1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
18 
19 #include "AMDGPUISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
41 
42 #include "AMDGPUGenCallingConv.inc"
43 
44 // Find a larger type to do a load / store of a vector with.
45 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
46   unsigned StoreSize = VT.getStoreSizeInBits();
47   if (StoreSize <= 32)
48     return EVT::getIntegerVT(Ctx, StoreSize);
49 
50   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
51   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
52 }
53 
54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
55   EVT VT = Op.getValueType();
56   KnownBits Known = DAG.computeKnownBits(Op);
57   return VT.getSizeInBits() - Known.countMinLeadingZeros();
58 }
59 
60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
61   EVT VT = Op.getValueType();
62 
63   // In order for this to be a signed 24-bit value, bit 23, must
64   // be a sign bit.
65   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
66 }
67 
68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
69                                            const AMDGPUSubtarget &STI)
70     : TargetLowering(TM), Subtarget(&STI) {
71   // Lower floating point store/load to integer store/load to reduce the number
72   // of patterns in tablegen.
73   setOperationAction(ISD::LOAD, MVT::f32, Promote);
74   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
75 
76   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
77   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
78 
79   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
80   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
81 
82   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
83   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
84 
85   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
86   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
87 
88   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
89   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
90 
91   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
92   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
93 
94   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
95   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
96 
97   setOperationAction(ISD::LOAD, MVT::i64, Promote);
98   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
99 
100   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
101   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
102 
103   setOperationAction(ISD::LOAD, MVT::f64, Promote);
104   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
105 
106   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
107   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
108 
109   // There are no 64-bit extloads. These should be done as a 32-bit extload and
110   // an extension to 64-bit.
111   for (MVT VT : MVT::integer_valuetypes()) {
112     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
113     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
114     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
115   }
116 
117   for (MVT VT : MVT::integer_valuetypes()) {
118     if (VT == MVT::i64)
119       continue;
120 
121     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
122     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
124     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
125 
126     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
129     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
130 
131     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
132     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
133     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
134     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
135   }
136 
137   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
138     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
139     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
140     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
141     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
143     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
144     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
147     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
148     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
149     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
150     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
151     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
152     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
153   }
154 
155   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
156   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
157   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
158   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
159   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
160   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
161   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
162 
163   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
164   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
165   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
166   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
167 
168   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
169   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
170   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
171   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
172 
173   setOperationAction(ISD::STORE, MVT::f32, Promote);
174   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
175 
176   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
177   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
178 
179   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
180   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
181 
182   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
183   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
184 
185   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
186   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
187 
188   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
189   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
190 
191   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
192   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
193 
194   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
195   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
196 
197   setOperationAction(ISD::STORE, MVT::i64, Promote);
198   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
199 
200   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
201   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
202 
203   setOperationAction(ISD::STORE, MVT::f64, Promote);
204   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
205 
206   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
207   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
208 
209   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
210   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
211   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
212   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
213 
214   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
215   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
216   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
217   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
218 
219   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
220   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
221   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
222   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
223   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
224   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
225   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
226 
227   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
228   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
229 
230   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
231   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
232 
233   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
234   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
235 
236   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
237   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
238 
239 
240   setOperationAction(ISD::Constant, MVT::i32, Legal);
241   setOperationAction(ISD::Constant, MVT::i64, Legal);
242   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
243   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
244 
245   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
246   setOperationAction(ISD::BRIND, MVT::Other, Expand);
247 
248   // This is totally unsupported, just custom lower to produce an error.
249   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
250 
251   // Library functions.  These default to Expand, but we have instructions
252   // for them.
253   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
254   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
255   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
256   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
257   setOperationAction(ISD::FABS,   MVT::f32, Legal);
258   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
259   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
260   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
261   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
262   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
263 
264   setOperationAction(ISD::FROUND, MVT::f32, Custom);
265   setOperationAction(ISD::FROUND, MVT::f64, Custom);
266 
267   setOperationAction(ISD::FLOG, MVT::f32, Custom);
268   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
269   setOperationAction(ISD::FEXP, MVT::f32, Custom);
270 
271 
272   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
273   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
274 
275   setOperationAction(ISD::FREM, MVT::f32, Custom);
276   setOperationAction(ISD::FREM, MVT::f64, Custom);
277 
278   // Expand to fneg + fadd.
279   setOperationAction(ISD::FSUB, MVT::f64, Expand);
280 
281   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
282   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
283   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
284   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
285   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
286   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
287   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
288   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
289   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
290   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
291   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
292   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
293   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
294   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
295   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
296   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
297   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
298   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
299   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
300   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
301   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
302   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
303 
304   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
305   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
306   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
307 
308   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
309   for (MVT VT : ScalarIntVTs) {
310     // These should use [SU]DIVREM, so set them to expand
311     setOperationAction(ISD::SDIV, VT, Expand);
312     setOperationAction(ISD::UDIV, VT, Expand);
313     setOperationAction(ISD::SREM, VT, Expand);
314     setOperationAction(ISD::UREM, VT, Expand);
315 
316     // GPU does not have divrem function for signed or unsigned.
317     setOperationAction(ISD::SDIVREM, VT, Custom);
318     setOperationAction(ISD::UDIVREM, VT, Custom);
319 
320     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
321     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
322     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
323 
324     setOperationAction(ISD::BSWAP, VT, Expand);
325     setOperationAction(ISD::CTTZ, VT, Expand);
326     setOperationAction(ISD::CTLZ, VT, Expand);
327 
328     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
329     setOperationAction(ISD::ADDC, VT, Legal);
330     setOperationAction(ISD::SUBC, VT, Legal);
331     setOperationAction(ISD::ADDE, VT, Legal);
332     setOperationAction(ISD::SUBE, VT, Legal);
333   }
334 
335   // The hardware supports 32-bit ROTR, but not ROTL.
336   setOperationAction(ISD::ROTL, MVT::i32, Expand);
337   setOperationAction(ISD::ROTL, MVT::i64, Expand);
338   setOperationAction(ISD::ROTR, MVT::i64, Expand);
339 
340   setOperationAction(ISD::MUL, MVT::i64, Expand);
341   setOperationAction(ISD::MULHU, MVT::i64, Expand);
342   setOperationAction(ISD::MULHS, MVT::i64, Expand);
343   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
344   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
345   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
346   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
347   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
348 
349   setOperationAction(ISD::SMIN, MVT::i32, Legal);
350   setOperationAction(ISD::UMIN, MVT::i32, Legal);
351   setOperationAction(ISD::SMAX, MVT::i32, Legal);
352   setOperationAction(ISD::UMAX, MVT::i32, Legal);
353 
354   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
355   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
356   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
357   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
358 
359   static const MVT::SimpleValueType VectorIntTypes[] = {
360     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
361   };
362 
363   for (MVT VT : VectorIntTypes) {
364     // Expand the following operations for the current type by default.
365     setOperationAction(ISD::ADD,  VT, Expand);
366     setOperationAction(ISD::AND,  VT, Expand);
367     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
368     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
369     setOperationAction(ISD::MUL,  VT, Expand);
370     setOperationAction(ISD::MULHU, VT, Expand);
371     setOperationAction(ISD::MULHS, VT, Expand);
372     setOperationAction(ISD::OR,   VT, Expand);
373     setOperationAction(ISD::SHL,  VT, Expand);
374     setOperationAction(ISD::SRA,  VT, Expand);
375     setOperationAction(ISD::SRL,  VT, Expand);
376     setOperationAction(ISD::ROTL, VT, Expand);
377     setOperationAction(ISD::ROTR, VT, Expand);
378     setOperationAction(ISD::SUB,  VT, Expand);
379     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
380     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
381     setOperationAction(ISD::SDIV, VT, Expand);
382     setOperationAction(ISD::UDIV, VT, Expand);
383     setOperationAction(ISD::SREM, VT, Expand);
384     setOperationAction(ISD::UREM, VT, Expand);
385     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
386     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
387     setOperationAction(ISD::SDIVREM, VT, Custom);
388     setOperationAction(ISD::UDIVREM, VT, Expand);
389     setOperationAction(ISD::SELECT, VT, Expand);
390     setOperationAction(ISD::VSELECT, VT, Expand);
391     setOperationAction(ISD::SELECT_CC, VT, Expand);
392     setOperationAction(ISD::XOR,  VT, Expand);
393     setOperationAction(ISD::BSWAP, VT, Expand);
394     setOperationAction(ISD::CTPOP, VT, Expand);
395     setOperationAction(ISD::CTTZ, VT, Expand);
396     setOperationAction(ISD::CTLZ, VT, Expand);
397     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
398     setOperationAction(ISD::SETCC, VT, Expand);
399   }
400 
401   static const MVT::SimpleValueType FloatVectorTypes[] = {
402      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
403   };
404 
405   for (MVT VT : FloatVectorTypes) {
406     setOperationAction(ISD::FABS, VT, Expand);
407     setOperationAction(ISD::FMINNUM, VT, Expand);
408     setOperationAction(ISD::FMAXNUM, VT, Expand);
409     setOperationAction(ISD::FADD, VT, Expand);
410     setOperationAction(ISD::FCEIL, VT, Expand);
411     setOperationAction(ISD::FCOS, VT, Expand);
412     setOperationAction(ISD::FDIV, VT, Expand);
413     setOperationAction(ISD::FEXP2, VT, Expand);
414     setOperationAction(ISD::FEXP, VT, Expand);
415     setOperationAction(ISD::FLOG2, VT, Expand);
416     setOperationAction(ISD::FREM, VT, Expand);
417     setOperationAction(ISD::FLOG, VT, Expand);
418     setOperationAction(ISD::FLOG10, VT, Expand);
419     setOperationAction(ISD::FPOW, VT, Expand);
420     setOperationAction(ISD::FFLOOR, VT, Expand);
421     setOperationAction(ISD::FTRUNC, VT, Expand);
422     setOperationAction(ISD::FMUL, VT, Expand);
423     setOperationAction(ISD::FMA, VT, Expand);
424     setOperationAction(ISD::FRINT, VT, Expand);
425     setOperationAction(ISD::FNEARBYINT, VT, Expand);
426     setOperationAction(ISD::FSQRT, VT, Expand);
427     setOperationAction(ISD::FSIN, VT, Expand);
428     setOperationAction(ISD::FSUB, VT, Expand);
429     setOperationAction(ISD::FNEG, VT, Expand);
430     setOperationAction(ISD::VSELECT, VT, Expand);
431     setOperationAction(ISD::SELECT_CC, VT, Expand);
432     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
433     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
434     setOperationAction(ISD::SETCC, VT, Expand);
435     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
436   }
437 
438   // This causes using an unrolled select operation rather than expansion with
439   // bit operations. This is in general better, but the alternative using BFI
440   // instructions may be better if the select sources are SGPRs.
441   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
442   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
443 
444   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
445   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
446 
447   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
448   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
449 
450   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
451   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
452 
453   // There are no libcalls of any kind.
454   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
455     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
456 
457   setBooleanContents(ZeroOrNegativeOneBooleanContent);
458   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
459 
460   setSchedulingPreference(Sched::RegPressure);
461   setJumpIsExpensive(true);
462 
463   // FIXME: This is only partially true. If we have to do vector compares, any
464   // SGPR pair can be a condition register. If we have a uniform condition, we
465   // are better off doing SALU operations, where there is only one SCC. For now,
466   // we don't have a way of knowing during instruction selection if a condition
467   // will be uniform and we always use vector compares. Assume we are using
468   // vector compares until that is fixed.
469   setHasMultipleConditionRegisters(true);
470 
471   setMinCmpXchgSizeInBits(32);
472   setSupportsUnalignedAtomics(false);
473 
474   PredictableSelectIsExpensive = false;
475 
476   // We want to find all load dependencies for long chains of stores to enable
477   // merging into very wide vectors. The problem is with vectors with > 4
478   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
479   // vectors are a legal type, even though we have to split the loads
480   // usually. When we can more precisely specify load legality per address
481   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
482   // smarter so that they can figure out what to do in 2 iterations without all
483   // N > 4 stores on the same chain.
484   GatherAllAliasesMaxDepth = 16;
485 
486   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
487   // about these during lowering.
488   MaxStoresPerMemcpy  = 0xffffffff;
489   MaxStoresPerMemmove = 0xffffffff;
490   MaxStoresPerMemset  = 0xffffffff;
491 
492   setTargetDAGCombine(ISD::BITCAST);
493   setTargetDAGCombine(ISD::SHL);
494   setTargetDAGCombine(ISD::SRA);
495   setTargetDAGCombine(ISD::SRL);
496   setTargetDAGCombine(ISD::TRUNCATE);
497   setTargetDAGCombine(ISD::MUL);
498   setTargetDAGCombine(ISD::MULHU);
499   setTargetDAGCombine(ISD::MULHS);
500   setTargetDAGCombine(ISD::SELECT);
501   setTargetDAGCombine(ISD::SELECT_CC);
502   setTargetDAGCombine(ISD::STORE);
503   setTargetDAGCombine(ISD::FADD);
504   setTargetDAGCombine(ISD::FSUB);
505   setTargetDAGCombine(ISD::FNEG);
506   setTargetDAGCombine(ISD::FABS);
507   setTargetDAGCombine(ISD::AssertZext);
508   setTargetDAGCombine(ISD::AssertSext);
509   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
510 }
511 
512 //===----------------------------------------------------------------------===//
513 // Target Information
514 //===----------------------------------------------------------------------===//
515 
516 LLVM_READNONE
517 static bool fnegFoldsIntoOp(unsigned Opc) {
518   switch (Opc) {
519   case ISD::FADD:
520   case ISD::FSUB:
521   case ISD::FMUL:
522   case ISD::FMA:
523   case ISD::FMAD:
524   case ISD::FMINNUM:
525   case ISD::FMAXNUM:
526   case ISD::FMINNUM_IEEE:
527   case ISD::FMAXNUM_IEEE:
528   case ISD::FSIN:
529   case ISD::FTRUNC:
530   case ISD::FRINT:
531   case ISD::FNEARBYINT:
532   case ISD::FCANONICALIZE:
533   case AMDGPUISD::RCP:
534   case AMDGPUISD::RCP_LEGACY:
535   case AMDGPUISD::RCP_IFLAG:
536   case AMDGPUISD::SIN_HW:
537   case AMDGPUISD::FMUL_LEGACY:
538   case AMDGPUISD::FMIN_LEGACY:
539   case AMDGPUISD::FMAX_LEGACY:
540   case AMDGPUISD::FMED3:
541     return true;
542   default:
543     return false;
544   }
545 }
546 
547 /// \p returns true if the operation will definitely need to use a 64-bit
548 /// encoding, and thus will use a VOP3 encoding regardless of the source
549 /// modifiers.
550 LLVM_READONLY
551 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
552   return N->getNumOperands() > 2 || VT == MVT::f64;
553 }
554 
555 // Most FP instructions support source modifiers, but this could be refined
556 // slightly.
557 LLVM_READONLY
558 static bool hasSourceMods(const SDNode *N) {
559   if (isa<MemSDNode>(N))
560     return false;
561 
562   switch (N->getOpcode()) {
563   case ISD::CopyToReg:
564   case ISD::SELECT:
565   case ISD::FDIV:
566   case ISD::FREM:
567   case ISD::INLINEASM:
568   case ISD::INLINEASM_BR:
569   case AMDGPUISD::INTERP_P1:
570   case AMDGPUISD::INTERP_P2:
571   case AMDGPUISD::DIV_SCALE:
572 
573   // TODO: Should really be looking at the users of the bitcast. These are
574   // problematic because bitcasts are used to legalize all stores to integer
575   // types.
576   case ISD::BITCAST:
577     return false;
578   default:
579     return true;
580   }
581 }
582 
583 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
584                                                  unsigned CostThreshold) {
585   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
586   // it is truly free to use a source modifier in all cases. If there are
587   // multiple users but for each one will necessitate using VOP3, there will be
588   // a code size increase. Try to avoid increasing code size unless we know it
589   // will save on the instruction count.
590   unsigned NumMayIncreaseSize = 0;
591   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
592 
593   // XXX - Should this limit number of uses to check?
594   for (const SDNode *U : N->uses()) {
595     if (!hasSourceMods(U))
596       return false;
597 
598     if (!opMustUseVOP3Encoding(U, VT)) {
599       if (++NumMayIncreaseSize > CostThreshold)
600         return false;
601     }
602   }
603 
604   return true;
605 }
606 
607 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
608   return MVT::i32;
609 }
610 
611 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
612   return true;
613 }
614 
615 // The backend supports 32 and 64 bit floating point immediates.
616 // FIXME: Why are we reporting vectors of FP immediates as legal?
617 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
618                                         bool ForCodeSize) const {
619   EVT ScalarVT = VT.getScalarType();
620   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
621          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
622 }
623 
624 // We don't want to shrink f64 / f32 constants.
625 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
626   EVT ScalarVT = VT.getScalarType();
627   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
628 }
629 
630 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
631                                                  ISD::LoadExtType ExtTy,
632                                                  EVT NewVT) const {
633   // TODO: This may be worth removing. Check regression tests for diffs.
634   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
635     return false;
636 
637   unsigned NewSize = NewVT.getStoreSizeInBits();
638 
639   // If we are reducing to a 32-bit load, this is always better.
640   if (NewSize == 32)
641     return true;
642 
643   EVT OldVT = N->getValueType(0);
644   unsigned OldSize = OldVT.getStoreSizeInBits();
645 
646   MemSDNode *MN = cast<MemSDNode>(N);
647   unsigned AS = MN->getAddressSpace();
648   // Do not shrink an aligned scalar load to sub-dword.
649   // Scalar engine cannot do sub-dword loads.
650   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
651       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
652        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
653        (isa<LoadSDNode>(N) &&
654         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
655       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
656     return false;
657 
658   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
659   // extloads, so doing one requires using a buffer_load. In cases where we
660   // still couldn't use a scalar load, using the wider load shouldn't really
661   // hurt anything.
662 
663   // If the old size already had to be an extload, there's no harm in continuing
664   // to reduce the width.
665   return (OldSize < 32);
666 }
667 
668 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
669                                                    const SelectionDAG &DAG,
670                                                    const MachineMemOperand &MMO) const {
671 
672   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
673 
674   if (LoadTy.getScalarType() == MVT::i32)
675     return false;
676 
677   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
678   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
679 
680   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
681     return false;
682 
683   bool Fast = false;
684   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), CastTy,
685                             MMO, &Fast) && Fast;
686 }
687 
688 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
689 // profitable with the expansion for 64-bit since it's generally good to
690 // speculate things.
691 // FIXME: These should really have the size as a parameter.
692 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
693   return true;
694 }
695 
696 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
697   return true;
698 }
699 
700 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
701   switch (N->getOpcode()) {
702     default:
703     return false;
704     case ISD::EntryToken:
705     case ISD::TokenFactor:
706       return true;
707     case ISD::INTRINSIC_WO_CHAIN:
708     {
709       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
710       switch (IntrID) {
711         default:
712         return false;
713         case Intrinsic::amdgcn_readfirstlane:
714         case Intrinsic::amdgcn_readlane:
715           return true;
716       }
717     }
718     break;
719     case ISD::LOAD:
720     {
721       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
722           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
723         return true;
724       return false;
725     }
726     break;
727   }
728 }
729 
730 //===---------------------------------------------------------------------===//
731 // Target Properties
732 //===---------------------------------------------------------------------===//
733 
734 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
735   assert(VT.isFloatingPoint());
736 
737   // Packed operations do not have a fabs modifier.
738   return VT == MVT::f32 || VT == MVT::f64 ||
739          (Subtarget->has16BitInsts() && VT == MVT::f16);
740 }
741 
742 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
743   assert(VT.isFloatingPoint());
744   return VT == MVT::f32 || VT == MVT::f64 ||
745          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
746          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
747 }
748 
749 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
750                                                          unsigned NumElem,
751                                                          unsigned AS) const {
752   return true;
753 }
754 
755 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
756   // There are few operations which truly have vector input operands. Any vector
757   // operation is going to involve operations on each component, and a
758   // build_vector will be a copy per element, so it always makes sense to use a
759   // build_vector input in place of the extracted element to avoid a copy into a
760   // super register.
761   //
762   // We should probably only do this if all users are extracts only, but this
763   // should be the common case.
764   return true;
765 }
766 
767 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
768   // Truncate is just accessing a subregister.
769 
770   unsigned SrcSize = Source.getSizeInBits();
771   unsigned DestSize = Dest.getSizeInBits();
772 
773   return DestSize < SrcSize && DestSize % 32 == 0 ;
774 }
775 
776 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
777   // Truncate is just accessing a subregister.
778 
779   unsigned SrcSize = Source->getScalarSizeInBits();
780   unsigned DestSize = Dest->getScalarSizeInBits();
781 
782   if (DestSize== 16 && Subtarget->has16BitInsts())
783     return SrcSize >= 32;
784 
785   return DestSize < SrcSize && DestSize % 32 == 0;
786 }
787 
788 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
789   unsigned SrcSize = Src->getScalarSizeInBits();
790   unsigned DestSize = Dest->getScalarSizeInBits();
791 
792   if (SrcSize == 16 && Subtarget->has16BitInsts())
793     return DestSize >= 32;
794 
795   return SrcSize == 32 && DestSize == 64;
796 }
797 
798 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
799   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
800   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
801   // this will enable reducing 64-bit operations the 32-bit, which is always
802   // good.
803 
804   if (Src == MVT::i16)
805     return Dest == MVT::i32 ||Dest == MVT::i64 ;
806 
807   return Src == MVT::i32 && Dest == MVT::i64;
808 }
809 
810 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
811   return isZExtFree(Val.getValueType(), VT2);
812 }
813 
814 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
815   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
816   // limited number of native 64-bit operations. Shrinking an operation to fit
817   // in a single 32-bit register should always be helpful. As currently used,
818   // this is much less general than the name suggests, and is only used in
819   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
820   // not profitable, and may actually be harmful.
821   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
822 }
823 
824 //===---------------------------------------------------------------------===//
825 // TargetLowering Callbacks
826 //===---------------------------------------------------------------------===//
827 
828 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
829                                                   bool IsVarArg) {
830   switch (CC) {
831   case CallingConv::AMDGPU_VS:
832   case CallingConv::AMDGPU_GS:
833   case CallingConv::AMDGPU_PS:
834   case CallingConv::AMDGPU_CS:
835   case CallingConv::AMDGPU_HS:
836   case CallingConv::AMDGPU_ES:
837   case CallingConv::AMDGPU_LS:
838     return CC_AMDGPU;
839   case CallingConv::C:
840   case CallingConv::Fast:
841   case CallingConv::Cold:
842     return CC_AMDGPU_Func;
843   case CallingConv::AMDGPU_KERNEL:
844   case CallingConv::SPIR_KERNEL:
845   default:
846     report_fatal_error("Unsupported calling convention for call");
847   }
848 }
849 
850 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
851                                                     bool IsVarArg) {
852   switch (CC) {
853   case CallingConv::AMDGPU_KERNEL:
854   case CallingConv::SPIR_KERNEL:
855     llvm_unreachable("kernels should not be handled here");
856   case CallingConv::AMDGPU_VS:
857   case CallingConv::AMDGPU_GS:
858   case CallingConv::AMDGPU_PS:
859   case CallingConv::AMDGPU_CS:
860   case CallingConv::AMDGPU_HS:
861   case CallingConv::AMDGPU_ES:
862   case CallingConv::AMDGPU_LS:
863     return RetCC_SI_Shader;
864   case CallingConv::C:
865   case CallingConv::Fast:
866   case CallingConv::Cold:
867     return RetCC_AMDGPU_Func;
868   default:
869     report_fatal_error("Unsupported calling convention.");
870   }
871 }
872 
873 /// The SelectionDAGBuilder will automatically promote function arguments
874 /// with illegal types.  However, this does not work for the AMDGPU targets
875 /// since the function arguments are stored in memory as these illegal types.
876 /// In order to handle this properly we need to get the original types sizes
877 /// from the LLVM IR Function and fixup the ISD:InputArg values before
878 /// passing them to AnalyzeFormalArguments()
879 
880 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
881 /// input values across multiple registers.  Each item in the Ins array
882 /// represents a single value that will be stored in registers.  Ins[x].VT is
883 /// the value type of the value that will be stored in the register, so
884 /// whatever SDNode we lower the argument to needs to be this type.
885 ///
886 /// In order to correctly lower the arguments we need to know the size of each
887 /// argument.  Since Ins[x].VT gives us the size of the register that will
888 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
889 /// for the orignal function argument so that we can deduce the correct memory
890 /// type to use for Ins[x].  In most cases the correct memory type will be
891 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
892 /// we have a kernel argument of type v8i8, this argument will be split into
893 /// 8 parts and each part will be represented by its own item in the Ins array.
894 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
895 /// the argument before it was split.  From this, we deduce that the memory type
896 /// for each individual part is i8.  We pass the memory type as LocVT to the
897 /// calling convention analysis function and the register type (Ins[x].VT) as
898 /// the ValVT.
899 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
900   CCState &State,
901   const SmallVectorImpl<ISD::InputArg> &Ins) const {
902   const MachineFunction &MF = State.getMachineFunction();
903   const Function &Fn = MF.getFunction();
904   LLVMContext &Ctx = Fn.getParent()->getContext();
905   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
906   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
907   CallingConv::ID CC = Fn.getCallingConv();
908 
909   unsigned MaxAlign = 1;
910   uint64_t ExplicitArgOffset = 0;
911   const DataLayout &DL = Fn.getParent()->getDataLayout();
912 
913   unsigned InIndex = 0;
914 
915   for (const Argument &Arg : Fn.args()) {
916     Type *BaseArgTy = Arg.getType();
917     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
918     MaxAlign = std::max(Align, MaxAlign);
919     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
920 
921     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
922     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
923 
924     // We're basically throwing away everything passed into us and starting over
925     // to get accurate in-memory offsets. The "PartOffset" is completely useless
926     // to us as computed in Ins.
927     //
928     // We also need to figure out what type legalization is trying to do to get
929     // the correct memory offsets.
930 
931     SmallVector<EVT, 16> ValueVTs;
932     SmallVector<uint64_t, 16> Offsets;
933     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
934 
935     for (unsigned Value = 0, NumValues = ValueVTs.size();
936          Value != NumValues; ++Value) {
937       uint64_t BasePartOffset = Offsets[Value];
938 
939       EVT ArgVT = ValueVTs[Value];
940       EVT MemVT = ArgVT;
941       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
942       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
943 
944       if (NumRegs == 1) {
945         // This argument is not split, so the IR type is the memory type.
946         if (ArgVT.isExtended()) {
947           // We have an extended type, like i24, so we should just use the
948           // register type.
949           MemVT = RegisterVT;
950         } else {
951           MemVT = ArgVT;
952         }
953       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
954                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
955         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
956         // We have a vector value which has been split into a vector with
957         // the same scalar type, but fewer elements.  This should handle
958         // all the floating-point vector types.
959         MemVT = RegisterVT;
960       } else if (ArgVT.isVector() &&
961                  ArgVT.getVectorNumElements() == NumRegs) {
962         // This arg has been split so that each element is stored in a separate
963         // register.
964         MemVT = ArgVT.getScalarType();
965       } else if (ArgVT.isExtended()) {
966         // We have an extended type, like i65.
967         MemVT = RegisterVT;
968       } else {
969         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
970         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
971         if (RegisterVT.isInteger()) {
972           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
973         } else if (RegisterVT.isVector()) {
974           assert(!RegisterVT.getScalarType().isFloatingPoint());
975           unsigned NumElements = RegisterVT.getVectorNumElements();
976           assert(MemoryBits % NumElements == 0);
977           // This vector type has been split into another vector type with
978           // a different elements size.
979           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
980                                            MemoryBits / NumElements);
981           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
982         } else {
983           llvm_unreachable("cannot deduce memory type.");
984         }
985       }
986 
987       // Convert one element vectors to scalar.
988       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
989         MemVT = MemVT.getScalarType();
990 
991       // Round up vec3/vec5 argument.
992       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
993         assert(MemVT.getVectorNumElements() == 3 ||
994                MemVT.getVectorNumElements() == 5);
995         MemVT = MemVT.getPow2VectorType(State.getContext());
996       }
997 
998       unsigned PartOffset = 0;
999       for (unsigned i = 0; i != NumRegs; ++i) {
1000         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1001                                                BasePartOffset + PartOffset,
1002                                                MemVT.getSimpleVT(),
1003                                                CCValAssign::Full));
1004         PartOffset += MemVT.getStoreSize();
1005       }
1006     }
1007   }
1008 }
1009 
1010 SDValue AMDGPUTargetLowering::LowerReturn(
1011   SDValue Chain, CallingConv::ID CallConv,
1012   bool isVarArg,
1013   const SmallVectorImpl<ISD::OutputArg> &Outs,
1014   const SmallVectorImpl<SDValue> &OutVals,
1015   const SDLoc &DL, SelectionDAG &DAG) const {
1016   // FIXME: Fails for r600 tests
1017   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1018   // "wave terminate should not have return values");
1019   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1020 }
1021 
1022 //===---------------------------------------------------------------------===//
1023 // Target specific lowering
1024 //===---------------------------------------------------------------------===//
1025 
1026 /// Selects the correct CCAssignFn for a given CallingConvention value.
1027 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1028                                                     bool IsVarArg) {
1029   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1030 }
1031 
1032 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1033                                                       bool IsVarArg) {
1034   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1035 }
1036 
1037 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1038                                                   SelectionDAG &DAG,
1039                                                   MachineFrameInfo &MFI,
1040                                                   int ClobberedFI) const {
1041   SmallVector<SDValue, 8> ArgChains;
1042   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1043   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1044 
1045   // Include the original chain at the beginning of the list. When this is
1046   // used by target LowerCall hooks, this helps legalize find the
1047   // CALLSEQ_BEGIN node.
1048   ArgChains.push_back(Chain);
1049 
1050   // Add a chain value for each stack argument corresponding
1051   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1052                             UE = DAG.getEntryNode().getNode()->use_end();
1053        U != UE; ++U) {
1054     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1055       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1056         if (FI->getIndex() < 0) {
1057           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1058           int64_t InLastByte = InFirstByte;
1059           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1060 
1061           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1062               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1063             ArgChains.push_back(SDValue(L, 1));
1064         }
1065       }
1066     }
1067   }
1068 
1069   // Build a tokenfactor for all the chains.
1070   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1071 }
1072 
1073 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1074                                                  SmallVectorImpl<SDValue> &InVals,
1075                                                  StringRef Reason) const {
1076   SDValue Callee = CLI.Callee;
1077   SelectionDAG &DAG = CLI.DAG;
1078 
1079   const Function &Fn = DAG.getMachineFunction().getFunction();
1080 
1081   StringRef FuncName("<unknown>");
1082 
1083   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1084     FuncName = G->getSymbol();
1085   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1086     FuncName = G->getGlobal()->getName();
1087 
1088   DiagnosticInfoUnsupported NoCalls(
1089     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1090   DAG.getContext()->diagnose(NoCalls);
1091 
1092   if (!CLI.IsTailCall) {
1093     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1094       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1095   }
1096 
1097   return DAG.getEntryNode();
1098 }
1099 
1100 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1101                                         SmallVectorImpl<SDValue> &InVals) const {
1102   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1103 }
1104 
1105 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1106                                                       SelectionDAG &DAG) const {
1107   const Function &Fn = DAG.getMachineFunction().getFunction();
1108 
1109   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1110                                             SDLoc(Op).getDebugLoc());
1111   DAG.getContext()->diagnose(NoDynamicAlloca);
1112   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1113   return DAG.getMergeValues(Ops, SDLoc());
1114 }
1115 
1116 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1117                                              SelectionDAG &DAG) const {
1118   switch (Op.getOpcode()) {
1119   default:
1120     Op->print(errs(), &DAG);
1121     llvm_unreachable("Custom lowering code for this"
1122                      "instruction is not implemented yet!");
1123     break;
1124   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1125   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1126   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1127   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1128   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1129   case ISD::FREM: return LowerFREM(Op, DAG);
1130   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1131   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1132   case ISD::FRINT: return LowerFRINT(Op, DAG);
1133   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1134   case ISD::FROUND: return LowerFROUND(Op, DAG);
1135   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1136   case ISD::FLOG:
1137     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1138   case ISD::FLOG10:
1139     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1140   case ISD::FEXP:
1141     return lowerFEXP(Op, DAG);
1142   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1143   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1144   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1145   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1146   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1147   case ISD::CTTZ:
1148   case ISD::CTTZ_ZERO_UNDEF:
1149   case ISD::CTLZ:
1150   case ISD::CTLZ_ZERO_UNDEF:
1151     return LowerCTLZ_CTTZ(Op, DAG);
1152   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1153   }
1154   return Op;
1155 }
1156 
1157 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1158                                               SmallVectorImpl<SDValue> &Results,
1159                                               SelectionDAG &DAG) const {
1160   switch (N->getOpcode()) {
1161   case ISD::SIGN_EXTEND_INREG:
1162     // Different parts of legalization seem to interpret which type of
1163     // sign_extend_inreg is the one to check for custom lowering. The extended
1164     // from type is what really matters, but some places check for custom
1165     // lowering of the result type. This results in trying to use
1166     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1167     // nothing here and let the illegal result integer be handled normally.
1168     return;
1169   default:
1170     return;
1171   }
1172 }
1173 
1174 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1175   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1176   if (!GVar || !GVar->hasInitializer())
1177     return false;
1178 
1179   return !isa<UndefValue>(GVar->getInitializer());
1180 }
1181 
1182 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1183                                                  SDValue Op,
1184                                                  SelectionDAG &DAG) const {
1185 
1186   const DataLayout &DL = DAG.getDataLayout();
1187   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1188   const GlobalValue *GV = G->getGlobal();
1189 
1190   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1191       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1192     if (!MFI->isEntryFunction()) {
1193       const Function &Fn = DAG.getMachineFunction().getFunction();
1194       DiagnosticInfoUnsupported BadLDSDecl(
1195         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1196       DAG.getContext()->diagnose(BadLDSDecl);
1197     }
1198 
1199     // XXX: What does the value of G->getOffset() mean?
1200     assert(G->getOffset() == 0 &&
1201          "Do not know what to do with an non-zero offset");
1202 
1203     // TODO: We could emit code to handle the initialization somewhere.
1204     if (!hasDefinedInitializer(GV)) {
1205       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1206       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1207     }
1208   }
1209 
1210   const Function &Fn = DAG.getMachineFunction().getFunction();
1211   DiagnosticInfoUnsupported BadInit(
1212       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1213   DAG.getContext()->diagnose(BadInit);
1214   return SDValue();
1215 }
1216 
1217 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1218                                                   SelectionDAG &DAG) const {
1219   SmallVector<SDValue, 8> Args;
1220 
1221   EVT VT = Op.getValueType();
1222   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1223     SDLoc SL(Op);
1224     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1225     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1226 
1227     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1228     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1229   }
1230 
1231   for (const SDUse &U : Op->ops())
1232     DAG.ExtractVectorElements(U.get(), Args);
1233 
1234   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1235 }
1236 
1237 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1238                                                      SelectionDAG &DAG) const {
1239 
1240   SmallVector<SDValue, 8> Args;
1241   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1242   EVT VT = Op.getValueType();
1243   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1244                             VT.getVectorNumElements());
1245 
1246   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1247 }
1248 
1249 /// Generate Min/Max node
1250 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1251                                                    SDValue LHS, SDValue RHS,
1252                                                    SDValue True, SDValue False,
1253                                                    SDValue CC,
1254                                                    DAGCombinerInfo &DCI) const {
1255   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1256     return SDValue();
1257 
1258   SelectionDAG &DAG = DCI.DAG;
1259   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1260   switch (CCOpcode) {
1261   case ISD::SETOEQ:
1262   case ISD::SETONE:
1263   case ISD::SETUNE:
1264   case ISD::SETNE:
1265   case ISD::SETUEQ:
1266   case ISD::SETEQ:
1267   case ISD::SETFALSE:
1268   case ISD::SETFALSE2:
1269   case ISD::SETTRUE:
1270   case ISD::SETTRUE2:
1271   case ISD::SETUO:
1272   case ISD::SETO:
1273     break;
1274   case ISD::SETULE:
1275   case ISD::SETULT: {
1276     if (LHS == True)
1277       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1278     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1279   }
1280   case ISD::SETOLE:
1281   case ISD::SETOLT:
1282   case ISD::SETLE:
1283   case ISD::SETLT: {
1284     // Ordered. Assume ordered for undefined.
1285 
1286     // Only do this after legalization to avoid interfering with other combines
1287     // which might occur.
1288     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1289         !DCI.isCalledByLegalizer())
1290       return SDValue();
1291 
1292     // We need to permute the operands to get the correct NaN behavior. The
1293     // selected operand is the second one based on the failing compare with NaN,
1294     // so permute it based on the compare type the hardware uses.
1295     if (LHS == True)
1296       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1297     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1298   }
1299   case ISD::SETUGE:
1300   case ISD::SETUGT: {
1301     if (LHS == True)
1302       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1303     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1304   }
1305   case ISD::SETGT:
1306   case ISD::SETGE:
1307   case ISD::SETOGE:
1308   case ISD::SETOGT: {
1309     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1310         !DCI.isCalledByLegalizer())
1311       return SDValue();
1312 
1313     if (LHS == True)
1314       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1315     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1316   }
1317   case ISD::SETCC_INVALID:
1318     llvm_unreachable("Invalid setcc condcode!");
1319   }
1320   return SDValue();
1321 }
1322 
1323 std::pair<SDValue, SDValue>
1324 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1325   SDLoc SL(Op);
1326 
1327   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1328 
1329   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1330   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1331 
1332   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1333   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1334 
1335   return std::make_pair(Lo, Hi);
1336 }
1337 
1338 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1339   SDLoc SL(Op);
1340 
1341   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1342   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1343   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1344 }
1345 
1346 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1347   SDLoc SL(Op);
1348 
1349   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1350   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1351   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1352 }
1353 
1354 // Split a vector type into two parts. The first part is a power of two vector.
1355 // The second part is whatever is left over, and is a scalar if it would
1356 // otherwise be a 1-vector.
1357 std::pair<EVT, EVT>
1358 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1359   EVT LoVT, HiVT;
1360   EVT EltVT = VT.getVectorElementType();
1361   unsigned NumElts = VT.getVectorNumElements();
1362   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1363   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1364   HiVT = NumElts - LoNumElts == 1
1365              ? EltVT
1366              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1367   return std::make_pair(LoVT, HiVT);
1368 }
1369 
1370 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1371 // scalar.
1372 std::pair<SDValue, SDValue>
1373 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1374                                   const EVT &LoVT, const EVT &HiVT,
1375                                   SelectionDAG &DAG) const {
1376   assert(LoVT.getVectorNumElements() +
1377                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1378              N.getValueType().getVectorNumElements() &&
1379          "More vector elements requested than available!");
1380   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1381   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1382                            DAG.getConstant(0, DL, IdxTy));
1383   SDValue Hi = DAG.getNode(
1384       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1385       HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1386   return std::make_pair(Lo, Hi);
1387 }
1388 
1389 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1390                                               SelectionDAG &DAG) const {
1391   LoadSDNode *Load = cast<LoadSDNode>(Op);
1392   EVT VT = Op.getValueType();
1393 
1394 
1395   // If this is a 2 element vector, we really want to scalarize and not create
1396   // weird 1 element vectors.
1397   if (VT.getVectorNumElements() == 2)
1398     return scalarizeVectorLoad(Load, DAG);
1399 
1400   SDValue BasePtr = Load->getBasePtr();
1401   EVT MemVT = Load->getMemoryVT();
1402   SDLoc SL(Op);
1403 
1404   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1405 
1406   EVT LoVT, HiVT;
1407   EVT LoMemVT, HiMemVT;
1408   SDValue Lo, Hi;
1409 
1410   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1411   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1412   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1413 
1414   unsigned Size = LoMemVT.getStoreSize();
1415   unsigned BaseAlign = Load->getAlignment();
1416   unsigned HiAlign = MinAlign(BaseAlign, Size);
1417 
1418   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1419                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1420                                   BaseAlign, Load->getMemOperand()->getFlags());
1421   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1422   SDValue HiLoad =
1423       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1424                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1425                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1426 
1427   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1428   SDValue Join;
1429   if (LoVT == HiVT) {
1430     // This is the case that the vector is power of two so was evenly split.
1431     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1432   } else {
1433     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1434                        DAG.getConstant(0, SL, IdxTy));
1435     Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1436                                        : ISD::INSERT_VECTOR_ELT,
1437                        SL, VT, Join, HiLoad,
1438                        DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1439   }
1440 
1441   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1442                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1443 
1444   return DAG.getMergeValues(Ops, SL);
1445 }
1446 
1447 // Widen a vector load from vec3 to vec4.
1448 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1449                                               SelectionDAG &DAG) const {
1450   LoadSDNode *Load = cast<LoadSDNode>(Op);
1451   EVT VT = Op.getValueType();
1452   assert(VT.getVectorNumElements() == 3);
1453   SDValue BasePtr = Load->getBasePtr();
1454   EVT MemVT = Load->getMemoryVT();
1455   SDLoc SL(Op);
1456   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1457   unsigned BaseAlign = Load->getAlignment();
1458 
1459   EVT WideVT =
1460       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1461   EVT WideMemVT =
1462       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1463   SDValue WideLoad = DAG.getExtLoad(
1464       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1465       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1466   return DAG.getMergeValues(
1467       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1468                    DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1469        WideLoad.getValue(1)},
1470       SL);
1471 }
1472 
1473 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1474                                                SelectionDAG &DAG) const {
1475   StoreSDNode *Store = cast<StoreSDNode>(Op);
1476   SDValue Val = Store->getValue();
1477   EVT VT = Val.getValueType();
1478 
1479   // If this is a 2 element vector, we really want to scalarize and not create
1480   // weird 1 element vectors.
1481   if (VT.getVectorNumElements() == 2)
1482     return scalarizeVectorStore(Store, DAG);
1483 
1484   EVT MemVT = Store->getMemoryVT();
1485   SDValue Chain = Store->getChain();
1486   SDValue BasePtr = Store->getBasePtr();
1487   SDLoc SL(Op);
1488 
1489   EVT LoVT, HiVT;
1490   EVT LoMemVT, HiMemVT;
1491   SDValue Lo, Hi;
1492 
1493   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1494   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1495   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1496 
1497   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1498 
1499   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1500   unsigned BaseAlign = Store->getAlignment();
1501   unsigned Size = LoMemVT.getStoreSize();
1502   unsigned HiAlign = MinAlign(BaseAlign, Size);
1503 
1504   SDValue LoStore =
1505       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1506                         Store->getMemOperand()->getFlags());
1507   SDValue HiStore =
1508       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1509                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1510 
1511   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1512 }
1513 
1514 // This is a shortcut for integer division because we have fast i32<->f32
1515 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1516 // float is enough to accurately represent up to a 24-bit signed integer.
1517 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1518                                             bool Sign) const {
1519   SDLoc DL(Op);
1520   EVT VT = Op.getValueType();
1521   SDValue LHS = Op.getOperand(0);
1522   SDValue RHS = Op.getOperand(1);
1523   MVT IntVT = MVT::i32;
1524   MVT FltVT = MVT::f32;
1525 
1526   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1527   if (LHSSignBits < 9)
1528     return SDValue();
1529 
1530   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1531   if (RHSSignBits < 9)
1532     return SDValue();
1533 
1534   unsigned BitSize = VT.getSizeInBits();
1535   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1536   unsigned DivBits = BitSize - SignBits;
1537   if (Sign)
1538     ++DivBits;
1539 
1540   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1541   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1542 
1543   SDValue jq = DAG.getConstant(1, DL, IntVT);
1544 
1545   if (Sign) {
1546     // char|short jq = ia ^ ib;
1547     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1548 
1549     // jq = jq >> (bitsize - 2)
1550     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1551                      DAG.getConstant(BitSize - 2, DL, VT));
1552 
1553     // jq = jq | 0x1
1554     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1555   }
1556 
1557   // int ia = (int)LHS;
1558   SDValue ia = LHS;
1559 
1560   // int ib, (int)RHS;
1561   SDValue ib = RHS;
1562 
1563   // float fa = (float)ia;
1564   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1565 
1566   // float fb = (float)ib;
1567   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1568 
1569   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1570                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1571 
1572   // fq = trunc(fq);
1573   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1574 
1575   // float fqneg = -fq;
1576   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1577 
1578   // float fr = mad(fqneg, fb, fa);
1579   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1580                     (unsigned)AMDGPUISD::FMAD_FTZ :
1581                     (unsigned)ISD::FMAD;
1582   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1583 
1584   // int iq = (int)fq;
1585   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1586 
1587   // fr = fabs(fr);
1588   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1589 
1590   // fb = fabs(fb);
1591   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1592 
1593   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1594 
1595   // int cv = fr >= fb;
1596   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1597 
1598   // jq = (cv ? jq : 0);
1599   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1600 
1601   // dst = iq + jq;
1602   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1603 
1604   // Rem needs compensation, it's easier to recompute it
1605   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1606   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1607 
1608   // Truncate to number of bits this divide really is.
1609   if (Sign) {
1610     SDValue InRegSize
1611       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1612     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1613     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1614   } else {
1615     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1616     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1617     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1618   }
1619 
1620   return DAG.getMergeValues({ Div, Rem }, DL);
1621 }
1622 
1623 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1624                                       SelectionDAG &DAG,
1625                                       SmallVectorImpl<SDValue> &Results) const {
1626   SDLoc DL(Op);
1627   EVT VT = Op.getValueType();
1628 
1629   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1630 
1631   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1632 
1633   SDValue One = DAG.getConstant(1, DL, HalfVT);
1634   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1635 
1636   //HiLo split
1637   SDValue LHS = Op.getOperand(0);
1638   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1639   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1640 
1641   SDValue RHS = Op.getOperand(1);
1642   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1643   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1644 
1645   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1646       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1647 
1648     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1649                               LHS_Lo, RHS_Lo);
1650 
1651     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1652     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1653 
1654     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1655     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1656     return;
1657   }
1658 
1659   if (isTypeLegal(MVT::i64)) {
1660     // Compute denominator reciprocal.
1661     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1662                     (unsigned)AMDGPUISD::FMAD_FTZ :
1663                     (unsigned)ISD::FMAD;
1664 
1665     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1666     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1667     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1668       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1669       Cvt_Lo);
1670     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1671     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1672       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1673     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1674       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1675     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1676     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1677       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1678       Mul1);
1679     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1680     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1681     SDValue Rcp64 = DAG.getBitcast(VT,
1682                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1683 
1684     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1685     SDValue One64  = DAG.getConstant(1, DL, VT);
1686     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1687     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1688 
1689     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1690     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1691     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1692     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1693                                     Zero);
1694     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1695                                     One);
1696 
1697     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1698                                   Mulhi1_Lo, Zero1);
1699     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1700                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1701     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1702     SDValue Add1 = DAG.getBitcast(VT,
1703                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1704 
1705     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1706     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1707     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1708                                     Zero);
1709     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1710                                     One);
1711 
1712     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1713                                   Mulhi2_Lo, Zero1);
1714     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1715                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1716     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1717                                   Zero, Add2_Lo.getValue(1));
1718     SDValue Add2 = DAG.getBitcast(VT,
1719                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1720     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1721 
1722     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1723 
1724     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1725     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1726     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1727                                   Mul3_Lo, Zero1);
1728     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1729                                   Mul3_Hi, Sub1_Lo.getValue(1));
1730     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1731     SDValue Sub1 = DAG.getBitcast(VT,
1732                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1733 
1734     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1735     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1736                                  ISD::SETUGE);
1737     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1738                                  ISD::SETUGE);
1739     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1740 
1741     // TODO: Here and below portions of the code can be enclosed into if/endif.
1742     // Currently control flow is unconditional and we have 4 selects after
1743     // potential endif to substitute PHIs.
1744 
1745     // if C3 != 0 ...
1746     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1747                                   RHS_Lo, Zero1);
1748     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1749                                   RHS_Hi, Sub1_Lo.getValue(1));
1750     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1751                                   Zero, Sub2_Lo.getValue(1));
1752     SDValue Sub2 = DAG.getBitcast(VT,
1753                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1754 
1755     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1756 
1757     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1758                                  ISD::SETUGE);
1759     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1760                                  ISD::SETUGE);
1761     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1762 
1763     // if (C6 != 0)
1764     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1765 
1766     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1767                                   RHS_Lo, Zero1);
1768     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1769                                   RHS_Hi, Sub2_Lo.getValue(1));
1770     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1771                                   Zero, Sub3_Lo.getValue(1));
1772     SDValue Sub3 = DAG.getBitcast(VT,
1773                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1774 
1775     // endif C6
1776     // endif C3
1777 
1778     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1779     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1780 
1781     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1782     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1783 
1784     Results.push_back(Div);
1785     Results.push_back(Rem);
1786 
1787     return;
1788   }
1789 
1790   // r600 expandion.
1791   // Get Speculative values
1792   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1793   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1794 
1795   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1796   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1797   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1798 
1799   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1800   SDValue DIV_Lo = Zero;
1801 
1802   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1803 
1804   for (unsigned i = 0; i < halfBitWidth; ++i) {
1805     const unsigned bitPos = halfBitWidth - i - 1;
1806     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1807     // Get value of high bit
1808     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1809     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1810     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1811 
1812     // Shift
1813     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1814     // Add LHS high bit
1815     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1816 
1817     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1818     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1819 
1820     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1821 
1822     // Update REM
1823     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1824     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1825   }
1826 
1827   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1828   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1829   Results.push_back(DIV);
1830   Results.push_back(REM);
1831 }
1832 
1833 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1834                                            SelectionDAG &DAG) const {
1835   SDLoc DL(Op);
1836   EVT VT = Op.getValueType();
1837 
1838   if (VT == MVT::i64) {
1839     SmallVector<SDValue, 2> Results;
1840     LowerUDIVREM64(Op, DAG, Results);
1841     return DAG.getMergeValues(Results, DL);
1842   }
1843 
1844   if (VT == MVT::i32) {
1845     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1846       return Res;
1847   }
1848 
1849   SDValue Num = Op.getOperand(0);
1850   SDValue Den = Op.getOperand(1);
1851 
1852   // RCP =  URECIP(Den) = 2^32 / Den + e
1853   // e is rounding error.
1854   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1855 
1856   // RCP_LO = mul(RCP, Den) */
1857   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1858 
1859   // RCP_HI = mulhu (RCP, Den) */
1860   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1861 
1862   // NEG_RCP_LO = -RCP_LO
1863   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1864                                                      RCP_LO);
1865 
1866   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1867   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1868                                            NEG_RCP_LO, RCP_LO,
1869                                            ISD::SETEQ);
1870   // Calculate the rounding error from the URECIP instruction
1871   // E = mulhu(ABS_RCP_LO, RCP)
1872   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1873 
1874   // RCP_A_E = RCP + E
1875   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1876 
1877   // RCP_S_E = RCP - E
1878   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1879 
1880   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1881   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1882                                      RCP_A_E, RCP_S_E,
1883                                      ISD::SETEQ);
1884   // Quotient = mulhu(Tmp0, Num)
1885   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1886 
1887   // Num_S_Remainder = Quotient * Den
1888   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1889 
1890   // Remainder = Num - Num_S_Remainder
1891   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1892 
1893   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1894   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1895                                                  DAG.getConstant(-1, DL, VT),
1896                                                  DAG.getConstant(0, DL, VT),
1897                                                  ISD::SETUGE);
1898   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1899   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1900                                                   Num_S_Remainder,
1901                                                   DAG.getConstant(-1, DL, VT),
1902                                                   DAG.getConstant(0, DL, VT),
1903                                                   ISD::SETUGE);
1904   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1905   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1906                                                Remainder_GE_Zero);
1907 
1908   // Calculate Division result:
1909 
1910   // Quotient_A_One = Quotient + 1
1911   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1912                                        DAG.getConstant(1, DL, VT));
1913 
1914   // Quotient_S_One = Quotient - 1
1915   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1916                                        DAG.getConstant(1, DL, VT));
1917 
1918   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1919   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1920                                      Quotient, Quotient_A_One, ISD::SETEQ);
1921 
1922   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1923   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1924                             Quotient_S_One, Div, ISD::SETEQ);
1925 
1926   // Calculate Rem result:
1927 
1928   // Remainder_S_Den = Remainder - Den
1929   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1930 
1931   // Remainder_A_Den = Remainder + Den
1932   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1933 
1934   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1935   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1936                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1937 
1938   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1939   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1940                             Remainder_A_Den, Rem, ISD::SETEQ);
1941   SDValue Ops[2] = {
1942     Div,
1943     Rem
1944   };
1945   return DAG.getMergeValues(Ops, DL);
1946 }
1947 
1948 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1949                                            SelectionDAG &DAG) const {
1950   SDLoc DL(Op);
1951   EVT VT = Op.getValueType();
1952 
1953   SDValue LHS = Op.getOperand(0);
1954   SDValue RHS = Op.getOperand(1);
1955 
1956   SDValue Zero = DAG.getConstant(0, DL, VT);
1957   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1958 
1959   if (VT == MVT::i32) {
1960     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1961       return Res;
1962   }
1963 
1964   if (VT == MVT::i64 &&
1965       DAG.ComputeNumSignBits(LHS) > 32 &&
1966       DAG.ComputeNumSignBits(RHS) > 32) {
1967     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1968 
1969     //HiLo split
1970     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1971     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1972     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1973                                  LHS_Lo, RHS_Lo);
1974     SDValue Res[2] = {
1975       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1976       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1977     };
1978     return DAG.getMergeValues(Res, DL);
1979   }
1980 
1981   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1982   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1983   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1984   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1985 
1986   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1987   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1988 
1989   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1990   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1991 
1992   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1993   SDValue Rem = Div.getValue(1);
1994 
1995   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1996   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1997 
1998   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1999   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2000 
2001   SDValue Res[2] = {
2002     Div,
2003     Rem
2004   };
2005   return DAG.getMergeValues(Res, DL);
2006 }
2007 
2008 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2009 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2010   SDLoc SL(Op);
2011   EVT VT = Op.getValueType();
2012   SDValue X = Op.getOperand(0);
2013   SDValue Y = Op.getOperand(1);
2014 
2015   // TODO: Should this propagate fast-math-flags?
2016 
2017   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2018   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2019   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2020 
2021   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2022 }
2023 
2024 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2025   SDLoc SL(Op);
2026   SDValue Src = Op.getOperand(0);
2027 
2028   // result = trunc(src)
2029   // if (src > 0.0 && src != result)
2030   //   result += 1.0
2031 
2032   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2033 
2034   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2035   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2036 
2037   EVT SetCCVT =
2038       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2039 
2040   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2041   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2042   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2043 
2044   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2045   // TODO: Should this propagate fast-math-flags?
2046   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2047 }
2048 
2049 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2050                                   SelectionDAG &DAG) {
2051   const unsigned FractBits = 52;
2052   const unsigned ExpBits = 11;
2053 
2054   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2055                                 Hi,
2056                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2057                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2058   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2059                             DAG.getConstant(1023, SL, MVT::i32));
2060 
2061   return Exp;
2062 }
2063 
2064 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2065   SDLoc SL(Op);
2066   SDValue Src = Op.getOperand(0);
2067 
2068   assert(Op.getValueType() == MVT::f64);
2069 
2070   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2071   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2072 
2073   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2074 
2075   // Extract the upper half, since this is where we will find the sign and
2076   // exponent.
2077   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2078 
2079   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2080 
2081   const unsigned FractBits = 52;
2082 
2083   // Extract the sign bit.
2084   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2085   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2086 
2087   // Extend back to 64-bits.
2088   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2089   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2090 
2091   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2092   const SDValue FractMask
2093     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2094 
2095   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2096   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2097   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2098 
2099   EVT SetCCVT =
2100       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2101 
2102   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2103 
2104   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2105   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2106 
2107   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2108   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2109 
2110   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2111 }
2112 
2113 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2114   SDLoc SL(Op);
2115   SDValue Src = Op.getOperand(0);
2116 
2117   assert(Op.getValueType() == MVT::f64);
2118 
2119   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2120   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2121   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2122 
2123   // TODO: Should this propagate fast-math-flags?
2124 
2125   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2126   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2127 
2128   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2129 
2130   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2131   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2132 
2133   EVT SetCCVT =
2134       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2135   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2136 
2137   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2138 }
2139 
2140 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2141   // FNEARBYINT and FRINT are the same, except in their handling of FP
2142   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2143   // rint, so just treat them as equivalent.
2144   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2145 }
2146 
2147 // XXX - May require not supporting f32 denormals?
2148 
2149 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2150 // compare and vselect end up producing worse code than scalarizing the whole
2151 // operation.
2152 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2153   SDLoc SL(Op);
2154   SDValue X = Op.getOperand(0);
2155   EVT VT = Op.getValueType();
2156 
2157   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2158 
2159   // TODO: Should this propagate fast-math-flags?
2160 
2161   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2162 
2163   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2164 
2165   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2166   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2167   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2168 
2169   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2170 
2171   EVT SetCCVT =
2172       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2173 
2174   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2175 
2176   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2177 
2178   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2179 }
2180 
2181 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2182   SDLoc SL(Op);
2183   SDValue X = Op.getOperand(0);
2184 
2185   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2186 
2187   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2188   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2189   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2190   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2191   EVT SetCCVT =
2192       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2193 
2194   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2195 
2196   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2197 
2198   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2199 
2200   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2201                                        MVT::i64);
2202 
2203   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2204   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2205                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2206                                           MVT::i64),
2207                           Exp);
2208 
2209   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2210   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2211                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2212                               ISD::SETNE);
2213 
2214   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2215                              D, DAG.getConstant(0, SL, MVT::i64));
2216   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2217 
2218   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2219   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2220 
2221   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2222   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2223   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2224 
2225   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2226                             ExpEqNegOne,
2227                             DAG.getConstantFP(1.0, SL, MVT::f64),
2228                             DAG.getConstantFP(0.0, SL, MVT::f64));
2229 
2230   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2231 
2232   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2233   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2234 
2235   return K;
2236 }
2237 
2238 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2239   EVT VT = Op.getValueType();
2240 
2241   if (VT == MVT::f32 || VT == MVT::f16)
2242     return LowerFROUND32_16(Op, DAG);
2243 
2244   if (VT == MVT::f64)
2245     return LowerFROUND64(Op, DAG);
2246 
2247   llvm_unreachable("unhandled type");
2248 }
2249 
2250 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2251   SDLoc SL(Op);
2252   SDValue Src = Op.getOperand(0);
2253 
2254   // result = trunc(src);
2255   // if (src < 0.0 && src != result)
2256   //   result += -1.0.
2257 
2258   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2259 
2260   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2261   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2262 
2263   EVT SetCCVT =
2264       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2265 
2266   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2267   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2268   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2269 
2270   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2271   // TODO: Should this propagate fast-math-flags?
2272   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2273 }
2274 
2275 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2276                                         double Log2BaseInverted) const {
2277   EVT VT = Op.getValueType();
2278 
2279   SDLoc SL(Op);
2280   SDValue Operand = Op.getOperand(0);
2281   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2282   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2283 
2284   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2285 }
2286 
2287 // Return M_LOG2E of appropriate type
2288 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2289   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2290   case MVT::f32:
2291     return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2292   case MVT::f16:
2293     return DAG.getConstantFP(
2294       APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2295       SL, VT);
2296   case MVT::f64:
2297     return DAG.getConstantFP(
2298       APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2299   default:
2300     llvm_unreachable("unsupported fp type");
2301   }
2302 }
2303 
2304 // exp2(M_LOG2E_F * f);
2305 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2306   EVT VT = Op.getValueType();
2307   SDLoc SL(Op);
2308   SDValue Src = Op.getOperand(0);
2309 
2310   const SDValue K = getLog2EVal(DAG, SL, VT);
2311   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2312   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2313 }
2314 
2315 static bool isCtlzOpc(unsigned Opc) {
2316   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2317 }
2318 
2319 static bool isCttzOpc(unsigned Opc) {
2320   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2321 }
2322 
2323 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2324   SDLoc SL(Op);
2325   SDValue Src = Op.getOperand(0);
2326   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2327                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2328 
2329   unsigned ISDOpc, NewOpc;
2330   if (isCtlzOpc(Op.getOpcode())) {
2331     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2332     NewOpc = AMDGPUISD::FFBH_U32;
2333   } else if (isCttzOpc(Op.getOpcode())) {
2334     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2335     NewOpc = AMDGPUISD::FFBL_B32;
2336   } else
2337     llvm_unreachable("Unexpected OPCode!!!");
2338 
2339 
2340   if (ZeroUndef && Src.getValueType() == MVT::i32)
2341     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2342 
2343   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2344 
2345   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2346   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2347 
2348   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2349   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2350 
2351   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2352                                    *DAG.getContext(), MVT::i32);
2353 
2354   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2355   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2356 
2357   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2358   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2359 
2360   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2361   SDValue Add, NewOpr;
2362   if (isCtlzOpc(Op.getOpcode())) {
2363     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2364     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2365     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2366   } else {
2367     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2368     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2369     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2370   }
2371 
2372   if (!ZeroUndef) {
2373     // Test if the full 64-bit input is zero.
2374 
2375     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2376     // which we probably don't want.
2377     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2378     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2379     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2380 
2381     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2382     // with the same cycles, otherwise it is slower.
2383     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2384     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2385 
2386     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2387 
2388     // The instruction returns -1 for 0 input, but the defined intrinsic
2389     // behavior is to return the number of bits.
2390     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2391                          SrcIsZero, Bits32, NewOpr);
2392   }
2393 
2394   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2395 }
2396 
2397 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2398                                                bool Signed) const {
2399   // Unsigned
2400   // cul2f(ulong u)
2401   //{
2402   //  uint lz = clz(u);
2403   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2404   //  u = (u << lz) & 0x7fffffffffffffffUL;
2405   //  ulong t = u & 0xffffffffffUL;
2406   //  uint v = (e << 23) | (uint)(u >> 40);
2407   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2408   //  return as_float(v + r);
2409   //}
2410   // Signed
2411   // cl2f(long l)
2412   //{
2413   //  long s = l >> 63;
2414   //  float r = cul2f((l + s) ^ s);
2415   //  return s ? -r : r;
2416   //}
2417 
2418   SDLoc SL(Op);
2419   SDValue Src = Op.getOperand(0);
2420   SDValue L = Src;
2421 
2422   SDValue S;
2423   if (Signed) {
2424     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2425     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2426 
2427     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2428     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2429   }
2430 
2431   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2432                                    *DAG.getContext(), MVT::f32);
2433 
2434 
2435   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2436   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2437   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2438   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2439 
2440   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2441   SDValue E = DAG.getSelect(SL, MVT::i32,
2442     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2443     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2444     ZeroI32);
2445 
2446   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2447     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2448     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2449 
2450   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2451                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2452 
2453   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2454                              U, DAG.getConstant(40, SL, MVT::i64));
2455 
2456   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2457     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2458     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2459 
2460   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2461   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2462   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2463 
2464   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2465 
2466   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2467 
2468   SDValue R = DAG.getSelect(SL, MVT::i32,
2469     RCmp,
2470     One,
2471     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2472   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2473   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2474 
2475   if (!Signed)
2476     return R;
2477 
2478   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2479   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2480 }
2481 
2482 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2483                                                bool Signed) const {
2484   SDLoc SL(Op);
2485   SDValue Src = Op.getOperand(0);
2486 
2487   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2488 
2489   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2490                            DAG.getConstant(0, SL, MVT::i32));
2491   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2492                            DAG.getConstant(1, SL, MVT::i32));
2493 
2494   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2495                               SL, MVT::f64, Hi);
2496 
2497   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2498 
2499   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2500                               DAG.getConstant(32, SL, MVT::i32));
2501   // TODO: Should this propagate fast-math-flags?
2502   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2503 }
2504 
2505 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2506                                                SelectionDAG &DAG) const {
2507   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2508          "operation should be legal");
2509 
2510   // TODO: Factor out code common with LowerSINT_TO_FP.
2511 
2512   EVT DestVT = Op.getValueType();
2513   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2514     SDLoc DL(Op);
2515     SDValue Src = Op.getOperand(0);
2516 
2517     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2518     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2519     SDValue FPRound =
2520         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2521 
2522     return FPRound;
2523   }
2524 
2525   if (DestVT == MVT::f32)
2526     return LowerINT_TO_FP32(Op, DAG, false);
2527 
2528   assert(DestVT == MVT::f64);
2529   return LowerINT_TO_FP64(Op, DAG, false);
2530 }
2531 
2532 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2533                                               SelectionDAG &DAG) const {
2534   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2535          "operation should be legal");
2536 
2537   // TODO: Factor out code common with LowerUINT_TO_FP.
2538 
2539   EVT DestVT = Op.getValueType();
2540   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2541     SDLoc DL(Op);
2542     SDValue Src = Op.getOperand(0);
2543 
2544     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2545     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2546     SDValue FPRound =
2547         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2548 
2549     return FPRound;
2550   }
2551 
2552   if (DestVT == MVT::f32)
2553     return LowerINT_TO_FP32(Op, DAG, true);
2554 
2555   assert(DestVT == MVT::f64);
2556   return LowerINT_TO_FP64(Op, DAG, true);
2557 }
2558 
2559 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2560                                                bool Signed) const {
2561   SDLoc SL(Op);
2562 
2563   SDValue Src = Op.getOperand(0);
2564 
2565   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2566 
2567   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2568                                  MVT::f64);
2569   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2570                                  MVT::f64);
2571   // TODO: Should this propagate fast-math-flags?
2572   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2573 
2574   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2575 
2576 
2577   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2578 
2579   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2580                            MVT::i32, FloorMul);
2581   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2582 
2583   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2584 
2585   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2586 }
2587 
2588 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2589   SDLoc DL(Op);
2590   SDValue N0 = Op.getOperand(0);
2591 
2592   // Convert to target node to get known bits
2593   if (N0.getValueType() == MVT::f32)
2594     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2595 
2596   if (getTargetMachine().Options.UnsafeFPMath) {
2597     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2598     return SDValue();
2599   }
2600 
2601   assert(N0.getSimpleValueType() == MVT::f64);
2602 
2603   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2604   const unsigned ExpMask = 0x7ff;
2605   const unsigned ExpBiasf64 = 1023;
2606   const unsigned ExpBiasf16 = 15;
2607   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2608   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2609   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2610   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2611                            DAG.getConstant(32, DL, MVT::i64));
2612   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2613   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2614   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2615                           DAG.getConstant(20, DL, MVT::i64));
2616   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2617                   DAG.getConstant(ExpMask, DL, MVT::i32));
2618   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2619   // add the f16 bias (15) to get the biased exponent for the f16 format.
2620   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2621                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2622 
2623   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2624                           DAG.getConstant(8, DL, MVT::i32));
2625   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2626                   DAG.getConstant(0xffe, DL, MVT::i32));
2627 
2628   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2629                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2630   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2631 
2632   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2633   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2634 
2635   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2636   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2637       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2638                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2639 
2640   // N = M | (E << 12);
2641   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2642       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2643                   DAG.getConstant(12, DL, MVT::i32)));
2644 
2645   // B = clamp(1-E, 0, 13);
2646   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2647                                   One, E);
2648   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2649   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2650                   DAG.getConstant(13, DL, MVT::i32));
2651 
2652   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2653                                    DAG.getConstant(0x1000, DL, MVT::i32));
2654 
2655   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2656   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2657   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2658   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2659 
2660   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2661   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2662                               DAG.getConstant(0x7, DL, MVT::i32));
2663   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2664                   DAG.getConstant(2, DL, MVT::i32));
2665   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2666                                One, Zero, ISD::SETEQ);
2667   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2668                                One, Zero, ISD::SETGT);
2669   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2670   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2671 
2672   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2673                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2674   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2675                       I, V, ISD::SETEQ);
2676 
2677   // Extract the sign bit.
2678   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2679                             DAG.getConstant(16, DL, MVT::i32));
2680   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2681                      DAG.getConstant(0x8000, DL, MVT::i32));
2682 
2683   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2684   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2685 }
2686 
2687 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2688                                               SelectionDAG &DAG) const {
2689   SDValue Src = Op.getOperand(0);
2690 
2691   // TODO: Factor out code common with LowerFP_TO_UINT.
2692 
2693   EVT SrcVT = Src.getValueType();
2694   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2695     SDLoc DL(Op);
2696 
2697     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2698     SDValue FpToInt32 =
2699         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2700 
2701     return FpToInt32;
2702   }
2703 
2704   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2705     return LowerFP64_TO_INT(Op, DAG, true);
2706 
2707   return SDValue();
2708 }
2709 
2710 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2711                                               SelectionDAG &DAG) const {
2712   SDValue Src = Op.getOperand(0);
2713 
2714   // TODO: Factor out code common with LowerFP_TO_SINT.
2715 
2716   EVT SrcVT = Src.getValueType();
2717   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2718     SDLoc DL(Op);
2719 
2720     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2721     SDValue FpToInt32 =
2722         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2723 
2724     return FpToInt32;
2725   }
2726 
2727   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2728     return LowerFP64_TO_INT(Op, DAG, false);
2729 
2730   return SDValue();
2731 }
2732 
2733 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2734                                                      SelectionDAG &DAG) const {
2735   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2736   MVT VT = Op.getSimpleValueType();
2737   MVT ScalarVT = VT.getScalarType();
2738 
2739   assert(VT.isVector());
2740 
2741   SDValue Src = Op.getOperand(0);
2742   SDLoc DL(Op);
2743 
2744   // TODO: Don't scalarize on Evergreen?
2745   unsigned NElts = VT.getVectorNumElements();
2746   SmallVector<SDValue, 8> Args;
2747   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2748 
2749   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2750   for (unsigned I = 0; I < NElts; ++I)
2751     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2752 
2753   return DAG.getBuildVector(VT, DL, Args);
2754 }
2755 
2756 //===----------------------------------------------------------------------===//
2757 // Custom DAG optimizations
2758 //===----------------------------------------------------------------------===//
2759 
2760 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2761   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2762 }
2763 
2764 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2765   EVT VT = Op.getValueType();
2766   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2767                                      // as unsigned 24-bit values.
2768     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2769 }
2770 
2771 static SDValue simplifyI24(SDNode *Node24,
2772                            TargetLowering::DAGCombinerInfo &DCI) {
2773   SelectionDAG &DAG = DCI.DAG;
2774   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2775 
2776   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2777   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2778   unsigned NewOpcode = Node24->getOpcode();
2779   if (IsIntrin) {
2780     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2781     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2782       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2783   }
2784 
2785   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2786 
2787   // First try to simplify using GetDemandedBits which allows the operands to
2788   // have other uses, but will only perform simplifications that involve
2789   // bypassing some nodes for this user.
2790   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2791   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2792   if (DemandedLHS || DemandedRHS)
2793     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2794                        DemandedLHS ? DemandedLHS : LHS,
2795                        DemandedRHS ? DemandedRHS : RHS);
2796 
2797   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2798   // operands if this node is the only user.
2799   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2800   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2801     return SDValue(Node24, 0);
2802   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2803     return SDValue(Node24, 0);
2804 
2805   return SDValue();
2806 }
2807 
2808 template <typename IntTy>
2809 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2810                                uint32_t Width, const SDLoc &DL) {
2811   if (Width + Offset < 32) {
2812     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2813     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2814     return DAG.getConstant(Result, DL, MVT::i32);
2815   }
2816 
2817   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2818 }
2819 
2820 static bool hasVolatileUser(SDNode *Val) {
2821   for (SDNode *U : Val->uses()) {
2822     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2823       if (M->isVolatile())
2824         return true;
2825     }
2826   }
2827 
2828   return false;
2829 }
2830 
2831 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2832   // i32 vectors are the canonical memory type.
2833   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2834     return false;
2835 
2836   if (!VT.isByteSized())
2837     return false;
2838 
2839   unsigned Size = VT.getStoreSize();
2840 
2841   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2842     return false;
2843 
2844   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2845     return false;
2846 
2847   return true;
2848 }
2849 
2850 // Find a load or store from corresponding pattern root.
2851 // Roots may be build_vector, bitconvert or their combinations.
2852 static MemSDNode* findMemSDNode(SDNode *N) {
2853   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
2854   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
2855     return MN;
2856   assert(isa<BuildVectorSDNode>(N));
2857   for (SDValue V : N->op_values())
2858     if (MemSDNode *MN =
2859           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
2860       return MN;
2861   llvm_unreachable("cannot find MemSDNode in the pattern!");
2862 }
2863 
2864 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned,
2865                                             SelectionDAG &DAG,
2866                                             SDNode *N,
2867                                             SDValue Addr,
2868                                             SDValue &VAddr,
2869                                             SDValue &Offset,
2870                                             SDValue &SLC) const {
2871   const GCNSubtarget &ST =
2872         DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
2873   int64_t OffsetVal = 0;
2874 
2875   if (ST.hasFlatInstOffsets() &&
2876       (!ST.hasFlatSegmentOffsetBug() ||
2877        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
2878       DAG.isBaseWithConstantOffset(Addr)) {
2879     SDValue N0 = Addr.getOperand(0);
2880     SDValue N1 = Addr.getOperand(1);
2881     int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
2882 
2883     const SIInstrInfo *TII = ST.getInstrInfo();
2884     if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(),
2885                                IsSigned)) {
2886       Addr = N0;
2887       OffsetVal = COffsetVal;
2888     }
2889   }
2890 
2891   VAddr = Addr;
2892   Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
2893   SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1);
2894 
2895   return true;
2896 }
2897 
2898 // Replace load of an illegal type with a store of a bitcast to a friendlier
2899 // type.
2900 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2901                                                  DAGCombinerInfo &DCI) const {
2902   if (!DCI.isBeforeLegalize())
2903     return SDValue();
2904 
2905   LoadSDNode *LN = cast<LoadSDNode>(N);
2906   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2907     return SDValue();
2908 
2909   SDLoc SL(N);
2910   SelectionDAG &DAG = DCI.DAG;
2911   EVT VT = LN->getMemoryVT();
2912 
2913   unsigned Size = VT.getStoreSize();
2914   unsigned Align = LN->getAlignment();
2915   if (Align < Size && isTypeLegal(VT)) {
2916     bool IsFast;
2917     unsigned AS = LN->getAddressSpace();
2918 
2919     // Expand unaligned loads earlier than legalization. Due to visitation order
2920     // problems during legalization, the emitted instructions to pack and unpack
2921     // the bytes again are not eliminated in the case of an unaligned copy.
2922     if (!allowsMisalignedMemoryAccesses(
2923             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2924       if (VT.isVector())
2925         return scalarizeVectorLoad(LN, DAG);
2926 
2927       SDValue Ops[2];
2928       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2929       return DAG.getMergeValues(Ops, SDLoc(N));
2930     }
2931 
2932     if (!IsFast)
2933       return SDValue();
2934   }
2935 
2936   if (!shouldCombineMemoryType(VT))
2937     return SDValue();
2938 
2939   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2940 
2941   SDValue NewLoad
2942     = DAG.getLoad(NewVT, SL, LN->getChain(),
2943                   LN->getBasePtr(), LN->getMemOperand());
2944 
2945   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2946   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2947   return SDValue(N, 0);
2948 }
2949 
2950 // Replace store of an illegal type with a store of a bitcast to a friendlier
2951 // type.
2952 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2953                                                   DAGCombinerInfo &DCI) const {
2954   if (!DCI.isBeforeLegalize())
2955     return SDValue();
2956 
2957   StoreSDNode *SN = cast<StoreSDNode>(N);
2958   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2959     return SDValue();
2960 
2961   EVT VT = SN->getMemoryVT();
2962   unsigned Size = VT.getStoreSize();
2963 
2964   SDLoc SL(N);
2965   SelectionDAG &DAG = DCI.DAG;
2966   unsigned Align = SN->getAlignment();
2967   if (Align < Size && isTypeLegal(VT)) {
2968     bool IsFast;
2969     unsigned AS = SN->getAddressSpace();
2970 
2971     // Expand unaligned stores earlier than legalization. Due to visitation
2972     // order problems during legalization, the emitted instructions to pack and
2973     // unpack the bytes again are not eliminated in the case of an unaligned
2974     // copy.
2975     if (!allowsMisalignedMemoryAccesses(
2976             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2977       if (VT.isVector())
2978         return scalarizeVectorStore(SN, DAG);
2979 
2980       return expandUnalignedStore(SN, DAG);
2981     }
2982 
2983     if (!IsFast)
2984       return SDValue();
2985   }
2986 
2987   if (!shouldCombineMemoryType(VT))
2988     return SDValue();
2989 
2990   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2991   SDValue Val = SN->getValue();
2992 
2993   //DCI.AddToWorklist(Val.getNode());
2994 
2995   bool OtherUses = !Val.hasOneUse();
2996   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2997   if (OtherUses) {
2998     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2999     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3000   }
3001 
3002   return DAG.getStore(SN->getChain(), SL, CastVal,
3003                       SN->getBasePtr(), SN->getMemOperand());
3004 }
3005 
3006 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3007 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3008 // issues.
3009 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3010                                                         DAGCombinerInfo &DCI) const {
3011   SelectionDAG &DAG = DCI.DAG;
3012   SDValue N0 = N->getOperand(0);
3013 
3014   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3015   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3016   if (N0.getOpcode() == ISD::TRUNCATE) {
3017     SDValue N1 = N->getOperand(1);
3018     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3019     SDLoc SL(N);
3020 
3021     SDValue Src = N0.getOperand(0);
3022     EVT SrcVT = Src.getValueType();
3023     if (SrcVT.bitsGE(ExtVT)) {
3024       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3025       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3026     }
3027   }
3028 
3029   return SDValue();
3030 }
3031 
3032 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3033   SDNode *N, DAGCombinerInfo &DCI) const {
3034   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3035   switch (IID) {
3036   case Intrinsic::amdgcn_mul_i24:
3037   case Intrinsic::amdgcn_mul_u24:
3038     return simplifyI24(N, DCI);
3039   default:
3040     return SDValue();
3041   }
3042 }
3043 
3044 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3045 /// binary operation \p Opc to it with the corresponding constant operands.
3046 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3047   DAGCombinerInfo &DCI, const SDLoc &SL,
3048   unsigned Opc, SDValue LHS,
3049   uint32_t ValLo, uint32_t ValHi) const {
3050   SelectionDAG &DAG = DCI.DAG;
3051   SDValue Lo, Hi;
3052   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3053 
3054   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3055   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3056 
3057   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3058   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3059 
3060   // Re-visit the ands. It's possible we eliminated one of them and it could
3061   // simplify the vector.
3062   DCI.AddToWorklist(Lo.getNode());
3063   DCI.AddToWorklist(Hi.getNode());
3064 
3065   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3066   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3067 }
3068 
3069 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3070                                                 DAGCombinerInfo &DCI) const {
3071   EVT VT = N->getValueType(0);
3072 
3073   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3074   if (!RHS)
3075     return SDValue();
3076 
3077   SDValue LHS = N->getOperand(0);
3078   unsigned RHSVal = RHS->getZExtValue();
3079   if (!RHSVal)
3080     return LHS;
3081 
3082   SDLoc SL(N);
3083   SelectionDAG &DAG = DCI.DAG;
3084 
3085   switch (LHS->getOpcode()) {
3086   default:
3087     break;
3088   case ISD::ZERO_EXTEND:
3089   case ISD::SIGN_EXTEND:
3090   case ISD::ANY_EXTEND: {
3091     SDValue X = LHS->getOperand(0);
3092 
3093     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3094         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3095       // Prefer build_vector as the canonical form if packed types are legal.
3096       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3097       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3098        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3099       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3100     }
3101 
3102     // shl (ext x) => zext (shl x), if shift does not overflow int
3103     if (VT != MVT::i64)
3104       break;
3105     KnownBits Known = DAG.computeKnownBits(X);
3106     unsigned LZ = Known.countMinLeadingZeros();
3107     if (LZ < RHSVal)
3108       break;
3109     EVT XVT = X.getValueType();
3110     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3111     return DAG.getZExtOrTrunc(Shl, SL, VT);
3112   }
3113   }
3114 
3115   if (VT != MVT::i64)
3116     return SDValue();
3117 
3118   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3119 
3120   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3121   // common case, splitting this into a move and a 32-bit shift is faster and
3122   // the same code size.
3123   if (RHSVal < 32)
3124     return SDValue();
3125 
3126   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3127 
3128   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3129   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3130 
3131   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3132 
3133   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3134   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3135 }
3136 
3137 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3138                                                 DAGCombinerInfo &DCI) const {
3139   if (N->getValueType(0) != MVT::i64)
3140     return SDValue();
3141 
3142   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3143   if (!RHS)
3144     return SDValue();
3145 
3146   SelectionDAG &DAG = DCI.DAG;
3147   SDLoc SL(N);
3148   unsigned RHSVal = RHS->getZExtValue();
3149 
3150   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3151   if (RHSVal == 32) {
3152     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3153     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3154                                    DAG.getConstant(31, SL, MVT::i32));
3155 
3156     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3157     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3158   }
3159 
3160   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3161   if (RHSVal == 63) {
3162     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3163     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3164                                    DAG.getConstant(31, SL, MVT::i32));
3165     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3166     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3167   }
3168 
3169   return SDValue();
3170 }
3171 
3172 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3173                                                 DAGCombinerInfo &DCI) const {
3174   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3175   if (!RHS)
3176     return SDValue();
3177 
3178   EVT VT = N->getValueType(0);
3179   SDValue LHS = N->getOperand(0);
3180   unsigned ShiftAmt = RHS->getZExtValue();
3181   SelectionDAG &DAG = DCI.DAG;
3182   SDLoc SL(N);
3183 
3184   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3185   // this improves the ability to match BFE patterns in isel.
3186   if (LHS.getOpcode() == ISD::AND) {
3187     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3188       if (Mask->getAPIntValue().isShiftedMask() &&
3189           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3190         return DAG.getNode(
3191             ISD::AND, SL, VT,
3192             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3193             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3194       }
3195     }
3196   }
3197 
3198   if (VT != MVT::i64)
3199     return SDValue();
3200 
3201   if (ShiftAmt < 32)
3202     return SDValue();
3203 
3204   // srl i64:x, C for C >= 32
3205   // =>
3206   //   build_pair (srl hi_32(x), C - 32), 0
3207   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3208   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3209 
3210   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3211   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3212 
3213   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3214   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3215 
3216   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3217 
3218   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3219 }
3220 
3221 SDValue AMDGPUTargetLowering::performTruncateCombine(
3222   SDNode *N, DAGCombinerInfo &DCI) const {
3223   SDLoc SL(N);
3224   SelectionDAG &DAG = DCI.DAG;
3225   EVT VT = N->getValueType(0);
3226   SDValue Src = N->getOperand(0);
3227 
3228   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3229   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3230     SDValue Vec = Src.getOperand(0);
3231     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3232       SDValue Elt0 = Vec.getOperand(0);
3233       EVT EltVT = Elt0.getValueType();
3234       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3235         if (EltVT.isFloatingPoint()) {
3236           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3237                              EltVT.changeTypeToInteger(), Elt0);
3238         }
3239 
3240         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3241       }
3242     }
3243   }
3244 
3245   // Equivalent of above for accessing the high element of a vector as an
3246   // integer operation.
3247   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3248   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3249     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3250       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3251         SDValue BV = stripBitcast(Src.getOperand(0));
3252         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3253             BV.getValueType().getVectorNumElements() == 2) {
3254           SDValue SrcElt = BV.getOperand(1);
3255           EVT SrcEltVT = SrcElt.getValueType();
3256           if (SrcEltVT.isFloatingPoint()) {
3257             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3258                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3259           }
3260 
3261           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3262         }
3263       }
3264     }
3265   }
3266 
3267   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3268   //
3269   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3270   //     i16 (trunc (srl (i32 (trunc x), K)))
3271   if (VT.getScalarSizeInBits() < 32) {
3272     EVT SrcVT = Src.getValueType();
3273     if (SrcVT.getScalarSizeInBits() > 32 &&
3274         (Src.getOpcode() == ISD::SRL ||
3275          Src.getOpcode() == ISD::SRA ||
3276          Src.getOpcode() == ISD::SHL)) {
3277       SDValue Amt = Src.getOperand(1);
3278       KnownBits Known = DAG.computeKnownBits(Amt);
3279       unsigned Size = VT.getScalarSizeInBits();
3280       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3281           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3282         EVT MidVT = VT.isVector() ?
3283           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3284                            VT.getVectorNumElements()) : MVT::i32;
3285 
3286         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3287         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3288                                     Src.getOperand(0));
3289         DCI.AddToWorklist(Trunc.getNode());
3290 
3291         if (Amt.getValueType() != NewShiftVT) {
3292           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3293           DCI.AddToWorklist(Amt.getNode());
3294         }
3295 
3296         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3297                                           Trunc, Amt);
3298         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3299       }
3300     }
3301   }
3302 
3303   return SDValue();
3304 }
3305 
3306 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3307 // instructions. If we only match on the legalized i64 mul expansion,
3308 // SimplifyDemandedBits will be unable to remove them because there will be
3309 // multiple uses due to the separate mul + mulh[su].
3310 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3311                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3312   if (Size <= 32) {
3313     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3314     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3315   }
3316 
3317   // Because we want to eliminate extension instructions before the
3318   // operation, we need to create a single user here (i.e. not the separate
3319   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3320 
3321   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3322 
3323   SDValue Mul = DAG.getNode(MulOpc, SL,
3324                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3325 
3326   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3327                      Mul.getValue(0), Mul.getValue(1));
3328 }
3329 
3330 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3331                                                 DAGCombinerInfo &DCI) const {
3332   EVT VT = N->getValueType(0);
3333 
3334   unsigned Size = VT.getSizeInBits();
3335   if (VT.isVector() || Size > 64)
3336     return SDValue();
3337 
3338   // There are i16 integer mul/mad.
3339   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3340     return SDValue();
3341 
3342   SelectionDAG &DAG = DCI.DAG;
3343   SDLoc DL(N);
3344 
3345   SDValue N0 = N->getOperand(0);
3346   SDValue N1 = N->getOperand(1);
3347 
3348   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3349   // in the source into any_extends if the result of the mul is truncated. Since
3350   // we can assume the high bits are whatever we want, use the underlying value
3351   // to avoid the unknown high bits from interfering.
3352   if (N0.getOpcode() == ISD::ANY_EXTEND)
3353     N0 = N0.getOperand(0);
3354 
3355   if (N1.getOpcode() == ISD::ANY_EXTEND)
3356     N1 = N1.getOperand(0);
3357 
3358   SDValue Mul;
3359 
3360   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3361     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3362     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3363     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3364   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3365     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3366     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3367     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3368   } else {
3369     return SDValue();
3370   }
3371 
3372   // We need to use sext even for MUL_U24, because MUL_U24 is used
3373   // for signed multiply of 8 and 16-bit types.
3374   return DAG.getSExtOrTrunc(Mul, DL, VT);
3375 }
3376 
3377 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3378                                                   DAGCombinerInfo &DCI) const {
3379   EVT VT = N->getValueType(0);
3380 
3381   if (!Subtarget->hasMulI24() || VT.isVector())
3382     return SDValue();
3383 
3384   SelectionDAG &DAG = DCI.DAG;
3385   SDLoc DL(N);
3386 
3387   SDValue N0 = N->getOperand(0);
3388   SDValue N1 = N->getOperand(1);
3389 
3390   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3391     return SDValue();
3392 
3393   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3394   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3395 
3396   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3397   DCI.AddToWorklist(Mulhi.getNode());
3398   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3399 }
3400 
3401 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3402                                                   DAGCombinerInfo &DCI) const {
3403   EVT VT = N->getValueType(0);
3404 
3405   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3406     return SDValue();
3407 
3408   SelectionDAG &DAG = DCI.DAG;
3409   SDLoc DL(N);
3410 
3411   SDValue N0 = N->getOperand(0);
3412   SDValue N1 = N->getOperand(1);
3413 
3414   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3415     return SDValue();
3416 
3417   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3418   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3419 
3420   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3421   DCI.AddToWorklist(Mulhi.getNode());
3422   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3423 }
3424 
3425 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3426   SDNode *N, DAGCombinerInfo &DCI) const {
3427   SelectionDAG &DAG = DCI.DAG;
3428 
3429   // Simplify demanded bits before splitting into multiple users.
3430   if (SDValue V = simplifyI24(N, DCI))
3431     return V;
3432 
3433   SDValue N0 = N->getOperand(0);
3434   SDValue N1 = N->getOperand(1);
3435 
3436   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3437 
3438   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3439   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3440 
3441   SDLoc SL(N);
3442 
3443   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3444   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3445   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3446 }
3447 
3448 static bool isNegativeOne(SDValue Val) {
3449   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3450     return C->isAllOnesValue();
3451   return false;
3452 }
3453 
3454 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3455                                           SDValue Op,
3456                                           const SDLoc &DL,
3457                                           unsigned Opc) const {
3458   EVT VT = Op.getValueType();
3459   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3460   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3461                               LegalVT != MVT::i16))
3462     return SDValue();
3463 
3464   if (VT != MVT::i32)
3465     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3466 
3467   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3468   if (VT != MVT::i32)
3469     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3470 
3471   return FFBX;
3472 }
3473 
3474 // The native instructions return -1 on 0 input. Optimize out a select that
3475 // produces -1 on 0.
3476 //
3477 // TODO: If zero is not undef, we could also do this if the output is compared
3478 // against the bitwidth.
3479 //
3480 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3481 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3482                                                  SDValue LHS, SDValue RHS,
3483                                                  DAGCombinerInfo &DCI) const {
3484   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3485   if (!CmpRhs || !CmpRhs->isNullValue())
3486     return SDValue();
3487 
3488   SelectionDAG &DAG = DCI.DAG;
3489   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3490   SDValue CmpLHS = Cond.getOperand(0);
3491 
3492   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3493                                            AMDGPUISD::FFBH_U32;
3494 
3495   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3496   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3497   if (CCOpcode == ISD::SETEQ &&
3498       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3499       RHS.getOperand(0) == CmpLHS &&
3500       isNegativeOne(LHS)) {
3501     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3502   }
3503 
3504   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3505   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3506   if (CCOpcode == ISD::SETNE &&
3507       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3508       LHS.getOperand(0) == CmpLHS &&
3509       isNegativeOne(RHS)) {
3510     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3511   }
3512 
3513   return SDValue();
3514 }
3515 
3516 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3517                                          unsigned Op,
3518                                          const SDLoc &SL,
3519                                          SDValue Cond,
3520                                          SDValue N1,
3521                                          SDValue N2) {
3522   SelectionDAG &DAG = DCI.DAG;
3523   EVT VT = N1.getValueType();
3524 
3525   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3526                                   N1.getOperand(0), N2.getOperand(0));
3527   DCI.AddToWorklist(NewSelect.getNode());
3528   return DAG.getNode(Op, SL, VT, NewSelect);
3529 }
3530 
3531 // Pull a free FP operation out of a select so it may fold into uses.
3532 //
3533 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3534 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3535 //
3536 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3537 // select c, (fabs x), +k -> fabs (select c, x, k)
3538 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3539                                     SDValue N) {
3540   SelectionDAG &DAG = DCI.DAG;
3541   SDValue Cond = N.getOperand(0);
3542   SDValue LHS = N.getOperand(1);
3543   SDValue RHS = N.getOperand(2);
3544 
3545   EVT VT = N.getValueType();
3546   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3547       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3548     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3549                                      SDLoc(N), Cond, LHS, RHS);
3550   }
3551 
3552   bool Inv = false;
3553   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3554     std::swap(LHS, RHS);
3555     Inv = true;
3556   }
3557 
3558   // TODO: Support vector constants.
3559   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3560   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3561     SDLoc SL(N);
3562     // If one side is an fneg/fabs and the other is a constant, we can push the
3563     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3564     SDValue NewLHS = LHS.getOperand(0);
3565     SDValue NewRHS = RHS;
3566 
3567     // Careful: if the neg can be folded up, don't try to pull it back down.
3568     bool ShouldFoldNeg = true;
3569 
3570     if (NewLHS.hasOneUse()) {
3571       unsigned Opc = NewLHS.getOpcode();
3572       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3573         ShouldFoldNeg = false;
3574       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3575         ShouldFoldNeg = false;
3576     }
3577 
3578     if (ShouldFoldNeg) {
3579       if (LHS.getOpcode() == ISD::FNEG)
3580         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3581       else if (CRHS->isNegative())
3582         return SDValue();
3583 
3584       if (Inv)
3585         std::swap(NewLHS, NewRHS);
3586 
3587       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3588                                       Cond, NewLHS, NewRHS);
3589       DCI.AddToWorklist(NewSelect.getNode());
3590       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3591     }
3592   }
3593 
3594   return SDValue();
3595 }
3596 
3597 
3598 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3599                                                    DAGCombinerInfo &DCI) const {
3600   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3601     return Folded;
3602 
3603   SDValue Cond = N->getOperand(0);
3604   if (Cond.getOpcode() != ISD::SETCC)
3605     return SDValue();
3606 
3607   EVT VT = N->getValueType(0);
3608   SDValue LHS = Cond.getOperand(0);
3609   SDValue RHS = Cond.getOperand(1);
3610   SDValue CC = Cond.getOperand(2);
3611 
3612   SDValue True = N->getOperand(1);
3613   SDValue False = N->getOperand(2);
3614 
3615   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3616     SelectionDAG &DAG = DCI.DAG;
3617     if (DAG.isConstantValueOfAnyType(True) &&
3618         !DAG.isConstantValueOfAnyType(False)) {
3619       // Swap cmp + select pair to move constant to false input.
3620       // This will allow using VOPC cndmasks more often.
3621       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3622 
3623       SDLoc SL(N);
3624       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3625                                             LHS.getValueType().isInteger());
3626 
3627       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3628       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3629     }
3630 
3631     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3632       SDValue MinMax
3633         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3634       // Revisit this node so we can catch min3/max3/med3 patterns.
3635       //DCI.AddToWorklist(MinMax.getNode());
3636       return MinMax;
3637     }
3638   }
3639 
3640   // There's no reason to not do this if the condition has other uses.
3641   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3642 }
3643 
3644 static bool isInv2Pi(const APFloat &APF) {
3645   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3646   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3647   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3648 
3649   return APF.bitwiseIsEqual(KF16) ||
3650          APF.bitwiseIsEqual(KF32) ||
3651          APF.bitwiseIsEqual(KF64);
3652 }
3653 
3654 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3655 // additional cost to negate them.
3656 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3657   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3658     if (C->isZero() && !C->isNegative())
3659       return true;
3660 
3661     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3662       return true;
3663   }
3664 
3665   return false;
3666 }
3667 
3668 static unsigned inverseMinMax(unsigned Opc) {
3669   switch (Opc) {
3670   case ISD::FMAXNUM:
3671     return ISD::FMINNUM;
3672   case ISD::FMINNUM:
3673     return ISD::FMAXNUM;
3674   case ISD::FMAXNUM_IEEE:
3675     return ISD::FMINNUM_IEEE;
3676   case ISD::FMINNUM_IEEE:
3677     return ISD::FMAXNUM_IEEE;
3678   case AMDGPUISD::FMAX_LEGACY:
3679     return AMDGPUISD::FMIN_LEGACY;
3680   case AMDGPUISD::FMIN_LEGACY:
3681     return  AMDGPUISD::FMAX_LEGACY;
3682   default:
3683     llvm_unreachable("invalid min/max opcode");
3684   }
3685 }
3686 
3687 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3688                                                  DAGCombinerInfo &DCI) const {
3689   SelectionDAG &DAG = DCI.DAG;
3690   SDValue N0 = N->getOperand(0);
3691   EVT VT = N->getValueType(0);
3692 
3693   unsigned Opc = N0.getOpcode();
3694 
3695   // If the input has multiple uses and we can either fold the negate down, or
3696   // the other uses cannot, give up. This both prevents unprofitable
3697   // transformations and infinite loops: we won't repeatedly try to fold around
3698   // a negate that has no 'good' form.
3699   if (N0.hasOneUse()) {
3700     // This may be able to fold into the source, but at a code size cost. Don't
3701     // fold if the fold into the user is free.
3702     if (allUsesHaveSourceMods(N, 0))
3703       return SDValue();
3704   } else {
3705     if (fnegFoldsIntoOp(Opc) &&
3706         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3707       return SDValue();
3708   }
3709 
3710   SDLoc SL(N);
3711   switch (Opc) {
3712   case ISD::FADD: {
3713     if (!mayIgnoreSignedZero(N0))
3714       return SDValue();
3715 
3716     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3717     SDValue LHS = N0.getOperand(0);
3718     SDValue RHS = N0.getOperand(1);
3719 
3720     if (LHS.getOpcode() != ISD::FNEG)
3721       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3722     else
3723       LHS = LHS.getOperand(0);
3724 
3725     if (RHS.getOpcode() != ISD::FNEG)
3726       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3727     else
3728       RHS = RHS.getOperand(0);
3729 
3730     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3731     if (Res.getOpcode() != ISD::FADD)
3732       return SDValue(); // Op got folded away.
3733     if (!N0.hasOneUse())
3734       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3735     return Res;
3736   }
3737   case ISD::FMUL:
3738   case AMDGPUISD::FMUL_LEGACY: {
3739     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3740     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3741     SDValue LHS = N0.getOperand(0);
3742     SDValue RHS = N0.getOperand(1);
3743 
3744     if (LHS.getOpcode() == ISD::FNEG)
3745       LHS = LHS.getOperand(0);
3746     else if (RHS.getOpcode() == ISD::FNEG)
3747       RHS = RHS.getOperand(0);
3748     else
3749       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3750 
3751     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3752     if (Res.getOpcode() != Opc)
3753       return SDValue(); // Op got folded away.
3754     if (!N0.hasOneUse())
3755       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3756     return Res;
3757   }
3758   case ISD::FMA:
3759   case ISD::FMAD: {
3760     if (!mayIgnoreSignedZero(N0))
3761       return SDValue();
3762 
3763     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3764     SDValue LHS = N0.getOperand(0);
3765     SDValue MHS = N0.getOperand(1);
3766     SDValue RHS = N0.getOperand(2);
3767 
3768     if (LHS.getOpcode() == ISD::FNEG)
3769       LHS = LHS.getOperand(0);
3770     else if (MHS.getOpcode() == ISD::FNEG)
3771       MHS = MHS.getOperand(0);
3772     else
3773       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3774 
3775     if (RHS.getOpcode() != ISD::FNEG)
3776       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3777     else
3778       RHS = RHS.getOperand(0);
3779 
3780     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3781     if (Res.getOpcode() != Opc)
3782       return SDValue(); // Op got folded away.
3783     if (!N0.hasOneUse())
3784       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3785     return Res;
3786   }
3787   case ISD::FMAXNUM:
3788   case ISD::FMINNUM:
3789   case ISD::FMAXNUM_IEEE:
3790   case ISD::FMINNUM_IEEE:
3791   case AMDGPUISD::FMAX_LEGACY:
3792   case AMDGPUISD::FMIN_LEGACY: {
3793     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3794     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3795     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3796     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3797 
3798     SDValue LHS = N0.getOperand(0);
3799     SDValue RHS = N0.getOperand(1);
3800 
3801     // 0 doesn't have a negated inline immediate.
3802     // TODO: This constant check should be generalized to other operations.
3803     if (isConstantCostlierToNegate(RHS))
3804       return SDValue();
3805 
3806     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3807     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3808     unsigned Opposite = inverseMinMax(Opc);
3809 
3810     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3811     if (Res.getOpcode() != Opposite)
3812       return SDValue(); // Op got folded away.
3813     if (!N0.hasOneUse())
3814       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3815     return Res;
3816   }
3817   case AMDGPUISD::FMED3: {
3818     SDValue Ops[3];
3819     for (unsigned I = 0; I < 3; ++I)
3820       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3821 
3822     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3823     if (Res.getOpcode() != AMDGPUISD::FMED3)
3824       return SDValue(); // Op got folded away.
3825     if (!N0.hasOneUse())
3826       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3827     return Res;
3828   }
3829   case ISD::FP_EXTEND:
3830   case ISD::FTRUNC:
3831   case ISD::FRINT:
3832   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3833   case ISD::FSIN:
3834   case ISD::FCANONICALIZE:
3835   case AMDGPUISD::RCP:
3836   case AMDGPUISD::RCP_LEGACY:
3837   case AMDGPUISD::RCP_IFLAG:
3838   case AMDGPUISD::SIN_HW: {
3839     SDValue CvtSrc = N0.getOperand(0);
3840     if (CvtSrc.getOpcode() == ISD::FNEG) {
3841       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3842       // (fneg (rcp (fneg x))) -> (rcp x)
3843       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3844     }
3845 
3846     if (!N0.hasOneUse())
3847       return SDValue();
3848 
3849     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3850     // (fneg (rcp x)) -> (rcp (fneg x))
3851     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3852     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3853   }
3854   case ISD::FP_ROUND: {
3855     SDValue CvtSrc = N0.getOperand(0);
3856 
3857     if (CvtSrc.getOpcode() == ISD::FNEG) {
3858       // (fneg (fp_round (fneg x))) -> (fp_round x)
3859       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3860                          CvtSrc.getOperand(0), N0.getOperand(1));
3861     }
3862 
3863     if (!N0.hasOneUse())
3864       return SDValue();
3865 
3866     // (fneg (fp_round x)) -> (fp_round (fneg x))
3867     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3868     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3869   }
3870   case ISD::FP16_TO_FP: {
3871     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3872     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3873     // Put the fneg back as a legal source operation that can be matched later.
3874     SDLoc SL(N);
3875 
3876     SDValue Src = N0.getOperand(0);
3877     EVT SrcVT = Src.getValueType();
3878 
3879     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3880     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3881                                   DAG.getConstant(0x8000, SL, SrcVT));
3882     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3883   }
3884   default:
3885     return SDValue();
3886   }
3887 }
3888 
3889 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3890                                                  DAGCombinerInfo &DCI) const {
3891   SelectionDAG &DAG = DCI.DAG;
3892   SDValue N0 = N->getOperand(0);
3893 
3894   if (!N0.hasOneUse())
3895     return SDValue();
3896 
3897   switch (N0.getOpcode()) {
3898   case ISD::FP16_TO_FP: {
3899     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3900     SDLoc SL(N);
3901     SDValue Src = N0.getOperand(0);
3902     EVT SrcVT = Src.getValueType();
3903 
3904     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3905     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3906                                   DAG.getConstant(0x7fff, SL, SrcVT));
3907     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3908   }
3909   default:
3910     return SDValue();
3911   }
3912 }
3913 
3914 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3915                                                 DAGCombinerInfo &DCI) const {
3916   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3917   if (!CFP)
3918     return SDValue();
3919 
3920   // XXX - Should this flush denormals?
3921   const APFloat &Val = CFP->getValueAPF();
3922   APFloat One(Val.getSemantics(), "1.0");
3923   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3924 }
3925 
3926 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3927                                                 DAGCombinerInfo &DCI) const {
3928   SelectionDAG &DAG = DCI.DAG;
3929   SDLoc DL(N);
3930 
3931   switch(N->getOpcode()) {
3932   default:
3933     break;
3934   case ISD::BITCAST: {
3935     EVT DestVT = N->getValueType(0);
3936 
3937     // Push casts through vector builds. This helps avoid emitting a large
3938     // number of copies when materializing floating point vector constants.
3939     //
3940     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3941     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3942     if (DestVT.isVector()) {
3943       SDValue Src = N->getOperand(0);
3944       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3945         EVT SrcVT = Src.getValueType();
3946         unsigned NElts = DestVT.getVectorNumElements();
3947 
3948         if (SrcVT.getVectorNumElements() == NElts) {
3949           EVT DestEltVT = DestVT.getVectorElementType();
3950 
3951           SmallVector<SDValue, 8> CastedElts;
3952           SDLoc SL(N);
3953           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3954             SDValue Elt = Src.getOperand(I);
3955             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3956           }
3957 
3958           return DAG.getBuildVector(DestVT, SL, CastedElts);
3959         }
3960       }
3961     }
3962 
3963     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3964       break;
3965 
3966     // Fold bitcasts of constants.
3967     //
3968     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3969     // TODO: Generalize and move to DAGCombiner
3970     SDValue Src = N->getOperand(0);
3971     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3972       if (Src.getValueType() == MVT::i64) {
3973         SDLoc SL(N);
3974         uint64_t CVal = C->getZExtValue();
3975         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3976                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3977                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3978         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3979       }
3980     }
3981 
3982     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3983       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3984       SDLoc SL(N);
3985       uint64_t CVal = Val.getZExtValue();
3986       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3987                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3988                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3989 
3990       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3991     }
3992 
3993     break;
3994   }
3995   case ISD::SHL: {
3996     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3997       break;
3998 
3999     return performShlCombine(N, DCI);
4000   }
4001   case ISD::SRL: {
4002     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4003       break;
4004 
4005     return performSrlCombine(N, DCI);
4006   }
4007   case ISD::SRA: {
4008     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4009       break;
4010 
4011     return performSraCombine(N, DCI);
4012   }
4013   case ISD::TRUNCATE:
4014     return performTruncateCombine(N, DCI);
4015   case ISD::MUL:
4016     return performMulCombine(N, DCI);
4017   case ISD::MULHS:
4018     return performMulhsCombine(N, DCI);
4019   case ISD::MULHU:
4020     return performMulhuCombine(N, DCI);
4021   case AMDGPUISD::MUL_I24:
4022   case AMDGPUISD::MUL_U24:
4023   case AMDGPUISD::MULHI_I24:
4024   case AMDGPUISD::MULHI_U24: {
4025     if (SDValue V = simplifyI24(N, DCI))
4026       return V;
4027     return SDValue();
4028   }
4029   case AMDGPUISD::MUL_LOHI_I24:
4030   case AMDGPUISD::MUL_LOHI_U24:
4031     return performMulLoHi24Combine(N, DCI);
4032   case ISD::SELECT:
4033     return performSelectCombine(N, DCI);
4034   case ISD::FNEG:
4035     return performFNegCombine(N, DCI);
4036   case ISD::FABS:
4037     return performFAbsCombine(N, DCI);
4038   case AMDGPUISD::BFE_I32:
4039   case AMDGPUISD::BFE_U32: {
4040     assert(!N->getValueType(0).isVector() &&
4041            "Vector handling of BFE not implemented");
4042     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4043     if (!Width)
4044       break;
4045 
4046     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4047     if (WidthVal == 0)
4048       return DAG.getConstant(0, DL, MVT::i32);
4049 
4050     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4051     if (!Offset)
4052       break;
4053 
4054     SDValue BitsFrom = N->getOperand(0);
4055     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4056 
4057     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4058 
4059     if (OffsetVal == 0) {
4060       // This is already sign / zero extended, so try to fold away extra BFEs.
4061       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4062 
4063       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4064       if (OpSignBits >= SignBits)
4065         return BitsFrom;
4066 
4067       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4068       if (Signed) {
4069         // This is a sign_extend_inreg. Replace it to take advantage of existing
4070         // DAG Combines. If not eliminated, we will match back to BFE during
4071         // selection.
4072 
4073         // TODO: The sext_inreg of extended types ends, although we can could
4074         // handle them in a single BFE.
4075         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4076                            DAG.getValueType(SmallVT));
4077       }
4078 
4079       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4080     }
4081 
4082     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4083       if (Signed) {
4084         return constantFoldBFE<int32_t>(DAG,
4085                                         CVal->getSExtValue(),
4086                                         OffsetVal,
4087                                         WidthVal,
4088                                         DL);
4089       }
4090 
4091       return constantFoldBFE<uint32_t>(DAG,
4092                                        CVal->getZExtValue(),
4093                                        OffsetVal,
4094                                        WidthVal,
4095                                        DL);
4096     }
4097 
4098     if ((OffsetVal + WidthVal) >= 32 &&
4099         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4100       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4101       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4102                          BitsFrom, ShiftVal);
4103     }
4104 
4105     if (BitsFrom.hasOneUse()) {
4106       APInt Demanded = APInt::getBitsSet(32,
4107                                          OffsetVal,
4108                                          OffsetVal + WidthVal);
4109 
4110       KnownBits Known;
4111       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4112                                             !DCI.isBeforeLegalizeOps());
4113       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4114       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4115           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4116         DCI.CommitTargetLoweringOpt(TLO);
4117       }
4118     }
4119 
4120     break;
4121   }
4122   case ISD::LOAD:
4123     return performLoadCombine(N, DCI);
4124   case ISD::STORE:
4125     return performStoreCombine(N, DCI);
4126   case AMDGPUISD::RCP:
4127   case AMDGPUISD::RCP_IFLAG:
4128     return performRcpCombine(N, DCI);
4129   case ISD::AssertZext:
4130   case ISD::AssertSext:
4131     return performAssertSZExtCombine(N, DCI);
4132   case ISD::INTRINSIC_WO_CHAIN:
4133     return performIntrinsicWOChainCombine(N, DCI);
4134   }
4135   return SDValue();
4136 }
4137 
4138 //===----------------------------------------------------------------------===//
4139 // Helper functions
4140 //===----------------------------------------------------------------------===//
4141 
4142 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4143                                                    const TargetRegisterClass *RC,
4144                                                    unsigned Reg, EVT VT,
4145                                                    const SDLoc &SL,
4146                                                    bool RawReg) const {
4147   MachineFunction &MF = DAG.getMachineFunction();
4148   MachineRegisterInfo &MRI = MF.getRegInfo();
4149   unsigned VReg;
4150 
4151   if (!MRI.isLiveIn(Reg)) {
4152     VReg = MRI.createVirtualRegister(RC);
4153     MRI.addLiveIn(Reg, VReg);
4154   } else {
4155     VReg = MRI.getLiveInVirtReg(Reg);
4156   }
4157 
4158   if (RawReg)
4159     return DAG.getRegister(VReg, VT);
4160 
4161   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4162 }
4163 
4164 // This may be called multiple times, and nothing prevents creating multiple
4165 // objects at the same offset. See if we already defined this object.
4166 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4167                                        int64_t Offset) {
4168   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4169     if (MFI.getObjectOffset(I) == Offset) {
4170       assert(MFI.getObjectSize(I) == Size);
4171       return I;
4172     }
4173   }
4174 
4175   return MFI.CreateFixedObject(Size, Offset, true);
4176 }
4177 
4178 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4179                                                   EVT VT,
4180                                                   const SDLoc &SL,
4181                                                   int64_t Offset) const {
4182   MachineFunction &MF = DAG.getMachineFunction();
4183   MachineFrameInfo &MFI = MF.getFrameInfo();
4184   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4185 
4186   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4187   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4188 
4189   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4190                      MachineMemOperand::MODereferenceable |
4191                      MachineMemOperand::MOInvariant);
4192 }
4193 
4194 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4195                                                    const SDLoc &SL,
4196                                                    SDValue Chain,
4197                                                    SDValue ArgVal,
4198                                                    int64_t Offset) const {
4199   MachineFunction &MF = DAG.getMachineFunction();
4200   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4201 
4202   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4203   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4204                                MachineMemOperand::MODereferenceable);
4205   return Store;
4206 }
4207 
4208 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4209                                              const TargetRegisterClass *RC,
4210                                              EVT VT, const SDLoc &SL,
4211                                              const ArgDescriptor &Arg) const {
4212   assert(Arg && "Attempting to load missing argument");
4213 
4214   SDValue V = Arg.isRegister() ?
4215     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4216     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4217 
4218   if (!Arg.isMasked())
4219     return V;
4220 
4221   unsigned Mask = Arg.getMask();
4222   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4223   V = DAG.getNode(ISD::SRL, SL, VT, V,
4224                   DAG.getShiftAmountConstant(Shift, VT, SL));
4225   return DAG.getNode(ISD::AND, SL, VT, V,
4226                      DAG.getConstant(Mask >> Shift, SL, VT));
4227 }
4228 
4229 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4230     const MachineFunction &MF, const ImplicitParameter Param) const {
4231   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4232   const AMDGPUSubtarget &ST =
4233       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4234   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4235   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4236   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4237                        ExplicitArgOffset;
4238   switch (Param) {
4239   case GRID_DIM:
4240     return ArgOffset;
4241   case GRID_OFFSET:
4242     return ArgOffset + 4;
4243   }
4244   llvm_unreachable("unexpected implicit parameter type");
4245 }
4246 
4247 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4248 
4249 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4250   switch ((AMDGPUISD::NodeType)Opcode) {
4251   case AMDGPUISD::FIRST_NUMBER: break;
4252   // AMDIL DAG nodes
4253   NODE_NAME_CASE(UMUL);
4254   NODE_NAME_CASE(BRANCH_COND);
4255 
4256   // AMDGPU DAG nodes
4257   NODE_NAME_CASE(IF)
4258   NODE_NAME_CASE(ELSE)
4259   NODE_NAME_CASE(LOOP)
4260   NODE_NAME_CASE(CALL)
4261   NODE_NAME_CASE(TC_RETURN)
4262   NODE_NAME_CASE(TRAP)
4263   NODE_NAME_CASE(RET_FLAG)
4264   NODE_NAME_CASE(RETURN_TO_EPILOG)
4265   NODE_NAME_CASE(ENDPGM)
4266   NODE_NAME_CASE(DWORDADDR)
4267   NODE_NAME_CASE(FRACT)
4268   NODE_NAME_CASE(SETCC)
4269   NODE_NAME_CASE(SETREG)
4270   NODE_NAME_CASE(DENORM_MODE)
4271   NODE_NAME_CASE(FMA_W_CHAIN)
4272   NODE_NAME_CASE(FMUL_W_CHAIN)
4273   NODE_NAME_CASE(CLAMP)
4274   NODE_NAME_CASE(COS_HW)
4275   NODE_NAME_CASE(SIN_HW)
4276   NODE_NAME_CASE(FMAX_LEGACY)
4277   NODE_NAME_CASE(FMIN_LEGACY)
4278   NODE_NAME_CASE(FMAX3)
4279   NODE_NAME_CASE(SMAX3)
4280   NODE_NAME_CASE(UMAX3)
4281   NODE_NAME_CASE(FMIN3)
4282   NODE_NAME_CASE(SMIN3)
4283   NODE_NAME_CASE(UMIN3)
4284   NODE_NAME_CASE(FMED3)
4285   NODE_NAME_CASE(SMED3)
4286   NODE_NAME_CASE(UMED3)
4287   NODE_NAME_CASE(FDOT2)
4288   NODE_NAME_CASE(URECIP)
4289   NODE_NAME_CASE(DIV_SCALE)
4290   NODE_NAME_CASE(DIV_FMAS)
4291   NODE_NAME_CASE(DIV_FIXUP)
4292   NODE_NAME_CASE(FMAD_FTZ)
4293   NODE_NAME_CASE(TRIG_PREOP)
4294   NODE_NAME_CASE(RCP)
4295   NODE_NAME_CASE(RSQ)
4296   NODE_NAME_CASE(RCP_LEGACY)
4297   NODE_NAME_CASE(RSQ_LEGACY)
4298   NODE_NAME_CASE(RCP_IFLAG)
4299   NODE_NAME_CASE(FMUL_LEGACY)
4300   NODE_NAME_CASE(RSQ_CLAMP)
4301   NODE_NAME_CASE(LDEXP)
4302   NODE_NAME_CASE(FP_CLASS)
4303   NODE_NAME_CASE(DOT4)
4304   NODE_NAME_CASE(CARRY)
4305   NODE_NAME_CASE(BORROW)
4306   NODE_NAME_CASE(BFE_U32)
4307   NODE_NAME_CASE(BFE_I32)
4308   NODE_NAME_CASE(BFI)
4309   NODE_NAME_CASE(BFM)
4310   NODE_NAME_CASE(FFBH_U32)
4311   NODE_NAME_CASE(FFBH_I32)
4312   NODE_NAME_CASE(FFBL_B32)
4313   NODE_NAME_CASE(MUL_U24)
4314   NODE_NAME_CASE(MUL_I24)
4315   NODE_NAME_CASE(MULHI_U24)
4316   NODE_NAME_CASE(MULHI_I24)
4317   NODE_NAME_CASE(MUL_LOHI_U24)
4318   NODE_NAME_CASE(MUL_LOHI_I24)
4319   NODE_NAME_CASE(MAD_U24)
4320   NODE_NAME_CASE(MAD_I24)
4321   NODE_NAME_CASE(MAD_I64_I32)
4322   NODE_NAME_CASE(MAD_U64_U32)
4323   NODE_NAME_CASE(PERM)
4324   NODE_NAME_CASE(TEXTURE_FETCH)
4325   NODE_NAME_CASE(EXPORT)
4326   NODE_NAME_CASE(EXPORT_DONE)
4327   NODE_NAME_CASE(R600_EXPORT)
4328   NODE_NAME_CASE(CONST_ADDRESS)
4329   NODE_NAME_CASE(REGISTER_LOAD)
4330   NODE_NAME_CASE(REGISTER_STORE)
4331   NODE_NAME_CASE(SAMPLE)
4332   NODE_NAME_CASE(SAMPLEB)
4333   NODE_NAME_CASE(SAMPLED)
4334   NODE_NAME_CASE(SAMPLEL)
4335   NODE_NAME_CASE(CVT_F32_UBYTE0)
4336   NODE_NAME_CASE(CVT_F32_UBYTE1)
4337   NODE_NAME_CASE(CVT_F32_UBYTE2)
4338   NODE_NAME_CASE(CVT_F32_UBYTE3)
4339   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4340   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4341   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4342   NODE_NAME_CASE(CVT_PK_I16_I32)
4343   NODE_NAME_CASE(CVT_PK_U16_U32)
4344   NODE_NAME_CASE(FP_TO_FP16)
4345   NODE_NAME_CASE(FP16_ZEXT)
4346   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4347   NODE_NAME_CASE(CONST_DATA_PTR)
4348   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4349   NODE_NAME_CASE(LDS)
4350   NODE_NAME_CASE(KILL)
4351   NODE_NAME_CASE(DUMMY_CHAIN)
4352   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4353   NODE_NAME_CASE(INTERP_MOV)
4354   NODE_NAME_CASE(INTERP_P1)
4355   NODE_NAME_CASE(INTERP_P2)
4356   NODE_NAME_CASE(INTERP_P1LL_F16)
4357   NODE_NAME_CASE(INTERP_P1LV_F16)
4358   NODE_NAME_CASE(INTERP_P2_F16)
4359   NODE_NAME_CASE(LOAD_D16_HI)
4360   NODE_NAME_CASE(LOAD_D16_LO)
4361   NODE_NAME_CASE(LOAD_D16_HI_I8)
4362   NODE_NAME_CASE(LOAD_D16_HI_U8)
4363   NODE_NAME_CASE(LOAD_D16_LO_I8)
4364   NODE_NAME_CASE(LOAD_D16_LO_U8)
4365   NODE_NAME_CASE(STORE_MSKOR)
4366   NODE_NAME_CASE(LOAD_CONSTANT)
4367   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4368   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4369   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4370   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4371   NODE_NAME_CASE(DS_ORDERED_COUNT)
4372   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4373   NODE_NAME_CASE(ATOMIC_INC)
4374   NODE_NAME_CASE(ATOMIC_DEC)
4375   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4376   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4377   NODE_NAME_CASE(BUFFER_LOAD)
4378   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4379   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4380   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4381   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4382   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4383   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4384   NODE_NAME_CASE(SBUFFER_LOAD)
4385   NODE_NAME_CASE(BUFFER_STORE)
4386   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4387   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4388   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4389   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4390   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4391   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4392   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4393   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4394   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4395   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4396   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4397   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4398   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4399   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4400   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4401   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4402   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4403   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4404   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4405   NODE_NAME_CASE(ATOMIC_FADD)
4406   NODE_NAME_CASE(ATOMIC_PK_FADD)
4407 
4408   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4409   }
4410   return nullptr;
4411 }
4412 
4413 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4414                                               SelectionDAG &DAG, int Enabled,
4415                                               int &RefinementSteps,
4416                                               bool &UseOneConstNR,
4417                                               bool Reciprocal) const {
4418   EVT VT = Operand.getValueType();
4419 
4420   if (VT == MVT::f32) {
4421     RefinementSteps = 0;
4422     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4423   }
4424 
4425   // TODO: There is also f64 rsq instruction, but the documentation is less
4426   // clear on its precision.
4427 
4428   return SDValue();
4429 }
4430 
4431 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4432                                                SelectionDAG &DAG, int Enabled,
4433                                                int &RefinementSteps) const {
4434   EVT VT = Operand.getValueType();
4435 
4436   if (VT == MVT::f32) {
4437     // Reciprocal, < 1 ulp error.
4438     //
4439     // This reciprocal approximation converges to < 0.5 ulp error with one
4440     // newton rhapson performed with two fused multiple adds (FMAs).
4441 
4442     RefinementSteps = 0;
4443     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4444   }
4445 
4446   // TODO: There is also f64 rcp instruction, but the documentation is less
4447   // clear on its precision.
4448 
4449   return SDValue();
4450 }
4451 
4452 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4453     const SDValue Op, KnownBits &Known,
4454     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4455 
4456   Known.resetAll(); // Don't know anything.
4457 
4458   unsigned Opc = Op.getOpcode();
4459 
4460   switch (Opc) {
4461   default:
4462     break;
4463   case AMDGPUISD::CARRY:
4464   case AMDGPUISD::BORROW: {
4465     Known.Zero = APInt::getHighBitsSet(32, 31);
4466     break;
4467   }
4468 
4469   case AMDGPUISD::BFE_I32:
4470   case AMDGPUISD::BFE_U32: {
4471     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4472     if (!CWidth)
4473       return;
4474 
4475     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4476 
4477     if (Opc == AMDGPUISD::BFE_U32)
4478       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4479 
4480     break;
4481   }
4482   case AMDGPUISD::FP_TO_FP16:
4483   case AMDGPUISD::FP16_ZEXT: {
4484     unsigned BitWidth = Known.getBitWidth();
4485 
4486     // High bits are zero.
4487     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4488     break;
4489   }
4490   case AMDGPUISD::MUL_U24:
4491   case AMDGPUISD::MUL_I24: {
4492     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4493     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4494     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4495                       RHSKnown.countMinTrailingZeros();
4496     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4497 
4498     // Truncate to 24 bits.
4499     LHSKnown = LHSKnown.trunc(24);
4500     RHSKnown = RHSKnown.trunc(24);
4501 
4502     bool Negative = false;
4503     if (Opc == AMDGPUISD::MUL_I24) {
4504       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4505       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4506       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4507       if (MaxValBits >= 32)
4508         break;
4509       bool LHSNegative = LHSKnown.isNegative();
4510       bool LHSPositive = LHSKnown.isNonNegative();
4511       bool RHSNegative = RHSKnown.isNegative();
4512       bool RHSPositive = RHSKnown.isNonNegative();
4513       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4514         break;
4515       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4516       if (Negative)
4517         Known.One.setHighBits(32 - MaxValBits);
4518       else
4519         Known.Zero.setHighBits(32 - MaxValBits);
4520     } else {
4521       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4522       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4523       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4524       if (MaxValBits >= 32)
4525         break;
4526       Known.Zero.setHighBits(32 - MaxValBits);
4527     }
4528     break;
4529   }
4530   case AMDGPUISD::PERM: {
4531     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4532     if (!CMask)
4533       return;
4534 
4535     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4536     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4537     unsigned Sel = CMask->getZExtValue();
4538 
4539     for (unsigned I = 0; I < 32; I += 8) {
4540       unsigned SelBits = Sel & 0xff;
4541       if (SelBits < 4) {
4542         SelBits *= 8;
4543         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4544         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4545       } else if (SelBits < 7) {
4546         SelBits = (SelBits & 3) * 8;
4547         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4548         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4549       } else if (SelBits == 0x0c) {
4550         Known.Zero |= 0xFFull << I;
4551       } else if (SelBits > 0x0c) {
4552         Known.One |= 0xFFull << I;
4553       }
4554       Sel >>= 8;
4555     }
4556     break;
4557   }
4558   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4559     Known.Zero.setHighBits(24);
4560     break;
4561   }
4562   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4563     Known.Zero.setHighBits(16);
4564     break;
4565   }
4566   case AMDGPUISD::LDS: {
4567     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4568     unsigned Align = GA->getGlobal()->getAlignment();
4569 
4570     Known.Zero.setHighBits(16);
4571     if (Align)
4572       Known.Zero.setLowBits(Log2_32(Align));
4573     break;
4574   }
4575   case ISD::INTRINSIC_WO_CHAIN: {
4576     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4577     switch (IID) {
4578     case Intrinsic::amdgcn_mbcnt_lo:
4579     case Intrinsic::amdgcn_mbcnt_hi: {
4580       const GCNSubtarget &ST =
4581           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4582       // These return at most the wavefront size - 1.
4583       unsigned Size = Op.getValueType().getSizeInBits();
4584       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4585       break;
4586     }
4587     default:
4588       break;
4589     }
4590   }
4591   }
4592 }
4593 
4594 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4595     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4596     unsigned Depth) const {
4597   switch (Op.getOpcode()) {
4598   case AMDGPUISD::BFE_I32: {
4599     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4600     if (!Width)
4601       return 1;
4602 
4603     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4604     if (!isNullConstant(Op.getOperand(1)))
4605       return SignBits;
4606 
4607     // TODO: Could probably figure something out with non-0 offsets.
4608     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4609     return std::max(SignBits, Op0SignBits);
4610   }
4611 
4612   case AMDGPUISD::BFE_U32: {
4613     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4614     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4615   }
4616 
4617   case AMDGPUISD::CARRY:
4618   case AMDGPUISD::BORROW:
4619     return 31;
4620   case AMDGPUISD::BUFFER_LOAD_BYTE:
4621     return 25;
4622   case AMDGPUISD::BUFFER_LOAD_SHORT:
4623     return 17;
4624   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4625     return 24;
4626   case AMDGPUISD::BUFFER_LOAD_USHORT:
4627     return 16;
4628   case AMDGPUISD::FP_TO_FP16:
4629   case AMDGPUISD::FP16_ZEXT:
4630     return 16;
4631   default:
4632     return 1;
4633   }
4634 }
4635 
4636 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4637                                                         const SelectionDAG &DAG,
4638                                                         bool SNaN,
4639                                                         unsigned Depth) const {
4640   unsigned Opcode = Op.getOpcode();
4641   switch (Opcode) {
4642   case AMDGPUISD::FMIN_LEGACY:
4643   case AMDGPUISD::FMAX_LEGACY: {
4644     if (SNaN)
4645       return true;
4646 
4647     // TODO: Can check no nans on one of the operands for each one, but which
4648     // one?
4649     return false;
4650   }
4651   case AMDGPUISD::FMUL_LEGACY:
4652   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4653     if (SNaN)
4654       return true;
4655     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4656            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4657   }
4658   case AMDGPUISD::FMED3:
4659   case AMDGPUISD::FMIN3:
4660   case AMDGPUISD::FMAX3:
4661   case AMDGPUISD::FMAD_FTZ: {
4662     if (SNaN)
4663       return true;
4664     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4665            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4666            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4667   }
4668   case AMDGPUISD::CVT_F32_UBYTE0:
4669   case AMDGPUISD::CVT_F32_UBYTE1:
4670   case AMDGPUISD::CVT_F32_UBYTE2:
4671   case AMDGPUISD::CVT_F32_UBYTE3:
4672     return true;
4673 
4674   case AMDGPUISD::RCP:
4675   case AMDGPUISD::RSQ:
4676   case AMDGPUISD::RCP_LEGACY:
4677   case AMDGPUISD::RSQ_LEGACY:
4678   case AMDGPUISD::RSQ_CLAMP: {
4679     if (SNaN)
4680       return true;
4681 
4682     // TODO: Need is known positive check.
4683     return false;
4684   }
4685   case AMDGPUISD::LDEXP:
4686   case AMDGPUISD::FRACT: {
4687     if (SNaN)
4688       return true;
4689     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4690   }
4691   case AMDGPUISD::DIV_SCALE:
4692   case AMDGPUISD::DIV_FMAS:
4693   case AMDGPUISD::DIV_FIXUP:
4694   case AMDGPUISD::TRIG_PREOP:
4695     // TODO: Refine on operands.
4696     return SNaN;
4697   case AMDGPUISD::SIN_HW:
4698   case AMDGPUISD::COS_HW: {
4699     // TODO: Need check for infinity
4700     return SNaN;
4701   }
4702   case ISD::INTRINSIC_WO_CHAIN: {
4703     unsigned IntrinsicID
4704       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4705     // TODO: Handle more intrinsics
4706     switch (IntrinsicID) {
4707     case Intrinsic::amdgcn_cubeid:
4708       return true;
4709 
4710     case Intrinsic::amdgcn_frexp_mant: {
4711       if (SNaN)
4712         return true;
4713       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4714     }
4715     case Intrinsic::amdgcn_cvt_pkrtz: {
4716       if (SNaN)
4717         return true;
4718       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4719              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4720     }
4721     case Intrinsic::amdgcn_fdot2:
4722       // TODO: Refine on operand
4723       return SNaN;
4724     default:
4725       return false;
4726     }
4727   }
4728   default:
4729     return false;
4730   }
4731 }
4732 
4733 TargetLowering::AtomicExpansionKind
4734 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4735   switch (RMW->getOperation()) {
4736   case AtomicRMWInst::Nand:
4737   case AtomicRMWInst::FAdd:
4738   case AtomicRMWInst::FSub:
4739     return AtomicExpansionKind::CmpXChg;
4740   default:
4741     return AtomicExpansionKind::None;
4742   }
4743 }
4744