1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
17 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
18 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
19 
20 #include "AMDGPUISelLowering.h"
21 #include "AMDGPU.h"
22 #include "AMDGPUCallLowering.h"
23 #include "AMDGPUFrameLowering.h"
24 #include "AMDGPUIntrinsicInfo.h"
25 #include "AMDGPURegisterInfo.h"
26 #include "AMDGPUSubtarget.h"
27 #include "AMDGPUTargetMachine.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "R600MachineFunctionInfo.h"
30 #include "SIInstrInfo.h"
31 #include "SIMachineFunctionInfo.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
41 
42 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
43                             CCValAssign::LocInfo LocInfo,
44                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
45   MachineFunction &MF = State.getMachineFunction();
46   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
47 
48   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
49                                          ArgFlags.getOrigAlign());
50   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
51   return true;
52 }
53 
54 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
55                            CCValAssign::LocInfo LocInfo,
56                            ISD::ArgFlagsTy ArgFlags, CCState &State,
57                            const TargetRegisterClass *RC,
58                            unsigned NumRegs) {
59   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
60   unsigned RegResult = State.AllocateReg(RegList);
61   if (RegResult == AMDGPU::NoRegister)
62     return false;
63 
64   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
65   return true;
66 }
67 
68 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
69                               CCValAssign::LocInfo LocInfo,
70                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
71   switch (LocVT.SimpleTy) {
72   case MVT::i64:
73   case MVT::f64:
74   case MVT::v2i32:
75   case MVT::v2f32: {
76     // Up to SGPR0-SGPR39
77     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
78                           &AMDGPU::SGPR_64RegClass, 20);
79   }
80   default:
81     return false;
82   }
83 }
84 
85 // Allocate up to VGPR31.
86 //
87 // TODO: Since there are no VGPR alignent requirements would it be better to
88 // split into individual scalar registers?
89 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
90                               CCValAssign::LocInfo LocInfo,
91                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
92   switch (LocVT.SimpleTy) {
93   case MVT::i64:
94   case MVT::f64:
95   case MVT::v2i32:
96   case MVT::v2f32: {
97     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
98                           &AMDGPU::VReg_64RegClass, 31);
99   }
100   case MVT::v4i32:
101   case MVT::v4f32:
102   case MVT::v2i64:
103   case MVT::v2f64: {
104     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
105                           &AMDGPU::VReg_128RegClass, 29);
106   }
107   case MVT::v8i32:
108   case MVT::v8f32: {
109     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
110                           &AMDGPU::VReg_256RegClass, 25);
111 
112   }
113   case MVT::v16i32:
114   case MVT::v16f32: {
115     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
116                           &AMDGPU::VReg_512RegClass, 17);
117 
118   }
119   default:
120     return false;
121   }
122 }
123 
124 #include "AMDGPUGenCallingConv.inc"
125 
126 // Find a larger type to do a load / store of a vector with.
127 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
128   unsigned StoreSize = VT.getStoreSizeInBits();
129   if (StoreSize <= 32)
130     return EVT::getIntegerVT(Ctx, StoreSize);
131 
132   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
133   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
134 }
135 
136 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
137   KnownBits Known;
138   EVT VT = Op.getValueType();
139   DAG.computeKnownBits(Op, Known);
140 
141   return VT.getSizeInBits() - Known.countMinLeadingZeros();
142 }
143 
144 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
145   EVT VT = Op.getValueType();
146 
147   // In order for this to be a signed 24-bit value, bit 23, must
148   // be a sign bit.
149   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
150 }
151 
152 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
153                                            const AMDGPUSubtarget &STI)
154     : TargetLowering(TM), Subtarget(&STI) {
155   AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
156   // Lower floating point store/load to integer store/load to reduce the number
157   // of patterns in tablegen.
158   setOperationAction(ISD::LOAD, MVT::f32, Promote);
159   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
160 
161   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
162   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
163 
164   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
165   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
166 
167   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
168   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
169 
170   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
171   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
172 
173   setOperationAction(ISD::LOAD, MVT::i64, Promote);
174   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
175 
176   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
177   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
178 
179   setOperationAction(ISD::LOAD, MVT::f64, Promote);
180   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
181 
182   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
183   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
184 
185   // There are no 64-bit extloads. These should be done as a 32-bit extload and
186   // an extension to 64-bit.
187   for (MVT VT : MVT::integer_valuetypes()) {
188     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
189     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
190     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
191   }
192 
193   for (MVT VT : MVT::integer_valuetypes()) {
194     if (VT == MVT::i64)
195       continue;
196 
197     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
198     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
199     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
200     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
201 
202     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
203     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
204     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
205     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
206 
207     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
208     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
209     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
210     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
211   }
212 
213   for (MVT VT : MVT::integer_vector_valuetypes()) {
214     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
215     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
216     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
217     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
218     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
219     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
220     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
221     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
222     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
223     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
224     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
225     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
226   }
227 
228   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
229   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
230   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
231   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
232 
233   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
234   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
235   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
236   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
237 
238   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
239   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
240   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
241   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
242 
243   setOperationAction(ISD::STORE, MVT::f32, Promote);
244   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
245 
246   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
247   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
248 
249   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
250   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
251 
252   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
253   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
254 
255   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
256   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
257 
258   setOperationAction(ISD::STORE, MVT::i64, Promote);
259   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
260 
261   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
262   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
263 
264   setOperationAction(ISD::STORE, MVT::f64, Promote);
265   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
266 
267   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
268   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
269 
270   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
271   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
272   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
273   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
274 
275   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
276   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
277   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
278   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
279 
280   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
281   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
282   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
283   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
284 
285   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
286   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
287 
288   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
289   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
290 
291   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
292   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
293 
294   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
295   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
296 
297 
298   setOperationAction(ISD::Constant, MVT::i32, Legal);
299   setOperationAction(ISD::Constant, MVT::i64, Legal);
300   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
301   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
302 
303   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
304   setOperationAction(ISD::BRIND, MVT::Other, Expand);
305 
306   // This is totally unsupported, just custom lower to produce an error.
307   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
308 
309   // Library functions.  These default to Expand, but we have instructions
310   // for them.
311   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
312   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
313   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
314   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
315   setOperationAction(ISD::FABS,   MVT::f32, Legal);
316   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
317   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
318   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
319   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
320   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
321 
322   setOperationAction(ISD::FROUND, MVT::f32, Custom);
323   setOperationAction(ISD::FROUND, MVT::f64, Custom);
324 
325   setOperationAction(ISD::FLOG, MVT::f32, Custom);
326   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
327 
328   if (Subtarget->has16BitInsts()) {
329     setOperationAction(ISD::FLOG, MVT::f16, Custom);
330     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
331   }
332 
333   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
334   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
335 
336   setOperationAction(ISD::FREM, MVT::f32, Custom);
337   setOperationAction(ISD::FREM, MVT::f64, Custom);
338 
339   // v_mad_f32 does not support denormals according to some sources.
340   if (!Subtarget->hasFP32Denormals())
341     setOperationAction(ISD::FMAD, MVT::f32, Legal);
342 
343   // Expand to fneg + fadd.
344   setOperationAction(ISD::FSUB, MVT::f64, Expand);
345 
346   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
347   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
348   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
349   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
350   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
351   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
352   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
353   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
354   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
355   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
356 
357   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
358     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
359     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
360     setOperationAction(ISD::FRINT, MVT::f64, Custom);
361     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
362   }
363 
364   if (!Subtarget->hasBFI()) {
365     // fcopysign can be done in a single instruction with BFI.
366     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
367     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
368   }
369 
370   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
371   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
372   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
373 
374   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
375   for (MVT VT : ScalarIntVTs) {
376     // These should use [SU]DIVREM, so set them to expand
377     setOperationAction(ISD::SDIV, VT, Expand);
378     setOperationAction(ISD::UDIV, VT, Expand);
379     setOperationAction(ISD::SREM, VT, Expand);
380     setOperationAction(ISD::UREM, VT, Expand);
381 
382     // GPU does not have divrem function for signed or unsigned.
383     setOperationAction(ISD::SDIVREM, VT, Custom);
384     setOperationAction(ISD::UDIVREM, VT, Custom);
385 
386     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
387     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
388     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
389 
390     setOperationAction(ISD::BSWAP, VT, Expand);
391     setOperationAction(ISD::CTTZ, VT, Expand);
392     setOperationAction(ISD::CTLZ, VT, Expand);
393   }
394 
395   if (!Subtarget->hasBCNT(32))
396     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
397 
398   if (!Subtarget->hasBCNT(64))
399     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
400 
401   // The hardware supports 32-bit ROTR, but not ROTL.
402   setOperationAction(ISD::ROTL, MVT::i32, Expand);
403   setOperationAction(ISD::ROTL, MVT::i64, Expand);
404   setOperationAction(ISD::ROTR, MVT::i64, Expand);
405 
406   setOperationAction(ISD::MUL, MVT::i64, Expand);
407   setOperationAction(ISD::MULHU, MVT::i64, Expand);
408   setOperationAction(ISD::MULHS, MVT::i64, Expand);
409   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
410   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
411   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
412   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
413   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
414 
415   setOperationAction(ISD::SMIN, MVT::i32, Legal);
416   setOperationAction(ISD::UMIN, MVT::i32, Legal);
417   setOperationAction(ISD::SMAX, MVT::i32, Legal);
418   setOperationAction(ISD::UMAX, MVT::i32, Legal);
419 
420   if (Subtarget->hasFFBH())
421     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
422 
423   if (Subtarget->hasFFBL())
424     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
425 
426   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
427   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
428   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
429   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
430 
431   // We only really have 32-bit BFE instructions (and 16-bit on VI).
432   //
433   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
434   // effort to match them now. We want this to be false for i64 cases when the
435   // extraction isn't restricted to the upper or lower half. Ideally we would
436   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
437   // span the midpoint are probably relatively rare, so don't worry about them
438   // for now.
439   if (Subtarget->hasBFE())
440     setHasExtractBitsInsn(true);
441 
442   static const MVT::SimpleValueType VectorIntTypes[] = {
443     MVT::v2i32, MVT::v4i32
444   };
445 
446   for (MVT VT : VectorIntTypes) {
447     // Expand the following operations for the current type by default.
448     setOperationAction(ISD::ADD,  VT, Expand);
449     setOperationAction(ISD::AND,  VT, Expand);
450     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
451     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
452     setOperationAction(ISD::MUL,  VT, Expand);
453     setOperationAction(ISD::MULHU, VT, Expand);
454     setOperationAction(ISD::MULHS, VT, Expand);
455     setOperationAction(ISD::OR,   VT, Expand);
456     setOperationAction(ISD::SHL,  VT, Expand);
457     setOperationAction(ISD::SRA,  VT, Expand);
458     setOperationAction(ISD::SRL,  VT, Expand);
459     setOperationAction(ISD::ROTL, VT, Expand);
460     setOperationAction(ISD::ROTR, VT, Expand);
461     setOperationAction(ISD::SUB,  VT, Expand);
462     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
463     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
464     setOperationAction(ISD::SDIV, VT, Expand);
465     setOperationAction(ISD::UDIV, VT, Expand);
466     setOperationAction(ISD::SREM, VT, Expand);
467     setOperationAction(ISD::UREM, VT, Expand);
468     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
469     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
470     setOperationAction(ISD::SDIVREM, VT, Custom);
471     setOperationAction(ISD::UDIVREM, VT, Expand);
472     setOperationAction(ISD::ADDC, VT, Expand);
473     setOperationAction(ISD::SUBC, VT, Expand);
474     setOperationAction(ISD::ADDE, VT, Expand);
475     setOperationAction(ISD::SUBE, VT, Expand);
476     setOperationAction(ISD::SELECT, VT, Expand);
477     setOperationAction(ISD::VSELECT, VT, Expand);
478     setOperationAction(ISD::SELECT_CC, VT, Expand);
479     setOperationAction(ISD::XOR,  VT, Expand);
480     setOperationAction(ISD::BSWAP, VT, Expand);
481     setOperationAction(ISD::CTPOP, VT, Expand);
482     setOperationAction(ISD::CTTZ, VT, Expand);
483     setOperationAction(ISD::CTLZ, VT, Expand);
484     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
485     setOperationAction(ISD::SETCC, VT, Expand);
486   }
487 
488   static const MVT::SimpleValueType FloatVectorTypes[] = {
489     MVT::v2f32, MVT::v4f32
490   };
491 
492   for (MVT VT : FloatVectorTypes) {
493     setOperationAction(ISD::FABS, VT, Expand);
494     setOperationAction(ISD::FMINNUM, VT, Expand);
495     setOperationAction(ISD::FMAXNUM, VT, Expand);
496     setOperationAction(ISD::FADD, VT, Expand);
497     setOperationAction(ISD::FCEIL, VT, Expand);
498     setOperationAction(ISD::FCOS, VT, Expand);
499     setOperationAction(ISD::FDIV, VT, Expand);
500     setOperationAction(ISD::FEXP2, VT, Expand);
501     setOperationAction(ISD::FLOG2, VT, Expand);
502     setOperationAction(ISD::FREM, VT, Expand);
503     setOperationAction(ISD::FLOG, VT, Expand);
504     setOperationAction(ISD::FLOG10, VT, Expand);
505     setOperationAction(ISD::FPOW, VT, Expand);
506     setOperationAction(ISD::FFLOOR, VT, Expand);
507     setOperationAction(ISD::FTRUNC, VT, Expand);
508     setOperationAction(ISD::FMUL, VT, Expand);
509     setOperationAction(ISD::FMA, VT, Expand);
510     setOperationAction(ISD::FRINT, VT, Expand);
511     setOperationAction(ISD::FNEARBYINT, VT, Expand);
512     setOperationAction(ISD::FSQRT, VT, Expand);
513     setOperationAction(ISD::FSIN, VT, Expand);
514     setOperationAction(ISD::FSUB, VT, Expand);
515     setOperationAction(ISD::FNEG, VT, Expand);
516     setOperationAction(ISD::VSELECT, VT, Expand);
517     setOperationAction(ISD::SELECT_CC, VT, Expand);
518     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
519     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
520     setOperationAction(ISD::SETCC, VT, Expand);
521   }
522 
523   // This causes using an unrolled select operation rather than expansion with
524   // bit operations. This is in general better, but the alternative using BFI
525   // instructions may be better if the select sources are SGPRs.
526   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
527   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
528 
529   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
530   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
531 
532   // There are no libcalls of any kind.
533   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
534     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
535 
536   setBooleanContents(ZeroOrNegativeOneBooleanContent);
537   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
538 
539   setSchedulingPreference(Sched::RegPressure);
540   setJumpIsExpensive(true);
541 
542   // FIXME: This is only partially true. If we have to do vector compares, any
543   // SGPR pair can be a condition register. If we have a uniform condition, we
544   // are better off doing SALU operations, where there is only one SCC. For now,
545   // we don't have a way of knowing during instruction selection if a condition
546   // will be uniform and we always use vector compares. Assume we are using
547   // vector compares until that is fixed.
548   setHasMultipleConditionRegisters(true);
549 
550   // SI at least has hardware support for floating point exceptions, but no way
551   // of using or handling them is implemented. They are also optional in OpenCL
552   // (Section 7.3)
553   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
554 
555   PredictableSelectIsExpensive = false;
556 
557   // We want to find all load dependencies for long chains of stores to enable
558   // merging into very wide vectors. The problem is with vectors with > 4
559   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
560   // vectors are a legal type, even though we have to split the loads
561   // usually. When we can more precisely specify load legality per address
562   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
563   // smarter so that they can figure out what to do in 2 iterations without all
564   // N > 4 stores on the same chain.
565   GatherAllAliasesMaxDepth = 16;
566 
567   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
568   // about these during lowering.
569   MaxStoresPerMemcpy  = 0xffffffff;
570   MaxStoresPerMemmove = 0xffffffff;
571   MaxStoresPerMemset  = 0xffffffff;
572 
573   setTargetDAGCombine(ISD::BITCAST);
574   setTargetDAGCombine(ISD::SHL);
575   setTargetDAGCombine(ISD::SRA);
576   setTargetDAGCombine(ISD::SRL);
577   setTargetDAGCombine(ISD::MUL);
578   setTargetDAGCombine(ISD::MULHU);
579   setTargetDAGCombine(ISD::MULHS);
580   setTargetDAGCombine(ISD::SELECT);
581   setTargetDAGCombine(ISD::SELECT_CC);
582   setTargetDAGCombine(ISD::STORE);
583   setTargetDAGCombine(ISD::FADD);
584   setTargetDAGCombine(ISD::FSUB);
585   setTargetDAGCombine(ISD::FNEG);
586   setTargetDAGCombine(ISD::FABS);
587   setTargetDAGCombine(ISD::AssertZext);
588   setTargetDAGCombine(ISD::AssertSext);
589 }
590 
591 //===----------------------------------------------------------------------===//
592 // Target Information
593 //===----------------------------------------------------------------------===//
594 
595 LLVM_READNONE
596 static bool fnegFoldsIntoOp(unsigned Opc) {
597   switch (Opc) {
598   case ISD::FADD:
599   case ISD::FSUB:
600   case ISD::FMUL:
601   case ISD::FMA:
602   case ISD::FMAD:
603   case ISD::FMINNUM:
604   case ISD::FMAXNUM:
605   case ISD::FSIN:
606   case ISD::FTRUNC:
607   case ISD::FRINT:
608   case ISD::FNEARBYINT:
609   case AMDGPUISD::RCP:
610   case AMDGPUISD::RCP_LEGACY:
611   case AMDGPUISD::SIN_HW:
612   case AMDGPUISD::FMUL_LEGACY:
613   case AMDGPUISD::FMIN_LEGACY:
614   case AMDGPUISD::FMAX_LEGACY:
615     return true;
616   default:
617     return false;
618   }
619 }
620 
621 /// \p returns true if the operation will definitely need to use a 64-bit
622 /// encoding, and thus will use a VOP3 encoding regardless of the source
623 /// modifiers.
624 LLVM_READONLY
625 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
626   return N->getNumOperands() > 2 || VT == MVT::f64;
627 }
628 
629 // Most FP instructions support source modifiers, but this could be refined
630 // slightly.
631 LLVM_READONLY
632 static bool hasSourceMods(const SDNode *N) {
633   if (isa<MemSDNode>(N))
634     return false;
635 
636   switch (N->getOpcode()) {
637   case ISD::CopyToReg:
638   case ISD::SELECT:
639   case ISD::FDIV:
640   case ISD::FREM:
641   case ISD::INLINEASM:
642   case AMDGPUISD::INTERP_P1:
643   case AMDGPUISD::INTERP_P2:
644   case AMDGPUISD::DIV_SCALE:
645 
646   // TODO: Should really be looking at the users of the bitcast. These are
647   // problematic because bitcasts are used to legalize all stores to integer
648   // types.
649   case ISD::BITCAST:
650     return false;
651   default:
652     return true;
653   }
654 }
655 
656 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
657                                                  unsigned CostThreshold) {
658   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
659   // it is truly free to use a source modifier in all cases. If there are
660   // multiple users but for each one will necessitate using VOP3, there will be
661   // a code size increase. Try to avoid increasing code size unless we know it
662   // will save on the instruction count.
663   unsigned NumMayIncreaseSize = 0;
664   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
665 
666   // XXX - Should this limit number of uses to check?
667   for (const SDNode *U : N->uses()) {
668     if (!hasSourceMods(U))
669       return false;
670 
671     if (!opMustUseVOP3Encoding(U, VT)) {
672       if (++NumMayIncreaseSize > CostThreshold)
673         return false;
674     }
675   }
676 
677   return true;
678 }
679 
680 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
681   return MVT::i32;
682 }
683 
684 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
685   return true;
686 }
687 
688 // The backend supports 32 and 64 bit floating point immediates.
689 // FIXME: Why are we reporting vectors of FP immediates as legal?
690 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
691   EVT ScalarVT = VT.getScalarType();
692   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
693          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
694 }
695 
696 // We don't want to shrink f64 / f32 constants.
697 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
698   EVT ScalarVT = VT.getScalarType();
699   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
700 }
701 
702 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
703                                                  ISD::LoadExtType,
704                                                  EVT NewVT) const {
705 
706   unsigned NewSize = NewVT.getStoreSizeInBits();
707 
708   // If we are reducing to a 32-bit load, this is always better.
709   if (NewSize == 32)
710     return true;
711 
712   EVT OldVT = N->getValueType(0);
713   unsigned OldSize = OldVT.getStoreSizeInBits();
714 
715   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
716   // extloads, so doing one requires using a buffer_load. In cases where we
717   // still couldn't use a scalar load, using the wider load shouldn't really
718   // hurt anything.
719 
720   // If the old size already had to be an extload, there's no harm in continuing
721   // to reduce the width.
722   return (OldSize < 32);
723 }
724 
725 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
726                                                    EVT CastTy) const {
727 
728   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
729 
730   if (LoadTy.getScalarType() == MVT::i32)
731     return false;
732 
733   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
734   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
735 
736   return (LScalarSize < CastScalarSize) ||
737          (CastScalarSize >= 32);
738 }
739 
740 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
741 // profitable with the expansion for 64-bit since it's generally good to
742 // speculate things.
743 // FIXME: These should really have the size as a parameter.
744 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
745   return true;
746 }
747 
748 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
749   return true;
750 }
751 
752 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
753   switch (N->getOpcode()) {
754     default:
755     return false;
756     case ISD::EntryToken:
757     case ISD::TokenFactor:
758       return true;
759     case ISD::INTRINSIC_WO_CHAIN:
760     {
761       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
762       switch (IntrID) {
763         default:
764         return false;
765         case Intrinsic::amdgcn_readfirstlane:
766         case Intrinsic::amdgcn_readlane:
767           return true;
768       }
769     }
770     break;
771     case ISD::LOAD:
772     {
773       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
774       if (L->getMemOperand()->getAddrSpace()
775       == Subtarget->getAMDGPUAS().CONSTANT_ADDRESS_32BIT)
776         return true;
777       return false;
778     }
779     break;
780   }
781 }
782 
783 bool AMDGPUTargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
784   FunctionLoweringInfo * FLI, DivergenceAnalysis * DA) const
785 {
786   switch (N->getOpcode()) {
787     case ISD::Register:
788     case ISD::CopyFromReg:
789     {
790       const RegisterSDNode *R = nullptr;
791       if (N->getOpcode() == ISD::Register) {
792         R = dyn_cast<RegisterSDNode>(N);
793       }
794       else {
795         R = dyn_cast<RegisterSDNode>(N->getOperand(1));
796       }
797       if (R)
798       {
799         const MachineFunction * MF = FLI->MF;
800         const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
801         const MachineRegisterInfo &MRI = MF->getRegInfo();
802         const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
803         unsigned Reg = R->getReg();
804         if (TRI.isPhysicalRegister(Reg))
805           return TRI.isVGPR(MRI, Reg);
806 
807         if (MRI.isLiveIn(Reg)) {
808           // workitem.id.x workitem.id.y workitem.id.z
809           if ((MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_X) ||
810               (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Y) ||
811               (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Z)||
812               (MRI.getLiveInPhysReg(Reg) == AMDGPU::VGPR0) ||
813             (MRI.getLiveInPhysReg(Reg) == AMDGPU::VGPR1) ||
814             (MRI.getLiveInPhysReg(Reg) == AMDGPU::VGPR2))
815               return true;
816           // Formal arguments of non-entry functions
817           // are conservatively considered divergent
818           else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
819             return true;
820         }
821         return !DA || DA->isDivergent(FLI->getValueFromVirtualReg(Reg));
822       }
823     }
824     break;
825     case ISD::LOAD: {
826       const LoadSDNode *L = dyn_cast<LoadSDNode>(N);
827       if (L->getMemOperand()->getAddrSpace() ==
828           Subtarget->getAMDGPUAS().PRIVATE_ADDRESS)
829         return true;
830     } break;
831     case ISD::CALLSEQ_END:
832     return true;
833     break;
834     case ISD::INTRINSIC_WO_CHAIN:
835     {
836 
837     }
838       return AMDGPU::isIntrinsicSourceOfDivergence(
839       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
840     case ISD::INTRINSIC_W_CHAIN:
841       return AMDGPU::isIntrinsicSourceOfDivergence(
842       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
843   }
844   return false;
845 }
846 
847 //===---------------------------------------------------------------------===//
848 // Target Properties
849 //===---------------------------------------------------------------------===//
850 
851 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
852   assert(VT.isFloatingPoint());
853 
854   // Packed operations do not have a fabs modifier.
855   return VT == MVT::f32 || VT == MVT::f64 ||
856          (Subtarget->has16BitInsts() && VT == MVT::f16);
857 }
858 
859 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
860   assert(VT.isFloatingPoint());
861   return VT == MVT::f32 || VT == MVT::f64 ||
862          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
863          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
864 }
865 
866 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
867                                                          unsigned NumElem,
868                                                          unsigned AS) const {
869   return true;
870 }
871 
872 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
873   // There are few operations which truly have vector input operands. Any vector
874   // operation is going to involve operations on each component, and a
875   // build_vector will be a copy per element, so it always makes sense to use a
876   // build_vector input in place of the extracted element to avoid a copy into a
877   // super register.
878   //
879   // We should probably only do this if all users are extracts only, but this
880   // should be the common case.
881   return true;
882 }
883 
884 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
885   // Truncate is just accessing a subregister.
886 
887   unsigned SrcSize = Source.getSizeInBits();
888   unsigned DestSize = Dest.getSizeInBits();
889 
890   return DestSize < SrcSize && DestSize % 32 == 0 ;
891 }
892 
893 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
894   // Truncate is just accessing a subregister.
895 
896   unsigned SrcSize = Source->getScalarSizeInBits();
897   unsigned DestSize = Dest->getScalarSizeInBits();
898 
899   if (DestSize== 16 && Subtarget->has16BitInsts())
900     return SrcSize >= 32;
901 
902   return DestSize < SrcSize && DestSize % 32 == 0;
903 }
904 
905 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
906   unsigned SrcSize = Src->getScalarSizeInBits();
907   unsigned DestSize = Dest->getScalarSizeInBits();
908 
909   if (SrcSize == 16 && Subtarget->has16BitInsts())
910     return DestSize >= 32;
911 
912   return SrcSize == 32 && DestSize == 64;
913 }
914 
915 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
916   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
917   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
918   // this will enable reducing 64-bit operations the 32-bit, which is always
919   // good.
920 
921   if (Src == MVT::i16)
922     return Dest == MVT::i32 ||Dest == MVT::i64 ;
923 
924   return Src == MVT::i32 && Dest == MVT::i64;
925 }
926 
927 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
928   return isZExtFree(Val.getValueType(), VT2);
929 }
930 
931 // v_mad_mix* support a conversion from f16 to f32.
932 //
933 // There is only one special case when denormals are enabled we don't currently,
934 // where this is OK to use.
935 bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode,
936                                            EVT DestVT, EVT SrcVT) const {
937   return Opcode == ISD::FMAD && Subtarget->hasMadMixInsts() &&
938          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
939          SrcVT.getScalarType() == MVT::f16;
940 }
941 
942 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
943   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
944   // limited number of native 64-bit operations. Shrinking an operation to fit
945   // in a single 32-bit register should always be helpful. As currently used,
946   // this is much less general than the name suggests, and is only used in
947   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
948   // not profitable, and may actually be harmful.
949   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
950 }
951 
952 //===---------------------------------------------------------------------===//
953 // TargetLowering Callbacks
954 //===---------------------------------------------------------------------===//
955 
956 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
957                                                   bool IsVarArg) {
958   switch (CC) {
959   case CallingConv::AMDGPU_KERNEL:
960   case CallingConv::SPIR_KERNEL:
961     return CC_AMDGPU_Kernel;
962   case CallingConv::AMDGPU_VS:
963   case CallingConv::AMDGPU_GS:
964   case CallingConv::AMDGPU_PS:
965   case CallingConv::AMDGPU_CS:
966   case CallingConv::AMDGPU_HS:
967   case CallingConv::AMDGPU_ES:
968   case CallingConv::AMDGPU_LS:
969     return CC_AMDGPU;
970   case CallingConv::C:
971   case CallingConv::Fast:
972   case CallingConv::Cold:
973     return CC_AMDGPU_Func;
974   default:
975     report_fatal_error("Unsupported calling convention.");
976   }
977 }
978 
979 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
980                                                     bool IsVarArg) {
981   switch (CC) {
982   case CallingConv::AMDGPU_KERNEL:
983   case CallingConv::SPIR_KERNEL:
984     return CC_AMDGPU_Kernel;
985   case CallingConv::AMDGPU_VS:
986   case CallingConv::AMDGPU_GS:
987   case CallingConv::AMDGPU_PS:
988   case CallingConv::AMDGPU_CS:
989   case CallingConv::AMDGPU_HS:
990   case CallingConv::AMDGPU_ES:
991   case CallingConv::AMDGPU_LS:
992     return RetCC_SI_Shader;
993   case CallingConv::C:
994   case CallingConv::Fast:
995   case CallingConv::Cold:
996     return RetCC_AMDGPU_Func;
997   default:
998     report_fatal_error("Unsupported calling convention.");
999   }
1000 }
1001 
1002 /// The SelectionDAGBuilder will automatically promote function arguments
1003 /// with illegal types.  However, this does not work for the AMDGPU targets
1004 /// since the function arguments are stored in memory as these illegal types.
1005 /// In order to handle this properly we need to get the original types sizes
1006 /// from the LLVM IR Function and fixup the ISD:InputArg values before
1007 /// passing them to AnalyzeFormalArguments()
1008 
1009 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1010 /// input values across multiple registers.  Each item in the Ins array
1011 /// represents a single value that will be stored in registers.  Ins[x].VT is
1012 /// the value type of the value that will be stored in the register, so
1013 /// whatever SDNode we lower the argument to needs to be this type.
1014 ///
1015 /// In order to correctly lower the arguments we need to know the size of each
1016 /// argument.  Since Ins[x].VT gives us the size of the register that will
1017 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1018 /// for the orignal function argument so that we can deduce the correct memory
1019 /// type to use for Ins[x].  In most cases the correct memory type will be
1020 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
1021 /// we have a kernel argument of type v8i8, this argument will be split into
1022 /// 8 parts and each part will be represented by its own item in the Ins array.
1023 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1024 /// the argument before it was split.  From this, we deduce that the memory type
1025 /// for each individual part is i8.  We pass the memory type as LocVT to the
1026 /// calling convention analysis function and the register type (Ins[x].VT) as
1027 /// the ValVT.
1028 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
1029                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
1030   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
1031     const ISD::InputArg &In = Ins[i];
1032     EVT MemVT;
1033 
1034     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
1035 
1036     if (!Subtarget->isAmdHsaOS() &&
1037         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
1038       // The ABI says the caller will extend these values to 32-bits.
1039       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
1040     } else if (NumRegs == 1) {
1041       // This argument is not split, so the IR type is the memory type.
1042       assert(!In.Flags.isSplit());
1043       if (In.ArgVT.isExtended()) {
1044         // We have an extended type, like i24, so we should just use the register type
1045         MemVT = In.VT;
1046       } else {
1047         MemVT = In.ArgVT;
1048       }
1049     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
1050                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
1051       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
1052       // We have a vector value which has been split into a vector with
1053       // the same scalar type, but fewer elements.  This should handle
1054       // all the floating-point vector types.
1055       MemVT = In.VT;
1056     } else if (In.ArgVT.isVector() &&
1057                In.ArgVT.getVectorNumElements() == NumRegs) {
1058       // This arg has been split so that each element is stored in a separate
1059       // register.
1060       MemVT = In.ArgVT.getScalarType();
1061     } else if (In.ArgVT.isExtended()) {
1062       // We have an extended type, like i65.
1063       MemVT = In.VT;
1064     } else {
1065       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
1066       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
1067       if (In.VT.isInteger()) {
1068         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1069       } else if (In.VT.isVector()) {
1070         assert(!In.VT.getScalarType().isFloatingPoint());
1071         unsigned NumElements = In.VT.getVectorNumElements();
1072         assert(MemoryBits % NumElements == 0);
1073         // This vector type has been split into another vector type with
1074         // a different elements size.
1075         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1076                                          MemoryBits / NumElements);
1077         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1078       } else {
1079         llvm_unreachable("cannot deduce memory type.");
1080       }
1081     }
1082 
1083     // Convert one element vectors to scalar.
1084     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1085       MemVT = MemVT.getScalarType();
1086 
1087     if (MemVT.isExtended()) {
1088       // This should really only happen if we have vec3 arguments
1089       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
1090       MemVT = MemVT.getPow2VectorType(State.getContext());
1091     }
1092 
1093     assert(MemVT.isSimple());
1094     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
1095                     State);
1096   }
1097 }
1098 
1099 SDValue AMDGPUTargetLowering::LowerReturn(
1100   SDValue Chain, CallingConv::ID CallConv,
1101   bool isVarArg,
1102   const SmallVectorImpl<ISD::OutputArg> &Outs,
1103   const SmallVectorImpl<SDValue> &OutVals,
1104   const SDLoc &DL, SelectionDAG &DAG) const {
1105   // FIXME: Fails for r600 tests
1106   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1107   // "wave terminate should not have return values");
1108   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1109 }
1110 
1111 //===---------------------------------------------------------------------===//
1112 // Target specific lowering
1113 //===---------------------------------------------------------------------===//
1114 
1115 /// Selects the correct CCAssignFn for a given CallingConvention value.
1116 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1117                                                     bool IsVarArg) {
1118   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1119 }
1120 
1121 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1122                                                       bool IsVarArg) {
1123   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1124 }
1125 
1126 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1127                                                   SelectionDAG &DAG,
1128                                                   MachineFrameInfo &MFI,
1129                                                   int ClobberedFI) const {
1130   SmallVector<SDValue, 8> ArgChains;
1131   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1132   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1133 
1134   // Include the original chain at the beginning of the list. When this is
1135   // used by target LowerCall hooks, this helps legalize find the
1136   // CALLSEQ_BEGIN node.
1137   ArgChains.push_back(Chain);
1138 
1139   // Add a chain value for each stack argument corresponding
1140   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1141                             UE = DAG.getEntryNode().getNode()->use_end();
1142        U != UE; ++U) {
1143     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1144       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1145         if (FI->getIndex() < 0) {
1146           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1147           int64_t InLastByte = InFirstByte;
1148           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1149 
1150           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1151               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1152             ArgChains.push_back(SDValue(L, 1));
1153         }
1154       }
1155     }
1156   }
1157 
1158   // Build a tokenfactor for all the chains.
1159   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1160 }
1161 
1162 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1163                                                  SmallVectorImpl<SDValue> &InVals,
1164                                                  StringRef Reason) const {
1165   SDValue Callee = CLI.Callee;
1166   SelectionDAG &DAG = CLI.DAG;
1167 
1168   const Function &Fn = DAG.getMachineFunction().getFunction();
1169 
1170   StringRef FuncName("<unknown>");
1171 
1172   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1173     FuncName = G->getSymbol();
1174   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1175     FuncName = G->getGlobal()->getName();
1176 
1177   DiagnosticInfoUnsupported NoCalls(
1178     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1179   DAG.getContext()->diagnose(NoCalls);
1180 
1181   if (!CLI.IsTailCall) {
1182     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1183       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1184   }
1185 
1186   return DAG.getEntryNode();
1187 }
1188 
1189 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1190                                         SmallVectorImpl<SDValue> &InVals) const {
1191   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1192 }
1193 
1194 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1195                                                       SelectionDAG &DAG) const {
1196   const Function &Fn = DAG.getMachineFunction().getFunction();
1197 
1198   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1199                                             SDLoc(Op).getDebugLoc());
1200   DAG.getContext()->diagnose(NoDynamicAlloca);
1201   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1202   return DAG.getMergeValues(Ops, SDLoc());
1203 }
1204 
1205 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1206                                              SelectionDAG &DAG) const {
1207   switch (Op.getOpcode()) {
1208   default:
1209     Op->print(errs(), &DAG);
1210     llvm_unreachable("Custom lowering code for this"
1211                      "instruction is not implemented yet!");
1212     break;
1213   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1214   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1215   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1216   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1217   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1218   case ISD::FREM: return LowerFREM(Op, DAG);
1219   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1220   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1221   case ISD::FRINT: return LowerFRINT(Op, DAG);
1222   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1223   case ISD::FROUND: return LowerFROUND(Op, DAG);
1224   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1225   case ISD::FLOG:
1226     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1227   case ISD::FLOG10:
1228     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1229   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1230   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1231   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1232   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1233   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1234   case ISD::CTTZ:
1235   case ISD::CTTZ_ZERO_UNDEF:
1236   case ISD::CTLZ:
1237   case ISD::CTLZ_ZERO_UNDEF:
1238     return LowerCTLZ_CTTZ(Op, DAG);
1239   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1240   }
1241   return Op;
1242 }
1243 
1244 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1245                                               SmallVectorImpl<SDValue> &Results,
1246                                               SelectionDAG &DAG) const {
1247   switch (N->getOpcode()) {
1248   case ISD::SIGN_EXTEND_INREG:
1249     // Different parts of legalization seem to interpret which type of
1250     // sign_extend_inreg is the one to check for custom lowering. The extended
1251     // from type is what really matters, but some places check for custom
1252     // lowering of the result type. This results in trying to use
1253     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1254     // nothing here and let the illegal result integer be handled normally.
1255     return;
1256   default:
1257     return;
1258   }
1259 }
1260 
1261 static bool hasDefinedInitializer(const GlobalValue *GV) {
1262   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1263   if (!GVar || !GVar->hasInitializer())
1264     return false;
1265 
1266   return !isa<UndefValue>(GVar->getInitializer());
1267 }
1268 
1269 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1270                                                  SDValue Op,
1271                                                  SelectionDAG &DAG) const {
1272 
1273   const DataLayout &DL = DAG.getDataLayout();
1274   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1275   const GlobalValue *GV = G->getGlobal();
1276 
1277   if  (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) {
1278     // XXX: What does the value of G->getOffset() mean?
1279     assert(G->getOffset() == 0 &&
1280          "Do not know what to do with an non-zero offset");
1281 
1282     // TODO: We could emit code to handle the initialization somewhere.
1283     if (!hasDefinedInitializer(GV)) {
1284       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1285       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1286     }
1287   }
1288 
1289   const Function &Fn = DAG.getMachineFunction().getFunction();
1290   DiagnosticInfoUnsupported BadInit(
1291       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1292   DAG.getContext()->diagnose(BadInit);
1293   return SDValue();
1294 }
1295 
1296 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1297                                                   SelectionDAG &DAG) const {
1298   SmallVector<SDValue, 8> Args;
1299 
1300   for (const SDUse &U : Op->ops())
1301     DAG.ExtractVectorElements(U.get(), Args);
1302 
1303   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1304 }
1305 
1306 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1307                                                      SelectionDAG &DAG) const {
1308 
1309   SmallVector<SDValue, 8> Args;
1310   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1311   EVT VT = Op.getValueType();
1312   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1313                             VT.getVectorNumElements());
1314 
1315   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1316 }
1317 
1318 /// \brief Generate Min/Max node
1319 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1320                                                    SDValue LHS, SDValue RHS,
1321                                                    SDValue True, SDValue False,
1322                                                    SDValue CC,
1323                                                    DAGCombinerInfo &DCI) const {
1324   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1325     return SDValue();
1326 
1327   SelectionDAG &DAG = DCI.DAG;
1328   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1329   switch (CCOpcode) {
1330   case ISD::SETOEQ:
1331   case ISD::SETONE:
1332   case ISD::SETUNE:
1333   case ISD::SETNE:
1334   case ISD::SETUEQ:
1335   case ISD::SETEQ:
1336   case ISD::SETFALSE:
1337   case ISD::SETFALSE2:
1338   case ISD::SETTRUE:
1339   case ISD::SETTRUE2:
1340   case ISD::SETUO:
1341   case ISD::SETO:
1342     break;
1343   case ISD::SETULE:
1344   case ISD::SETULT: {
1345     if (LHS == True)
1346       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1347     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1348   }
1349   case ISD::SETOLE:
1350   case ISD::SETOLT:
1351   case ISD::SETLE:
1352   case ISD::SETLT: {
1353     // Ordered. Assume ordered for undefined.
1354 
1355     // Only do this after legalization to avoid interfering with other combines
1356     // which might occur.
1357     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1358         !DCI.isCalledByLegalizer())
1359       return SDValue();
1360 
1361     // We need to permute the operands to get the correct NaN behavior. The
1362     // selected operand is the second one based on the failing compare with NaN,
1363     // so permute it based on the compare type the hardware uses.
1364     if (LHS == True)
1365       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1366     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1367   }
1368   case ISD::SETUGE:
1369   case ISD::SETUGT: {
1370     if (LHS == True)
1371       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1372     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1373   }
1374   case ISD::SETGT:
1375   case ISD::SETGE:
1376   case ISD::SETOGE:
1377   case ISD::SETOGT: {
1378     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1379         !DCI.isCalledByLegalizer())
1380       return SDValue();
1381 
1382     if (LHS == True)
1383       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1384     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1385   }
1386   case ISD::SETCC_INVALID:
1387     llvm_unreachable("Invalid setcc condcode!");
1388   }
1389   return SDValue();
1390 }
1391 
1392 std::pair<SDValue, SDValue>
1393 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1394   SDLoc SL(Op);
1395 
1396   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1397 
1398   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1399   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1400 
1401   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1402   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1403 
1404   return std::make_pair(Lo, Hi);
1405 }
1406 
1407 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1408   SDLoc SL(Op);
1409 
1410   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1411   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1412   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1413 }
1414 
1415 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1416   SDLoc SL(Op);
1417 
1418   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1419   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1420   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1421 }
1422 
1423 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1424                                               SelectionDAG &DAG) const {
1425   LoadSDNode *Load = cast<LoadSDNode>(Op);
1426   EVT VT = Op.getValueType();
1427 
1428 
1429   // If this is a 2 element vector, we really want to scalarize and not create
1430   // weird 1 element vectors.
1431   if (VT.getVectorNumElements() == 2)
1432     return scalarizeVectorLoad(Load, DAG);
1433 
1434   SDValue BasePtr = Load->getBasePtr();
1435   EVT MemVT = Load->getMemoryVT();
1436   SDLoc SL(Op);
1437 
1438   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1439 
1440   EVT LoVT, HiVT;
1441   EVT LoMemVT, HiMemVT;
1442   SDValue Lo, Hi;
1443 
1444   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1445   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1446   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1447 
1448   unsigned Size = LoMemVT.getStoreSize();
1449   unsigned BaseAlign = Load->getAlignment();
1450   unsigned HiAlign = MinAlign(BaseAlign, Size);
1451 
1452   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1453                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1454                                   BaseAlign, Load->getMemOperand()->getFlags());
1455   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1456   SDValue HiLoad =
1457       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1458                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1459                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1460 
1461   SDValue Ops[] = {
1462     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1463     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1464                 LoLoad.getValue(1), HiLoad.getValue(1))
1465   };
1466 
1467   return DAG.getMergeValues(Ops, SL);
1468 }
1469 
1470 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1471                                                SelectionDAG &DAG) const {
1472   StoreSDNode *Store = cast<StoreSDNode>(Op);
1473   SDValue Val = Store->getValue();
1474   EVT VT = Val.getValueType();
1475 
1476   // If this is a 2 element vector, we really want to scalarize and not create
1477   // weird 1 element vectors.
1478   if (VT.getVectorNumElements() == 2)
1479     return scalarizeVectorStore(Store, DAG);
1480 
1481   EVT MemVT = Store->getMemoryVT();
1482   SDValue Chain = Store->getChain();
1483   SDValue BasePtr = Store->getBasePtr();
1484   SDLoc SL(Op);
1485 
1486   EVT LoVT, HiVT;
1487   EVT LoMemVT, HiMemVT;
1488   SDValue Lo, Hi;
1489 
1490   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1491   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1492   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1493 
1494   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1495 
1496   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1497   unsigned BaseAlign = Store->getAlignment();
1498   unsigned Size = LoMemVT.getStoreSize();
1499   unsigned HiAlign = MinAlign(BaseAlign, Size);
1500 
1501   SDValue LoStore =
1502       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1503                         Store->getMemOperand()->getFlags());
1504   SDValue HiStore =
1505       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1506                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1507 
1508   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1509 }
1510 
1511 // This is a shortcut for integer division because we have fast i32<->f32
1512 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1513 // float is enough to accurately represent up to a 24-bit signed integer.
1514 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1515                                             bool Sign) const {
1516   SDLoc DL(Op);
1517   EVT VT = Op.getValueType();
1518   SDValue LHS = Op.getOperand(0);
1519   SDValue RHS = Op.getOperand(1);
1520   MVT IntVT = MVT::i32;
1521   MVT FltVT = MVT::f32;
1522 
1523   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1524   if (LHSSignBits < 9)
1525     return SDValue();
1526 
1527   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1528   if (RHSSignBits < 9)
1529     return SDValue();
1530 
1531   unsigned BitSize = VT.getSizeInBits();
1532   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1533   unsigned DivBits = BitSize - SignBits;
1534   if (Sign)
1535     ++DivBits;
1536 
1537   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1538   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1539 
1540   SDValue jq = DAG.getConstant(1, DL, IntVT);
1541 
1542   if (Sign) {
1543     // char|short jq = ia ^ ib;
1544     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1545 
1546     // jq = jq >> (bitsize - 2)
1547     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1548                      DAG.getConstant(BitSize - 2, DL, VT));
1549 
1550     // jq = jq | 0x1
1551     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1552   }
1553 
1554   // int ia = (int)LHS;
1555   SDValue ia = LHS;
1556 
1557   // int ib, (int)RHS;
1558   SDValue ib = RHS;
1559 
1560   // float fa = (float)ia;
1561   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1562 
1563   // float fb = (float)ib;
1564   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1565 
1566   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1567                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1568 
1569   // fq = trunc(fq);
1570   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1571 
1572   // float fqneg = -fq;
1573   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1574 
1575   // float fr = mad(fqneg, fb, fa);
1576   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1577                     (unsigned)AMDGPUISD::FMAD_FTZ :
1578                     (unsigned)ISD::FMAD;
1579   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1580 
1581   // int iq = (int)fq;
1582   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1583 
1584   // fr = fabs(fr);
1585   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1586 
1587   // fb = fabs(fb);
1588   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1589 
1590   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1591 
1592   // int cv = fr >= fb;
1593   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1594 
1595   // jq = (cv ? jq : 0);
1596   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1597 
1598   // dst = iq + jq;
1599   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1600 
1601   // Rem needs compensation, it's easier to recompute it
1602   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1603   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1604 
1605   // Truncate to number of bits this divide really is.
1606   if (Sign) {
1607     SDValue InRegSize
1608       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1609     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1610     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1611   } else {
1612     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1613     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1614     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1615   }
1616 
1617   return DAG.getMergeValues({ Div, Rem }, DL);
1618 }
1619 
1620 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1621                                       SelectionDAG &DAG,
1622                                       SmallVectorImpl<SDValue> &Results) const {
1623   SDLoc DL(Op);
1624   EVT VT = Op.getValueType();
1625 
1626   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1627 
1628   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1629 
1630   SDValue One = DAG.getConstant(1, DL, HalfVT);
1631   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1632 
1633   //HiLo split
1634   SDValue LHS = Op.getOperand(0);
1635   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1636   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1637 
1638   SDValue RHS = Op.getOperand(1);
1639   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1640   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1641 
1642   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1643       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1644 
1645     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1646                               LHS_Lo, RHS_Lo);
1647 
1648     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1649     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1650 
1651     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1652     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1653     return;
1654   }
1655 
1656   if (isTypeLegal(MVT::i64)) {
1657     // Compute denominator reciprocal.
1658     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1659                     (unsigned)AMDGPUISD::FMAD_FTZ :
1660                     (unsigned)ISD::FMAD;
1661 
1662     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1663     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1664     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1665       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1666       Cvt_Lo);
1667     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1668     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1669       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1670     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1671       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1672     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1673     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1674       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1675       Mul1);
1676     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1677     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1678     SDValue Rcp64 = DAG.getBitcast(VT,
1679                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1680 
1681     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1682     SDValue One64  = DAG.getConstant(1, DL, VT);
1683     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1684     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1685 
1686     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1687     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1688     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1689     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1690                                     Zero);
1691     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1692                                     One);
1693 
1694     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1695                                   Mulhi1_Lo, Zero1);
1696     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1697                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1698     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1699     SDValue Add1 = DAG.getBitcast(VT,
1700                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1701 
1702     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1703     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1704     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1705                                     Zero);
1706     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1707                                     One);
1708 
1709     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1710                                   Mulhi2_Lo, Zero1);
1711     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1712                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1713     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1714                                   Zero, Add2_Lo.getValue(1));
1715     SDValue Add2 = DAG.getBitcast(VT,
1716                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1717     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1718 
1719     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1720 
1721     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1722     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1723     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1724                                   Mul3_Lo, Zero1);
1725     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1726                                   Mul3_Hi, Sub1_Lo.getValue(1));
1727     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1728     SDValue Sub1 = DAG.getBitcast(VT,
1729                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1730 
1731     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1732     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1733                                  ISD::SETUGE);
1734     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1735                                  ISD::SETUGE);
1736     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1737 
1738     // TODO: Here and below portions of the code can be enclosed into if/endif.
1739     // Currently control flow is unconditional and we have 4 selects after
1740     // potential endif to substitute PHIs.
1741 
1742     // if C3 != 0 ...
1743     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1744                                   RHS_Lo, Zero1);
1745     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1746                                   RHS_Hi, Sub1_Lo.getValue(1));
1747     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1748                                   Zero, Sub2_Lo.getValue(1));
1749     SDValue Sub2 = DAG.getBitcast(VT,
1750                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1751 
1752     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1753 
1754     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1755                                  ISD::SETUGE);
1756     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1757                                  ISD::SETUGE);
1758     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1759 
1760     // if (C6 != 0)
1761     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1762 
1763     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1764                                   RHS_Lo, Zero1);
1765     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1766                                   RHS_Hi, Sub2_Lo.getValue(1));
1767     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1768                                   Zero, Sub3_Lo.getValue(1));
1769     SDValue Sub3 = DAG.getBitcast(VT,
1770                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1771 
1772     // endif C6
1773     // endif C3
1774 
1775     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1776     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1777 
1778     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1779     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1780 
1781     Results.push_back(Div);
1782     Results.push_back(Rem);
1783 
1784     return;
1785   }
1786 
1787   // r600 expandion.
1788   // Get Speculative values
1789   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1790   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1791 
1792   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1793   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1794   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1795 
1796   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1797   SDValue DIV_Lo = Zero;
1798 
1799   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1800 
1801   for (unsigned i = 0; i < halfBitWidth; ++i) {
1802     const unsigned bitPos = halfBitWidth - i - 1;
1803     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1804     // Get value of high bit
1805     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1806     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1807     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1808 
1809     // Shift
1810     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1811     // Add LHS high bit
1812     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1813 
1814     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1815     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1816 
1817     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1818 
1819     // Update REM
1820     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1821     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1822   }
1823 
1824   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1825   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1826   Results.push_back(DIV);
1827   Results.push_back(REM);
1828 }
1829 
1830 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1831                                            SelectionDAG &DAG) const {
1832   SDLoc DL(Op);
1833   EVT VT = Op.getValueType();
1834 
1835   if (VT == MVT::i64) {
1836     SmallVector<SDValue, 2> Results;
1837     LowerUDIVREM64(Op, DAG, Results);
1838     return DAG.getMergeValues(Results, DL);
1839   }
1840 
1841   if (VT == MVT::i32) {
1842     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1843       return Res;
1844   }
1845 
1846   SDValue Num = Op.getOperand(0);
1847   SDValue Den = Op.getOperand(1);
1848 
1849   // RCP =  URECIP(Den) = 2^32 / Den + e
1850   // e is rounding error.
1851   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1852 
1853   // RCP_LO = mul(RCP, Den) */
1854   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1855 
1856   // RCP_HI = mulhu (RCP, Den) */
1857   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1858 
1859   // NEG_RCP_LO = -RCP_LO
1860   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1861                                                      RCP_LO);
1862 
1863   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1864   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1865                                            NEG_RCP_LO, RCP_LO,
1866                                            ISD::SETEQ);
1867   // Calculate the rounding error from the URECIP instruction
1868   // E = mulhu(ABS_RCP_LO, RCP)
1869   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1870 
1871   // RCP_A_E = RCP + E
1872   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1873 
1874   // RCP_S_E = RCP - E
1875   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1876 
1877   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1878   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1879                                      RCP_A_E, RCP_S_E,
1880                                      ISD::SETEQ);
1881   // Quotient = mulhu(Tmp0, Num)
1882   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1883 
1884   // Num_S_Remainder = Quotient * Den
1885   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1886 
1887   // Remainder = Num - Num_S_Remainder
1888   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1889 
1890   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1891   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1892                                                  DAG.getConstant(-1, DL, VT),
1893                                                  DAG.getConstant(0, DL, VT),
1894                                                  ISD::SETUGE);
1895   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1896   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1897                                                   Num_S_Remainder,
1898                                                   DAG.getConstant(-1, DL, VT),
1899                                                   DAG.getConstant(0, DL, VT),
1900                                                   ISD::SETUGE);
1901   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1902   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1903                                                Remainder_GE_Zero);
1904 
1905   // Calculate Division result:
1906 
1907   // Quotient_A_One = Quotient + 1
1908   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1909                                        DAG.getConstant(1, DL, VT));
1910 
1911   // Quotient_S_One = Quotient - 1
1912   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1913                                        DAG.getConstant(1, DL, VT));
1914 
1915   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1916   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1917                                      Quotient, Quotient_A_One, ISD::SETEQ);
1918 
1919   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1920   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1921                             Quotient_S_One, Div, ISD::SETEQ);
1922 
1923   // Calculate Rem result:
1924 
1925   // Remainder_S_Den = Remainder - Den
1926   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1927 
1928   // Remainder_A_Den = Remainder + Den
1929   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1930 
1931   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1932   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1933                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1934 
1935   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1936   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1937                             Remainder_A_Den, Rem, ISD::SETEQ);
1938   SDValue Ops[2] = {
1939     Div,
1940     Rem
1941   };
1942   return DAG.getMergeValues(Ops, DL);
1943 }
1944 
1945 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1946                                            SelectionDAG &DAG) const {
1947   SDLoc DL(Op);
1948   EVT VT = Op.getValueType();
1949 
1950   SDValue LHS = Op.getOperand(0);
1951   SDValue RHS = Op.getOperand(1);
1952 
1953   SDValue Zero = DAG.getConstant(0, DL, VT);
1954   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1955 
1956   if (VT == MVT::i32) {
1957     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1958       return Res;
1959   }
1960 
1961   if (VT == MVT::i64 &&
1962       DAG.ComputeNumSignBits(LHS) > 32 &&
1963       DAG.ComputeNumSignBits(RHS) > 32) {
1964     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1965 
1966     //HiLo split
1967     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1968     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1969     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1970                                  LHS_Lo, RHS_Lo);
1971     SDValue Res[2] = {
1972       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1973       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1974     };
1975     return DAG.getMergeValues(Res, DL);
1976   }
1977 
1978   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1979   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1980   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1981   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1982 
1983   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1984   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1985 
1986   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1987   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1988 
1989   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1990   SDValue Rem = Div.getValue(1);
1991 
1992   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1993   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1994 
1995   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1996   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1997 
1998   SDValue Res[2] = {
1999     Div,
2000     Rem
2001   };
2002   return DAG.getMergeValues(Res, DL);
2003 }
2004 
2005 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2006 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2007   SDLoc SL(Op);
2008   EVT VT = Op.getValueType();
2009   SDValue X = Op.getOperand(0);
2010   SDValue Y = Op.getOperand(1);
2011 
2012   // TODO: Should this propagate fast-math-flags?
2013 
2014   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2015   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2016   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2017 
2018   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2019 }
2020 
2021 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2022   SDLoc SL(Op);
2023   SDValue Src = Op.getOperand(0);
2024 
2025   // result = trunc(src)
2026   // if (src > 0.0 && src != result)
2027   //   result += 1.0
2028 
2029   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2030 
2031   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2032   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2033 
2034   EVT SetCCVT =
2035       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2036 
2037   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2038   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2039   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2040 
2041   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2042   // TODO: Should this propagate fast-math-flags?
2043   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2044 }
2045 
2046 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2047                                   SelectionDAG &DAG) {
2048   const unsigned FractBits = 52;
2049   const unsigned ExpBits = 11;
2050 
2051   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2052                                 Hi,
2053                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2054                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2055   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2056                             DAG.getConstant(1023, SL, MVT::i32));
2057 
2058   return Exp;
2059 }
2060 
2061 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2062   SDLoc SL(Op);
2063   SDValue Src = Op.getOperand(0);
2064 
2065   assert(Op.getValueType() == MVT::f64);
2066 
2067   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2068   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2069 
2070   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2071 
2072   // Extract the upper half, since this is where we will find the sign and
2073   // exponent.
2074   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2075 
2076   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2077 
2078   const unsigned FractBits = 52;
2079 
2080   // Extract the sign bit.
2081   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2082   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2083 
2084   // Extend back to 64-bits.
2085   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2086   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2087 
2088   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2089   const SDValue FractMask
2090     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2091 
2092   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2093   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2094   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2095 
2096   EVT SetCCVT =
2097       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2098 
2099   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2100 
2101   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2102   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2103 
2104   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2105   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2106 
2107   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2108 }
2109 
2110 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2111   SDLoc SL(Op);
2112   SDValue Src = Op.getOperand(0);
2113 
2114   assert(Op.getValueType() == MVT::f64);
2115 
2116   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2117   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2118   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2119 
2120   // TODO: Should this propagate fast-math-flags?
2121 
2122   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2123   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2124 
2125   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2126 
2127   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2128   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2129 
2130   EVT SetCCVT =
2131       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2132   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2133 
2134   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2135 }
2136 
2137 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2138   // FNEARBYINT and FRINT are the same, except in their handling of FP
2139   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2140   // rint, so just treat them as equivalent.
2141   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2142 }
2143 
2144 // XXX - May require not supporting f32 denormals?
2145 
2146 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2147 // compare and vselect end up producing worse code than scalarizing the whole
2148 // operation.
2149 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2150   SDLoc SL(Op);
2151   SDValue X = Op.getOperand(0);
2152   EVT VT = Op.getValueType();
2153 
2154   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2155 
2156   // TODO: Should this propagate fast-math-flags?
2157 
2158   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2159 
2160   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2161 
2162   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2163   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2164   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2165 
2166   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2167 
2168   EVT SetCCVT =
2169       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2170 
2171   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2172 
2173   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2174 
2175   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2176 }
2177 
2178 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2179   SDLoc SL(Op);
2180   SDValue X = Op.getOperand(0);
2181 
2182   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2183 
2184   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2185   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2186   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2187   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2188   EVT SetCCVT =
2189       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2190 
2191   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2192 
2193   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2194 
2195   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2196 
2197   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2198                                        MVT::i64);
2199 
2200   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2201   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2202                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2203                                           MVT::i64),
2204                           Exp);
2205 
2206   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2207   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2208                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2209                               ISD::SETNE);
2210 
2211   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2212                              D, DAG.getConstant(0, SL, MVT::i64));
2213   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2214 
2215   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2216   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2217 
2218   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2219   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2220   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2221 
2222   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2223                             ExpEqNegOne,
2224                             DAG.getConstantFP(1.0, SL, MVT::f64),
2225                             DAG.getConstantFP(0.0, SL, MVT::f64));
2226 
2227   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2228 
2229   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2230   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2231 
2232   return K;
2233 }
2234 
2235 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2236   EVT VT = Op.getValueType();
2237 
2238   if (VT == MVT::f32 || VT == MVT::f16)
2239     return LowerFROUND32_16(Op, DAG);
2240 
2241   if (VT == MVT::f64)
2242     return LowerFROUND64(Op, DAG);
2243 
2244   llvm_unreachable("unhandled type");
2245 }
2246 
2247 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2248   SDLoc SL(Op);
2249   SDValue Src = Op.getOperand(0);
2250 
2251   // result = trunc(src);
2252   // if (src < 0.0 && src != result)
2253   //   result += -1.0.
2254 
2255   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2256 
2257   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2258   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2259 
2260   EVT SetCCVT =
2261       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2262 
2263   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2264   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2265   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2266 
2267   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2268   // TODO: Should this propagate fast-math-flags?
2269   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2270 }
2271 
2272 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2273                                         double Log2BaseInverted) const {
2274   EVT VT = Op.getValueType();
2275 
2276   SDLoc SL(Op);
2277   SDValue Operand = Op.getOperand(0);
2278   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2279   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2280 
2281   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2282 }
2283 
2284 static bool isCtlzOpc(unsigned Opc) {
2285   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2286 }
2287 
2288 static bool isCttzOpc(unsigned Opc) {
2289   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2290 }
2291 
2292 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2293   SDLoc SL(Op);
2294   SDValue Src = Op.getOperand(0);
2295   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2296                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2297 
2298   unsigned ISDOpc, NewOpc;
2299   if (isCtlzOpc(Op.getOpcode())) {
2300     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2301     NewOpc = AMDGPUISD::FFBH_U32;
2302   } else if (isCttzOpc(Op.getOpcode())) {
2303     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2304     NewOpc = AMDGPUISD::FFBL_B32;
2305   } else
2306     llvm_unreachable("Unexpected OPCode!!!");
2307 
2308 
2309   if (ZeroUndef && Src.getValueType() == MVT::i32)
2310     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2311 
2312   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2313 
2314   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2315   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2316 
2317   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2318   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2319 
2320   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2321                                    *DAG.getContext(), MVT::i32);
2322 
2323   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2324   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2325 
2326   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2327   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2328 
2329   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2330   SDValue Add, NewOpr;
2331   if (isCtlzOpc(Op.getOpcode())) {
2332     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2333     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2334     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2335   } else {
2336     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2337     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2338     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2339   }
2340 
2341   if (!ZeroUndef) {
2342     // Test if the full 64-bit input is zero.
2343 
2344     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2345     // which we probably don't want.
2346     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2347     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2348     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2349 
2350     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2351     // with the same cycles, otherwise it is slower.
2352     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2353     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2354 
2355     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2356 
2357     // The instruction returns -1 for 0 input, but the defined intrinsic
2358     // behavior is to return the number of bits.
2359     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2360                          SrcIsZero, Bits32, NewOpr);
2361   }
2362 
2363   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2364 }
2365 
2366 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2367                                                bool Signed) const {
2368   // Unsigned
2369   // cul2f(ulong u)
2370   //{
2371   //  uint lz = clz(u);
2372   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2373   //  u = (u << lz) & 0x7fffffffffffffffUL;
2374   //  ulong t = u & 0xffffffffffUL;
2375   //  uint v = (e << 23) | (uint)(u >> 40);
2376   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2377   //  return as_float(v + r);
2378   //}
2379   // Signed
2380   // cl2f(long l)
2381   //{
2382   //  long s = l >> 63;
2383   //  float r = cul2f((l + s) ^ s);
2384   //  return s ? -r : r;
2385   //}
2386 
2387   SDLoc SL(Op);
2388   SDValue Src = Op.getOperand(0);
2389   SDValue L = Src;
2390 
2391   SDValue S;
2392   if (Signed) {
2393     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2394     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2395 
2396     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2397     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2398   }
2399 
2400   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2401                                    *DAG.getContext(), MVT::f32);
2402 
2403 
2404   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2405   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2406   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2407   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2408 
2409   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2410   SDValue E = DAG.getSelect(SL, MVT::i32,
2411     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2412     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2413     ZeroI32);
2414 
2415   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2416     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2417     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2418 
2419   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2420                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2421 
2422   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2423                              U, DAG.getConstant(40, SL, MVT::i64));
2424 
2425   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2426     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2427     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2428 
2429   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2430   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2431   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2432 
2433   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2434 
2435   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2436 
2437   SDValue R = DAG.getSelect(SL, MVT::i32,
2438     RCmp,
2439     One,
2440     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2441   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2442   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2443 
2444   if (!Signed)
2445     return R;
2446 
2447   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2448   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2449 }
2450 
2451 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2452                                                bool Signed) const {
2453   SDLoc SL(Op);
2454   SDValue Src = Op.getOperand(0);
2455 
2456   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2457 
2458   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2459                            DAG.getConstant(0, SL, MVT::i32));
2460   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2461                            DAG.getConstant(1, SL, MVT::i32));
2462 
2463   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2464                               SL, MVT::f64, Hi);
2465 
2466   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2467 
2468   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2469                               DAG.getConstant(32, SL, MVT::i32));
2470   // TODO: Should this propagate fast-math-flags?
2471   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2472 }
2473 
2474 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2475                                                SelectionDAG &DAG) const {
2476   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2477          "operation should be legal");
2478 
2479   // TODO: Factor out code common with LowerSINT_TO_FP.
2480 
2481   EVT DestVT = Op.getValueType();
2482   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2483     SDLoc DL(Op);
2484     SDValue Src = Op.getOperand(0);
2485 
2486     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2487     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2488     SDValue FPRound =
2489         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2490 
2491     return FPRound;
2492   }
2493 
2494   if (DestVT == MVT::f32)
2495     return LowerINT_TO_FP32(Op, DAG, false);
2496 
2497   assert(DestVT == MVT::f64);
2498   return LowerINT_TO_FP64(Op, DAG, false);
2499 }
2500 
2501 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2502                                               SelectionDAG &DAG) const {
2503   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2504          "operation should be legal");
2505 
2506   // TODO: Factor out code common with LowerUINT_TO_FP.
2507 
2508   EVT DestVT = Op.getValueType();
2509   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2510     SDLoc DL(Op);
2511     SDValue Src = Op.getOperand(0);
2512 
2513     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2514     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2515     SDValue FPRound =
2516         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2517 
2518     return FPRound;
2519   }
2520 
2521   if (DestVT == MVT::f32)
2522     return LowerINT_TO_FP32(Op, DAG, true);
2523 
2524   assert(DestVT == MVT::f64);
2525   return LowerINT_TO_FP64(Op, DAG, true);
2526 }
2527 
2528 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2529                                                bool Signed) const {
2530   SDLoc SL(Op);
2531 
2532   SDValue Src = Op.getOperand(0);
2533 
2534   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2535 
2536   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2537                                  MVT::f64);
2538   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2539                                  MVT::f64);
2540   // TODO: Should this propagate fast-math-flags?
2541   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2542 
2543   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2544 
2545 
2546   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2547 
2548   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2549                            MVT::i32, FloorMul);
2550   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2551 
2552   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2553 
2554   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2555 }
2556 
2557 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2558   SDLoc DL(Op);
2559   SDValue N0 = Op.getOperand(0);
2560 
2561   // Convert to target node to get known bits
2562   if (N0.getValueType() == MVT::f32)
2563     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2564 
2565   if (getTargetMachine().Options.UnsafeFPMath) {
2566     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2567     return SDValue();
2568   }
2569 
2570   assert(N0.getSimpleValueType() == MVT::f64);
2571 
2572   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2573   const unsigned ExpMask = 0x7ff;
2574   const unsigned ExpBiasf64 = 1023;
2575   const unsigned ExpBiasf16 = 15;
2576   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2577   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2578   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2579   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2580                            DAG.getConstant(32, DL, MVT::i64));
2581   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2582   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2583   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2584                           DAG.getConstant(20, DL, MVT::i64));
2585   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2586                   DAG.getConstant(ExpMask, DL, MVT::i32));
2587   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2588   // add the f16 bias (15) to get the biased exponent for the f16 format.
2589   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2590                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2591 
2592   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2593                           DAG.getConstant(8, DL, MVT::i32));
2594   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2595                   DAG.getConstant(0xffe, DL, MVT::i32));
2596 
2597   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2598                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2599   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2600 
2601   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2602   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2603 
2604   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2605   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2606       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2607                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2608 
2609   // N = M | (E << 12);
2610   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2611       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2612                   DAG.getConstant(12, DL, MVT::i32)));
2613 
2614   // B = clamp(1-E, 0, 13);
2615   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2616                                   One, E);
2617   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2618   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2619                   DAG.getConstant(13, DL, MVT::i32));
2620 
2621   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2622                                    DAG.getConstant(0x1000, DL, MVT::i32));
2623 
2624   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2625   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2626   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2627   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2628 
2629   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2630   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2631                               DAG.getConstant(0x7, DL, MVT::i32));
2632   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2633                   DAG.getConstant(2, DL, MVT::i32));
2634   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2635                                One, Zero, ISD::SETEQ);
2636   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2637                                One, Zero, ISD::SETGT);
2638   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2639   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2640 
2641   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2642                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2643   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2644                       I, V, ISD::SETEQ);
2645 
2646   // Extract the sign bit.
2647   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2648                             DAG.getConstant(16, DL, MVT::i32));
2649   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2650                      DAG.getConstant(0x8000, DL, MVT::i32));
2651 
2652   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2653   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2654 }
2655 
2656 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2657                                               SelectionDAG &DAG) const {
2658   SDValue Src = Op.getOperand(0);
2659 
2660   // TODO: Factor out code common with LowerFP_TO_UINT.
2661 
2662   EVT SrcVT = Src.getValueType();
2663   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2664     SDLoc DL(Op);
2665 
2666     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2667     SDValue FpToInt32 =
2668         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2669 
2670     return FpToInt32;
2671   }
2672 
2673   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2674     return LowerFP64_TO_INT(Op, DAG, true);
2675 
2676   return SDValue();
2677 }
2678 
2679 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2680                                               SelectionDAG &DAG) const {
2681   SDValue Src = Op.getOperand(0);
2682 
2683   // TODO: Factor out code common with LowerFP_TO_SINT.
2684 
2685   EVT SrcVT = Src.getValueType();
2686   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2687     SDLoc DL(Op);
2688 
2689     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2690     SDValue FpToInt32 =
2691         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2692 
2693     return FpToInt32;
2694   }
2695 
2696   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2697     return LowerFP64_TO_INT(Op, DAG, false);
2698 
2699   return SDValue();
2700 }
2701 
2702 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2703                                                      SelectionDAG &DAG) const {
2704   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2705   MVT VT = Op.getSimpleValueType();
2706   MVT ScalarVT = VT.getScalarType();
2707 
2708   assert(VT.isVector());
2709 
2710   SDValue Src = Op.getOperand(0);
2711   SDLoc DL(Op);
2712 
2713   // TODO: Don't scalarize on Evergreen?
2714   unsigned NElts = VT.getVectorNumElements();
2715   SmallVector<SDValue, 8> Args;
2716   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2717 
2718   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2719   for (unsigned I = 0; I < NElts; ++I)
2720     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2721 
2722   return DAG.getBuildVector(VT, DL, Args);
2723 }
2724 
2725 //===----------------------------------------------------------------------===//
2726 // Custom DAG optimizations
2727 //===----------------------------------------------------------------------===//
2728 
2729 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2730   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2731 }
2732 
2733 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2734   EVT VT = Op.getValueType();
2735   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2736                                      // as unsigned 24-bit values.
2737     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2738 }
2739 
2740 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2741                         TargetLowering::DAGCombinerInfo &DCI) {
2742 
2743   SelectionDAG &DAG = DCI.DAG;
2744   SDValue Op = Node24->getOperand(OpIdx);
2745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2746   EVT VT = Op.getValueType();
2747 
2748   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2749   APInt KnownZero, KnownOne;
2750   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2751   if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
2752     return true;
2753 
2754   return false;
2755 }
2756 
2757 template <typename IntTy>
2758 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2759                                uint32_t Width, const SDLoc &DL) {
2760   if (Width + Offset < 32) {
2761     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2762     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2763     return DAG.getConstant(Result, DL, MVT::i32);
2764   }
2765 
2766   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2767 }
2768 
2769 static bool hasVolatileUser(SDNode *Val) {
2770   for (SDNode *U : Val->uses()) {
2771     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2772       if (M->isVolatile())
2773         return true;
2774     }
2775   }
2776 
2777   return false;
2778 }
2779 
2780 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2781   // i32 vectors are the canonical memory type.
2782   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2783     return false;
2784 
2785   if (!VT.isByteSized())
2786     return false;
2787 
2788   unsigned Size = VT.getStoreSize();
2789 
2790   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2791     return false;
2792 
2793   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2794     return false;
2795 
2796   return true;
2797 }
2798 
2799 // Replace load of an illegal type with a store of a bitcast to a friendlier
2800 // type.
2801 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2802                                                  DAGCombinerInfo &DCI) const {
2803   if (!DCI.isBeforeLegalize())
2804     return SDValue();
2805 
2806   LoadSDNode *LN = cast<LoadSDNode>(N);
2807   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2808     return SDValue();
2809 
2810   SDLoc SL(N);
2811   SelectionDAG &DAG = DCI.DAG;
2812   EVT VT = LN->getMemoryVT();
2813 
2814   unsigned Size = VT.getStoreSize();
2815   unsigned Align = LN->getAlignment();
2816   if (Align < Size && isTypeLegal(VT)) {
2817     bool IsFast;
2818     unsigned AS = LN->getAddressSpace();
2819 
2820     // Expand unaligned loads earlier than legalization. Due to visitation order
2821     // problems during legalization, the emitted instructions to pack and unpack
2822     // the bytes again are not eliminated in the case of an unaligned copy.
2823     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2824       if (VT.isVector())
2825         return scalarizeVectorLoad(LN, DAG);
2826 
2827       SDValue Ops[2];
2828       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2829       return DAG.getMergeValues(Ops, SDLoc(N));
2830     }
2831 
2832     if (!IsFast)
2833       return SDValue();
2834   }
2835 
2836   if (!shouldCombineMemoryType(VT))
2837     return SDValue();
2838 
2839   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2840 
2841   SDValue NewLoad
2842     = DAG.getLoad(NewVT, SL, LN->getChain(),
2843                   LN->getBasePtr(), LN->getMemOperand());
2844 
2845   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2846   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2847   return SDValue(N, 0);
2848 }
2849 
2850 // Replace store of an illegal type with a store of a bitcast to a friendlier
2851 // type.
2852 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2853                                                   DAGCombinerInfo &DCI) const {
2854   if (!DCI.isBeforeLegalize())
2855     return SDValue();
2856 
2857   StoreSDNode *SN = cast<StoreSDNode>(N);
2858   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2859     return SDValue();
2860 
2861   EVT VT = SN->getMemoryVT();
2862   unsigned Size = VT.getStoreSize();
2863 
2864   SDLoc SL(N);
2865   SelectionDAG &DAG = DCI.DAG;
2866   unsigned Align = SN->getAlignment();
2867   if (Align < Size && isTypeLegal(VT)) {
2868     bool IsFast;
2869     unsigned AS = SN->getAddressSpace();
2870 
2871     // Expand unaligned stores earlier than legalization. Due to visitation
2872     // order problems during legalization, the emitted instructions to pack and
2873     // unpack the bytes again are not eliminated in the case of an unaligned
2874     // copy.
2875     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2876       if (VT.isVector())
2877         return scalarizeVectorStore(SN, DAG);
2878 
2879       return expandUnalignedStore(SN, DAG);
2880     }
2881 
2882     if (!IsFast)
2883       return SDValue();
2884   }
2885 
2886   if (!shouldCombineMemoryType(VT))
2887     return SDValue();
2888 
2889   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2890   SDValue Val = SN->getValue();
2891 
2892   //DCI.AddToWorklist(Val.getNode());
2893 
2894   bool OtherUses = !Val.hasOneUse();
2895   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2896   if (OtherUses) {
2897     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2898     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2899   }
2900 
2901   return DAG.getStore(SN->getChain(), SL, CastVal,
2902                       SN->getBasePtr(), SN->getMemOperand());
2903 }
2904 
2905 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N,
2906                                                   DAGCombinerInfo &DCI) const {
2907   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
2908   if (!CSrc)
2909     return SDValue();
2910 
2911   const APFloat &F = CSrc->getValueAPF();
2912   APFloat Zero = APFloat::getZero(F.getSemantics());
2913   APFloat::cmpResult Cmp0 = F.compare(Zero);
2914   if (Cmp0 == APFloat::cmpLessThan ||
2915       (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
2916     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
2917   }
2918 
2919   APFloat One(F.getSemantics(), "1.0");
2920   APFloat::cmpResult Cmp1 = F.compare(One);
2921   if (Cmp1 == APFloat::cmpGreaterThan)
2922     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
2923 
2924   return SDValue(CSrc, 0);
2925 }
2926 
2927 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2928 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2929 // issues.
2930 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2931                                                         DAGCombinerInfo &DCI) const {
2932   SelectionDAG &DAG = DCI.DAG;
2933   SDValue N0 = N->getOperand(0);
2934 
2935   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2936   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2937   if (N0.getOpcode() == ISD::TRUNCATE) {
2938     SDValue N1 = N->getOperand(1);
2939     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2940     SDLoc SL(N);
2941 
2942     SDValue Src = N0.getOperand(0);
2943     EVT SrcVT = Src.getValueType();
2944     if (SrcVT.bitsGE(ExtVT)) {
2945       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2946       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2947     }
2948   }
2949 
2950   return SDValue();
2951 }
2952 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2953 /// binary operation \p Opc to it with the corresponding constant operands.
2954 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2955   DAGCombinerInfo &DCI, const SDLoc &SL,
2956   unsigned Opc, SDValue LHS,
2957   uint32_t ValLo, uint32_t ValHi) const {
2958   SelectionDAG &DAG = DCI.DAG;
2959   SDValue Lo, Hi;
2960   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2961 
2962   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2963   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2964 
2965   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2966   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2967 
2968   // Re-visit the ands. It's possible we eliminated one of them and it could
2969   // simplify the vector.
2970   DCI.AddToWorklist(Lo.getNode());
2971   DCI.AddToWorklist(Hi.getNode());
2972 
2973   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2974   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2975 }
2976 
2977 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2978                                                 DAGCombinerInfo &DCI) const {
2979   EVT VT = N->getValueType(0);
2980 
2981   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2982   if (!RHS)
2983     return SDValue();
2984 
2985   SDValue LHS = N->getOperand(0);
2986   unsigned RHSVal = RHS->getZExtValue();
2987   if (!RHSVal)
2988     return LHS;
2989 
2990   SDLoc SL(N);
2991   SelectionDAG &DAG = DCI.DAG;
2992 
2993   switch (LHS->getOpcode()) {
2994   default:
2995     break;
2996   case ISD::ZERO_EXTEND:
2997   case ISD::SIGN_EXTEND:
2998   case ISD::ANY_EXTEND: {
2999     SDValue X = LHS->getOperand(0);
3000 
3001     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3002         isTypeLegal(MVT::v2i16)) {
3003       // Prefer build_vector as the canonical form if packed types are legal.
3004       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3005       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3006        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3007       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3008     }
3009 
3010     // shl (ext x) => zext (shl x), if shift does not overflow int
3011     if (VT != MVT::i64)
3012       break;
3013     KnownBits Known;
3014     DAG.computeKnownBits(X, Known);
3015     unsigned LZ = Known.countMinLeadingZeros();
3016     if (LZ < RHSVal)
3017       break;
3018     EVT XVT = X.getValueType();
3019     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3020     return DAG.getZExtOrTrunc(Shl, SL, VT);
3021   }
3022   }
3023 
3024   if (VT != MVT::i64)
3025     return SDValue();
3026 
3027   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3028 
3029   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3030   // common case, splitting this into a move and a 32-bit shift is faster and
3031   // the same code size.
3032   if (RHSVal < 32)
3033     return SDValue();
3034 
3035   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3036 
3037   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3038   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3039 
3040   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3041 
3042   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3043   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3044 }
3045 
3046 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3047                                                 DAGCombinerInfo &DCI) const {
3048   if (N->getValueType(0) != MVT::i64)
3049     return SDValue();
3050 
3051   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3052   if (!RHS)
3053     return SDValue();
3054 
3055   SelectionDAG &DAG = DCI.DAG;
3056   SDLoc SL(N);
3057   unsigned RHSVal = RHS->getZExtValue();
3058 
3059   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3060   if (RHSVal == 32) {
3061     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3062     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3063                                    DAG.getConstant(31, SL, MVT::i32));
3064 
3065     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3066     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3067   }
3068 
3069   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3070   if (RHSVal == 63) {
3071     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3072     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3073                                    DAG.getConstant(31, SL, MVT::i32));
3074     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3075     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3076   }
3077 
3078   return SDValue();
3079 }
3080 
3081 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3082                                                 DAGCombinerInfo &DCI) const {
3083   if (N->getValueType(0) != MVT::i64)
3084     return SDValue();
3085 
3086   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3087   if (!RHS)
3088     return SDValue();
3089 
3090   unsigned ShiftAmt = RHS->getZExtValue();
3091   if (ShiftAmt < 32)
3092     return SDValue();
3093 
3094   // srl i64:x, C for C >= 32
3095   // =>
3096   //   build_pair (srl hi_32(x), C - 32), 0
3097 
3098   SelectionDAG &DAG = DCI.DAG;
3099   SDLoc SL(N);
3100 
3101   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3102   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3103 
3104   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
3105   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
3106                            VecOp, One);
3107 
3108   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3109   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3110 
3111   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3112 
3113   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3114 }
3115 
3116 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3117 // instructions. If we only match on the legalized i64 mul expansion,
3118 // SimplifyDemandedBits will be unable to remove them because there will be
3119 // multiple uses due to the separate mul + mulh[su].
3120 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3121                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3122   if (Size <= 32) {
3123     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3124     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3125   }
3126 
3127   // Because we want to eliminate extension instructions before the
3128   // operation, we need to create a single user here (i.e. not the separate
3129   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3130 
3131   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3132 
3133   SDValue Mul = DAG.getNode(MulOpc, SL,
3134                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3135 
3136   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3137                      Mul.getValue(0), Mul.getValue(1));
3138 }
3139 
3140 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3141                                                 DAGCombinerInfo &DCI) const {
3142   EVT VT = N->getValueType(0);
3143 
3144   unsigned Size = VT.getSizeInBits();
3145   if (VT.isVector() || Size > 64)
3146     return SDValue();
3147 
3148   // There are i16 integer mul/mad.
3149   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3150     return SDValue();
3151 
3152   SelectionDAG &DAG = DCI.DAG;
3153   SDLoc DL(N);
3154 
3155   SDValue N0 = N->getOperand(0);
3156   SDValue N1 = N->getOperand(1);
3157   SDValue Mul;
3158 
3159   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3160     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3161     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3162     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3163   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3164     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3165     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3166     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3167   } else {
3168     return SDValue();
3169   }
3170 
3171   // We need to use sext even for MUL_U24, because MUL_U24 is used
3172   // for signed multiply of 8 and 16-bit types.
3173   return DAG.getSExtOrTrunc(Mul, DL, VT);
3174 }
3175 
3176 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3177                                                   DAGCombinerInfo &DCI) const {
3178   EVT VT = N->getValueType(0);
3179 
3180   if (!Subtarget->hasMulI24() || VT.isVector())
3181     return SDValue();
3182 
3183   SelectionDAG &DAG = DCI.DAG;
3184   SDLoc DL(N);
3185 
3186   SDValue N0 = N->getOperand(0);
3187   SDValue N1 = N->getOperand(1);
3188 
3189   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3190     return SDValue();
3191 
3192   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3193   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3194 
3195   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3196   DCI.AddToWorklist(Mulhi.getNode());
3197   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3198 }
3199 
3200 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3201                                                   DAGCombinerInfo &DCI) const {
3202   EVT VT = N->getValueType(0);
3203 
3204   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3205     return SDValue();
3206 
3207   SelectionDAG &DAG = DCI.DAG;
3208   SDLoc DL(N);
3209 
3210   SDValue N0 = N->getOperand(0);
3211   SDValue N1 = N->getOperand(1);
3212 
3213   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3214     return SDValue();
3215 
3216   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3217   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3218 
3219   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3220   DCI.AddToWorklist(Mulhi.getNode());
3221   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3222 }
3223 
3224 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3225   SDNode *N, DAGCombinerInfo &DCI) const {
3226   SelectionDAG &DAG = DCI.DAG;
3227 
3228   // Simplify demanded bits before splitting into multiple users.
3229   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
3230     return SDValue();
3231 
3232   SDValue N0 = N->getOperand(0);
3233   SDValue N1 = N->getOperand(1);
3234 
3235   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3236 
3237   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3238   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3239 
3240   SDLoc SL(N);
3241 
3242   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3243   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3244   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3245 }
3246 
3247 static bool isNegativeOne(SDValue Val) {
3248   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3249     return C->isAllOnesValue();
3250   return false;
3251 }
3252 
3253 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3254                                           SDValue Op,
3255                                           const SDLoc &DL,
3256                                           unsigned Opc) const {
3257   EVT VT = Op.getValueType();
3258   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3259   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3260                               LegalVT != MVT::i16))
3261     return SDValue();
3262 
3263   if (VT != MVT::i32)
3264     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3265 
3266   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3267   if (VT != MVT::i32)
3268     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3269 
3270   return FFBX;
3271 }
3272 
3273 // The native instructions return -1 on 0 input. Optimize out a select that
3274 // produces -1 on 0.
3275 //
3276 // TODO: If zero is not undef, we could also do this if the output is compared
3277 // against the bitwidth.
3278 //
3279 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3280 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3281                                                  SDValue LHS, SDValue RHS,
3282                                                  DAGCombinerInfo &DCI) const {
3283   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3284   if (!CmpRhs || !CmpRhs->isNullValue())
3285     return SDValue();
3286 
3287   SelectionDAG &DAG = DCI.DAG;
3288   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3289   SDValue CmpLHS = Cond.getOperand(0);
3290 
3291   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3292                                            AMDGPUISD::FFBH_U32;
3293 
3294   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3295   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3296   if (CCOpcode == ISD::SETEQ &&
3297       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3298       RHS.getOperand(0) == CmpLHS &&
3299       isNegativeOne(LHS)) {
3300     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3301   }
3302 
3303   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3304   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3305   if (CCOpcode == ISD::SETNE &&
3306       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3307       LHS.getOperand(0) == CmpLHS &&
3308       isNegativeOne(RHS)) {
3309     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3310   }
3311 
3312   return SDValue();
3313 }
3314 
3315 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3316                                          unsigned Op,
3317                                          const SDLoc &SL,
3318                                          SDValue Cond,
3319                                          SDValue N1,
3320                                          SDValue N2) {
3321   SelectionDAG &DAG = DCI.DAG;
3322   EVT VT = N1.getValueType();
3323 
3324   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3325                                   N1.getOperand(0), N2.getOperand(0));
3326   DCI.AddToWorklist(NewSelect.getNode());
3327   return DAG.getNode(Op, SL, VT, NewSelect);
3328 }
3329 
3330 // Pull a free FP operation out of a select so it may fold into uses.
3331 //
3332 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3333 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3334 //
3335 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3336 // select c, (fabs x), +k -> fabs (select c, x, k)
3337 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3338                                     SDValue N) {
3339   SelectionDAG &DAG = DCI.DAG;
3340   SDValue Cond = N.getOperand(0);
3341   SDValue LHS = N.getOperand(1);
3342   SDValue RHS = N.getOperand(2);
3343 
3344   EVT VT = N.getValueType();
3345   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3346       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3347     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3348                                      SDLoc(N), Cond, LHS, RHS);
3349   }
3350 
3351   bool Inv = false;
3352   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3353     std::swap(LHS, RHS);
3354     Inv = true;
3355   }
3356 
3357   // TODO: Support vector constants.
3358   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3359   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3360     SDLoc SL(N);
3361     // If one side is an fneg/fabs and the other is a constant, we can push the
3362     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3363     SDValue NewLHS = LHS.getOperand(0);
3364     SDValue NewRHS = RHS;
3365 
3366     // Careful: if the neg can be folded up, don't try to pull it back down.
3367     bool ShouldFoldNeg = true;
3368 
3369     if (NewLHS.hasOneUse()) {
3370       unsigned Opc = NewLHS.getOpcode();
3371       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3372         ShouldFoldNeg = false;
3373       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3374         ShouldFoldNeg = false;
3375     }
3376 
3377     if (ShouldFoldNeg) {
3378       if (LHS.getOpcode() == ISD::FNEG)
3379         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3380       else if (CRHS->isNegative())
3381         return SDValue();
3382 
3383       if (Inv)
3384         std::swap(NewLHS, NewRHS);
3385 
3386       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3387                                       Cond, NewLHS, NewRHS);
3388       DCI.AddToWorklist(NewSelect.getNode());
3389       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3390     }
3391   }
3392 
3393   return SDValue();
3394 }
3395 
3396 
3397 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3398                                                    DAGCombinerInfo &DCI) const {
3399   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3400     return Folded;
3401 
3402   SDValue Cond = N->getOperand(0);
3403   if (Cond.getOpcode() != ISD::SETCC)
3404     return SDValue();
3405 
3406   EVT VT = N->getValueType(0);
3407   SDValue LHS = Cond.getOperand(0);
3408   SDValue RHS = Cond.getOperand(1);
3409   SDValue CC = Cond.getOperand(2);
3410 
3411   SDValue True = N->getOperand(1);
3412   SDValue False = N->getOperand(2);
3413 
3414   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3415     SelectionDAG &DAG = DCI.DAG;
3416     if ((DAG.isConstantValueOfAnyType(True) ||
3417          DAG.isConstantValueOfAnyType(True)) &&
3418         (!DAG.isConstantValueOfAnyType(False) &&
3419          !DAG.isConstantValueOfAnyType(False))) {
3420       // Swap cmp + select pair to move constant to false input.
3421       // This will allow using VOPC cndmasks more often.
3422       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3423 
3424       SDLoc SL(N);
3425       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3426                                             LHS.getValueType().isInteger());
3427 
3428       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3429       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3430     }
3431 
3432     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3433       SDValue MinMax
3434         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3435       // Revisit this node so we can catch min3/max3/med3 patterns.
3436       //DCI.AddToWorklist(MinMax.getNode());
3437       return MinMax;
3438     }
3439   }
3440 
3441   // There's no reason to not do this if the condition has other uses.
3442   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3443 }
3444 
3445 static bool isConstantFPZero(SDValue N) {
3446   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
3447     return C->isZero() && !C->isNegative();
3448   return false;
3449 }
3450 
3451 static unsigned inverseMinMax(unsigned Opc) {
3452   switch (Opc) {
3453   case ISD::FMAXNUM:
3454     return ISD::FMINNUM;
3455   case ISD::FMINNUM:
3456     return ISD::FMAXNUM;
3457   case AMDGPUISD::FMAX_LEGACY:
3458     return AMDGPUISD::FMIN_LEGACY;
3459   case AMDGPUISD::FMIN_LEGACY:
3460     return  AMDGPUISD::FMAX_LEGACY;
3461   default:
3462     llvm_unreachable("invalid min/max opcode");
3463   }
3464 }
3465 
3466 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3467                                                  DAGCombinerInfo &DCI) const {
3468   SelectionDAG &DAG = DCI.DAG;
3469   SDValue N0 = N->getOperand(0);
3470   EVT VT = N->getValueType(0);
3471 
3472   unsigned Opc = N0.getOpcode();
3473 
3474   // If the input has multiple uses and we can either fold the negate down, or
3475   // the other uses cannot, give up. This both prevents unprofitable
3476   // transformations and infinite loops: we won't repeatedly try to fold around
3477   // a negate that has no 'good' form.
3478   if (N0.hasOneUse()) {
3479     // This may be able to fold into the source, but at a code size cost. Don't
3480     // fold if the fold into the user is free.
3481     if (allUsesHaveSourceMods(N, 0))
3482       return SDValue();
3483   } else {
3484     if (fnegFoldsIntoOp(Opc) &&
3485         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3486       return SDValue();
3487   }
3488 
3489   SDLoc SL(N);
3490   switch (Opc) {
3491   case ISD::FADD: {
3492     if (!mayIgnoreSignedZero(N0))
3493       return SDValue();
3494 
3495     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3496     SDValue LHS = N0.getOperand(0);
3497     SDValue RHS = N0.getOperand(1);
3498 
3499     if (LHS.getOpcode() != ISD::FNEG)
3500       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3501     else
3502       LHS = LHS.getOperand(0);
3503 
3504     if (RHS.getOpcode() != ISD::FNEG)
3505       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3506     else
3507       RHS = RHS.getOperand(0);
3508 
3509     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3510     if (!N0.hasOneUse())
3511       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3512     return Res;
3513   }
3514   case ISD::FMUL:
3515   case AMDGPUISD::FMUL_LEGACY: {
3516     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3517     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3518     SDValue LHS = N0.getOperand(0);
3519     SDValue RHS = N0.getOperand(1);
3520 
3521     if (LHS.getOpcode() == ISD::FNEG)
3522       LHS = LHS.getOperand(0);
3523     else if (RHS.getOpcode() == ISD::FNEG)
3524       RHS = RHS.getOperand(0);
3525     else
3526       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3527 
3528     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3529     if (!N0.hasOneUse())
3530       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3531     return Res;
3532   }
3533   case ISD::FMA:
3534   case ISD::FMAD: {
3535     if (!mayIgnoreSignedZero(N0))
3536       return SDValue();
3537 
3538     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3539     SDValue LHS = N0.getOperand(0);
3540     SDValue MHS = N0.getOperand(1);
3541     SDValue RHS = N0.getOperand(2);
3542 
3543     if (LHS.getOpcode() == ISD::FNEG)
3544       LHS = LHS.getOperand(0);
3545     else if (MHS.getOpcode() == ISD::FNEG)
3546       MHS = MHS.getOperand(0);
3547     else
3548       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3549 
3550     if (RHS.getOpcode() != ISD::FNEG)
3551       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3552     else
3553       RHS = RHS.getOperand(0);
3554 
3555     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3556     if (!N0.hasOneUse())
3557       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3558     return Res;
3559   }
3560   case ISD::FMAXNUM:
3561   case ISD::FMINNUM:
3562   case AMDGPUISD::FMAX_LEGACY:
3563   case AMDGPUISD::FMIN_LEGACY: {
3564     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3565     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3566     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3567     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3568 
3569     SDValue LHS = N0.getOperand(0);
3570     SDValue RHS = N0.getOperand(1);
3571 
3572     // 0 doesn't have a negated inline immediate.
3573     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
3574     // operations.
3575     if (isConstantFPZero(RHS))
3576       return SDValue();
3577 
3578     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3579     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3580     unsigned Opposite = inverseMinMax(Opc);
3581 
3582     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3583     if (!N0.hasOneUse())
3584       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3585     return Res;
3586   }
3587   case ISD::FP_EXTEND:
3588   case ISD::FTRUNC:
3589   case ISD::FRINT:
3590   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3591   case ISD::FSIN:
3592   case AMDGPUISD::RCP:
3593   case AMDGPUISD::RCP_LEGACY:
3594   case AMDGPUISD::SIN_HW: {
3595     SDValue CvtSrc = N0.getOperand(0);
3596     if (CvtSrc.getOpcode() == ISD::FNEG) {
3597       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3598       // (fneg (rcp (fneg x))) -> (rcp x)
3599       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3600     }
3601 
3602     if (!N0.hasOneUse())
3603       return SDValue();
3604 
3605     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3606     // (fneg (rcp x)) -> (rcp (fneg x))
3607     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3608     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3609   }
3610   case ISD::FP_ROUND: {
3611     SDValue CvtSrc = N0.getOperand(0);
3612 
3613     if (CvtSrc.getOpcode() == ISD::FNEG) {
3614       // (fneg (fp_round (fneg x))) -> (fp_round x)
3615       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3616                          CvtSrc.getOperand(0), N0.getOperand(1));
3617     }
3618 
3619     if (!N0.hasOneUse())
3620       return SDValue();
3621 
3622     // (fneg (fp_round x)) -> (fp_round (fneg x))
3623     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3624     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3625   }
3626   case ISD::FP16_TO_FP: {
3627     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3628     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3629     // Put the fneg back as a legal source operation that can be matched later.
3630     SDLoc SL(N);
3631 
3632     SDValue Src = N0.getOperand(0);
3633     EVT SrcVT = Src.getValueType();
3634 
3635     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3636     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3637                                   DAG.getConstant(0x8000, SL, SrcVT));
3638     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3639   }
3640   default:
3641     return SDValue();
3642   }
3643 }
3644 
3645 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3646                                                  DAGCombinerInfo &DCI) const {
3647   SelectionDAG &DAG = DCI.DAG;
3648   SDValue N0 = N->getOperand(0);
3649 
3650   if (!N0.hasOneUse())
3651     return SDValue();
3652 
3653   switch (N0.getOpcode()) {
3654   case ISD::FP16_TO_FP: {
3655     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3656     SDLoc SL(N);
3657     SDValue Src = N0.getOperand(0);
3658     EVT SrcVT = Src.getValueType();
3659 
3660     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3661     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3662                                   DAG.getConstant(0x7fff, SL, SrcVT));
3663     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3664   }
3665   default:
3666     return SDValue();
3667   }
3668 }
3669 
3670 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3671                                                 DAGCombinerInfo &DCI) const {
3672   SelectionDAG &DAG = DCI.DAG;
3673   SDLoc DL(N);
3674 
3675   switch(N->getOpcode()) {
3676   default:
3677     break;
3678   case ISD::BITCAST: {
3679     EVT DestVT = N->getValueType(0);
3680 
3681     // Push casts through vector builds. This helps avoid emitting a large
3682     // number of copies when materializing floating point vector constants.
3683     //
3684     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3685     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3686     if (DestVT.isVector()) {
3687       SDValue Src = N->getOperand(0);
3688       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3689         EVT SrcVT = Src.getValueType();
3690         unsigned NElts = DestVT.getVectorNumElements();
3691 
3692         if (SrcVT.getVectorNumElements() == NElts) {
3693           EVT DestEltVT = DestVT.getVectorElementType();
3694 
3695           SmallVector<SDValue, 8> CastedElts;
3696           SDLoc SL(N);
3697           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3698             SDValue Elt = Src.getOperand(I);
3699             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3700           }
3701 
3702           return DAG.getBuildVector(DestVT, SL, CastedElts);
3703         }
3704       }
3705     }
3706 
3707     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3708       break;
3709 
3710     // Fold bitcasts of constants.
3711     //
3712     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3713     // TODO: Generalize and move to DAGCombiner
3714     SDValue Src = N->getOperand(0);
3715     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3716       assert(Src.getValueType() == MVT::i64);
3717       SDLoc SL(N);
3718       uint64_t CVal = C->getZExtValue();
3719       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3720                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3721                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3722     }
3723 
3724     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3725       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3726       SDLoc SL(N);
3727       uint64_t CVal = Val.getZExtValue();
3728       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3729                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3730                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3731 
3732       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3733     }
3734 
3735     break;
3736   }
3737   case ISD::SHL: {
3738     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3739       break;
3740 
3741     return performShlCombine(N, DCI);
3742   }
3743   case ISD::SRL: {
3744     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3745       break;
3746 
3747     return performSrlCombine(N, DCI);
3748   }
3749   case ISD::SRA: {
3750     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3751       break;
3752 
3753     return performSraCombine(N, DCI);
3754   }
3755   case ISD::MUL:
3756     return performMulCombine(N, DCI);
3757   case ISD::MULHS:
3758     return performMulhsCombine(N, DCI);
3759   case ISD::MULHU:
3760     return performMulhuCombine(N, DCI);
3761   case AMDGPUISD::MUL_I24:
3762   case AMDGPUISD::MUL_U24:
3763   case AMDGPUISD::MULHI_I24:
3764   case AMDGPUISD::MULHI_U24: {
3765     // If the first call to simplify is successfull, then N may end up being
3766     // deleted, so we shouldn't call simplifyI24 again.
3767     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3768     return SDValue();
3769   }
3770   case AMDGPUISD::MUL_LOHI_I24:
3771   case AMDGPUISD::MUL_LOHI_U24:
3772     return performMulLoHi24Combine(N, DCI);
3773   case ISD::SELECT:
3774     return performSelectCombine(N, DCI);
3775   case ISD::FNEG:
3776     return performFNegCombine(N, DCI);
3777   case ISD::FABS:
3778     return performFAbsCombine(N, DCI);
3779   case AMDGPUISD::BFE_I32:
3780   case AMDGPUISD::BFE_U32: {
3781     assert(!N->getValueType(0).isVector() &&
3782            "Vector handling of BFE not implemented");
3783     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3784     if (!Width)
3785       break;
3786 
3787     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3788     if (WidthVal == 0)
3789       return DAG.getConstant(0, DL, MVT::i32);
3790 
3791     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3792     if (!Offset)
3793       break;
3794 
3795     SDValue BitsFrom = N->getOperand(0);
3796     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3797 
3798     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3799 
3800     if (OffsetVal == 0) {
3801       // This is already sign / zero extended, so try to fold away extra BFEs.
3802       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3803 
3804       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3805       if (OpSignBits >= SignBits)
3806         return BitsFrom;
3807 
3808       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3809       if (Signed) {
3810         // This is a sign_extend_inreg. Replace it to take advantage of existing
3811         // DAG Combines. If not eliminated, we will match back to BFE during
3812         // selection.
3813 
3814         // TODO: The sext_inreg of extended types ends, although we can could
3815         // handle them in a single BFE.
3816         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3817                            DAG.getValueType(SmallVT));
3818       }
3819 
3820       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3821     }
3822 
3823     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3824       if (Signed) {
3825         return constantFoldBFE<int32_t>(DAG,
3826                                         CVal->getSExtValue(),
3827                                         OffsetVal,
3828                                         WidthVal,
3829                                         DL);
3830       }
3831 
3832       return constantFoldBFE<uint32_t>(DAG,
3833                                        CVal->getZExtValue(),
3834                                        OffsetVal,
3835                                        WidthVal,
3836                                        DL);
3837     }
3838 
3839     if ((OffsetVal + WidthVal) >= 32 &&
3840         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
3841       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3842       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3843                          BitsFrom, ShiftVal);
3844     }
3845 
3846     if (BitsFrom.hasOneUse()) {
3847       APInt Demanded = APInt::getBitsSet(32,
3848                                          OffsetVal,
3849                                          OffsetVal + WidthVal);
3850 
3851       KnownBits Known;
3852       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3853                                             !DCI.isBeforeLegalizeOps());
3854       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3855       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
3856           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
3857         DCI.CommitTargetLoweringOpt(TLO);
3858       }
3859     }
3860 
3861     break;
3862   }
3863   case ISD::LOAD:
3864     return performLoadCombine(N, DCI);
3865   case ISD::STORE:
3866     return performStoreCombine(N, DCI);
3867   case AMDGPUISD::CLAMP:
3868     return performClampCombine(N, DCI);
3869   case AMDGPUISD::RCP: {
3870     if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
3871       // XXX - Should this flush denormals?
3872       const APFloat &Val = CFP->getValueAPF();
3873       APFloat One(Val.getSemantics(), "1.0");
3874       return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3875     }
3876 
3877     break;
3878   }
3879   case ISD::AssertZext:
3880   case ISD::AssertSext:
3881     return performAssertSZExtCombine(N, DCI);
3882   }
3883   return SDValue();
3884 }
3885 
3886 //===----------------------------------------------------------------------===//
3887 // Helper functions
3888 //===----------------------------------------------------------------------===//
3889 
3890 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3891                                                    const TargetRegisterClass *RC,
3892                                                    unsigned Reg, EVT VT,
3893                                                    const SDLoc &SL,
3894                                                    bool RawReg) const {
3895   MachineFunction &MF = DAG.getMachineFunction();
3896   MachineRegisterInfo &MRI = MF.getRegInfo();
3897   unsigned VReg;
3898 
3899   if (!MRI.isLiveIn(Reg)) {
3900     VReg = MRI.createVirtualRegister(RC);
3901     MRI.addLiveIn(Reg, VReg);
3902   } else {
3903     VReg = MRI.getLiveInVirtReg(Reg);
3904   }
3905 
3906   if (RawReg)
3907     return DAG.getRegister(VReg, VT);
3908 
3909   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
3910 }
3911 
3912 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
3913                                                   EVT VT,
3914                                                   const SDLoc &SL,
3915                                                   int64_t Offset) const {
3916   MachineFunction &MF = DAG.getMachineFunction();
3917   MachineFrameInfo &MFI = MF.getFrameInfo();
3918 
3919   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
3920   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
3921   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
3922 
3923   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
3924                      MachineMemOperand::MODereferenceable |
3925                      MachineMemOperand::MOInvariant);
3926 }
3927 
3928 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
3929                                                    const SDLoc &SL,
3930                                                    SDValue Chain,
3931                                                    SDValue StackPtr,
3932                                                    SDValue ArgVal,
3933                                                    int64_t Offset) const {
3934   MachineFunction &MF = DAG.getMachineFunction();
3935   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
3936 
3937   SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset);
3938   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
3939                                MachineMemOperand::MODereferenceable);
3940   return Store;
3941 }
3942 
3943 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
3944                                              const TargetRegisterClass *RC,
3945                                              EVT VT, const SDLoc &SL,
3946                                              const ArgDescriptor &Arg) const {
3947   assert(Arg && "Attempting to load missing argument");
3948 
3949   if (Arg.isRegister())
3950     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
3951   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
3952 }
3953 
3954 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
3955     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
3956   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
3957   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
3958   switch (Param) {
3959   case GRID_DIM:
3960     return ArgOffset;
3961   case GRID_OFFSET:
3962     return ArgOffset + 4;
3963   }
3964   llvm_unreachable("unexpected implicit parameter type");
3965 }
3966 
3967 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
3968 
3969 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
3970   switch ((AMDGPUISD::NodeType)Opcode) {
3971   case AMDGPUISD::FIRST_NUMBER: break;
3972   // AMDIL DAG nodes
3973   NODE_NAME_CASE(UMUL);
3974   NODE_NAME_CASE(BRANCH_COND);
3975 
3976   // AMDGPU DAG nodes
3977   NODE_NAME_CASE(IF)
3978   NODE_NAME_CASE(ELSE)
3979   NODE_NAME_CASE(LOOP)
3980   NODE_NAME_CASE(CALL)
3981   NODE_NAME_CASE(TC_RETURN)
3982   NODE_NAME_CASE(TRAP)
3983   NODE_NAME_CASE(RET_FLAG)
3984   NODE_NAME_CASE(RETURN_TO_EPILOG)
3985   NODE_NAME_CASE(ENDPGM)
3986   NODE_NAME_CASE(DWORDADDR)
3987   NODE_NAME_CASE(FRACT)
3988   NODE_NAME_CASE(SETCC)
3989   NODE_NAME_CASE(SETREG)
3990   NODE_NAME_CASE(FMA_W_CHAIN)
3991   NODE_NAME_CASE(FMUL_W_CHAIN)
3992   NODE_NAME_CASE(CLAMP)
3993   NODE_NAME_CASE(COS_HW)
3994   NODE_NAME_CASE(SIN_HW)
3995   NODE_NAME_CASE(FMAX_LEGACY)
3996   NODE_NAME_CASE(FMIN_LEGACY)
3997   NODE_NAME_CASE(FMAX3)
3998   NODE_NAME_CASE(SMAX3)
3999   NODE_NAME_CASE(UMAX3)
4000   NODE_NAME_CASE(FMIN3)
4001   NODE_NAME_CASE(SMIN3)
4002   NODE_NAME_CASE(UMIN3)
4003   NODE_NAME_CASE(FMED3)
4004   NODE_NAME_CASE(SMED3)
4005   NODE_NAME_CASE(UMED3)
4006   NODE_NAME_CASE(URECIP)
4007   NODE_NAME_CASE(DIV_SCALE)
4008   NODE_NAME_CASE(DIV_FMAS)
4009   NODE_NAME_CASE(DIV_FIXUP)
4010   NODE_NAME_CASE(FMAD_FTZ)
4011   NODE_NAME_CASE(TRIG_PREOP)
4012   NODE_NAME_CASE(RCP)
4013   NODE_NAME_CASE(RSQ)
4014   NODE_NAME_CASE(RCP_LEGACY)
4015   NODE_NAME_CASE(RSQ_LEGACY)
4016   NODE_NAME_CASE(FMUL_LEGACY)
4017   NODE_NAME_CASE(RSQ_CLAMP)
4018   NODE_NAME_CASE(LDEXP)
4019   NODE_NAME_CASE(FP_CLASS)
4020   NODE_NAME_CASE(DOT4)
4021   NODE_NAME_CASE(CARRY)
4022   NODE_NAME_CASE(BORROW)
4023   NODE_NAME_CASE(BFE_U32)
4024   NODE_NAME_CASE(BFE_I32)
4025   NODE_NAME_CASE(BFI)
4026   NODE_NAME_CASE(BFM)
4027   NODE_NAME_CASE(FFBH_U32)
4028   NODE_NAME_CASE(FFBH_I32)
4029   NODE_NAME_CASE(FFBL_B32)
4030   NODE_NAME_CASE(MUL_U24)
4031   NODE_NAME_CASE(MUL_I24)
4032   NODE_NAME_CASE(MULHI_U24)
4033   NODE_NAME_CASE(MULHI_I24)
4034   NODE_NAME_CASE(MUL_LOHI_U24)
4035   NODE_NAME_CASE(MUL_LOHI_I24)
4036   NODE_NAME_CASE(MAD_U24)
4037   NODE_NAME_CASE(MAD_I24)
4038   NODE_NAME_CASE(MAD_I64_I32)
4039   NODE_NAME_CASE(MAD_U64_U32)
4040   NODE_NAME_CASE(TEXTURE_FETCH)
4041   NODE_NAME_CASE(EXPORT)
4042   NODE_NAME_CASE(EXPORT_DONE)
4043   NODE_NAME_CASE(R600_EXPORT)
4044   NODE_NAME_CASE(CONST_ADDRESS)
4045   NODE_NAME_CASE(REGISTER_LOAD)
4046   NODE_NAME_CASE(REGISTER_STORE)
4047   NODE_NAME_CASE(SAMPLE)
4048   NODE_NAME_CASE(SAMPLEB)
4049   NODE_NAME_CASE(SAMPLED)
4050   NODE_NAME_CASE(SAMPLEL)
4051   NODE_NAME_CASE(CVT_F32_UBYTE0)
4052   NODE_NAME_CASE(CVT_F32_UBYTE1)
4053   NODE_NAME_CASE(CVT_F32_UBYTE2)
4054   NODE_NAME_CASE(CVT_F32_UBYTE3)
4055   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4056   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4057   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4058   NODE_NAME_CASE(CVT_PK_I16_I32)
4059   NODE_NAME_CASE(CVT_PK_U16_U32)
4060   NODE_NAME_CASE(FP_TO_FP16)
4061   NODE_NAME_CASE(FP16_ZEXT)
4062   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4063   NODE_NAME_CASE(CONST_DATA_PTR)
4064   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4065   NODE_NAME_CASE(KILL)
4066   NODE_NAME_CASE(DUMMY_CHAIN)
4067   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4068   NODE_NAME_CASE(INIT_EXEC)
4069   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4070   NODE_NAME_CASE(SENDMSG)
4071   NODE_NAME_CASE(SENDMSGHALT)
4072   NODE_NAME_CASE(INTERP_MOV)
4073   NODE_NAME_CASE(INTERP_P1)
4074   NODE_NAME_CASE(INTERP_P2)
4075   NODE_NAME_CASE(STORE_MSKOR)
4076   NODE_NAME_CASE(LOAD_CONSTANT)
4077   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4078   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
4079   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4080   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4081   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4082   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4083   NODE_NAME_CASE(ATOMIC_INC)
4084   NODE_NAME_CASE(ATOMIC_DEC)
4085   NODE_NAME_CASE(ATOMIC_LOAD_FADD)
4086   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4087   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4088   NODE_NAME_CASE(BUFFER_LOAD)
4089   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4090   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4091   NODE_NAME_CASE(BUFFER_STORE)
4092   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4093   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4094   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4095   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4096   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4097   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4098   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4099   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4100   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4101   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4102   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4103   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4104   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4105   NODE_NAME_CASE(IMAGE_LOAD)
4106   NODE_NAME_CASE(IMAGE_LOAD_MIP)
4107   NODE_NAME_CASE(IMAGE_STORE)
4108   NODE_NAME_CASE(IMAGE_STORE_MIP)
4109   // Basic sample.
4110   NODE_NAME_CASE(IMAGE_SAMPLE)
4111   NODE_NAME_CASE(IMAGE_SAMPLE_CL)
4112   NODE_NAME_CASE(IMAGE_SAMPLE_D)
4113   NODE_NAME_CASE(IMAGE_SAMPLE_D_CL)
4114   NODE_NAME_CASE(IMAGE_SAMPLE_L)
4115   NODE_NAME_CASE(IMAGE_SAMPLE_B)
4116   NODE_NAME_CASE(IMAGE_SAMPLE_B_CL)
4117   NODE_NAME_CASE(IMAGE_SAMPLE_LZ)
4118   NODE_NAME_CASE(IMAGE_SAMPLE_CD)
4119   NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL)
4120   // Sample with comparison.
4121   NODE_NAME_CASE(IMAGE_SAMPLE_C)
4122   NODE_NAME_CASE(IMAGE_SAMPLE_C_CL)
4123   NODE_NAME_CASE(IMAGE_SAMPLE_C_D)
4124   NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL)
4125   NODE_NAME_CASE(IMAGE_SAMPLE_C_L)
4126   NODE_NAME_CASE(IMAGE_SAMPLE_C_B)
4127   NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL)
4128   NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ)
4129   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD)
4130   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL)
4131   // Sample with offsets.
4132   NODE_NAME_CASE(IMAGE_SAMPLE_O)
4133   NODE_NAME_CASE(IMAGE_SAMPLE_CL_O)
4134   NODE_NAME_CASE(IMAGE_SAMPLE_D_O)
4135   NODE_NAME_CASE(IMAGE_SAMPLE_D_CL_O)
4136   NODE_NAME_CASE(IMAGE_SAMPLE_L_O)
4137   NODE_NAME_CASE(IMAGE_SAMPLE_B_O)
4138   NODE_NAME_CASE(IMAGE_SAMPLE_B_CL_O)
4139   NODE_NAME_CASE(IMAGE_SAMPLE_LZ_O)
4140   NODE_NAME_CASE(IMAGE_SAMPLE_CD_O)
4141   NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL_O)
4142   // Sample with comparison and offsets.
4143   NODE_NAME_CASE(IMAGE_SAMPLE_C_O)
4144   NODE_NAME_CASE(IMAGE_SAMPLE_C_CL_O)
4145   NODE_NAME_CASE(IMAGE_SAMPLE_C_D_O)
4146   NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL_O)
4147   NODE_NAME_CASE(IMAGE_SAMPLE_C_L_O)
4148   NODE_NAME_CASE(IMAGE_SAMPLE_C_B_O)
4149   NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL_O)
4150   NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ_O)
4151   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_O)
4152   NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL_O)
4153   // Basic gather4.
4154   NODE_NAME_CASE(IMAGE_GATHER4)
4155   NODE_NAME_CASE(IMAGE_GATHER4_CL)
4156   NODE_NAME_CASE(IMAGE_GATHER4_L)
4157   NODE_NAME_CASE(IMAGE_GATHER4_B)
4158   NODE_NAME_CASE(IMAGE_GATHER4_B_CL)
4159   NODE_NAME_CASE(IMAGE_GATHER4_LZ)
4160   // Gather4 with comparison.
4161   NODE_NAME_CASE(IMAGE_GATHER4_C)
4162   NODE_NAME_CASE(IMAGE_GATHER4_C_CL)
4163   NODE_NAME_CASE(IMAGE_GATHER4_C_L)
4164   NODE_NAME_CASE(IMAGE_GATHER4_C_B)
4165   NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL)
4166   NODE_NAME_CASE(IMAGE_GATHER4_C_LZ)
4167   // Gather4 with offsets.
4168   NODE_NAME_CASE(IMAGE_GATHER4_O)
4169   NODE_NAME_CASE(IMAGE_GATHER4_CL_O)
4170   NODE_NAME_CASE(IMAGE_GATHER4_L_O)
4171   NODE_NAME_CASE(IMAGE_GATHER4_B_O)
4172   NODE_NAME_CASE(IMAGE_GATHER4_B_CL_O)
4173   NODE_NAME_CASE(IMAGE_GATHER4_LZ_O)
4174   // Gather4 with comparison and offsets.
4175   NODE_NAME_CASE(IMAGE_GATHER4_C_O)
4176   NODE_NAME_CASE(IMAGE_GATHER4_C_CL_O)
4177   NODE_NAME_CASE(IMAGE_GATHER4_C_L_O)
4178   NODE_NAME_CASE(IMAGE_GATHER4_C_B_O)
4179   NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL_O)
4180   NODE_NAME_CASE(IMAGE_GATHER4_C_LZ_O)
4181 
4182   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4183   }
4184   return nullptr;
4185 }
4186 
4187 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4188                                               SelectionDAG &DAG, int Enabled,
4189                                               int &RefinementSteps,
4190                                               bool &UseOneConstNR,
4191                                               bool Reciprocal) const {
4192   EVT VT = Operand.getValueType();
4193 
4194   if (VT == MVT::f32) {
4195     RefinementSteps = 0;
4196     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4197   }
4198 
4199   // TODO: There is also f64 rsq instruction, but the documentation is less
4200   // clear on its precision.
4201 
4202   return SDValue();
4203 }
4204 
4205 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4206                                                SelectionDAG &DAG, int Enabled,
4207                                                int &RefinementSteps) const {
4208   EVT VT = Operand.getValueType();
4209 
4210   if (VT == MVT::f32) {
4211     // Reciprocal, < 1 ulp error.
4212     //
4213     // This reciprocal approximation converges to < 0.5 ulp error with one
4214     // newton rhapson performed with two fused multiple adds (FMAs).
4215 
4216     RefinementSteps = 0;
4217     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4218   }
4219 
4220   // TODO: There is also f64 rcp instruction, but the documentation is less
4221   // clear on its precision.
4222 
4223   return SDValue();
4224 }
4225 
4226 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4227     const SDValue Op, KnownBits &Known,
4228     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4229 
4230   Known.resetAll(); // Don't know anything.
4231 
4232   unsigned Opc = Op.getOpcode();
4233 
4234   switch (Opc) {
4235   default:
4236     break;
4237   case AMDGPUISD::CARRY:
4238   case AMDGPUISD::BORROW: {
4239     Known.Zero = APInt::getHighBitsSet(32, 31);
4240     break;
4241   }
4242 
4243   case AMDGPUISD::BFE_I32:
4244   case AMDGPUISD::BFE_U32: {
4245     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4246     if (!CWidth)
4247       return;
4248 
4249     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4250 
4251     if (Opc == AMDGPUISD::BFE_U32)
4252       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4253 
4254     break;
4255   }
4256   case AMDGPUISD::FP_TO_FP16:
4257   case AMDGPUISD::FP16_ZEXT: {
4258     unsigned BitWidth = Known.getBitWidth();
4259 
4260     // High bits are zero.
4261     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4262     break;
4263   }
4264   case AMDGPUISD::MUL_U24:
4265   case AMDGPUISD::MUL_I24: {
4266     KnownBits LHSKnown, RHSKnown;
4267     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
4268     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
4269 
4270     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4271                       RHSKnown.countMinTrailingZeros();
4272     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4273 
4274     unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
4275     unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
4276     unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4277     if (MaxValBits >= 32)
4278       break;
4279     bool Negative = false;
4280     if (Opc == AMDGPUISD::MUL_I24) {
4281       bool LHSNegative = !!(LHSKnown.One  & (1 << 23));
4282       bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
4283       bool RHSNegative = !!(RHSKnown.One  & (1 << 23));
4284       bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
4285       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4286         break;
4287       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4288     }
4289     if (Negative)
4290       Known.One.setHighBits(32 - MaxValBits);
4291     else
4292       Known.Zero.setHighBits(32 - MaxValBits);
4293     break;
4294   }
4295   case ISD::INTRINSIC_WO_CHAIN: {
4296     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4297     switch (IID) {
4298     case Intrinsic::amdgcn_mbcnt_lo:
4299     case Intrinsic::amdgcn_mbcnt_hi: {
4300       // These return at most the wavefront size - 1.
4301       unsigned Size = Op.getValueType().getSizeInBits();
4302       Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2());
4303       break;
4304     }
4305     default:
4306       break;
4307     }
4308   }
4309   }
4310 }
4311 
4312 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4313     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4314     unsigned Depth) const {
4315   switch (Op.getOpcode()) {
4316   case AMDGPUISD::BFE_I32: {
4317     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4318     if (!Width)
4319       return 1;
4320 
4321     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4322     if (!isNullConstant(Op.getOperand(1)))
4323       return SignBits;
4324 
4325     // TODO: Could probably figure something out with non-0 offsets.
4326     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4327     return std::max(SignBits, Op0SignBits);
4328   }
4329 
4330   case AMDGPUISD::BFE_U32: {
4331     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4332     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4333   }
4334 
4335   case AMDGPUISD::CARRY:
4336   case AMDGPUISD::BORROW:
4337     return 31;
4338   case AMDGPUISD::FP_TO_FP16:
4339   case AMDGPUISD::FP16_ZEXT:
4340     return 16;
4341   default:
4342     return 1;
4343   }
4344 }
4345