1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59                                            const AMDGPUSubtarget &STI)
60     : TargetLowering(TM), Subtarget(&STI) {
61   // Lower floating point store/load to integer store/load to reduce the number
62   // of patterns in tablegen.
63   setOperationAction(ISD::LOAD, MVT::f32, Promote);
64   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65 
66   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
77 
78   setOperationAction(ISD::LOAD, MVT::i64, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
83 
84   setOperationAction(ISD::LOAD, MVT::f64, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
89 
90   // There are no 64-bit extloads. These should be done as a 32-bit extload and
91   // an extension to 64-bit.
92   for (MVT VT : MVT::integer_valuetypes()) {
93     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
94     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
96   }
97 
98   for (MVT VT : MVT::integer_valuetypes()) {
99     if (VT == MVT::i64)
100       continue;
101 
102     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
106 
107     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
111 
112     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_vector_valuetypes()) {
119     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
131   }
132 
133   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
134   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
137 
138   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
139   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
142 
143   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
147 
148   setOperationAction(ISD::STORE, MVT::f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 
151   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 
154   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
155   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 
157   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 
160   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
161   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 
163   setOperationAction(ISD::STORE, MVT::i64, Promote);
164   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
165 
166   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
167   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
168 
169   setOperationAction(ISD::STORE, MVT::f64, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
177 
178   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
179   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
184 
185   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
186   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
187   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
188   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
189 
190   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
191   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
192   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
193   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
194 
195   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
197   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
198   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
199 
200   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
201   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
202 
203   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
204   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
205 
206   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
207   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
208 
209   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
210   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
211 
212 
213   setOperationAction(ISD::Constant, MVT::i32, Legal);
214   setOperationAction(ISD::Constant, MVT::i64, Legal);
215   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
216   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
217 
218   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
219   setOperationAction(ISD::BRIND, MVT::Other, Expand);
220 
221   // This is totally unsupported, just custom lower to produce an error.
222   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
223 
224   // We need to custom lower some of the intrinsics
225   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
226   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
227 
228   // Library functions.  These default to Expand, but we have instructions
229   // for them.
230   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
231   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
232   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
233   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
234   setOperationAction(ISD::FABS,   MVT::f32, Legal);
235   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
236   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
237   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
238   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
239   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
240 
241   setOperationAction(ISD::FROUND, MVT::f32, Custom);
242   setOperationAction(ISD::FROUND, MVT::f64, Custom);
243 
244   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
245   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
246 
247   setOperationAction(ISD::FREM, MVT::f32, Custom);
248   setOperationAction(ISD::FREM, MVT::f64, Custom);
249 
250   // v_mad_f32 does not support denormals according to some sources.
251   if (!Subtarget->hasFP32Denormals())
252     setOperationAction(ISD::FMAD, MVT::f32, Legal);
253 
254   // Expand to fneg + fadd.
255   setOperationAction(ISD::FSUB, MVT::f64, Expand);
256 
257   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
258   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
259   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
260   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
261   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
262   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
263   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
264   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
265   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
266   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
267 
268   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
269     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
270     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
271     setOperationAction(ISD::FRINT, MVT::f64, Custom);
272     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
273   }
274 
275   if (!Subtarget->hasBFI()) {
276     // fcopysign can be done in a single instruction with BFI.
277     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
279   }
280 
281   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
282 
283   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
284   for (MVT VT : ScalarIntVTs) {
285     // These should use [SU]DIVREM, so set them to expand
286     setOperationAction(ISD::SDIV, VT, Expand);
287     setOperationAction(ISD::UDIV, VT, Expand);
288     setOperationAction(ISD::SREM, VT, Expand);
289     setOperationAction(ISD::UREM, VT, Expand);
290 
291     // GPU does not have divrem function for signed or unsigned.
292     setOperationAction(ISD::SDIVREM, VT, Custom);
293     setOperationAction(ISD::UDIVREM, VT, Custom);
294 
295     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
296     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
297     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
298 
299     setOperationAction(ISD::BSWAP, VT, Expand);
300     setOperationAction(ISD::CTTZ, VT, Expand);
301     setOperationAction(ISD::CTLZ, VT, Expand);
302   }
303 
304   if (!Subtarget->hasBCNT(32))
305     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
306 
307   if (!Subtarget->hasBCNT(64))
308     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
309 
310   // The hardware supports 32-bit ROTR, but not ROTL.
311   setOperationAction(ISD::ROTL, MVT::i32, Expand);
312   setOperationAction(ISD::ROTL, MVT::i64, Expand);
313   setOperationAction(ISD::ROTR, MVT::i64, Expand);
314 
315   setOperationAction(ISD::MUL, MVT::i64, Expand);
316   setOperationAction(ISD::MULHU, MVT::i64, Expand);
317   setOperationAction(ISD::MULHS, MVT::i64, Expand);
318   setOperationAction(ISD::UDIV, MVT::i32, Expand);
319   setOperationAction(ISD::UREM, MVT::i32, Expand);
320   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
321   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
322   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
323   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
324   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
325 
326   setOperationAction(ISD::SMIN, MVT::i32, Legal);
327   setOperationAction(ISD::UMIN, MVT::i32, Legal);
328   setOperationAction(ISD::SMAX, MVT::i32, Legal);
329   setOperationAction(ISD::UMAX, MVT::i32, Legal);
330 
331   if (Subtarget->hasFFBH())
332     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
333 
334   if (Subtarget->hasFFBL())
335     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
336 
337   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
338   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
339 
340   // We only really have 32-bit BFE instructions (and 16-bit on VI).
341   //
342   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
343   // effort to match them now. We want this to be false for i64 cases when the
344   // extraction isn't restricted to the upper or lower half. Ideally we would
345   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
346   // span the midpoint are probably relatively rare, so don't worry about them
347   // for now.
348   if (Subtarget->hasBFE())
349     setHasExtractBitsInsn(true);
350 
351   static const MVT::SimpleValueType VectorIntTypes[] = {
352     MVT::v2i32, MVT::v4i32
353   };
354 
355   for (MVT VT : VectorIntTypes) {
356     // Expand the following operations for the current type by default.
357     setOperationAction(ISD::ADD,  VT, Expand);
358     setOperationAction(ISD::AND,  VT, Expand);
359     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
360     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
361     setOperationAction(ISD::MUL,  VT, Expand);
362     setOperationAction(ISD::OR,   VT, Expand);
363     setOperationAction(ISD::SHL,  VT, Expand);
364     setOperationAction(ISD::SRA,  VT, Expand);
365     setOperationAction(ISD::SRL,  VT, Expand);
366     setOperationAction(ISD::ROTL, VT, Expand);
367     setOperationAction(ISD::ROTR, VT, Expand);
368     setOperationAction(ISD::SUB,  VT, Expand);
369     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
370     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
371     setOperationAction(ISD::SDIV, VT, Expand);
372     setOperationAction(ISD::UDIV, VT, Expand);
373     setOperationAction(ISD::SREM, VT, Expand);
374     setOperationAction(ISD::UREM, VT, Expand);
375     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
376     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
377     setOperationAction(ISD::SDIVREM, VT, Custom);
378     setOperationAction(ISD::UDIVREM, VT, Expand);
379     setOperationAction(ISD::ADDC, VT, Expand);
380     setOperationAction(ISD::SUBC, VT, Expand);
381     setOperationAction(ISD::ADDE, VT, Expand);
382     setOperationAction(ISD::SUBE, VT, Expand);
383     setOperationAction(ISD::SELECT, VT, Expand);
384     setOperationAction(ISD::VSELECT, VT, Expand);
385     setOperationAction(ISD::SELECT_CC, VT, Expand);
386     setOperationAction(ISD::XOR,  VT, Expand);
387     setOperationAction(ISD::BSWAP, VT, Expand);
388     setOperationAction(ISD::CTPOP, VT, Expand);
389     setOperationAction(ISD::CTTZ, VT, Expand);
390     setOperationAction(ISD::CTLZ, VT, Expand);
391     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
392   }
393 
394   static const MVT::SimpleValueType FloatVectorTypes[] = {
395     MVT::v2f32, MVT::v4f32
396   };
397 
398   for (MVT VT : FloatVectorTypes) {
399     setOperationAction(ISD::FABS, VT, Expand);
400     setOperationAction(ISD::FMINNUM, VT, Expand);
401     setOperationAction(ISD::FMAXNUM, VT, Expand);
402     setOperationAction(ISD::FADD, VT, Expand);
403     setOperationAction(ISD::FCEIL, VT, Expand);
404     setOperationAction(ISD::FCOS, VT, Expand);
405     setOperationAction(ISD::FDIV, VT, Expand);
406     setOperationAction(ISD::FEXP2, VT, Expand);
407     setOperationAction(ISD::FLOG2, VT, Expand);
408     setOperationAction(ISD::FREM, VT, Expand);
409     setOperationAction(ISD::FPOW, VT, Expand);
410     setOperationAction(ISD::FFLOOR, VT, Expand);
411     setOperationAction(ISD::FTRUNC, VT, Expand);
412     setOperationAction(ISD::FMUL, VT, Expand);
413     setOperationAction(ISD::FMA, VT, Expand);
414     setOperationAction(ISD::FRINT, VT, Expand);
415     setOperationAction(ISD::FNEARBYINT, VT, Expand);
416     setOperationAction(ISD::FSQRT, VT, Expand);
417     setOperationAction(ISD::FSIN, VT, Expand);
418     setOperationAction(ISD::FSUB, VT, Expand);
419     setOperationAction(ISD::FNEG, VT, Expand);
420     setOperationAction(ISD::VSELECT, VT, Expand);
421     setOperationAction(ISD::SELECT_CC, VT, Expand);
422     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
423     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
424   }
425 
426   // This causes using an unrolled select operation rather than expansion with
427   // bit operations. This is in general better, but the alternative using BFI
428   // instructions may be better if the select sources are SGPRs.
429   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
430   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
431 
432   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
433   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
434 
435   setBooleanContents(ZeroOrNegativeOneBooleanContent);
436   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
437 
438   setSchedulingPreference(Sched::RegPressure);
439   setJumpIsExpensive(true);
440 
441   // SI at least has hardware support for floating point exceptions, but no way
442   // of using or handling them is implemented. They are also optional in OpenCL
443   // (Section 7.3)
444   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
445 
446   setSelectIsExpensive(false);
447   PredictableSelectIsExpensive = false;
448 
449   // We want to find all load dependencies for long chains of stores to enable
450   // merging into very wide vectors. The problem is with vectors with > 4
451   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
452   // vectors are a legal type, even though we have to split the loads
453   // usually. When we can more precisely specify load legality per address
454   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
455   // smarter so that they can figure out what to do in 2 iterations without all
456   // N > 4 stores on the same chain.
457   GatherAllAliasesMaxDepth = 16;
458 
459   // FIXME: Need to really handle these.
460   MaxStoresPerMemcpy  = 4096;
461   MaxStoresPerMemmove = 4096;
462   MaxStoresPerMemset  = 4096;
463 
464   setTargetDAGCombine(ISD::BITCAST);
465   setTargetDAGCombine(ISD::AND);
466   setTargetDAGCombine(ISD::SHL);
467   setTargetDAGCombine(ISD::SRA);
468   setTargetDAGCombine(ISD::SRL);
469   setTargetDAGCombine(ISD::MUL);
470   setTargetDAGCombine(ISD::SELECT);
471   setTargetDAGCombine(ISD::SELECT_CC);
472   setTargetDAGCombine(ISD::STORE);
473   setTargetDAGCombine(ISD::FADD);
474   setTargetDAGCombine(ISD::FSUB);
475 }
476 
477 //===----------------------------------------------------------------------===//
478 // Target Information
479 //===----------------------------------------------------------------------===//
480 
481 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
482   return MVT::i32;
483 }
484 
485 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
486   return true;
487 }
488 
489 // The backend supports 32 and 64 bit floating point immediates.
490 // FIXME: Why are we reporting vectors of FP immediates as legal?
491 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
492   EVT ScalarVT = VT.getScalarType();
493   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
494 }
495 
496 // We don't want to shrink f64 / f32 constants.
497 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
498   EVT ScalarVT = VT.getScalarType();
499   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
500 }
501 
502 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
503                                                  ISD::LoadExtType,
504                                                  EVT NewVT) const {
505 
506   unsigned NewSize = NewVT.getStoreSizeInBits();
507 
508   // If we are reducing to a 32-bit load, this is always better.
509   if (NewSize == 32)
510     return true;
511 
512   EVT OldVT = N->getValueType(0);
513   unsigned OldSize = OldVT.getStoreSizeInBits();
514 
515   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
516   // extloads, so doing one requires using a buffer_load. In cases where we
517   // still couldn't use a scalar load, using the wider load shouldn't really
518   // hurt anything.
519 
520   // If the old size already had to be an extload, there's no harm in continuing
521   // to reduce the width.
522   return (OldSize < 32);
523 }
524 
525 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
526                                                    EVT CastTy) const {
527 
528   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
529 
530   if (LoadTy.getScalarType() == MVT::i32)
531     return false;
532 
533   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
534   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
535 
536   return (LScalarSize < CastScalarSize) ||
537          (CastScalarSize >= 32);
538 }
539 
540 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
541 // profitable with the expansion for 64-bit since it's generally good to
542 // speculate things.
543 // FIXME: These should really have the size as a parameter.
544 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
545   return true;
546 }
547 
548 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
549   return true;
550 }
551 
552 //===---------------------------------------------------------------------===//
553 // Target Properties
554 //===---------------------------------------------------------------------===//
555 
556 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
557   assert(VT.isFloatingPoint());
558   return VT == MVT::f32 || VT == MVT::f64;
559 }
560 
561 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
562   assert(VT.isFloatingPoint());
563   return VT == MVT::f32 || VT == MVT::f64;
564 }
565 
566 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
567                                                          unsigned NumElem,
568                                                          unsigned AS) const {
569   return true;
570 }
571 
572 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
573   // There are few operations which truly have vector input operands. Any vector
574   // operation is going to involve operations on each component, and a
575   // build_vector will be a copy per element, so it always makes sense to use a
576   // build_vector input in place of the extracted element to avoid a copy into a
577   // super register.
578   //
579   // We should probably only do this if all users are extracts only, but this
580   // should be the common case.
581   return true;
582 }
583 
584 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
585   // Truncate is just accessing a subregister.
586   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
587 }
588 
589 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
590   // Truncate is just accessing a subregister.
591   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
592          (Dest->getPrimitiveSizeInBits() % 32 == 0);
593 }
594 
595 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
596   unsigned SrcSize = Src->getScalarSizeInBits();
597   unsigned DestSize = Dest->getScalarSizeInBits();
598 
599   return SrcSize == 32 && DestSize == 64;
600 }
601 
602 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
603   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
604   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
605   // this will enable reducing 64-bit operations the 32-bit, which is always
606   // good.
607   return Src == MVT::i32 && Dest == MVT::i64;
608 }
609 
610 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
611   return isZExtFree(Val.getValueType(), VT2);
612 }
613 
614 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
615   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
616   // limited number of native 64-bit operations. Shrinking an operation to fit
617   // in a single 32-bit register should always be helpful. As currently used,
618   // this is much less general than the name suggests, and is only used in
619   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
620   // not profitable, and may actually be harmful.
621   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
622 }
623 
624 //===---------------------------------------------------------------------===//
625 // TargetLowering Callbacks
626 //===---------------------------------------------------------------------===//
627 
628 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
629                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
630 
631   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
632 }
633 
634 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
635                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
636 
637   State.AnalyzeReturn(Outs, RetCC_SI);
638 }
639 
640 SDValue
641 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
642                                   bool isVarArg,
643                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
644                                   const SmallVectorImpl<SDValue> &OutVals,
645                                   const SDLoc &DL, SelectionDAG &DAG) const {
646   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
647 }
648 
649 //===---------------------------------------------------------------------===//
650 // Target specific lowering
651 //===---------------------------------------------------------------------===//
652 
653 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
654                                         SmallVectorImpl<SDValue> &InVals) const {
655   SDValue Callee = CLI.Callee;
656   SelectionDAG &DAG = CLI.DAG;
657 
658   const Function &Fn = *DAG.getMachineFunction().getFunction();
659 
660   StringRef FuncName("<unknown>");
661 
662   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
663     FuncName = G->getSymbol();
664   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
665     FuncName = G->getGlobal()->getName();
666 
667   DiagnosticInfoUnsupported NoCalls(
668       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
669   DAG.getContext()->diagnose(NoCalls);
670 
671   for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
672     InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
673 
674   return DAG.getEntryNode();
675 }
676 
677 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
678                                                       SelectionDAG &DAG) const {
679   const Function &Fn = *DAG.getMachineFunction().getFunction();
680 
681   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
682                                             SDLoc(Op).getDebugLoc());
683   DAG.getContext()->diagnose(NoDynamicAlloca);
684   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
685   return DAG.getMergeValues(Ops, SDLoc());
686 }
687 
688 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
689                                              SelectionDAG &DAG) const {
690   switch (Op.getOpcode()) {
691   default:
692     Op->dump(&DAG);
693     llvm_unreachable("Custom lowering code for this"
694                      "instruction is not implemented yet!");
695     break;
696   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
697   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
698   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
699   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
700   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
701   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
702   case ISD::FREM: return LowerFREM(Op, DAG);
703   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
704   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
705   case ISD::FRINT: return LowerFRINT(Op, DAG);
706   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
707   case ISD::FROUND: return LowerFROUND(Op, DAG);
708   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
709   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
710   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
711   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
712   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
713   case ISD::CTLZ:
714   case ISD::CTLZ_ZERO_UNDEF:
715     return LowerCTLZ(Op, DAG);
716   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
717   }
718   return Op;
719 }
720 
721 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
722                                               SmallVectorImpl<SDValue> &Results,
723                                               SelectionDAG &DAG) const {
724   switch (N->getOpcode()) {
725   case ISD::SIGN_EXTEND_INREG:
726     // Different parts of legalization seem to interpret which type of
727     // sign_extend_inreg is the one to check for custom lowering. The extended
728     // from type is what really matters, but some places check for custom
729     // lowering of the result type. This results in trying to use
730     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
731     // nothing here and let the illegal result integer be handled normally.
732     return;
733   default:
734     return;
735   }
736 }
737 
738 static bool hasDefinedInitializer(const GlobalValue *GV) {
739   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
740   if (!GVar || !GVar->hasInitializer())
741     return false;
742 
743   return !isa<UndefValue>(GVar->getInitializer());
744 }
745 
746 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
747                                                  SDValue Op,
748                                                  SelectionDAG &DAG) const {
749 
750   const DataLayout &DL = DAG.getDataLayout();
751   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
752   const GlobalValue *GV = G->getGlobal();
753 
754   switch (G->getAddressSpace()) {
755   case AMDGPUAS::LOCAL_ADDRESS: {
756     // XXX: What does the value of G->getOffset() mean?
757     assert(G->getOffset() == 0 &&
758          "Do not know what to do with an non-zero offset");
759 
760     // TODO: We could emit code to handle the initialization somewhere.
761     if (hasDefinedInitializer(GV))
762       break;
763 
764     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
765     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
766   }
767   }
768 
769   const Function &Fn = *DAG.getMachineFunction().getFunction();
770   DiagnosticInfoUnsupported BadInit(
771       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
772   DAG.getContext()->diagnose(BadInit);
773   return SDValue();
774 }
775 
776 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
777                                                   SelectionDAG &DAG) const {
778   SmallVector<SDValue, 8> Args;
779 
780   for (const SDUse &U : Op->ops())
781     DAG.ExtractVectorElements(U.get(), Args);
782 
783   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
784 }
785 
786 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
787                                                      SelectionDAG &DAG) const {
788 
789   SmallVector<SDValue, 8> Args;
790   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
791   EVT VT = Op.getValueType();
792   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
793                             VT.getVectorNumElements());
794 
795   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
796 }
797 
798 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
799     SelectionDAG &DAG) const {
800   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
801   SDLoc DL(Op);
802   EVT VT = Op.getValueType();
803 
804   switch (IntrinsicID) {
805     default: return Op;
806     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
807       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
808                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
809 
810     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
811       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
812                          Op.getOperand(1),
813                          Op.getOperand(2),
814                          Op.getOperand(3));
815 
816     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
817       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
818                          Op.getOperand(1),
819                          Op.getOperand(2),
820                          Op.getOperand(3));
821   }
822 }
823 
824 /// \brief Generate Min/Max node
825 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
826                                                    SDValue LHS, SDValue RHS,
827                                                    SDValue True, SDValue False,
828                                                    SDValue CC,
829                                                    DAGCombinerInfo &DCI) const {
830   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
831     return SDValue();
832 
833   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
834     return SDValue();
835 
836   SelectionDAG &DAG = DCI.DAG;
837   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
838   switch (CCOpcode) {
839   case ISD::SETOEQ:
840   case ISD::SETONE:
841   case ISD::SETUNE:
842   case ISD::SETNE:
843   case ISD::SETUEQ:
844   case ISD::SETEQ:
845   case ISD::SETFALSE:
846   case ISD::SETFALSE2:
847   case ISD::SETTRUE:
848   case ISD::SETTRUE2:
849   case ISD::SETUO:
850   case ISD::SETO:
851     break;
852   case ISD::SETULE:
853   case ISD::SETULT: {
854     if (LHS == True)
855       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
856     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
857   }
858   case ISD::SETOLE:
859   case ISD::SETOLT:
860   case ISD::SETLE:
861   case ISD::SETLT: {
862     // Ordered. Assume ordered for undefined.
863 
864     // Only do this after legalization to avoid interfering with other combines
865     // which might occur.
866     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
867         !DCI.isCalledByLegalizer())
868       return SDValue();
869 
870     // We need to permute the operands to get the correct NaN behavior. The
871     // selected operand is the second one based on the failing compare with NaN,
872     // so permute it based on the compare type the hardware uses.
873     if (LHS == True)
874       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
875     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
876   }
877   case ISD::SETUGE:
878   case ISD::SETUGT: {
879     if (LHS == True)
880       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
881     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
882   }
883   case ISD::SETGT:
884   case ISD::SETGE:
885   case ISD::SETOGE:
886   case ISD::SETOGT: {
887     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
888         !DCI.isCalledByLegalizer())
889       return SDValue();
890 
891     if (LHS == True)
892       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
893     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
894   }
895   case ISD::SETCC_INVALID:
896     llvm_unreachable("Invalid setcc condcode!");
897   }
898   return SDValue();
899 }
900 
901 std::pair<SDValue, SDValue>
902 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
903   SDLoc SL(Op);
904 
905   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
906 
907   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
908   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
909 
910   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
911   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
912 
913   return std::make_pair(Lo, Hi);
914 }
915 
916 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
917   SDLoc SL(Op);
918 
919   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
920   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
921   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
922 }
923 
924 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
925   SDLoc SL(Op);
926 
927   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
928   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
929   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
930 }
931 
932 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
933                                               SelectionDAG &DAG) const {
934   LoadSDNode *Load = cast<LoadSDNode>(Op);
935   EVT VT = Op.getValueType();
936 
937 
938   // If this is a 2 element vector, we really want to scalarize and not create
939   // weird 1 element vectors.
940   if (VT.getVectorNumElements() == 2)
941     return scalarizeVectorLoad(Load, DAG);
942 
943   SDValue BasePtr = Load->getBasePtr();
944   EVT PtrVT = BasePtr.getValueType();
945   EVT MemVT = Load->getMemoryVT();
946   SDLoc SL(Op);
947 
948   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
949 
950   EVT LoVT, HiVT;
951   EVT LoMemVT, HiMemVT;
952   SDValue Lo, Hi;
953 
954   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
955   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
956   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
957 
958   unsigned Size = LoMemVT.getStoreSize();
959   unsigned BaseAlign = Load->getAlignment();
960   unsigned HiAlign = MinAlign(BaseAlign, Size);
961 
962   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
963                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
964                                   BaseAlign, Load->getMemOperand()->getFlags());
965   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
966                               DAG.getConstant(Size, SL, PtrVT));
967   SDValue HiLoad =
968       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
969                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
970                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
971 
972   SDValue Ops[] = {
973     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
974     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
975                 LoLoad.getValue(1), HiLoad.getValue(1))
976   };
977 
978   return DAG.getMergeValues(Ops, SL);
979 }
980 
981 // FIXME: This isn't doing anything for SI. This should be used in a target
982 // combine during type legalization.
983 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
984                                                SelectionDAG &DAG) const {
985   StoreSDNode *Store = cast<StoreSDNode>(Op);
986   EVT MemVT = Store->getMemoryVT();
987   unsigned MemBits = MemVT.getSizeInBits();
988 
989   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
990   // truncating store into an i32 store.
991   // XXX: We could also handle optimize other vector bitwidths.
992   if (!MemVT.isVector() || MemBits > 32) {
993     return SDValue();
994   }
995 
996   SDLoc DL(Op);
997   SDValue Value = Store->getValue();
998   EVT VT = Value.getValueType();
999   EVT ElemVT = VT.getVectorElementType();
1000   SDValue Ptr = Store->getBasePtr();
1001   EVT MemEltVT = MemVT.getVectorElementType();
1002   unsigned MemEltBits = MemEltVT.getSizeInBits();
1003   unsigned MemNumElements = MemVT.getVectorNumElements();
1004   unsigned PackedSize = MemVT.getStoreSizeInBits();
1005   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
1006 
1007   assert(Value.getValueType().getScalarSizeInBits() >= 32);
1008 
1009   SDValue PackedValue;
1010   for (unsigned i = 0; i < MemNumElements; ++i) {
1011     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1012                               DAG.getConstant(i, DL, MVT::i32));
1013     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1014     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1015 
1016     SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
1017     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1018 
1019     if (i == 0) {
1020       PackedValue = Elt;
1021     } else {
1022       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1023     }
1024   }
1025 
1026   if (PackedSize < 32) {
1027     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1028     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1029                              Store->getMemOperand()->getPointerInfo(), PackedVT,
1030                              Store->getAlignment(),
1031                              Store->getMemOperand()->getFlags());
1032   }
1033 
1034   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1035                       Store->getMemOperand()->getPointerInfo(),
1036                       Store->getAlignment(),
1037                       Store->getMemOperand()->getFlags());
1038 }
1039 
1040 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1041                                                SelectionDAG &DAG) const {
1042   StoreSDNode *Store = cast<StoreSDNode>(Op);
1043   SDValue Val = Store->getValue();
1044   EVT VT = Val.getValueType();
1045 
1046   // If this is a 2 element vector, we really want to scalarize and not create
1047   // weird 1 element vectors.
1048   if (VT.getVectorNumElements() == 2)
1049     return scalarizeVectorStore(Store, DAG);
1050 
1051   EVT MemVT = Store->getMemoryVT();
1052   SDValue Chain = Store->getChain();
1053   SDValue BasePtr = Store->getBasePtr();
1054   SDLoc SL(Op);
1055 
1056   EVT LoVT, HiVT;
1057   EVT LoMemVT, HiMemVT;
1058   SDValue Lo, Hi;
1059 
1060   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1061   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1062   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1063 
1064   EVT PtrVT = BasePtr.getValueType();
1065   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1066                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1067                                               PtrVT));
1068 
1069   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1070   unsigned BaseAlign = Store->getAlignment();
1071   unsigned Size = LoMemVT.getStoreSize();
1072   unsigned HiAlign = MinAlign(BaseAlign, Size);
1073 
1074   SDValue LoStore =
1075       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1076                         Store->getMemOperand()->getFlags());
1077   SDValue HiStore =
1078       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1079                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1080 
1081   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1082 }
1083 
1084 // This is a shortcut for integer division because we have fast i32<->f32
1085 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1086 // float is enough to accurately represent up to a 24-bit signed integer.
1087 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1088                                             bool Sign) const {
1089   SDLoc DL(Op);
1090   EVT VT = Op.getValueType();
1091   SDValue LHS = Op.getOperand(0);
1092   SDValue RHS = Op.getOperand(1);
1093   MVT IntVT = MVT::i32;
1094   MVT FltVT = MVT::f32;
1095 
1096   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1097   if (LHSSignBits < 9)
1098     return SDValue();
1099 
1100   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1101   if (RHSSignBits < 9)
1102     return SDValue();
1103 
1104   unsigned BitSize = VT.getSizeInBits();
1105   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1106   unsigned DivBits = BitSize - SignBits;
1107   if (Sign)
1108     ++DivBits;
1109 
1110   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1111   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1112 
1113   SDValue jq = DAG.getConstant(1, DL, IntVT);
1114 
1115   if (Sign) {
1116     // char|short jq = ia ^ ib;
1117     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1118 
1119     // jq = jq >> (bitsize - 2)
1120     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1121                      DAG.getConstant(BitSize - 2, DL, VT));
1122 
1123     // jq = jq | 0x1
1124     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1125   }
1126 
1127   // int ia = (int)LHS;
1128   SDValue ia = LHS;
1129 
1130   // int ib, (int)RHS;
1131   SDValue ib = RHS;
1132 
1133   // float fa = (float)ia;
1134   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1135 
1136   // float fb = (float)ib;
1137   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1138 
1139   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1140                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1141 
1142   // fq = trunc(fq);
1143   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1144 
1145   // float fqneg = -fq;
1146   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1147 
1148   // float fr = mad(fqneg, fb, fa);
1149   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1150 
1151   // int iq = (int)fq;
1152   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1153 
1154   // fr = fabs(fr);
1155   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1156 
1157   // fb = fabs(fb);
1158   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1159 
1160   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1161 
1162   // int cv = fr >= fb;
1163   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1164 
1165   // jq = (cv ? jq : 0);
1166   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1167 
1168   // dst = iq + jq;
1169   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1170 
1171   // Rem needs compensation, it's easier to recompute it
1172   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1173   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1174 
1175   // Truncate to number of bits this divide really is.
1176   if (Sign) {
1177     SDValue InRegSize
1178       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1179     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1180     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1181   } else {
1182     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1183     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1184     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1185   }
1186 
1187   return DAG.getMergeValues({ Div, Rem }, DL);
1188 }
1189 
1190 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1191                                       SelectionDAG &DAG,
1192                                       SmallVectorImpl<SDValue> &Results) const {
1193   assert(Op.getValueType() == MVT::i64);
1194 
1195   SDLoc DL(Op);
1196   EVT VT = Op.getValueType();
1197   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1198 
1199   SDValue one = DAG.getConstant(1, DL, HalfVT);
1200   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1201 
1202   //HiLo split
1203   SDValue LHS = Op.getOperand(0);
1204   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1205   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1206 
1207   SDValue RHS = Op.getOperand(1);
1208   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1209   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1210 
1211   if (VT == MVT::i64 &&
1212     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1213     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1214 
1215     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1216                               LHS_Lo, RHS_Lo);
1217 
1218     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1219     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1220 
1221     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1222     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1223     return;
1224   }
1225 
1226   // Get Speculative values
1227   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1228   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1229 
1230   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1231   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1232   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1233 
1234   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1235   SDValue DIV_Lo = zero;
1236 
1237   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1238 
1239   for (unsigned i = 0; i < halfBitWidth; ++i) {
1240     const unsigned bitPos = halfBitWidth - i - 1;
1241     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1242     // Get value of high bit
1243     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1244     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1245     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1246 
1247     // Shift
1248     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1249     // Add LHS high bit
1250     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1251 
1252     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1253     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1254 
1255     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1256 
1257     // Update REM
1258     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1259     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1260   }
1261 
1262   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1263   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1264   Results.push_back(DIV);
1265   Results.push_back(REM);
1266 }
1267 
1268 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1269                                            SelectionDAG &DAG) const {
1270   SDLoc DL(Op);
1271   EVT VT = Op.getValueType();
1272 
1273   if (VT == MVT::i64) {
1274     SmallVector<SDValue, 2> Results;
1275     LowerUDIVREM64(Op, DAG, Results);
1276     return DAG.getMergeValues(Results, DL);
1277   }
1278 
1279   if (VT == MVT::i32) {
1280     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1281       return Res;
1282   }
1283 
1284   SDValue Num = Op.getOperand(0);
1285   SDValue Den = Op.getOperand(1);
1286 
1287   // RCP =  URECIP(Den) = 2^32 / Den + e
1288   // e is rounding error.
1289   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1290 
1291   // RCP_LO = mul(RCP, Den) */
1292   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1293 
1294   // RCP_HI = mulhu (RCP, Den) */
1295   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1296 
1297   // NEG_RCP_LO = -RCP_LO
1298   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1299                                                      RCP_LO);
1300 
1301   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1302   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1303                                            NEG_RCP_LO, RCP_LO,
1304                                            ISD::SETEQ);
1305   // Calculate the rounding error from the URECIP instruction
1306   // E = mulhu(ABS_RCP_LO, RCP)
1307   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1308 
1309   // RCP_A_E = RCP + E
1310   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1311 
1312   // RCP_S_E = RCP - E
1313   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1314 
1315   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1316   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1317                                      RCP_A_E, RCP_S_E,
1318                                      ISD::SETEQ);
1319   // Quotient = mulhu(Tmp0, Num)
1320   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1321 
1322   // Num_S_Remainder = Quotient * Den
1323   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1324 
1325   // Remainder = Num - Num_S_Remainder
1326   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1327 
1328   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1329   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1330                                                  DAG.getConstant(-1, DL, VT),
1331                                                  DAG.getConstant(0, DL, VT),
1332                                                  ISD::SETUGE);
1333   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1334   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1335                                                   Num_S_Remainder,
1336                                                   DAG.getConstant(-1, DL, VT),
1337                                                   DAG.getConstant(0, DL, VT),
1338                                                   ISD::SETUGE);
1339   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1340   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1341                                                Remainder_GE_Zero);
1342 
1343   // Calculate Division result:
1344 
1345   // Quotient_A_One = Quotient + 1
1346   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1347                                        DAG.getConstant(1, DL, VT));
1348 
1349   // Quotient_S_One = Quotient - 1
1350   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1351                                        DAG.getConstant(1, DL, VT));
1352 
1353   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1354   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1355                                      Quotient, Quotient_A_One, ISD::SETEQ);
1356 
1357   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1358   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1359                             Quotient_S_One, Div, ISD::SETEQ);
1360 
1361   // Calculate Rem result:
1362 
1363   // Remainder_S_Den = Remainder - Den
1364   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1365 
1366   // Remainder_A_Den = Remainder + Den
1367   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1368 
1369   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1370   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1371                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1372 
1373   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1374   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1375                             Remainder_A_Den, Rem, ISD::SETEQ);
1376   SDValue Ops[2] = {
1377     Div,
1378     Rem
1379   };
1380   return DAG.getMergeValues(Ops, DL);
1381 }
1382 
1383 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1384                                            SelectionDAG &DAG) const {
1385   SDLoc DL(Op);
1386   EVT VT = Op.getValueType();
1387 
1388   SDValue LHS = Op.getOperand(0);
1389   SDValue RHS = Op.getOperand(1);
1390 
1391   SDValue Zero = DAG.getConstant(0, DL, VT);
1392   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1393 
1394   if (VT == MVT::i32) {
1395     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1396       return Res;
1397   }
1398 
1399   if (VT == MVT::i64 &&
1400       DAG.ComputeNumSignBits(LHS) > 32 &&
1401       DAG.ComputeNumSignBits(RHS) > 32) {
1402     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1403 
1404     //HiLo split
1405     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1406     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1407     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1408                                  LHS_Lo, RHS_Lo);
1409     SDValue Res[2] = {
1410       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1411       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1412     };
1413     return DAG.getMergeValues(Res, DL);
1414   }
1415 
1416   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1417   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1418   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1419   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1420 
1421   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1422   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1423 
1424   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1425   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1426 
1427   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1428   SDValue Rem = Div.getValue(1);
1429 
1430   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1431   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1432 
1433   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1434   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1435 
1436   SDValue Res[2] = {
1437     Div,
1438     Rem
1439   };
1440   return DAG.getMergeValues(Res, DL);
1441 }
1442 
1443 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1444 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1445   SDLoc SL(Op);
1446   EVT VT = Op.getValueType();
1447   SDValue X = Op.getOperand(0);
1448   SDValue Y = Op.getOperand(1);
1449 
1450   // TODO: Should this propagate fast-math-flags?
1451 
1452   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1453   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1454   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1455 
1456   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1457 }
1458 
1459 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1460   SDLoc SL(Op);
1461   SDValue Src = Op.getOperand(0);
1462 
1463   // result = trunc(src)
1464   // if (src > 0.0 && src != result)
1465   //   result += 1.0
1466 
1467   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1468 
1469   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1470   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1471 
1472   EVT SetCCVT =
1473       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1474 
1475   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1476   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1477   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1478 
1479   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1480   // TODO: Should this propagate fast-math-flags?
1481   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1482 }
1483 
1484 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1485                                   SelectionDAG &DAG) {
1486   const unsigned FractBits = 52;
1487   const unsigned ExpBits = 11;
1488 
1489   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1490                                 Hi,
1491                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1492                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1493   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1494                             DAG.getConstant(1023, SL, MVT::i32));
1495 
1496   return Exp;
1497 }
1498 
1499 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1500   SDLoc SL(Op);
1501   SDValue Src = Op.getOperand(0);
1502 
1503   assert(Op.getValueType() == MVT::f64);
1504 
1505   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1506   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1507 
1508   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1509 
1510   // Extract the upper half, since this is where we will find the sign and
1511   // exponent.
1512   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1513 
1514   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1515 
1516   const unsigned FractBits = 52;
1517 
1518   // Extract the sign bit.
1519   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1520   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1521 
1522   // Extend back to to 64-bits.
1523   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1524   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1525 
1526   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1527   const SDValue FractMask
1528     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1529 
1530   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1531   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1532   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1533 
1534   EVT SetCCVT =
1535       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1536 
1537   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1538 
1539   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1540   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1541 
1542   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1543   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1544 
1545   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1546 }
1547 
1548 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1549   SDLoc SL(Op);
1550   SDValue Src = Op.getOperand(0);
1551 
1552   assert(Op.getValueType() == MVT::f64);
1553 
1554   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1555   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1556   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1557 
1558   // TODO: Should this propagate fast-math-flags?
1559 
1560   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1561   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1562 
1563   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1564 
1565   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1566   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1567 
1568   EVT SetCCVT =
1569       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1570   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1571 
1572   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1573 }
1574 
1575 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1576   // FNEARBYINT and FRINT are the same, except in their handling of FP
1577   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1578   // rint, so just treat them as equivalent.
1579   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1580 }
1581 
1582 // XXX - May require not supporting f32 denormals?
1583 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1584   SDLoc SL(Op);
1585   SDValue X = Op.getOperand(0);
1586 
1587   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1588 
1589   // TODO: Should this propagate fast-math-flags?
1590 
1591   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1592 
1593   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1594 
1595   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1596   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1597   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1598 
1599   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1600 
1601   EVT SetCCVT =
1602       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1603 
1604   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1605 
1606   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1607 
1608   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1609 }
1610 
1611 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1612   SDLoc SL(Op);
1613   SDValue X = Op.getOperand(0);
1614 
1615   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1616 
1617   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1618   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1619   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1620   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1621   EVT SetCCVT =
1622       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1623 
1624   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1625 
1626   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1627 
1628   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1629 
1630   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1631                                        MVT::i64);
1632 
1633   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1634   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1635                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1636                                           MVT::i64),
1637                           Exp);
1638 
1639   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1640   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1641                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1642                               ISD::SETNE);
1643 
1644   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1645                              D, DAG.getConstant(0, SL, MVT::i64));
1646   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1647 
1648   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1649   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1650 
1651   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1652   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1653   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1654 
1655   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1656                             ExpEqNegOne,
1657                             DAG.getConstantFP(1.0, SL, MVT::f64),
1658                             DAG.getConstantFP(0.0, SL, MVT::f64));
1659 
1660   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1661 
1662   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1663   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1664 
1665   return K;
1666 }
1667 
1668 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1669   EVT VT = Op.getValueType();
1670 
1671   if (VT == MVT::f32)
1672     return LowerFROUND32(Op, DAG);
1673 
1674   if (VT == MVT::f64)
1675     return LowerFROUND64(Op, DAG);
1676 
1677   llvm_unreachable("unhandled type");
1678 }
1679 
1680 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1681   SDLoc SL(Op);
1682   SDValue Src = Op.getOperand(0);
1683 
1684   // result = trunc(src);
1685   // if (src < 0.0 && src != result)
1686   //   result += -1.0.
1687 
1688   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1689 
1690   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1691   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1692 
1693   EVT SetCCVT =
1694       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1695 
1696   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1697   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1698   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1699 
1700   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1701   // TODO: Should this propagate fast-math-flags?
1702   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1703 }
1704 
1705 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1706   SDLoc SL(Op);
1707   SDValue Src = Op.getOperand(0);
1708   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1709 
1710   if (ZeroUndef && Src.getValueType() == MVT::i32)
1711     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1712 
1713   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1714 
1715   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1716   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1717 
1718   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1719   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1720 
1721   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1722                                    *DAG.getContext(), MVT::i32);
1723 
1724   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1725 
1726   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1727   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1728 
1729   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1730   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1731 
1732   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1733   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1734 
1735   if (!ZeroUndef) {
1736     // Test if the full 64-bit input is zero.
1737 
1738     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1739     // which we probably don't want.
1740     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1741     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1742 
1743     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1744     // with the same cycles, otherwise it is slower.
1745     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1746     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1747 
1748     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1749 
1750     // The instruction returns -1 for 0 input, but the defined intrinsic
1751     // behavior is to return the number of bits.
1752     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1753                           SrcIsZero, Bits32, NewCtlz);
1754   }
1755 
1756   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1757 }
1758 
1759 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1760                                                bool Signed) const {
1761   // Unsigned
1762   // cul2f(ulong u)
1763   //{
1764   //  uint lz = clz(u);
1765   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1766   //  u = (u << lz) & 0x7fffffffffffffffUL;
1767   //  ulong t = u & 0xffffffffffUL;
1768   //  uint v = (e << 23) | (uint)(u >> 40);
1769   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1770   //  return as_float(v + r);
1771   //}
1772   // Signed
1773   // cl2f(long l)
1774   //{
1775   //  long s = l >> 63;
1776   //  float r = cul2f((l + s) ^ s);
1777   //  return s ? -r : r;
1778   //}
1779 
1780   SDLoc SL(Op);
1781   SDValue Src = Op.getOperand(0);
1782   SDValue L = Src;
1783 
1784   SDValue S;
1785   if (Signed) {
1786     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1787     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1788 
1789     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1790     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1791   }
1792 
1793   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1794                                    *DAG.getContext(), MVT::f32);
1795 
1796 
1797   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1798   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1799   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1800   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1801 
1802   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1803   SDValue E = DAG.getSelect(SL, MVT::i32,
1804     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1805     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1806     ZeroI32);
1807 
1808   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1809     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1810     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1811 
1812   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1813                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1814 
1815   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1816                              U, DAG.getConstant(40, SL, MVT::i64));
1817 
1818   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1819     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1820     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1821 
1822   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1823   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1824   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1825 
1826   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1827 
1828   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1829 
1830   SDValue R = DAG.getSelect(SL, MVT::i32,
1831     RCmp,
1832     One,
1833     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1834   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1835   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1836 
1837   if (!Signed)
1838     return R;
1839 
1840   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1841   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1842 }
1843 
1844 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1845                                                bool Signed) const {
1846   SDLoc SL(Op);
1847   SDValue Src = Op.getOperand(0);
1848 
1849   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1850 
1851   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1852                            DAG.getConstant(0, SL, MVT::i32));
1853   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1854                            DAG.getConstant(1, SL, MVT::i32));
1855 
1856   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
1857                               SL, MVT::f64, Hi);
1858 
1859   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
1860 
1861   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
1862                               DAG.getConstant(32, SL, MVT::i32));
1863   // TODO: Should this propagate fast-math-flags?
1864   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
1865 }
1866 
1867 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1868                                                SelectionDAG &DAG) const {
1869   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1870          "operation should be legal");
1871 
1872   EVT DestVT = Op.getValueType();
1873 
1874   if (DestVT == MVT::f32)
1875     return LowerINT_TO_FP32(Op, DAG, false);
1876 
1877   assert(DestVT == MVT::f64);
1878   return LowerINT_TO_FP64(Op, DAG, false);
1879 }
1880 
1881 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
1882                                               SelectionDAG &DAG) const {
1883   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1884          "operation should be legal");
1885 
1886   EVT DestVT = Op.getValueType();
1887   if (DestVT == MVT::f32)
1888     return LowerINT_TO_FP32(Op, DAG, true);
1889 
1890   assert(DestVT == MVT::f64);
1891   return LowerINT_TO_FP64(Op, DAG, true);
1892 }
1893 
1894 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
1895                                                bool Signed) const {
1896   SDLoc SL(Op);
1897 
1898   SDValue Src = Op.getOperand(0);
1899 
1900   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1901 
1902   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
1903                                  MVT::f64);
1904   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
1905                                  MVT::f64);
1906   // TODO: Should this propagate fast-math-flags?
1907   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
1908 
1909   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
1910 
1911 
1912   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
1913 
1914   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
1915                            MVT::i32, FloorMul);
1916   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
1917 
1918   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
1919 
1920   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
1921 }
1922 
1923 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
1924                                               SelectionDAG &DAG) const {
1925   SDValue Src = Op.getOperand(0);
1926 
1927   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1928     return LowerFP64_TO_INT(Op, DAG, true);
1929 
1930   return SDValue();
1931 }
1932 
1933 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
1934                                               SelectionDAG &DAG) const {
1935   SDValue Src = Op.getOperand(0);
1936 
1937   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1938     return LowerFP64_TO_INT(Op, DAG, false);
1939 
1940   return SDValue();
1941 }
1942 
1943 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1944                                                      SelectionDAG &DAG) const {
1945   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1946   MVT VT = Op.getSimpleValueType();
1947   MVT ScalarVT = VT.getScalarType();
1948 
1949   assert(VT.isVector());
1950 
1951   SDValue Src = Op.getOperand(0);
1952   SDLoc DL(Op);
1953 
1954   // TODO: Don't scalarize on Evergreen?
1955   unsigned NElts = VT.getVectorNumElements();
1956   SmallVector<SDValue, 8> Args;
1957   DAG.ExtractVectorElements(Src, Args, 0, NElts);
1958 
1959   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
1960   for (unsigned I = 0; I < NElts; ++I)
1961     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
1962 
1963   return DAG.getBuildVector(VT, DL, Args);
1964 }
1965 
1966 //===----------------------------------------------------------------------===//
1967 // Custom DAG optimizations
1968 //===----------------------------------------------------------------------===//
1969 
1970 static bool isU24(SDValue Op, SelectionDAG &DAG) {
1971   APInt KnownZero, KnownOne;
1972   EVT VT = Op.getValueType();
1973   DAG.computeKnownBits(Op, KnownZero, KnownOne);
1974 
1975   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
1976 }
1977 
1978 static bool isI24(SDValue Op, SelectionDAG &DAG) {
1979   EVT VT = Op.getValueType();
1980 
1981   // In order for this to be a signed 24-bit value, bit 23, must
1982   // be a sign bit.
1983   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
1984                                      // as unsigned 24-bit values.
1985          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
1986 }
1987 
1988 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
1989 
1990   SelectionDAG &DAG = DCI.DAG;
1991   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1992   EVT VT = Op.getValueType();
1993 
1994   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
1995   APInt KnownZero, KnownOne;
1996   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
1997   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
1998     DCI.CommitTargetLoweringOpt(TLO);
1999 }
2000 
2001 template <typename IntTy>
2002 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2003                                uint32_t Width, const SDLoc &DL) {
2004   if (Width + Offset < 32) {
2005     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2006     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2007     return DAG.getConstant(Result, DL, MVT::i32);
2008   }
2009 
2010   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2011 }
2012 
2013 static bool hasVolatileUser(SDNode *Val) {
2014   for (SDNode *U : Val->uses()) {
2015     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2016       if (M->isVolatile())
2017         return true;
2018     }
2019   }
2020 
2021   return false;
2022 }
2023 
2024 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2025   // i32 vectors are the canonical memory type.
2026   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2027     return false;
2028 
2029   if (!VT.isByteSized())
2030     return false;
2031 
2032   unsigned Size = VT.getStoreSize();
2033 
2034   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2035     return false;
2036 
2037   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2038     return false;
2039 
2040   return true;
2041 }
2042 
2043 // Replace load of an illegal type with a store of a bitcast to a friendlier
2044 // type.
2045 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2046                                                  DAGCombinerInfo &DCI) const {
2047   if (!DCI.isBeforeLegalize())
2048     return SDValue();
2049 
2050   LoadSDNode *LN = cast<LoadSDNode>(N);
2051   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2052     return SDValue();
2053 
2054   SDLoc SL(N);
2055   SelectionDAG &DAG = DCI.DAG;
2056   EVT VT = LN->getMemoryVT();
2057 
2058   unsigned Size = VT.getStoreSize();
2059   unsigned Align = LN->getAlignment();
2060   if (Align < Size && isTypeLegal(VT)) {
2061     bool IsFast;
2062     unsigned AS = LN->getAddressSpace();
2063 
2064     // Expand unaligned loads earlier than legalization. Due to visitation order
2065     // problems during legalization, the emitted instructions to pack and unpack
2066     // the bytes again are not eliminated in the case of an unaligned copy.
2067     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2068       SDValue Ops[2];
2069       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2070       return DAG.getMergeValues(Ops, SDLoc(N));
2071     }
2072 
2073     if (!IsFast)
2074       return SDValue();
2075   }
2076 
2077   if (!shouldCombineMemoryType(VT))
2078     return SDValue();
2079 
2080   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2081 
2082   SDValue NewLoad
2083     = DAG.getLoad(NewVT, SL, LN->getChain(),
2084                   LN->getBasePtr(), LN->getMemOperand());
2085 
2086   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2087   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2088   return SDValue(N, 0);
2089 }
2090 
2091 // Replace store of an illegal type with a store of a bitcast to a friendlier
2092 // type.
2093 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2094                                                   DAGCombinerInfo &DCI) const {
2095   if (!DCI.isBeforeLegalize())
2096     return SDValue();
2097 
2098   StoreSDNode *SN = cast<StoreSDNode>(N);
2099   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2100     return SDValue();
2101 
2102   EVT VT = SN->getMemoryVT();
2103   unsigned Size = VT.getStoreSize();
2104 
2105   SDLoc SL(N);
2106   SelectionDAG &DAG = DCI.DAG;
2107   unsigned Align = SN->getAlignment();
2108   if (Align < Size && isTypeLegal(VT)) {
2109     bool IsFast;
2110     unsigned AS = SN->getAddressSpace();
2111 
2112     // Expand unaligned stores earlier than legalization. Due to visitation
2113     // order problems during legalization, the emitted instructions to pack and
2114     // unpack the bytes again are not eliminated in the case of an unaligned
2115     // copy.
2116     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast))
2117       return expandUnalignedStore(SN, DAG);
2118 
2119     if (!IsFast)
2120       return SDValue();
2121   }
2122 
2123   if (!shouldCombineMemoryType(VT))
2124     return SDValue();
2125 
2126   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2127   SDValue Val = SN->getValue();
2128 
2129   //DCI.AddToWorklist(Val.getNode());
2130 
2131   bool OtherUses = !Val.hasOneUse();
2132   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2133   if (OtherUses) {
2134     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2135     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2136   }
2137 
2138   return DAG.getStore(SN->getChain(), SL, CastVal,
2139                       SN->getBasePtr(), SN->getMemOperand());
2140 }
2141 
2142 // TODO: Should repeat for other bit ops.
2143 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N,
2144                                                 DAGCombinerInfo &DCI) const {
2145   if (N->getValueType(0) != MVT::i64)
2146     return SDValue();
2147 
2148   // Break up 64-bit and of a constant into two 32-bit ands. This will typically
2149   // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer
2150   // combine opportunities since most 64-bit operations are decomposed this way.
2151   // TODO: We won't want this for SALU especially if it is an inline immediate.
2152   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2153   if (!RHS)
2154     return SDValue();
2155 
2156   uint64_t Val = RHS->getZExtValue();
2157   if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) {
2158     // If either half of the constant is 0, this is really a 32-bit and, so
2159     // split it. If we can re-use the full materialized constant, keep it.
2160     return SDValue();
2161   }
2162 
2163   SDLoc SL(N);
2164   SelectionDAG &DAG = DCI.DAG;
2165 
2166   SDValue Lo, Hi;
2167   std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG);
2168 
2169   SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32);
2170   SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32);
2171 
2172   SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS);
2173   SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS);
2174 
2175   // Re-visit the ands. It's possible we eliminated one of them and it could
2176   // simplify the vector.
2177   DCI.AddToWorklist(Lo.getNode());
2178   DCI.AddToWorklist(Hi.getNode());
2179 
2180   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2181   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2182 }
2183 
2184 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2185                                                 DAGCombinerInfo &DCI) const {
2186   if (N->getValueType(0) != MVT::i64)
2187     return SDValue();
2188 
2189   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2190 
2191   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2192   // common case, splitting this into a move and a 32-bit shift is faster and
2193   // the same code size.
2194   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2195   if (!RHS)
2196     return SDValue();
2197 
2198   unsigned RHSVal = RHS->getZExtValue();
2199   if (RHSVal < 32)
2200     return SDValue();
2201 
2202   SDValue LHS = N->getOperand(0);
2203 
2204   SDLoc SL(N);
2205   SelectionDAG &DAG = DCI.DAG;
2206 
2207   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2208 
2209   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2210   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2211 
2212   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2213 
2214   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2215   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2216 }
2217 
2218 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2219                                                 DAGCombinerInfo &DCI) const {
2220   if (N->getValueType(0) != MVT::i64)
2221     return SDValue();
2222 
2223   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2224   if (!RHS)
2225     return SDValue();
2226 
2227   SelectionDAG &DAG = DCI.DAG;
2228   SDLoc SL(N);
2229   unsigned RHSVal = RHS->getZExtValue();
2230 
2231   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2232   if (RHSVal == 32) {
2233     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2234     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2235                                    DAG.getConstant(31, SL, MVT::i32));
2236 
2237     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2238     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2239   }
2240 
2241   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2242   if (RHSVal == 63) {
2243     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2244     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2245                                    DAG.getConstant(31, SL, MVT::i32));
2246     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2247     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2248   }
2249 
2250   return SDValue();
2251 }
2252 
2253 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2254                                                 DAGCombinerInfo &DCI) const {
2255   if (N->getValueType(0) != MVT::i64)
2256     return SDValue();
2257 
2258   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2259   if (!RHS)
2260     return SDValue();
2261 
2262   unsigned ShiftAmt = RHS->getZExtValue();
2263   if (ShiftAmt < 32)
2264     return SDValue();
2265 
2266   // srl i64:x, C for C >= 32
2267   // =>
2268   //   build_pair (srl hi_32(x), C - 32), 0
2269 
2270   SelectionDAG &DAG = DCI.DAG;
2271   SDLoc SL(N);
2272 
2273   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2274   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2275 
2276   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2277   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2278                            VecOp, One);
2279 
2280   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2281   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2282 
2283   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2284 
2285   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2286 }
2287 
2288 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2289                                                 DAGCombinerInfo &DCI) const {
2290   EVT VT = N->getValueType(0);
2291 
2292   if (VT.isVector() || VT.getSizeInBits() > 32)
2293     return SDValue();
2294 
2295   SelectionDAG &DAG = DCI.DAG;
2296   SDLoc DL(N);
2297 
2298   SDValue N0 = N->getOperand(0);
2299   SDValue N1 = N->getOperand(1);
2300   SDValue Mul;
2301 
2302   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2303     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2304     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2305     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2306   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2307     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2308     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2309     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2310   } else {
2311     return SDValue();
2312   }
2313 
2314   // We need to use sext even for MUL_U24, because MUL_U24 is used
2315   // for signed multiply of 8 and 16-bit types.
2316   return DAG.getSExtOrTrunc(Mul, DL, VT);
2317 }
2318 
2319 static bool isNegativeOne(SDValue Val) {
2320   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2321     return C->isAllOnesValue();
2322   return false;
2323 }
2324 
2325 static bool isCtlzOpc(unsigned Opc) {
2326   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2327 }
2328 
2329 // Get FFBH node if the incoming op may have been type legalized from a smaller
2330 // type VT.
2331 // Need to match pre-legalized type because the generic legalization inserts the
2332 // add/sub between the select and compare.
2333 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG,
2334                            const SDLoc &SL, SDValue Op) {
2335   EVT VT = Op.getValueType();
2336   EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2337   if (LegalVT != MVT::i32)
2338     return SDValue();
2339 
2340   if (VT != MVT::i32)
2341     Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op);
2342 
2343   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op);
2344   if (VT != MVT::i32)
2345     FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH);
2346 
2347   return FFBH;
2348 }
2349 
2350 // The native instructions return -1 on 0 input. Optimize out a select that
2351 // produces -1 on 0.
2352 //
2353 // TODO: If zero is not undef, we could also do this if the output is compared
2354 // against the bitwidth.
2355 //
2356 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2357 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2358                                                  SDValue LHS, SDValue RHS,
2359                                                  DAGCombinerInfo &DCI) const {
2360   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2361   if (!CmpRhs || !CmpRhs->isNullValue())
2362     return SDValue();
2363 
2364   SelectionDAG &DAG = DCI.DAG;
2365   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2366   SDValue CmpLHS = Cond.getOperand(0);
2367 
2368   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2369   if (CCOpcode == ISD::SETEQ &&
2370       isCtlzOpc(RHS.getOpcode()) &&
2371       RHS.getOperand(0) == CmpLHS &&
2372       isNegativeOne(LHS)) {
2373     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2374   }
2375 
2376   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2377   if (CCOpcode == ISD::SETNE &&
2378       isCtlzOpc(LHS.getOpcode()) &&
2379       LHS.getOperand(0) == CmpLHS &&
2380       isNegativeOne(RHS)) {
2381     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2382   }
2383 
2384   return SDValue();
2385 }
2386 
2387 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2388                                                    DAGCombinerInfo &DCI) const {
2389   SDValue Cond = N->getOperand(0);
2390   if (Cond.getOpcode() != ISD::SETCC)
2391     return SDValue();
2392 
2393   EVT VT = N->getValueType(0);
2394   SDValue LHS = Cond.getOperand(0);
2395   SDValue RHS = Cond.getOperand(1);
2396   SDValue CC = Cond.getOperand(2);
2397 
2398   SDValue True = N->getOperand(1);
2399   SDValue False = N->getOperand(2);
2400 
2401   if (VT == MVT::f32 && Cond.hasOneUse()) {
2402     SDValue MinMax
2403       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2404     // Revisit this node so we can catch min3/max3/med3 patterns.
2405     //DCI.AddToWorklist(MinMax.getNode());
2406     return MinMax;
2407   }
2408 
2409   // There's no reason to not do this if the condition has other uses.
2410   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2411 }
2412 
2413 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2414                                                 DAGCombinerInfo &DCI) const {
2415   SelectionDAG &DAG = DCI.DAG;
2416   SDLoc DL(N);
2417 
2418   switch(N->getOpcode()) {
2419   default:
2420     break;
2421   case ISD::BITCAST: {
2422     EVT DestVT = N->getValueType(0);
2423     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
2424       break;
2425 
2426     // Fold bitcasts of constants.
2427     //
2428     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
2429     // TODO: Generalize and move to DAGCombiner
2430     SDValue Src = N->getOperand(0);
2431     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
2432       assert(Src.getValueType() == MVT::i64);
2433       SDLoc SL(N);
2434       uint64_t CVal = C->getZExtValue();
2435       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
2436                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2437                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2438     }
2439 
2440     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
2441       const APInt &Val = C->getValueAPF().bitcastToAPInt();
2442       SDLoc SL(N);
2443       uint64_t CVal = Val.getZExtValue();
2444       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2445                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2446                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2447 
2448       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
2449     }
2450 
2451     break;
2452   }
2453   case ISD::SHL: {
2454     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2455       break;
2456 
2457     return performShlCombine(N, DCI);
2458   }
2459   case ISD::SRL: {
2460     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2461       break;
2462 
2463     return performSrlCombine(N, DCI);
2464   }
2465   case ISD::SRA: {
2466     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2467       break;
2468 
2469     return performSraCombine(N, DCI);
2470   }
2471   case ISD::AND: {
2472     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2473       break;
2474 
2475     return performAndCombine(N, DCI);
2476   }
2477   case ISD::MUL:
2478     return performMulCombine(N, DCI);
2479   case AMDGPUISD::MUL_I24:
2480   case AMDGPUISD::MUL_U24: {
2481     SDValue N0 = N->getOperand(0);
2482     SDValue N1 = N->getOperand(1);
2483     simplifyI24(N0, DCI);
2484     simplifyI24(N1, DCI);
2485     return SDValue();
2486   }
2487   case ISD::SELECT:
2488     return performSelectCombine(N, DCI);
2489   case AMDGPUISD::BFE_I32:
2490   case AMDGPUISD::BFE_U32: {
2491     assert(!N->getValueType(0).isVector() &&
2492            "Vector handling of BFE not implemented");
2493     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2494     if (!Width)
2495       break;
2496 
2497     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2498     if (WidthVal == 0)
2499       return DAG.getConstant(0, DL, MVT::i32);
2500 
2501     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2502     if (!Offset)
2503       break;
2504 
2505     SDValue BitsFrom = N->getOperand(0);
2506     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2507 
2508     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2509 
2510     if (OffsetVal == 0) {
2511       // This is already sign / zero extended, so try to fold away extra BFEs.
2512       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2513 
2514       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2515       if (OpSignBits >= SignBits)
2516         return BitsFrom;
2517 
2518       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2519       if (Signed) {
2520         // This is a sign_extend_inreg. Replace it to take advantage of existing
2521         // DAG Combines. If not eliminated, we will match back to BFE during
2522         // selection.
2523 
2524         // TODO: The sext_inreg of extended types ends, although we can could
2525         // handle them in a single BFE.
2526         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2527                            DAG.getValueType(SmallVT));
2528       }
2529 
2530       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2531     }
2532 
2533     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2534       if (Signed) {
2535         return constantFoldBFE<int32_t>(DAG,
2536                                         CVal->getSExtValue(),
2537                                         OffsetVal,
2538                                         WidthVal,
2539                                         DL);
2540       }
2541 
2542       return constantFoldBFE<uint32_t>(DAG,
2543                                        CVal->getZExtValue(),
2544                                        OffsetVal,
2545                                        WidthVal,
2546                                        DL);
2547     }
2548 
2549     if ((OffsetVal + WidthVal) >= 32) {
2550       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2551       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2552                          BitsFrom, ShiftVal);
2553     }
2554 
2555     if (BitsFrom.hasOneUse()) {
2556       APInt Demanded = APInt::getBitsSet(32,
2557                                          OffsetVal,
2558                                          OffsetVal + WidthVal);
2559 
2560       APInt KnownZero, KnownOne;
2561       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2562                                             !DCI.isBeforeLegalizeOps());
2563       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2564       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2565           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2566                                    KnownZero, KnownOne, TLO)) {
2567         DCI.CommitTargetLoweringOpt(TLO);
2568       }
2569     }
2570 
2571     break;
2572   }
2573   case ISD::LOAD:
2574     return performLoadCombine(N, DCI);
2575   case ISD::STORE:
2576     return performStoreCombine(N, DCI);
2577   }
2578   return SDValue();
2579 }
2580 
2581 //===----------------------------------------------------------------------===//
2582 // Helper functions
2583 //===----------------------------------------------------------------------===//
2584 
2585 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2586                                SelectionDAG &DAG,
2587                                const Function *F,
2588                                const SmallVectorImpl<ISD::InputArg> &Ins,
2589                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2590 
2591   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2592     if (Ins[i].ArgVT == Ins[i].VT) {
2593       OrigIns.push_back(Ins[i]);
2594       continue;
2595     }
2596 
2597     EVT VT;
2598     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2599       // Vector has been split into scalars.
2600       VT = Ins[i].ArgVT.getVectorElementType();
2601     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2602                Ins[i].ArgVT.getVectorElementType() !=
2603                Ins[i].VT.getVectorElementType()) {
2604       // Vector elements have been promoted
2605       VT = Ins[i].ArgVT;
2606     } else {
2607       // Vector has been spilt into smaller vectors.
2608       VT = Ins[i].VT;
2609     }
2610 
2611     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2612                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2613     OrigIns.push_back(Arg);
2614   }
2615 }
2616 
2617 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2618                                                   const TargetRegisterClass *RC,
2619                                                    unsigned Reg, EVT VT) const {
2620   MachineFunction &MF = DAG.getMachineFunction();
2621   MachineRegisterInfo &MRI = MF.getRegInfo();
2622   unsigned VirtualRegister;
2623   if (!MRI.isLiveIn(Reg)) {
2624     VirtualRegister = MRI.createVirtualRegister(RC);
2625     MRI.addLiveIn(Reg, VirtualRegister);
2626   } else {
2627     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2628   }
2629   return DAG.getRegister(VirtualRegister, VT);
2630 }
2631 
2632 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2633     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2634   uint64_t ArgOffset = MFI->getABIArgOffset();
2635   switch (Param) {
2636   case GRID_DIM:
2637     return ArgOffset;
2638   case GRID_OFFSET:
2639     return ArgOffset + 4;
2640   }
2641   llvm_unreachable("unexpected implicit parameter type");
2642 }
2643 
2644 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2645 
2646 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2647   switch ((AMDGPUISD::NodeType)Opcode) {
2648   case AMDGPUISD::FIRST_NUMBER: break;
2649   // AMDIL DAG nodes
2650   NODE_NAME_CASE(CALL);
2651   NODE_NAME_CASE(UMUL);
2652   NODE_NAME_CASE(BRANCH_COND);
2653 
2654   // AMDGPU DAG nodes
2655   NODE_NAME_CASE(ENDPGM)
2656   NODE_NAME_CASE(RETURN)
2657   NODE_NAME_CASE(DWORDADDR)
2658   NODE_NAME_CASE(FRACT)
2659   NODE_NAME_CASE(SETCC)
2660   NODE_NAME_CASE(CLAMP)
2661   NODE_NAME_CASE(COS_HW)
2662   NODE_NAME_CASE(SIN_HW)
2663   NODE_NAME_CASE(FMAX_LEGACY)
2664   NODE_NAME_CASE(FMIN_LEGACY)
2665   NODE_NAME_CASE(FMAX3)
2666   NODE_NAME_CASE(SMAX3)
2667   NODE_NAME_CASE(UMAX3)
2668   NODE_NAME_CASE(FMIN3)
2669   NODE_NAME_CASE(SMIN3)
2670   NODE_NAME_CASE(UMIN3)
2671   NODE_NAME_CASE(FMED3)
2672   NODE_NAME_CASE(SMED3)
2673   NODE_NAME_CASE(UMED3)
2674   NODE_NAME_CASE(URECIP)
2675   NODE_NAME_CASE(DIV_SCALE)
2676   NODE_NAME_CASE(DIV_FMAS)
2677   NODE_NAME_CASE(DIV_FIXUP)
2678   NODE_NAME_CASE(TRIG_PREOP)
2679   NODE_NAME_CASE(RCP)
2680   NODE_NAME_CASE(RSQ)
2681   NODE_NAME_CASE(RCP_LEGACY)
2682   NODE_NAME_CASE(RSQ_LEGACY)
2683   NODE_NAME_CASE(FMUL_LEGACY)
2684   NODE_NAME_CASE(RSQ_CLAMP)
2685   NODE_NAME_CASE(LDEXP)
2686   NODE_NAME_CASE(FP_CLASS)
2687   NODE_NAME_CASE(DOT4)
2688   NODE_NAME_CASE(CARRY)
2689   NODE_NAME_CASE(BORROW)
2690   NODE_NAME_CASE(BFE_U32)
2691   NODE_NAME_CASE(BFE_I32)
2692   NODE_NAME_CASE(BFI)
2693   NODE_NAME_CASE(BFM)
2694   NODE_NAME_CASE(FFBH_U32)
2695   NODE_NAME_CASE(FFBH_I32)
2696   NODE_NAME_CASE(MUL_U24)
2697   NODE_NAME_CASE(MUL_I24)
2698   NODE_NAME_CASE(MAD_U24)
2699   NODE_NAME_CASE(MAD_I24)
2700   NODE_NAME_CASE(TEXTURE_FETCH)
2701   NODE_NAME_CASE(EXPORT)
2702   NODE_NAME_CASE(CONST_ADDRESS)
2703   NODE_NAME_CASE(REGISTER_LOAD)
2704   NODE_NAME_CASE(REGISTER_STORE)
2705   NODE_NAME_CASE(LOAD_INPUT)
2706   NODE_NAME_CASE(SAMPLE)
2707   NODE_NAME_CASE(SAMPLEB)
2708   NODE_NAME_CASE(SAMPLED)
2709   NODE_NAME_CASE(SAMPLEL)
2710   NODE_NAME_CASE(CVT_F32_UBYTE0)
2711   NODE_NAME_CASE(CVT_F32_UBYTE1)
2712   NODE_NAME_CASE(CVT_F32_UBYTE2)
2713   NODE_NAME_CASE(CVT_F32_UBYTE3)
2714   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2715   NODE_NAME_CASE(CONST_DATA_PTR)
2716   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
2717   NODE_NAME_CASE(KILL)
2718   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2719   NODE_NAME_CASE(SENDMSG)
2720   NODE_NAME_CASE(INTERP_MOV)
2721   NODE_NAME_CASE(INTERP_P1)
2722   NODE_NAME_CASE(INTERP_P2)
2723   NODE_NAME_CASE(STORE_MSKOR)
2724   NODE_NAME_CASE(LOAD_CONSTANT)
2725   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2726   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
2727   NODE_NAME_CASE(ATOMIC_INC)
2728   NODE_NAME_CASE(ATOMIC_DEC)
2729   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2730   }
2731   return nullptr;
2732 }
2733 
2734 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2735                                                DAGCombinerInfo &DCI,
2736                                                unsigned &RefinementSteps,
2737                                                bool &UseOneConstNR) const {
2738   SelectionDAG &DAG = DCI.DAG;
2739   EVT VT = Operand.getValueType();
2740 
2741   if (VT == MVT::f32) {
2742     RefinementSteps = 0;
2743     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2744   }
2745 
2746   // TODO: There is also f64 rsq instruction, but the documentation is less
2747   // clear on its precision.
2748 
2749   return SDValue();
2750 }
2751 
2752 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2753                                                DAGCombinerInfo &DCI,
2754                                                unsigned &RefinementSteps) const {
2755   SelectionDAG &DAG = DCI.DAG;
2756   EVT VT = Operand.getValueType();
2757 
2758   if (VT == MVT::f32) {
2759     // Reciprocal, < 1 ulp error.
2760     //
2761     // This reciprocal approximation converges to < 0.5 ulp error with one
2762     // newton rhapson performed with two fused multiple adds (FMAs).
2763 
2764     RefinementSteps = 0;
2765     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2766   }
2767 
2768   // TODO: There is also f64 rcp instruction, but the documentation is less
2769   // clear on its precision.
2770 
2771   return SDValue();
2772 }
2773 
2774 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2775   const SDValue Op,
2776   APInt &KnownZero,
2777   APInt &KnownOne,
2778   const SelectionDAG &DAG,
2779   unsigned Depth) const {
2780 
2781   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2782 
2783   APInt KnownZero2;
2784   APInt KnownOne2;
2785   unsigned Opc = Op.getOpcode();
2786 
2787   switch (Opc) {
2788   default:
2789     break;
2790   case AMDGPUISD::CARRY:
2791   case AMDGPUISD::BORROW: {
2792     KnownZero = APInt::getHighBitsSet(32, 31);
2793     break;
2794   }
2795 
2796   case AMDGPUISD::BFE_I32:
2797   case AMDGPUISD::BFE_U32: {
2798     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2799     if (!CWidth)
2800       return;
2801 
2802     unsigned BitWidth = 32;
2803     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2804 
2805     if (Opc == AMDGPUISD::BFE_U32)
2806       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2807 
2808     break;
2809   }
2810   }
2811 }
2812 
2813 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2814   SDValue Op,
2815   const SelectionDAG &DAG,
2816   unsigned Depth) const {
2817   switch (Op.getOpcode()) {
2818   case AMDGPUISD::BFE_I32: {
2819     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2820     if (!Width)
2821       return 1;
2822 
2823     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2824     if (!isNullConstant(Op.getOperand(1)))
2825       return SignBits;
2826 
2827     // TODO: Could probably figure something out with non-0 offsets.
2828     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2829     return std::max(SignBits, Op0SignBits);
2830   }
2831 
2832   case AMDGPUISD::BFE_U32: {
2833     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2834     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2835   }
2836 
2837   case AMDGPUISD::CARRY:
2838   case AMDGPUISD::BORROW:
2839     return 31;
2840 
2841   default:
2842     return 1;
2843   }
2844 }
2845