1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59                                            const AMDGPUSubtarget &STI)
60     : TargetLowering(TM), Subtarget(&STI) {
61   // Lower floating point store/load to integer store/load to reduce the number
62   // of patterns in tablegen.
63   setOperationAction(ISD::LOAD, MVT::f32, Promote);
64   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65 
66   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
77 
78   setOperationAction(ISD::LOAD, MVT::i64, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
83 
84   setOperationAction(ISD::LOAD, MVT::f64, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
89 
90   // There are no 64-bit extloads. These should be done as a 32-bit extload and
91   // an extension to 64-bit.
92   for (MVT VT : MVT::integer_valuetypes()) {
93     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
94     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
96   }
97 
98   for (MVT VT : MVT::integer_valuetypes()) {
99     if (VT == MVT::i64)
100       continue;
101 
102     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
106 
107     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
111 
112     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_vector_valuetypes()) {
119     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
131   }
132 
133   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
134   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
137 
138   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
139   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
142 
143   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
147 
148   setOperationAction(ISD::STORE, MVT::f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 
151   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 
154   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
155   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 
157   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 
160   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
161   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 
163   setOperationAction(ISD::STORE, MVT::i64, Promote);
164   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
165 
166   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
167   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
168 
169   setOperationAction(ISD::STORE, MVT::f64, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
174 
175   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
176   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
177   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
178   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
179 
180   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
181   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
182   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
183   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
184 
185   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
186   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
187   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
188   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
189 
190   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
194   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
195 
196   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
197   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
198 
199   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
200   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
201 
202 
203   setOperationAction(ISD::Constant, MVT::i32, Legal);
204   setOperationAction(ISD::Constant, MVT::i64, Legal);
205   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
206   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
207 
208   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
209   setOperationAction(ISD::BRIND, MVT::Other, Expand);
210 
211   // This is totally unsupported, just custom lower to produce an error.
212   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
213 
214   // We need to custom lower some of the intrinsics
215   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
216   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
217 
218   // Library functions.  These default to Expand, but we have instructions
219   // for them.
220   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
221   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
222   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
223   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
224   setOperationAction(ISD::FABS,   MVT::f32, Legal);
225   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
226   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
227   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
228   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
229   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
230 
231   setOperationAction(ISD::FROUND, MVT::f32, Custom);
232   setOperationAction(ISD::FROUND, MVT::f64, Custom);
233 
234   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
235   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
236 
237   setOperationAction(ISD::FREM, MVT::f32, Custom);
238   setOperationAction(ISD::FREM, MVT::f64, Custom);
239 
240   // v_mad_f32 does not support denormals according to some sources.
241   if (!Subtarget->hasFP32Denormals())
242     setOperationAction(ISD::FMAD, MVT::f32, Legal);
243 
244   // Expand to fneg + fadd.
245   setOperationAction(ISD::FSUB, MVT::f64, Expand);
246 
247   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
248   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
249   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
250   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
251   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
252   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
253   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
254   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
255   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
256   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
257 
258   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
259     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
260     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
261     setOperationAction(ISD::FRINT, MVT::f64, Custom);
262     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
263   }
264 
265   if (!Subtarget->hasBFI()) {
266     // fcopysign can be done in a single instruction with BFI.
267     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
268     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
269   }
270 
271   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
272   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
273 
274   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
275   for (MVT VT : ScalarIntVTs) {
276     // These should use [SU]DIVREM, so set them to expand
277     setOperationAction(ISD::SDIV, VT, Expand);
278     setOperationAction(ISD::UDIV, VT, Expand);
279     setOperationAction(ISD::SREM, VT, Expand);
280     setOperationAction(ISD::UREM, VT, Expand);
281 
282     // GPU does not have divrem function for signed or unsigned.
283     setOperationAction(ISD::SDIVREM, VT, Custom);
284     setOperationAction(ISD::UDIVREM, VT, Custom);
285 
286     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
287     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
288     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
289 
290     setOperationAction(ISD::BSWAP, VT, Expand);
291     setOperationAction(ISD::CTTZ, VT, Expand);
292     setOperationAction(ISD::CTLZ, VT, Expand);
293   }
294 
295   if (!Subtarget->hasBCNT(32))
296     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
297 
298   if (!Subtarget->hasBCNT(64))
299     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
300 
301   // The hardware supports 32-bit ROTR, but not ROTL.
302   setOperationAction(ISD::ROTL, MVT::i32, Expand);
303   setOperationAction(ISD::ROTL, MVT::i64, Expand);
304   setOperationAction(ISD::ROTR, MVT::i64, Expand);
305 
306   setOperationAction(ISD::MUL, MVT::i64, Expand);
307   setOperationAction(ISD::MULHU, MVT::i64, Expand);
308   setOperationAction(ISD::MULHS, MVT::i64, Expand);
309   setOperationAction(ISD::UDIV, MVT::i32, Expand);
310   setOperationAction(ISD::UREM, MVT::i32, Expand);
311   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
312   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
313   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
314   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
315   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
316 
317   setOperationAction(ISD::SMIN, MVT::i32, Legal);
318   setOperationAction(ISD::UMIN, MVT::i32, Legal);
319   setOperationAction(ISD::SMAX, MVT::i32, Legal);
320   setOperationAction(ISD::UMAX, MVT::i32, Legal);
321 
322   if (Subtarget->hasFFBH())
323     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
324 
325   if (Subtarget->hasFFBL())
326     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
327 
328   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
329   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
330 
331   // We only really have 32-bit BFE instructions (and 16-bit on VI).
332   //
333   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
334   // effort to match them now. We want this to be false for i64 cases when the
335   // extraction isn't restricted to the upper or lower half. Ideally we would
336   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
337   // span the midpoint are probably relatively rare, so don't worry about them
338   // for now.
339   if (Subtarget->hasBFE())
340     setHasExtractBitsInsn(true);
341 
342   static const MVT::SimpleValueType VectorIntTypes[] = {
343     MVT::v2i32, MVT::v4i32
344   };
345 
346   for (MVT VT : VectorIntTypes) {
347     // Expand the following operations for the current type by default.
348     setOperationAction(ISD::ADD,  VT, Expand);
349     setOperationAction(ISD::AND,  VT, Expand);
350     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
351     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
352     setOperationAction(ISD::MUL,  VT, Expand);
353     setOperationAction(ISD::MULHU, VT, Expand);
354     setOperationAction(ISD::MULHS, VT, Expand);
355     setOperationAction(ISD::OR,   VT, Expand);
356     setOperationAction(ISD::SHL,  VT, Expand);
357     setOperationAction(ISD::SRA,  VT, Expand);
358     setOperationAction(ISD::SRL,  VT, Expand);
359     setOperationAction(ISD::ROTL, VT, Expand);
360     setOperationAction(ISD::ROTR, VT, Expand);
361     setOperationAction(ISD::SUB,  VT, Expand);
362     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
363     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
364     setOperationAction(ISD::SDIV, VT, Expand);
365     setOperationAction(ISD::UDIV, VT, Expand);
366     setOperationAction(ISD::SREM, VT, Expand);
367     setOperationAction(ISD::UREM, VT, Expand);
368     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
369     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
370     setOperationAction(ISD::SDIVREM, VT, Custom);
371     setOperationAction(ISD::UDIVREM, VT, Expand);
372     setOperationAction(ISD::ADDC, VT, Expand);
373     setOperationAction(ISD::SUBC, VT, Expand);
374     setOperationAction(ISD::ADDE, VT, Expand);
375     setOperationAction(ISD::SUBE, VT, Expand);
376     setOperationAction(ISD::SELECT, VT, Expand);
377     setOperationAction(ISD::VSELECT, VT, Expand);
378     setOperationAction(ISD::SELECT_CC, VT, Expand);
379     setOperationAction(ISD::XOR,  VT, Expand);
380     setOperationAction(ISD::BSWAP, VT, Expand);
381     setOperationAction(ISD::CTPOP, VT, Expand);
382     setOperationAction(ISD::CTTZ, VT, Expand);
383     setOperationAction(ISD::CTLZ, VT, Expand);
384     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
385   }
386 
387   static const MVT::SimpleValueType FloatVectorTypes[] = {
388     MVT::v2f32, MVT::v4f32
389   };
390 
391   for (MVT VT : FloatVectorTypes) {
392     setOperationAction(ISD::FABS, VT, Expand);
393     setOperationAction(ISD::FMINNUM, VT, Expand);
394     setOperationAction(ISD::FMAXNUM, VT, Expand);
395     setOperationAction(ISD::FADD, VT, Expand);
396     setOperationAction(ISD::FCEIL, VT, Expand);
397     setOperationAction(ISD::FCOS, VT, Expand);
398     setOperationAction(ISD::FDIV, VT, Expand);
399     setOperationAction(ISD::FEXP2, VT, Expand);
400     setOperationAction(ISD::FLOG2, VT, Expand);
401     setOperationAction(ISD::FREM, VT, Expand);
402     setOperationAction(ISD::FPOW, VT, Expand);
403     setOperationAction(ISD::FFLOOR, VT, Expand);
404     setOperationAction(ISD::FTRUNC, VT, Expand);
405     setOperationAction(ISD::FMUL, VT, Expand);
406     setOperationAction(ISD::FMA, VT, Expand);
407     setOperationAction(ISD::FRINT, VT, Expand);
408     setOperationAction(ISD::FNEARBYINT, VT, Expand);
409     setOperationAction(ISD::FSQRT, VT, Expand);
410     setOperationAction(ISD::FSIN, VT, Expand);
411     setOperationAction(ISD::FSUB, VT, Expand);
412     setOperationAction(ISD::FNEG, VT, Expand);
413     setOperationAction(ISD::VSELECT, VT, Expand);
414     setOperationAction(ISD::SELECT_CC, VT, Expand);
415     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
416     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
417   }
418 
419   // This causes using an unrolled select operation rather than expansion with
420   // bit operations. This is in general better, but the alternative using BFI
421   // instructions may be better if the select sources are SGPRs.
422   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
423   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
424 
425   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
426   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
427 
428   // There are no libcalls of any kind.
429   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
430     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
431 
432   setBooleanContents(ZeroOrNegativeOneBooleanContent);
433   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
434 
435   setSchedulingPreference(Sched::RegPressure);
436   setJumpIsExpensive(true);
437 
438   // FIXME: This is only partially true. If we have to do vector compares, any
439   // SGPR pair can be a condition register. If we have a uniform condition, we
440   // are better off doing SALU operations, where there is only one SCC. For now,
441   // we don't have a way of knowing during instruction selection if a condition
442   // will be uniform and we always use vector compares. Assume we are using
443   // vector compares until that is fixed.
444   setHasMultipleConditionRegisters(true);
445 
446   // SI at least has hardware support for floating point exceptions, but no way
447   // of using or handling them is implemented. They are also optional in OpenCL
448   // (Section 7.3)
449   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
450 
451   PredictableSelectIsExpensive = false;
452 
453   // We want to find all load dependencies for long chains of stores to enable
454   // merging into very wide vectors. The problem is with vectors with > 4
455   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
456   // vectors are a legal type, even though we have to split the loads
457   // usually. When we can more precisely specify load legality per address
458   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
459   // smarter so that they can figure out what to do in 2 iterations without all
460   // N > 4 stores on the same chain.
461   GatherAllAliasesMaxDepth = 16;
462 
463   // FIXME: Need to really handle these.
464   MaxStoresPerMemcpy  = 4096;
465   MaxStoresPerMemmove = 4096;
466   MaxStoresPerMemset  = 4096;
467 
468   setTargetDAGCombine(ISD::BITCAST);
469   setTargetDAGCombine(ISD::SHL);
470   setTargetDAGCombine(ISD::SRA);
471   setTargetDAGCombine(ISD::SRL);
472   setTargetDAGCombine(ISD::MUL);
473   setTargetDAGCombine(ISD::MULHU);
474   setTargetDAGCombine(ISD::MULHS);
475   setTargetDAGCombine(ISD::SELECT);
476   setTargetDAGCombine(ISD::SELECT_CC);
477   setTargetDAGCombine(ISD::STORE);
478   setTargetDAGCombine(ISD::FADD);
479   setTargetDAGCombine(ISD::FSUB);
480   setTargetDAGCombine(ISD::FNEG);
481 }
482 
483 //===----------------------------------------------------------------------===//
484 // Target Information
485 //===----------------------------------------------------------------------===//
486 
487 static bool fnegFoldsIntoOp(unsigned Opc) {
488   switch (Opc) {
489   case ISD::FADD:
490   case ISD::FSUB:
491   case ISD::FMUL:
492   case ISD::FMA:
493   case ISD::FMAD:
494   case ISD::FSIN:
495   case ISD::FTRUNC:
496   case ISD::FRINT:
497   case ISD::FNEARBYINT:
498   case AMDGPUISD::RCP:
499   case AMDGPUISD::RCP_LEGACY:
500   case AMDGPUISD::SIN_HW:
501   case AMDGPUISD::FMUL_LEGACY:
502     return true;
503   default:
504     return false;
505   }
506 }
507 
508 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
509   return MVT::i32;
510 }
511 
512 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
513   return true;
514 }
515 
516 // The backend supports 32 and 64 bit floating point immediates.
517 // FIXME: Why are we reporting vectors of FP immediates as legal?
518 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
519   EVT ScalarVT = VT.getScalarType();
520   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
521          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
522 }
523 
524 // We don't want to shrink f64 / f32 constants.
525 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
526   EVT ScalarVT = VT.getScalarType();
527   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
528 }
529 
530 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
531                                                  ISD::LoadExtType,
532                                                  EVT NewVT) const {
533 
534   unsigned NewSize = NewVT.getStoreSizeInBits();
535 
536   // If we are reducing to a 32-bit load, this is always better.
537   if (NewSize == 32)
538     return true;
539 
540   EVT OldVT = N->getValueType(0);
541   unsigned OldSize = OldVT.getStoreSizeInBits();
542 
543   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
544   // extloads, so doing one requires using a buffer_load. In cases where we
545   // still couldn't use a scalar load, using the wider load shouldn't really
546   // hurt anything.
547 
548   // If the old size already had to be an extload, there's no harm in continuing
549   // to reduce the width.
550   return (OldSize < 32);
551 }
552 
553 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
554                                                    EVT CastTy) const {
555 
556   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
557 
558   if (LoadTy.getScalarType() == MVT::i32)
559     return false;
560 
561   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
562   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
563 
564   return (LScalarSize < CastScalarSize) ||
565          (CastScalarSize >= 32);
566 }
567 
568 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
569 // profitable with the expansion for 64-bit since it's generally good to
570 // speculate things.
571 // FIXME: These should really have the size as a parameter.
572 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
573   return true;
574 }
575 
576 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
577   return true;
578 }
579 
580 //===---------------------------------------------------------------------===//
581 // Target Properties
582 //===---------------------------------------------------------------------===//
583 
584 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
585   assert(VT.isFloatingPoint());
586   return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() &&
587                                               VT == MVT::f16);
588 }
589 
590 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
591   return isFAbsFree(VT);
592 }
593 
594 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
595                                                          unsigned NumElem,
596                                                          unsigned AS) const {
597   return true;
598 }
599 
600 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
601   // There are few operations which truly have vector input operands. Any vector
602   // operation is going to involve operations on each component, and a
603   // build_vector will be a copy per element, so it always makes sense to use a
604   // build_vector input in place of the extracted element to avoid a copy into a
605   // super register.
606   //
607   // We should probably only do this if all users are extracts only, but this
608   // should be the common case.
609   return true;
610 }
611 
612 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
613   // Truncate is just accessing a subregister.
614 
615   unsigned SrcSize = Source.getSizeInBits();
616   unsigned DestSize = Dest.getSizeInBits();
617 
618   return DestSize < SrcSize && DestSize % 32 == 0 ;
619 }
620 
621 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
622   // Truncate is just accessing a subregister.
623 
624   unsigned SrcSize = Source->getScalarSizeInBits();
625   unsigned DestSize = Dest->getScalarSizeInBits();
626 
627   if (DestSize== 16 && Subtarget->has16BitInsts())
628     return SrcSize >= 32;
629 
630   return DestSize < SrcSize && DestSize % 32 == 0;
631 }
632 
633 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
634   unsigned SrcSize = Src->getScalarSizeInBits();
635   unsigned DestSize = Dest->getScalarSizeInBits();
636 
637   if (SrcSize == 16 && Subtarget->has16BitInsts())
638     return DestSize >= 32;
639 
640   return SrcSize == 32 && DestSize == 64;
641 }
642 
643 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
644   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
645   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
646   // this will enable reducing 64-bit operations the 32-bit, which is always
647   // good.
648 
649   if (Src == MVT::i16)
650     return Dest == MVT::i32 ||Dest == MVT::i64 ;
651 
652   return Src == MVT::i32 && Dest == MVT::i64;
653 }
654 
655 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
656   return isZExtFree(Val.getValueType(), VT2);
657 }
658 
659 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
660   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
661   // limited number of native 64-bit operations. Shrinking an operation to fit
662   // in a single 32-bit register should always be helpful. As currently used,
663   // this is much less general than the name suggests, and is only used in
664   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
665   // not profitable, and may actually be harmful.
666   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
667 }
668 
669 //===---------------------------------------------------------------------===//
670 // TargetLowering Callbacks
671 //===---------------------------------------------------------------------===//
672 
673 /// The SelectionDAGBuilder will automatically promote function arguments
674 /// with illegal types.  However, this does not work for the AMDGPU targets
675 /// since the function arguments are stored in memory as these illegal types.
676 /// In order to handle this properly we need to get the original types sizes
677 /// from the LLVM IR Function and fixup the ISD:InputArg values before
678 /// passing them to AnalyzeFormalArguments()
679 
680 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
681 /// input values across multiple registers.  Each item in the Ins array
682 /// represents a single value that will be stored in regsters.  Ins[x].VT is
683 /// the value type of the value that will be stored in the register, so
684 /// whatever SDNode we lower the argument to needs to be this type.
685 ///
686 /// In order to correctly lower the arguments we need to know the size of each
687 /// argument.  Since Ins[x].VT gives us the size of the register that will
688 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
689 /// for the orignal function argument so that we can deduce the correct memory
690 /// type to use for Ins[x].  In most cases the correct memory type will be
691 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
692 /// we have a kernel argument of type v8i8, this argument will be split into
693 /// 8 parts and each part will be represented by its own item in the Ins array.
694 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
695 /// the argument before it was split.  From this, we deduce that the memory type
696 /// for each individual part is i8.  We pass the memory type as LocVT to the
697 /// calling convention analysis function and the register type (Ins[x].VT) as
698 /// the ValVT.
699 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
700                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
701   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
702     const ISD::InputArg &In = Ins[i];
703     EVT MemVT;
704 
705     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
706 
707     if (!Subtarget->isAmdHsaOS() &&
708         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
709       // The ABI says the caller will extend these values to 32-bits.
710       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
711     } else if (NumRegs == 1) {
712       // This argument is not split, so the IR type is the memory type.
713       assert(!In.Flags.isSplit());
714       if (In.ArgVT.isExtended()) {
715         // We have an extended type, like i24, so we should just use the register type
716         MemVT = In.VT;
717       } else {
718         MemVT = In.ArgVT;
719       }
720     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
721                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
722       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
723       // We have a vector value which has been split into a vector with
724       // the same scalar type, but fewer elements.  This should handle
725       // all the floating-point vector types.
726       MemVT = In.VT;
727     } else if (In.ArgVT.isVector() &&
728                In.ArgVT.getVectorNumElements() == NumRegs) {
729       // This arg has been split so that each element is stored in a separate
730       // register.
731       MemVT = In.ArgVT.getScalarType();
732     } else if (In.ArgVT.isExtended()) {
733       // We have an extended type, like i65.
734       MemVT = In.VT;
735     } else {
736       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
737       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
738       if (In.VT.isInteger()) {
739         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
740       } else if (In.VT.isVector()) {
741         assert(!In.VT.getScalarType().isFloatingPoint());
742         unsigned NumElements = In.VT.getVectorNumElements();
743         assert(MemoryBits % NumElements == 0);
744         // This vector type has been split into another vector type with
745         // a different elements size.
746         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
747                                          MemoryBits / NumElements);
748         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
749       } else {
750         llvm_unreachable("cannot deduce memory type.");
751       }
752     }
753 
754     // Convert one element vectors to scalar.
755     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
756       MemVT = MemVT.getScalarType();
757 
758     if (MemVT.isExtended()) {
759       // This should really only happen if we have vec3 arguments
760       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
761       MemVT = MemVT.getPow2VectorType(State.getContext());
762     }
763 
764     assert(MemVT.isSimple());
765     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
766                     State);
767   }
768 }
769 
770 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
771                               const SmallVectorImpl<ISD::InputArg> &Ins) const {
772   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
773 }
774 
775 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
776                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
777 
778   State.AnalyzeReturn(Outs, RetCC_SI);
779 }
780 
781 SDValue
782 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
783                                   bool isVarArg,
784                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
785                                   const SmallVectorImpl<SDValue> &OutVals,
786                                   const SDLoc &DL, SelectionDAG &DAG) const {
787   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
788 }
789 
790 //===---------------------------------------------------------------------===//
791 // Target specific lowering
792 //===---------------------------------------------------------------------===//
793 
794 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
795                                         SmallVectorImpl<SDValue> &InVals) const {
796   SDValue Callee = CLI.Callee;
797   SelectionDAG &DAG = CLI.DAG;
798 
799   const Function &Fn = *DAG.getMachineFunction().getFunction();
800 
801   StringRef FuncName("<unknown>");
802 
803   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
804     FuncName = G->getSymbol();
805   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
806     FuncName = G->getGlobal()->getName();
807 
808   DiagnosticInfoUnsupported NoCalls(
809       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
810   DAG.getContext()->diagnose(NoCalls);
811 
812   if (!CLI.IsTailCall) {
813     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
814       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
815   }
816 
817   return DAG.getEntryNode();
818 }
819 
820 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
821                                                       SelectionDAG &DAG) const {
822   const Function &Fn = *DAG.getMachineFunction().getFunction();
823 
824   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
825                                             SDLoc(Op).getDebugLoc());
826   DAG.getContext()->diagnose(NoDynamicAlloca);
827   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
828   return DAG.getMergeValues(Ops, SDLoc());
829 }
830 
831 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
832                                              SelectionDAG &DAG) const {
833   switch (Op.getOpcode()) {
834   default:
835     Op->print(errs(), &DAG);
836     llvm_unreachable("Custom lowering code for this"
837                      "instruction is not implemented yet!");
838     break;
839   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
840   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
841   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
842   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
843   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
844   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
845   case ISD::FREM: return LowerFREM(Op, DAG);
846   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
847   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
848   case ISD::FRINT: return LowerFRINT(Op, DAG);
849   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
850   case ISD::FROUND: return LowerFROUND(Op, DAG);
851   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
852   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
853   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
854   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
855   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
856   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
857   case ISD::CTLZ:
858   case ISD::CTLZ_ZERO_UNDEF:
859     return LowerCTLZ(Op, DAG);
860   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
861   }
862   return Op;
863 }
864 
865 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
866                                               SmallVectorImpl<SDValue> &Results,
867                                               SelectionDAG &DAG) const {
868   switch (N->getOpcode()) {
869   case ISD::SIGN_EXTEND_INREG:
870     // Different parts of legalization seem to interpret which type of
871     // sign_extend_inreg is the one to check for custom lowering. The extended
872     // from type is what really matters, but some places check for custom
873     // lowering of the result type. This results in trying to use
874     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
875     // nothing here and let the illegal result integer be handled normally.
876     return;
877   default:
878     return;
879   }
880 }
881 
882 static bool hasDefinedInitializer(const GlobalValue *GV) {
883   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
884   if (!GVar || !GVar->hasInitializer())
885     return false;
886 
887   return !isa<UndefValue>(GVar->getInitializer());
888 }
889 
890 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
891                                                  SDValue Op,
892                                                  SelectionDAG &DAG) const {
893 
894   const DataLayout &DL = DAG.getDataLayout();
895   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
896   const GlobalValue *GV = G->getGlobal();
897 
898   switch (G->getAddressSpace()) {
899   case AMDGPUAS::LOCAL_ADDRESS: {
900     // XXX: What does the value of G->getOffset() mean?
901     assert(G->getOffset() == 0 &&
902          "Do not know what to do with an non-zero offset");
903 
904     // TODO: We could emit code to handle the initialization somewhere.
905     if (hasDefinedInitializer(GV))
906       break;
907 
908     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
909     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
910   }
911   }
912 
913   const Function &Fn = *DAG.getMachineFunction().getFunction();
914   DiagnosticInfoUnsupported BadInit(
915       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
916   DAG.getContext()->diagnose(BadInit);
917   return SDValue();
918 }
919 
920 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
921                                                   SelectionDAG &DAG) const {
922   SmallVector<SDValue, 8> Args;
923 
924   for (const SDUse &U : Op->ops())
925     DAG.ExtractVectorElements(U.get(), Args);
926 
927   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
928 }
929 
930 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
931                                                      SelectionDAG &DAG) const {
932 
933   SmallVector<SDValue, 8> Args;
934   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
935   EVT VT = Op.getValueType();
936   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
937                             VT.getVectorNumElements());
938 
939   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
940 }
941 
942 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
943     SelectionDAG &DAG) const {
944   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
945   SDLoc DL(Op);
946   EVT VT = Op.getValueType();
947 
948   switch (IntrinsicID) {
949     default: return Op;
950     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
951       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
952                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
953 
954     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
955       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
956                          Op.getOperand(1),
957                          Op.getOperand(2),
958                          Op.getOperand(3));
959 
960     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
961       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
962                          Op.getOperand(1),
963                          Op.getOperand(2),
964                          Op.getOperand(3));
965   }
966 }
967 
968 /// \brief Generate Min/Max node
969 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
970                                                    SDValue LHS, SDValue RHS,
971                                                    SDValue True, SDValue False,
972                                                    SDValue CC,
973                                                    DAGCombinerInfo &DCI) const {
974   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
975     return SDValue();
976 
977   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
978     return SDValue();
979 
980   SelectionDAG &DAG = DCI.DAG;
981   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
982   switch (CCOpcode) {
983   case ISD::SETOEQ:
984   case ISD::SETONE:
985   case ISD::SETUNE:
986   case ISD::SETNE:
987   case ISD::SETUEQ:
988   case ISD::SETEQ:
989   case ISD::SETFALSE:
990   case ISD::SETFALSE2:
991   case ISD::SETTRUE:
992   case ISD::SETTRUE2:
993   case ISD::SETUO:
994   case ISD::SETO:
995     break;
996   case ISD::SETULE:
997   case ISD::SETULT: {
998     if (LHS == True)
999       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1000     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1001   }
1002   case ISD::SETOLE:
1003   case ISD::SETOLT:
1004   case ISD::SETLE:
1005   case ISD::SETLT: {
1006     // Ordered. Assume ordered for undefined.
1007 
1008     // Only do this after legalization to avoid interfering with other combines
1009     // which might occur.
1010     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1011         !DCI.isCalledByLegalizer())
1012       return SDValue();
1013 
1014     // We need to permute the operands to get the correct NaN behavior. The
1015     // selected operand is the second one based on the failing compare with NaN,
1016     // so permute it based on the compare type the hardware uses.
1017     if (LHS == True)
1018       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1019     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1020   }
1021   case ISD::SETUGE:
1022   case ISD::SETUGT: {
1023     if (LHS == True)
1024       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1025     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1026   }
1027   case ISD::SETGT:
1028   case ISD::SETGE:
1029   case ISD::SETOGE:
1030   case ISD::SETOGT: {
1031     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1032         !DCI.isCalledByLegalizer())
1033       return SDValue();
1034 
1035     if (LHS == True)
1036       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1037     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1038   }
1039   case ISD::SETCC_INVALID:
1040     llvm_unreachable("Invalid setcc condcode!");
1041   }
1042   return SDValue();
1043 }
1044 
1045 std::pair<SDValue, SDValue>
1046 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1047   SDLoc SL(Op);
1048 
1049   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1050 
1051   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1052   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1053 
1054   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1055   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1056 
1057   return std::make_pair(Lo, Hi);
1058 }
1059 
1060 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1061   SDLoc SL(Op);
1062 
1063   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1064   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1065   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1066 }
1067 
1068 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1069   SDLoc SL(Op);
1070 
1071   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1072   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1073   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1074 }
1075 
1076 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1077                                               SelectionDAG &DAG) const {
1078   LoadSDNode *Load = cast<LoadSDNode>(Op);
1079   EVT VT = Op.getValueType();
1080 
1081 
1082   // If this is a 2 element vector, we really want to scalarize and not create
1083   // weird 1 element vectors.
1084   if (VT.getVectorNumElements() == 2)
1085     return scalarizeVectorLoad(Load, DAG);
1086 
1087   SDValue BasePtr = Load->getBasePtr();
1088   EVT PtrVT = BasePtr.getValueType();
1089   EVT MemVT = Load->getMemoryVT();
1090   SDLoc SL(Op);
1091 
1092   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1093 
1094   EVT LoVT, HiVT;
1095   EVT LoMemVT, HiMemVT;
1096   SDValue Lo, Hi;
1097 
1098   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1099   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1100   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1101 
1102   unsigned Size = LoMemVT.getStoreSize();
1103   unsigned BaseAlign = Load->getAlignment();
1104   unsigned HiAlign = MinAlign(BaseAlign, Size);
1105 
1106   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1107                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1108                                   BaseAlign, Load->getMemOperand()->getFlags());
1109   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1110                               DAG.getConstant(Size, SL, PtrVT));
1111   SDValue HiLoad =
1112       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1113                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1114                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1115 
1116   SDValue Ops[] = {
1117     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1118     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1119                 LoLoad.getValue(1), HiLoad.getValue(1))
1120   };
1121 
1122   return DAG.getMergeValues(Ops, SL);
1123 }
1124 
1125 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1126                                                SelectionDAG &DAG) const {
1127   StoreSDNode *Store = cast<StoreSDNode>(Op);
1128   SDValue Val = Store->getValue();
1129   EVT VT = Val.getValueType();
1130 
1131   // If this is a 2 element vector, we really want to scalarize and not create
1132   // weird 1 element vectors.
1133   if (VT.getVectorNumElements() == 2)
1134     return scalarizeVectorStore(Store, DAG);
1135 
1136   EVT MemVT = Store->getMemoryVT();
1137   SDValue Chain = Store->getChain();
1138   SDValue BasePtr = Store->getBasePtr();
1139   SDLoc SL(Op);
1140 
1141   EVT LoVT, HiVT;
1142   EVT LoMemVT, HiMemVT;
1143   SDValue Lo, Hi;
1144 
1145   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1146   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1147   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1148 
1149   EVT PtrVT = BasePtr.getValueType();
1150   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1151                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1152                                               PtrVT));
1153 
1154   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1155   unsigned BaseAlign = Store->getAlignment();
1156   unsigned Size = LoMemVT.getStoreSize();
1157   unsigned HiAlign = MinAlign(BaseAlign, Size);
1158 
1159   SDValue LoStore =
1160       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1161                         Store->getMemOperand()->getFlags());
1162   SDValue HiStore =
1163       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1164                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1165 
1166   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1167 }
1168 
1169 // This is a shortcut for integer division because we have fast i32<->f32
1170 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1171 // float is enough to accurately represent up to a 24-bit signed integer.
1172 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1173                                             bool Sign) const {
1174   SDLoc DL(Op);
1175   EVT VT = Op.getValueType();
1176   SDValue LHS = Op.getOperand(0);
1177   SDValue RHS = Op.getOperand(1);
1178   MVT IntVT = MVT::i32;
1179   MVT FltVT = MVT::f32;
1180 
1181   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1182   if (LHSSignBits < 9)
1183     return SDValue();
1184 
1185   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1186   if (RHSSignBits < 9)
1187     return SDValue();
1188 
1189   unsigned BitSize = VT.getSizeInBits();
1190   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1191   unsigned DivBits = BitSize - SignBits;
1192   if (Sign)
1193     ++DivBits;
1194 
1195   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1196   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1197 
1198   SDValue jq = DAG.getConstant(1, DL, IntVT);
1199 
1200   if (Sign) {
1201     // char|short jq = ia ^ ib;
1202     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1203 
1204     // jq = jq >> (bitsize - 2)
1205     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1206                      DAG.getConstant(BitSize - 2, DL, VT));
1207 
1208     // jq = jq | 0x1
1209     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1210   }
1211 
1212   // int ia = (int)LHS;
1213   SDValue ia = LHS;
1214 
1215   // int ib, (int)RHS;
1216   SDValue ib = RHS;
1217 
1218   // float fa = (float)ia;
1219   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1220 
1221   // float fb = (float)ib;
1222   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1223 
1224   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1225                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1226 
1227   // fq = trunc(fq);
1228   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1229 
1230   // float fqneg = -fq;
1231   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1232 
1233   // float fr = mad(fqneg, fb, fa);
1234   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1235 
1236   // int iq = (int)fq;
1237   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1238 
1239   // fr = fabs(fr);
1240   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1241 
1242   // fb = fabs(fb);
1243   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1244 
1245   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1246 
1247   // int cv = fr >= fb;
1248   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1249 
1250   // jq = (cv ? jq : 0);
1251   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1252 
1253   // dst = iq + jq;
1254   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1255 
1256   // Rem needs compensation, it's easier to recompute it
1257   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1258   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1259 
1260   // Truncate to number of bits this divide really is.
1261   if (Sign) {
1262     SDValue InRegSize
1263       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1264     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1265     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1266   } else {
1267     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1268     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1269     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1270   }
1271 
1272   return DAG.getMergeValues({ Div, Rem }, DL);
1273 }
1274 
1275 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1276                                       SelectionDAG &DAG,
1277                                       SmallVectorImpl<SDValue> &Results) const {
1278   assert(Op.getValueType() == MVT::i64);
1279 
1280   SDLoc DL(Op);
1281   EVT VT = Op.getValueType();
1282   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1283 
1284   SDValue one = DAG.getConstant(1, DL, HalfVT);
1285   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1286 
1287   //HiLo split
1288   SDValue LHS = Op.getOperand(0);
1289   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1290   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1291 
1292   SDValue RHS = Op.getOperand(1);
1293   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1294   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1295 
1296   if (VT == MVT::i64 &&
1297     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1298     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1299 
1300     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1301                               LHS_Lo, RHS_Lo);
1302 
1303     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1304     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1305 
1306     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1307     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1308     return;
1309   }
1310 
1311   // Get Speculative values
1312   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1313   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1314 
1315   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1316   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1317   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1318 
1319   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1320   SDValue DIV_Lo = zero;
1321 
1322   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1323 
1324   for (unsigned i = 0; i < halfBitWidth; ++i) {
1325     const unsigned bitPos = halfBitWidth - i - 1;
1326     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1327     // Get value of high bit
1328     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1329     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1330     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1331 
1332     // Shift
1333     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1334     // Add LHS high bit
1335     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1336 
1337     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1338     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1339 
1340     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1341 
1342     // Update REM
1343     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1344     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1345   }
1346 
1347   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1348   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1349   Results.push_back(DIV);
1350   Results.push_back(REM);
1351 }
1352 
1353 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1354                                            SelectionDAG &DAG) const {
1355   SDLoc DL(Op);
1356   EVT VT = Op.getValueType();
1357 
1358   if (VT == MVT::i64) {
1359     SmallVector<SDValue, 2> Results;
1360     LowerUDIVREM64(Op, DAG, Results);
1361     return DAG.getMergeValues(Results, DL);
1362   }
1363 
1364   if (VT == MVT::i32) {
1365     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1366       return Res;
1367   }
1368 
1369   SDValue Num = Op.getOperand(0);
1370   SDValue Den = Op.getOperand(1);
1371 
1372   // RCP =  URECIP(Den) = 2^32 / Den + e
1373   // e is rounding error.
1374   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1375 
1376   // RCP_LO = mul(RCP, Den) */
1377   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1378 
1379   // RCP_HI = mulhu (RCP, Den) */
1380   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1381 
1382   // NEG_RCP_LO = -RCP_LO
1383   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1384                                                      RCP_LO);
1385 
1386   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1387   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1388                                            NEG_RCP_LO, RCP_LO,
1389                                            ISD::SETEQ);
1390   // Calculate the rounding error from the URECIP instruction
1391   // E = mulhu(ABS_RCP_LO, RCP)
1392   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1393 
1394   // RCP_A_E = RCP + E
1395   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1396 
1397   // RCP_S_E = RCP - E
1398   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1399 
1400   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1401   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1402                                      RCP_A_E, RCP_S_E,
1403                                      ISD::SETEQ);
1404   // Quotient = mulhu(Tmp0, Num)
1405   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1406 
1407   // Num_S_Remainder = Quotient * Den
1408   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1409 
1410   // Remainder = Num - Num_S_Remainder
1411   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1412 
1413   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1414   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1415                                                  DAG.getConstant(-1, DL, VT),
1416                                                  DAG.getConstant(0, DL, VT),
1417                                                  ISD::SETUGE);
1418   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1419   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1420                                                   Num_S_Remainder,
1421                                                   DAG.getConstant(-1, DL, VT),
1422                                                   DAG.getConstant(0, DL, VT),
1423                                                   ISD::SETUGE);
1424   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1425   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1426                                                Remainder_GE_Zero);
1427 
1428   // Calculate Division result:
1429 
1430   // Quotient_A_One = Quotient + 1
1431   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1432                                        DAG.getConstant(1, DL, VT));
1433 
1434   // Quotient_S_One = Quotient - 1
1435   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1436                                        DAG.getConstant(1, DL, VT));
1437 
1438   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1439   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1440                                      Quotient, Quotient_A_One, ISD::SETEQ);
1441 
1442   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1443   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1444                             Quotient_S_One, Div, ISD::SETEQ);
1445 
1446   // Calculate Rem result:
1447 
1448   // Remainder_S_Den = Remainder - Den
1449   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1450 
1451   // Remainder_A_Den = Remainder + Den
1452   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1453 
1454   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1455   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1456                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1457 
1458   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1459   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1460                             Remainder_A_Den, Rem, ISD::SETEQ);
1461   SDValue Ops[2] = {
1462     Div,
1463     Rem
1464   };
1465   return DAG.getMergeValues(Ops, DL);
1466 }
1467 
1468 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1469                                            SelectionDAG &DAG) const {
1470   SDLoc DL(Op);
1471   EVT VT = Op.getValueType();
1472 
1473   SDValue LHS = Op.getOperand(0);
1474   SDValue RHS = Op.getOperand(1);
1475 
1476   SDValue Zero = DAG.getConstant(0, DL, VT);
1477   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1478 
1479   if (VT == MVT::i32) {
1480     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1481       return Res;
1482   }
1483 
1484   if (VT == MVT::i64 &&
1485       DAG.ComputeNumSignBits(LHS) > 32 &&
1486       DAG.ComputeNumSignBits(RHS) > 32) {
1487     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1488 
1489     //HiLo split
1490     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1491     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1492     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1493                                  LHS_Lo, RHS_Lo);
1494     SDValue Res[2] = {
1495       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1496       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1497     };
1498     return DAG.getMergeValues(Res, DL);
1499   }
1500 
1501   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1502   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1503   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1504   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1505 
1506   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1507   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1508 
1509   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1510   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1511 
1512   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1513   SDValue Rem = Div.getValue(1);
1514 
1515   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1516   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1517 
1518   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1519   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1520 
1521   SDValue Res[2] = {
1522     Div,
1523     Rem
1524   };
1525   return DAG.getMergeValues(Res, DL);
1526 }
1527 
1528 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1529 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1530   SDLoc SL(Op);
1531   EVT VT = Op.getValueType();
1532   SDValue X = Op.getOperand(0);
1533   SDValue Y = Op.getOperand(1);
1534 
1535   // TODO: Should this propagate fast-math-flags?
1536 
1537   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1538   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1539   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1540 
1541   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1542 }
1543 
1544 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1545   SDLoc SL(Op);
1546   SDValue Src = Op.getOperand(0);
1547 
1548   // result = trunc(src)
1549   // if (src > 0.0 && src != result)
1550   //   result += 1.0
1551 
1552   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1553 
1554   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1555   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1556 
1557   EVT SetCCVT =
1558       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1559 
1560   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1561   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1562   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1563 
1564   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1565   // TODO: Should this propagate fast-math-flags?
1566   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1567 }
1568 
1569 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1570                                   SelectionDAG &DAG) {
1571   const unsigned FractBits = 52;
1572   const unsigned ExpBits = 11;
1573 
1574   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1575                                 Hi,
1576                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1577                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1578   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1579                             DAG.getConstant(1023, SL, MVT::i32));
1580 
1581   return Exp;
1582 }
1583 
1584 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1585   SDLoc SL(Op);
1586   SDValue Src = Op.getOperand(0);
1587 
1588   assert(Op.getValueType() == MVT::f64);
1589 
1590   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1591   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1592 
1593   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1594 
1595   // Extract the upper half, since this is where we will find the sign and
1596   // exponent.
1597   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1598 
1599   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1600 
1601   const unsigned FractBits = 52;
1602 
1603   // Extract the sign bit.
1604   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1605   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1606 
1607   // Extend back to to 64-bits.
1608   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1609   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1610 
1611   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1612   const SDValue FractMask
1613     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1614 
1615   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1616   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1617   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1618 
1619   EVT SetCCVT =
1620       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1621 
1622   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1623 
1624   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1625   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1626 
1627   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1628   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1629 
1630   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1631 }
1632 
1633 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1634   SDLoc SL(Op);
1635   SDValue Src = Op.getOperand(0);
1636 
1637   assert(Op.getValueType() == MVT::f64);
1638 
1639   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
1640   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1641   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1642 
1643   // TODO: Should this propagate fast-math-flags?
1644 
1645   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1646   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1647 
1648   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1649 
1650   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
1651   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1652 
1653   EVT SetCCVT =
1654       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1655   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1656 
1657   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1658 }
1659 
1660 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1661   // FNEARBYINT and FRINT are the same, except in their handling of FP
1662   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1663   // rint, so just treat them as equivalent.
1664   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1665 }
1666 
1667 // XXX - May require not supporting f32 denormals?
1668 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1669   SDLoc SL(Op);
1670   SDValue X = Op.getOperand(0);
1671 
1672   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1673 
1674   // TODO: Should this propagate fast-math-flags?
1675 
1676   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1677 
1678   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1679 
1680   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1681   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1682   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1683 
1684   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1685 
1686   EVT SetCCVT =
1687       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1688 
1689   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1690 
1691   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1692 
1693   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1694 }
1695 
1696 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1697   SDLoc SL(Op);
1698   SDValue X = Op.getOperand(0);
1699 
1700   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1701 
1702   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1703   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1704   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1705   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1706   EVT SetCCVT =
1707       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1708 
1709   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1710 
1711   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1712 
1713   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1714 
1715   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1716                                        MVT::i64);
1717 
1718   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1719   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1720                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1721                                           MVT::i64),
1722                           Exp);
1723 
1724   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1725   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1726                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1727                               ISD::SETNE);
1728 
1729   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1730                              D, DAG.getConstant(0, SL, MVT::i64));
1731   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1732 
1733   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1734   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1735 
1736   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1737   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1738   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1739 
1740   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1741                             ExpEqNegOne,
1742                             DAG.getConstantFP(1.0, SL, MVT::f64),
1743                             DAG.getConstantFP(0.0, SL, MVT::f64));
1744 
1745   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1746 
1747   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1748   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1749 
1750   return K;
1751 }
1752 
1753 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1754   EVT VT = Op.getValueType();
1755 
1756   if (VT == MVT::f32)
1757     return LowerFROUND32(Op, DAG);
1758 
1759   if (VT == MVT::f64)
1760     return LowerFROUND64(Op, DAG);
1761 
1762   llvm_unreachable("unhandled type");
1763 }
1764 
1765 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1766   SDLoc SL(Op);
1767   SDValue Src = Op.getOperand(0);
1768 
1769   // result = trunc(src);
1770   // if (src < 0.0 && src != result)
1771   //   result += -1.0.
1772 
1773   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1774 
1775   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1776   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1777 
1778   EVT SetCCVT =
1779       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1780 
1781   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1782   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1783   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1784 
1785   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1786   // TODO: Should this propagate fast-math-flags?
1787   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1788 }
1789 
1790 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1791   SDLoc SL(Op);
1792   SDValue Src = Op.getOperand(0);
1793   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1794 
1795   if (ZeroUndef && Src.getValueType() == MVT::i32)
1796     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1797 
1798   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1799 
1800   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1801   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1802 
1803   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1804   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1805 
1806   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1807                                    *DAG.getContext(), MVT::i32);
1808 
1809   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1810 
1811   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1812   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1813 
1814   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1815   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1816 
1817   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1818   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1819 
1820   if (!ZeroUndef) {
1821     // Test if the full 64-bit input is zero.
1822 
1823     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1824     // which we probably don't want.
1825     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1826     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1827 
1828     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1829     // with the same cycles, otherwise it is slower.
1830     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1831     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1832 
1833     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1834 
1835     // The instruction returns -1 for 0 input, but the defined intrinsic
1836     // behavior is to return the number of bits.
1837     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1838                           SrcIsZero, Bits32, NewCtlz);
1839   }
1840 
1841   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1842 }
1843 
1844 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1845                                                bool Signed) const {
1846   // Unsigned
1847   // cul2f(ulong u)
1848   //{
1849   //  uint lz = clz(u);
1850   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1851   //  u = (u << lz) & 0x7fffffffffffffffUL;
1852   //  ulong t = u & 0xffffffffffUL;
1853   //  uint v = (e << 23) | (uint)(u >> 40);
1854   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1855   //  return as_float(v + r);
1856   //}
1857   // Signed
1858   // cl2f(long l)
1859   //{
1860   //  long s = l >> 63;
1861   //  float r = cul2f((l + s) ^ s);
1862   //  return s ? -r : r;
1863   //}
1864 
1865   SDLoc SL(Op);
1866   SDValue Src = Op.getOperand(0);
1867   SDValue L = Src;
1868 
1869   SDValue S;
1870   if (Signed) {
1871     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1872     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1873 
1874     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1875     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1876   }
1877 
1878   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1879                                    *DAG.getContext(), MVT::f32);
1880 
1881 
1882   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1883   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1884   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1885   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1886 
1887   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1888   SDValue E = DAG.getSelect(SL, MVT::i32,
1889     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1890     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1891     ZeroI32);
1892 
1893   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1894     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1895     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1896 
1897   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1898                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1899 
1900   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1901                              U, DAG.getConstant(40, SL, MVT::i64));
1902 
1903   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1904     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1905     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1906 
1907   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1908   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1909   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1910 
1911   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1912 
1913   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1914 
1915   SDValue R = DAG.getSelect(SL, MVT::i32,
1916     RCmp,
1917     One,
1918     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1919   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1920   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1921 
1922   if (!Signed)
1923     return R;
1924 
1925   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1926   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1927 }
1928 
1929 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1930                                                bool Signed) const {
1931   SDLoc SL(Op);
1932   SDValue Src = Op.getOperand(0);
1933 
1934   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1935 
1936   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1937                            DAG.getConstant(0, SL, MVT::i32));
1938   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1939                            DAG.getConstant(1, SL, MVT::i32));
1940 
1941   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
1942                               SL, MVT::f64, Hi);
1943 
1944   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
1945 
1946   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
1947                               DAG.getConstant(32, SL, MVT::i32));
1948   // TODO: Should this propagate fast-math-flags?
1949   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
1950 }
1951 
1952 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1953                                                SelectionDAG &DAG) const {
1954   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1955          "operation should be legal");
1956 
1957   // TODO: Factor out code common with LowerSINT_TO_FP.
1958 
1959   EVT DestVT = Op.getValueType();
1960   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
1961     SDLoc DL(Op);
1962     SDValue Src = Op.getOperand(0);
1963 
1964     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
1965     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
1966     SDValue FPRound =
1967         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
1968 
1969     return FPRound;
1970   }
1971 
1972   if (DestVT == MVT::f32)
1973     return LowerINT_TO_FP32(Op, DAG, false);
1974 
1975   assert(DestVT == MVT::f64);
1976   return LowerINT_TO_FP64(Op, DAG, false);
1977 }
1978 
1979 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
1980                                               SelectionDAG &DAG) const {
1981   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1982          "operation should be legal");
1983 
1984   // TODO: Factor out code common with LowerUINT_TO_FP.
1985 
1986   EVT DestVT = Op.getValueType();
1987   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
1988     SDLoc DL(Op);
1989     SDValue Src = Op.getOperand(0);
1990 
1991     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
1992     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
1993     SDValue FPRound =
1994         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
1995 
1996     return FPRound;
1997   }
1998 
1999   if (DestVT == MVT::f32)
2000     return LowerINT_TO_FP32(Op, DAG, true);
2001 
2002   assert(DestVT == MVT::f64);
2003   return LowerINT_TO_FP64(Op, DAG, true);
2004 }
2005 
2006 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2007                                                bool Signed) const {
2008   SDLoc SL(Op);
2009 
2010   SDValue Src = Op.getOperand(0);
2011 
2012   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2013 
2014   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2015                                  MVT::f64);
2016   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2017                                  MVT::f64);
2018   // TODO: Should this propagate fast-math-flags?
2019   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2020 
2021   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2022 
2023 
2024   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2025 
2026   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2027                            MVT::i32, FloorMul);
2028   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2029 
2030   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2031 
2032   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2033 }
2034 
2035 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2036 
2037   if (getTargetMachine().Options.UnsafeFPMath) {
2038     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2039     return SDValue();
2040   }
2041 
2042   SDLoc DL(Op);
2043   SDValue N0 = Op.getOperand(0);
2044   assert (N0.getSimpleValueType() == MVT::f64);
2045 
2046   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2047   const unsigned ExpMask = 0x7ff;
2048   const unsigned ExpBiasf64 = 1023;
2049   const unsigned ExpBiasf16 = 15;
2050   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2051   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2052   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2053   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2054                            DAG.getConstant(32, DL, MVT::i64));
2055   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2056   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2057   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2058                           DAG.getConstant(20, DL, MVT::i64));
2059   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2060                   DAG.getConstant(ExpMask, DL, MVT::i32));
2061   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2062   // add the f16 bias (15) to get the biased exponent for the f16 format.
2063   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2064                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2065 
2066   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2067                           DAG.getConstant(8, DL, MVT::i32));
2068   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2069                   DAG.getConstant(0xffe, DL, MVT::i32));
2070 
2071   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2072                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2073   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2074 
2075   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2076   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2077 
2078   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2079   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2080       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2081                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2082 
2083   // N = M | (E << 12);
2084   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2085       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2086                   DAG.getConstant(12, DL, MVT::i32)));
2087 
2088   // B = clamp(1-E, 0, 13);
2089   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2090                                   One, E);
2091   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2092   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2093                   DAG.getConstant(13, DL, MVT::i32));
2094 
2095   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2096                                    DAG.getConstant(0x1000, DL, MVT::i32));
2097 
2098   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2099   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2100   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2101   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2102 
2103   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2104   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2105                               DAG.getConstant(0x7, DL, MVT::i32));
2106   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2107                   DAG.getConstant(2, DL, MVT::i32));
2108   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2109                                One, Zero, ISD::SETEQ);
2110   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2111                                One, Zero, ISD::SETGT);
2112   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2113   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2114 
2115   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2116                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2117   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2118                       I, V, ISD::SETEQ);
2119 
2120   // Extract the sign bit.
2121   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2122                             DAG.getConstant(16, DL, MVT::i32));
2123   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2124                      DAG.getConstant(0x8000, DL, MVT::i32));
2125 
2126   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2127   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2128 }
2129 
2130 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2131                                               SelectionDAG &DAG) const {
2132   SDValue Src = Op.getOperand(0);
2133 
2134   // TODO: Factor out code common with LowerFP_TO_UINT.
2135 
2136   EVT SrcVT = Src.getValueType();
2137   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2138     SDLoc DL(Op);
2139 
2140     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2141     SDValue FpToInt32 =
2142         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2143 
2144     return FpToInt32;
2145   }
2146 
2147   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2148     return LowerFP64_TO_INT(Op, DAG, true);
2149 
2150   return SDValue();
2151 }
2152 
2153 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2154                                               SelectionDAG &DAG) const {
2155   SDValue Src = Op.getOperand(0);
2156 
2157   // TODO: Factor out code common with LowerFP_TO_SINT.
2158 
2159   EVT SrcVT = Src.getValueType();
2160   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2161     SDLoc DL(Op);
2162 
2163     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2164     SDValue FpToInt32 =
2165         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2166 
2167     return FpToInt32;
2168   }
2169 
2170   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2171     return LowerFP64_TO_INT(Op, DAG, false);
2172 
2173   return SDValue();
2174 }
2175 
2176 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2177                                                      SelectionDAG &DAG) const {
2178   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2179   MVT VT = Op.getSimpleValueType();
2180   MVT ScalarVT = VT.getScalarType();
2181 
2182   assert(VT.isVector());
2183 
2184   SDValue Src = Op.getOperand(0);
2185   SDLoc DL(Op);
2186 
2187   // TODO: Don't scalarize on Evergreen?
2188   unsigned NElts = VT.getVectorNumElements();
2189   SmallVector<SDValue, 8> Args;
2190   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2191 
2192   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2193   for (unsigned I = 0; I < NElts; ++I)
2194     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2195 
2196   return DAG.getBuildVector(VT, DL, Args);
2197 }
2198 
2199 //===----------------------------------------------------------------------===//
2200 // Custom DAG optimizations
2201 //===----------------------------------------------------------------------===//
2202 
2203 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2204   APInt KnownZero, KnownOne;
2205   EVT VT = Op.getValueType();
2206   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2207 
2208   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2209 }
2210 
2211 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2212   EVT VT = Op.getValueType();
2213 
2214   // In order for this to be a signed 24-bit value, bit 23, must
2215   // be a sign bit.
2216   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2217                                      // as unsigned 24-bit values.
2218          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2219 }
2220 
2221 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2222                         TargetLowering::DAGCombinerInfo &DCI) {
2223 
2224   SelectionDAG &DAG = DCI.DAG;
2225   SDValue Op = Node24->getOperand(OpIdx);
2226   EVT VT = Op.getValueType();
2227 
2228   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2229   APInt KnownZero, KnownOne;
2230   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2231   if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI))
2232     return true;
2233 
2234   return false;
2235 }
2236 
2237 template <typename IntTy>
2238 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2239                                uint32_t Width, const SDLoc &DL) {
2240   if (Width + Offset < 32) {
2241     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2242     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2243     return DAG.getConstant(Result, DL, MVT::i32);
2244   }
2245 
2246   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2247 }
2248 
2249 static bool hasVolatileUser(SDNode *Val) {
2250   for (SDNode *U : Val->uses()) {
2251     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2252       if (M->isVolatile())
2253         return true;
2254     }
2255   }
2256 
2257   return false;
2258 }
2259 
2260 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2261   // i32 vectors are the canonical memory type.
2262   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2263     return false;
2264 
2265   if (!VT.isByteSized())
2266     return false;
2267 
2268   unsigned Size = VT.getStoreSize();
2269 
2270   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2271     return false;
2272 
2273   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2274     return false;
2275 
2276   return true;
2277 }
2278 
2279 // Replace load of an illegal type with a store of a bitcast to a friendlier
2280 // type.
2281 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2282                                                  DAGCombinerInfo &DCI) const {
2283   if (!DCI.isBeforeLegalize())
2284     return SDValue();
2285 
2286   LoadSDNode *LN = cast<LoadSDNode>(N);
2287   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2288     return SDValue();
2289 
2290   SDLoc SL(N);
2291   SelectionDAG &DAG = DCI.DAG;
2292   EVT VT = LN->getMemoryVT();
2293 
2294   unsigned Size = VT.getStoreSize();
2295   unsigned Align = LN->getAlignment();
2296   if (Align < Size && isTypeLegal(VT)) {
2297     bool IsFast;
2298     unsigned AS = LN->getAddressSpace();
2299 
2300     // Expand unaligned loads earlier than legalization. Due to visitation order
2301     // problems during legalization, the emitted instructions to pack and unpack
2302     // the bytes again are not eliminated in the case of an unaligned copy.
2303     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2304       if (VT.isVector())
2305         return scalarizeVectorLoad(LN, DAG);
2306 
2307       SDValue Ops[2];
2308       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2309       return DAG.getMergeValues(Ops, SDLoc(N));
2310     }
2311 
2312     if (!IsFast)
2313       return SDValue();
2314   }
2315 
2316   if (!shouldCombineMemoryType(VT))
2317     return SDValue();
2318 
2319   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2320 
2321   SDValue NewLoad
2322     = DAG.getLoad(NewVT, SL, LN->getChain(),
2323                   LN->getBasePtr(), LN->getMemOperand());
2324 
2325   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2326   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2327   return SDValue(N, 0);
2328 }
2329 
2330 // Replace store of an illegal type with a store of a bitcast to a friendlier
2331 // type.
2332 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2333                                                   DAGCombinerInfo &DCI) const {
2334   if (!DCI.isBeforeLegalize())
2335     return SDValue();
2336 
2337   StoreSDNode *SN = cast<StoreSDNode>(N);
2338   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2339     return SDValue();
2340 
2341   EVT VT = SN->getMemoryVT();
2342   unsigned Size = VT.getStoreSize();
2343 
2344   SDLoc SL(N);
2345   SelectionDAG &DAG = DCI.DAG;
2346   unsigned Align = SN->getAlignment();
2347   if (Align < Size && isTypeLegal(VT)) {
2348     bool IsFast;
2349     unsigned AS = SN->getAddressSpace();
2350 
2351     // Expand unaligned stores earlier than legalization. Due to visitation
2352     // order problems during legalization, the emitted instructions to pack and
2353     // unpack the bytes again are not eliminated in the case of an unaligned
2354     // copy.
2355     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2356       if (VT.isVector())
2357         return scalarizeVectorStore(SN, DAG);
2358 
2359       return expandUnalignedStore(SN, DAG);
2360     }
2361 
2362     if (!IsFast)
2363       return SDValue();
2364   }
2365 
2366   if (!shouldCombineMemoryType(VT))
2367     return SDValue();
2368 
2369   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2370   SDValue Val = SN->getValue();
2371 
2372   //DCI.AddToWorklist(Val.getNode());
2373 
2374   bool OtherUses = !Val.hasOneUse();
2375   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2376   if (OtherUses) {
2377     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2378     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2379   }
2380 
2381   return DAG.getStore(SN->getChain(), SL, CastVal,
2382                       SN->getBasePtr(), SN->getMemOperand());
2383 }
2384 
2385 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2386 /// binary operation \p Opc to it with the corresponding constant operands.
2387 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2388   DAGCombinerInfo &DCI, const SDLoc &SL,
2389   unsigned Opc, SDValue LHS,
2390   uint32_t ValLo, uint32_t ValHi) const {
2391   SelectionDAG &DAG = DCI.DAG;
2392   SDValue Lo, Hi;
2393   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2394 
2395   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2396   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2397 
2398   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2399   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2400 
2401   // Re-visit the ands. It's possible we eliminated one of them and it could
2402   // simplify the vector.
2403   DCI.AddToWorklist(Lo.getNode());
2404   DCI.AddToWorklist(Hi.getNode());
2405 
2406   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2407   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2408 }
2409 
2410 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2411                                                 DAGCombinerInfo &DCI) const {
2412   if (N->getValueType(0) != MVT::i64)
2413     return SDValue();
2414 
2415   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2416 
2417   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2418   // common case, splitting this into a move and a 32-bit shift is faster and
2419   // the same code size.
2420   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2421   if (!RHS)
2422     return SDValue();
2423 
2424   unsigned RHSVal = RHS->getZExtValue();
2425   if (RHSVal < 32)
2426     return SDValue();
2427 
2428   SDValue LHS = N->getOperand(0);
2429 
2430   SDLoc SL(N);
2431   SelectionDAG &DAG = DCI.DAG;
2432 
2433   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2434 
2435   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2436   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2437 
2438   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2439 
2440   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2441   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2442 }
2443 
2444 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2445                                                 DAGCombinerInfo &DCI) const {
2446   if (N->getValueType(0) != MVT::i64)
2447     return SDValue();
2448 
2449   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2450   if (!RHS)
2451     return SDValue();
2452 
2453   SelectionDAG &DAG = DCI.DAG;
2454   SDLoc SL(N);
2455   unsigned RHSVal = RHS->getZExtValue();
2456 
2457   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2458   if (RHSVal == 32) {
2459     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2460     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2461                                    DAG.getConstant(31, SL, MVT::i32));
2462 
2463     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2464     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2465   }
2466 
2467   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2468   if (RHSVal == 63) {
2469     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2470     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2471                                    DAG.getConstant(31, SL, MVT::i32));
2472     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2473     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2474   }
2475 
2476   return SDValue();
2477 }
2478 
2479 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2480                                                 DAGCombinerInfo &DCI) const {
2481   if (N->getValueType(0) != MVT::i64)
2482     return SDValue();
2483 
2484   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2485   if (!RHS)
2486     return SDValue();
2487 
2488   unsigned ShiftAmt = RHS->getZExtValue();
2489   if (ShiftAmt < 32)
2490     return SDValue();
2491 
2492   // srl i64:x, C for C >= 32
2493   // =>
2494   //   build_pair (srl hi_32(x), C - 32), 0
2495 
2496   SelectionDAG &DAG = DCI.DAG;
2497   SDLoc SL(N);
2498 
2499   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2500   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2501 
2502   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2503   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2504                            VecOp, One);
2505 
2506   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2507   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2508 
2509   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2510 
2511   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2512 }
2513 
2514 // We need to specifically handle i64 mul here to avoid unnecessary conversion
2515 // instructions. If we only match on the legalized i64 mul expansion,
2516 // SimplifyDemandedBits will be unable to remove them because there will be
2517 // multiple uses due to the separate mul + mulh[su].
2518 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
2519                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
2520   if (Size <= 32) {
2521     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2522     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
2523   }
2524 
2525   // Because we want to eliminate extension instructions before the
2526   // operation, we need to create a single user here (i.e. not the separate
2527   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
2528 
2529   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
2530 
2531   SDValue Mul = DAG.getNode(MulOpc, SL,
2532                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
2533 
2534   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
2535                      Mul.getValue(0), Mul.getValue(1));
2536 }
2537 
2538 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2539                                                 DAGCombinerInfo &DCI) const {
2540   EVT VT = N->getValueType(0);
2541 
2542   unsigned Size = VT.getSizeInBits();
2543   if (VT.isVector() || Size > 64)
2544     return SDValue();
2545 
2546   // There are i16 integer mul/mad.
2547   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
2548     return SDValue();
2549 
2550   SelectionDAG &DAG = DCI.DAG;
2551   SDLoc DL(N);
2552 
2553   SDValue N0 = N->getOperand(0);
2554   SDValue N1 = N->getOperand(1);
2555   SDValue Mul;
2556 
2557   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2558     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2559     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2560     Mul = getMul24(DAG, DL, N0, N1, Size, false);
2561   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2562     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2563     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2564     Mul = getMul24(DAG, DL, N0, N1, Size, true);
2565   } else {
2566     return SDValue();
2567   }
2568 
2569   // We need to use sext even for MUL_U24, because MUL_U24 is used
2570   // for signed multiply of 8 and 16-bit types.
2571   return DAG.getSExtOrTrunc(Mul, DL, VT);
2572 }
2573 
2574 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
2575                                                   DAGCombinerInfo &DCI) const {
2576   EVT VT = N->getValueType(0);
2577 
2578   if (!Subtarget->hasMulI24() || VT.isVector())
2579     return SDValue();
2580 
2581   SelectionDAG &DAG = DCI.DAG;
2582   SDLoc DL(N);
2583 
2584   SDValue N0 = N->getOperand(0);
2585   SDValue N1 = N->getOperand(1);
2586 
2587   if (!isI24(N0, DAG) || !isI24(N1, DAG))
2588     return SDValue();
2589 
2590   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2591   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2592 
2593   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
2594   DCI.AddToWorklist(Mulhi.getNode());
2595   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
2596 }
2597 
2598 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
2599                                                   DAGCombinerInfo &DCI) const {
2600   EVT VT = N->getValueType(0);
2601 
2602   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
2603     return SDValue();
2604 
2605   SelectionDAG &DAG = DCI.DAG;
2606   SDLoc DL(N);
2607 
2608   SDValue N0 = N->getOperand(0);
2609   SDValue N1 = N->getOperand(1);
2610 
2611   if (!isU24(N0, DAG) || !isU24(N1, DAG))
2612     return SDValue();
2613 
2614   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2615   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2616 
2617   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
2618   DCI.AddToWorklist(Mulhi.getNode());
2619   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
2620 }
2621 
2622 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
2623   SDNode *N, DAGCombinerInfo &DCI) const {
2624   SelectionDAG &DAG = DCI.DAG;
2625 
2626   // Simplify demanded bits before splitting into multiple users.
2627   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
2628     return SDValue();
2629 
2630   SDValue N0 = N->getOperand(0);
2631   SDValue N1 = N->getOperand(1);
2632 
2633   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
2634 
2635   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2636   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
2637 
2638   SDLoc SL(N);
2639 
2640   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
2641   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
2642   return DAG.getMergeValues({ MulLo, MulHi }, SL);
2643 }
2644 
2645 static bool isNegativeOne(SDValue Val) {
2646   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2647     return C->isAllOnesValue();
2648   return false;
2649 }
2650 
2651 static bool isCtlzOpc(unsigned Opc) {
2652   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2653 }
2654 
2655 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG,
2656                                           SDValue Op,
2657                                           const SDLoc &DL) const {
2658   EVT VT = Op.getValueType();
2659   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
2660   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
2661                               LegalVT != MVT::i16))
2662     return SDValue();
2663 
2664   if (VT != MVT::i32)
2665     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
2666 
2667   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op);
2668   if (VT != MVT::i32)
2669     FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH);
2670 
2671   return FFBH;
2672 }
2673 
2674 // The native instructions return -1 on 0 input. Optimize out a select that
2675 // produces -1 on 0.
2676 //
2677 // TODO: If zero is not undef, we could also do this if the output is compared
2678 // against the bitwidth.
2679 //
2680 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2681 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2682                                                  SDValue LHS, SDValue RHS,
2683                                                  DAGCombinerInfo &DCI) const {
2684   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2685   if (!CmpRhs || !CmpRhs->isNullValue())
2686     return SDValue();
2687 
2688   SelectionDAG &DAG = DCI.DAG;
2689   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2690   SDValue CmpLHS = Cond.getOperand(0);
2691 
2692   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2693   if (CCOpcode == ISD::SETEQ &&
2694       isCtlzOpc(RHS.getOpcode()) &&
2695       RHS.getOperand(0) == CmpLHS &&
2696       isNegativeOne(LHS)) {
2697     return getFFBH_U32(DAG, CmpLHS, SL);
2698   }
2699 
2700   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2701   if (CCOpcode == ISD::SETNE &&
2702       isCtlzOpc(LHS.getOpcode()) &&
2703       LHS.getOperand(0) == CmpLHS &&
2704       isNegativeOne(RHS)) {
2705     return getFFBH_U32(DAG, CmpLHS, SL);
2706   }
2707 
2708   return SDValue();
2709 }
2710 
2711 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
2712                                          unsigned Op,
2713                                          const SDLoc &SL,
2714                                          SDValue Cond,
2715                                          SDValue N1,
2716                                          SDValue N2) {
2717   SelectionDAG &DAG = DCI.DAG;
2718   EVT VT = N1.getValueType();
2719 
2720   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
2721                                   N1.getOperand(0), N2.getOperand(0));
2722   DCI.AddToWorklist(NewSelect.getNode());
2723   return DAG.getNode(Op, SL, VT, NewSelect);
2724 }
2725 
2726 // Pull a free FP operation out of a select so it may fold into uses.
2727 //
2728 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
2729 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
2730 //
2731 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
2732 // select c, (fabs x), +k -> fabs (select c, x, k)
2733 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
2734                                     SDValue N) {
2735   SelectionDAG &DAG = DCI.DAG;
2736   SDValue Cond = N.getOperand(0);
2737   SDValue LHS = N.getOperand(1);
2738   SDValue RHS = N.getOperand(2);
2739 
2740   EVT VT = N.getValueType();
2741   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
2742       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
2743     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
2744                                      SDLoc(N), Cond, LHS, RHS);
2745   }
2746 
2747   bool Inv = false;
2748   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
2749     std::swap(LHS, RHS);
2750     Inv = true;
2751   }
2752 
2753   // TODO: Support vector constants.
2754   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
2755   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
2756     SDLoc SL(N);
2757     // If one side is an fneg/fabs and the other is a constant, we can push the
2758     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
2759     SDValue NewLHS = LHS.getOperand(0);
2760     SDValue NewRHS = RHS;
2761 
2762     // Careful: if the neg can be folded up, don't try to pull it back down.
2763     bool ShouldFoldNeg = true;
2764 
2765     if (NewLHS.hasOneUse()) {
2766       unsigned Opc = NewLHS.getOpcode();
2767       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
2768         ShouldFoldNeg = false;
2769       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
2770         ShouldFoldNeg = false;
2771     }
2772 
2773     if (ShouldFoldNeg) {
2774       if (LHS.getOpcode() == ISD::FNEG)
2775         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2776       else if (CRHS->isNegative())
2777         return SDValue();
2778 
2779       if (Inv)
2780         std::swap(NewLHS, NewRHS);
2781 
2782       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
2783                                       Cond, NewLHS, NewRHS);
2784       DCI.AddToWorklist(NewSelect.getNode());
2785       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
2786     }
2787   }
2788 
2789   return SDValue();
2790 }
2791 
2792 
2793 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2794                                                    DAGCombinerInfo &DCI) const {
2795   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
2796     return Folded;
2797 
2798   SDValue Cond = N->getOperand(0);
2799   if (Cond.getOpcode() != ISD::SETCC)
2800     return SDValue();
2801 
2802   EVT VT = N->getValueType(0);
2803   SDValue LHS = Cond.getOperand(0);
2804   SDValue RHS = Cond.getOperand(1);
2805   SDValue CC = Cond.getOperand(2);
2806 
2807   SDValue True = N->getOperand(1);
2808   SDValue False = N->getOperand(2);
2809 
2810   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
2811     SelectionDAG &DAG = DCI.DAG;
2812     if ((DAG.isConstantValueOfAnyType(True) ||
2813          DAG.isConstantValueOfAnyType(True)) &&
2814         (!DAG.isConstantValueOfAnyType(False) &&
2815          !DAG.isConstantValueOfAnyType(False))) {
2816       // Swap cmp + select pair to move constant to false input.
2817       // This will allow using VOPC cndmasks more often.
2818       // select (setcc x, y), k, x -> select (setcc y, x) x, x
2819 
2820       SDLoc SL(N);
2821       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2822                                             LHS.getValueType().isInteger());
2823 
2824       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
2825       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
2826     }
2827   }
2828 
2829   if (VT == MVT::f32 && Cond.hasOneUse()) {
2830     SDValue MinMax
2831       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2832     // Revisit this node so we can catch min3/max3/med3 patterns.
2833     //DCI.AddToWorklist(MinMax.getNode());
2834     return MinMax;
2835   }
2836 
2837   // There's no reason to not do this if the condition has other uses.
2838   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2839 }
2840 
2841 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
2842                                                  DAGCombinerInfo &DCI) const {
2843   SelectionDAG &DAG = DCI.DAG;
2844   SDValue N0 = N->getOperand(0);
2845   EVT VT = N->getValueType(0);
2846 
2847   unsigned Opc = N0.getOpcode();
2848 
2849   // If the input has multiple uses and we can either fold the negate down, or
2850   // the other uses cannot, give up. This both prevents unprofitable
2851   // transformations and infinite loops: we won't repeatedly try to fold around
2852   // a negate that has no 'good' form.
2853   //
2854   // TODO: Check users can fold
2855   if (fnegFoldsIntoOp(Opc) && !N0.hasOneUse())
2856     return SDValue();
2857 
2858   SDLoc SL(N);
2859   switch (Opc) {
2860   case ISD::FADD: {
2861     if (!mayIgnoreSignedZero(N0))
2862       return SDValue();
2863 
2864     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
2865     SDValue LHS = N0.getOperand(0);
2866     SDValue RHS = N0.getOperand(1);
2867 
2868     if (LHS.getOpcode() != ISD::FNEG)
2869       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
2870     else
2871       LHS = LHS.getOperand(0);
2872 
2873     if (RHS.getOpcode() != ISD::FNEG)
2874       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2875     else
2876       RHS = RHS.getOperand(0);
2877 
2878     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
2879     if (!N0.hasOneUse())
2880       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
2881     return Res;
2882   }
2883   case ISD::FMUL:
2884   case AMDGPUISD::FMUL_LEGACY: {
2885     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
2886     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
2887     SDValue LHS = N0.getOperand(0);
2888     SDValue RHS = N0.getOperand(1);
2889 
2890     if (LHS.getOpcode() == ISD::FNEG)
2891       LHS = LHS.getOperand(0);
2892     else if (RHS.getOpcode() == ISD::FNEG)
2893       RHS = RHS.getOperand(0);
2894     else
2895       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2896 
2897     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
2898     if (!N0.hasOneUse())
2899       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
2900     return Res;
2901   }
2902   case ISD::FMA:
2903   case ISD::FMAD: {
2904     if (!mayIgnoreSignedZero(N0))
2905       return SDValue();
2906 
2907     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
2908     SDValue LHS = N0.getOperand(0);
2909     SDValue MHS = N0.getOperand(1);
2910     SDValue RHS = N0.getOperand(2);
2911 
2912     if (LHS.getOpcode() == ISD::FNEG)
2913       LHS = LHS.getOperand(0);
2914     else if (MHS.getOpcode() == ISD::FNEG)
2915       MHS = MHS.getOperand(0);
2916     else
2917       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
2918 
2919     if (RHS.getOpcode() != ISD::FNEG)
2920       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2921     else
2922       RHS = RHS.getOperand(0);
2923 
2924     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
2925     if (!N0.hasOneUse())
2926       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
2927     return Res;
2928   }
2929   case ISD::FP_EXTEND:
2930   case ISD::FTRUNC:
2931   case ISD::FRINT:
2932   case ISD::FNEARBYINT: // XXX - Should fround be handled?
2933   case ISD::FSIN:
2934   case AMDGPUISD::RCP:
2935   case AMDGPUISD::RCP_LEGACY:
2936   case AMDGPUISD::SIN_HW: {
2937     SDValue CvtSrc = N0.getOperand(0);
2938     if (CvtSrc.getOpcode() == ISD::FNEG) {
2939       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
2940       // (fneg (rcp (fneg x))) -> (rcp x)
2941       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
2942     }
2943 
2944     if (!N0.hasOneUse())
2945       return SDValue();
2946 
2947     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
2948     // (fneg (rcp x)) -> (rcp (fneg x))
2949     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
2950     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
2951   }
2952   case ISD::FP_ROUND: {
2953     SDValue CvtSrc = N0.getOperand(0);
2954 
2955     if (CvtSrc.getOpcode() == ISD::FNEG) {
2956       // (fneg (fp_round (fneg x))) -> (fp_round x)
2957       return DAG.getNode(ISD::FP_ROUND, SL, VT,
2958                          CvtSrc.getOperand(0), N0.getOperand(1));
2959     }
2960 
2961     if (!N0.hasOneUse())
2962       return SDValue();
2963 
2964     // (fneg (fp_round x)) -> (fp_round (fneg x))
2965     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
2966     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
2967   }
2968   default:
2969     return SDValue();
2970   }
2971 }
2972 
2973 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2974                                                 DAGCombinerInfo &DCI) const {
2975   SelectionDAG &DAG = DCI.DAG;
2976   SDLoc DL(N);
2977 
2978   switch(N->getOpcode()) {
2979   default:
2980     break;
2981   case ISD::BITCAST: {
2982     EVT DestVT = N->getValueType(0);
2983 
2984     // Push casts through vector builds. This helps avoid emitting a large
2985     // number of copies when materializing floating point vector constants.
2986     //
2987     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
2988     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
2989     if (DestVT.isVector()) {
2990       SDValue Src = N->getOperand(0);
2991       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2992         EVT SrcVT = Src.getValueType();
2993         unsigned NElts = DestVT.getVectorNumElements();
2994 
2995         if (SrcVT.getVectorNumElements() == NElts) {
2996           EVT DestEltVT = DestVT.getVectorElementType();
2997 
2998           SmallVector<SDValue, 8> CastedElts;
2999           SDLoc SL(N);
3000           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3001             SDValue Elt = Src.getOperand(I);
3002             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3003           }
3004 
3005           return DAG.getBuildVector(DestVT, SL, CastedElts);
3006         }
3007       }
3008     }
3009 
3010     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3011       break;
3012 
3013     // Fold bitcasts of constants.
3014     //
3015     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3016     // TODO: Generalize and move to DAGCombiner
3017     SDValue Src = N->getOperand(0);
3018     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3019       assert(Src.getValueType() == MVT::i64);
3020       SDLoc SL(N);
3021       uint64_t CVal = C->getZExtValue();
3022       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3023                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3024                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3025     }
3026 
3027     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3028       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3029       SDLoc SL(N);
3030       uint64_t CVal = Val.getZExtValue();
3031       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3032                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3033                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3034 
3035       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3036     }
3037 
3038     break;
3039   }
3040   case ISD::SHL: {
3041     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3042       break;
3043 
3044     return performShlCombine(N, DCI);
3045   }
3046   case ISD::SRL: {
3047     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3048       break;
3049 
3050     return performSrlCombine(N, DCI);
3051   }
3052   case ISD::SRA: {
3053     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3054       break;
3055 
3056     return performSraCombine(N, DCI);
3057   }
3058   case ISD::MUL:
3059     return performMulCombine(N, DCI);
3060   case ISD::MULHS:
3061     return performMulhsCombine(N, DCI);
3062   case ISD::MULHU:
3063     return performMulhuCombine(N, DCI);
3064   case AMDGPUISD::MUL_I24:
3065   case AMDGPUISD::MUL_U24:
3066   case AMDGPUISD::MULHI_I24:
3067   case AMDGPUISD::MULHI_U24: {
3068     // If the first call to simplify is successfull, then N may end up being
3069     // deleted, so we shouldn't call simplifyI24 again.
3070     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3071     return SDValue();
3072   }
3073   case AMDGPUISD::MUL_LOHI_I24:
3074   case AMDGPUISD::MUL_LOHI_U24:
3075     return performMulLoHi24Combine(N, DCI);
3076   case ISD::SELECT:
3077     return performSelectCombine(N, DCI);
3078   case ISD::FNEG:
3079     return performFNegCombine(N, DCI);
3080   case AMDGPUISD::BFE_I32:
3081   case AMDGPUISD::BFE_U32: {
3082     assert(!N->getValueType(0).isVector() &&
3083            "Vector handling of BFE not implemented");
3084     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3085     if (!Width)
3086       break;
3087 
3088     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3089     if (WidthVal == 0)
3090       return DAG.getConstant(0, DL, MVT::i32);
3091 
3092     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3093     if (!Offset)
3094       break;
3095 
3096     SDValue BitsFrom = N->getOperand(0);
3097     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3098 
3099     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3100 
3101     if (OffsetVal == 0) {
3102       // This is already sign / zero extended, so try to fold away extra BFEs.
3103       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3104 
3105       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3106       if (OpSignBits >= SignBits)
3107         return BitsFrom;
3108 
3109       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3110       if (Signed) {
3111         // This is a sign_extend_inreg. Replace it to take advantage of existing
3112         // DAG Combines. If not eliminated, we will match back to BFE during
3113         // selection.
3114 
3115         // TODO: The sext_inreg of extended types ends, although we can could
3116         // handle them in a single BFE.
3117         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3118                            DAG.getValueType(SmallVT));
3119       }
3120 
3121       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3122     }
3123 
3124     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3125       if (Signed) {
3126         return constantFoldBFE<int32_t>(DAG,
3127                                         CVal->getSExtValue(),
3128                                         OffsetVal,
3129                                         WidthVal,
3130                                         DL);
3131       }
3132 
3133       return constantFoldBFE<uint32_t>(DAG,
3134                                        CVal->getZExtValue(),
3135                                        OffsetVal,
3136                                        WidthVal,
3137                                        DL);
3138     }
3139 
3140     if ((OffsetVal + WidthVal) >= 32) {
3141       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3142       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3143                          BitsFrom, ShiftVal);
3144     }
3145 
3146     if (BitsFrom.hasOneUse()) {
3147       APInt Demanded = APInt::getBitsSet(32,
3148                                          OffsetVal,
3149                                          OffsetVal + WidthVal);
3150 
3151       APInt KnownZero, KnownOne;
3152       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3153                                             !DCI.isBeforeLegalizeOps());
3154       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3155       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
3156           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
3157                                    KnownZero, KnownOne, TLO)) {
3158         DCI.CommitTargetLoweringOpt(TLO);
3159       }
3160     }
3161 
3162     break;
3163   }
3164   case ISD::LOAD:
3165     return performLoadCombine(N, DCI);
3166   case ISD::STORE:
3167     return performStoreCombine(N, DCI);
3168   }
3169   return SDValue();
3170 }
3171 
3172 //===----------------------------------------------------------------------===//
3173 // Helper functions
3174 //===----------------------------------------------------------------------===//
3175 
3176 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3177                                                   const TargetRegisterClass *RC,
3178                                                    unsigned Reg, EVT VT) const {
3179   MachineFunction &MF = DAG.getMachineFunction();
3180   MachineRegisterInfo &MRI = MF.getRegInfo();
3181   unsigned VirtualRegister;
3182   if (!MRI.isLiveIn(Reg)) {
3183     VirtualRegister = MRI.createVirtualRegister(RC);
3184     MRI.addLiveIn(Reg, VirtualRegister);
3185   } else {
3186     VirtualRegister = MRI.getLiveInVirtReg(Reg);
3187   }
3188   return DAG.getRegister(VirtualRegister, VT);
3189 }
3190 
3191 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
3192     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
3193   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
3194   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
3195   switch (Param) {
3196   case GRID_DIM:
3197     return ArgOffset;
3198   case GRID_OFFSET:
3199     return ArgOffset + 4;
3200   }
3201   llvm_unreachable("unexpected implicit parameter type");
3202 }
3203 
3204 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
3205 
3206 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
3207   switch ((AMDGPUISD::NodeType)Opcode) {
3208   case AMDGPUISD::FIRST_NUMBER: break;
3209   // AMDIL DAG nodes
3210   NODE_NAME_CASE(CALL);
3211   NODE_NAME_CASE(UMUL);
3212   NODE_NAME_CASE(BRANCH_COND);
3213 
3214   // AMDGPU DAG nodes
3215   NODE_NAME_CASE(ENDPGM)
3216   NODE_NAME_CASE(RETURN)
3217   NODE_NAME_CASE(DWORDADDR)
3218   NODE_NAME_CASE(FRACT)
3219   NODE_NAME_CASE(SETCC)
3220   NODE_NAME_CASE(SETREG)
3221   NODE_NAME_CASE(FMA_W_CHAIN)
3222   NODE_NAME_CASE(FMUL_W_CHAIN)
3223   NODE_NAME_CASE(CLAMP)
3224   NODE_NAME_CASE(COS_HW)
3225   NODE_NAME_CASE(SIN_HW)
3226   NODE_NAME_CASE(FMAX_LEGACY)
3227   NODE_NAME_CASE(FMIN_LEGACY)
3228   NODE_NAME_CASE(FMAX3)
3229   NODE_NAME_CASE(SMAX3)
3230   NODE_NAME_CASE(UMAX3)
3231   NODE_NAME_CASE(FMIN3)
3232   NODE_NAME_CASE(SMIN3)
3233   NODE_NAME_CASE(UMIN3)
3234   NODE_NAME_CASE(FMED3)
3235   NODE_NAME_CASE(SMED3)
3236   NODE_NAME_CASE(UMED3)
3237   NODE_NAME_CASE(URECIP)
3238   NODE_NAME_CASE(DIV_SCALE)
3239   NODE_NAME_CASE(DIV_FMAS)
3240   NODE_NAME_CASE(DIV_FIXUP)
3241   NODE_NAME_CASE(TRIG_PREOP)
3242   NODE_NAME_CASE(RCP)
3243   NODE_NAME_CASE(RSQ)
3244   NODE_NAME_CASE(RCP_LEGACY)
3245   NODE_NAME_CASE(RSQ_LEGACY)
3246   NODE_NAME_CASE(FMUL_LEGACY)
3247   NODE_NAME_CASE(RSQ_CLAMP)
3248   NODE_NAME_CASE(LDEXP)
3249   NODE_NAME_CASE(FP_CLASS)
3250   NODE_NAME_CASE(DOT4)
3251   NODE_NAME_CASE(CARRY)
3252   NODE_NAME_CASE(BORROW)
3253   NODE_NAME_CASE(BFE_U32)
3254   NODE_NAME_CASE(BFE_I32)
3255   NODE_NAME_CASE(BFI)
3256   NODE_NAME_CASE(BFM)
3257   NODE_NAME_CASE(FFBH_U32)
3258   NODE_NAME_CASE(FFBH_I32)
3259   NODE_NAME_CASE(MUL_U24)
3260   NODE_NAME_CASE(MUL_I24)
3261   NODE_NAME_CASE(MULHI_U24)
3262   NODE_NAME_CASE(MULHI_I24)
3263   NODE_NAME_CASE(MUL_LOHI_U24)
3264   NODE_NAME_CASE(MUL_LOHI_I24)
3265   NODE_NAME_CASE(MAD_U24)
3266   NODE_NAME_CASE(MAD_I24)
3267   NODE_NAME_CASE(TEXTURE_FETCH)
3268   NODE_NAME_CASE(EXPORT)
3269   NODE_NAME_CASE(EXPORT_DONE)
3270   NODE_NAME_CASE(R600_EXPORT)
3271   NODE_NAME_CASE(CONST_ADDRESS)
3272   NODE_NAME_CASE(REGISTER_LOAD)
3273   NODE_NAME_CASE(REGISTER_STORE)
3274   NODE_NAME_CASE(LOAD_INPUT)
3275   NODE_NAME_CASE(SAMPLE)
3276   NODE_NAME_CASE(SAMPLEB)
3277   NODE_NAME_CASE(SAMPLED)
3278   NODE_NAME_CASE(SAMPLEL)
3279   NODE_NAME_CASE(CVT_F32_UBYTE0)
3280   NODE_NAME_CASE(CVT_F32_UBYTE1)
3281   NODE_NAME_CASE(CVT_F32_UBYTE2)
3282   NODE_NAME_CASE(CVT_F32_UBYTE3)
3283   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
3284   NODE_NAME_CASE(CONST_DATA_PTR)
3285   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
3286   NODE_NAME_CASE(KILL)
3287   NODE_NAME_CASE(DUMMY_CHAIN)
3288   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
3289   NODE_NAME_CASE(SENDMSG)
3290   NODE_NAME_CASE(SENDMSGHALT)
3291   NODE_NAME_CASE(INTERP_MOV)
3292   NODE_NAME_CASE(INTERP_P1)
3293   NODE_NAME_CASE(INTERP_P2)
3294   NODE_NAME_CASE(STORE_MSKOR)
3295   NODE_NAME_CASE(LOAD_CONSTANT)
3296   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
3297   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
3298   NODE_NAME_CASE(ATOMIC_INC)
3299   NODE_NAME_CASE(ATOMIC_DEC)
3300   NODE_NAME_CASE(BUFFER_LOAD)
3301   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
3302   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
3303   }
3304   return nullptr;
3305 }
3306 
3307 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
3308                                               SelectionDAG &DAG, int Enabled,
3309                                               int &RefinementSteps,
3310                                               bool &UseOneConstNR,
3311                                               bool Reciprocal) const {
3312   EVT VT = Operand.getValueType();
3313 
3314   if (VT == MVT::f32) {
3315     RefinementSteps = 0;
3316     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
3317   }
3318 
3319   // TODO: There is also f64 rsq instruction, but the documentation is less
3320   // clear on its precision.
3321 
3322   return SDValue();
3323 }
3324 
3325 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
3326                                                SelectionDAG &DAG, int Enabled,
3327                                                int &RefinementSteps) const {
3328   EVT VT = Operand.getValueType();
3329 
3330   if (VT == MVT::f32) {
3331     // Reciprocal, < 1 ulp error.
3332     //
3333     // This reciprocal approximation converges to < 0.5 ulp error with one
3334     // newton rhapson performed with two fused multiple adds (FMAs).
3335 
3336     RefinementSteps = 0;
3337     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
3338   }
3339 
3340   // TODO: There is also f64 rcp instruction, but the documentation is less
3341   // clear on its precision.
3342 
3343   return SDValue();
3344 }
3345 
3346 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
3347   const SDValue Op,
3348   APInt &KnownZero,
3349   APInt &KnownOne,
3350   const SelectionDAG &DAG,
3351   unsigned Depth) const {
3352 
3353   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
3354 
3355   APInt KnownZero2;
3356   APInt KnownOne2;
3357   unsigned Opc = Op.getOpcode();
3358 
3359   switch (Opc) {
3360   default:
3361     break;
3362   case AMDGPUISD::CARRY:
3363   case AMDGPUISD::BORROW: {
3364     KnownZero = APInt::getHighBitsSet(32, 31);
3365     break;
3366   }
3367 
3368   case AMDGPUISD::BFE_I32:
3369   case AMDGPUISD::BFE_U32: {
3370     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3371     if (!CWidth)
3372       return;
3373 
3374     unsigned BitWidth = 32;
3375     uint32_t Width = CWidth->getZExtValue() & 0x1f;
3376 
3377     if (Opc == AMDGPUISD::BFE_U32)
3378       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
3379 
3380     break;
3381   }
3382   }
3383 }
3384 
3385 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
3386   SDValue Op,
3387   const SelectionDAG &DAG,
3388   unsigned Depth) const {
3389   switch (Op.getOpcode()) {
3390   case AMDGPUISD::BFE_I32: {
3391     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3392     if (!Width)
3393       return 1;
3394 
3395     unsigned SignBits = 32 - Width->getZExtValue() + 1;
3396     if (!isNullConstant(Op.getOperand(1)))
3397       return SignBits;
3398 
3399     // TODO: Could probably figure something out with non-0 offsets.
3400     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3401     return std::max(SignBits, Op0SignBits);
3402   }
3403 
3404   case AMDGPUISD::BFE_U32: {
3405     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3406     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
3407   }
3408 
3409   case AMDGPUISD::CARRY:
3410   case AMDGPUISD::BORROW:
3411     return 31;
3412 
3413   default:
3414     return 1;
3415   }
3416 }
3417