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1069 }
1070 
1071 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1072                                                  SmallVectorImpl<SDValue> &InVals,
1073                                                  StringRef Reason) const {
1074   SDValue Callee = CLI.Callee;
1075   SelectionDAG &DAG = CLI.DAG;
1076 
1077   const Function &Fn = DAG.getMachineFunction().getFunction();
1078 
1079   StringRef FuncName("<unknown>");
1080 
1081   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1082     FuncName = G->getSymbol();
1083   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1084     FuncName = G->getGlobal()->getName();
1085 
1086   DiagnosticInfoUnsupported NoCalls(
1087     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1088   DAG.getContext()->diagnose(NoCalls);
1089 
1090   if (!CLI.IsTailCall) {
1091     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1092       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1093   }
1094 
1095   return DAG.getEntryNode();
1096 }
1097 
1098 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1099                                         SmallVectorImpl<SDValue> &InVals) const {
1100   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1101 }
1102 
1103 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1104                                                       SelectionDAG &DAG) const {
1105   const Function &Fn = DAG.getMachineFunction().getFunction();
1106 
1107   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1108                                             SDLoc(Op).getDebugLoc());
1109   DAG.getContext()->diagnose(NoDynamicAlloca);
1110   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1111   return DAG.getMergeValues(Ops, SDLoc());
1112 }
1113 
1114 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1115                                              SelectionDAG &DAG) const {
1116   switch (Op.getOpcode()) {
1117   default:
1118     Op->print(errs(), &DAG);
1119     llvm_unreachable("Custom lowering code for this"
1120                      "instruction is not implemented yet!");
1121     break;
1122   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1123   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1124   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1125   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1126   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1127   case ISD::FREM: return LowerFREM(Op, DAG);
1128   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1129   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1130   case ISD::FRINT: return LowerFRINT(Op, DAG);
1131   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1132   case ISD::FROUND: return LowerFROUND(Op, DAG);
1133   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1134   case ISD::FLOG:
1135     return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef);
1136   case ISD::FLOG10:
1137     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1138   case ISD::FEXP:
1139     return lowerFEXP(Op, DAG);
1140   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1141   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1142   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1143   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1144   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1145   case ISD::CTTZ:
1146   case ISD::CTTZ_ZERO_UNDEF:
1147   case ISD::CTLZ:
1148   case ISD::CTLZ_ZERO_UNDEF:
1149     return LowerCTLZ_CTTZ(Op, DAG);
1150   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1151   }
1152   return Op;
1153 }
1154 
1155 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1156                                               SmallVectorImpl<SDValue> &Results,
1157                                               SelectionDAG &DAG) const {
1158   switch (N->getOpcode()) {
1159   case ISD::SIGN_EXTEND_INREG:
1160     // Different parts of legalization seem to interpret which type of
1161     // sign_extend_inreg is the one to check for custom lowering. The extended
1162     // from type is what really matters, but some places check for custom
1163     // lowering of the result type. This results in trying to use
1164     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1165     // nothing here and let the illegal result integer be handled normally.
1166     return;
1167   default:
1168     return;
1169   }
1170 }
1171 
1172 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1173   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1174   if (!GVar || !GVar->hasInitializer())
1175     return false;
1176 
1177   return !isa<UndefValue>(GVar->getInitializer());
1178 }
1179 
1180 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1181                                                  SDValue Op,
1182                                                  SelectionDAG &DAG) const {
1183 
1184   const DataLayout &DL = DAG.getDataLayout();
1185   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1186   const GlobalValue *GV = G->getGlobal();
1187 
1188   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1189       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1190     if (!MFI->isEntryFunction()) {
1191       const Function &Fn = DAG.getMachineFunction().getFunction();
1192       DiagnosticInfoUnsupported BadLDSDecl(
1193         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1194       DAG.getContext()->diagnose(BadLDSDecl);
1195     }
1196 
1197     // XXX: What does the value of G->getOffset() mean?
1198     assert(G->getOffset() == 0 &&
1199          "Do not know what to do with an non-zero offset");
1200 
1201     // TODO: We could emit code to handle the initialization somewhere.
1202     if (!hasDefinedInitializer(GV)) {
1203       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1204       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1205     }
1206   }
1207 
1208   const Function &Fn = DAG.getMachineFunction().getFunction();
1209   DiagnosticInfoUnsupported BadInit(
1210       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1211   DAG.getContext()->diagnose(BadInit);
1212   return SDValue();
1213 }
1214 
1215 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1216                                                   SelectionDAG &DAG) const {
1217   SmallVector<SDValue, 8> Args;
1218 
1219   EVT VT = Op.getValueType();
1220   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1221     SDLoc SL(Op);
1222     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1223     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1224 
1225     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1226     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1227   }
1228 
1229   for (const SDUse &U : Op->ops())
1230     DAG.ExtractVectorElements(U.get(), Args);
1231 
1232   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1233 }
1234 
1235 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1236                                                      SelectionDAG &DAG) const {
1237 
1238   SmallVector<SDValue, 8> Args;
1239   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1240   EVT VT = Op.getValueType();
1241   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1242                             VT.getVectorNumElements());
1243 
1244   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1245 }
1246 
1247 /// Generate Min/Max node
1248 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1249                                                    SDValue LHS, SDValue RHS,
1250                                                    SDValue True, SDValue False,
1251                                                    SDValue CC,
1252                                                    DAGCombinerInfo &DCI) const {
1253   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1254     return SDValue();
1255 
1256   SelectionDAG &DAG = DCI.DAG;
1257   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1258   switch (CCOpcode) {
1259   case ISD::SETOEQ:
1260   case ISD::SETONE:
1261   case ISD::SETUNE:
1262   case ISD::SETNE:
1263   case ISD::SETUEQ:
1264   case ISD::SETEQ:
1265   case ISD::SETFALSE:
1266   case ISD::SETFALSE2:
1267   case ISD::SETTRUE:
1268   case ISD::SETTRUE2:
1269   case ISD::SETUO:
1270   case ISD::SETO:
1271     break;
1272   case ISD::SETULE:
1273   case ISD::SETULT: {
1274     if (LHS == True)
1275       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1276     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1277   }
1278   case ISD::SETOLE:
1279   case ISD::SETOLT:
1280   case ISD::SETLE:
1281   case ISD::SETLT: {
1282     // Ordered. Assume ordered for undefined.
1283 
1284     // Only do this after legalization to avoid interfering with other combines
1285     // which might occur.
1286     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1287         !DCI.isCalledByLegalizer())
1288       return SDValue();
1289 
1290     // We need to permute the operands to get the correct NaN behavior. The
1291     // selected operand is the second one based on the failing compare with NaN,
1292     // so permute it based on the compare type the hardware uses.
1293     if (LHS == True)
1294       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1295     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1296   }
1297   case ISD::SETUGE:
1298   case ISD::SETUGT: {
1299     if (LHS == True)
1300       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1301     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1302   }
1303   case ISD::SETGT:
1304   case ISD::SETGE:
1305   case ISD::SETOGE:
1306   case ISD::SETOGT: {
1307     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1308         !DCI.isCalledByLegalizer())
1309       return SDValue();
1310 
1311     if (LHS == True)
1312       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1313     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1314   }
1315   case ISD::SETCC_INVALID:
1316     llvm_unreachable("Invalid setcc condcode!");
1317   }
1318   return SDValue();
1319 }
1320 
1321 std::pair<SDValue, SDValue>
1322 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1323   SDLoc SL(Op);
1324 
1325   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1326 
1327   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1328   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1329 
1330   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1331   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1332 
1333   return std::make_pair(Lo, Hi);
1334 }
1335 
1336 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1337   SDLoc SL(Op);
1338 
1339   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1340   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1341   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1342 }
1343 
1344 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1345   SDLoc SL(Op);
1346 
1347   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1348   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1349   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1350 }
1351 
1352 // Split a vector type into two parts. The first part is a power of two vector.
1353 // The second part is whatever is left over, and is a scalar if it would
1354 // otherwise be a 1-vector.
1355 std::pair<EVT, EVT>
1356 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1357   EVT LoVT, HiVT;
1358   EVT EltVT = VT.getVectorElementType();
1359   unsigned NumElts = VT.getVectorNumElements();
1360   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1361   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1362   HiVT = NumElts - LoNumElts == 1
1363              ? EltVT
1364              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1365   return std::make_pair(LoVT, HiVT);
1366 }
1367 
1368 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1369 // scalar.
1370 std::pair<SDValue, SDValue>
1371 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1372                                   const EVT &LoVT, const EVT &HiVT,
1373                                   SelectionDAG &DAG) const {
1374   assert(LoVT.getVectorNumElements() +
1375                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1376              N.getValueType().getVectorNumElements() &&
1377          "More vector elements requested than available!");
1378   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1379   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1380                            DAG.getConstant(0, DL, IdxTy));
1381   SDValue Hi = DAG.getNode(
1382       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1383       HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1384   return std::make_pair(Lo, Hi);
1385 }
1386 
1387 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1388                                               SelectionDAG &DAG) const {
1389   LoadSDNode *Load = cast<LoadSDNode>(Op);
1390   EVT VT = Op.getValueType();
1391 
1392 
1393   // If this is a 2 element vector, we really want to scalarize and not create
1394   // weird 1 element vectors.
1395   if (VT.getVectorNumElements() == 2)
1396     return scalarizeVectorLoad(Load, DAG);
1397 
1398   SDValue BasePtr = Load->getBasePtr();
1399   EVT MemVT = Load->getMemoryVT();
1400   SDLoc SL(Op);
1401 
1402   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1403 
1404   EVT LoVT, HiVT;
1405   EVT LoMemVT, HiMemVT;
1406   SDValue Lo, Hi;
1407 
1408   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1409   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1410   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1411 
1412   unsigned Size = LoMemVT.getStoreSize();
1413   unsigned BaseAlign = Load->getAlignment();
1414   unsigned HiAlign = MinAlign(BaseAlign, Size);
1415 
1416   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1417                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1418                                   BaseAlign, Load->getMemOperand()->getFlags());
1419   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1420   SDValue HiLoad =
1421       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1422                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1423                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1424 
1425   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1426   SDValue Join;
1427   if (LoVT == HiVT) {
1428     // This is the case that the vector is power of two so was evenly split.
1429     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1430   } else {
1431     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1432                        DAG.getConstant(0, SL, IdxTy));
1433     Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1434                                        : ISD::INSERT_VECTOR_ELT,
1435                        SL, VT, Join, HiLoad,
1436                        DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1437   }
1438 
1439   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1440                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1441 
1442   return DAG.getMergeValues(Ops, SL);
1443 }
1444 
1445 // Widen a vector load from vec3 to vec4.
1446 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1447                                               SelectionDAG &DAG) const {
1448   LoadSDNode *Load = cast<LoadSDNode>(Op);
1449   EVT VT = Op.getValueType();
1450   assert(VT.getVectorNumElements() == 3);
1451   SDValue BasePtr = Load->getBasePtr();
1452   EVT MemVT = Load->getMemoryVT();
1453   SDLoc SL(Op);
1454   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1455   unsigned BaseAlign = Load->getAlignment();
1456 
1457   EVT WideVT =
1458       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1459   EVT WideMemVT =
1460       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1461   SDValue WideLoad = DAG.getExtLoad(
1462       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1463       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1464   return DAG.getMergeValues(
1465       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1466                    DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1467        WideLoad.getValue(1)},
1468       SL);
1469 }
1470 
1471 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1472                                                SelectionDAG &DAG) const {
1473   StoreSDNode *Store = cast<StoreSDNode>(Op);
1474   SDValue Val = Store->getValue();
1475   EVT VT = Val.getValueType();
1476 
1477   // If this is a 2 element vector, we really want to scalarize and not create
1478   // weird 1 element vectors.
1479   if (VT.getVectorNumElements() == 2)
1480     return scalarizeVectorStore(Store, DAG);
1481 
1482   EVT MemVT = Store->getMemoryVT();
1483   SDValue Chain = Store->getChain();
1484   SDValue BasePtr = Store->getBasePtr();
1485   SDLoc SL(Op);
1486 
1487   EVT LoVT, HiVT;
1488   EVT LoMemVT, HiMemVT;
1489   SDValue Lo, Hi;
1490 
1491   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1492   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1493   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1494 
1495   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1496 
1497   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1498   unsigned BaseAlign = Store->getAlignment();
1499   unsigned Size = LoMemVT.getStoreSize();
1500   unsigned HiAlign = MinAlign(BaseAlign, Size);
1501 
1502   SDValue LoStore =
1503       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1504                         Store->getMemOperand()->getFlags());
1505   SDValue HiStore =
1506       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1507                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1508 
1509   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1510 }
1511 
1512 // This is a shortcut for integer division because we have fast i32<->f32
1513 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1514 // float is enough to accurately represent up to a 24-bit signed integer.
1515 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1516                                             bool Sign) const {
1517   SDLoc DL(Op);
1518   EVT VT = Op.getValueType();
1519   SDValue LHS = Op.getOperand(0);
1520   SDValue RHS = Op.getOperand(1);
1521   MVT IntVT = MVT::i32;
1522   MVT FltVT = MVT::f32;
1523 
1524   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1525   if (LHSSignBits < 9)
1526     return SDValue();
1527 
1528   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1529   if (RHSSignBits < 9)
1530     return SDValue();
1531 
1532   unsigned BitSize = VT.getSizeInBits();
1533   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1534   unsigned DivBits = BitSize - SignBits;
1535   if (Sign)
1536     ++DivBits;
1537 
1538   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1539   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1540 
1541   SDValue jq = DAG.getConstant(1, DL, IntVT);
1542 
1543   if (Sign) {
1544     // char|short jq = ia ^ ib;
1545     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1546 
1547     // jq = jq >> (bitsize - 2)
1548     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1549                      DAG.getConstant(BitSize - 2, DL, VT));
1550 
1551     // jq = jq | 0x1
1552     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1553   }
1554 
1555   // int ia = (int)LHS;
1556   SDValue ia = LHS;
1557 
1558   // int ib, (int)RHS;
1559   SDValue ib = RHS;
1560 
1561   // float fa = (float)ia;
1562   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1563 
1564   // float fb = (float)ib;
1565   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1566 
1567   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1568                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1569 
1570   // fq = trunc(fq);
1571   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1572 
1573   // float fqneg = -fq;
1574   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1575 
1576   // float fr = mad(fqneg, fb, fa);
1577   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1578                     (unsigned)AMDGPUISD::FMAD_FTZ :
1579                     (unsigned)ISD::FMAD;
1580   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1581 
1582   // int iq = (int)fq;
1583   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1584 
1585   // fr = fabs(fr);
1586   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1587 
1588   // fb = fabs(fb);
1589   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1590 
1591   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1592 
1593   // int cv = fr >= fb;
1594   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1595 
1596   // jq = (cv ? jq : 0);
1597   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1598 
1599   // dst = iq + jq;
1600   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1601 
1602   // Rem needs compensation, it's easier to recompute it
1603   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1604   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1605 
1606   // Truncate to number of bits this divide really is.
1607   if (Sign) {
1608     SDValue InRegSize
1609       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1610     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1611     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1612   } else {
1613     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1614     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1615     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1616   }
1617 
1618   return DAG.getMergeValues({ Div, Rem }, DL);
1619 }
1620 
1621 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1622                                       SelectionDAG &DAG,
1623                                       SmallVectorImpl<SDValue> &Results) const {
1624   SDLoc DL(Op);
1625   EVT VT = Op.getValueType();
1626 
1627   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1628 
1629   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1630 
1631   SDValue One = DAG.getConstant(1, DL, HalfVT);
1632   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1633 
1634   //HiLo split
1635   SDValue LHS = Op.getOperand(0);
1636   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1637   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1638 
1639   SDValue RHS = Op.getOperand(1);
1640   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1641   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1642 
1643   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1644       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1645 
1646     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1647                               LHS_Lo, RHS_Lo);
1648 
1649     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1650     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1651 
1652     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1653     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1654     return;
1655   }
1656 
1657   if (isTypeLegal(MVT::i64)) {
1658     // Compute denominator reciprocal.
1659     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1660                     (unsigned)AMDGPUISD::FMAD_FTZ :
1661                     (unsigned)ISD::FMAD;
1662 
1663     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1664     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1665     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1666       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1667       Cvt_Lo);
1668     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1669     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1670       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1671     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1672       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1673     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1674     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1675       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1676       Mul1);
1677     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1678     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1679     SDValue Rcp64 = DAG.getBitcast(VT,
1680                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1681 
1682     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1683     SDValue One64  = DAG.getConstant(1, DL, VT);
1684     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1685     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1686 
1687     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1688     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1689     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1690     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1691                                     Zero);
1692     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1693                                     One);
1694 
1695     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1696                                   Mulhi1_Lo, Zero1);
1697     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1698                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1699     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1700     SDValue Add1 = DAG.getBitcast(VT,
1701                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1702 
1703     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1704     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1705     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1706                                     Zero);
1707     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1708                                     One);
1709 
1710     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1711                                   Mulhi2_Lo, Zero1);
1712     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1713                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1714     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1715                                   Zero, Add2_Lo.getValue(1));
1716     SDValue Add2 = DAG.getBitcast(VT,
1717                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1718     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1719 
1720     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1721 
1722     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1723     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1724     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1725                                   Mul3_Lo, Zero1);
1726     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1727                                   Mul3_Hi, Sub1_Lo.getValue(1));
1728     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1729     SDValue Sub1 = DAG.getBitcast(VT,
1730                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1731 
1732     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1733     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1734                                  ISD::SETUGE);
1735     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1736                                  ISD::SETUGE);
1737     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1738 
1739     // TODO: Here and below portions of the code can be enclosed into if/endif.
1740     // Currently control flow is unconditional and we have 4 selects after
1741     // potential endif to substitute PHIs.
1742 
1743     // if C3 != 0 ...
1744     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1745                                   RHS_Lo, Zero1);
1746     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1747                                   RHS_Hi, Sub1_Lo.getValue(1));
1748     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1749                                   Zero, Sub2_Lo.getValue(1));
1750     SDValue Sub2 = DAG.getBitcast(VT,
1751                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1752 
1753     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1754 
1755     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1756                                  ISD::SETUGE);
1757     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1758                                  ISD::SETUGE);
1759     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1760 
1761     // if (C6 != 0)
1762     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1763 
1764     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1765                                   RHS_Lo, Zero1);
1766     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1767                                   RHS_Hi, Sub2_Lo.getValue(1));
1768     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1769                                   Zero, Sub3_Lo.getValue(1));
1770     SDValue Sub3 = DAG.getBitcast(VT,
1771                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1772 
1773     // endif C6
1774     // endif C3
1775 
1776     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1777     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1778 
1779     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1780     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1781 
1782     Results.push_back(Div);
1783     Results.push_back(Rem);
1784 
1785     return;
1786   }
1787 
1788   // r600 expandion.
1789   // Get Speculative values
1790   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1791   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1792 
1793   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1794   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1795   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1796 
1797   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1798   SDValue DIV_Lo = Zero;
1799 
1800   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1801 
1802   for (unsigned i = 0; i < halfBitWidth; ++i) {
1803     const unsigned bitPos = halfBitWidth - i - 1;
1804     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1805     // Get value of high bit
1806     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1807     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1808     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1809 
1810     // Shift
1811     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1812     // Add LHS high bit
1813     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1814 
1815     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1816     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1817 
1818     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1819 
1820     // Update REM
1821     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1822     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1823   }
1824 
1825   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1826   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1827   Results.push_back(DIV);
1828   Results.push_back(REM);
1829 }
1830 
1831 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1832                                            SelectionDAG &DAG) const {
1833   SDLoc DL(Op);
1834   EVT VT = Op.getValueType();
1835 
1836   if (VT == MVT::i64) {
1837     SmallVector<SDValue, 2> Results;
1838     LowerUDIVREM64(Op, DAG, Results);
1839     return DAG.getMergeValues(Results, DL);
1840   }
1841 
1842   if (VT == MVT::i32) {
1843     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1844       return Res;
1845   }
1846 
1847   SDValue Num = Op.getOperand(0);
1848   SDValue Den = Op.getOperand(1);
1849 
1850   // RCP =  URECIP(Den) = 2^32 / Den + e
1851   // e is rounding error.
1852   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1853 
1854   // RCP_LO = mul(RCP, Den) */
1855   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1856 
1857   // RCP_HI = mulhu (RCP, Den) */
1858   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1859 
1860   // NEG_RCP_LO = -RCP_LO
1861   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1862                                                      RCP_LO);
1863 
1864   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1865   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1866                                            NEG_RCP_LO, RCP_LO,
1867                                            ISD::SETEQ);
1868   // Calculate the rounding error from the URECIP instruction
1869   // E = mulhu(ABS_RCP_LO, RCP)
1870   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1871 
1872   // RCP_A_E = RCP + E
1873   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1874 
1875   // RCP_S_E = RCP - E
1876   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1877 
1878   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1879   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1880                                      RCP_A_E, RCP_S_E,
1881                                      ISD::SETEQ);
1882   // Quotient = mulhu(Tmp0, Num)
1883   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1884 
1885   // Num_S_Remainder = Quotient * Den
1886   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1887 
1888   // Remainder = Num - Num_S_Remainder
1889   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1890 
1891   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1892   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1893                                                  DAG.getConstant(-1, DL, VT),
1894                                                  DAG.getConstant(0, DL, VT),
1895                                                  ISD::SETUGE);
1896   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1897   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1898                                                   Num_S_Remainder,
1899                                                   DAG.getConstant(-1, DL, VT),
1900                                                   DAG.getConstant(0, DL, VT),
1901                                                   ISD::SETUGE);
1902   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1903   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1904                                                Remainder_GE_Zero);
1905 
1906   // Calculate Division result:
1907 
1908   // Quotient_A_One = Quotient + 1
1909   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1910                                        DAG.getConstant(1, DL, VT));
1911 
1912   // Quotient_S_One = Quotient - 1
1913   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1914                                        DAG.getConstant(1, DL, VT));
1915 
1916   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1917   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1918                                      Quotient, Quotient_A_One, ISD::SETEQ);
1919 
1920   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1921   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1922                             Quotient_S_One, Div, ISD::SETEQ);
1923 
1924   // Calculate Rem result:
1925 
1926   // Remainder_S_Den = Remainder - Den
1927   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1928 
1929   // Remainder_A_Den = Remainder + Den
1930   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1931 
1932   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1933   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1934                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1935 
1936   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1937   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1938                             Remainder_A_Den, Rem, ISD::SETEQ);
1939   SDValue Ops[2] = {
1940     Div,
1941     Rem
1942   };
1943   return DAG.getMergeValues(Ops, DL);
1944 }
1945 
1946 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1947                                            SelectionDAG &DAG) const {
1948   SDLoc DL(Op);
1949   EVT VT = Op.getValueType();
1950 
1951   SDValue LHS = Op.getOperand(0);
1952   SDValue RHS = Op.getOperand(1);
1953 
1954   SDValue Zero = DAG.getConstant(0, DL, VT);
1955   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1956 
1957   if (VT == MVT::i32) {
1958     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1959       return Res;
1960   }
1961 
1962   if (VT == MVT::i64 &&
1963       DAG.ComputeNumSignBits(LHS) > 32 &&
1964       DAG.ComputeNumSignBits(RHS) > 32) {
1965     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1966 
1967     //HiLo split
1968     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1969     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1970     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1971                                  LHS_Lo, RHS_Lo);
1972     SDValue Res[2] = {
1973       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1974       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1975     };
1976     return DAG.getMergeValues(Res, DL);
1977   }
1978 
1979   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1980   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1981   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1982   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1983 
1984   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1985   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1986 
1987   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1988   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1989 
1990   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1991   SDValue Rem = Div.getValue(1);
1992 
1993   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1994   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1995 
1996   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1997   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1998 
1999   SDValue Res[2] = {
2000     Div,
2001     Rem
2002   };
2003   return DAG.getMergeValues(Res, DL);
2004 }
2005 
2006 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2007 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2008   SDLoc SL(Op);
2009   EVT VT = Op.getValueType();
2010   SDValue X = Op.getOperand(0);
2011   SDValue Y = Op.getOperand(1);
2012 
2013   // TODO: Should this propagate fast-math-flags?
2014 
2015   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2016   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2017   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2018 
2019   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2020 }
2021 
2022 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2023   SDLoc SL(Op);
2024   SDValue Src = Op.getOperand(0);
2025 
2026   // result = trunc(src)
2027   // if (src > 0.0 && src != result)
2028   //   result += 1.0
2029 
2030   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2031 
2032   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2033   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2034 
2035   EVT SetCCVT =
2036       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2037 
2038   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2039   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2040   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2041 
2042   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2043   // TODO: Should this propagate fast-math-flags?
2044   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2045 }
2046 
2047 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2048                                   SelectionDAG &DAG) {
2049   const unsigned FractBits = 52;
2050   const unsigned ExpBits = 11;
2051 
2052   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2053                                 Hi,
2054                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2055                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2056   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2057                             DAG.getConstant(1023, SL, MVT::i32));
2058 
2059   return Exp;
2060 }
2061 
2062 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2063   SDLoc SL(Op);
2064   SDValue Src = Op.getOperand(0);
2065 
2066   assert(Op.getValueType() == MVT::f64);
2067 
2068   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2069   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2070 
2071   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2072 
2073   // Extract the upper half, since this is where we will find the sign and
2074   // exponent.
2075   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2076 
2077   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2078 
2079   const unsigned FractBits = 52;
2080 
2081   // Extract the sign bit.
2082   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2083   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2084 
2085   // Extend back to 64-bits.
2086   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2087   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2088 
2089   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2090   const SDValue FractMask
2091     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2092 
2093   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2094   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2095   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2096 
2097   EVT SetCCVT =
2098       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2099 
2100   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2101 
2102   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2103   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2104 
2105   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2106   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2107 
2108   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2109 }
2110 
2111 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2112   SDLoc SL(Op);
2113   SDValue Src = Op.getOperand(0);
2114 
2115   assert(Op.getValueType() == MVT::f64);
2116 
2117   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2118   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2119   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2120 
2121   // TODO: Should this propagate fast-math-flags?
2122 
2123   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2124   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2125 
2126   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2127 
2128   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2129   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2130 
2131   EVT SetCCVT =
2132       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2133   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2134 
2135   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2136 }
2137 
2138 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2139   // FNEARBYINT and FRINT are the same, except in their handling of FP
2140   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2141   // rint, so just treat them as equivalent.
2142   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2143 }
2144 
2145 // XXX - May require not supporting f32 denormals?
2146 
2147 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2148 // compare and vselect end up producing worse code than scalarizing the whole
2149 // operation.
2150 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2151   SDLoc SL(Op);
2152   SDValue X = Op.getOperand(0);
2153   EVT VT = Op.getValueType();
2154 
2155   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2156 
2157   // TODO: Should this propagate fast-math-flags?
2158 
2159   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2160 
2161   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2162 
2163   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2164   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2165   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2166 
2167   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2168 
2169   EVT SetCCVT =
2170       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2171 
2172   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2173 
2174   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2175 
2176   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2177 }
2178 
2179 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2180   SDLoc SL(Op);
2181   SDValue X = Op.getOperand(0);
2182 
2183   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2184 
2185   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2186   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2187   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2188   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2189   EVT SetCCVT =
2190       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2191 
2192   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2193 
2194   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2195 
2196   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2197 
2198   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2199                                        MVT::i64);
2200 
2201   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2202   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2203                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2204                                           MVT::i64),
2205                           Exp);
2206 
2207   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2208   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2209                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2210                               ISD::SETNE);
2211 
2212   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2213                              D, DAG.getConstant(0, SL, MVT::i64));
2214   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2215 
2216   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2217   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2218 
2219   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2220   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2221   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2222 
2223   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2224                             ExpEqNegOne,
2225                             DAG.getConstantFP(1.0, SL, MVT::f64),
2226                             DAG.getConstantFP(0.0, SL, MVT::f64));
2227 
2228   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2229 
2230   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2231   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2232 
2233   return K;
2234 }
2235 
2236 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2237   EVT VT = Op.getValueType();
2238 
2239   if (VT == MVT::f32 || VT == MVT::f16)
2240     return LowerFROUND32_16(Op, DAG);
2241 
2242   if (VT == MVT::f64)
2243     return LowerFROUND64(Op, DAG);
2244 
2245   llvm_unreachable("unhandled type");
2246 }
2247 
2248 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2249   SDLoc SL(Op);
2250   SDValue Src = Op.getOperand(0);
2251 
2252   // result = trunc(src);
2253   // if (src < 0.0 && src != result)
2254   //   result += -1.0.
2255 
2256   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2257 
2258   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2259   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2260 
2261   EVT SetCCVT =
2262       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2263 
2264   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2265   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2266   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2267 
2268   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2269   // TODO: Should this propagate fast-math-flags?
2270   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2271 }
2272 
2273 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2274                                         double Log2BaseInverted) const {
2275   EVT VT = Op.getValueType();
2276 
2277   SDLoc SL(Op);
2278   SDValue Operand = Op.getOperand(0);
2279   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2280   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2281 
2282   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2283 }
2284 
2285 // exp2(M_LOG2E_F * f);
2286 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2287   EVT VT = Op.getValueType();
2288   SDLoc SL(Op);
2289   SDValue Src = Op.getOperand(0);
2290 
2291   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2292   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2293   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2294 }
2295 
2296 static bool isCtlzOpc(unsigned Opc) {
2297   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2298 }
2299 
2300 static bool isCttzOpc(unsigned Opc) {
2301   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2302 }
2303 
2304 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2305   SDLoc SL(Op);
2306   SDValue Src = Op.getOperand(0);
2307   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2308                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2309 
2310   unsigned ISDOpc, NewOpc;
2311   if (isCtlzOpc(Op.getOpcode())) {
2312     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2313     NewOpc = AMDGPUISD::FFBH_U32;
2314   } else if (isCttzOpc(Op.getOpcode())) {
2315     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2316     NewOpc = AMDGPUISD::FFBL_B32;
2317   } else
2318     llvm_unreachable("Unexpected OPCode!!!");
2319 
2320 
2321   if (ZeroUndef && Src.getValueType() == MVT::i32)
2322     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2323 
2324   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2325 
2326   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2327   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2328 
2329   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2330   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2331 
2332   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2333                                    *DAG.getContext(), MVT::i32);
2334 
2335   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2336   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2337 
2338   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2339   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2340 
2341   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2342   SDValue Add, NewOpr;
2343   if (isCtlzOpc(Op.getOpcode())) {
2344     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2345     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2346     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2347   } else {
2348     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2349     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2350     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2351   }
2352 
2353   if (!ZeroUndef) {
2354     // Test if the full 64-bit input is zero.
2355 
2356     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2357     // which we probably don't want.
2358     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2359     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2360     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2361 
2362     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2363     // with the same cycles, otherwise it is slower.
2364     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2365     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2366 
2367     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2368 
2369     // The instruction returns -1 for 0 input, but the defined intrinsic
2370     // behavior is to return the number of bits.
2371     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2372                          SrcIsZero, Bits32, NewOpr);
2373   }
2374 
2375   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2376 }
2377 
2378 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2379                                                bool Signed) const {
2380   // Unsigned
2381   // cul2f(ulong u)
2382   //{
2383   //  uint lz = clz(u);
2384   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2385   //  u = (u << lz) & 0x7fffffffffffffffUL;
2386   //  ulong t = u & 0xffffffffffUL;
2387   //  uint v = (e << 23) | (uint)(u >> 40);
2388   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2389   //  return as_float(v + r);
2390   //}
2391   // Signed
2392   // cl2f(long l)
2393   //{
2394   //  long s = l >> 63;
2395   //  float r = cul2f((l + s) ^ s);
2396   //  return s ? -r : r;
2397   //}
2398 
2399   SDLoc SL(Op);
2400   SDValue Src = Op.getOperand(0);
2401   SDValue L = Src;
2402 
2403   SDValue S;
2404   if (Signed) {
2405     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2406     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2407 
2408     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2409     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2410   }
2411 
2412   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2413                                    *DAG.getContext(), MVT::f32);
2414 
2415 
2416   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2417   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2418   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2419   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2420 
2421   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2422   SDValue E = DAG.getSelect(SL, MVT::i32,
2423     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2424     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2425     ZeroI32);
2426 
2427   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2428     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2429     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2430 
2431   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2432                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2433 
2434   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2435                              U, DAG.getConstant(40, SL, MVT::i64));
2436 
2437   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2438     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2439     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2440 
2441   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2442   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2443   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2444 
2445   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2446 
2447   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2448 
2449   SDValue R = DAG.getSelect(SL, MVT::i32,
2450     RCmp,
2451     One,
2452     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2453   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2454   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2455 
2456   if (!Signed)
2457     return R;
2458 
2459   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2460   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2461 }
2462 
2463 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2464                                                bool Signed) const {
2465   SDLoc SL(Op);
2466   SDValue Src = Op.getOperand(0);
2467 
2468   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2469 
2470   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2471                            DAG.getConstant(0, SL, MVT::i32));
2472   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2473                            DAG.getConstant(1, SL, MVT::i32));
2474 
2475   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2476                               SL, MVT::f64, Hi);
2477 
2478   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2479 
2480   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2481                               DAG.getConstant(32, SL, MVT::i32));
2482   // TODO: Should this propagate fast-math-flags?
2483   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2484 }
2485 
2486 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2487                                                SelectionDAG &DAG) const {
2488   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2489          "operation should be legal");
2490 
2491   // TODO: Factor out code common with LowerSINT_TO_FP.
2492 
2493   EVT DestVT = Op.getValueType();
2494   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2495     SDLoc DL(Op);
2496     SDValue Src = Op.getOperand(0);
2497 
2498     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2499     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2500     SDValue FPRound =
2501         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2502 
2503     return FPRound;
2504   }
2505 
2506   if (DestVT == MVT::f32)
2507     return LowerINT_TO_FP32(Op, DAG, false);
2508 
2509   assert(DestVT == MVT::f64);
2510   return LowerINT_TO_FP64(Op, DAG, false);
2511 }
2512 
2513 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2514                                               SelectionDAG &DAG) const {
2515   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2516          "operation should be legal");
2517 
2518   // TODO: Factor out code common with LowerUINT_TO_FP.
2519 
2520   EVT DestVT = Op.getValueType();
2521   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2522     SDLoc DL(Op);
2523     SDValue Src = Op.getOperand(0);
2524 
2525     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2526     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2527     SDValue FPRound =
2528         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2529 
2530     return FPRound;
2531   }
2532 
2533   if (DestVT == MVT::f32)
2534     return LowerINT_TO_FP32(Op, DAG, true);
2535 
2536   assert(DestVT == MVT::f64);
2537   return LowerINT_TO_FP64(Op, DAG, true);
2538 }
2539 
2540 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2541                                                bool Signed) const {
2542   SDLoc SL(Op);
2543 
2544   SDValue Src = Op.getOperand(0);
2545 
2546   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2547 
2548   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2549                                  MVT::f64);
2550   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2551                                  MVT::f64);
2552   // TODO: Should this propagate fast-math-flags?
2553   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2554 
2555   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2556 
2557 
2558   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2559 
2560   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2561                            MVT::i32, FloorMul);
2562   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2563 
2564   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2565 
2566   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2567 }
2568 
2569 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2570   SDLoc DL(Op);
2571   SDValue N0 = Op.getOperand(0);
2572 
2573   // Convert to target node to get known bits
2574   if (N0.getValueType() == MVT::f32)
2575     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2576 
2577   if (getTargetMachine().Options.UnsafeFPMath) {
2578     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2579     return SDValue();
2580   }
2581 
2582   assert(N0.getSimpleValueType() == MVT::f64);
2583 
2584   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2585   const unsigned ExpMask = 0x7ff;
2586   const unsigned ExpBiasf64 = 1023;
2587   const unsigned ExpBiasf16 = 15;
2588   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2589   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2590   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2591   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2592                            DAG.getConstant(32, DL, MVT::i64));
2593   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2594   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2595   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2596                           DAG.getConstant(20, DL, MVT::i64));
2597   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2598                   DAG.getConstant(ExpMask, DL, MVT::i32));
2599   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2600   // add the f16 bias (15) to get the biased exponent for the f16 format.
2601   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2602                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2603 
2604   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2605                           DAG.getConstant(8, DL, MVT::i32));
2606   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2607                   DAG.getConstant(0xffe, DL, MVT::i32));
2608 
2609   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2610                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2611   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2612 
2613   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2614   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2615 
2616   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2617   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2618       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2619                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2620 
2621   // N = M | (E << 12);
2622   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2623       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2624                   DAG.getConstant(12, DL, MVT::i32)));
2625 
2626   // B = clamp(1-E, 0, 13);
2627   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2628                                   One, E);
2629   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2630   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2631                   DAG.getConstant(13, DL, MVT::i32));
2632 
2633   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2634                                    DAG.getConstant(0x1000, DL, MVT::i32));
2635 
2636   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2637   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2638   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2639   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2640 
2641   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2642   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2643                               DAG.getConstant(0x7, DL, MVT::i32));
2644   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2645                   DAG.getConstant(2, DL, MVT::i32));
2646   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2647                                One, Zero, ISD::SETEQ);
2648   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2649                                One, Zero, ISD::SETGT);
2650   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2651   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2652 
2653   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2654                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2655   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2656                       I, V, ISD::SETEQ);
2657 
2658   // Extract the sign bit.
2659   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2660                             DAG.getConstant(16, DL, MVT::i32));
2661   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2662                      DAG.getConstant(0x8000, DL, MVT::i32));
2663 
2664   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2665   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2666 }
2667 
2668 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2669                                               SelectionDAG &DAG) const {
2670   SDValue Src = Op.getOperand(0);
2671 
2672   // TODO: Factor out code common with LowerFP_TO_UINT.
2673 
2674   EVT SrcVT = Src.getValueType();
2675   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2676     SDLoc DL(Op);
2677 
2678     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2679     SDValue FpToInt32 =
2680         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2681 
2682     return FpToInt32;
2683   }
2684 
2685   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2686     return LowerFP64_TO_INT(Op, DAG, true);
2687 
2688   return SDValue();
2689 }
2690 
2691 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2692                                               SelectionDAG &DAG) const {
2693   SDValue Src = Op.getOperand(0);
2694 
2695   // TODO: Factor out code common with LowerFP_TO_SINT.
2696 
2697   EVT SrcVT = Src.getValueType();
2698   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2699     SDLoc DL(Op);
2700 
2701     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2702     SDValue FpToInt32 =
2703         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2704 
2705     return FpToInt32;
2706   }
2707 
2708   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2709     return LowerFP64_TO_INT(Op, DAG, false);
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2715                                                      SelectionDAG &DAG) const {
2716   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2717   MVT VT = Op.getSimpleValueType();
2718   MVT ScalarVT = VT.getScalarType();
2719 
2720   assert(VT.isVector());
2721 
2722   SDValue Src = Op.getOperand(0);
2723   SDLoc DL(Op);
2724 
2725   // TODO: Don't scalarize on Evergreen?
2726   unsigned NElts = VT.getVectorNumElements();
2727   SmallVector<SDValue, 8> Args;
2728   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2729 
2730   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2731   for (unsigned I = 0; I < NElts; ++I)
2732     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2733 
2734   return DAG.getBuildVector(VT, DL, Args);
2735 }
2736 
2737 //===----------------------------------------------------------------------===//
2738 // Custom DAG optimizations
2739 //===----------------------------------------------------------------------===//
2740 
2741 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2742   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2743 }
2744 
2745 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2746   EVT VT = Op.getValueType();
2747   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2748                                      // as unsigned 24-bit values.
2749     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2750 }
2751 
2752 static SDValue simplifyI24(SDNode *Node24,
2753                            TargetLowering::DAGCombinerInfo &DCI) {
2754   SelectionDAG &DAG = DCI.DAG;
2755   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2756 
2757   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2758   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2759   unsigned NewOpcode = Node24->getOpcode();
2760   if (IsIntrin) {
2761     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2762     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2763       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2764   }
2765 
2766   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2767 
2768   // First try to simplify using GetDemandedBits which allows the operands to
2769   // have other uses, but will only perform simplifications that involve
2770   // bypassing some nodes for this user.
2771   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2772   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2773   if (DemandedLHS || DemandedRHS)
2774     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2775                        DemandedLHS ? DemandedLHS : LHS,
2776                        DemandedRHS ? DemandedRHS : RHS);
2777 
2778   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2779   // operands if this node is the only user.
2780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2781   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2782     return SDValue(Node24, 0);
2783   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2784     return SDValue(Node24, 0);
2785 
2786   return SDValue();
2787 }
2788 
2789 template <typename IntTy>
2790 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2791                                uint32_t Width, const SDLoc &DL) {
2792   if (Width + Offset < 32) {
2793     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2794     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2795     return DAG.getConstant(Result, DL, MVT::i32);
2796   }
2797 
2798   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2799 }
2800 
2801 static bool hasVolatileUser(SDNode *Val) {
2802   for (SDNode *U : Val->uses()) {
2803     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2804       if (M->isVolatile())
2805         return true;
2806     }
2807   }
2808 
2809   return false;
2810 }
2811 
2812 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2813   // i32 vectors are the canonical memory type.
2814   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2815     return false;
2816 
2817   if (!VT.isByteSized())
2818     return false;
2819 
2820   unsigned Size = VT.getStoreSize();
2821 
2822   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2823     return false;
2824 
2825   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2826     return false;
2827 
2828   return true;
2829 }
2830 
2831 // Replace load of an illegal type with a store of a bitcast to a friendlier
2832 // type.
2833 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2834                                                  DAGCombinerInfo &DCI) const {
2835   if (!DCI.isBeforeLegalize())
2836     return SDValue();
2837 
2838   LoadSDNode *LN = cast<LoadSDNode>(N);
2839   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2840     return SDValue();
2841 
2842   SDLoc SL(N);
2843   SelectionDAG &DAG = DCI.DAG;
2844   EVT VT = LN->getMemoryVT();
2845 
2846   unsigned Size = VT.getStoreSize();
2847   unsigned Align = LN->getAlignment();
2848   if (Align < Size && isTypeLegal(VT)) {
2849     bool IsFast;
2850     unsigned AS = LN->getAddressSpace();
2851 
2852     // Expand unaligned loads earlier than legalization. Due to visitation order
2853     // problems during legalization, the emitted instructions to pack and unpack
2854     // the bytes again are not eliminated in the case of an unaligned copy.
2855     if (!allowsMisalignedMemoryAccesses(
2856             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2857       if (VT.isVector())
2858         return scalarizeVectorLoad(LN, DAG);
2859 
2860       SDValue Ops[2];
2861       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2862       return DAG.getMergeValues(Ops, SDLoc(N));
2863     }
2864 
2865     if (!IsFast)
2866       return SDValue();
2867   }
2868 
2869   if (!shouldCombineMemoryType(VT))
2870     return SDValue();
2871 
2872   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2873 
2874   SDValue NewLoad
2875     = DAG.getLoad(NewVT, SL, LN->getChain(),
2876                   LN->getBasePtr(), LN->getMemOperand());
2877 
2878   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2879   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2880   return SDValue(N, 0);
2881 }
2882 
2883 // Replace store of an illegal type with a store of a bitcast to a friendlier
2884 // type.
2885 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2886                                                   DAGCombinerInfo &DCI) const {
2887   if (!DCI.isBeforeLegalize())
2888     return SDValue();
2889 
2890   StoreSDNode *SN = cast<StoreSDNode>(N);
2891   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2892     return SDValue();
2893 
2894   EVT VT = SN->getMemoryVT();
2895   unsigned Size = VT.getStoreSize();
2896 
2897   SDLoc SL(N);
2898   SelectionDAG &DAG = DCI.DAG;
2899   unsigned Align = SN->getAlignment();
2900   if (Align < Size && isTypeLegal(VT)) {
2901     bool IsFast;
2902     unsigned AS = SN->getAddressSpace();
2903 
2904     // Expand unaligned stores earlier than legalization. Due to visitation
2905     // order problems during legalization, the emitted instructions to pack and
2906     // unpack the bytes again are not eliminated in the case of an unaligned
2907     // copy.
2908     if (!allowsMisalignedMemoryAccesses(
2909             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2910       if (VT.isVector())
2911         return scalarizeVectorStore(SN, DAG);
2912 
2913       return expandUnalignedStore(SN, DAG);
2914     }
2915 
2916     if (!IsFast)
2917       return SDValue();
2918   }
2919 
2920   if (!shouldCombineMemoryType(VT))
2921     return SDValue();
2922 
2923   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2924   SDValue Val = SN->getValue();
2925 
2926   //DCI.AddToWorklist(Val.getNode());
2927 
2928   bool OtherUses = !Val.hasOneUse();
2929   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2930   if (OtherUses) {
2931     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2932     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2933   }
2934 
2935   return DAG.getStore(SN->getChain(), SL, CastVal,
2936                       SN->getBasePtr(), SN->getMemOperand());
2937 }
2938 
2939 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2940 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2941 // issues.
2942 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2943                                                         DAGCombinerInfo &DCI) const {
2944   SelectionDAG &DAG = DCI.DAG;
2945   SDValue N0 = N->getOperand(0);
2946 
2947   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2948   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2949   if (N0.getOpcode() == ISD::TRUNCATE) {
2950     SDValue N1 = N->getOperand(1);
2951     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2952     SDLoc SL(N);
2953 
2954     SDValue Src = N0.getOperand(0);
2955     EVT SrcVT = Src.getValueType();
2956     if (SrcVT.bitsGE(ExtVT)) {
2957       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2958       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2959     }
2960   }
2961 
2962   return SDValue();
2963 }
2964 
2965 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
2966   SDNode *N, DAGCombinerInfo &DCI) const {
2967   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2968   switch (IID) {
2969   case Intrinsic::amdgcn_mul_i24:
2970   case Intrinsic::amdgcn_mul_u24:
2971     return simplifyI24(N, DCI);
2972   default:
2973     return SDValue();
2974   }
2975 }
2976 
2977 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2978 /// binary operation \p Opc to it with the corresponding constant operands.
2979 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2980   DAGCombinerInfo &DCI, const SDLoc &SL,
2981   unsigned Opc, SDValue LHS,
2982   uint32_t ValLo, uint32_t ValHi) const {
2983   SelectionDAG &DAG = DCI.DAG;
2984   SDValue Lo, Hi;
2985   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2986 
2987   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2988   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2989 
2990   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2991   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2992 
2993   // Re-visit the ands. It's possible we eliminated one of them and it could
2994   // simplify the vector.
2995   DCI.AddToWorklist(Lo.getNode());
2996   DCI.AddToWorklist(Hi.getNode());
2997 
2998   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2999   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3000 }
3001 
3002 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3003                                                 DAGCombinerInfo &DCI) const {
3004   EVT VT = N->getValueType(0);
3005 
3006   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3007   if (!RHS)
3008     return SDValue();
3009 
3010   SDValue LHS = N->getOperand(0);
3011   unsigned RHSVal = RHS->getZExtValue();
3012   if (!RHSVal)
3013     return LHS;
3014 
3015   SDLoc SL(N);
3016   SelectionDAG &DAG = DCI.DAG;
3017 
3018   switch (LHS->getOpcode()) {
3019   default:
3020     break;
3021   case ISD::ZERO_EXTEND:
3022   case ISD::SIGN_EXTEND:
3023   case ISD::ANY_EXTEND: {
3024     SDValue X = LHS->getOperand(0);
3025 
3026     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3027         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3028       // Prefer build_vector as the canonical form if packed types are legal.
3029       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3030       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3031        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3032       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3033     }
3034 
3035     // shl (ext x) => zext (shl x), if shift does not overflow int
3036     if (VT != MVT::i64)
3037       break;
3038     KnownBits Known = DAG.computeKnownBits(X);
3039     unsigned LZ = Known.countMinLeadingZeros();
3040     if (LZ < RHSVal)
3041       break;
3042     EVT XVT = X.getValueType();
3043     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3044     return DAG.getZExtOrTrunc(Shl, SL, VT);
3045   }
3046   }
3047 
3048   if (VT != MVT::i64)
3049     return SDValue();
3050 
3051   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3052 
3053   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3054   // common case, splitting this into a move and a 32-bit shift is faster and
3055   // the same code size.
3056   if (RHSVal < 32)
3057     return SDValue();
3058 
3059   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3060 
3061   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3062   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3063 
3064   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3065 
3066   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3067   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3068 }
3069 
3070 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3071                                                 DAGCombinerInfo &DCI) const {
3072   if (N->getValueType(0) != MVT::i64)
3073     return SDValue();
3074 
3075   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3076   if (!RHS)
3077     return SDValue();
3078 
3079   SelectionDAG &DAG = DCI.DAG;
3080   SDLoc SL(N);
3081   unsigned RHSVal = RHS->getZExtValue();
3082 
3083   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3084   if (RHSVal == 32) {
3085     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3086     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3087                                    DAG.getConstant(31, SL, MVT::i32));
3088 
3089     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3090     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3091   }
3092 
3093   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3094   if (RHSVal == 63) {
3095     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3096     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3097                                    DAG.getConstant(31, SL, MVT::i32));
3098     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3099     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3100   }
3101 
3102   return SDValue();
3103 }
3104 
3105 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3106                                                 DAGCombinerInfo &DCI) const {
3107   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3108   if (!RHS)
3109     return SDValue();
3110 
3111   EVT VT = N->getValueType(0);
3112   SDValue LHS = N->getOperand(0);
3113   unsigned ShiftAmt = RHS->getZExtValue();
3114   SelectionDAG &DAG = DCI.DAG;
3115   SDLoc SL(N);
3116 
3117   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3118   // this improves the ability to match BFE patterns in isel.
3119   if (LHS.getOpcode() == ISD::AND) {
3120     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3121       if (Mask->getAPIntValue().isShiftedMask() &&
3122           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3123         return DAG.getNode(
3124             ISD::AND, SL, VT,
3125             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3126             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3127       }
3128     }
3129   }
3130 
3131   if (VT != MVT::i64)
3132     return SDValue();
3133 
3134   if (ShiftAmt < 32)
3135     return SDValue();
3136 
3137   // srl i64:x, C for C >= 32
3138   // =>
3139   //   build_pair (srl hi_32(x), C - 32), 0
3140   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3141   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3142 
3143   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3144   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3145 
3146   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3147   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3148 
3149   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3150 
3151   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3152 }
3153 
3154 SDValue AMDGPUTargetLowering::performTruncateCombine(
3155   SDNode *N, DAGCombinerInfo &DCI) const {
3156   SDLoc SL(N);
3157   SelectionDAG &DAG = DCI.DAG;
3158   EVT VT = N->getValueType(0);
3159   SDValue Src = N->getOperand(0);
3160 
3161   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3162   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3163     SDValue Vec = Src.getOperand(0);
3164     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3165       SDValue Elt0 = Vec.getOperand(0);
3166       EVT EltVT = Elt0.getValueType();
3167       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3168         if (EltVT.isFloatingPoint()) {
3169           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3170                              EltVT.changeTypeToInteger(), Elt0);
3171         }
3172 
3173         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3174       }
3175     }
3176   }
3177 
3178   // Equivalent of above for accessing the high element of a vector as an
3179   // integer operation.
3180   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3181   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3182     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3183       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3184         SDValue BV = stripBitcast(Src.getOperand(0));
3185         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3186             BV.getValueType().getVectorNumElements() == 2) {
3187           SDValue SrcElt = BV.getOperand(1);
3188           EVT SrcEltVT = SrcElt.getValueType();
3189           if (SrcEltVT.isFloatingPoint()) {
3190             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3191                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3192           }
3193 
3194           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3195         }
3196       }
3197     }
3198   }
3199 
3200   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3201   //
3202   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3203   //     i16 (trunc (srl (i32 (trunc x), K)))
3204   if (VT.getScalarSizeInBits() < 32) {
3205     EVT SrcVT = Src.getValueType();
3206     if (SrcVT.getScalarSizeInBits() > 32 &&
3207         (Src.getOpcode() == ISD::SRL ||
3208          Src.getOpcode() == ISD::SRA ||
3209          Src.getOpcode() == ISD::SHL)) {
3210       SDValue Amt = Src.getOperand(1);
3211       KnownBits Known = DAG.computeKnownBits(Amt);
3212       unsigned Size = VT.getScalarSizeInBits();
3213       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3214           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3215         EVT MidVT = VT.isVector() ?
3216           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3217                            VT.getVectorNumElements()) : MVT::i32;
3218 
3219         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3220         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3221                                     Src.getOperand(0));
3222         DCI.AddToWorklist(Trunc.getNode());
3223 
3224         if (Amt.getValueType() != NewShiftVT) {
3225           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3226           DCI.AddToWorklist(Amt.getNode());
3227         }
3228 
3229         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3230                                           Trunc, Amt);
3231         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3232       }
3233     }
3234   }
3235 
3236   return SDValue();
3237 }
3238 
3239 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3240 // instructions. If we only match on the legalized i64 mul expansion,
3241 // SimplifyDemandedBits will be unable to remove them because there will be
3242 // multiple uses due to the separate mul + mulh[su].
3243 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3244                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3245   if (Size <= 32) {
3246     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3247     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3248   }
3249 
3250   // Because we want to eliminate extension instructions before the
3251   // operation, we need to create a single user here (i.e. not the separate
3252   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3253 
3254   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3255 
3256   SDValue Mul = DAG.getNode(MulOpc, SL,
3257                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3258 
3259   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3260                      Mul.getValue(0), Mul.getValue(1));
3261 }
3262 
3263 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3264                                                 DAGCombinerInfo &DCI) const {
3265   EVT VT = N->getValueType(0);
3266 
3267   unsigned Size = VT.getSizeInBits();
3268   if (VT.isVector() || Size > 64)
3269     return SDValue();
3270 
3271   // There are i16 integer mul/mad.
3272   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3273     return SDValue();
3274 
3275   SelectionDAG &DAG = DCI.DAG;
3276   SDLoc DL(N);
3277 
3278   SDValue N0 = N->getOperand(0);
3279   SDValue N1 = N->getOperand(1);
3280 
3281   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3282   // in the source into any_extends if the result of the mul is truncated. Since
3283   // we can assume the high bits are whatever we want, use the underlying value
3284   // to avoid the unknown high bits from interfering.
3285   if (N0.getOpcode() == ISD::ANY_EXTEND)
3286     N0 = N0.getOperand(0);
3287 
3288   if (N1.getOpcode() == ISD::ANY_EXTEND)
3289     N1 = N1.getOperand(0);
3290 
3291   SDValue Mul;
3292 
3293   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3294     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3295     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3296     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3297   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3298     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3299     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3300     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3301   } else {
3302     return SDValue();
3303   }
3304 
3305   // We need to use sext even for MUL_U24, because MUL_U24 is used
3306   // for signed multiply of 8 and 16-bit types.
3307   return DAG.getSExtOrTrunc(Mul, DL, VT);
3308 }
3309 
3310 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3311                                                   DAGCombinerInfo &DCI) const {
3312   EVT VT = N->getValueType(0);
3313 
3314   if (!Subtarget->hasMulI24() || VT.isVector())
3315     return SDValue();
3316 
3317   SelectionDAG &DAG = DCI.DAG;
3318   SDLoc DL(N);
3319 
3320   SDValue N0 = N->getOperand(0);
3321   SDValue N1 = N->getOperand(1);
3322 
3323   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3324     return SDValue();
3325 
3326   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3327   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3328 
3329   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3330   DCI.AddToWorklist(Mulhi.getNode());
3331   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3332 }
3333 
3334 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3335                                                   DAGCombinerInfo &DCI) const {
3336   EVT VT = N->getValueType(0);
3337 
3338   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3339     return SDValue();
3340 
3341   SelectionDAG &DAG = DCI.DAG;
3342   SDLoc DL(N);
3343 
3344   SDValue N0 = N->getOperand(0);
3345   SDValue N1 = N->getOperand(1);
3346 
3347   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3348     return SDValue();
3349 
3350   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3351   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3352 
3353   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3354   DCI.AddToWorklist(Mulhi.getNode());
3355   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3356 }
3357 
3358 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3359   SDNode *N, DAGCombinerInfo &DCI) const {
3360   SelectionDAG &DAG = DCI.DAG;
3361 
3362   // Simplify demanded bits before splitting into multiple users.
3363   if (SDValue V = simplifyI24(N, DCI))
3364     return V;
3365 
3366   SDValue N0 = N->getOperand(0);
3367   SDValue N1 = N->getOperand(1);
3368 
3369   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3370 
3371   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3372   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3373 
3374   SDLoc SL(N);
3375 
3376   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3377   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3378   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3379 }
3380 
3381 static bool isNegativeOne(SDValue Val) {
3382   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3383     return C->isAllOnesValue();
3384   return false;
3385 }
3386 
3387 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3388                                           SDValue Op,
3389                                           const SDLoc &DL,
3390                                           unsigned Opc) const {
3391   EVT VT = Op.getValueType();
3392   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3393   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3394                               LegalVT != MVT::i16))
3395     return SDValue();
3396 
3397   if (VT != MVT::i32)
3398     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3399 
3400   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3401   if (VT != MVT::i32)
3402     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3403 
3404   return FFBX;
3405 }
3406 
3407 // The native instructions return -1 on 0 input. Optimize out a select that
3408 // produces -1 on 0.
3409 //
3410 // TODO: If zero is not undef, we could also do this if the output is compared
3411 // against the bitwidth.
3412 //
3413 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3414 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3415                                                  SDValue LHS, SDValue RHS,
3416                                                  DAGCombinerInfo &DCI) const {
3417   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3418   if (!CmpRhs || !CmpRhs->isNullValue())
3419     return SDValue();
3420 
3421   SelectionDAG &DAG = DCI.DAG;
3422   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3423   SDValue CmpLHS = Cond.getOperand(0);
3424 
3425   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3426                                            AMDGPUISD::FFBH_U32;
3427 
3428   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3429   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3430   if (CCOpcode == ISD::SETEQ &&
3431       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3432       RHS.getOperand(0) == CmpLHS &&
3433       isNegativeOne(LHS)) {
3434     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3435   }
3436 
3437   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3438   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3439   if (CCOpcode == ISD::SETNE &&
3440       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3441       LHS.getOperand(0) == CmpLHS &&
3442       isNegativeOne(RHS)) {
3443     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3444   }
3445 
3446   return SDValue();
3447 }
3448 
3449 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3450                                          unsigned Op,
3451                                          const SDLoc &SL,
3452                                          SDValue Cond,
3453                                          SDValue N1,
3454                                          SDValue N2) {
3455   SelectionDAG &DAG = DCI.DAG;
3456   EVT VT = N1.getValueType();
3457 
3458   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3459                                   N1.getOperand(0), N2.getOperand(0));
3460   DCI.AddToWorklist(NewSelect.getNode());
3461   return DAG.getNode(Op, SL, VT, NewSelect);
3462 }
3463 
3464 // Pull a free FP operation out of a select so it may fold into uses.
3465 //
3466 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3467 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3468 //
3469 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3470 // select c, (fabs x), +k -> fabs (select c, x, k)
3471 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3472                                     SDValue N) {
3473   SelectionDAG &DAG = DCI.DAG;
3474   SDValue Cond = N.getOperand(0);
3475   SDValue LHS = N.getOperand(1);
3476   SDValue RHS = N.getOperand(2);
3477 
3478   EVT VT = N.getValueType();
3479   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3480       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3481     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3482                                      SDLoc(N), Cond, LHS, RHS);
3483   }
3484 
3485   bool Inv = false;
3486   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3487     std::swap(LHS, RHS);
3488     Inv = true;
3489   }
3490 
3491   // TODO: Support vector constants.
3492   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3493   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3494     SDLoc SL(N);
3495     // If one side is an fneg/fabs and the other is a constant, we can push the
3496     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3497     SDValue NewLHS = LHS.getOperand(0);
3498     SDValue NewRHS = RHS;
3499 
3500     // Careful: if the neg can be folded up, don't try to pull it back down.
3501     bool ShouldFoldNeg = true;
3502 
3503     if (NewLHS.hasOneUse()) {
3504       unsigned Opc = NewLHS.getOpcode();
3505       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3506         ShouldFoldNeg = false;
3507       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3508         ShouldFoldNeg = false;
3509     }
3510 
3511     if (ShouldFoldNeg) {
3512       if (LHS.getOpcode() == ISD::FNEG)
3513         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3514       else if (CRHS->isNegative())
3515         return SDValue();
3516 
3517       if (Inv)
3518         std::swap(NewLHS, NewRHS);
3519 
3520       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3521                                       Cond, NewLHS, NewRHS);
3522       DCI.AddToWorklist(NewSelect.getNode());
3523       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3524     }
3525   }
3526 
3527   return SDValue();
3528 }
3529 
3530 
3531 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3532                                                    DAGCombinerInfo &DCI) const {
3533   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3534     return Folded;
3535 
3536   SDValue Cond = N->getOperand(0);
3537   if (Cond.getOpcode() != ISD::SETCC)
3538     return SDValue();
3539 
3540   EVT VT = N->getValueType(0);
3541   SDValue LHS = Cond.getOperand(0);
3542   SDValue RHS = Cond.getOperand(1);
3543   SDValue CC = Cond.getOperand(2);
3544 
3545   SDValue True = N->getOperand(1);
3546   SDValue False = N->getOperand(2);
3547 
3548   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3549     SelectionDAG &DAG = DCI.DAG;
3550     if (DAG.isConstantValueOfAnyType(True) &&
3551         !DAG.isConstantValueOfAnyType(False)) {
3552       // Swap cmp + select pair to move constant to false input.
3553       // This will allow using VOPC cndmasks more often.
3554       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3555 
3556       SDLoc SL(N);
3557       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3558                                             LHS.getValueType().isInteger());
3559 
3560       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3561       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3562     }
3563 
3564     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3565       SDValue MinMax
3566         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3567       // Revisit this node so we can catch min3/max3/med3 patterns.
3568       //DCI.AddToWorklist(MinMax.getNode());
3569       return MinMax;
3570     }
3571   }
3572 
3573   // There's no reason to not do this if the condition has other uses.
3574   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3575 }
3576 
3577 static bool isInv2Pi(const APFloat &APF) {
3578   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3579   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3580   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3581 
3582   return APF.bitwiseIsEqual(KF16) ||
3583          APF.bitwiseIsEqual(KF32) ||
3584          APF.bitwiseIsEqual(KF64);
3585 }
3586 
3587 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3588 // additional cost to negate them.
3589 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3590   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3591     if (C->isZero() && !C->isNegative())
3592       return true;
3593 
3594     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3595       return true;
3596   }
3597 
3598   return false;
3599 }
3600 
3601 static unsigned inverseMinMax(unsigned Opc) {
3602   switch (Opc) {
3603   case ISD::FMAXNUM:
3604     return ISD::FMINNUM;
3605   case ISD::FMINNUM:
3606     return ISD::FMAXNUM;
3607   case ISD::FMAXNUM_IEEE:
3608     return ISD::FMINNUM_IEEE;
3609   case ISD::FMINNUM_IEEE:
3610     return ISD::FMAXNUM_IEEE;
3611   case AMDGPUISD::FMAX_LEGACY:
3612     return AMDGPUISD::FMIN_LEGACY;
3613   case AMDGPUISD::FMIN_LEGACY:
3614     return  AMDGPUISD::FMAX_LEGACY;
3615   default:
3616     llvm_unreachable("invalid min/max opcode");
3617   }
3618 }
3619 
3620 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3621                                                  DAGCombinerInfo &DCI) const {
3622   SelectionDAG &DAG = DCI.DAG;
3623   SDValue N0 = N->getOperand(0);
3624   EVT VT = N->getValueType(0);
3625 
3626   unsigned Opc = N0.getOpcode();
3627 
3628   // If the input has multiple uses and we can either fold the negate down, or
3629   // the other uses cannot, give up. This both prevents unprofitable
3630   // transformations and infinite loops: we won't repeatedly try to fold around
3631   // a negate that has no 'good' form.
3632   if (N0.hasOneUse()) {
3633     // This may be able to fold into the source, but at a code size cost. Don't
3634     // fold if the fold into the user is free.
3635     if (allUsesHaveSourceMods(N, 0))
3636       return SDValue();
3637   } else {
3638     if (fnegFoldsIntoOp(Opc) &&
3639         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3640       return SDValue();
3641   }
3642 
3643   SDLoc SL(N);
3644   switch (Opc) {
3645   case ISD::FADD: {
3646     if (!mayIgnoreSignedZero(N0))
3647       return SDValue();
3648 
3649     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3650     SDValue LHS = N0.getOperand(0);
3651     SDValue RHS = N0.getOperand(1);
3652 
3653     if (LHS.getOpcode() != ISD::FNEG)
3654       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3655     else
3656       LHS = LHS.getOperand(0);
3657 
3658     if (RHS.getOpcode() != ISD::FNEG)
3659       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3660     else
3661       RHS = RHS.getOperand(0);
3662 
3663     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3664     if (Res.getOpcode() != ISD::FADD)
3665       return SDValue(); // Op got folded away.
3666     if (!N0.hasOneUse())
3667       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3668     return Res;
3669   }
3670   case ISD::FMUL:
3671   case AMDGPUISD::FMUL_LEGACY: {
3672     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3673     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3674     SDValue LHS = N0.getOperand(0);
3675     SDValue RHS = N0.getOperand(1);
3676 
3677     if (LHS.getOpcode() == ISD::FNEG)
3678       LHS = LHS.getOperand(0);
3679     else if (RHS.getOpcode() == ISD::FNEG)
3680       RHS = RHS.getOperand(0);
3681     else
3682       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3683 
3684     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3685     if (Res.getOpcode() != Opc)
3686       return SDValue(); // Op got folded away.
3687     if (!N0.hasOneUse())
3688       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3689     return Res;
3690   }
3691   case ISD::FMA:
3692   case ISD::FMAD: {
3693     if (!mayIgnoreSignedZero(N0))
3694       return SDValue();
3695 
3696     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3697     SDValue LHS = N0.getOperand(0);
3698     SDValue MHS = N0.getOperand(1);
3699     SDValue RHS = N0.getOperand(2);
3700 
3701     if (LHS.getOpcode() == ISD::FNEG)
3702       LHS = LHS.getOperand(0);
3703     else if (MHS.getOpcode() == ISD::FNEG)
3704       MHS = MHS.getOperand(0);
3705     else
3706       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3707 
3708     if (RHS.getOpcode() != ISD::FNEG)
3709       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3710     else
3711       RHS = RHS.getOperand(0);
3712 
3713     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3714     if (Res.getOpcode() != Opc)
3715       return SDValue(); // Op got folded away.
3716     if (!N0.hasOneUse())
3717       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3718     return Res;
3719   }
3720   case ISD::FMAXNUM:
3721   case ISD::FMINNUM:
3722   case ISD::FMAXNUM_IEEE:
3723   case ISD::FMINNUM_IEEE:
3724   case AMDGPUISD::FMAX_LEGACY:
3725   case AMDGPUISD::FMIN_LEGACY: {
3726     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3727     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3728     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3729     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3730 
3731     SDValue LHS = N0.getOperand(0);
3732     SDValue RHS = N0.getOperand(1);
3733 
3734     // 0 doesn't have a negated inline immediate.
3735     // TODO: This constant check should be generalized to other operations.
3736     if (isConstantCostlierToNegate(RHS))
3737       return SDValue();
3738 
3739     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3740     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3741     unsigned Opposite = inverseMinMax(Opc);
3742 
3743     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3744     if (Res.getOpcode() != Opposite)
3745       return SDValue(); // Op got folded away.
3746     if (!N0.hasOneUse())
3747       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3748     return Res;
3749   }
3750   case AMDGPUISD::FMED3: {
3751     SDValue Ops[3];
3752     for (unsigned I = 0; I < 3; ++I)
3753       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3754 
3755     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3756     if (Res.getOpcode() != AMDGPUISD::FMED3)
3757       return SDValue(); // Op got folded away.
3758     if (!N0.hasOneUse())
3759       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3760     return Res;
3761   }
3762   case ISD::FP_EXTEND:
3763   case ISD::FTRUNC:
3764   case ISD::FRINT:
3765   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3766   case ISD::FSIN:
3767   case ISD::FCANONICALIZE:
3768   case AMDGPUISD::RCP:
3769   case AMDGPUISD::RCP_LEGACY:
3770   case AMDGPUISD::RCP_IFLAG:
3771   case AMDGPUISD::SIN_HW: {
3772     SDValue CvtSrc = N0.getOperand(0);
3773     if (CvtSrc.getOpcode() == ISD::FNEG) {
3774       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3775       // (fneg (rcp (fneg x))) -> (rcp x)
3776       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3777     }
3778 
3779     if (!N0.hasOneUse())
3780       return SDValue();
3781 
3782     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3783     // (fneg (rcp x)) -> (rcp (fneg x))
3784     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3785     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3786   }
3787   case ISD::FP_ROUND: {
3788     SDValue CvtSrc = N0.getOperand(0);
3789 
3790     if (CvtSrc.getOpcode() == ISD::FNEG) {
3791       // (fneg (fp_round (fneg x))) -> (fp_round x)
3792       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3793                          CvtSrc.getOperand(0), N0.getOperand(1));
3794     }
3795 
3796     if (!N0.hasOneUse())
3797       return SDValue();
3798 
3799     // (fneg (fp_round x)) -> (fp_round (fneg x))
3800     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3801     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3802   }
3803   case ISD::FP16_TO_FP: {
3804     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3805     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3806     // Put the fneg back as a legal source operation that can be matched later.
3807     SDLoc SL(N);
3808 
3809     SDValue Src = N0.getOperand(0);
3810     EVT SrcVT = Src.getValueType();
3811 
3812     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3813     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3814                                   DAG.getConstant(0x8000, SL, SrcVT));
3815     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3816   }
3817   default:
3818     return SDValue();
3819   }
3820 }
3821 
3822 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3823                                                  DAGCombinerInfo &DCI) const {
3824   SelectionDAG &DAG = DCI.DAG;
3825   SDValue N0 = N->getOperand(0);
3826 
3827   if (!N0.hasOneUse())
3828     return SDValue();
3829 
3830   switch (N0.getOpcode()) {
3831   case ISD::FP16_TO_FP: {
3832     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3833     SDLoc SL(N);
3834     SDValue Src = N0.getOperand(0);
3835     EVT SrcVT = Src.getValueType();
3836 
3837     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3838     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3839                                   DAG.getConstant(0x7fff, SL, SrcVT));
3840     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3841   }
3842   default:
3843     return SDValue();
3844   }
3845 }
3846 
3847 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3848                                                 DAGCombinerInfo &DCI) const {
3849   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3850   if (!CFP)
3851     return SDValue();
3852 
3853   // XXX - Should this flush denormals?
3854   const APFloat &Val = CFP->getValueAPF();
3855   APFloat One(Val.getSemantics(), "1.0");
3856   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3857 }
3858 
3859 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3860                                                 DAGCombinerInfo &DCI) const {
3861   SelectionDAG &DAG = DCI.DAG;
3862   SDLoc DL(N);
3863 
3864   switch(N->getOpcode()) {
3865   default:
3866     break;
3867   case ISD::BITCAST: {
3868     EVT DestVT = N->getValueType(0);
3869 
3870     // Push casts through vector builds. This helps avoid emitting a large
3871     // number of copies when materializing floating point vector constants.
3872     //
3873     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3874     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3875     if (DestVT.isVector()) {
3876       SDValue Src = N->getOperand(0);
3877       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3878         EVT SrcVT = Src.getValueType();
3879         unsigned NElts = DestVT.getVectorNumElements();
3880 
3881         if (SrcVT.getVectorNumElements() == NElts) {
3882           EVT DestEltVT = DestVT.getVectorElementType();
3883 
3884           SmallVector<SDValue, 8> CastedElts;
3885           SDLoc SL(N);
3886           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3887             SDValue Elt = Src.getOperand(I);
3888             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3889           }
3890 
3891           return DAG.getBuildVector(DestVT, SL, CastedElts);
3892         }
3893       }
3894     }
3895 
3896     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3897       break;
3898 
3899     // Fold bitcasts of constants.
3900     //
3901     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3902     // TODO: Generalize and move to DAGCombiner
3903     SDValue Src = N->getOperand(0);
3904     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3905       if (Src.getValueType() == MVT::i64) {
3906         SDLoc SL(N);
3907         uint64_t CVal = C->getZExtValue();
3908         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3909                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3910                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3911         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3912       }
3913     }
3914 
3915     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3916       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3917       SDLoc SL(N);
3918       uint64_t CVal = Val.getZExtValue();
3919       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3920                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3921                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3922 
3923       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3924     }
3925 
3926     break;
3927   }
3928   case ISD::SHL: {
3929     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3930       break;
3931 
3932     return performShlCombine(N, DCI);
3933   }
3934   case ISD::SRL: {
3935     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3936       break;
3937 
3938     return performSrlCombine(N, DCI);
3939   }
3940   case ISD::SRA: {
3941     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3942       break;
3943 
3944     return performSraCombine(N, DCI);
3945   }
3946   case ISD::TRUNCATE:
3947     return performTruncateCombine(N, DCI);
3948   case ISD::MUL:
3949     return performMulCombine(N, DCI);
3950   case ISD::MULHS:
3951     return performMulhsCombine(N, DCI);
3952   case ISD::MULHU:
3953     return performMulhuCombine(N, DCI);
3954   case AMDGPUISD::MUL_I24:
3955   case AMDGPUISD::MUL_U24:
3956   case AMDGPUISD::MULHI_I24:
3957   case AMDGPUISD::MULHI_U24: {
3958     if (SDValue V = simplifyI24(N, DCI))
3959       return V;
3960     return SDValue();
3961   }
3962   case AMDGPUISD::MUL_LOHI_I24:
3963   case AMDGPUISD::MUL_LOHI_U24:
3964     return performMulLoHi24Combine(N, DCI);
3965   case ISD::SELECT:
3966     return performSelectCombine(N, DCI);
3967   case ISD::FNEG:
3968     return performFNegCombine(N, DCI);
3969   case ISD::FABS:
3970     return performFAbsCombine(N, DCI);
3971   case AMDGPUISD::BFE_I32:
3972   case AMDGPUISD::BFE_U32: {
3973     assert(!N->getValueType(0).isVector() &&
3974            "Vector handling of BFE not implemented");
3975     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3976     if (!Width)
3977       break;
3978 
3979     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3980     if (WidthVal == 0)
3981       return DAG.getConstant(0, DL, MVT::i32);
3982 
3983     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3984     if (!Offset)
3985       break;
3986 
3987     SDValue BitsFrom = N->getOperand(0);
3988     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3989 
3990     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3991 
3992     if (OffsetVal == 0) {
3993       // This is already sign / zero extended, so try to fold away extra BFEs.
3994       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3995 
3996       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3997       if (OpSignBits >= SignBits)
3998         return BitsFrom;
3999 
4000       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4001       if (Signed) {
4002         // This is a sign_extend_inreg. Replace it to take advantage of existing
4003         // DAG Combines. If not eliminated, we will match back to BFE during
4004         // selection.
4005 
4006         // TODO: The sext_inreg of extended types ends, although we can could
4007         // handle them in a single BFE.
4008         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4009                            DAG.getValueType(SmallVT));
4010       }
4011 
4012       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4013     }
4014 
4015     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4016       if (Signed) {
4017         return constantFoldBFE<int32_t>(DAG,
4018                                         CVal->getSExtValue(),
4019                                         OffsetVal,
4020                                         WidthVal,
4021                                         DL);
4022       }
4023 
4024       return constantFoldBFE<uint32_t>(DAG,
4025                                        CVal->getZExtValue(),
4026                                        OffsetVal,
4027                                        WidthVal,
4028                                        DL);
4029     }
4030 
4031     if ((OffsetVal + WidthVal) >= 32 &&
4032         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4033       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4034       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4035                          BitsFrom, ShiftVal);
4036     }
4037 
4038     if (BitsFrom.hasOneUse()) {
4039       APInt Demanded = APInt::getBitsSet(32,
4040                                          OffsetVal,
4041                                          OffsetVal + WidthVal);
4042 
4043       KnownBits Known;
4044       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4045                                             !DCI.isBeforeLegalizeOps());
4046       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4047       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4048           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4049         DCI.CommitTargetLoweringOpt(TLO);
4050       }
4051     }
4052 
4053     break;
4054   }
4055   case ISD::LOAD:
4056     return performLoadCombine(N, DCI);
4057   case ISD::STORE:
4058     return performStoreCombine(N, DCI);
4059   case AMDGPUISD::RCP:
4060   case AMDGPUISD::RCP_IFLAG:
4061     return performRcpCombine(N, DCI);
4062   case ISD::AssertZext:
4063   case ISD::AssertSext:
4064     return performAssertSZExtCombine(N, DCI);
4065   case ISD::INTRINSIC_WO_CHAIN:
4066     return performIntrinsicWOChainCombine(N, DCI);
4067   }
4068   return SDValue();
4069 }
4070 
4071 //===----------------------------------------------------------------------===//
4072 // Helper functions
4073 //===----------------------------------------------------------------------===//
4074 
4075 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4076                                                    const TargetRegisterClass *RC,
4077                                                    unsigned Reg, EVT VT,
4078                                                    const SDLoc &SL,
4079                                                    bool RawReg) const {
4080   MachineFunction &MF = DAG.getMachineFunction();
4081   MachineRegisterInfo &MRI = MF.getRegInfo();
4082   unsigned VReg;
4083 
4084   if (!MRI.isLiveIn(Reg)) {
4085     VReg = MRI.createVirtualRegister(RC);
4086     MRI.addLiveIn(Reg, VReg);
4087   } else {
4088     VReg = MRI.getLiveInVirtReg(Reg);
4089   }
4090 
4091   if (RawReg)
4092     return DAG.getRegister(VReg, VT);
4093 
4094   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4095 }
4096 
4097 // This may be called multiple times, and nothing prevents creating multiple
4098 // objects at the same offset. See if we already defined this object.
4099 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4100                                        int64_t Offset) {
4101   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4102     if (MFI.getObjectOffset(I) == Offset) {
4103       assert(MFI.getObjectSize(I) == Size);
4104       return I;
4105     }
4106   }
4107 
4108   return MFI.CreateFixedObject(Size, Offset, true);
4109 }
4110 
4111 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4112                                                   EVT VT,
4113                                                   const SDLoc &SL,
4114                                                   int64_t Offset) const {
4115   MachineFunction &MF = DAG.getMachineFunction();
4116   MachineFrameInfo &MFI = MF.getFrameInfo();
4117   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4118 
4119   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4120   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4121 
4122   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4123                      MachineMemOperand::MODereferenceable |
4124                      MachineMemOperand::MOInvariant);
4125 }
4126 
4127 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4128                                                    const SDLoc &SL,
4129                                                    SDValue Chain,
4130                                                    SDValue ArgVal,
4131                                                    int64_t Offset) const {
4132   MachineFunction &MF = DAG.getMachineFunction();
4133   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4134 
4135   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4136   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4137                                MachineMemOperand::MODereferenceable);
4138   return Store;
4139 }
4140 
4141 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4142                                              const TargetRegisterClass *RC,
4143                                              EVT VT, const SDLoc &SL,
4144                                              const ArgDescriptor &Arg) const {
4145   assert(Arg && "Attempting to load missing argument");
4146 
4147   SDValue V = Arg.isRegister() ?
4148     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4149     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4150 
4151   if (!Arg.isMasked())
4152     return V;
4153 
4154   unsigned Mask = Arg.getMask();
4155   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4156   V = DAG.getNode(ISD::SRL, SL, VT, V,
4157                   DAG.getShiftAmountConstant(Shift, VT, SL));
4158   return DAG.getNode(ISD::AND, SL, VT, V,
4159                      DAG.getConstant(Mask >> Shift, SL, VT));
4160 }
4161 
4162 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4163     const MachineFunction &MF, const ImplicitParameter Param) const {
4164   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4165   const AMDGPUSubtarget &ST =
4166       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4167   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4168   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4169   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4170                        ExplicitArgOffset;
4171   switch (Param) {
4172   case GRID_DIM:
4173     return ArgOffset;
4174   case GRID_OFFSET:
4175     return ArgOffset + 4;
4176   }
4177   llvm_unreachable("unexpected implicit parameter type");
4178 }
4179 
4180 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4181 
4182 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4183   switch ((AMDGPUISD::NodeType)Opcode) {
4184   case AMDGPUISD::FIRST_NUMBER: break;
4185   // AMDIL DAG nodes
4186   NODE_NAME_CASE(UMUL);
4187   NODE_NAME_CASE(BRANCH_COND);
4188 
4189   // AMDGPU DAG nodes
4190   NODE_NAME_CASE(IF)
4191   NODE_NAME_CASE(ELSE)
4192   NODE_NAME_CASE(LOOP)
4193   NODE_NAME_CASE(CALL)
4194   NODE_NAME_CASE(TC_RETURN)
4195   NODE_NAME_CASE(TRAP)
4196   NODE_NAME_CASE(RET_FLAG)
4197   NODE_NAME_CASE(RETURN_TO_EPILOG)
4198   NODE_NAME_CASE(ENDPGM)
4199   NODE_NAME_CASE(DWORDADDR)
4200   NODE_NAME_CASE(FRACT)
4201   NODE_NAME_CASE(SETCC)
4202   NODE_NAME_CASE(SETREG)
4203   NODE_NAME_CASE(DENORM_MODE)
4204   NODE_NAME_CASE(FMA_W_CHAIN)
4205   NODE_NAME_CASE(FMUL_W_CHAIN)
4206   NODE_NAME_CASE(CLAMP)
4207   NODE_NAME_CASE(COS_HW)
4208   NODE_NAME_CASE(SIN_HW)
4209   NODE_NAME_CASE(FMAX_LEGACY)
4210   NODE_NAME_CASE(FMIN_LEGACY)
4211   NODE_NAME_CASE(FMAX3)
4212   NODE_NAME_CASE(SMAX3)
4213   NODE_NAME_CASE(UMAX3)
4214   NODE_NAME_CASE(FMIN3)
4215   NODE_NAME_CASE(SMIN3)
4216   NODE_NAME_CASE(UMIN3)
4217   NODE_NAME_CASE(FMED3)
4218   NODE_NAME_CASE(SMED3)
4219   NODE_NAME_CASE(UMED3)
4220   NODE_NAME_CASE(FDOT2)
4221   NODE_NAME_CASE(URECIP)
4222   NODE_NAME_CASE(DIV_SCALE)
4223   NODE_NAME_CASE(DIV_FMAS)
4224   NODE_NAME_CASE(DIV_FIXUP)
4225   NODE_NAME_CASE(FMAD_FTZ)
4226   NODE_NAME_CASE(TRIG_PREOP)
4227   NODE_NAME_CASE(RCP)
4228   NODE_NAME_CASE(RSQ)
4229   NODE_NAME_CASE(RCP_LEGACY)
4230   NODE_NAME_CASE(RSQ_LEGACY)
4231   NODE_NAME_CASE(RCP_IFLAG)
4232   NODE_NAME_CASE(FMUL_LEGACY)
4233   NODE_NAME_CASE(RSQ_CLAMP)
4234   NODE_NAME_CASE(LDEXP)
4235   NODE_NAME_CASE(FP_CLASS)
4236   NODE_NAME_CASE(DOT4)
4237   NODE_NAME_CASE(CARRY)
4238   NODE_NAME_CASE(BORROW)
4239   NODE_NAME_CASE(BFE_U32)
4240   NODE_NAME_CASE(BFE_I32)
4241   NODE_NAME_CASE(BFI)
4242   NODE_NAME_CASE(BFM)
4243   NODE_NAME_CASE(FFBH_U32)
4244   NODE_NAME_CASE(FFBH_I32)
4245   NODE_NAME_CASE(FFBL_B32)
4246   NODE_NAME_CASE(MUL_U24)
4247   NODE_NAME_CASE(MUL_I24)
4248   NODE_NAME_CASE(MULHI_U24)
4249   NODE_NAME_CASE(MULHI_I24)
4250   NODE_NAME_CASE(MUL_LOHI_U24)
4251   NODE_NAME_CASE(MUL_LOHI_I24)
4252   NODE_NAME_CASE(MAD_U24)
4253   NODE_NAME_CASE(MAD_I24)
4254   NODE_NAME_CASE(MAD_I64_I32)
4255   NODE_NAME_CASE(MAD_U64_U32)
4256   NODE_NAME_CASE(PERM)
4257   NODE_NAME_CASE(TEXTURE_FETCH)
4258   NODE_NAME_CASE(EXPORT)
4259   NODE_NAME_CASE(EXPORT_DONE)
4260   NODE_NAME_CASE(R600_EXPORT)
4261   NODE_NAME_CASE(CONST_ADDRESS)
4262   NODE_NAME_CASE(REGISTER_LOAD)
4263   NODE_NAME_CASE(REGISTER_STORE)
4264   NODE_NAME_CASE(SAMPLE)
4265   NODE_NAME_CASE(SAMPLEB)
4266   NODE_NAME_CASE(SAMPLED)
4267   NODE_NAME_CASE(SAMPLEL)
4268   NODE_NAME_CASE(CVT_F32_UBYTE0)
4269   NODE_NAME_CASE(CVT_F32_UBYTE1)
4270   NODE_NAME_CASE(CVT_F32_UBYTE2)
4271   NODE_NAME_CASE(CVT_F32_UBYTE3)
4272   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4273   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4274   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4275   NODE_NAME_CASE(CVT_PK_I16_I32)
4276   NODE_NAME_CASE(CVT_PK_U16_U32)
4277   NODE_NAME_CASE(FP_TO_FP16)
4278   NODE_NAME_CASE(FP16_ZEXT)
4279   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4280   NODE_NAME_CASE(CONST_DATA_PTR)
4281   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4282   NODE_NAME_CASE(LDS)
4283   NODE_NAME_CASE(KILL)
4284   NODE_NAME_CASE(DUMMY_CHAIN)
4285   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4286   NODE_NAME_CASE(INTERP_MOV)
4287   NODE_NAME_CASE(INTERP_P1)
4288   NODE_NAME_CASE(INTERP_P2)
4289   NODE_NAME_CASE(INTERP_P1LL_F16)
4290   NODE_NAME_CASE(INTERP_P1LV_F16)
4291   NODE_NAME_CASE(INTERP_P2_F16)
4292   NODE_NAME_CASE(LOAD_D16_HI)
4293   NODE_NAME_CASE(LOAD_D16_LO)
4294   NODE_NAME_CASE(LOAD_D16_HI_I8)
4295   NODE_NAME_CASE(LOAD_D16_HI_U8)
4296   NODE_NAME_CASE(LOAD_D16_LO_I8)
4297   NODE_NAME_CASE(LOAD_D16_LO_U8)
4298   NODE_NAME_CASE(STORE_MSKOR)
4299   NODE_NAME_CASE(LOAD_CONSTANT)
4300   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4301   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4302   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4303   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4304   NODE_NAME_CASE(DS_ORDERED_COUNT)
4305   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4306   NODE_NAME_CASE(ATOMIC_INC)
4307   NODE_NAME_CASE(ATOMIC_DEC)
4308   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4309   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4310   NODE_NAME_CASE(BUFFER_LOAD)
4311   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4312   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4313   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4314   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4315   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4316   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4317   NODE_NAME_CASE(SBUFFER_LOAD)
4318   NODE_NAME_CASE(BUFFER_STORE)
4319   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4320   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4321   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4322   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4323   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4324   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4325   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4326   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4327   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4328   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4329   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4330   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4331   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4332   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4333   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4334   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4335   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4336   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4337   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4338   NODE_NAME_CASE(ATOMIC_FADD)
4339   NODE_NAME_CASE(ATOMIC_PK_FADD)
4340 
4341   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4342   }
4343   return nullptr;
4344 }
4345 
4346 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4347                                               SelectionDAG &DAG, int Enabled,
4348                                               int &RefinementSteps,
4349                                               bool &UseOneConstNR,
4350                                               bool Reciprocal) const {
4351   EVT VT = Operand.getValueType();
4352 
4353   if (VT == MVT::f32) {
4354     RefinementSteps = 0;
4355     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4356   }
4357 
4358   // TODO: There is also f64 rsq instruction, but the documentation is less
4359   // clear on its precision.
4360 
4361   return SDValue();
4362 }
4363 
4364 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4365                                                SelectionDAG &DAG, int Enabled,
4366                                                int &RefinementSteps) const {
4367   EVT VT = Operand.getValueType();
4368 
4369   if (VT == MVT::f32) {
4370     // Reciprocal, < 1 ulp error.
4371     //
4372     // This reciprocal approximation converges to < 0.5 ulp error with one
4373     // newton rhapson performed with two fused multiple adds (FMAs).
4374 
4375     RefinementSteps = 0;
4376     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4377   }
4378 
4379   // TODO: There is also f64 rcp instruction, but the documentation is less
4380   // clear on its precision.
4381 
4382   return SDValue();
4383 }
4384 
4385 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4386     const SDValue Op, KnownBits &Known,
4387     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4388 
4389   Known.resetAll(); // Don't know anything.
4390 
4391   unsigned Opc = Op.getOpcode();
4392 
4393   switch (Opc) {
4394   default:
4395     break;
4396   case AMDGPUISD::CARRY:
4397   case AMDGPUISD::BORROW: {
4398     Known.Zero = APInt::getHighBitsSet(32, 31);
4399     break;
4400   }
4401 
4402   case AMDGPUISD::BFE_I32:
4403   case AMDGPUISD::BFE_U32: {
4404     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4405     if (!CWidth)
4406       return;
4407 
4408     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4409 
4410     if (Opc == AMDGPUISD::BFE_U32)
4411       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4412 
4413     break;
4414   }
4415   case AMDGPUISD::FP_TO_FP16:
4416   case AMDGPUISD::FP16_ZEXT: {
4417     unsigned BitWidth = Known.getBitWidth();
4418 
4419     // High bits are zero.
4420     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4421     break;
4422   }
4423   case AMDGPUISD::MUL_U24:
4424   case AMDGPUISD::MUL_I24: {
4425     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4426     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4427     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4428                       RHSKnown.countMinTrailingZeros();
4429     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4430 
4431     // Truncate to 24 bits.
4432     LHSKnown = LHSKnown.trunc(24);
4433     RHSKnown = RHSKnown.trunc(24);
4434 
4435     bool Negative = false;
4436     if (Opc == AMDGPUISD::MUL_I24) {
4437       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4438       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4439       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4440       if (MaxValBits >= 32)
4441         break;
4442       bool LHSNegative = LHSKnown.isNegative();
4443       bool LHSPositive = LHSKnown.isNonNegative();
4444       bool RHSNegative = RHSKnown.isNegative();
4445       bool RHSPositive = RHSKnown.isNonNegative();
4446       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4447         break;
4448       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4449       if (Negative)
4450         Known.One.setHighBits(32 - MaxValBits);
4451       else
4452         Known.Zero.setHighBits(32 - MaxValBits);
4453     } else {
4454       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4455       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4456       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4457       if (MaxValBits >= 32)
4458         break;
4459       Known.Zero.setHighBits(32 - MaxValBits);
4460     }
4461     break;
4462   }
4463   case AMDGPUISD::PERM: {
4464     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4465     if (!CMask)
4466       return;
4467 
4468     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4469     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4470     unsigned Sel = CMask->getZExtValue();
4471 
4472     for (unsigned I = 0; I < 32; I += 8) {
4473       unsigned SelBits = Sel & 0xff;
4474       if (SelBits < 4) {
4475         SelBits *= 8;
4476         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4477         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4478       } else if (SelBits < 7) {
4479         SelBits = (SelBits & 3) * 8;
4480         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4481         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4482       } else if (SelBits == 0x0c) {
4483         Known.Zero |= 0xFFull << I;
4484       } else if (SelBits > 0x0c) {
4485         Known.One |= 0xFFull << I;
4486       }
4487       Sel >>= 8;
4488     }
4489     break;
4490   }
4491   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4492     Known.Zero.setHighBits(24);
4493     break;
4494   }
4495   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4496     Known.Zero.setHighBits(16);
4497     break;
4498   }
4499   case AMDGPUISD::LDS: {
4500     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4501     unsigned Align = GA->getGlobal()->getAlignment();
4502 
4503     Known.Zero.setHighBits(16);
4504     if (Align)
4505       Known.Zero.setLowBits(Log2_32(Align));
4506     break;
4507   }
4508   case ISD::INTRINSIC_WO_CHAIN: {
4509     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4510     switch (IID) {
4511     case Intrinsic::amdgcn_mbcnt_lo:
4512     case Intrinsic::amdgcn_mbcnt_hi: {
4513       const GCNSubtarget &ST =
4514           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4515       // These return at most the wavefront size - 1.
4516       unsigned Size = Op.getValueType().getSizeInBits();
4517       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4518       break;
4519     }
4520     default:
4521       break;
4522     }
4523   }
4524   }
4525 }
4526 
4527 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4528     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4529     unsigned Depth) const {
4530   switch (Op.getOpcode()) {
4531   case AMDGPUISD::BFE_I32: {
4532     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4533     if (!Width)
4534       return 1;
4535 
4536     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4537     if (!isNullConstant(Op.getOperand(1)))
4538       return SignBits;
4539 
4540     // TODO: Could probably figure something out with non-0 offsets.
4541     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4542     return std::max(SignBits, Op0SignBits);
4543   }
4544 
4545   case AMDGPUISD::BFE_U32: {
4546     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4547     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4548   }
4549 
4550   case AMDGPUISD::CARRY:
4551   case AMDGPUISD::BORROW:
4552     return 31;
4553   case AMDGPUISD::BUFFER_LOAD_BYTE:
4554     return 25;
4555   case AMDGPUISD::BUFFER_LOAD_SHORT:
4556     return 17;
4557   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4558     return 24;
4559   case AMDGPUISD::BUFFER_LOAD_USHORT:
4560     return 16;
4561   case AMDGPUISD::FP_TO_FP16:
4562   case AMDGPUISD::FP16_ZEXT:
4563     return 16;
4564   default:
4565     return 1;
4566   }
4567 }
4568 
4569 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4570                                                         const SelectionDAG &DAG,
4571                                                         bool SNaN,
4572                                                         unsigned Depth) const {
4573   unsigned Opcode = Op.getOpcode();
4574   switch (Opcode) {
4575   case AMDGPUISD::FMIN_LEGACY:
4576   case AMDGPUISD::FMAX_LEGACY: {
4577     if (SNaN)
4578       return true;
4579 
4580     // TODO: Can check no nans on one of the operands for each one, but which
4581     // one?
4582     return false;
4583   }
4584   case AMDGPUISD::FMUL_LEGACY:
4585   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4586     if (SNaN)
4587       return true;
4588     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4589            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4590   }
4591   case AMDGPUISD::FMED3:
4592   case AMDGPUISD::FMIN3:
4593   case AMDGPUISD::FMAX3:
4594   case AMDGPUISD::FMAD_FTZ: {
4595     if (SNaN)
4596       return true;
4597     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4598            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4599            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4600   }
4601   case AMDGPUISD::CVT_F32_UBYTE0:
4602   case AMDGPUISD::CVT_F32_UBYTE1:
4603   case AMDGPUISD::CVT_F32_UBYTE2:
4604   case AMDGPUISD::CVT_F32_UBYTE3:
4605     return true;
4606 
4607   case AMDGPUISD::RCP:
4608   case AMDGPUISD::RSQ:
4609   case AMDGPUISD::RCP_LEGACY:
4610   case AMDGPUISD::RSQ_LEGACY:
4611   case AMDGPUISD::RSQ_CLAMP: {
4612     if (SNaN)
4613       return true;
4614 
4615     // TODO: Need is known positive check.
4616     return false;
4617   }
4618   case AMDGPUISD::LDEXP:
4619   case AMDGPUISD::FRACT: {
4620     if (SNaN)
4621       return true;
4622     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4623   }
4624   case AMDGPUISD::DIV_SCALE:
4625   case AMDGPUISD::DIV_FMAS:
4626   case AMDGPUISD::DIV_FIXUP:
4627   case AMDGPUISD::TRIG_PREOP:
4628     // TODO: Refine on operands.
4629     return SNaN;
4630   case AMDGPUISD::SIN_HW:
4631   case AMDGPUISD::COS_HW: {
4632     // TODO: Need check for infinity
4633     return SNaN;
4634   }
4635   case ISD::INTRINSIC_WO_CHAIN: {
4636     unsigned IntrinsicID
4637       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4638     // TODO: Handle more intrinsics
4639     switch (IntrinsicID) {
4640     case Intrinsic::amdgcn_cubeid:
4641       return true;
4642 
4643     case Intrinsic::amdgcn_frexp_mant: {
4644       if (SNaN)
4645         return true;
4646       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4647     }
4648     case Intrinsic::amdgcn_cvt_pkrtz: {
4649       if (SNaN)
4650         return true;
4651       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4652              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4653     }
4654     case Intrinsic::amdgcn_fdot2:
4655       // TODO: Refine on operand
4656       return SNaN;
4657     default:
4658       return false;
4659     }
4660   }
4661   default:
4662     return false;
4663   }
4664 }
4665 
4666 TargetLowering::AtomicExpansionKind
4667 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4668   switch (RMW->getOperation()) {
4669   case AtomicRMWInst::Nand:
4670   case AtomicRMWInst::FAdd:
4671   case AtomicRMWInst::FSub:
4672     return AtomicExpansionKind::CmpXChg;
4673   default:
4674     return AtomicExpansionKind::None;
4675   }
4676 }
4677