1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59                                            const AMDGPUSubtarget &STI)
60     : TargetLowering(TM), Subtarget(&STI) {
61   // Lower floating point store/load to integer store/load to reduce the number
62   // of patterns in tablegen.
63   setOperationAction(ISD::LOAD, MVT::f32, Promote);
64   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65 
66   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
77 
78   setOperationAction(ISD::LOAD, MVT::i64, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
83 
84   setOperationAction(ISD::LOAD, MVT::f64, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
89 
90   // There are no 64-bit extloads. These should be done as a 32-bit extload and
91   // an extension to 64-bit.
92   for (MVT VT : MVT::integer_valuetypes()) {
93     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
94     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
96   }
97 
98   for (MVT VT : MVT::integer_valuetypes()) {
99     if (VT == MVT::i64)
100       continue;
101 
102     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
106 
107     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
111 
112     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_vector_valuetypes()) {
119     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
131   }
132 
133   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
134   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
137 
138   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
139   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
142 
143   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
147 
148   setOperationAction(ISD::STORE, MVT::f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 
151   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 
154   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
155   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 
157   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 
160   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
161   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 
163   setOperationAction(ISD::STORE, MVT::i64, Promote);
164   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
165 
166   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
167   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
168 
169   setOperationAction(ISD::STORE, MVT::f64, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
177 
178   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
179   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
184 
185   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
186   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
187   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
188   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
189 
190   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
191   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
192   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
193   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
194 
195   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
197   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
198   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
199 
200   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
201   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
202 
203   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
204   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
205 
206   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
207   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
208 
209   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
210   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
211 
212 
213   setOperationAction(ISD::Constant, MVT::i32, Legal);
214   setOperationAction(ISD::Constant, MVT::i64, Legal);
215   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
216   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
217 
218   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
219   setOperationAction(ISD::BRIND, MVT::Other, Expand);
220 
221   // This is totally unsupported, just custom lower to produce an error.
222   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
223 
224   // We need to custom lower some of the intrinsics
225   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
226   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
227 
228   // Library functions.  These default to Expand, but we have instructions
229   // for them.
230   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
231   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
232   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
233   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
234   setOperationAction(ISD::FABS,   MVT::f32, Legal);
235   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
236   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
237   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
238   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
239   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
240 
241   setOperationAction(ISD::FROUND, MVT::f32, Custom);
242   setOperationAction(ISD::FROUND, MVT::f64, Custom);
243 
244   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
245   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
246 
247   setOperationAction(ISD::FREM, MVT::f32, Custom);
248   setOperationAction(ISD::FREM, MVT::f64, Custom);
249 
250   // v_mad_f32 does not support denormals according to some sources.
251   if (!Subtarget->hasFP32Denormals())
252     setOperationAction(ISD::FMAD, MVT::f32, Legal);
253 
254   // Expand to fneg + fadd.
255   setOperationAction(ISD::FSUB, MVT::f64, Expand);
256 
257   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
258   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
259   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
260   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
261   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
262   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
263   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
264   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
265   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
266   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
267 
268   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
269     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
270     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
271     setOperationAction(ISD::FRINT, MVT::f64, Custom);
272     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
273   }
274 
275   if (!Subtarget->hasBFI()) {
276     // fcopysign can be done in a single instruction with BFI.
277     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
279   }
280 
281   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
282 
283   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
284   for (MVT VT : ScalarIntVTs) {
285     // These should use [SU]DIVREM, so set them to expand
286     setOperationAction(ISD::SDIV, VT, Expand);
287     setOperationAction(ISD::UDIV, VT, Expand);
288     setOperationAction(ISD::SREM, VT, Expand);
289     setOperationAction(ISD::UREM, VT, Expand);
290 
291     // GPU does not have divrem function for signed or unsigned.
292     setOperationAction(ISD::SDIVREM, VT, Custom);
293     setOperationAction(ISD::UDIVREM, VT, Custom);
294 
295     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
296     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
297     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
298 
299     setOperationAction(ISD::BSWAP, VT, Expand);
300     setOperationAction(ISD::CTTZ, VT, Expand);
301     setOperationAction(ISD::CTLZ, VT, Expand);
302   }
303 
304   if (!Subtarget->hasBCNT(32))
305     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
306 
307   if (!Subtarget->hasBCNT(64))
308     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
309 
310   // The hardware supports 32-bit ROTR, but not ROTL.
311   setOperationAction(ISD::ROTL, MVT::i32, Expand);
312   setOperationAction(ISD::ROTL, MVT::i64, Expand);
313   setOperationAction(ISD::ROTR, MVT::i64, Expand);
314 
315   setOperationAction(ISD::MUL, MVT::i64, Expand);
316   setOperationAction(ISD::MULHU, MVT::i64, Expand);
317   setOperationAction(ISD::MULHS, MVT::i64, Expand);
318   setOperationAction(ISD::UDIV, MVT::i32, Expand);
319   setOperationAction(ISD::UREM, MVT::i32, Expand);
320   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
321   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
322   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
323   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
324   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
325 
326   setOperationAction(ISD::SMIN, MVT::i32, Legal);
327   setOperationAction(ISD::UMIN, MVT::i32, Legal);
328   setOperationAction(ISD::SMAX, MVT::i32, Legal);
329   setOperationAction(ISD::UMAX, MVT::i32, Legal);
330 
331   if (Subtarget->hasFFBH())
332     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
333 
334   if (Subtarget->hasFFBL())
335     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
336 
337   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
338   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
339 
340   // We only really have 32-bit BFE instructions (and 16-bit on VI).
341   //
342   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
343   // effort to match them now. We want this to be false for i64 cases when the
344   // extraction isn't restricted to the upper or lower half. Ideally we would
345   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
346   // span the midpoint are probably relatively rare, so don't worry about them
347   // for now.
348   if (Subtarget->hasBFE())
349     setHasExtractBitsInsn(true);
350 
351   static const MVT::SimpleValueType VectorIntTypes[] = {
352     MVT::v2i32, MVT::v4i32
353   };
354 
355   for (MVT VT : VectorIntTypes) {
356     // Expand the following operations for the current type by default.
357     setOperationAction(ISD::ADD,  VT, Expand);
358     setOperationAction(ISD::AND,  VT, Expand);
359     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
360     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
361     setOperationAction(ISD::MUL,  VT, Expand);
362     setOperationAction(ISD::OR,   VT, Expand);
363     setOperationAction(ISD::SHL,  VT, Expand);
364     setOperationAction(ISD::SRA,  VT, Expand);
365     setOperationAction(ISD::SRL,  VT, Expand);
366     setOperationAction(ISD::ROTL, VT, Expand);
367     setOperationAction(ISD::ROTR, VT, Expand);
368     setOperationAction(ISD::SUB,  VT, Expand);
369     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
370     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
371     setOperationAction(ISD::SDIV, VT, Expand);
372     setOperationAction(ISD::UDIV, VT, Expand);
373     setOperationAction(ISD::SREM, VT, Expand);
374     setOperationAction(ISD::UREM, VT, Expand);
375     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
376     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
377     setOperationAction(ISD::SDIVREM, VT, Custom);
378     setOperationAction(ISD::UDIVREM, VT, Expand);
379     setOperationAction(ISD::ADDC, VT, Expand);
380     setOperationAction(ISD::SUBC, VT, Expand);
381     setOperationAction(ISD::ADDE, VT, Expand);
382     setOperationAction(ISD::SUBE, VT, Expand);
383     setOperationAction(ISD::SELECT, VT, Expand);
384     setOperationAction(ISD::VSELECT, VT, Expand);
385     setOperationAction(ISD::SELECT_CC, VT, Expand);
386     setOperationAction(ISD::XOR,  VT, Expand);
387     setOperationAction(ISD::BSWAP, VT, Expand);
388     setOperationAction(ISD::CTPOP, VT, Expand);
389     setOperationAction(ISD::CTTZ, VT, Expand);
390     setOperationAction(ISD::CTLZ, VT, Expand);
391     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
392   }
393 
394   static const MVT::SimpleValueType FloatVectorTypes[] = {
395     MVT::v2f32, MVT::v4f32
396   };
397 
398   for (MVT VT : FloatVectorTypes) {
399     setOperationAction(ISD::FABS, VT, Expand);
400     setOperationAction(ISD::FMINNUM, VT, Expand);
401     setOperationAction(ISD::FMAXNUM, VT, Expand);
402     setOperationAction(ISD::FADD, VT, Expand);
403     setOperationAction(ISD::FCEIL, VT, Expand);
404     setOperationAction(ISD::FCOS, VT, Expand);
405     setOperationAction(ISD::FDIV, VT, Expand);
406     setOperationAction(ISD::FEXP2, VT, Expand);
407     setOperationAction(ISD::FLOG2, VT, Expand);
408     setOperationAction(ISD::FREM, VT, Expand);
409     setOperationAction(ISD::FPOW, VT, Expand);
410     setOperationAction(ISD::FFLOOR, VT, Expand);
411     setOperationAction(ISD::FTRUNC, VT, Expand);
412     setOperationAction(ISD::FMUL, VT, Expand);
413     setOperationAction(ISD::FMA, VT, Expand);
414     setOperationAction(ISD::FRINT, VT, Expand);
415     setOperationAction(ISD::FNEARBYINT, VT, Expand);
416     setOperationAction(ISD::FSQRT, VT, Expand);
417     setOperationAction(ISD::FSIN, VT, Expand);
418     setOperationAction(ISD::FSUB, VT, Expand);
419     setOperationAction(ISD::FNEG, VT, Expand);
420     setOperationAction(ISD::VSELECT, VT, Expand);
421     setOperationAction(ISD::SELECT_CC, VT, Expand);
422     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
423     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
424   }
425 
426   // This causes using an unrolled select operation rather than expansion with
427   // bit operations. This is in general better, but the alternative using BFI
428   // instructions may be better if the select sources are SGPRs.
429   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
430   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
431 
432   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
433   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
434 
435   setBooleanContents(ZeroOrNegativeOneBooleanContent);
436   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
437 
438   setSchedulingPreference(Sched::RegPressure);
439   setJumpIsExpensive(true);
440 
441   // SI at least has hardware support for floating point exceptions, but no way
442   // of using or handling them is implemented. They are also optional in OpenCL
443   // (Section 7.3)
444   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
445 
446   setSelectIsExpensive(false);
447   PredictableSelectIsExpensive = false;
448 
449   setFsqrtIsCheap(true);
450 
451   // We want to find all load dependencies for long chains of stores to enable
452   // merging into very wide vectors. The problem is with vectors with > 4
453   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
454   // vectors are a legal type, even though we have to split the loads
455   // usually. When we can more precisely specify load legality per address
456   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
457   // smarter so that they can figure out what to do in 2 iterations without all
458   // N > 4 stores on the same chain.
459   GatherAllAliasesMaxDepth = 16;
460 
461   // FIXME: Need to really handle these.
462   MaxStoresPerMemcpy  = 4096;
463   MaxStoresPerMemmove = 4096;
464   MaxStoresPerMemset  = 4096;
465 
466   setTargetDAGCombine(ISD::BITCAST);
467   setTargetDAGCombine(ISD::AND);
468   setTargetDAGCombine(ISD::SHL);
469   setTargetDAGCombine(ISD::SRA);
470   setTargetDAGCombine(ISD::SRL);
471   setTargetDAGCombine(ISD::MUL);
472   setTargetDAGCombine(ISD::SELECT);
473   setTargetDAGCombine(ISD::SELECT_CC);
474   setTargetDAGCombine(ISD::STORE);
475   setTargetDAGCombine(ISD::FADD);
476   setTargetDAGCombine(ISD::FSUB);
477 }
478 
479 //===----------------------------------------------------------------------===//
480 // Target Information
481 //===----------------------------------------------------------------------===//
482 
483 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
484   return MVT::i32;
485 }
486 
487 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
488   return true;
489 }
490 
491 // The backend supports 32 and 64 bit floating point immediates.
492 // FIXME: Why are we reporting vectors of FP immediates as legal?
493 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
494   EVT ScalarVT = VT.getScalarType();
495   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
496 }
497 
498 // We don't want to shrink f64 / f32 constants.
499 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
500   EVT ScalarVT = VT.getScalarType();
501   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
502 }
503 
504 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
505                                                  ISD::LoadExtType,
506                                                  EVT NewVT) const {
507 
508   unsigned NewSize = NewVT.getStoreSizeInBits();
509 
510   // If we are reducing to a 32-bit load, this is always better.
511   if (NewSize == 32)
512     return true;
513 
514   EVT OldVT = N->getValueType(0);
515   unsigned OldSize = OldVT.getStoreSizeInBits();
516 
517   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
518   // extloads, so doing one requires using a buffer_load. In cases where we
519   // still couldn't use a scalar load, using the wider load shouldn't really
520   // hurt anything.
521 
522   // If the old size already had to be an extload, there's no harm in continuing
523   // to reduce the width.
524   return (OldSize < 32);
525 }
526 
527 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
528                                                    EVT CastTy) const {
529 
530   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
531 
532   if (LoadTy.getScalarType() == MVT::i32)
533     return false;
534 
535   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
536   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
537 
538   return (LScalarSize < CastScalarSize) ||
539          (CastScalarSize >= 32);
540 }
541 
542 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
543 // profitable with the expansion for 64-bit since it's generally good to
544 // speculate things.
545 // FIXME: These should really have the size as a parameter.
546 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
547   return true;
548 }
549 
550 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
551   return true;
552 }
553 
554 //===---------------------------------------------------------------------===//
555 // Target Properties
556 //===---------------------------------------------------------------------===//
557 
558 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
559   assert(VT.isFloatingPoint());
560   return VT == MVT::f32 || VT == MVT::f64;
561 }
562 
563 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
564   assert(VT.isFloatingPoint());
565   return VT == MVT::f32 || VT == MVT::f64;
566 }
567 
568 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
569                                                          unsigned NumElem,
570                                                          unsigned AS) const {
571   return true;
572 }
573 
574 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
575   // There are few operations which truly have vector input operands. Any vector
576   // operation is going to involve operations on each component, and a
577   // build_vector will be a copy per element, so it always makes sense to use a
578   // build_vector input in place of the extracted element to avoid a copy into a
579   // super register.
580   //
581   // We should probably only do this if all users are extracts only, but this
582   // should be the common case.
583   return true;
584 }
585 
586 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
587   // Truncate is just accessing a subregister.
588   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
589 }
590 
591 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
592   // Truncate is just accessing a subregister.
593   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
594          (Dest->getPrimitiveSizeInBits() % 32 == 0);
595 }
596 
597 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
598   unsigned SrcSize = Src->getScalarSizeInBits();
599   unsigned DestSize = Dest->getScalarSizeInBits();
600 
601   return SrcSize == 32 && DestSize == 64;
602 }
603 
604 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
605   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
606   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
607   // this will enable reducing 64-bit operations the 32-bit, which is always
608   // good.
609   return Src == MVT::i32 && Dest == MVT::i64;
610 }
611 
612 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
613   return isZExtFree(Val.getValueType(), VT2);
614 }
615 
616 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
617   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
618   // limited number of native 64-bit operations. Shrinking an operation to fit
619   // in a single 32-bit register should always be helpful. As currently used,
620   // this is much less general than the name suggests, and is only used in
621   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
622   // not profitable, and may actually be harmful.
623   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
624 }
625 
626 //===---------------------------------------------------------------------===//
627 // TargetLowering Callbacks
628 //===---------------------------------------------------------------------===//
629 
630 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
631                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
632 
633   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
634 }
635 
636 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
637                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
638 
639   State.AnalyzeReturn(Outs, RetCC_SI);
640 }
641 
642 SDValue
643 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
644                                   bool isVarArg,
645                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
646                                   const SmallVectorImpl<SDValue> &OutVals,
647                                   const SDLoc &DL, SelectionDAG &DAG) const {
648   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
649 }
650 
651 //===---------------------------------------------------------------------===//
652 // Target specific lowering
653 //===---------------------------------------------------------------------===//
654 
655 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
656                                         SmallVectorImpl<SDValue> &InVals) const {
657   SDValue Callee = CLI.Callee;
658   SelectionDAG &DAG = CLI.DAG;
659 
660   const Function &Fn = *DAG.getMachineFunction().getFunction();
661 
662   StringRef FuncName("<unknown>");
663 
664   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
665     FuncName = G->getSymbol();
666   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
667     FuncName = G->getGlobal()->getName();
668 
669   DiagnosticInfoUnsupported NoCalls(
670       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
671   DAG.getContext()->diagnose(NoCalls);
672 
673   for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
674     InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
675 
676   return DAG.getEntryNode();
677 }
678 
679 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
680                                                       SelectionDAG &DAG) const {
681   const Function &Fn = *DAG.getMachineFunction().getFunction();
682 
683   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
684                                             SDLoc(Op).getDebugLoc());
685   DAG.getContext()->diagnose(NoDynamicAlloca);
686   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
687   return DAG.getMergeValues(Ops, SDLoc());
688 }
689 
690 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
691                                              SelectionDAG &DAG) const {
692   switch (Op.getOpcode()) {
693   default:
694     Op->dump(&DAG);
695     llvm_unreachable("Custom lowering code for this"
696                      "instruction is not implemented yet!");
697     break;
698   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
699   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
700   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
701   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
702   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
703   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
704   case ISD::FREM: return LowerFREM(Op, DAG);
705   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
706   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
707   case ISD::FRINT: return LowerFRINT(Op, DAG);
708   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
709   case ISD::FROUND: return LowerFROUND(Op, DAG);
710   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
711   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
712   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
713   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
714   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
715   case ISD::CTLZ:
716   case ISD::CTLZ_ZERO_UNDEF:
717     return LowerCTLZ(Op, DAG);
718   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
719   }
720   return Op;
721 }
722 
723 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
724                                               SmallVectorImpl<SDValue> &Results,
725                                               SelectionDAG &DAG) const {
726   switch (N->getOpcode()) {
727   case ISD::SIGN_EXTEND_INREG:
728     // Different parts of legalization seem to interpret which type of
729     // sign_extend_inreg is the one to check for custom lowering. The extended
730     // from type is what really matters, but some places check for custom
731     // lowering of the result type. This results in trying to use
732     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
733     // nothing here and let the illegal result integer be handled normally.
734     return;
735   default:
736     return;
737   }
738 }
739 
740 static bool hasDefinedInitializer(const GlobalValue *GV) {
741   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
742   if (!GVar || !GVar->hasInitializer())
743     return false;
744 
745   return !isa<UndefValue>(GVar->getInitializer());
746 }
747 
748 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
749                                                  SDValue Op,
750                                                  SelectionDAG &DAG) const {
751 
752   const DataLayout &DL = DAG.getDataLayout();
753   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
754   const GlobalValue *GV = G->getGlobal();
755 
756   switch (G->getAddressSpace()) {
757   case AMDGPUAS::LOCAL_ADDRESS: {
758     // XXX: What does the value of G->getOffset() mean?
759     assert(G->getOffset() == 0 &&
760          "Do not know what to do with an non-zero offset");
761 
762     // TODO: We could emit code to handle the initialization somewhere.
763     if (hasDefinedInitializer(GV))
764       break;
765 
766     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
767     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
768   }
769   }
770 
771   const Function &Fn = *DAG.getMachineFunction().getFunction();
772   DiagnosticInfoUnsupported BadInit(
773       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
774   DAG.getContext()->diagnose(BadInit);
775   return SDValue();
776 }
777 
778 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
779                                                   SelectionDAG &DAG) const {
780   SmallVector<SDValue, 8> Args;
781 
782   for (const SDUse &U : Op->ops())
783     DAG.ExtractVectorElements(U.get(), Args);
784 
785   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
786 }
787 
788 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
789                                                      SelectionDAG &DAG) const {
790 
791   SmallVector<SDValue, 8> Args;
792   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
793   EVT VT = Op.getValueType();
794   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
795                             VT.getVectorNumElements());
796 
797   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
798 }
799 
800 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
801     SelectionDAG &DAG) const {
802   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
803   SDLoc DL(Op);
804   EVT VT = Op.getValueType();
805 
806   switch (IntrinsicID) {
807     default: return Op;
808     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
809       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
810                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
811 
812     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
813       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
814                          Op.getOperand(1),
815                          Op.getOperand(2),
816                          Op.getOperand(3));
817 
818     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
819       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
820                          Op.getOperand(1),
821                          Op.getOperand(2),
822                          Op.getOperand(3));
823   }
824 }
825 
826 /// \brief Generate Min/Max node
827 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
828                                                    SDValue LHS, SDValue RHS,
829                                                    SDValue True, SDValue False,
830                                                    SDValue CC,
831                                                    DAGCombinerInfo &DCI) const {
832   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
833     return SDValue();
834 
835   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
836     return SDValue();
837 
838   SelectionDAG &DAG = DCI.DAG;
839   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
840   switch (CCOpcode) {
841   case ISD::SETOEQ:
842   case ISD::SETONE:
843   case ISD::SETUNE:
844   case ISD::SETNE:
845   case ISD::SETUEQ:
846   case ISD::SETEQ:
847   case ISD::SETFALSE:
848   case ISD::SETFALSE2:
849   case ISD::SETTRUE:
850   case ISD::SETTRUE2:
851   case ISD::SETUO:
852   case ISD::SETO:
853     break;
854   case ISD::SETULE:
855   case ISD::SETULT: {
856     if (LHS == True)
857       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
858     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
859   }
860   case ISD::SETOLE:
861   case ISD::SETOLT:
862   case ISD::SETLE:
863   case ISD::SETLT: {
864     // Ordered. Assume ordered for undefined.
865 
866     // Only do this after legalization to avoid interfering with other combines
867     // which might occur.
868     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
869         !DCI.isCalledByLegalizer())
870       return SDValue();
871 
872     // We need to permute the operands to get the correct NaN behavior. The
873     // selected operand is the second one based on the failing compare with NaN,
874     // so permute it based on the compare type the hardware uses.
875     if (LHS == True)
876       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
877     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
878   }
879   case ISD::SETUGE:
880   case ISD::SETUGT: {
881     if (LHS == True)
882       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
883     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
884   }
885   case ISD::SETGT:
886   case ISD::SETGE:
887   case ISD::SETOGE:
888   case ISD::SETOGT: {
889     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
890         !DCI.isCalledByLegalizer())
891       return SDValue();
892 
893     if (LHS == True)
894       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
895     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
896   }
897   case ISD::SETCC_INVALID:
898     llvm_unreachable("Invalid setcc condcode!");
899   }
900   return SDValue();
901 }
902 
903 std::pair<SDValue, SDValue>
904 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
905   SDLoc SL(Op);
906 
907   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
908 
909   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
910   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
911 
912   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
913   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
914 
915   return std::make_pair(Lo, Hi);
916 }
917 
918 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
919   SDLoc SL(Op);
920 
921   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
922   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
923   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
924 }
925 
926 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
927   SDLoc SL(Op);
928 
929   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
930   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
931   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
932 }
933 
934 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
935                                               SelectionDAG &DAG) const {
936   LoadSDNode *Load = cast<LoadSDNode>(Op);
937   EVT VT = Op.getValueType();
938 
939 
940   // If this is a 2 element vector, we really want to scalarize and not create
941   // weird 1 element vectors.
942   if (VT.getVectorNumElements() == 2)
943     return scalarizeVectorLoad(Load, DAG);
944 
945   SDValue BasePtr = Load->getBasePtr();
946   EVT PtrVT = BasePtr.getValueType();
947   EVT MemVT = Load->getMemoryVT();
948   SDLoc SL(Op);
949 
950   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
951 
952   EVT LoVT, HiVT;
953   EVT LoMemVT, HiMemVT;
954   SDValue Lo, Hi;
955 
956   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
957   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
958   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
959 
960   unsigned Size = LoMemVT.getStoreSize();
961   unsigned BaseAlign = Load->getAlignment();
962   unsigned HiAlign = MinAlign(BaseAlign, Size);
963 
964   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
965                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
966                                   BaseAlign, Load->getMemOperand()->getFlags());
967   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
968                               DAG.getConstant(Size, SL, PtrVT));
969   SDValue HiLoad =
970       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
971                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
972                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
973 
974   SDValue Ops[] = {
975     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
976     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
977                 LoLoad.getValue(1), HiLoad.getValue(1))
978   };
979 
980   return DAG.getMergeValues(Ops, SL);
981 }
982 
983 // FIXME: This isn't doing anything for SI. This should be used in a target
984 // combine during type legalization.
985 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
986                                                SelectionDAG &DAG) const {
987   StoreSDNode *Store = cast<StoreSDNode>(Op);
988   EVT MemVT = Store->getMemoryVT();
989   unsigned MemBits = MemVT.getSizeInBits();
990 
991   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
992   // truncating store into an i32 store.
993   // XXX: We could also handle optimize other vector bitwidths.
994   if (!MemVT.isVector() || MemBits > 32) {
995     return SDValue();
996   }
997 
998   SDLoc DL(Op);
999   SDValue Value = Store->getValue();
1000   EVT VT = Value.getValueType();
1001   EVT ElemVT = VT.getVectorElementType();
1002   SDValue Ptr = Store->getBasePtr();
1003   EVT MemEltVT = MemVT.getVectorElementType();
1004   unsigned MemEltBits = MemEltVT.getSizeInBits();
1005   unsigned MemNumElements = MemVT.getVectorNumElements();
1006   unsigned PackedSize = MemVT.getStoreSizeInBits();
1007   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
1008 
1009   assert(Value.getValueType().getScalarSizeInBits() >= 32);
1010 
1011   SDValue PackedValue;
1012   for (unsigned i = 0; i < MemNumElements; ++i) {
1013     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1014                               DAG.getConstant(i, DL, MVT::i32));
1015     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1016     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1017 
1018     SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
1019     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1020 
1021     if (i == 0) {
1022       PackedValue = Elt;
1023     } else {
1024       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1025     }
1026   }
1027 
1028   if (PackedSize < 32) {
1029     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1030     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1031                              Store->getMemOperand()->getPointerInfo(), PackedVT,
1032                              Store->getAlignment(),
1033                              Store->getMemOperand()->getFlags());
1034   }
1035 
1036   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1037                       Store->getMemOperand()->getPointerInfo(),
1038                       Store->getAlignment(),
1039                       Store->getMemOperand()->getFlags());
1040 }
1041 
1042 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1043                                                SelectionDAG &DAG) const {
1044   StoreSDNode *Store = cast<StoreSDNode>(Op);
1045   SDValue Val = Store->getValue();
1046   EVT VT = Val.getValueType();
1047 
1048   // If this is a 2 element vector, we really want to scalarize and not create
1049   // weird 1 element vectors.
1050   if (VT.getVectorNumElements() == 2)
1051     return scalarizeVectorStore(Store, DAG);
1052 
1053   EVT MemVT = Store->getMemoryVT();
1054   SDValue Chain = Store->getChain();
1055   SDValue BasePtr = Store->getBasePtr();
1056   SDLoc SL(Op);
1057 
1058   EVT LoVT, HiVT;
1059   EVT LoMemVT, HiMemVT;
1060   SDValue Lo, Hi;
1061 
1062   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1063   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1064   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1065 
1066   EVT PtrVT = BasePtr.getValueType();
1067   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1068                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1069                                               PtrVT));
1070 
1071   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1072   unsigned BaseAlign = Store->getAlignment();
1073   unsigned Size = LoMemVT.getStoreSize();
1074   unsigned HiAlign = MinAlign(BaseAlign, Size);
1075 
1076   SDValue LoStore =
1077       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1078                         Store->getMemOperand()->getFlags());
1079   SDValue HiStore =
1080       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1081                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1082 
1083   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1084 }
1085 
1086 // This is a shortcut for integer division because we have fast i32<->f32
1087 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1088 // float is enough to accurately represent up to a 24-bit signed integer.
1089 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1090                                             bool Sign) const {
1091   SDLoc DL(Op);
1092   EVT VT = Op.getValueType();
1093   SDValue LHS = Op.getOperand(0);
1094   SDValue RHS = Op.getOperand(1);
1095   MVT IntVT = MVT::i32;
1096   MVT FltVT = MVT::f32;
1097 
1098   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1099   if (LHSSignBits < 9)
1100     return SDValue();
1101 
1102   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1103   if (RHSSignBits < 9)
1104     return SDValue();
1105 
1106   unsigned BitSize = VT.getSizeInBits();
1107   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1108   unsigned DivBits = BitSize - SignBits;
1109   if (Sign)
1110     ++DivBits;
1111 
1112   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1113   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1114 
1115   SDValue jq = DAG.getConstant(1, DL, IntVT);
1116 
1117   if (Sign) {
1118     // char|short jq = ia ^ ib;
1119     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1120 
1121     // jq = jq >> (bitsize - 2)
1122     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1123                      DAG.getConstant(BitSize - 2, DL, VT));
1124 
1125     // jq = jq | 0x1
1126     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1127   }
1128 
1129   // int ia = (int)LHS;
1130   SDValue ia = LHS;
1131 
1132   // int ib, (int)RHS;
1133   SDValue ib = RHS;
1134 
1135   // float fa = (float)ia;
1136   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1137 
1138   // float fb = (float)ib;
1139   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1140 
1141   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1142                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1143 
1144   // fq = trunc(fq);
1145   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1146 
1147   // float fqneg = -fq;
1148   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1149 
1150   // float fr = mad(fqneg, fb, fa);
1151   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1152 
1153   // int iq = (int)fq;
1154   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1155 
1156   // fr = fabs(fr);
1157   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1158 
1159   // fb = fabs(fb);
1160   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1161 
1162   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1163 
1164   // int cv = fr >= fb;
1165   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1166 
1167   // jq = (cv ? jq : 0);
1168   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1169 
1170   // dst = iq + jq;
1171   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1172 
1173   // Rem needs compensation, it's easier to recompute it
1174   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1175   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1176 
1177   // Truncate to number of bits this divide really is.
1178   if (Sign) {
1179     SDValue InRegSize
1180       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1181     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1182     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1183   } else {
1184     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1185     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1186     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1187   }
1188 
1189   return DAG.getMergeValues({ Div, Rem }, DL);
1190 }
1191 
1192 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1193                                       SelectionDAG &DAG,
1194                                       SmallVectorImpl<SDValue> &Results) const {
1195   assert(Op.getValueType() == MVT::i64);
1196 
1197   SDLoc DL(Op);
1198   EVT VT = Op.getValueType();
1199   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1200 
1201   SDValue one = DAG.getConstant(1, DL, HalfVT);
1202   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1203 
1204   //HiLo split
1205   SDValue LHS = Op.getOperand(0);
1206   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1207   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1208 
1209   SDValue RHS = Op.getOperand(1);
1210   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1211   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1212 
1213   if (VT == MVT::i64 &&
1214     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1215     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1216 
1217     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1218                               LHS_Lo, RHS_Lo);
1219 
1220     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1221     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1222 
1223     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1224     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1225     return;
1226   }
1227 
1228   // Get Speculative values
1229   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1230   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1231 
1232   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1233   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1234   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1235 
1236   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1237   SDValue DIV_Lo = zero;
1238 
1239   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1240 
1241   for (unsigned i = 0; i < halfBitWidth; ++i) {
1242     const unsigned bitPos = halfBitWidth - i - 1;
1243     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1244     // Get value of high bit
1245     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1246     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1247     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1248 
1249     // Shift
1250     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1251     // Add LHS high bit
1252     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1253 
1254     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1255     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1256 
1257     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1258 
1259     // Update REM
1260     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1261     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1262   }
1263 
1264   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1265   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1266   Results.push_back(DIV);
1267   Results.push_back(REM);
1268 }
1269 
1270 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1271                                            SelectionDAG &DAG) const {
1272   SDLoc DL(Op);
1273   EVT VT = Op.getValueType();
1274 
1275   if (VT == MVT::i64) {
1276     SmallVector<SDValue, 2> Results;
1277     LowerUDIVREM64(Op, DAG, Results);
1278     return DAG.getMergeValues(Results, DL);
1279   }
1280 
1281   if (VT == MVT::i32) {
1282     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1283       return Res;
1284   }
1285 
1286   SDValue Num = Op.getOperand(0);
1287   SDValue Den = Op.getOperand(1);
1288 
1289   // RCP =  URECIP(Den) = 2^32 / Den + e
1290   // e is rounding error.
1291   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1292 
1293   // RCP_LO = mul(RCP, Den) */
1294   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1295 
1296   // RCP_HI = mulhu (RCP, Den) */
1297   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1298 
1299   // NEG_RCP_LO = -RCP_LO
1300   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1301                                                      RCP_LO);
1302 
1303   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1304   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1305                                            NEG_RCP_LO, RCP_LO,
1306                                            ISD::SETEQ);
1307   // Calculate the rounding error from the URECIP instruction
1308   // E = mulhu(ABS_RCP_LO, RCP)
1309   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1310 
1311   // RCP_A_E = RCP + E
1312   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1313 
1314   // RCP_S_E = RCP - E
1315   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1316 
1317   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1318   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1319                                      RCP_A_E, RCP_S_E,
1320                                      ISD::SETEQ);
1321   // Quotient = mulhu(Tmp0, Num)
1322   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1323 
1324   // Num_S_Remainder = Quotient * Den
1325   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1326 
1327   // Remainder = Num - Num_S_Remainder
1328   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1329 
1330   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1331   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1332                                                  DAG.getConstant(-1, DL, VT),
1333                                                  DAG.getConstant(0, DL, VT),
1334                                                  ISD::SETUGE);
1335   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1336   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1337                                                   Num_S_Remainder,
1338                                                   DAG.getConstant(-1, DL, VT),
1339                                                   DAG.getConstant(0, DL, VT),
1340                                                   ISD::SETUGE);
1341   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1342   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1343                                                Remainder_GE_Zero);
1344 
1345   // Calculate Division result:
1346 
1347   // Quotient_A_One = Quotient + 1
1348   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1349                                        DAG.getConstant(1, DL, VT));
1350 
1351   // Quotient_S_One = Quotient - 1
1352   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1353                                        DAG.getConstant(1, DL, VT));
1354 
1355   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1356   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1357                                      Quotient, Quotient_A_One, ISD::SETEQ);
1358 
1359   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1360   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1361                             Quotient_S_One, Div, ISD::SETEQ);
1362 
1363   // Calculate Rem result:
1364 
1365   // Remainder_S_Den = Remainder - Den
1366   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1367 
1368   // Remainder_A_Den = Remainder + Den
1369   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1370 
1371   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1372   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1373                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1374 
1375   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1376   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1377                             Remainder_A_Den, Rem, ISD::SETEQ);
1378   SDValue Ops[2] = {
1379     Div,
1380     Rem
1381   };
1382   return DAG.getMergeValues(Ops, DL);
1383 }
1384 
1385 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1386                                            SelectionDAG &DAG) const {
1387   SDLoc DL(Op);
1388   EVT VT = Op.getValueType();
1389 
1390   SDValue LHS = Op.getOperand(0);
1391   SDValue RHS = Op.getOperand(1);
1392 
1393   SDValue Zero = DAG.getConstant(0, DL, VT);
1394   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1395 
1396   if (VT == MVT::i32) {
1397     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1398       return Res;
1399   }
1400 
1401   if (VT == MVT::i64 &&
1402       DAG.ComputeNumSignBits(LHS) > 32 &&
1403       DAG.ComputeNumSignBits(RHS) > 32) {
1404     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1405 
1406     //HiLo split
1407     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1408     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1409     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1410                                  LHS_Lo, RHS_Lo);
1411     SDValue Res[2] = {
1412       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1413       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1414     };
1415     return DAG.getMergeValues(Res, DL);
1416   }
1417 
1418   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1419   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1420   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1421   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1422 
1423   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1424   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1425 
1426   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1427   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1428 
1429   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1430   SDValue Rem = Div.getValue(1);
1431 
1432   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1433   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1434 
1435   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1436   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1437 
1438   SDValue Res[2] = {
1439     Div,
1440     Rem
1441   };
1442   return DAG.getMergeValues(Res, DL);
1443 }
1444 
1445 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1446 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1447   SDLoc SL(Op);
1448   EVT VT = Op.getValueType();
1449   SDValue X = Op.getOperand(0);
1450   SDValue Y = Op.getOperand(1);
1451 
1452   // TODO: Should this propagate fast-math-flags?
1453 
1454   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1455   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1456   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1457 
1458   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1459 }
1460 
1461 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1462   SDLoc SL(Op);
1463   SDValue Src = Op.getOperand(0);
1464 
1465   // result = trunc(src)
1466   // if (src > 0.0 && src != result)
1467   //   result += 1.0
1468 
1469   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1470 
1471   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1472   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1473 
1474   EVT SetCCVT =
1475       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1476 
1477   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1478   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1479   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1480 
1481   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1482   // TODO: Should this propagate fast-math-flags?
1483   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1484 }
1485 
1486 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1487                                   SelectionDAG &DAG) {
1488   const unsigned FractBits = 52;
1489   const unsigned ExpBits = 11;
1490 
1491   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1492                                 Hi,
1493                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1494                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1495   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1496                             DAG.getConstant(1023, SL, MVT::i32));
1497 
1498   return Exp;
1499 }
1500 
1501 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1502   SDLoc SL(Op);
1503   SDValue Src = Op.getOperand(0);
1504 
1505   assert(Op.getValueType() == MVT::f64);
1506 
1507   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1508   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1509 
1510   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1511 
1512   // Extract the upper half, since this is where we will find the sign and
1513   // exponent.
1514   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1515 
1516   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1517 
1518   const unsigned FractBits = 52;
1519 
1520   // Extract the sign bit.
1521   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1522   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1523 
1524   // Extend back to to 64-bits.
1525   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1526   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1527 
1528   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1529   const SDValue FractMask
1530     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1531 
1532   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1533   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1534   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1535 
1536   EVT SetCCVT =
1537       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1538 
1539   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1540 
1541   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1542   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1543 
1544   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1545   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1546 
1547   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1548 }
1549 
1550 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1551   SDLoc SL(Op);
1552   SDValue Src = Op.getOperand(0);
1553 
1554   assert(Op.getValueType() == MVT::f64);
1555 
1556   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1557   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1558   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1559 
1560   // TODO: Should this propagate fast-math-flags?
1561 
1562   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1563   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1564 
1565   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1566 
1567   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1568   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1569 
1570   EVT SetCCVT =
1571       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1572   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1573 
1574   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1575 }
1576 
1577 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1578   // FNEARBYINT and FRINT are the same, except in their handling of FP
1579   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1580   // rint, so just treat them as equivalent.
1581   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1582 }
1583 
1584 // XXX - May require not supporting f32 denormals?
1585 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1586   SDLoc SL(Op);
1587   SDValue X = Op.getOperand(0);
1588 
1589   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1590 
1591   // TODO: Should this propagate fast-math-flags?
1592 
1593   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1594 
1595   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1596 
1597   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1598   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1599   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1600 
1601   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1602 
1603   EVT SetCCVT =
1604       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1605 
1606   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1607 
1608   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1609 
1610   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1611 }
1612 
1613 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1614   SDLoc SL(Op);
1615   SDValue X = Op.getOperand(0);
1616 
1617   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1618 
1619   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1620   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1621   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1622   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1623   EVT SetCCVT =
1624       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1625 
1626   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1627 
1628   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1629 
1630   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1631 
1632   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1633                                        MVT::i64);
1634 
1635   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1636   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1637                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1638                                           MVT::i64),
1639                           Exp);
1640 
1641   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1642   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1643                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1644                               ISD::SETNE);
1645 
1646   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1647                              D, DAG.getConstant(0, SL, MVT::i64));
1648   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1649 
1650   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1651   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1652 
1653   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1654   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1655   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1656 
1657   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1658                             ExpEqNegOne,
1659                             DAG.getConstantFP(1.0, SL, MVT::f64),
1660                             DAG.getConstantFP(0.0, SL, MVT::f64));
1661 
1662   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1663 
1664   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1665   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1666 
1667   return K;
1668 }
1669 
1670 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1671   EVT VT = Op.getValueType();
1672 
1673   if (VT == MVT::f32)
1674     return LowerFROUND32(Op, DAG);
1675 
1676   if (VT == MVT::f64)
1677     return LowerFROUND64(Op, DAG);
1678 
1679   llvm_unreachable("unhandled type");
1680 }
1681 
1682 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1683   SDLoc SL(Op);
1684   SDValue Src = Op.getOperand(0);
1685 
1686   // result = trunc(src);
1687   // if (src < 0.0 && src != result)
1688   //   result += -1.0.
1689 
1690   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1691 
1692   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1693   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1694 
1695   EVT SetCCVT =
1696       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1697 
1698   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1699   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1700   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1701 
1702   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1703   // TODO: Should this propagate fast-math-flags?
1704   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1705 }
1706 
1707 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1708   SDLoc SL(Op);
1709   SDValue Src = Op.getOperand(0);
1710   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1711 
1712   if (ZeroUndef && Src.getValueType() == MVT::i32)
1713     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1714 
1715   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1716 
1717   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1718   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1719 
1720   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1721   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1722 
1723   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1724                                    *DAG.getContext(), MVT::i32);
1725 
1726   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1727 
1728   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1729   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1730 
1731   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1732   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1733 
1734   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1735   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1736 
1737   if (!ZeroUndef) {
1738     // Test if the full 64-bit input is zero.
1739 
1740     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1741     // which we probably don't want.
1742     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1743     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1744 
1745     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1746     // with the same cycles, otherwise it is slower.
1747     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1748     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1749 
1750     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1751 
1752     // The instruction returns -1 for 0 input, but the defined intrinsic
1753     // behavior is to return the number of bits.
1754     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1755                           SrcIsZero, Bits32, NewCtlz);
1756   }
1757 
1758   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1759 }
1760 
1761 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1762                                                bool Signed) const {
1763   // Unsigned
1764   // cul2f(ulong u)
1765   //{
1766   //  uint lz = clz(u);
1767   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1768   //  u = (u << lz) & 0x7fffffffffffffffUL;
1769   //  ulong t = u & 0xffffffffffUL;
1770   //  uint v = (e << 23) | (uint)(u >> 40);
1771   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1772   //  return as_float(v + r);
1773   //}
1774   // Signed
1775   // cl2f(long l)
1776   //{
1777   //  long s = l >> 63;
1778   //  float r = cul2f((l + s) ^ s);
1779   //  return s ? -r : r;
1780   //}
1781 
1782   SDLoc SL(Op);
1783   SDValue Src = Op.getOperand(0);
1784   SDValue L = Src;
1785 
1786   SDValue S;
1787   if (Signed) {
1788     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1789     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1790 
1791     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1792     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1793   }
1794 
1795   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1796                                    *DAG.getContext(), MVT::f32);
1797 
1798 
1799   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1800   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1801   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1802   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1803 
1804   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1805   SDValue E = DAG.getSelect(SL, MVT::i32,
1806     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1807     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1808     ZeroI32);
1809 
1810   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1811     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1812     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1813 
1814   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1815                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1816 
1817   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1818                              U, DAG.getConstant(40, SL, MVT::i64));
1819 
1820   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1821     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1822     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1823 
1824   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1825   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1826   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1827 
1828   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1829 
1830   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1831 
1832   SDValue R = DAG.getSelect(SL, MVT::i32,
1833     RCmp,
1834     One,
1835     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1836   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1837   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1838 
1839   if (!Signed)
1840     return R;
1841 
1842   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1843   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1844 }
1845 
1846 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1847                                                bool Signed) const {
1848   SDLoc SL(Op);
1849   SDValue Src = Op.getOperand(0);
1850 
1851   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1852 
1853   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1854                            DAG.getConstant(0, SL, MVT::i32));
1855   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1856                            DAG.getConstant(1, SL, MVT::i32));
1857 
1858   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
1859                               SL, MVT::f64, Hi);
1860 
1861   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
1862 
1863   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
1864                               DAG.getConstant(32, SL, MVT::i32));
1865   // TODO: Should this propagate fast-math-flags?
1866   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
1867 }
1868 
1869 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1870                                                SelectionDAG &DAG) const {
1871   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1872          "operation should be legal");
1873 
1874   EVT DestVT = Op.getValueType();
1875   if (DestVT == MVT::f64)
1876     return LowerINT_TO_FP64(Op, DAG, false);
1877 
1878   if (DestVT == MVT::f32)
1879     return LowerINT_TO_FP32(Op, DAG, false);
1880 
1881   return SDValue();
1882 }
1883 
1884 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
1885                                               SelectionDAG &DAG) const {
1886   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1887          "operation should be legal");
1888 
1889   EVT DestVT = Op.getValueType();
1890   if (DestVT == MVT::f32)
1891     return LowerINT_TO_FP32(Op, DAG, true);
1892 
1893   if (DestVT == MVT::f64)
1894     return LowerINT_TO_FP64(Op, DAG, true);
1895 
1896   return SDValue();
1897 }
1898 
1899 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
1900                                                bool Signed) const {
1901   SDLoc SL(Op);
1902 
1903   SDValue Src = Op.getOperand(0);
1904 
1905   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1906 
1907   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
1908                                  MVT::f64);
1909   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
1910                                  MVT::f64);
1911   // TODO: Should this propagate fast-math-flags?
1912   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
1913 
1914   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
1915 
1916 
1917   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
1918 
1919   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
1920                            MVT::i32, FloorMul);
1921   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
1922 
1923   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
1924 
1925   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
1926 }
1927 
1928 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
1929                                               SelectionDAG &DAG) const {
1930   SDValue Src = Op.getOperand(0);
1931 
1932   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1933     return LowerFP64_TO_INT(Op, DAG, true);
1934 
1935   return SDValue();
1936 }
1937 
1938 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
1939                                               SelectionDAG &DAG) const {
1940   SDValue Src = Op.getOperand(0);
1941 
1942   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1943     return LowerFP64_TO_INT(Op, DAG, false);
1944 
1945   return SDValue();
1946 }
1947 
1948 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1949                                                      SelectionDAG &DAG) const {
1950   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1951   MVT VT = Op.getSimpleValueType();
1952   MVT ScalarVT = VT.getScalarType();
1953 
1954   if (!VT.isVector())
1955     return SDValue();
1956 
1957   SDValue Src = Op.getOperand(0);
1958   SDLoc DL(Op);
1959 
1960   // TODO: Don't scalarize on Evergreen?
1961   unsigned NElts = VT.getVectorNumElements();
1962   SmallVector<SDValue, 8> Args;
1963   DAG.ExtractVectorElements(Src, Args, 0, NElts);
1964 
1965   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
1966   for (unsigned I = 0; I < NElts; ++I)
1967     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
1968 
1969   return DAG.getBuildVector(VT, DL, Args);
1970 }
1971 
1972 //===----------------------------------------------------------------------===//
1973 // Custom DAG optimizations
1974 //===----------------------------------------------------------------------===//
1975 
1976 static bool isU24(SDValue Op, SelectionDAG &DAG) {
1977   APInt KnownZero, KnownOne;
1978   EVT VT = Op.getValueType();
1979   DAG.computeKnownBits(Op, KnownZero, KnownOne);
1980 
1981   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
1982 }
1983 
1984 static bool isI24(SDValue Op, SelectionDAG &DAG) {
1985   EVT VT = Op.getValueType();
1986 
1987   // In order for this to be a signed 24-bit value, bit 23, must
1988   // be a sign bit.
1989   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
1990                                      // as unsigned 24-bit values.
1991          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
1992 }
1993 
1994 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
1995 
1996   SelectionDAG &DAG = DCI.DAG;
1997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1998   EVT VT = Op.getValueType();
1999 
2000   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2001   APInt KnownZero, KnownOne;
2002   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2003   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2004     DCI.CommitTargetLoweringOpt(TLO);
2005 }
2006 
2007 template <typename IntTy>
2008 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2009                                uint32_t Width, const SDLoc &DL) {
2010   if (Width + Offset < 32) {
2011     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2012     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2013     return DAG.getConstant(Result, DL, MVT::i32);
2014   }
2015 
2016   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2017 }
2018 
2019 static bool hasVolatileUser(SDNode *Val) {
2020   for (SDNode *U : Val->uses()) {
2021     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2022       if (M->isVolatile())
2023         return true;
2024     }
2025   }
2026 
2027   return false;
2028 }
2029 
2030 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2031   // i32 vectors are the canonical memory type.
2032   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2033     return false;
2034 
2035   if (!VT.isByteSized())
2036     return false;
2037 
2038   unsigned Size = VT.getStoreSize();
2039 
2040   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2041     return false;
2042 
2043   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2044     return false;
2045 
2046   return true;
2047 }
2048 
2049 // Replace load of an illegal type with a store of a bitcast to a friendlier
2050 // type.
2051 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2052                                                  DAGCombinerInfo &DCI) const {
2053   if (!DCI.isBeforeLegalize())
2054     return SDValue();
2055 
2056   LoadSDNode *LN = cast<LoadSDNode>(N);
2057   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2058     return SDValue();
2059 
2060   SDLoc SL(N);
2061   SelectionDAG &DAG = DCI.DAG;
2062   EVT VT = LN->getMemoryVT();
2063 
2064   unsigned Size = VT.getStoreSize();
2065   unsigned Align = LN->getAlignment();
2066   if (Align < Size && isTypeLegal(VT)) {
2067     bool IsFast;
2068     unsigned AS = LN->getAddressSpace();
2069 
2070     // Expand unaligned loads earlier than legalization. Due to visitation order
2071     // problems during legalization, the emitted instructions to pack and unpack
2072     // the bytes again are not eliminated in the case of an unaligned copy.
2073     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2074       SDValue Ops[2];
2075       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2076       return DAG.getMergeValues(Ops, SDLoc(N));
2077     }
2078 
2079     if (!IsFast)
2080       return SDValue();
2081   }
2082 
2083   if (!shouldCombineMemoryType(VT))
2084     return SDValue();
2085 
2086   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2087 
2088   SDValue NewLoad
2089     = DAG.getLoad(NewVT, SL, LN->getChain(),
2090                   LN->getBasePtr(), LN->getMemOperand());
2091 
2092   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2093   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2094   return SDValue(N, 0);
2095 }
2096 
2097 // Replace store of an illegal type with a store of a bitcast to a friendlier
2098 // type.
2099 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2100                                                   DAGCombinerInfo &DCI) const {
2101   if (!DCI.isBeforeLegalize())
2102     return SDValue();
2103 
2104   StoreSDNode *SN = cast<StoreSDNode>(N);
2105   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2106     return SDValue();
2107 
2108   EVT VT = SN->getMemoryVT();
2109   unsigned Size = VT.getStoreSize();
2110 
2111   SDLoc SL(N);
2112   SelectionDAG &DAG = DCI.DAG;
2113   unsigned Align = SN->getAlignment();
2114   if (Align < Size && isTypeLegal(VT)) {
2115     bool IsFast;
2116     unsigned AS = SN->getAddressSpace();
2117 
2118     // Expand unaligned stores earlier than legalization. Due to visitation
2119     // order problems during legalization, the emitted instructions to pack and
2120     // unpack the bytes again are not eliminated in the case of an unaligned
2121     // copy.
2122     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast))
2123       return expandUnalignedStore(SN, DAG);
2124 
2125     if (!IsFast)
2126       return SDValue();
2127   }
2128 
2129   if (!shouldCombineMemoryType(VT))
2130     return SDValue();
2131 
2132   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2133   SDValue Val = SN->getValue();
2134 
2135   //DCI.AddToWorklist(Val.getNode());
2136 
2137   bool OtherUses = !Val.hasOneUse();
2138   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2139   if (OtherUses) {
2140     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2141     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2142   }
2143 
2144   return DAG.getStore(SN->getChain(), SL, CastVal,
2145                       SN->getBasePtr(), SN->getMemOperand());
2146 }
2147 
2148 // TODO: Should repeat for other bit ops.
2149 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N,
2150                                                 DAGCombinerInfo &DCI) const {
2151   if (N->getValueType(0) != MVT::i64)
2152     return SDValue();
2153 
2154   // Break up 64-bit and of a constant into two 32-bit ands. This will typically
2155   // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer
2156   // combine opportunities since most 64-bit operations are decomposed this way.
2157   // TODO: We won't want this for SALU especially if it is an inline immediate.
2158   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2159   if (!RHS)
2160     return SDValue();
2161 
2162   uint64_t Val = RHS->getZExtValue();
2163   if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) {
2164     // If either half of the constant is 0, this is really a 32-bit and, so
2165     // split it. If we can re-use the full materialized constant, keep it.
2166     return SDValue();
2167   }
2168 
2169   SDLoc SL(N);
2170   SelectionDAG &DAG = DCI.DAG;
2171 
2172   SDValue Lo, Hi;
2173   std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG);
2174 
2175   SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32);
2176   SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32);
2177 
2178   SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS);
2179   SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS);
2180 
2181   // Re-visit the ands. It's possible we eliminated one of them and it could
2182   // simplify the vector.
2183   DCI.AddToWorklist(Lo.getNode());
2184   DCI.AddToWorklist(Hi.getNode());
2185 
2186   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2187   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2188 }
2189 
2190 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2191                                                 DAGCombinerInfo &DCI) const {
2192   if (N->getValueType(0) != MVT::i64)
2193     return SDValue();
2194 
2195   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2196 
2197   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2198   // common case, splitting this into a move and a 32-bit shift is faster and
2199   // the same code size.
2200   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2201   if (!RHS)
2202     return SDValue();
2203 
2204   unsigned RHSVal = RHS->getZExtValue();
2205   if (RHSVal < 32)
2206     return SDValue();
2207 
2208   SDValue LHS = N->getOperand(0);
2209 
2210   SDLoc SL(N);
2211   SelectionDAG &DAG = DCI.DAG;
2212 
2213   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2214 
2215   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2216   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2217 
2218   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2219 
2220   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2221   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2222 }
2223 
2224 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2225                                                 DAGCombinerInfo &DCI) const {
2226   if (N->getValueType(0) != MVT::i64)
2227     return SDValue();
2228 
2229   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2230   if (!RHS)
2231     return SDValue();
2232 
2233   SelectionDAG &DAG = DCI.DAG;
2234   SDLoc SL(N);
2235   unsigned RHSVal = RHS->getZExtValue();
2236 
2237   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2238   if (RHSVal == 32) {
2239     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2240     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2241                                    DAG.getConstant(31, SL, MVT::i32));
2242 
2243     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2244     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2245   }
2246 
2247   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2248   if (RHSVal == 63) {
2249     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2250     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2251                                    DAG.getConstant(31, SL, MVT::i32));
2252     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2253     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2254   }
2255 
2256   return SDValue();
2257 }
2258 
2259 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2260                                                 DAGCombinerInfo &DCI) const {
2261   if (N->getValueType(0) != MVT::i64)
2262     return SDValue();
2263 
2264   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2265   if (!RHS)
2266     return SDValue();
2267 
2268   unsigned ShiftAmt = RHS->getZExtValue();
2269   if (ShiftAmt < 32)
2270     return SDValue();
2271 
2272   // srl i64:x, C for C >= 32
2273   // =>
2274   //   build_pair (srl hi_32(x), C - 32), 0
2275 
2276   SelectionDAG &DAG = DCI.DAG;
2277   SDLoc SL(N);
2278 
2279   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2280   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2281 
2282   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2283   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2284                            VecOp, One);
2285 
2286   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2287   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2288 
2289   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2290 
2291   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2292 }
2293 
2294 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2295                                                 DAGCombinerInfo &DCI) const {
2296   EVT VT = N->getValueType(0);
2297 
2298   if (VT.isVector() || VT.getSizeInBits() > 32)
2299     return SDValue();
2300 
2301   SelectionDAG &DAG = DCI.DAG;
2302   SDLoc DL(N);
2303 
2304   SDValue N0 = N->getOperand(0);
2305   SDValue N1 = N->getOperand(1);
2306   SDValue Mul;
2307 
2308   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2309     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2310     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2311     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2312   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2313     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2314     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2315     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2316   } else {
2317     return SDValue();
2318   }
2319 
2320   // We need to use sext even for MUL_U24, because MUL_U24 is used
2321   // for signed multiply of 8 and 16-bit types.
2322   return DAG.getSExtOrTrunc(Mul, DL, VT);
2323 }
2324 
2325 static bool isNegativeOne(SDValue Val) {
2326   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2327     return C->isAllOnesValue();
2328   return false;
2329 }
2330 
2331 static bool isCtlzOpc(unsigned Opc) {
2332   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2333 }
2334 
2335 // Get FFBH node if the incoming op may have been type legalized from a smaller
2336 // type VT.
2337 // Need to match pre-legalized type because the generic legalization inserts the
2338 // add/sub between the select and compare.
2339 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG,
2340                            const SDLoc &SL, SDValue Op) {
2341   EVT VT = Op.getValueType();
2342   EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2343   if (LegalVT != MVT::i32)
2344     return SDValue();
2345 
2346   if (VT != MVT::i32)
2347     Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op);
2348 
2349   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op);
2350   if (VT != MVT::i32)
2351     FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH);
2352 
2353   return FFBH;
2354 }
2355 
2356 // The native instructions return -1 on 0 input. Optimize out a select that
2357 // produces -1 on 0.
2358 //
2359 // TODO: If zero is not undef, we could also do this if the output is compared
2360 // against the bitwidth.
2361 //
2362 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2363 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2364                                                  SDValue LHS, SDValue RHS,
2365                                                  DAGCombinerInfo &DCI) const {
2366   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2367   if (!CmpRhs || !CmpRhs->isNullValue())
2368     return SDValue();
2369 
2370   SelectionDAG &DAG = DCI.DAG;
2371   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2372   SDValue CmpLHS = Cond.getOperand(0);
2373 
2374   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2375   if (CCOpcode == ISD::SETEQ &&
2376       isCtlzOpc(RHS.getOpcode()) &&
2377       RHS.getOperand(0) == CmpLHS &&
2378       isNegativeOne(LHS)) {
2379     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2380   }
2381 
2382   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2383   if (CCOpcode == ISD::SETNE &&
2384       isCtlzOpc(LHS.getOpcode()) &&
2385       LHS.getOperand(0) == CmpLHS &&
2386       isNegativeOne(RHS)) {
2387     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2388   }
2389 
2390   return SDValue();
2391 }
2392 
2393 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2394                                                    DAGCombinerInfo &DCI) const {
2395   SDValue Cond = N->getOperand(0);
2396   if (Cond.getOpcode() != ISD::SETCC)
2397     return SDValue();
2398 
2399   EVT VT = N->getValueType(0);
2400   SDValue LHS = Cond.getOperand(0);
2401   SDValue RHS = Cond.getOperand(1);
2402   SDValue CC = Cond.getOperand(2);
2403 
2404   SDValue True = N->getOperand(1);
2405   SDValue False = N->getOperand(2);
2406 
2407   if (VT == MVT::f32 && Cond.hasOneUse()) {
2408     SDValue MinMax
2409       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2410     // Revisit this node so we can catch min3/max3/med3 patterns.
2411     //DCI.AddToWorklist(MinMax.getNode());
2412     return MinMax;
2413   }
2414 
2415   // There's no reason to not do this if the condition has other uses.
2416   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2417 }
2418 
2419 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2420                                                 DAGCombinerInfo &DCI) const {
2421   SelectionDAG &DAG = DCI.DAG;
2422   SDLoc DL(N);
2423 
2424   switch(N->getOpcode()) {
2425   default:
2426     break;
2427   case ISD::BITCAST: {
2428     EVT DestVT = N->getValueType(0);
2429     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
2430       break;
2431 
2432     // Fold bitcasts of constants.
2433     //
2434     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
2435     // TODO: Generalize and move to DAGCombiner
2436     SDValue Src = N->getOperand(0);
2437     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
2438       assert(Src.getValueType() == MVT::i64);
2439       SDLoc SL(N);
2440       uint64_t CVal = C->getZExtValue();
2441       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
2442                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2443                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2444     }
2445 
2446     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
2447       const APInt &Val = C->getValueAPF().bitcastToAPInt();
2448       SDLoc SL(N);
2449       uint64_t CVal = Val.getZExtValue();
2450       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2451                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2452                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2453 
2454       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
2455     }
2456 
2457     break;
2458   }
2459   case ISD::SHL: {
2460     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2461       break;
2462 
2463     return performShlCombine(N, DCI);
2464   }
2465   case ISD::SRL: {
2466     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2467       break;
2468 
2469     return performSrlCombine(N, DCI);
2470   }
2471   case ISD::SRA: {
2472     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2473       break;
2474 
2475     return performSraCombine(N, DCI);
2476   }
2477   case ISD::AND: {
2478     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2479       break;
2480 
2481     return performAndCombine(N, DCI);
2482   }
2483   case ISD::MUL:
2484     return performMulCombine(N, DCI);
2485   case AMDGPUISD::MUL_I24:
2486   case AMDGPUISD::MUL_U24: {
2487     SDValue N0 = N->getOperand(0);
2488     SDValue N1 = N->getOperand(1);
2489     simplifyI24(N0, DCI);
2490     simplifyI24(N1, DCI);
2491     return SDValue();
2492   }
2493   case ISD::SELECT:
2494     return performSelectCombine(N, DCI);
2495   case AMDGPUISD::BFE_I32:
2496   case AMDGPUISD::BFE_U32: {
2497     assert(!N->getValueType(0).isVector() &&
2498            "Vector handling of BFE not implemented");
2499     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2500     if (!Width)
2501       break;
2502 
2503     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2504     if (WidthVal == 0)
2505       return DAG.getConstant(0, DL, MVT::i32);
2506 
2507     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2508     if (!Offset)
2509       break;
2510 
2511     SDValue BitsFrom = N->getOperand(0);
2512     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2513 
2514     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2515 
2516     if (OffsetVal == 0) {
2517       // This is already sign / zero extended, so try to fold away extra BFEs.
2518       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2519 
2520       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2521       if (OpSignBits >= SignBits)
2522         return BitsFrom;
2523 
2524       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2525       if (Signed) {
2526         // This is a sign_extend_inreg. Replace it to take advantage of existing
2527         // DAG Combines. If not eliminated, we will match back to BFE during
2528         // selection.
2529 
2530         // TODO: The sext_inreg of extended types ends, although we can could
2531         // handle them in a single BFE.
2532         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2533                            DAG.getValueType(SmallVT));
2534       }
2535 
2536       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2537     }
2538 
2539     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2540       if (Signed) {
2541         return constantFoldBFE<int32_t>(DAG,
2542                                         CVal->getSExtValue(),
2543                                         OffsetVal,
2544                                         WidthVal,
2545                                         DL);
2546       }
2547 
2548       return constantFoldBFE<uint32_t>(DAG,
2549                                        CVal->getZExtValue(),
2550                                        OffsetVal,
2551                                        WidthVal,
2552                                        DL);
2553     }
2554 
2555     if ((OffsetVal + WidthVal) >= 32) {
2556       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2557       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2558                          BitsFrom, ShiftVal);
2559     }
2560 
2561     if (BitsFrom.hasOneUse()) {
2562       APInt Demanded = APInt::getBitsSet(32,
2563                                          OffsetVal,
2564                                          OffsetVal + WidthVal);
2565 
2566       APInt KnownZero, KnownOne;
2567       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2568                                             !DCI.isBeforeLegalizeOps());
2569       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2570       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2571           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2572                                    KnownZero, KnownOne, TLO)) {
2573         DCI.CommitTargetLoweringOpt(TLO);
2574       }
2575     }
2576 
2577     break;
2578   }
2579   case ISD::LOAD:
2580     return performLoadCombine(N, DCI);
2581   case ISD::STORE:
2582     return performStoreCombine(N, DCI);
2583   }
2584   return SDValue();
2585 }
2586 
2587 //===----------------------------------------------------------------------===//
2588 // Helper functions
2589 //===----------------------------------------------------------------------===//
2590 
2591 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2592                                SelectionDAG &DAG,
2593                                const Function *F,
2594                                const SmallVectorImpl<ISD::InputArg> &Ins,
2595                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2596 
2597   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2598     if (Ins[i].ArgVT == Ins[i].VT) {
2599       OrigIns.push_back(Ins[i]);
2600       continue;
2601     }
2602 
2603     EVT VT;
2604     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2605       // Vector has been split into scalars.
2606       VT = Ins[i].ArgVT.getVectorElementType();
2607     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2608                Ins[i].ArgVT.getVectorElementType() !=
2609                Ins[i].VT.getVectorElementType()) {
2610       // Vector elements have been promoted
2611       VT = Ins[i].ArgVT;
2612     } else {
2613       // Vector has been spilt into smaller vectors.
2614       VT = Ins[i].VT;
2615     }
2616 
2617     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2618                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2619     OrigIns.push_back(Arg);
2620   }
2621 }
2622 
2623 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2624                                                   const TargetRegisterClass *RC,
2625                                                    unsigned Reg, EVT VT) const {
2626   MachineFunction &MF = DAG.getMachineFunction();
2627   MachineRegisterInfo &MRI = MF.getRegInfo();
2628   unsigned VirtualRegister;
2629   if (!MRI.isLiveIn(Reg)) {
2630     VirtualRegister = MRI.createVirtualRegister(RC);
2631     MRI.addLiveIn(Reg, VirtualRegister);
2632   } else {
2633     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2634   }
2635   return DAG.getRegister(VirtualRegister, VT);
2636 }
2637 
2638 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2639     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2640   uint64_t ArgOffset = MFI->getABIArgOffset();
2641   switch (Param) {
2642   case GRID_DIM:
2643     return ArgOffset;
2644   case GRID_OFFSET:
2645     return ArgOffset + 4;
2646   }
2647   llvm_unreachable("unexpected implicit parameter type");
2648 }
2649 
2650 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2651 
2652 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2653   switch ((AMDGPUISD::NodeType)Opcode) {
2654   case AMDGPUISD::FIRST_NUMBER: break;
2655   // AMDIL DAG nodes
2656   NODE_NAME_CASE(CALL);
2657   NODE_NAME_CASE(UMUL);
2658   NODE_NAME_CASE(BRANCH_COND);
2659 
2660   // AMDGPU DAG nodes
2661   NODE_NAME_CASE(ENDPGM)
2662   NODE_NAME_CASE(RETURN)
2663   NODE_NAME_CASE(DWORDADDR)
2664   NODE_NAME_CASE(FRACT)
2665   NODE_NAME_CASE(CLAMP)
2666   NODE_NAME_CASE(COS_HW)
2667   NODE_NAME_CASE(SIN_HW)
2668   NODE_NAME_CASE(FMAX_LEGACY)
2669   NODE_NAME_CASE(FMIN_LEGACY)
2670   NODE_NAME_CASE(FMAX3)
2671   NODE_NAME_CASE(SMAX3)
2672   NODE_NAME_CASE(UMAX3)
2673   NODE_NAME_CASE(FMIN3)
2674   NODE_NAME_CASE(SMIN3)
2675   NODE_NAME_CASE(UMIN3)
2676   NODE_NAME_CASE(FMED3)
2677   NODE_NAME_CASE(SMED3)
2678   NODE_NAME_CASE(UMED3)
2679   NODE_NAME_CASE(URECIP)
2680   NODE_NAME_CASE(DIV_SCALE)
2681   NODE_NAME_CASE(DIV_FMAS)
2682   NODE_NAME_CASE(DIV_FIXUP)
2683   NODE_NAME_CASE(TRIG_PREOP)
2684   NODE_NAME_CASE(RCP)
2685   NODE_NAME_CASE(RSQ)
2686   NODE_NAME_CASE(RCP_LEGACY)
2687   NODE_NAME_CASE(RSQ_LEGACY)
2688   NODE_NAME_CASE(FMUL_LEGACY)
2689   NODE_NAME_CASE(RSQ_CLAMP)
2690   NODE_NAME_CASE(LDEXP)
2691   NODE_NAME_CASE(FP_CLASS)
2692   NODE_NAME_CASE(DOT4)
2693   NODE_NAME_CASE(CARRY)
2694   NODE_NAME_CASE(BORROW)
2695   NODE_NAME_CASE(BFE_U32)
2696   NODE_NAME_CASE(BFE_I32)
2697   NODE_NAME_CASE(BFI)
2698   NODE_NAME_CASE(BFM)
2699   NODE_NAME_CASE(FFBH_U32)
2700   NODE_NAME_CASE(FFBH_I32)
2701   NODE_NAME_CASE(MUL_U24)
2702   NODE_NAME_CASE(MUL_I24)
2703   NODE_NAME_CASE(MAD_U24)
2704   NODE_NAME_CASE(MAD_I24)
2705   NODE_NAME_CASE(TEXTURE_FETCH)
2706   NODE_NAME_CASE(EXPORT)
2707   NODE_NAME_CASE(CONST_ADDRESS)
2708   NODE_NAME_CASE(REGISTER_LOAD)
2709   NODE_NAME_CASE(REGISTER_STORE)
2710   NODE_NAME_CASE(LOAD_INPUT)
2711   NODE_NAME_CASE(SAMPLE)
2712   NODE_NAME_CASE(SAMPLEB)
2713   NODE_NAME_CASE(SAMPLED)
2714   NODE_NAME_CASE(SAMPLEL)
2715   NODE_NAME_CASE(CVT_F32_UBYTE0)
2716   NODE_NAME_CASE(CVT_F32_UBYTE1)
2717   NODE_NAME_CASE(CVT_F32_UBYTE2)
2718   NODE_NAME_CASE(CVT_F32_UBYTE3)
2719   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2720   NODE_NAME_CASE(CONST_DATA_PTR)
2721   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
2722   NODE_NAME_CASE(KILL)
2723   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2724   NODE_NAME_CASE(SENDMSG)
2725   NODE_NAME_CASE(INTERP_MOV)
2726   NODE_NAME_CASE(INTERP_P1)
2727   NODE_NAME_CASE(INTERP_P2)
2728   NODE_NAME_CASE(STORE_MSKOR)
2729   NODE_NAME_CASE(LOAD_CONSTANT)
2730   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2731   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
2732   NODE_NAME_CASE(ATOMIC_INC)
2733   NODE_NAME_CASE(ATOMIC_DEC)
2734   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2735   }
2736   return nullptr;
2737 }
2738 
2739 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2740                                                DAGCombinerInfo &DCI,
2741                                                unsigned &RefinementSteps,
2742                                                bool &UseOneConstNR) const {
2743   SelectionDAG &DAG = DCI.DAG;
2744   EVT VT = Operand.getValueType();
2745 
2746   if (VT == MVT::f32) {
2747     RefinementSteps = 0;
2748     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2749   }
2750 
2751   // TODO: There is also f64 rsq instruction, but the documentation is less
2752   // clear on its precision.
2753 
2754   return SDValue();
2755 }
2756 
2757 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2758                                                DAGCombinerInfo &DCI,
2759                                                unsigned &RefinementSteps) const {
2760   SelectionDAG &DAG = DCI.DAG;
2761   EVT VT = Operand.getValueType();
2762 
2763   if (VT == MVT::f32) {
2764     // Reciprocal, < 1 ulp error.
2765     //
2766     // This reciprocal approximation converges to < 0.5 ulp error with one
2767     // newton rhapson performed with two fused multiple adds (FMAs).
2768 
2769     RefinementSteps = 0;
2770     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2771   }
2772 
2773   // TODO: There is also f64 rcp instruction, but the documentation is less
2774   // clear on its precision.
2775 
2776   return SDValue();
2777 }
2778 
2779 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2780   const SDValue Op,
2781   APInt &KnownZero,
2782   APInt &KnownOne,
2783   const SelectionDAG &DAG,
2784   unsigned Depth) const {
2785 
2786   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2787 
2788   APInt KnownZero2;
2789   APInt KnownOne2;
2790   unsigned Opc = Op.getOpcode();
2791 
2792   switch (Opc) {
2793   default:
2794     break;
2795   case AMDGPUISD::CARRY:
2796   case AMDGPUISD::BORROW: {
2797     KnownZero = APInt::getHighBitsSet(32, 31);
2798     break;
2799   }
2800 
2801   case AMDGPUISD::BFE_I32:
2802   case AMDGPUISD::BFE_U32: {
2803     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2804     if (!CWidth)
2805       return;
2806 
2807     unsigned BitWidth = 32;
2808     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2809 
2810     if (Opc == AMDGPUISD::BFE_U32)
2811       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2812 
2813     break;
2814   }
2815   }
2816 }
2817 
2818 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2819   SDValue Op,
2820   const SelectionDAG &DAG,
2821   unsigned Depth) const {
2822   switch (Op.getOpcode()) {
2823   case AMDGPUISD::BFE_I32: {
2824     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2825     if (!Width)
2826       return 1;
2827 
2828     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2829     if (!isNullConstant(Op.getOperand(1)))
2830       return SignBits;
2831 
2832     // TODO: Could probably figure something out with non-0 offsets.
2833     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2834     return std::max(SignBits, Op0SignBits);
2835   }
2836 
2837   case AMDGPUISD::BFE_U32: {
2838     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2839     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2840   }
2841 
2842   case AMDGPUISD::CARRY:
2843   case AMDGPUISD::BORROW:
2844     return 31;
2845 
2846   default:
2847     return 1;
2848   }
2849 }
2850